Bending stresses in Facetted Glass Shells
DEFF Research Database (Denmark)
Bagger, Anne; Jönsson, Jeppe; Almegaard, Henrik
2008-01-01
A shell structure of glass combines a highly effective structural principle with a material of optimal permeability to light. A facetted shell structure has a piecewise plane geometry, and together the facets form an approximation to a curved surface. A distributed load on a plane-based facetted...... structure will locally cause bending moments in the loaded facets. The bending stresses are dependent on the stiffness of the joints. Approximate solutions are developed to estimate the magnitude of the bending stresses. A FE-model of a facetted glass shell structure is used to validate the expressions...
Pure plate bending in couple stress theories
Hadjesfandiari, Ali R; Dargush, Gary F
2016-01-01
In this paper, we examine the pure bending of plates within the framework of modified couple stress theory (M-CST) and consistent couple stress theory (C-CST). In this development, it is demonstrated that M-CST does not describe pure bending of a plate properly. Particularly, M-CST predicts no couple-stresses and no size effect for the pure bending of the plate into a spherical shell. This contradicts our expectation that couple stress theory should predict some size effect for such a deformation pattern. Therefore, this result clearly demonstrates another inconsistency of indeterminate symmetric modified couple stress theory (M-CST), which is based on considering the symmetric torsion tensor as the curvature tensor. On the other hand, the fully determinate skew-symmetric consistent couple stress theory (C-CST) predicts results for pure plate bending that tend to agree with mechanics intuition and experimental evidence. Particularly, C-CST predicts couple-stresses and size effects for the pure bending of the ...
Improving bending stress in spur gears using asymmetric gears and shape optimization
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2010-01-01
Bending stress plays a significant role in gear design wherein its magnitude is controlled by the nominal bending stress and the stress concentration due to the geometrical shape. The bending stress is indirectly related to shape changes made to the cutting tool. This work shows that the bending...... stress can be reduced significantly by using asymmetric gear teeth and by shape optimizing the gear through changes made to the tool geometry. However, to obtain the largest possible stress reduction a custom tool must be designed depending on the number of teeth, but the stress reductions found...
Stress intensity factors under combined bending and torsion moments
Institute of Scientific and Technical Information of China (English)
Al Emran ISMAIL; Ahmad Kamal ARIFFIN; Shahrum ABDULLAH; Mariyam Jameelah GHAZALI; Mohammed ABDULRAZZAQ; Ruslizam DAUD
2012-01-01
This paper discusses stress intensity factor (SIF) calculations for surface cracks in round bars subjected to combined torsion and bending loadings.Different crack aspect ratios,a/b,ranging from 0.0 to 1.2 and relative crack depths,a/D,ranging from 0.1 to 0.6 were considered.Since the loading was non-symmetrical for torsion loadings,a whole finite element model was constructed.Then,the individual and combined bending and torsion loadings were remotely applied to the model.The equivalent SIF method,F* EQ,was then used explicitly to combine the individual SIFs from the bending and torsion loadings.A comparison was then carried out with the combined SIE F* FE,obtained using the finite element analysis (FEA) under similar loadings.It was found that the equivalent SIF method successfully predicted the combined SIF for Mode (I).However,discrepancies between the results determined from the different approaches occurred when FⅢ was involved.It was also noted that the predicted F* FE using FEA was higher than the F* EQ predicted through the equivalent SIF method due to the difference in crack face interactions.
Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress
Energy Technology Data Exchange (ETDEWEB)
P.E. Klingsporn
2011-08-01
Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.
Xyloglucan for Generating Tensile Stress to Bend Tree Stem
Institute of Scientific and Technical Information of China (English)
Kei'ichi Baba; Yong Woo Park; Tomomi Kaku; Rumi Kaida; Miyuki Takeuchi; Masato Yoshida; Yoshihiro Hosoo; Yasuhisa Ojio; Takashi Okuyama; Toru Taniguchi; Yasunori Ohmiya; Teiji Kondo; Ziv Shani; Oded Shoseyov; Tatsuya Awano; Satoshi Serada; Naoko Norioka; Shigemi Norioka; Takahisa Hayashi
2009-01-01
In response to environmental variation, angiosperm trees bend their stems by forming tension wood, which consists of a cellulose-rich G (gelatinous)-Iayer in the walls of fiber cells and generates abnormal tensile stress in the sec-ondary xylem. We produced transgenic poplar plants overexpressing several endoglycanases to reduce each specific poly-saccharide in the cell wall, as the secondary xylem consists of primary and secondary wall layers. When placed horizontally, the basal regions of stems of transgenic poplars overexpressing xyloglucanase alone could not bend upward due to low strain in the tension side of the xylem. In the wild-type plants, xyloglucan was found in the inner surface of G-layers during multiple layering. In situ xyloglucan endotransglucosylase (XET) activity showed that the incorporation of whole xylo-glucan, potentially for wall tightening, began at the inner surface layers S1 and S2 and was retained throughout G-layer development, while the incorporation of xyloglucan heptasaccharide (XXXG) for wall loosening occurred in the primary wall of the expanding zone. We propose that the xyloglucan network is reinforced by XET to form a further connection between wall-bound and secreted xyloglucans in order to withstand the tensile stress created within the cellulose G-layer microfibrils.
Energy Technology Data Exchange (ETDEWEB)
Kekalo, I. B.; Mogil’nikov, P. S., E-mail: pavel-mog@mail.ru [National University of Science and Technology MISiS (Russian Federation)
2015-06-15
The reversibility of residual bending stresses is revealed in ribbon samples of cobalt- and iron-based amorphous alloys Co{sub 69}Fe{sub 3.7}Cr{sub 3.8}Si{sub 12.5}B{sub 11} and Fe{sub 57}Co{sub 31}Si{sub 2.9}B{sub 9.1}: the ribbons that are free of applied stresses and bent under the action of residual stresses become completely or incompletely straight upon annealing at the initial temperatures. The influence of annealing on the relaxation of bending stresses is studied. Preliminary annealing is found to sharply decrease the relaxation rate of bending stresses, and the initial stage of fast relaxation of these stresses is absent. Complete straightening of preliminarily annealed ribbons is shown to occur at significantly higher temperatures than that of the initial ribbons. Incomplete straightening of the ribbons is explained by the fact that bending stresses relaxation at high annealing temperatures proceeds due to both reversible anelastic deformation and viscous flow, which is a fully irreversible process. Incomplete reversibility is also caused by irreversible processes, such as the release of excess free volume and clustering (detected by small-angle X-ray scattering). The revealed differences in the relaxation processes that occur in the cobalt- and iron-based amorphous alloys are discussed in terms of different atomic diffusion mobilities in these alloys.
Reducing bending stress in external spur gears by redesign of the standard cutting tool
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2009-01-01
For the design of gears the stress due to bending plays a significant role. The stress from bending is largest in the root of the gear teeth, and the magnitude of the maximum stress is controlled by the nominal bending stress and stress concentration due to the geometric shape of the tooth....... In this work the bending stress of involute teeth is minimized by shape optimizing the tip of the standard cutting tool. By redesign of the tip of the standard cutting tool we achieve that the functional part of the teeth stays the same while at the same time the root shape is changed so that a reduction...... of the stresses results. The tool tip shape is described by different parameterizations that use the super ellipse as the central shape. For shape optimization it is important that the shape is given analytically. The shape of the cut tooth that is the envelope of the cutting tool is found analytically...
Directory of Open Access Journals (Sweden)
Mehmet AKTAŞ
2001-03-01
Full Text Available In this study; the stress intensity factor was computed for a cylindrical object that was under effect of bending moment, axial stress and internal pressure. In order to make the calculations easy, the stress intensity factor was calculated individually for bending moment, axial stress and internal pressure. Then, the result were superimposed to have a final stress intensity factor for the concerned object. The calculated stress intensity factor is known as Mode I, which corresponds to "opening mode". Furthermore, it was assumed that there were some initial radial cracks around the center line for a given object and the amount of change on the stress intensity factor was discussed.
Standard Practice for Making and Using U-Bend Stress-Corrosion Test Specimens
American Society for Testing and Materials. Philadelphia
2009-01-01
1.1 This practice covers procedures for making and using U-bend specimens for the evaluation of stress-corrosion cracking in metals. The U-bend specimen is generally a rectangular strip which is bent 180° around a predetermined radius and maintained in this constant strain condition during the stress-corrosion test. Bends slightly less than or greater than 180° are sometimes used. Typical U-bend configurations showing several different methods of maintaining the applied stress are shown in Fig. 1. 1.2 U-bend specimens usually contain both elastic and plastic strain. In some cases (for example, very thin sheet or small diameter wire) it is possible to form a U-bend and produce only elastic strain. However, bent-beam (Practice G 39 or direct tension (Practice G 49)) specimens are normally used to study stress-corrosion cracking of strip or sheet under elastic strain only. 1.3 This practice is concerned only with the test specimen and not the environmental aspects of stress-corrosion testing which are discus...
Stress Distribution on Sandwich Structure with Triangular Grid Cores Suffered from Bending Load
Cui Xu; Huang Yanjiao; Wang Shou; Lu Chun; Fang Luping
2015-01-01
Triangular grid reinforced by carbon fiber/epoxy (CF/EP) was designed and manufactured. The sandwich structure was prepared by gluing the core and composite skins. The mechanical properties of the sandwich structure were investigated by the finite element analysis (FEA) and three-point bending methods. The calculated bending stiffness and core shear stress were compared to the characteristics of a honeycomb sandwich structure. The results indicated that the triangular core ultimately failed u...
Stress Distribution on Sandwich Structure with Triangular Grid Cores Suffered from Bending Load
Directory of Open Access Journals (Sweden)
Cui Xu
2015-01-01
Full Text Available Triangular grid reinforced by carbon fiber/epoxy (CF/EP was designed and manufactured. The sandwich structure was prepared by gluing the core and composite skins. The mechanical properties of the sandwich structure were investigated by the finite element analysis (FEA and three-point bending methods. The calculated bending stiffness and core shear stress were compared to the characteristics of a honeycomb sandwich structure. The results indicated that the triangular core ultimately failed under a bending load of 11000 N; the principal stress concentration was located at the loading region; and the cracks occurred on the interface top skin and triangular core. In addition, the ultimate stress bearing of the sandwich structure was 8828 N. The experimental results showed that the carbon fiber reinforced triangular grid was much stiffer and stronger than the honeycomb structure.
Institute of Scientific and Technical Information of China (English)
Xifeng LI; Kaifeng ZHANG; Changli WANG; Wenbo HAN; Guofeng WANG
2007-01-01
The amorphous Fe78Si9B13 ribbons were bend stress relaxed at various temperature well below the crystallization temperature (Tx) for different time. The effect of pre-annealing on the subsequent bend stress relaxation was examined. The variation of the microstructure and microhardness during bend stress relaxation process was studied using X-ray diffraction (XRD), atomic force microscopy (AFM) and Vickers microhardness test,respectively. Curvature radius of the amorphous Fe78Si9B13 ribbons decreased with increase bend stress relaxation temperature and time. The microhardness of the stress relaxed specimens increased with time at 300℃ due to the forming of nanocrystals during bend stress relaxation. The pre-annealing reduced the decrease rate of the curvature radius of stress relaxed specimens.
Biomechanics of buttressed trees: bending strains and stresses.
Clair, Bruno; Fournier, Meriem; Prevost, Marie Françoise; Beauchene, Jacques; Bardet, Sandrine
2003-09-01
The different hypotheses about buttress function and formation mainly involve mechanical theory. Forces were applied to two trees of Sloanea spp., a tropical genus that develops typical thin buttresses, and the three-dimensional strains were measured at different parts of the trunk base. Risks of failure were greater on the buttress sides, where shear and tangential stresses are greater, not on the ridges, in spite of high longitudinal (parallel to the grain) stresses. A simple beam model, computed from the second moment of area of digitized cross sections, is consistent with longitudinal strain variations but cannot predict accurately variations with height. Patterns of longitudinal strain variation along ridges are very different in the two individuals, owing to a pronounced lateral curvature in one specimen. The constant stress hypothesis is discussed based on these results. Without chronological data during the development of the tree, it cannot be proved that buttress formation is activated by stress or strain.
Stress relaxation and recovery behaviour of composite orthodontic archwires in bending.
Zufall, S W; Kusy, R P
2000-02-01
The viscoelastic behaviour of prototype composite orthodontic archwires was evaluated using a bend stress relaxation test. Archwires having 10 different volume fractions of reinforcement were subjected to constant bending radii in a water bath at 37 degrees C for time periods of up to 90 days. The wires were subsequently released and left unconstrained for the same testing conditions. Creep-induced changes in the unconstrained bending radii of the wires were measured at specific times during both phases (stress relaxation and recovery) of the test. The statistical analysis showed that stress relaxation behaviour was strongly correlated with the archwire reinforcement level. The final relaxation varied, with decreasing reinforcement, from 2 to 8 per cent. Archwire recovery was not correlated with reinforcement level, and revealed a final viscous loss of only 1 per cent. The relaxed elastic moduli in bending of the composite wires were similar to the elastic moduli in bending of several conventional orthodontic archwire materials. Losses that were associated with the viscoelastic behaviour varied with decreasing reinforcement level from 1.2 to 1.7 GPa. Because these modulus losses were minimal, each archwire retained sufficient resilience to be applicable to the early and intermediate stages of orthodontic treatment. PMID:10721240
Laser bending of pre-stressed thin-walled nickel micro-tubes
Che Jamil, M. S.; Imam Fauzi, E. R.; Juinn, C. S.; Sheikh, M. A.
2015-10-01
Laser forming is an innovative technique of producing bending, spatial forming and alignment of both metallic and non-metallic parts by introducing thermal stresses into a work piece with a laser beam. It involves a complex interaction of process parameters to mechanical and thermal characteristics of materials. This paper presents a comprehensive experimental and numerical study of laser bending process of thin-walled micro-tubes. The effect of input parameters, namely laser power, pulse length and pre-stress constraint, on the process and the final product characteristics are investigated. Results of the analysis show that the bending angle of the tube increases considerably when a constraint is imposed at the tube's free end during the heating period. The introduction of compressive pre-stresses (from mechanical bending) in the irradiated region increases the final deformation which varies almost linearly with the amount of pre-stress. Due to high thermal conductivity and thin-walled structure of the tube, the heat dissipates quickly from the irradiated region to its surrounding material. Therefore, a combination of short pulse duration and high power is preferable to generate a higher thermal gradient and induce plastic strain. Design of experiment and regression analysis are implemented to develop an empirical model based on simulation results. Sensitivity analysis is also performed to determine the influence of independent variables on output response. It is evident that initial displacement and pulse length have a stronger positive effect on the output response as compared to laser power.
Displacements and stresses in bending of circular perforated plate
Atanasiu, C.; Sorohan, St.
2016-08-01
The flat plates, perforated by a large number of holes are widely used in the engineering, especially in the component of the process equipment. Strength calculations and experimental methods used in the actual literature for study perforated plates, do not present the problem in all its complexity for stress distribution and displacements. Research and doctoral theses in last decades, with methods characteristic of the respective periods were engaged either perforated plates considered infinite and requested the median plane or rarely, plate loaded normal to the median plane, with a small number of holes. In this work the stress distribution and displacement is presented for a circular plate perforated by 96 holes arranged in a grid of squares, simply supported on the outline and loaded through a central concentrated force or by uniformly distributed load. It conducted a numerical analysis by finite element method (FEM) with a proper meshing of the plate and an experimental study by holographic interferometry. Holographic interferometry method permits to measure, with high accuracy, extremely small displacements and comparing the results with those obtained by FEM becomes sustainable. Supplementary, an analysis of a non-perforated plate with the same dimensions and stiffness, similar loaded, was performed, determining the coefficient of stress concentration for a particular arrangement of holes.
International Nuclear Information System (INIS)
The indentation crack length approach was adopted and further elaborated to evaluate residual stress and toughness of the brittle coatings: two kinds of glass coatings on steel. The influence of the residual stress on indentation cracking was examined in as-received coating condition and by in-situ superimposing a counteracting tensile stress. For purpose of providing reference toughness values stress-free pieces of separated coating material have also been examined. Thus results of the two complementary sets of experiments were assumed to prove self-consistently toughness and residual stress data of the coating. In particular, the in-situ bending of specimen in combination with the indentation test allowed us to vary deliberately the residual stress situation in glass coating. Thus experiments which utilized the combination of bending test and micro-indentation were introduced as a method to provide unambiguous information about residual compressive stress. Toughness and residual compressive stress of glass coatings used in this study were 0.46-0.50 MPa·m1/2 and 94-111 MPa, respectively. Furthermore, a thermoelastic calculation of the residual compressive stress was performed and it is found that the value of residual compressive stress at coating surface of specimen was 90-102 MPa. (author)
Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches
Ayatollahi, M. R.; Mahdavi, E.; Alborzi, M. J.; Obara, Y.
2016-04-01
Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm's slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.
Interpretation of bend strength increase of graphite by the couple-stress theory
International Nuclear Information System (INIS)
This paper presents a continued evaluation of the applicability of the couple-stress constitutive theory to graphite. The evaluation is performed by examining four-point bend and uniaxial tensile data of various sized cylindrical and square specimens for three grades of graphites. These data are superficially inconsistent and, usually, at variance with the predictions of classical theories. Nevertheless, this evaluation finds that they can be consistently interpreted by the couple-stress theory. This is compatible with results of an initial evaluation that considered one size of cylindrical specimen for H-451 graphite
The effect of applied stress on damage mode of 3D C/C composites under bend-bend fatigue loading
Institute of Scientific and Technical Information of China (English)
LIAO XiaoLing; LI HeJun; XU WenFeng; LI KeZhi
2007-01-01
The bend-bend fatigue behavior of 3D integral braided carbon/carbon composites (3D C/C) was examined. Fatigue test was conducted under load control at a sinusoidal frequency of 10 Hz to obtain stress-fracture cycles (S-N) relationship. The fatigue limit of the C/C was found to be 203 MPa (92% of the static flexural strength), the lag loops of fatigue load-displacement were transformed from elasticity to anelasticity and the flexibility of specimens were enhanced with increase in applied stress. It is revealed that the interfacial sliding abrasion played an important role in the fatigue failure process, and the extent and speed of sliding abrasion were controlled by the level of applied stress.
The effect of applied stress on damage mode of 3D C/C composites under bend-bend fatigue loading
Institute of Scientific and Technical Information of China (English)
2007-01-01
The bend-bend fatigue behavior of 3D integral braided carbon/carbon composites (3D C/C) was examined. Fatigue test was conducted under load control at a sinu-soidal frequency of 10 Hz to obtain stress-fracture cycles (S-N) relationship. The fatigue limit of the C/C was found to be 203 MPa (92% of the static flexural strength), the lag loops of fatigue load-displacement were transformed from elasticity to anelasticity and the flexibility of specimens were enhanced with increase in applied stress. It is revealed that the interfacial sliding abrasion played an important role in the fatigue failure process, and the extent and speed of sliding abrasion were con-trolled by the level of applied stress.
Directory of Open Access Journals (Sweden)
Seçil ERİM
1998-03-01
Full Text Available In this study, a beam subjected to pure bending with a circular hole on its transverse axis, is analyzed by the Finite Element Method. The hole is shifted to various locations along the transverse axis and two different materials, namely isotropic (steel and orthotropic (graphite-epoxy, are used as beam material. Stress distribution and stress concentration factors around the hole are determined for each case. In order to establish the effect of fiber reinforcing angle on the stress distribution, the examination is repeated at various reinforcing angles between 0° and 90° for graphite-epoxy. Denoting the distance between the longitudinal axis and the center of the hole as b, the value of the critical hole diameter which leads to the maximum theoretical bending moment is determined by using the Finite Element Method. Furthermore, the critical distance b which will create the maximum theoretical bending moment for a constant hole diameter of 10 mm, is calculated for steel and each reinforcing angle of the composite beam.
Engel, Frank; Rhoads, Bruce L.
2016-01-01
Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.
Energy Technology Data Exchange (ETDEWEB)
Koneva, N. A., E-mail: koneva@tsuab.ru; Kozlov, E. V. [Tomsk State University of Architecture and Building, 634003, Tomsk, Solyanaya Sq., 2 (Russian Federation)
2016-01-15
Generalization of the results of electron microscopy investigations of the crystal lattice bending-torsion (χ) and the internal stresses (IS) was conducted. The deformed polycrystalline alloys and steels were investigated. The sources of χ and IS origin were established. The regularities of their change with the distance from the sources and the evolution with deformation were revealed. The contribution of IS into the deformation resistance was determined. The nature of formation of two sequences of dislocation substructure transformations during deformation of alloys was established.
DEFF Research Database (Denmark)
Pedersen, Niels Leergaard
2015-01-01
is then used to find the cutting tool (the gear envelope) that can create this optimized gear shape.A simple but sufficiently flexible root parameterization is applied and emphasis is put on the importance of separating the shape parameterization from the finite element analysis of stresses. Large improvements......The strength of a gear is typically defined relative to durability (pitting) and load capacity (tooth-breakage). Tooth-breakage is controlled by the root shape and this gear part can be designed because there is no contact between gear pairs here. The shape of gears is generally defined...... by different standards, with the ISO standard probably being the most common one. Gears are manufactured using two principally different tools: rack tools and gear tools. In this work, the bending stress of involute teeth is minimized by shape optimization made directly on the final gear. This optimized shape...
Numerical analysis of stress state during single point bending in DMTA examinations
Directory of Open Access Journals (Sweden)
A. Gnatowski
2008-05-01
Full Text Available Purpose: Determination of stresses at the change of Young′s modulus values in temperature function for samples made of PA 6.6 filled with glass fibre, by DMTA method, was the aim of work.Design/methodology/approach: Investigations were carried out for samples subjected to the one-axial bending. The change in the value of the dynamic Young modulus and the mechanical loss tangent in function of temperature and oscillation frequency by the DMTA method was determined. The computer simulations of changes of the stress and strain distribution within the range of elastic strains and the glass transition phase were done.Findings: Examinations made possible the determination of dynamic mechanical proprieties PA 6.6 filled with glass fibre and changes in the stress distribution during the dynamic loading of the sample in function of temperature. Higher values of the Young modulus were observed within the range of elasticity and the glass transition phase. The stress increased with the increase in Young′s modulus, at the strain generated from push rot oscillation.Research limitations/implications: The accuracy of used approximate method for computer simulations was not sufficient to indicate the Bielajew point.Practical implications: Investigated polymeric composite is characterized by viscoelastic properties, so all indicators of the physical and chemical properties depend on not only the time but and also the temperature.Originality/value: To characterize properties of investigated composite and to estimate the composite usage in particular conditions, dependences of the storage module and the mechanical losses tangent was determined in function of temperature at the one-axial bending.
Institute of Scientific and Technical Information of China (English)
GAO Ling; YANG Haitao; DU Daming; ZHAO Shikun; LI Huaping; YUAN Runzhang
2005-01-01
The residual stresses on the surface of the differently ground and polished silicon nitride ceramics were measured using X-ray diffraction and identified by SEM.The effect of the residual stress on the bending strength was investigated.The investigations show that the grinding process can introduce subatantial tensile residual stresses up to 290MPa on the surface of silicon nitride ceramics,which has a significant effect on reducing the bending strength of the ceramics after grinding.Thus,in comparison with the ceramics with a rough surface,the ceramics with a mirror image surface may have a lower strength.Polishing can smooth the residual stresses.When we evaluate the quality of the ceramic components after grinding,we must take residual stress into consideration. The grinding methods and grinding conditions must be carefully selected in order to get the favorite residual stress as well as the surface smoothness.
Energy Technology Data Exchange (ETDEWEB)
Singh, S. [Los Alamos National Laboratory (LANL); Fitzsimmons, M. R. [Los Alamos National Laboratory (LANL); Lookman, T [Los Alamos National Laboratory (LANL); Jeen, Hyoung Jeen [ORNL; Biswas, A [University of Florida, Gainesville; Roldan Gutierrez, Manuel A [ORNL; Varela del Arco, Maria [ORNL
2012-01-01
We measured the magnetization depth profile of a (La{sub 1-x}Pr{sub x}){sub 1-y}Ca{sub y}MnO{sub 3} (x = 0.60 {+-} 0.04, y = 0.20 {+-} 0.03) film using polarized neutron reflectometry as a function of applied elastic bending stress and temperature. We found unequivocal and until now elusive direct evidence that the exclusive application of compressive or tensile bending stress along the magnetic easy axis increases or decreases, respectively, the saturation magnetization of the film. Furthermore, we obtained a coupling coefficient relating strain to the depth-dependent saturation magnetization.
Directory of Open Access Journals (Sweden)
Ándonios D. Tsolakis
2011-01-01
Full Text Available Problem statement: Main purpose of this study was to investigation toothed gear loading problems using the Finite Element Method. Approach: We used Niemann's equations to compare maximum bending stress which was developed at critical gear-tooth flank point during gear meshing, applied for three distinct spur-gear sizes, each having different teeth number, module and power rating. Results: The results emerging after the application of Niemann's equations were compared to the results derived by application of the Finite Element Method (FEM for the same gear-loading input data. Results are quite satisfactory, since von Mises' equivalent stresses calculated with FEM are of the same order with the results of classical analytical method. Conclusion: Judging from the emerging results, deviation of the two methods, analytical (Niemann's equations and computational (FEM, referring to maximum bending stress is fairly slight, independently of the applied geometrical and loading data of each gear.
Measuring permeability, Young's modulus, and stress relaxation by the beam-bending technique
Vichit-Vadakan, Wilasa
Recent interest in the permeability of cement paste, mortars, and concrete lies in the need to gain further understanding of mechanisms affecting the durability of these materials. Conventional techniques for measuring permeability are cumbersome and often take days to complete just one measurement. This thesis proposes a new technique for measuring the permeability. The advantage of this technique is that the results are obtained in a few minutes to a few hours; moreover, there is no problem with leaks or need for high pressures. The method is particularly well suited for examining the changes in permeability and viscoelastic properties of young cement paste samples. When a saturated rod of a porous material is instantaneously deflected under three-point bending, two types of relaxation processes occur simultaneously: hydrodynamic relaxation, caused by the flow of liquid in the porous body to restore ambient pressure, and viscoelastic relaxation of the solid network. By measuring the decrease in the force required to sustain a constant deflection, it is possible to obtain the permeability and Young's modulus from the hydrodynamic relaxation function, in addition to the stress relaxation function of the sample. The exact viscoelastic solution is developed and the total relaxation is shown to be very closely approximated as the product of the hydrodynamic and stress relaxation functions. The analytical results are verified on porous VycorRTM glass saturated in various solvents, including normal alcohols, water, and glycerol. The results show excellent agreement with the theory. Consistent with observations of previous workers, the permeability is found to be influenced by the size of the solvent molecule; by assuming that the pore surfaces are covered with a monolayer of immobile solvent, the observed variation can be explained. The evolution of the permeability, Young's modulus, and stress relaxation function are reported for Type III Portland cement paste with
Energy Technology Data Exchange (ETDEWEB)
Ochiai, S. E-mail: ochiai@iic.kyoto-u.ac.jp; Miyazaki, N.; Doko, D.; Nagai, T.; Nakamura, M.; Okuda, H.; Oh, S.S.; Hojo, M.; Tanaka, M.; Osamura, K
2004-08-01
The influence of bending and tensile damage introduced at room temperature on the critical current at 77 K under zero magnetic field of a multifilamentary Bi2223/Ag/Ag alloy superconducting composite tape was studied. From the analysis of the tensile stress-strain curve, the residual strain and intrinsic tensile-fracture strain of Bi2223 filaments were estimated, with which the measured change of critical current with tensile strain was accounted for. A simple model, in which the damage evolution in both tensile and compressive sides was incorporated, was proposed to describe the change in critical current with bending strain. The application of the model to the experimental result indicated that the intrinsic compressive-strength of Bi2223 filaments, determining damages in the compressive side, is about five times higher than the tensile strength.
The effects of relative density of metal foams on the stresses and deformation of beam under bending
Institute of Scientific and Technical Information of China (English)
Aiyu Zhu; Tianyou Fan
2007-01-01
The exact analytic solution of the pure bending beam of metallic foams is given. The effects of relative den-sity of the material on stresses and deformation are revea-led with the Triantafillou and Gibson constitutive law (TG model) taken as the analysis basis. Several examples for indi-vidual foams are discussed, showing the importance of com-pressibility of the cellular materials. One of the objects of this study is to generalize Hill's solution for incompressible plas-ticity to the case of compressible plasticity, and a kinematics parameter is brought into the analysis so that the velocity field can be determined.
Gou, Xiaofan; Shen, Qiang
2012-05-01
An analysis model of the bending strain dependence of the critical current in multifilamentary Bi2223/Ag composite tapes is presented. To investigate the effect of the mechanical properties of the Bi2223 superconducting filament, the actual part for carrying current, its damage stress and elastic modulus are introduced. The calculated result of the variation of the critical current with the bending strain is well agreed with the experimental one. The further studies find that the mechanical properties of the filament have a remarkable effect on the bending strain dependence of the critical current. Specifically, the larger the damage stress and elastic modulus of the filament are, the higher the critical current is, when the bending strain increases to a larger value beyond the critical one.
Energy Technology Data Exchange (ETDEWEB)
Gou Xiaofan, E-mail: xfgou@hhu.edu.cn [Department of Engineering Mechanics, Hohai University, Nanjing, Jiangsu 210098 (China); Shen Qiang [Department of Engineering Mechanics, Hohai University, Nanjing, Jiangsu 210098 (China)
2012-05-15
An analysis model of the bending strain dependence of the critical current in multifilamentary Bi2223/Ag composite tapes is presented. To investigate the effect of the mechanical properties of the Bi2223 superconducting filament, the actual part for carrying current, its damage stress and elastic modulus are introduced. The calculated result of the variation of the critical current with the bending strain is well agreed with the experimental one. The further studies find that the mechanical properties of the filament have a remarkable effect on the bending strain dependence of the critical current. Specifically, the larger the damage stress and elastic modulus of the filament are, the higher the critical current is, when the bending strain increases to a larger value beyond the critical one.
Araújo, Marcelo Marotta; Lauria, Andrezza; Mendes, Marcelo Breno Meneses; Claro, Ana Paula Rosifini Alves; Claro, Cristiane Aparecida de Assis; Moreira, Roger William Fernandes
2015-12-01
The aim of this study was to analyze, through Vickers hardness test and photoelasticity analysis, pre-bent areas, manually bent areas, and areas without bends of 10-mm advancement pre-bent titanium plates (Leibinger system). The work was divided into three groups: group I-region without bend, group II-region of 90° manual bend, and group III-region of 90° pre-fabricated bends. All the materials were evaluated through hardness analysis by the Vickers hardness test, stress analysis by residual images obtained in a polariscope, and photoelastic analysis by reflection during the manual bending. The data obtained from the hardness tests were statistically analyzed using ANOVA and Tukey's tests at a significance level of 5 %. The pre-bent plate (group III) showed hardness means statistically significantly higher (P < 0.05) than those of the other groups (I-region without bends, II-90° manually bent region). Through the study of photoelastic reflection, it was possible to identify that the stress gradually increased, reaching a pink color (1.81 δ / λ), as the bending was performed. A general analysis of the results showed that the bent plate region of pre-bent titanium presented the best results.
Directory of Open Access Journals (Sweden)
Hiroshi Yoshihara
2014-06-01
Full Text Available The Mode I critical stress intensity factor (KIc obtained by single-edge-notched bending (SENB tests of medium-density fiberboard (MDF was experimentally analyzed. In the SENB test, the critical load for crack propagation (Pc was determined from the relationship between load/loading-line displacement and load/crack opening displacement (COD. A double cantilever beam (DCB test was also conducted and the results were compared with those of SENB tests. The value of Mode I critical stress intensity factor was obtained by introducing an additional crack length, when the crack length ranged from 0.5 to 0.7 times the depth of the specimen. This range coincided well with that used to derive the appropriate KIc value in the single-edge-notched tension (SENT test, which was conducted using the specimens with a similar confi guration cut from the MDF panel used in this study.
Directory of Open Access Journals (Sweden)
Salau Tajudeen A.O.
2014-01-01
Full Text Available This study reported a simulation approach to the understanding of the interactions between a buried pipe and the soil system by computing the bending stress variation of harmonically-excited buried pipes. The established principles of linear dynamics theory and simple beam theory were utilised in the analysis of the problem of buried pipe bending stress accumulation and its dynamics. With regards to the parameters that influence the bending stress variations, the most important are the isolation factor, uniform external load, and the corresponding limiting conditions. The simulated mathematical expressions, containing static and dynamic parameters of the buried pipe and earth, were coded in Fortran programming language and applied in the simulation experiment. The results obtained showed that harmonically-excited buried thick-walled pipe became stable and effective when the ratio of the natural frequency of vibration to the forced frequency is greater than 2.0, whenever the damped factor is used as the control parameter for the maximum bending stress. The mirror image of the stress variation produces variation in the location of the maximum bending stress in quantitative terms. The acceptable pipe materials for the simulated cases must have yield strength in bending greater than or equal to 13.95 MPa. The results obtained in this work fill a gap in the literature and will be useful to pipeline engineers and designers, as well as to environmental scientists in initialising and controlling environmental issues and policy formulation concerning the influence of buried pipe on the soil and water in the environment.
Flow Stress Analysis and Hot Bending of P11 Alloy Steel
Ma, Fu-ye; Jin, Kai; Wang, Hui; Pei, Wen-Jiao; Tang, Xiao-Bin; Tao, Jie; Guo, Xun-Zhong
2016-07-01
Based on the growing application value of the P11 alloy steel in the nuclear power field, its dynamic recrystallization (DRX) behavior was firstly investigated by means of isothermal hot compression experiments, under the conditions of a testing temperature range between 800 and 950 °C, and a strain rate range between 0.01 and 2/s. Furthermore, optical microscopy and transmission electron microscopy were also employed to analyze the effect of the mechanism of the strain rate on DRX. The results indicated that the grain size could be significantly refined with the increase of strain rate. Also, the recrystallized volume fraction was increased and the dislocation density decreased with the decrease of strain rate, for the same strain values. Subsequently, numerical simulations, under the assistance of experimental results on DRX behavior, were successfully used to study the hot push bending process and simultaneously obtain the processing parameters of the actual work-pieces. Finally, some comparative analyses were performed and discussed in parallel with the deformed actual work-pieces. The EBSD results on the deformed P11 alloy steel were emphasized for exploring the forming properties of this alloy steel.
Flow Stress Analysis and Hot Bending of P11 Alloy Steel
Ma, Fu-ye; Jin, Kai; Wang, Hui; Pei, Wen-Jiao; Tang, Xiao-Bin; Tao, Jie; Guo, Xun-Zhong
2016-09-01
Based on the growing application value of the P11 alloy steel in the nuclear power field, its dynamic recrystallization (DRX) behavior was firstly investigated by means of isothermal hot compression experiments, under the conditions of a testing temperature range between 800 and 950 °C, and a strain rate range between 0.01 and 2/s. Furthermore, optical microscopy and transmission electron microscopy were also employed to analyze the effect of the mechanism of the strain rate on DRX. The results indicated that the grain size could be significantly refined with the increase of strain rate. Also, the recrystallized volume fraction was increased and the dislocation density decreased with the decrease of strain rate, for the same strain values. Subsequently, numerical simulations, under the assistance of experimental results on DRX behavior, were successfully used to study the hot push bending process and simultaneously obtain the processing parameters of the actual work-pieces. Finally, some comparative analyses were performed and discussed in parallel with the deformed actual work-pieces. The EBSD results on the deformed P11 alloy steel were emphasized for exploring the forming properties of this alloy steel.
Latham, J.P.; Xiang, J.; Belayneh, M.; Nick, H.M.; Tsang, C.F.; Blunt, M.J.
2013-01-01
The influence of in-situ stresses on flow processes in fractured rock is investigated using a novel modelling approach. The combined finite-discrete element method (FEMDEM) is used to model the deformation of a fractured rock mass. The fracture wall displacements and aperture changes are modelled in
Directory of Open Access Journals (Sweden)
Assma Hassan Ismail
2014-12-01
Full Text Available Theoretical and experimental methodologies were assessed to test curved beam made of layered composite material. The maximum stress and maximum deflection were computed for each layer and the effect of radius of curvature and curve shape on them. Because of the increase of the use of composite materials in aircraft structures and the renewed interest in these types of problems, the presented theoretical assessment was made using three different approaches: curved beam theory and an approximate 2D strength of material equations and finite element method (FEM analysis by ANSYS 14.5 program for twelve cases of multi-layered cylindrical shell panel differs in fiber orientations and number of layers. One case of E-glass composite material was experimentally made and tested to verify the relation between applied load and maximum deflection and four models were made of poly carbonyl to determine stresses under bending loads in polar scope, all results were compared with each other, the percentage accuracy was very good. The curved beam theory and strength of material equation formulas results were reasonable for the bottom surface, while it seems not enough for the top surfaces. Also, results explained positions and cases more affected by delaminating and the most preferred part of ellipse shape beam in resisting loads.
Toivonen, Aki
2004-01-01
The applicability of elastic-plastic fracture mechanics to stress corrosion crack growth rate measurements was studied. Several test series were performed on small elastic-plastically loaded SEN(B) specimens in high temperature water. One test was performed on a 25 mm C(T) specimen under linear-elastic loading. The tests on the SEN(B) specimens were performed using either rising displacement or a combination of rising and constant displacement loading. The test on the 25 mm C(T) specimen was ...
Fitzenz, D.D.; Miller, S.A.
2004-01-01
Understanding the stress field surrounding and driving active fault systems is an important component of mechanistic seismic hazard assessment. We develop and present results from a time-forward three-dimensional (3-D) model of the San Andreas fault system near its Big Bend in southern California. The model boundary conditions are assessed by comparing model and observed tectonic regimes. The model of earthquake generation along two fault segments is used to target measurable properties (e.g., stress orientations, heat flow) that may allow inferences on the stress state on the faults. It is a quasi-static model, where GPS-constrained tectonic loading drives faults modeled as mostly sealed viscoelastic bodies embedded in an elastic half-space subjected to compaction and shear creep. A transpressive tectonic regime develops southwest of the model bend as a result of the tectonic loading and migrates toward the bend because of fault slip. The strength of the model faults is assessed on the basis of stress orientations, stress drop, and overpressures, showing a departure in the behavior of 3-D finite faults compared to models of 1-D or homogeneous infinite faults. At a smaller scale, stress transfers from fault slip transiently induce significant perturbations in the local stress tensors (where the slip profile is very heterogeneous). These stress rotations disappear when subsequent model earthquakes smooth the slip profile. Maps of maximum absolute shear stress emphasize both that (1) future models should include a more continuous representation of the faults and (2) that hydrostatically pressured intact rock is very difficult to break when no material weakness is considered. Copyright 2004 by the American Geophysical Union.
拉伸和弯曲耦合层合梁应力分析%ANALYSIS OF STRESS FOR LAMINATE BEAM WITH TENSION AND BEND COUPLING
Institute of Scientific and Technical Information of China (English)
马功勋
2001-01-01
The differentiating equations of displacements have been developed for laminate beam under the coupling of tension and bend. For laminate beam with tension and bend coupling,the calculating formula of normal stress and layer shear stress were educed. The stresses of rule-normal and asymmetrical laminate beam were analyzed. The distribution of stresses is asymmetrical.As the number of laminate series is more than 8, the distribution of asymmetrical stresses tends to symmetrical distribution.%本文建立了拉伸和弯曲耦合层合梁的位移微分方程。导出了拉弯耦合层合梁正应力和层间剪应力的计算公式，分析了规则非对称正交层合梁的应力具有非对称特性。当规则非对称正交层合梁的铺层组数大于8时，其应力趋于对称分布。
Zhen, Wu; Wanji, Chen
2010-04-01
A C0-type global-local higher order theory including interlaminar stress continuity is proposed for the cross-ply laminated composite and sandwich plates in this paper, which is able to a priori satisfy the continuity conditions of transverse shear stresses at interfaces. Moreover, total number of unknowns involved in the model is independent of number of layers. Compared to other higher-order theories satisfying the continuity conditions of transverse shear stresses at interfaces, merit of the proposed model is that the first derivatives of transverse displacement w have been taken out from the in-plane displacement fields, so that the C0 interpolation functions is only required during its finite element implementation. To verify the present model, a C0 three-node triangular element is used for bending analysis of laminated composite and sandwich plates. It ought to be shown that all variables involved in present model are discretized by only using linear interpolation functions within an element. Numerical results show that the C0 plate element based on the present theory may accurately calculate transverse shear stresses without any postprocessing, and the present results agree well with those obtained from the C1-type higher order theory. Compared with the C1 plate bending element, the present finite element is simple, convenient to use and accurate enough.
Djoković, Jelena M.; Nikolić, Ružica R.; Bujňák, Ján
2015-12-01
In this paper it is analyzed the welded T-joint exposed to the axial tensile force and the bending moment, for determining the impact of the weld geometry on the fracture mechanics parameters. The stress intensity factor was calculated analytically, based on the concept of the linear elastic fracture mechanics (LEFM), by application of the Mathematica® programming routine. The presence of the weld was taken into account through the corresponding correction factors. The results show that increase of the size of the triangular welds leads to decrease of the stress intensity factor, while the SIF increases with increase of the welds' width. The ratio of the two welded plates' thicknesses shows that plate thicknesses do not exhibit significant influence on the stress intensity factor behavior.
Energy Technology Data Exchange (ETDEWEB)
Hojo, Masaki [Department of Mechanical Engineering and Science, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Nakamura, Mitsuhiro [Department of Mechanical Engineering and Science, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Tanaka, Mototsugu [Department of Mechanical Engineering and Science, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Adachi, Taiji [Department of Mechanical Engineering and Science, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Sugano, Michinaka [Department of Electric Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); Ochiai, Shojiro [International Innovation Center, Kyoto University, Kyoto 606-8501 (Japan); Osamura, Kozo [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)
2005-12-15
The mesoscopic stress and strain states of Bi2223/Ag/Ag-alloy superconducting composite tapes have been studied both analytically and experimentally under bending deformation. The tapes used in the present study were supplied as the standard samples for the VAMAS round-robin program (classified as VAM1 and VAM3). Detailed tape bending analysis was completed based on a damage-free initial state, and the calculated decrease of critical current, I{sub c}, due to Bi2223 filament fracture was compared to the experimental I{sub c} decrease. The calculated I{sub c} was much lower than that obtained in the experiments for both tapes. Metallography indicated the presence of delamination in as-received as well as bend-tested tapes. The analysis was therefore modified to include delamination and it was completed for the case where delamination occupied the full width of the tape mid-plane. The calculated I{sub c} with delamination was higher than the experimental results for both tapes. Delamination occupying partial width of the mid-plane explained this difference. Finally, the width ratio where delamination exists was calculated by comparing the analytical results with delamination and experimental results. This ratio increased with increasing curvature of the tape.
Directory of Open Access Journals (Sweden)
Andrea Bulletti
2015-01-01
Full Text Available Interdigital transducers fabricated with piezopolymer film have been realized to excite ultrasonic Lamb waves in a composite laminate subjected to pure bending stresses. Lamb waves were generated and detected in a cross-ply [0°/90°] 4 mm thick carbon-fiber composite, by using two interdigital transducers in pitch-catch configuration. We demonstrate that the choice of the piezopolymer transducer technology is suitable for this type of investigation and the advantages of the proposed transducer assembly and bonding are described. A full set-up is described to determine the relationship between the time of flight of the recorded signals and the applied bending moment. Interdigital transducers were designed according to simulations of the dispersion curves, in order to operate at a central frequency of 450 kHz. This frequency corresponds to a central wavelength of 16 mm and to a group velocity of about 6000 m/s for the first symmetric guided wave mode. The variations in the time of flight of ultrasonic recorded signals were measured as a function of the variations in the bending moment. The static and dynamic load tests were in good agreement with strain gage measurements performed in the micro deformation range (0–1400 µm/m.
Monoj Kumar Barai,; Debabrata Nag,; Jagabandhu Shit,; Abhijit Chanda; , Manoj Kr. Mitra
2011-01-01
In the present paper, the effect of two different crack geometries on dynamic stress intensity factor for a three point bend configuration in short alumina ceramic beam has been studied. The first crack geometry has a typical surface edge crack (perpendicular to the surface) and the second one has a notched configuration with a small crack at its tip like a fatigue pre-crack. Real impact-response was captured using a suitable data acquisition system and fed into a standard finite element mode...
双列调节级变工况对汽流弯应力的影响%Influences of different conditions to steam bending stress of curtis stage
Institute of Scientific and Technical Information of China (English)
高怡秋; 周振东; 祝华
2012-01-01
The work environment of the Curtis stage in turbine is extremely harsh, so the calculation of the steam bending stress is an important issue in research of blade vibration. In differenl condition, due to enthalpy drop, the flow changes, steam bending stress on the blade will change large. Investigate the influences of the backpressure, load and steam parameters to the steam bending stress. The results indicate that the decrease of backpressure level will increase the bending stress on the blade, which move the bending stress increase greater on second blade than on the first. The sleam bending stress achieves maximum when the steam flow in the first group of nozzles is about to reach the critical. In the case of little change in enthalpy of initial parameters , steam bending stress is proportional to the steam pressure.%汽轮机双列调节级的工作环境极为恶劣,其动叶的汽流弯应力计算是叶片强度振动的重要问题.在汽轮机变工况时,由于焓降、流量的改变,调节级动叶汽流弯应力将发生重大变化.研究了调节级背压、负荷以及蒸汽参数对汽流弯应力的影响.计算结果表明,调节级背压的减小会增大动叶的汽流弯应力,其中第二列动叶的增幅大于第一列;在第一组喷嘴即将达到临界流量时,动叶汽流弯应力最大;在初参数焓变化不大的情况下,汽流弯应力与蒸汽压力成正比关系.
Park, Jung Jin; Na, Suok-Min; Raghunath, Ganesh; Flatau, Alison B.
2016-05-01
Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011) grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ - λ⊥) of ˜280 ppm and ˜130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA). Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ˜60% to within ˜80% of λsat). The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ˜46% to ˜56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing/energy harvesting
Directory of Open Access Journals (Sweden)
Jung Jin Park
2016-05-01
Full Text Available Magnetostrictive Fe-Ga and Fe-Al alloys are promising materials for use in bending-mode vibrational energy harvesters. For this study, 50.8 mm × 5.0 mm × 0.5 mm strips of Fe-Ga and Fe-Al were cut from 0.50-mm thick rolled sheet. An atmospheric anneal was used to develop a Goss texture through an abnormal grain growth process. The anneal lead to large (011 grains that covered over 90% of sample surface area. The resulting highly-textured Fe-Ga and Fe-Al strips exhibited saturation magnetostriction values (λsat = λ∥ − λ⊥ of ∼280 ppm and ∼130 ppm, respectively. To maximize 90° rotation of magnetic moments during bending of the strips, we employed compressive stress annealing (SA. Samples were heated to 500°C, and a 100-150 MPa compressive stress was applied while at 500°C for 30 minutes and while being cooled. The effectiveness of the SA on magnetic moment rotation was inferred by comparing post-SA magnetostriction with the maximum possible yield of rotated magnetic moments, which is achieved when λ∥ = λsat and λ⊥ = 0. The uniformity of the SA along the sample length and the impact of the SA on sensing/energy harvesting performance were then assessed by comparing pre- and post-SA bending-stress-induced changes in magnetization at five different locations along the samples. The SA process with a 150 MPa compressive load improved Fe-Ga actuation along the sample length from 170 to 225 ppm (from ∼60% to within ∼80% of λsat. The corresponding sensing/energy harvesting performance improved by as much as a factor of eight in the best sample, however the improvement was not at all uniform along the sample length. The SA process with a 100 MPa compressive load improved Fe-Al actuation along the sample length from 60 to 73 ppm (from ∼46% to ∼56% of λsat, indicating only a marginally effective SA and suggesting the need for modification of the SA protocol. In spite of this, the SA was effective at improving the sensing
Energy Technology Data Exchange (ETDEWEB)
Coello, J.; Miguel, V.; Ferrer, C.; Calatayud, A.; Martinez, A.
2012-11-01
Die radius is a critical area from the viewpoint of friction in forming processes. Moreover the sheet, that has been previously deformed in flange area, suffers bending and unbending stresses. Then, die-sheet contact in die radius must be especially considered in order to guarantee the suitable lubrication conditions. In the present work, a test method is carried out for evaluating an AISI 304 DDQ steel under similar conditions to those existing in the die radius area and that, usually, are not really reproduced in traditional bending under tensions tests. Deformation under pure shear condition, the bending and the radius angle have been established as variables of the tests. Results allow to obtain the apparent pressure sheet-bending tool, that increases with bending angle and decreases with tool radius. This last variable is the most significant while the bending angle has lesser influence. Although experimental results present some concordances with values obtained by analytical methods, some corrections must be considered in them in order to improve the theoretical values. (Author) 18 refs.
Directory of Open Access Journals (Sweden)
Monoj Kumar Barai,
2011-03-01
Full Text Available In the present paper, the effect of two different crack geometries on dynamic stress intensity factor for a three point bend configuration in short alumina ceramic beam has been studied. The first crack geometry has a typical surface edge crack (perpendicular to the surface and the second one has a notched configuration with a small crack at its tip like a fatigue pre-crack. Real impact-response was captured using a suitable data acquisition system and fed into a standard finite element model. The solution was done using transient dynamic analysis. It was observed that crack with notch has a lower DSIF than that with straight surface crack. The efficacy of the model was validated by checking with the experimental results of DSIF available in literature.
Kekalo, I. B.; Mogil'nikov, P. S.
2015-12-01
An unusual effect of the stresses of bending (toroidal sample diameter D) on the hysteretic magnetic properties ( H c , μ5) of an amorphous Co69Fe3.7Cr3.8Si12B11 alloy with an extremely low magnetostriction (|λ s | ≤ 10-7) is revealed. These properties are measured in a dynamic regime at a magnetic-field frequency f = 0.1-20 kHz. The coercive force of the alloy H c weakly depends on D at low frequencies ( f fact that magnetization reversal via the displacement of rigid domain walls is predominant at low frequencies and during static measurements and magnetization reversal via the displacement of flexible domain walls is predominant at high frequencies.
Energy Technology Data Exchange (ETDEWEB)
Hanus, E. [Linkoeping Univ. (Sweden). Div. of Eng. Mater.; Ericsson, T. [Linkoeping Univ. (Sweden). Div. of Eng. Mater.
1995-05-01
In this work, the influence of fatigue on the residual stress state of a pressure-rolled metal matrix composite has been investigated. The three-dimensional stress state measured in both matrix and reinforcement has been determined by X-ray diffraction. To estimate the efficiency of the pressure rolling treatment, Woehler curves were derived for both the heat-treated (to maximum hardness) (T6) and further rolled composites. To study the stability of the induced residual stress field, four-point bending fatigue tests were performed on a 2014 aluminium alloy reinforced with 15% SiC particles. It was found that pressure rolling increased the fatigue strength by 30% in the high-cycle region. Macrostress relaxation occurs during cyclic loading: the higher the applied load, the larger the relaxation. A more pronounced effect is observed on the compression-loaded side. As regards the microstresses, a reduction, creation and/or stabilization during cycling may occur according to the loading and metallurgical conditions. ((orig.))
非对称齿轮的设计及弯曲应力分析%Design and Bending Stress Analysis of Asymmetric Gear
Institute of Scientific and Technical Information of China (English)
张海伟
2013-01-01
设计了一种新型齿条刀具用于加工非对称齿轮,推导出了非对称齿轮的齿形轮廓方程,分析了齿轮传动过程中5个典型点的受力情况,对5种压力角组合20°/20°、25°/20°、30°/20°、35°/20°和40°/20°下的齿形进行了弯曲应力分析,得到了弯曲应力最小情况下的压力角组合.%A new type of rack cutter for cutting asymmetric gear is designed, the profile equations are deduced, the force of five typical points are analyzed in the transmission process, and five sets of asymmetric gears with the pressure angles of 20°/20°, 25°/20°,30°/20°, 35°/20° and 40°/20° are established to quantitatively check the stress distributions at the fillet of the drive side of these teeth, the combination of pressure angle is got in the minimum bending stress is got.
International Nuclear Information System (INIS)
It is necessary to study on the stress concentration experimentally, which is the main reason to avoid mechanical dilapidation and failure, when designing a mechanical structure. Stress concentration factor of a specimen of cantilever beam with a circular hole in the center was measured using both strain gage and photoelastic methods in this paper. In strain-gage measurement, three strain gages along the line near a hole of the specimen were installed and maximum strain was extrapolated from three measurements. In photoelastic measurement, two methods were employed. First, the Babinet-Soleil compensation method was used to measure the maximum strain. Secondly, photoelastic 4-step phase shilling method was applied to observe the strain distribution around the hole. Measurements obtained by different experiments were comparable within the range of experimental error
Bending strength analysis of steel-composite submerged floating tunnels
Han, T H; Won, D.; Han, S. H.; Park, W. S.; Yum, K.D.
2013-01-01
A submerged floating tunnel (SFT) must have enough strength to resist to various external loadings such as bending, torsion, tension, and compression. The expected main deformation of SFT is caused by bending moment. And this bending moment makes tensile stress and compression stress on the wall of SFT. Thus, bending moment is a main affecting factor on the safety of SFT. Until now, a reinforced concrete tunnel was suggested for SFT by other researchers. In this study, an internal...
Institute of Scientific and Technical Information of China (English)
季楚凌
2015-01-01
The flow field and stress of heavy oil flowing throughout the 90-degree bend were analyzed. The viscosity of heavy oil at different temperature was measured by using Anton Paar MCR 302 rotary viscometer, and the viscosity-temperature curve was also analyzed with the regression analysis method. In addition, the fluid-solid-heat coupling of the bend was simulated by using Fluent software and Ansys software. The flow field and stress of heavy oil flowing throughout the bend at different temperature and velocity were analyzed. The research result can provide a theoretical foundation for further study on erosion mechanisms of heavy oil flowing throughout the bend.%以输送稠油的90°弯管为研究对象，对稠油流经弯管进行流场和应力的分析。利用 Anton Paar MCR 302可视化流变仪测得了稠油的粘温曲线，并借助 Fluent 与 Ansys 软件对弯管进行热流固耦合模拟计算。对稠油样品在不同温度及流速下流经管道弯头进行了流场和应力的研究和分析。研究结论可为进一步研究稠油流经弯管的冲蚀机理提供理论依据。
Bend Properties of Sapphire Fibers at Elevated Temperatures. 1; Bend Survivability
Morscher, Gregory N.; Sayir, Haluk
1995-01-01
The effect of temperature on the bend radius that a c-axis-oriented sapphire fiber can withstand was determined for fibers of various diameter. Bend stress rupture tests were performed for times of 1-100 h and temperatures of 300-1700 C. Fibers would survive the bend test undeformed, would fracture or would deform. The bend survival radius was determined to be the radius above which no fibers fractured or deformed for a given time-temperature treatment. It was found that the ability of fibers to withstand curvature decreases substantially with time and increasing temperature and that fibers of smaller diameter (46-83 micron) withstood smaller bend radii than would be expected from just a difference in fiber diameter when compared with the bend results of the fibers of large diameter (144 micron). This was probably due to different flaw populations, causing high temperature bend failure for the tested sapphire fibers of different diameters.
Estimation of tensile properties of pipe bends manufactured by cold bending
International Nuclear Information System (INIS)
In this study, tensile tests were performed on specimens that simulated the cold bending and heat treatment of pipe bends to understand the mechanical properties of pipe bends manufactured by cold bending followed by heat treatment for relieving residual stress. The strength and ductility of cold worked materials were respectively found to be higher and lower than those of the parent material although heat treatment was carried out to relieve residual stress. In addition, the increase in strength and decrease in ductility were proportional to the applied strain levels for cold working. It was thus inferred that the intrados and extrados regions of pipe bends that were cold bended and heat treated show higher strength and lower ductility compared to the parent straight pipe and that the mechanical properties at the crown region are nearly the same as those of the parent straight pipe
Forming characteristics of thin-walled tube bending process with small bending radius
Institute of Scientific and Technical Information of China (English)
LI Heng; YANG He; ZHAN Mei; GU Rui-Jie
2006-01-01
Currently requirements of thin-walled tube with small bending radius cause the defects such as wrinkling,overthinning and cross-section distortion more prone to occur in bending process. Based on the analysis of the forming characteristics by analytical and experimental methods,a complete 3D elastic-plastic FEM model of the process was developed using ABAQUS/Explicit code,including bending process,balls retracting and unloading process,and thus the plastic deformation characteristics with small bending radius were investigated. The main results show that: 1) The utmost deformation feature of the NC bending process is its continuous progressive deformation. 2) The occurring conditions of the defects such as wrinkling and tension instability in the process are obtained. The wrinkling is traditional on the double compressive stresses state and the tension instability is on the double tension stresses state. 3) The enhanced non-uniform deformation in thin-walled tube with small bending radius is demonstrated by comparing the stress/ strains distributions under the 1.5D and 1D bending conditions. 4) For 1D small bending process,a new method-"stepped mandrel retraction" is proposed to improve the bending quality in experiment according to the FE simulation. The simulation results are verified by experiment.
Energy Technology Data Exchange (ETDEWEB)
Hojo, M. [Department of Mechanical Engineering, Kyoto University, Kyoto 606-8501 (Japan)]. E-mail: hojo_cm@mech.kyoto-u.ac.jp; Nakamura, M. [Department of Mechanical Engineering, Kyoto University, Kyoto 606-8501 (Japan); Tanaka, M. [Department of Mechanical Engineering, Kyoto University, Kyoto 606-8501 (Japan); Adachi, T. [Department of Mechanical Engineering, Kyoto University, Kyoto 606-8501 (Japan); Sugano, M. [Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510 (Japan); Ochiai, S. [International Innovation Center, Kyoto University, Kyoto 606-8501 (Japan); Osamura, K. [Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501 (Japan)
2005-10-01
The strain dependence of the critical current, I {sub c}, of Bi2223/Ag/Ag-alloy composite superconducting tapes has been studied both experimentally and analytically under bending deformation. The microscopic observation after bending deformation indicated that delamination existed inside Bi2223 filaments and filament/matrix interface. Then, the former bending deformation analysis was modified to fit the existence of the delamination. The calculated critical current, I {sub c}, was almost the same as the experimental results when the delamination is fully located at the mid plane of the tape though the actual situation was partial in the width direction. Then the location of the delamination was moved in the thickness direction in the analysis. The calculated I {sub c} agreed well with the experimental results when the delamination location was moved to the compressive side.
Institute of Scientific and Technical Information of China (English)
邹翔; 王三民; 袁茹
2013-01-01
在直齿面齿轮齿面仿真的基础上,利用Matlab与ANSYS相结合实现了面齿轮副在有限元软件中从参数化建模到承载接触分析的自动化.为解决面齿轮强度设计的应力计算问题,研究了点接触面齿轮载荷与弯曲应力的确切关系,并提出了一种采用人工神经网络预测面齿轮弯曲应力的方法,该方法以有限元分析结果为样本,能够完成面齿轮弯曲应力的快速定量计算,在训练神经网络的样本参数范围内,该方法具有很高的精度,为面齿轮的强度设计奠定了基础.%Based on tooth surface simulation of spur face gear, the automation from parametric modeling to load tooth contact analysis of face gear pair in finite element software is achieved by using Matlab and ANSYS. To solve the problem of stress calculation while design face gear, the exact relationship between load and bending stress of face gear is researched, and a method to predict the bending stress by artificial neural network is presented which regard the result of finite element analysis as samples, the method can rapidly calculate the bending stress with high accuracy while parameters are within sample scope. The foundation for strength design of face gear is laid.
Semiconductor laser beam bending
YILDIRIM, REMZİ; ÇELEBİ, FATİH VEHBİ
2015-01-01
This study is about a single-component cylindrical structured lens with a gradient curve that was used for bending laser beams. It operates under atmospheric conditions and bends the laser beam independently of temperature, pressure, polarity, polarization, magnetic field, electric field, radioactivity, and gravity. A single-piece cylindrical lens that can bend laser beams was developed. Lenses are made of transparent, tinted, or colored glass and are used to undermine or absorb the energy of...
Energy Technology Data Exchange (ETDEWEB)
Ikonen, K. [Technical Research Centre of Finland, Espoo (Finland). Nuclear Engineering Lab.
1993-07-01
The report describes the work performed for achieving readiness to calculate fracture toughness dependence on dimension effects and loading conditions in fracture test specimens and real structures. In the report two- and three-dimensional computer codes developed and calculational methods applied are described. One of the main goals is to converse fracture toughness from small scale three point bending test specimens to case of a depth crack in plane strain i.e. to small scale yielding state (SSY) by numerical elastic-plastic stress analysis. Thickness effect of a test specimens and effect of a crack depth are separately investigated. Tests of three point bending specimens with and without sidegrooves and curved crack front are numerically simulated and experimental and computed results are compared. J-integral is calculated along crack front and also from force-deflection dependence of the beam. For the analyses the computing system was thoroughly automatized. Measuring capacity of three point bending test specimens was tried to evaluate. (orig.) (7 refs., 54 figs.).
2002-01-01
A Japanese team has found a way to bend and shape silicon substrates by growing a thin layer of diamond on top. The technique has been proposed as an alternative to mechanical bending, which is currently used to make reflective lenses for X-ray systems and particle physics systems (2 paragraphs).
Energy Technology Data Exchange (ETDEWEB)
Miguel, V.; Coello, J.; Martinez, A.; Calatayud, A.
2013-09-01
In this paper, a methodology has been developed for evaluating the spring back of AISI 304 DDQ stainless steel sheet based on a bending under tension test. The main difference of the methodology herein carried out is that tests are made under the multiaxial stresses state that take place in deep drawing processes. This affects to the level of stress value in the test and to the hardening state of the sheet. Springback evaluation has been done in two different areas. Bending area has been evaluated from elastic recovery ratio defined as the ratio between the bending radius after and before bending. Bending and unbending extreme has been studied from the measured curvature radius in this area and taking into account the geometric equivalence of the test with the drawing cups process. Results found allow to state that drawing ratio or deformation ratio have a negligible influence on the springback into the range of values experimented here. Bending radius has hardly influence as well while bending angle is the most significant variable. The results obtained are compared to those measured in deep-drawn cups, finding a great agreement. (Author)
Finite Element Analysis for Bending Process of U-Bending Specimens
Energy Technology Data Exchange (ETDEWEB)
Park, Won Dong; Bahn, Chi Bum [Pusan National University, Busan (Korea, Republic of)
2015-10-15
ASTM G30 suggests that the applied strain can be calculated by dividing thickness by a bend radius. It should be noted, however, that the formula is reliable under an assumption that the ratio of thickness to bend radius is less than 0.2. Typically, to increase the applied stress/strain, the ratio of thickness to bend radius becomes larger than 0.2. This suggests that the estimated strain values by ASTM G30 are not reliable to predict the actual residual strain state of the highly deformed U-bend specimen. For this reason, finite element analysis (FEA) for the bending process of Ubend specimens was conducted by using a commercial finite element analysis software ABAQUS. ver.6.14- 2;2014. From the results of FEA, PWSCC initiation time and U-bend specimen size can be determined exactly. Since local stress and strain have a significant effect on the initiation of PWSCC, it was inappropriate to apply results of ASTM G30 to the PWSCC test directly. According to results of finite element analysis (FEA), elastic relaxation can cause inaccuracy in intended final residual stress. To modify this inaccuracy, additional process reducing the spring back is required. However this additional process also may cause uncertainty of stress/strain state. Therefore, the U-bending specimen size which is not creating uncertainty should be optimized and selected. With the bending radius of 8.3 mm, the thickness of 3 mm and the roller distance of 32.6 mm, calculated maximum stress and strain were 670 MPa and 0.21, respectively.
Institute of Scientific and Technical Information of China (English)
莫立新; 徐峰; 郑绍文
2014-01-01
复合材料板格作为复合材料基本板架结构力学性能的最小分析单元，是由不同厚度、不同材料和不同铺设角度的单层板叠合而成。利用材料力学理论和经典复合材料层合板理论，推导一般情况下的复合材料板格中性轴位置控制方程，并采用等效截面方法，提出复合材料板格各单层弯曲正应力的计算公式。复合材料板格各单层的最大正应力由模量比和距中性轴位置共同决定。此公式形式上和各向同性材料弯曲正应力的计算公式一致，从而将弯曲正应力计算公式由各向同性材料扩展到各向异性材料，为掌握复合材料板架结构应力水平提供方便。此公式形式简洁，便于工程应用。%Composite panel is the smallest analysis unit for the mechanical properties of the basic plate frame structure, which could be composed of different thickness, different materials, and different lamina with arbitrary angles. Based on the theory of mechanics materials and the classical theory of composite lami⁃nate, this paper derives the general control equation of neutral axis for composite panels. By employing the equivalent section method, the normal bending stress formula of each lamina is presented. To be more spe⁃cific, the maximum normal bending stress for each lamina is determined by the modulus ratio and the dis⁃tance from the neutral axis. This result is formally consistent with the isotropic material formula. Thus, the normal bending stress formulas can be extended from isotropic material application to anisotropic material application, which brings significant convenience to calculate the stress level of composite plate frames. The formula proposed in this paper is both clear and concise, which can greatly shorten the development cy⁃cle of composite structure design and be easily applied in future engineering applications.
International Nuclear Information System (INIS)
The calculations for the design of nuclear power plant components in accordance with nuclear standards (ASME-BPVC III or KTA) are required to include fatigue analyses taking into account calculated primary plus secondary stress, plus stress maxima. The number of possible stress cycles can then be derived from the incipient cracking and fatigue data available in the codes and standards. The effects of temperature, surface quality, welding and size of specimens have been investigated. It was found that the nominal safety defined in the codes frequently is not attained in reality. The curves hitherto available in the ASME or KTA codes may still be taken as a basis when proper and accurate measurement of strains and stresses is assured and the correct influencing parameters are taken into account, but for psychological reasons it seems advisable to rely on new curves using Ssub(L) = 10 and S = 1.5. (orig.)
49 CFR 192.315 - Wrinkle bends in steel pipe.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Wrinkle bends in steel pipe. 192.315 Section 192... Transmission Lines and Mains § 192.315 Wrinkle bends in steel pipe. (a) A wrinkle bend may not be made on steel pipe to be operated at a pressure that produces a hoop stress of 30 percent, or more, of SMYS. (b)...
Bamboo Taper Effect on Third Point Loading Bending Test
Naresworo Nugroho; Effendi Tri Bahtiar
2013-01-01
Geometrical shape of bamboo usually assumed as tapered hollow pipe. This study proved that the dimensional changes along the bamboo stem significantly affected to its Modulus of Rupture (SR) value which measured from third point loading bending test. Therefore if the bending test applied using third point loading configuration, the SR value should be adjusted by strength ratio of taper (Ct). Ct is theratio between (SR) calculated in the center span and the maximum bending stress along the bam...
Directory of Open Access Journals (Sweden)
H. Hernández Herrera
2004-09-01
Full Text Available En el trabajo se presenta el cálculo de las tensiones de cortante en la sección de la garganta para las uniones soldadassometidas a flexión con costuras de filete de sección transversal asimétrica cuando el plano de carga no pasa por el centrode flexión o no coincide con los ejes centroidales principales de inercia. Los resultados obtenidos por las expresiones decálculo propuestas se comparan con los obtenidos por el Método de los Elementos Finitos demostrando de esta manera lavalidez de las mismas.Palabras claves: Flexión, uniones soldadas, soldadura de filete.___________________________________________________________________________Abstract.In this paper is presented the bending shear stresses calculation in the throat area for asymmetric welded joints with filletweldings, when the load plane does not go by the flexion center or it do not coincide with the mains inertia centroidal axes.The results obtained by the proposed expressions are compared with those obtained by the Finite Elements Methoddemonstrating by this way the validity of the same ones.Key words: Bending, welded joints, fillet weldings.
A transparent bending-insensitive pressure sensor
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
A transparent bending-insensitive pressure sensor.
Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao
2016-05-01
Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.
Bending strain tolerance of MgB2 superconducting wires
Kováč, P.; Hušek, I.; Melišek, T.; Kulich, M.; Kopera, L.
2016-04-01
This work describes the strain tolerance of MgB2 superconductors subjected to variable bending stresses. Bending of MgB2 wire was done at room temperature in different modes: (i) direct bending of straight annealed samples to variable diameters and by (ii) indirect bending by straightening of bent and annealed samples. I c-bending strain characteristics of samples made by in situ PIT and by the internal magnesium diffusion (IMD) process were measured at 4.2 K. The results show a good agreement between the direct and indirect bending mode, which allows easier estimation of limits important for the winding process of MgB2 superconductors with brittle filaments. A comparison of MgB2 wires made by in situ PIT and IMD processes showed improved strain tolerance for IMD due to better grain connectivity the low annealing temperature, which does not appear to reduce the mechanical strength of sheath material.
Ultrasonic fatigue testing device under biaxial bending
Directory of Open Access Journals (Sweden)
C. Brugger
2016-07-01
Full Text Available A new fatigue testing device has been developed to test specimens under biaxial loading at 20 kHz. A flat smooth specimen with a disc geometry is placed on a torus frame and cyclically loaded at the center of its upper face. Disc bending generates a biaxial proportional stress state at the center of the lower face. Any positive loading ratio can be applied. A cast aluminum alloy (used to produce cylinder heads has been tested under biaxial bending using this device in order to determine its fatigue strength at 109 cycles under high hydrostatic pressure. Self-heating is moderate but macroscopic fatigue cracks after testing are very long. First results in VHCF regime are consistent with literature results obtained under similar stress state but in HCF regime and at 20 Hz.
FEM Simulation of Bending Formability for Laminate Steel/Resin/Steel Lightweight Composite Sheet
Institute of Scientific and Technical Information of China (English)
Guancheng Ll; Yonglin KANG
2003-01-01
The ANSYS simulation software was used to analyze the bending formability of laminate steel/resin/steel lightweight composite sheet. The skin steel at external side produces relative slipping-off change during the bending due to its composite structure. The internal stress strain states, materials effect tools parameters and intermediate layer resin of lightweight sheet on slipping-off change were analyzed. The spring back and shear stress state after bending have also been discussed.
Damage Analysis of Rectangular Section Composite Beam under Pure Bending
Liu, Yiping; Xiao, Fan; Liu, Zejia; Tang, Liqun; Fang, Daining
2013-02-01
Laminated composite beams are commonly used in engineering applications involving macro to nano structures. Based on the assumption that plain sections remain plain after deformation, this paper analyzes stress distributions in cross-ply laminated composite beams with rectangular cross-sections, and formulates the basic damage equations through Kachanov's damage definition and Janson's failure criterion. The location of the neutral axis and the ultimate bending moment are obtained for pure bending cases. The effect of the elastic modulus of the two layers on the damage evolution is analyzed; a reasonable damage composite beam model is proposed to predict the ultimate bending moment.
Nuclear fuels accounting interface: River Bend experience
Energy Technology Data Exchange (ETDEWEB)
Barry, J.E.
1986-01-01
This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation.
Nuclear fuels accounting interface: River Bend experience
International Nuclear Information System (INIS)
This presentation describes nuclear fuel accounting activities from the perspective of nuclear fuels management and its interfaces. Generally, Nuclear Fuels-River Bend Nuclear Group (RBNG) is involved on a day-by-day basis with nuclear fuel materials accounting in carrying out is procurement, contract administration, processing, and inventory management duties, including those associated with its special nuclear materials (SNM)-isotopics accountability oversight responsibilities as the Central Accountability Office for the River Bend Station. As much as possible, these duties are carried out in an integrated, interdependent manner. From these primary functions devolve Nuclear Fuels interfacing activities with fuel cost and tax accounting. Noting that nuclear fuel tax accounting support is of both an esoteric and intermittent nature, Nuclear Fuels-RBNG support of developments and applications associated with nuclear fuel cost accounting is stressed in this presentation
Secondary turbulent flow in an infinte bend
DEFF Research Database (Denmark)
Christensen, H. Bo; Gislason, Kjartan; Fredsøe, Jørgen
1999-01-01
The flow in an infinite circular bend is inverstigated in both the laminar and fully turbulent flow case, by use of laminar flow solver, a k-e turbulence model, and a fully Reynolds stress turbulence model. The topic of the analysis is to investigate whether a counter-rotating secondary flow cell...... model, the influence of the curvature ratio and cross section geometry on the vortex pattern is investigated. Furthermore, it is demonstrated that an-isotropy of turbulence plays an important role for the structure of flow pattern and existence of an extra flow cell....
Bending of X65 Offshore Steel Pipes
Lofthaug, Kristoffer; Digerud, Erik
2014-01-01
This thesis is part of an ongoing research program between SIMLab and Statoil about impact loads on X65 offshore pipelines and it is a continuation of previous work.Offshore pipelines are frequently impacted by accidental loads, e.g. trawl gear or anchors. Such loads may cause severe damage to the pipe and a complex stress-strain history locally in the impacted area.Fracture have previously been found in pipes dynamically impacted. Quasi-static bending of similar pipes with the same boundary ...
Sheet Bending using Soft Tools
Sinke, J.
2011-05-01
Sheet bending is usually performed by air bending and V-die bending processes. Both processes apply rigid tools. These solid tools facilitate the generation of software for the numerical control of those processes. When the lower rigid die is replaced with a soft or rubber tool, the numerical control becomes much more difficult, since the soft tool deforms too. Compared to other bending processes the rubber backed bending process has some distinct advantages, like large radius-to-thickness ratios, applicability to materials with topcoats, well defined radii, and the feasibility of forming details (ridges, beads). These advantages may give the process exclusive benefits over conventional bending processes, not only for industries related to mechanical engineering and sheet metal forming, but also for other disciplines like Architecture and Industrial Design The largest disadvantage is that also the soft (rubber) tool deforms. Although the tool deformation is elastic and recovers after each process cycle, the applied force during bending is related to the deformation of the metal sheet and the deformation of the rubber. The deformation of the rubber interacts with the process but also with sheet parameters. This makes the numerical control of the process much more complicated. This paper presents a model for the bending of sheet materials using a rubber lower die. This model can be implemented in software in order to control the bending process numerically. The model itself is based on numerical and experimental research. In this research a number of variables related to the tooling and the material have been evaluated. The numerical part of the research was used to investigate the influence of the features of the soft lower tool, like the hardness and dimensions, and the influence of the sheet thickness, which also interacts with the soft tool deformation. The experimental research was focused on the relation between the machine control parameters and the most
Bending failure of laminated fibrous composite plates with a hole
Energy Technology Data Exchange (ETDEWEB)
Kwon, Y.W.; Yang, S.T. [Naval Postgraduate School, Monterey, CA (United States). Dept. of Mechanical Engineering
1995-08-01
This study investigates failure modes and failure strengths of laminated fibrous composite plates with stress concentration and subjected to bending loads. Graphite/epoxy composites are used for the present study. Lamina material properties, such as stiffness and strength, of the composite are determined from experiments. A series of four-point bending tests are conducted for laminated, graphite/epoxy composite plates with and without a hole to examine their failure modes and strengths. The paper compares different failure modes and strengths of various composite specimens. In addition, finite element analyses are performed to compute stress distributions around holes of the composite plates subjected to bending loads. Numerically predicted failure loads agree well with experimental results.
Deformation analysis of springback in L-bending of sheet metal
Directory of Open Access Journals (Sweden)
Fuh-Kuo Chen
2006-08-01
Full Text Available Purpose: In the present study, the deformation mechanics of the springback phenomenon in the L-bending ofsheet-metal was examined and a new method that could efficiently reduce springback in the L-bending of sheetmetalwas proposed.Design/methodology/approach: Both the finite element analysis and experiments were performed to analyzethe deformation mechanics and the effects of process parameters on the formation of springback.Findings: The axial stress distribution in the bent sheet obtained by the finite element simulations was classifiedinto three zones: the bending zone under the punch corner (zone I, unbending zone next to the bending zone(zone II, and the stress-free zone (zone III. It is found that the stress distribution in zone I is quite uniformand hence has little influence on the springback. While the stress distribution in zone II results in a positivespringback, whereas the stress distribution in zone III produces a negative springback. The total springbacktherefore depends on the combined effect of those produced by zone II and zone III. A reverse bend approachthat can efficiently reduce springback was also proposed to reduce the springback in the L-bending process. Thefinite element analysis performed in the present study was validated by experiments as well.Research limitations/implications: Although the reverse bend approach can reduce springback efficiently, itmay cause uneven surface at the die corner area. Hence, the use of reverse bend approach must be cautious ifhigh surface quality is required.Practical implications: The proposed reverse bend approach provides the die design engineer with a novel ideato reduce the springback occurred in the L-bending of sheet metals.Originality/value: In addition to the reverse bend approach, the analysis of defomation mechanics ofspringback performed in the present study also provides researchers with a better understanding of the formationof springback.
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
A new kind of bend sensor is introduced.It can be used to detect the bend angle of an object or inclination between two objects.It has characteristics of small size, lightweight, high reliability, fine flexibility and plasticity.When this bend sensor is used with a proper converting circuit, it can implement dynamic measuring the bend angle of an object conveniently.The application of the bend sensor in dataglove is also described.
Bending characteristics of resin concretes
Directory of Open Access Journals (Sweden)
Ribeiro Maria Cristina Santos
2003-01-01
Full Text Available In this research work the influence of composition and curing conditions in bending strength of polyester and epoxy concrete is analyzed. Various mixtures of resin and aggregates were considered in view of an optimal combination. The Taguchi methodology was applied in order to reduce the number of tests, and in order to evaluate the influence of various parameters in concrete properties. This methodology is very useful for the planning of experiments. Test results, analyzed by this methodology, shown that the most significant factors affecting bending strength properties of resin concretes are the type of resin, resin content and charge content. An optimal formulation leading to a maximum bending strength was achieved in terms of material parameters.
Elastostatic bending of a bimaterial plate with a circular interface
Ogbonna, Nkem
2015-08-01
The elastostatic bending of an arbitrarily loaded bimaterial plate with a circular interface is analysed. It is shown that the deflections in the composite solid are directly related to the deflection in the corresponding homogeneous material by integral and differential operators. It is further shown that, by a simple transformation of elastic constants, the Airy stress function induced in the composite by a stretching singularity can be deduced from the deflection induced by a bending singularity. This result is significant for reduction of mathematical labour and for systematic construction of solutions for more complex structures with circular geometry.
EXPERIMENTAL STUDY OF 3-D TURBULENT BEND FLOWS IN OPEN CHANNEL
Institute of Scientific and Technical Information of China (English)
LIU Yue-qin; ZHENG Shao-wen; WU Qiang
2005-01-01
A generalized bend flow model, treating a 90° single bend and 60° continuous bends, was designed to quantitatively describe 3-D turbulence mechanism of circulating not-fully-developed flow in open channels with bends.The 3-D fluctuating velocities of turbulent flow were measured and analyzed with a 3-D acoustic-Doppler velocimeter.Formula for 3-D turbulent intensity was derived using the dimension analysis approach.Expressions of vertical turbulent-intensity distributions were obtained with the multivariant-regression theory, which agree with experiment data.Distributions of turbulent intensity and turbulent stress were characterized, and their relationships were concluded.In the bend-turbulent-flow core region, longitudinal and lateral turbulent-intensity distributions are coincident with linear distribution, but in near-wall region are coincident with the Gamma distribution.Vertical turbulent intensity distributions are coincident with the Rayleigh distribution.Herein, it is concluded that the bend turbulence is anisotropic.
Directory of Open Access Journals (Sweden)
Jui-Chang Lin
2015-01-01
Full Text Available The three-dimensional tube (or pipe is manufactured by CNC tube bending machine. The key techniques are determined by tube diameter, wall thickness, material, and bending radius. The obtained technique through experience and the trial and error method is unreliable. Finite element method (FEM simulation for the tube bending process before production can avoid wasting manpower and raw materials. The computer-aided engineering (CAE software ABAQUS 6.12 is applied to simulate bending characteristics and to explore the maximum stress and strain conditions. The Taguchi method is used to find the optimal parameters of bending. The confirmation experiment is performed according to optimal parameters. Results indicate that the strain error between CAE simulation and bending experiments is within 6.39%.
Static Pull and Push Bending Properties of RTM-made TWF Composite Tee-joints
Institute of Scientific and Technical Information of China (English)
LUO Chuyang; XIONG Junjiang
2012-01-01
This paper deals with static pull and push bending tests on two-dimensional (2D) orthogonal EW220/5284 twill weave fabric (TWF) composite tee-joints processed with the resin transfer moulding (RTM) technique.Static pull and push bending properties are determined and failure initiation mechanism is deduced from experimental observations.The experiments show that the failure initiation load,on average,is greater for push bending than for pull bending,whereas the scatter is smaller for push bending than for pull bending.The failure mode of RTM-made tee-joints in pull bending tests can be reckoned to be characteristic of debonding of resin matrix at the interface between the triangular resin-rich zone and the curved web of tee-joint until complete separation of the curved web from the bottom plate.In contrast,as distinct from the products subject to pull bending loading,the RTM tee-joints in push bending tests experience matrix cracking and fibre fracture from outer layers to inner layers of the bottom plate until catastrophic collapse resulting from the bending.Three-dimensional finite element (FE) models are presented to simulate the load transfer path and failure initiation mechanism of RTM-made TWF composite tee-joint based on the maximum stress criterion.Good correlation between experimental and numerical results is achieved.
Effects of repeated bending load at room temperature for composite Nb{sub 3}Sn wires
Energy Technology Data Exchange (ETDEWEB)
Awaji, Satoshi [High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Watanabe, Kazuo [High Field Laboratory for Superconducting Materials, Institute for Materials Research, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577 (Japan); Katagiri, Kazumune [Faculty of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8511 (Japan)
2003-09-01
In order to realize a react and wind (R and W) method for Nb{sub 3}Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti){sub 3}Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of I{sub c} increases.
International Nuclear Information System (INIS)
A composite of liquid crystal elastomer (LCE) incorporated with carbon nanotubes (CNTs) can convert absorbed photon energy into thermal energy to trigger the phase transition of the LCE, resulting in photo-thermo-mechanically actuated devices. We model the transient temperature distribution and the bending kinetics of a straight cantilever beam actuator under the radiation of a laser diode (LD) light. Three possible bending modes of the beam for various LD light powers are identified. The temperature distribution and the bending modes are found to be in good agreement with the reported experimental observations. The underlying deformation mechanisms and bending modes are manifested by probing the stress evolution and propagation of nonzero stress regions during the bending process. For a beam that is initially slightly curved, we also predict the possibility of snap-through instability, and three typical phases of snapping are captured. This procedure paves the way for the design of LCE-based soft actuators. (paper)
Simultaneously bending and tensile strain effect on critical current in YBCO coated conductors
International Nuclear Information System (INIS)
YBCO coated conductors have been expected for the application to a coil for superconducting magnetic energy storage (SMES). In the application to a superconducting coil, the coated conductors experience bending, uniaxial tensile strain and their combined strain. Therefore, the influence of simultaneous bending and tensile strain on critical current should be revealed. In this work, we developed the test method of critical current under such combined strain state. As a result, it was confirmed that compressive pre-bending can improve the stress tolerance of the YBCO coated conductors. On the other hand, compressive bending strain suppresses the initial critical current by the intrinsic strain effect. These results indicate that optimal bending radius should be selected in order to realize superior stress tolerance and high current capacity simultaneously
Bending-induced Symmetry Breaking of Lithiation in Germanium Nanowires
Energy Technology Data Exchange (ETDEWEB)
Gu, Meng; Yang, Hui; Perea, Daniel E.; Zhang, Jiguang; Zhang, Sulin; Wang, Chong M.
2014-08-01
From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on one hand lithiation-generated stress mediates lithiation kinetics, and on the other electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion.
Bending-induced symmetry breaking of lithiation in germanium nanowires.
Gu, Meng; Yang, Hui; Perea, Daniel E; Zhang, Ji-Guang; Zhang, Sulin; Wang, Chong-Min
2014-08-13
From signal transduction of living cells to oxidation and corrosion of metals, mechanical stress intimately couples with chemical reactions, regulating these biological and physiochemical processes. The coupled effect is particularly evident in the electrochemical lithiation/delithiation cycling of high-capacity electrodes, such as silicon (Si), where on the one hand lithiation-generated stress mediates lithiation kinetics and on the other the electrochemical reaction rate regulates stress generation and mechanical failure of the electrodes. Here we report for the first time the evidence on the controlled lithiation in germanium nanowires (GeNWs) through external bending. Contrary to the symmetric core-shell lithiation in free-standing GeNWs, we show bending the GeNWs breaks the lithiation symmetry, speeding up lithaition at the tensile side while slowing down at the compressive side of the GeNWs. The bending-induced symmetry breaking of lithiation in GeNWs is further corroborated by chemomechanical modeling. In the light of the coupled effect between lithiation kinetics and mechanical stress in the electrochemical cycling, our findings shed light on strain/stress engineering of durable high-rate electrodes and energy harvesting through mechanical motion. PMID:25025296
Contact and Bending Durability Calculation for Spiral-Bevel Gears
Vijayakar, Sandeep
2016-01-01
The objective of this project is to extend the capabilities of the gear contact analysis solver Calyx, and associated packages Transmission3D, HypoidFaceMilled, HypoidFaceHobbed. A calculation process for the surface durability was implemented using the Dowson-Higginson correlation for fluid film thickness. Comparisons to failure data from NASA's Spiral Bevel Gear Fatigue rig were carried out. A bending fatigue calculation has been implemented that allows the use of the stress-life calculation at each individual fillet point. The gears in the NASA test rig did not exhibit any bending fatigue failure, so the bending fatigue calculations are presented in this report by using significantly lowered strength numbers.
Bending of the looping heart: differential growth revisited.
Shi, Yunfei; Yao, Jiang; Xu, Gang; Taber, Larry A
2014-08-01
In the early embryo, the primitive heart tube (HT) undergoes the morphogenetic process of c-looping as it bends and twists into a c-shaped tube. Despite intensive study for nearly a century, the physical forces that drive looping remain poorly understood. This is especially true for the bending component, which is the focus of this paper. For decades, experimental measurements of mitotic rates had seemingly eliminated differential growth as the cause of HT bending, as it has commonly been thought that the heart grows almost exclusively via hyperplasia before birth and hypertrophy after birth. Recently published data, however, suggests that hypertrophic growth may play a role in looping. To test this idea, we developed finite-element models that include regionally measured changes in myocardial volume over the HT. First, models based on idealized cylindrical geometry were used to simulate the bending process in isolated hearts, which bend without the complicating effects of external loads. With the number of free parameters in the model reduced to the extent possible, stress and strain distributions were compared to those measured in embryonic chick hearts that were isolated and cultured for 24 h. The results show that differential growth alone yields results that agree reasonably well with the trends in our data, but adding active changes in myocardial cell shape provides closer quantitative agreement with stress measurements. Next, the estimated parameters were extrapolated to a model based on realistic 3D geometry reconstructed from images of an actual chick heart. This model yields similar results and captures quite well the basic morphology of the looped heart. Overall, our study suggests that differential hypertrophic growth in the myocardium (MY) is the primary cause of the bending component of c-looping, with other mechanisms possibly playing lesser roles.
Bending behavior of lapped plastic ehv cables
Energy Technology Data Exchange (ETDEWEB)
Morgan, G H; Muller, A C
1980-01-01
One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.
Hormonal regulation of gravitropic bending
Hu, X.; Cui, D.; Xu, X.; Hu, L.; Cai, W.
Gravitropic bending is an important subject in the research of plant Recent data support the basics of the Cholodny-Went hypothesis indicating that differential growth in gravitropism is due to redistribution of auxin to the lower sides of gravistimulated roots but little is known regarding the molecular details of such effects So we carried a series of work surround the signals induced by auxin end center We found the endogenous signaling molecules nitric oxide NO and cGMP mediate responses to gravistimulation in primary roots of soybean Glycine max Horizontal orientation of soybean roots caused the accumulation of both NO and cGMP in the primary root tip Fluorescence confocal microcopy revealed that the accumulation of NO was asymmetric with NO concentrating in the lower side of the root Auxin induced NO accumulation in root protoplasts and asymmetric NO accumulation in root tips Gravistimulation NO and auxin also induced the accumulation of cGMP a response inhibited by removal of NO or by inhibitors of guanylyl cyclase compounds that also reduced gravitropic bending Asymmetric NO accumulation and gravitropic bending were both inhibited by an auxin transport inhibitor and the inhibition of bending was overcome by treatment with NO or 8-bromo-cGMP a cell-permeable analog of cGMP These data indicate that auxin-induced NO and cGMP mediate gravitropic curvature in soybean roots From Hu et al Plant Physiol 2005 137 663-670 The asymmetric distribution of auxin plays a fundamental role in plant gravitropic bending
Static Fatigue of Optical Fibers in Bending
Roberts, D.; Cuellar, E.; Middleman, L.; Zucker, J.
1987-02-01
While delayed fracture, or static fatigue, of optical fibers is well known, it is not well understood, and the prediction of the time to failure under a given set of conditions can be problematic. Unlike short term fracture, which is quite well understood and quantified in terms of the theory of linear elastic fracture mechanics, the long term strength remains empirical. The goal of this study is to determine the design criteria for optical fibers subjected to long term applied mechanical loads. One difficulty in making lifetime predictions, as pointed out by Matthewson (Reference 1) and others, is that predictions made from data taken in tension and in bending do not agree. Another difficulty is the statistical nature of the fracture of glass. In making lifetime predictions it becomes important therefore that one (a) have ample data for statistical analysis and (b) have data for the loading configuration of interest. This is the purpose of our work. Since there is less data available in bending, and since several applications (such as wiring in aircraft and missiles) require bending, the data are taken in that configuration. The most significant finding in our work so far is the very large difference in static fatigue behavior between buffer coatings. Chandan and Kalish (Reference 2) and others have reported static fatigue curves, log (time to failure) versus log (applied stress), which are not linear, but rather bimodal. Our study confirms this result, but so far only for acrylate coated fibers. Silicone coated fibers show unimodal behavior. That is, the log (time to failure) versus log (applied stress) curve is linear, at least on the time scale studied so far. Data for acrylate coated fibers at 80°C in water are linear only for time scales of about one day, where a pronounced "knee" is observed. Data for silicone coated fibers under the same conditions are linear up to at least 6 months. Longer time scale tests and tests on fibers with other buffer materials
Bending analysis of laminated composite box beams
Energy Technology Data Exchange (ETDEWEB)
Tripathy, A.K.; Patel, H.J.; Pang, S.S. (Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Mechanical Engineering)
1994-01-01
Box beams are widely used in weight reduction structures such as aircraft wings. The use of composite box beams further reduces the weight factor for such structures with the same deflection and stress as that of isotropic box beams. The difference in the behavior of composite box beam with different fiber orientation, number of plies, and number of stringers also provides a wide range of designing parameters to achieve the required performance for a given problem. A bending analysis has been carried out for the study of deflections and stresses for box beams of different material (isotropic and laminated composites), size, and number of stringers subjected to different kinds of loading conditions. A finite element model has been developed based on the strain energy principle, and the results are compared with an available commercial code COSMOS/M.'' Experiments using aluminum and scotchply composite laminates were conducted to verify the results. An optimal design for size and number of stiffeners for a given loading condition has been achieved. Investigations have also been carried out to find the effect of transverse shear on the span-wise normal stress.
International Nuclear Information System (INIS)
The bending of rod fuel elements in gas-cooled fast reactors under the action of temperature gradients radiation-induced swelling non-uniform over the perimeter of fuel cans is evaluated. It is pointed out that the radiation-induced swelling gives the main contribution to the bending of fuel elements. Calculated data on the bending of the corner fuel element in the assembly of the fast reactor with dissociating gas coolant are given. With the growth of temperature difference over the perimeter, the bending moment and deformation increase, resulting in the increase of axial stresses. The obtained data give the basis for accounting the stresses connected with thermal and radiation bending when estimating serviceability of fuel elements in gas cooled fast reactors. Fuel element bending must be also taken into account when estimating the thermal hydrualic properties
Sutherland, H. J.
The load spectrum unposed upon a horizontal-axis wind turbine blade is typically decomposed into two primary bending moments; flap and edgewise bending. The critical fatigue loads (stress cycles) imposed on the blade may not be on one of these axes, especially if die two bending loads are in-phase with one another. To quantify the correlation of these two bending moments and determine the impact of this correlation on off-axis fatigue loads, an extensive data set for a typical wind turbine blade is examined. The results are compared using their respective cycle count matrices. These results illustrate that the harmonic components of die principal bending stresses are correlated, and that the random components are not. The analysis techniques described in the paper provide the turbine designer with a spectral technique for combining primary bending spectra into off-axis fatigue loads.
Flexible thick-film glucose biosensor: influence of mechanical bending on the performance.
Chuang, Min-Chieh; Yang, Yang-Li; Tseng, Ta-Feng; Chou, Tzuyang; Lou, Shyh-Liang; Wang, Joseph
2010-04-15
The influence of the bending-induced mechanical stress of flexible Nafion/GOx/carbon screen-printed electrodes (SPEs) upon the performance of such glucose biosensors has been examined. Surprisingly, such flexible enzyme/polymer-SPEs operate well following a severe bending-induced mechanical stress (including a 180 degrees pinch), and actually display a substantial sensitivity enhancement following their mechanical bending. The bending-induced sensitivity enhancement is observed only for the amperometric detection of the glucose substrate but not for measurements of hydrogen peroxide, catechol or ferrocyanide at coated or bare SPEs. These (and additional) data indicate that the bending effect is associated primarily with changes in the biocatalytic activity. Such sensitivity enhancement is more pronounced at elevated glucose levels, reflecting the bending-induced changes in the biocatalytic reaction. Factors affecting the bending-induced changes in the performance are examined. While our data clearly indicate that flexible enzyme/polymer-SPEs can tolerate a severe mechanical stress and hold promise as wearable glucose biosensors, delivering the sample to the active sensor surface remains the major challenge for such continuous health monitoring. PMID:20188880
Bending Characteristics of Foldable Touch Display Panel with a Protection Structure Design
Directory of Open Access Journals (Sweden)
Hsien-Chie Cheng
2015-01-01
Full Text Available The study proposes and demonstrates an enhancement of a touch display panel (TDP through a polymer-based protection structure to achieve higher bendability and reliability. The bending performance of the TDP without or with the protection structure designs is addressed using three-dimensional geometry-nonlinear finite element analysis and mechanical testing. The elastic properties of the components in the TDP structure are derived from nanoindentation and uniaxial tensile/compressive testing. The calculated results are compared with each other and also against the experimental bending fatigue test data. At last, a design guideline and optimal factor setting for enhanced bending performance are sought through parametric FE analysis and Taguchi experimental design, respectively. The optimal design is compared with the original in terms of bending stress. The simulation results show that bending would create significant tensile and compressive bending stresses on the indium tin oxide/dielectric layers, which are the main cause of several commonly observed failures, such as thin film cracking and delamination, in a thin rigid film coating on a thick compliant substrate. It also turns out that a substrate with a lower stiffness has a better mechanical stability against bending stress.
Energy Technology Data Exchange (ETDEWEB)
Iwai, H.; Uemura, M. (Nihon Univ., Tokyo (Japan). College of Industrial Technology); Uemura, S. (Fuji Heavy Industries Ltd., Tokyo (Japan))
1994-04-15
Advanced composite materials are strongly anisotropic and have high strength, high rigidity and many other fracture mechanisms, hence they show shortcomings such as generation of local fracture due to stress concentration at the point immediately below the loading point in case of application of the widely-used 3-point and 4-point bending tests, indicating their unsuitableness for the bending fracture test by the axial stress. In this article, bending testing methods of advanced composite materials, which can load the pure bending stress with no stress concentration, nor shearing stress component in the entire testing region, have been developed by test manufacturing a jig for pure bending. As a result of the experiment, no fracture due to local stress concentration like the 3-point and 4-point bending tests has occurred, the obtained bending strength has been more than 30% higher than that obtained by the 3-point and 4-point bending and a constant value has been obtained irrespective of its span. Also concerning the elastic coefficient obtained by this pure bending testing methods, the constant value has been obtained irrespective of span and plate thickness. Regarding the developed bending jigs, there are the sliding frame (SF) type and the rack and pinion (RP) type. For the SF and RP1 types, correction is required, but the RP2 type requires no correction. 3 refs., 15 figs.
Bending and compressive behaviours of a new cement composite
P. Rossi; ARCA, A; PARANT, E; FAKHRI, P
2005-01-01
The Laboratoire Central des Ponts et Chaussées (LCPC) has recently developed and patented a new cement composite, the CEMTECmultiscale, which is stress hardening in tension and has a very high uniaxial tensile strength, more than 20 MPa. This paper is about the determination of the compressive and bending behaviors of the CEMTECmultiscale used in the frame of ribbed slabs. The principal results obtained are the following: - the characteristic modulus of rupture is equal to 42 MPa for the "sla...
FEM equivalent model for press bend forming of aircraft integral panel
Institute of Scientific and Technical Information of China (English)
YAN Yu; WAN Min; WANG Hai-bo
2009-01-01
An original plastic equivalent model was proposed to solve the problem of excessive FEM simulation time when designing the press bend forming path and optimizing the process parameters of press bend forming of the integrally stiffened aircraft panels. Based on the in-depth analysis of the mechanics of the bending and springback of the detailed model and the equivalent model of the integral panels, the plastic equivalent model of the virtual material with special initial yield stress and hardening coefficients was constructed. FEM results indicate that the objective of getting the similar contour with the same press bend forming path is achieved with the error less than 6%, and the efficiency of FEM simulation is improved by more than 80%. The plastic equivalent model is valuable and essential for the further research on the press bend forming process of large scale complicated integral panels.
Bending Moment Calculations for Piles Based on the Finite Element Method
Directory of Open Access Journals (Sweden)
Yu-xin Jie
2013-01-01
Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.
Proteomic Analysis of Fruit Bending in Cucumber (Cucumis sativus L.)
Institute of Scientific and Technical Information of China (English)
WANG Li-li; ZHANG Peng; QIN Zhi-wei; ZHOU Xiu-yan
2014-01-01
In cucumber, fruit shape is an important quality criterion, and fruit bending is known to limit growth, yield, and taste. To investigate the post-transcriptional changes that regulate fruit bending and to better understand the underlying molecular mechanisms, we generated a proteomic proifle of the abdomen and back of cucumber bending fruit. Two-dimensional gel electrophoresis (2-DE) allowed the detection of approximately 900 distinct protein spots in each gel, 32 of which were differentially expressed in the abdomen and back of bending cucumber fruit. Ten of the differentially expressed proteins were analyzed using matrix-assisted laser ionization time of lfight mass spectrometry (MALDI-TOF/MS). A search of primary databases showed that the identiifed proteins are involved in various metabolic processes and cellular responses, including photosynthesis metabolism, energy metabolism, defense and stress response, and regulation. The identiifed proteins included large subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase, which are involved in photosynthesis and photorespiratory metabolism, and isocitrate dehydrogenase, which is involved in the tricarboxylic acid cycle. It is possible that imbalances in catabolic and anabolic processes directly affect the bending of cucumber fruit. The predicted function of the cobalamin-independent methionine synthase isozyme is closely related to ethylene biosynthesis; fruit bending may be regulated by ethylene, or by ethylene signaling crosstalk during fruit development. The 14-3-3 protein is usually considered to be a regulation-related protein, which plays a role in regulating cell hyperplasia, cell differentiation during growth, and apoptosis during senescence. Involvement of guanosine triphosphate (GTP)-binding proteins in signal transmission is known to regulate the development of cells in cucumber fruits and to play a role in fruit shape variation. Patterns of protein expression showed high repeatability. We hypothesize
Bending and stretching of plates
Mansfield, E H; Hemp, W S
1964-01-01
The Bending and Stretching of Plates deals with elastic plate theory, particularly on small- and large-deflexion theory. Small-deflexion theory concerns derivation of basic equations, rectangular plates, plates of various shapes, plates whose boundaries are amenable to conformal transformation, plates with variable rigidity, and approximate methods. Large-deflexion theory includes general equations and some exact solutions, approximate methods in large-deflexion theory, asymptotic large-deflexion theories for very thin plates. Asymptotic theories covers membrane theory, tension field theory, a
... Some people experience digestive symptoms. Others may have headaches, sleeplessness, depressed mood, anger, and irritability. People under chronic stress get more frequent and severe viral infections, such ...
Bending strength model for internal spur gear teeth
Savage, Michael; Rubadeux, K. L.; Coe, H. H.
1995-01-01
Internal spur gear teeth are normally stronger than pinion teeth of the same pitch and face width since external teeth are smaller at the base. However, ring gears which are narrower have an unequal addendum or are made of a material with a lower strength than that of the meshing pinion may be loaded more critically in bending. In this study, a model for the bending strength of an internal gear tooth as a function of the applied load pressure angle is presented which is based on the inscribed Lewis constant strength parabolic beam. The bending model includes a stress concentration factor and an axial compression term which are extensions of the model for an external gear tooth. The geometry of the Lewis factor determination is presented, the iteration to determine the factor is described, and the bending strength J factor is compared to that of an external gear tooth. This strength model will assist optimal design efforts for unequal addendum gears and gears of mixed materials.
Fresh-stem bending of silver fir and Norway spruce.
Lundström, Tor; Stoffel, Markus; Stöckli, Veronika
2008-03-01
The bending and growth characteristics of large fresh stems from four silver fir (Abies alba Mill.) and three Norway spruce (Picea abies (L.) Karst.) trees were studied. Twenty logs taken from different stem heights were subjected to four-point bending tests. From the bending test records, we calculated stress-strain curves, which accounted for detailed log taper, shear deformation and self weight. From these curves we determined, among other parameters, the modulus of elasticity (MOE), the modulus of rupture (MOR) and the work absorbed in bending (W). No significant differences were found between species for the wood properties examined. Values of MOE, MOR and W generally decreased with stem height, with MOR in the range of 43 to 59 MPa and MOE ranging from 10.6 to 15.6 GPa. These MOE values are twice or more those reported for stems of young Sitka spruce (Picea sitchensis (Bong.) Carr.) trees. Based on the radial growth properties measured in discs from the logs, we calculated predicted values of MOE and MOR for the stem cross section. The predictions of MOE were precise, whereas those of MOR were approximate because of a complex combination of different failure mechanisms. Methods to test and calculate MOE, MOR and W for the stems of living trees are discussed with the aim of improving analyses of tree biomechanics and assessments of forest stability protection.
Garment-Integrated Bend Sensor
Directory of Open Access Journals (Sweden)
Guido Gioberto
2014-09-01
Full Text Available Garment-integrated sensors equip clothes with a smart sensing capability, while preserving the comfort of the user. However, this benefit can be to the detriment of sensing accuracy due to the unpredictability of garment movement (which affects sensor positioning and textile folds (which can affect sensor orientation. However, sensors integrated directly into garments or fabric structures can also be used to detect the movement of the garment during wearing. Specifically, a textile bend sensor could be used to sense folds in the garment. We tested a garment-integrated stitched sensor for five types of folds, stitched on five different weights of un-stretchable denim fabric and analyzed the effects of fold complexity and fabric stiffness, under un-insulated and insulated conditions. Results show that insulation improves the linearity and repeatability of the sensor response, particularly for higher fold complexity. Stiffer fabrics show greater sensitivity, but less linearity. Sensor response amplitude is larger for more complex fold geometries. The utility of a linear bending response (insulated and a binary shorting response (un-insulated is discussed. Overall, the sensor exhibits excellent repeatability and accuracy, particularly for a fiber-based, textile-integrated sensor.
A model of the response of thermoplastic composites to bend-forming operations
Energy Technology Data Exchange (ETDEWEB)
Talbott, M.F.
1991-01-01
The model discussed in this dissertation describes the response of a thermoplastic composite laminate made from unidirection prepreg tape to operations which bend it into an arbitrarily complex singly-curved shape. It predicts, for any such bending, the extent of relative ply sliding and the stresses and strains which arise. The model contains several options for the process definition: for different locations along the laminate, the user may specify the curvatures, the perpendicular forces imposed, or the vertical displacements.
Charge-induced reversible bending in nanoporous alumina-aluminum composite
Cheng, Chuan; Ngan, A. H. W.
2013-05-01
Upon electrical charging, reversible bending was found in nanoporous anodic alumina-aluminum foil composites, as directly observed by an optical microscope and detected by in situ nanoindentation. The bending is thought to be the result of charge-induced surface stresses in the nanoporous alumina. The results suggest the possibility of a type of composite foil materials for applications as micro-scale actuators to transform electrical energy into mechanical energy.
Institute of Scientific and Technical Information of China (English)
刘贤玉; 于永南; 宋作苓; 孙建忠
2012-01-01
According to the situation of riser subjected to large bending load at the ocean circumstance ,the 3D contact finite element analysis model for premium threaded connections which is the most likely to become failure is established with the finite element software of ANSYS. The characteristic of Stress distribution on threaded connections under bending loads is obtained. The result reveals that the maximum stress exists on the first or the last round of thread root in the tensile side of connections; the relations of thread root stress distribution in the tensile side and compressive side of the connections with circular angle is represented as approximately half sine respectively. On this basis,detailed analysis is given on the effect of the threaded parameter such as wall thickness.depth of thread,thread pitch,number of thread teeth and taper on the maximum equivalent stress. Thus it can be taken as references in design and optimization of premium threaded connections.%针对海洋环境中隔水管存在较大弯曲载荷的情况,采用有限元软件ANSYS对隔水管最易失效的特殊螺纹接头建立了三维接触有限元模型,得到了在弯曲载荷作用下螺纹接头的应力分布.结果表明:最大应力出现在接头本体拉伸侧的第1圈或最后1圈螺纹的根部；接头本体拉伸侧与压缩侧的螺纹根部应力分别与环向角近似成1/2个正弦波函数关系.在此基础上进一步分析了壁厚、螺高、螺距、螺纹圈数和锥度等参数对螺纹处最大等效应力的影响,为隔水管特殊螺纹接头的设计与优化提供了理论依据.
FACTORS INFLUENCING BENDING RIGIDITY OF SUBMERGED VEGETATION
Institute of Scientific and Technical Information of China (English)
WU Long-hua; YANG Xiao-li
2011-01-01
The bending rigidity of submerged vegetation is closely related with vegetative drag force.This work aims at determining the effects of flow conditions and characteristics of vegetation on the bending rigidity of submerged vegetation.Based on the dimensional analysis method,the factors influencing the bending rigidity of individual submerged vegetation were analyzed.The relationship between the relative bending rigidity and its influencing factors was investigated by experimental observation,and a relative bending rigidity expression for submerged vegetation was obtained by means of multiple linear regression method.The results show that the submerged vegetation has three states under different inflow conditions,and the each critical relative bending rigidity of individual submerged vegetation was determined for the different states of submerged vegetation.
Effects of stem structure and cell wall components on bending strength in wheat
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
Morphological traits, anatomical features, chemical components and bending stress in the stems of three genotypes of wheat (Triticum aestivum L.), namely Xiaoyan54, 8602 and Xiaoyan81, were examined by means of light microscopy coupled with Fourier transform infrared spectroscopy (FTIR). Noticeable changes in morphological and anatomical traits were observed, including outer radius of stem, the ratio of stem outer radius to stem wall thickness, various tissue proportions and variations among different types of vascular bundles. The results of chemical analysis revealed that Xiaoyan81 had the highest cellulose content in comparison with Xiaoyan54 and 8602, whereas lignin level in Xiaoyan81 was lower than that in 8602 but higher that that in Xiaoyan54. Bending stress analysis demonstrated that Xiaoyan81 may be the main target for identification, for it had the highest bending stress among the stems of three genotypes. Associated with bending stress, all the results presented here suggested that the ratio of stem wall thickness to its outer radius, schlerenchyma tissue proportion, the average number of big VB per unit and the cellulose content are four important factors affecting the mechanical strength of Xiaoyan81 wheat stems, which can be considered as the key parameters for selecting varieties with bending stress. Therefore, it was suggested that in the selection of lodging resistant cultivars one should consider those characterized with large ratio of outer radius of stem to stem wall thickness, greaterschlerenchyma tissue proportion, high average number of big VB per unit with high cellulose content in their stems.
Minimum Membrane Bending Energies of Fusion Pores
Jackson, Meyer B.
2009-01-01
Membranes fuse by forming highly curved intermediates, culminating in structures described as fusion pores. These hourglass-like figures that join two fusing membranes have high bending energies, which can be estimated using continuum elasticity models. Fusion pore bending energies depend strongly on shape, and the present study developed a method for determining the shape that minimizes bending energy. This was first applied to a fusion pore modeled as a single surface and then extended to a...
How two-dimensional bending can extraordinarily stiffen thin sheets
Pini, V.; Ruz, J. J.; Kosaka, P. M.; Malvar, O.; Calleja, M.; Tamayo, J.
2016-07-01
Curved thin sheets are ubiquitously found in nature and manmade structures from macro- to nanoscale. Within the framework of classical thin plate theory, the stiffness of thin sheets is independent of its bending state for small deflections. This assumption, however, goes against intuition. Simple experiments with a cantilever sheet made of paper show that the cantilever stiffness largely increases with small amounts of transversal curvature. We here demonstrate by using simple geometric arguments that thin sheets subject to two-dimensional bending necessarily develop internal stresses. The coupling between the internal stresses and the bending moments can increase the stiffness of the plate by several times. We develop a theory that describes the stiffness of curved thin sheets with simple equations in terms of the longitudinal and transversal curvatures. The theory predicts experimental results with a macroscopic cantilever sheet as well as numerical simulations by the finite element method. The results shed new light on plant and insect wing biomechanics and provide an easy route to engineer micro- and nanomechanical structures based on thin materials with extraordinary stiffness tunability.
DEFF Research Database (Denmark)
Keller, Hanne Dauer
2015-01-01
Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....
Multilevel light bending in nanoplasmonics
El Sherif, Mohamed H.; Ahmed, Osman S.; Bakr, Mohamed H.; Swillam, Mohamed A.
2014-03-01
Nanoplasmonic optical interconnects is proposed to mitigate challenges facing electronics integration. It provides fast and miniaturized data channel that overcome the diffraction limit. We present a three dimensional plasmonic coupler that vertically bends the light to multilevel circuit configurations. It exploits light guiding in nanoscale plasmonic slot waveguides (PSWs). A triangularly-shaped plasmonic slot waveguide rotator is introduced to attain such coupling with good efficiency over a wide bandwidth. Using this approach, light propagating in a horizontal direction is easily converted and coupled to propagate in the vertical direction and vice versa. The proposed configuration is further extended to the design of a multilayer power divider/combiner with ultra-compact footprint that guides the light to multiple channels. A detailed study of the triangular rotator is demonstrated with the analysis of multiple configurations. This structure is suitable for efficient coupling and splitting in multilevel nano circuit environment.
Flow resistance in a compound gravel-bed bend
Indian Academy of Sciences (India)
Hossein Afzalimehr; Manouchehr Heidarpour; Alireza Salimi
2006-12-01
In this paper, the effect of a gravel-bed in a compound bend (similar to sinusoidal top view) of a natural river (Zayandehrud River ﬂowing through Isfahan, Iran) has been investigated for ﬂow resistance analysis, measuring the velocity with a micro current meter. The data were analysed and the following observations were made. In a compound bend, the law of the wall can be valid for up to 66% of the ﬂow depth from the bed. The parabolic law is the most effective method for the determination of shear velocity. Based on the existing criteria for verifying the equilibrium boundary layer, the ﬂow cannot be in equilibrium. The shear stress distribution and the sediment transport parameters have considerable inﬂuence on resistance to ﬂow. Froude number and the ﬂow depth relative to the representative gravel size have little effect on the ﬂow resistance estimation.
Bending and rotational behaviour of semi-continuous composite beams
Institute of Scientific and Technical Information of China (English)
2008-01-01
Stresses and deflections were measured in various semi-continuous composite beams.The bending and rotational capacities of the composite connections were measured in terms of beam curvatures and deflections by using two full-scale semi-rigid composite frames with monotonic loadings.The effect of semi-rigid connections on the performance of composite beams with various loadings was compared with predictions and codes.The tests show that the semi-continuous composite beams are more economic and effective than the simple or continuous composite beams.The semi-rigid connections affect the bending capacities and beam deflections,so the connection behavior should be considered in the design of composite beams.Yielding analysis of the steel beam bottom flange has some influence on the deflection calculation of composite beams.
Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara
2014-01-01
The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of P icea abies and P inus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intens...
Impact compressive and bending behaviour of rocks accompanied by electromagnetic phenomena.
Kobayashi, Hidetoshi; Horikawa, Keitaro; Ogawa, Kinya; Watanabe, Keiko
2014-08-28
It is well known that electromagnetic phenomena are often observed preceding earthquakes. However, the mechanism by which these electromagnetic waves are generated during the fracture and deformation of rocks has not been fully identified. Therefore, in order to examine the relationship between the electromagnetic phenomena and the mechanical properties of rocks, uniaxial compression and three-point bending tests for two kinds of rocks with different quartz content, granite and gabbro, have been carried out at quasi-static and dynamic rates. Especially, in the bending tests, pre-cracked specimens of granite were also tested. Using a split Hopkinson pressure bar and a ferrite-core antenna in close proximity to the specimens, both the stress-strain (load-displacement) curve and simultaneous electromagnetic wave magnitude were measured. It was found that the dynamic compressive and bending strengths and the stress increase slope of both rocks were higher than those observed in static tests; therefore, there is a strain-rate dependence in their strength and stress increase rate. It was found from the tests using the pre-cracked bending specimens that the intensity of electromagnetic waves measured during crack extension increased almost proportionally to the increase of the maximum stress intensity factor of specimens. This tendency was observed in both the dynamic and quasi-static three-point bending tests for granite. PMID:25071241
2010-10-01
....1 of ASME B31.1 (incorporated by reference; see 46 CFR 56.01-2). This shall not prohibit the use of..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will...
Discontinious Galerkin formulations for thin bending problems
Nguyen, T.D.
2008-01-01
A structural thin bending problem is essentially associated with a fourth-order partial differential equation. Within the finite element framework, the numerical solution of thin bending problems demands the use of C^1 continuous shape functions. Elements using these functions are challenging and di
Bends and splitters in graphene nanoribbon waveguides
DEFF Research Database (Denmark)
Zhu, Xiaolong; Yan, Wei; Mortensen, N. Asger;
2013-01-01
We investigate the performance of bends and splitters in graphene nanoribbon waveguides. Although the graphene waveguides are lossy themselves, we show that bends and splitters do not induce any additional loss provided that the nanoribbon width is sub-wavelength. We use transmission line theory...
Bandwidth engineering of photonic crystal waveguide bends
DEFF Research Database (Denmark)
Borel, Peter Ingo; Frandsen, Lars Hagedorn; Harpøth, Anders;
2004-01-01
An effective design principle has been applied to photonic crystal waveguide bends fabricated in silicon-on-insulator material using deep UV lithography resulting in a large increase in the low-loss bandwidth of the bends. Furthermore, it is experimentally demonstrated that the absolute bandwidth...
Bending of light in conformal Weyl gravity
Sultana, Joseph; Kazanas, Demosthenes
2010-06-01
We reexamine the bending of light issue associated with the metric of the static, spherically symmetric solution of Weyl gravity discovered by Mannheim and Kazanas (1989). To this end we employ the procedure used recently by Rindler and Ishak to obtain the bending angle of light by a centrally concentrated spherically symmetric matter distribution in a Schwarzschild-de Sitter background. In earlier studies the term γr in the metric led to the paradoxical result of a bending angle proportional to the photon impact parameter, when using the usual formalism appropriate to asymptotically flat space-times. However, employing the approach of light bending of Rindler and Ishak we show that the effects of this term are in fact insignificant, with the discrepancy between the two procedures attributed to the definition of the bending angle between the asymptotically flat and nonflat spaces.
Wire and Cable Cold Bending Test
Colozza, Anthony
2010-01-01
One of the factors in assessing the applicability of wire or cable on the lunar surface is its flexibility under extreme cold conditions. Existing wire specifications did not address their mechanical behavior under cold, cryogenic temperature conditions. Therefore tests were performed to provide this information. To assess this characteristic 35 different insulated wire and cable pieces were cold soaked in liquid nitrogen. The segments were then subjected to bending and the force was recorded. Any failure of the insulation or jacketing was also documented for each sample tested. The bending force tests were performed at room temperature to provide a comparison to the change in force needed to bend the samples due to the low temperature conditions. The results from the bending tests were plotted and showed how various types of insulated wire and cable responded to bending under cold conditions. These results were then used to estimate the torque needed to unroll the wire under these low temperature conditions.
Bio-inspired bending actuator for controlling conical nose shape using piezoelectric patches.
Na, Tae-Won; Jung, Jin-Young; Oh, Ii-Kwon
2014-10-01
In this paper, a bio-inspired bending actuator was designed and fabricated using piezoelectric patches and cantilever-shaped beam for controlling nose shape. The aim of this study is to investigate the use of the bending actuator. PZT and single crystal PMN-PT actuators were used to generate translational strain and shear stress. The piezoelectric patches were attached on the clamped cantilever beam to convert their translational strains to bending motion of the beam. First, finite element analysis was performed to identify and to make an accurate estimate of the feasibility on the bending actuation by applying various voltages and frequencies. Based on the results of the FEM analysis, the experiments were also performed. Static voltages and dynamic voltages with various frequencies were applied to the bending actuators with PZTs and PMN-PTs, and the rotation angles of the nose connected to the top of bending actuators were measured, respectively. As the results, the bending actuator using PMN-PT patches showed better performances in all cases. With the increases of signal frequency and input voltage, the rotation angle also found to be increased. Especially at the frequency of 5 Hz and input voltage of 600 V, the nose generated the maximum rotation angle of 3.15 degree. PMID:25942810
Laser Micro Bending Process of Ti6Al4V Square Bar
Directory of Open Access Journals (Sweden)
Gang Chen
2014-06-01
Full Text Available Laser micro bending process of Ti6Al4V square bar are carried out using a 3D thermo-mechanical finite element analytical model (FEM. The transient temperature fields, displacement fields, stress fields and strain fields are obtained and analyzed. The results show that the bending angel during laser micro bending process is in good agreement with experimental measurements. The effects of process parameters on temperature and deformation are also investigated here. During the bending process the temperature increases with the increase of the laser power and the irradiation time. Radiation of the laser beam yields to a rapid temperature increase at the irradiated surface, which leads to the high temperature gradients between the irradiated surface and the unirradiated surface, which suggest that the mechanism of laser micro bending is the temperature gradient mechanism. The z displacement of forward direction and reverse direction increase when the laser power and irradiation time increase. Laser micro bending process can obtain the larger bending angles reverse to laser beam using higher laser power and shorter irradiation time.
49 CFR 195.212 - Bending of pipe.
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Bending of pipe. 195.212 Section 195.212... PIPELINE Construction § 195.212 Bending of pipe. (a) Pipe must not have a wrinkle bend. (b) Each field bend must comply with the following: (1) A bend must not impair the serviceability of the pipe. (2)...
Marnette, Jascha; Rolfe, Bernard; Hodgson, Peter; Weiss, Matthias
2013-12-01
The common grades of steel used in roll forming are: hot rolled, high strength low alloy and recovery annealed cold rolled sheet. These steels are prone to ageing and are often skin passed and/or roller leveled to eliminate ageing as this can lead to problems in forming. Shape defects such as bow, twist and camber can be increased due to a change of the elastic-plastic transition point of the material. In consideration of this effect the knowledge of the material properties in the elastic plastic transition range is necessary if the processes are to be modelled accurately. Previous studies have indicated that residual stresses are not well identified in the standard tensile test, but were shown clearly in a bending test. The elastic plastic transition in bending and the moment curvature characteristic were changed significantly by a light cold rolling reduction. In this work the FEA package Abaqus is used to investigate the effect of residual stresses introduced through skin passing and/or roller leveling on the bending/yielding behaviour of mild steel. Therefore, a skin passing/ roller leveling process is simulated, followed by a subsequent bending test. Residual stress free sheet is compared in bending to just "skin passed", "roller leveled" and a combined "skin passed and roller leveled" strip. Skin passing significantly reduces the bending yield stress due to residual stresses. This has a softening effect on subsequent bending operations. A roller level process prior to roll forming can restore the bending yield stress by reducing the residual stress across the thickness. This has implications for forming aged material.
Experimental study on centrifugal concrete-filled steel tubes under bending and torsion
Institute of Scientific and Technical Information of China (English)
金伟良; 曲晨; 于弋
2003-01-01
A real-size experiment on 11 tubes was done to study the performance of centrifugal concrete-filled steel tubes under bending and torsion. This paper first introduces the relevant operating method, equipment, subjects and processes. The factors that affect deformation and stiffness and the break mechanism under different loading were studied. Experimental stress analysis showed that the values of practical critical stress of steel tubes accorded well with the MISES Yielding Rule. The correlative equation (on the bearing capacity of a structural member under bending and torsion) deduced in this study may provide valuable reference for the design of this structural member.
Bamboo Taper Effect on Third Point Loading Bending Test
Directory of Open Access Journals (Sweden)
Naresworo Nugroho
2013-06-01
Full Text Available Geometrical shape of bamboo usually assumed as tapered hollow pipe. This study proved that the dimensional changes along the bamboo stem significantly affected to its Modulus of Rupture (SR value which measured from third point loading bending test. Therefore if the bending test applied using third point loading configuration, the SR value should be adjusted by strength ratio of taper (Ct. Ct is theratio between (SR calculated in the center span and the maximum bending stress along the bamboo beam. This study resulted mathematical formulae to calculate the Ct value for overall range of bamboo taper based on six species namely Tali (Gigantochloa apus (Bl.Ex Schult.f Kurz, Hitam (Gigantochloa atroviolaceae Widjaja, Andong (Gigantochloa psedorundinaceae, Ampel (Bambusa vulgaris Schrad, Gombong (Gigantochloa verticillata (Willd Munro, and Mayan (Gigantochloa robusta Kurz. The first tree species were obtained from the Bogor market, while the others were harvested from bamboo clumps in Arboretum Bamboo – Bogor Agricultural University. Then the formula was applied to sketch the graphical style in order to simplify the result.
Low Loss S-Bend Structure With Tapered Curved Waveguides
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A novel S-bend with tapered curved waveguides is proposed. The normalized transmitted power is greater than the conventional bend with weakly guided waveguides. Small size and low loss can be reached by the proposed S-bend.
Homogenization of long fiber reinforced composites including fiber bending effects
DEFF Research Database (Denmark)
Poulios, Konstantinos; Niordson, Christian Frithiof
2016-01-01
to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness......This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows...... of the matrix and the fibers....
BENDING ANALYSIS OF COMPOSITE PLATES USING HIGHER ORDER THEORY
Directory of Open Access Journals (Sweden)
N UPENDRA
2013-10-01
Full Text Available In this paper, an analytical formulation and solutions are developed to investigate the bending characteristics of laminated composite plates based on higher order shear deformation theory. The equation ofmotion of laminated plates is deduced using Hamilton’s principle. Closed-form solutions are obtained by using the Navier’s technique for simply supported boundary conditions. The effect of side to thickness ratio, aspect ratio, degree of orthotropic, stacking sequence ad no of layers on deflection and stresses are investigated. The results predicted by the present theory are in good agreement with the solutions of other plate theories available in the literature.
Numerical Evaluation of Bending Load Effect on the Failure Pressure of Wall-Thinned Pipe Bends
International Nuclear Information System (INIS)
During the normal operating conditions, piping systems in nuclear power plants (NPPs) are subject not only to internal pressure but also to bending loads induced by deadweight, thermal expansion, and internal pressure. Bending is thus considered to be an important factor in evaluating the integrity of piping components in NPPs. Local wall-thinning due to flow accelerated corrosion is a main degradation mechanism of carbon steel piping components in NPPs, and the integrity evaluation of wall-thinned piping components has become an important issue. This study investigated the effects of bending load on the failure of wall-thinned pipe bends under internal pressure. Our previous study experimentally evaluated the bending load effects on the failure pressure of wall-thinned elbows under displacement controlled in-plane bending load, but the numbers of experimental data were insufficient to determine the effects of bending load on the failure pressure of wall-thinned pipe bends. Therefore, the present study systematically evaluates the effects of bending load on the failure pressure of wall-thinned pipe bends using parametric finite element analyses
A derivation of the generalized model of strains during bending of metal tubes at bending machines
Directory of Open Access Journals (Sweden)
Śloderbach Z.
2014-02-01
Full Text Available According to the postulate concerning a local change of the “actual active radius” with a bending angle in the bend zone, a generalized model of strain during metal tube bending was derived. The tubes should be subjected to bending at tube bending machines by the method of wrapping at the rotating template and with the use of a lubricated steel mandrel. The model is represented by three components of strain in the analytic form, including displacement of the neutral axis. Generalization of the model during bending metal tubes at the tube bending machines as compared with the existing papers (Śloderbach, 1999; Śloderbach and Rechul, 2000 consists in including the neutral axis displacement and possibility of determination of strains at each point along the thickness of the wall of the bent tube in the bending and bend zone. The derived scheme of strain satisfies initial and boundary kinematic conditions of the bending process, conditions of continuity and inseparability of strains. The obtained analytic expressions can be classified as acceptable from the kinematic point of view
Bending Analysis of Symmetrically Laminated Plates
Directory of Open Access Journals (Sweden)
Bouazza MOKHTAR
2010-12-01
Full Text Available In the classical plate theory, it is assumed that the plane cross sections initially normal to the plate midsurface before deformation remain plane and normal to that surface during deformation. This is the result of neglecting the transverse shear strains. However, in thick and moderately thick laminated plates, significant transverse shear strains occur, and the theory gives inaccurate results for the plates. So, it is obvious that the shear strains have to be taken into account. There are numerous theories of plates and laminated plates that include the transverse shear strains. One of them is the Reissner and Midlin theory , known as the first-order shear deformation theory, which defines the displacement field as linear variations of midplane displacements. This theory, where the relation between the resultant shear forces and the shear strains is obtained by using shear correction factors, has some advantages due to its simplicity and low computational cost. Some other plate theories, namely the higher-order shear deformation theories, include the effect of transverse shear strains . For example, the theory developed by Reddy allows not only for the transverse shear strains, but also for parabolic variations in the strains across the plate thickness, and thus there is no need to use shear correction coefficients in computing the shear stresses. The present stud is a survey of plate bending of cross-ply laminate by using the finite element method (F.E.M. Using ANSYS, the most known software in the domain for it, two types of modeling are proposed: the first is modeling using a type of shell element, Shell 99 and the second is an approach based on a of type solid element, Solid 46. The results obtained are compared with the results of the theory of Reddy.
Jin, LiMin; Yao, Yao; Yu, YiMin; Rotich, Gideon; Sun, BaoZhong; Gu, BoHong
2014-03-01
This paper reports the structural effects of three-dimensional (3-D) angle-interlock woven composite (3DAWC) undergoing three-point bending cyclic loading from experimental and finite element analysis (FEA) approaches. In experiment, the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies. By the FEA approach, a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage. The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties. In addition, the stress distribution, fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.
This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.
This is a slice of a LEP dipole bending magnet, made as a concrete and iron sandwich. The bending field needed in LEP is small (about 1000 Gauss), equivalent to two of the magnets people stick on fridge doors. Because it is very difficult to keep a low field steady, a high field was used in iron plates embedded in concrete. A CERN breakthrough in magnet design, LEP dipoles can be tuned easily and are cheaper than conventional magnets.
Pipes under internal pressure and bending
Catinaccio, A
2009-01-01
This article covers the general behaviour of a straight uniform pipe, with built-in open ends, subject to internal pressure and in plane bending or curvature. It is intended as a summary of the basic equations driving the unintuitive phenomena of bending and instability of pipes under internal pressure. The analysis covers in addition the investigation of opposite pressure stabilisation effects that can be observed in some orthotropic material pipes like composite pressure hoses.
Bending rigidity of composite resin coating clasps.
Ikebe, K; Kibi, M; Ono, T; Nokubi, T
1993-12-01
The purpose of this study is to examine the bending profiles of composite resin coating cast clasps. The cobalt-chromium alloy cast clasps were made using tapered wax pattern. Silane coupling method (Silicoater MD, Kulzer Co.) was used to attach composite resin to metal surface. The breakage and the bending rigidity of composite resin coating clasps were evaluated. Results were as follows: 1) After the repeated bending test to the tips of clasp arm at 10,000 times in 0.25 mm deflection, neither crack on composite resin surface nor separation at resin/metal interface was observed in any specimen. 2) There was no significant difference in the bending rigidity of clasp arms between before and after composite resin coating. From these results, it was demonstrated that the composite resin coating cast clasp was available in clinical cases and coating with composite resin had little influence on the bending rigidity of clasp arms. Therefore, it was suggested that our clasp designing and fabricating system to control the bending rigidity of clasp arms could be applied to composite resin coating clasps. PMID:8935086
Institute of Scientific and Technical Information of China (English)
任振华; 曾宪桃; 周丰峻
2012-01-01
RC beams can be strengthened with Carbon Fiber Reinforced Plastic (CFRP) and pre-stressed Helical Rib Bar ( HRB) that are inserted into the concrete cover of tensile region in the concrete beams , which can effectively improve force performance of the beams . In order to analyze the failure form, ultimate state and normal section bearing capacity of RC beams composites strengthened with near-surface mounted carbon fiber reinforced plastic bar and pre-stressed helical rib bar , the bearing capacity equation of strengthened beams corresponding to different failure modes was supplied by analyzing force in each stage of beams in pre-stress state, bearing capacity calculating and limit state. In order to inspect and verify the rationality and the reliability of the conclusions and the veracity of the equation, the flexural experimental studies were tested on seven concrete beams strengthened with near-surface mounted carbon fiber reinforced plastic bar and pre-stressed helical rib bar. The results indicate that the failure modes and limit state of strengthened beams are reasonable, the equation can veraciously calculate the bend capacity of strengthened beams.%用碳纤维筋和预应力螺旋肋钢筋共同嵌入到混凝土梁受拉区保护层中对混凝土梁进行加固,能更有效地改善混凝土梁的受力性能.为更有效地分析复合内嵌碳纤维筋预应力螺旋肋钢筋加固混凝土梁的破坏形态、极限状态及正截面承载力,通过对预应力状态下梁各阶段受力情况分析、承载力计算及界限状态的判别,提出了加固混凝土梁对应不同破坏形态下承载力的计算公式.为验证所得分析结论的合理性和可靠性及计算公式的准确性,对7根碳纤维筋预应力螺旋肋钢筋加固的混凝土梁进行弯曲试验,结果表明,被加固梁的破坏形态、极限状态分析是合理的,所提出的计算公式能准确计算加固梁抗弯承载能力.
New Equation for Bending Development of Arbitrary Rods and Application to Palm Fronds Bending
Abdullah, Mikrajuddin
2016-01-01
A new general equation to explain bending of arbitrary rods (from arbitrary materials, cross sections, densities, strengthnesses, bending angles, etc) was proposed. This equation can solve several problems found in classical equations, which have many limitations such as only applies for small bending angles or must be solved using very complex schemes. Experiments were also conducted to confirm the theoretical predictions. The equation might be used to explain bending of palm fronds in a very simple way. The proposed equation may be used to obtain solution of several problems which are usually obtain with iteration procedures.
How Does The Bone Shaft Geometry Affect its Bending Properties?
Directory of Open Access Journals (Sweden)
Kaveh P. Saffar
2009-01-01
Full Text Available In this research, ten fresh specimens of sheep tibiae were provided from slaughtered animals. Whole bone specimens were loaded in three-point bending according to standard wet bone test protocols. Mechanical properties were determined and compared with the results which were obtained from two dry bone tests. The results showed that fracture bending moment and bone extrinsic stiffness had significant relations with fracture cross-section dependent parameters (i.e., cross-section area and area moment of inertia. Where, fracture energy and ultimate strength did not have such a relation with these parameters. Finite element modeling of bone shaft was made with simplified geometry (neglecting cross-section variations along bone shaft in two steps: First, by elliptical cross-section and second, by circular cross-section, assuming linear elastic and isotropic properties for the specimens. Elastic (Youngs modulus and fracture load, evaluated from curves obtained from tests, were applied to the finite element model and close results of maximum stress in both test specimen and first (elliptical cross-section model showed up. There was an average difference of about 2% between ultimate strength of wet bone specimens and maximum (tensile stress occurred in the elliptical models. However, this value for circular models was about 16%.
Shin, Hyung-Seop; Gorospe, Alking; Bautista, Zhierwinjay; Dedicatoria, Marlon J.
2016-01-01
The effects of low cyclic loading on the critical current, I c, under uniaxial and transverse loadings, and bending deformations in GdBCO coated conductor (CC) tapes were evaluated. Under monotonic continuous bending deformation, CC tapes exhibit a high tolerance of I c up to the lowest bending diameter of 12 mm using the Goldacker bending test rig. However, when the CC tape was subjected to alternate tension-compression bending, a lower irreversible bending strain limit was measured. This was also observed when cyclic bending was applied to the CC tapes which showed a significant decrease in I c just after 10 cycles of alternate tension-compression bending at 20 mm bending diameter. Such different I c degradation behavior under different bending deformation procedures gave insight into the proper handling of CC tapes from manufacturing, coiling and up to operating conditions. In the case of uniaxial tension, when electromechanical properties of CC tape were evaluated by repeated loading based on a critical stress level obtained under monotonic loading, I c also did not show significant change in its degradation behavior up to the irreversible stress limit. The GdBCO CC tape adopted can allow cyclic loading up to 100 cycles without significant irreversible degradation below the monotonic irreversible limit. In the case of the transverse cyclic test, with regard to the large scattering of data especially in the tensile direction, a different cyclic loading procedure was established. For 10 repeated loadings, the mechanical and electromechanical properties of the GdBCO CC tapes showed similar values within the reversible range under the monotonic loading. I c degraded abruptly indicating that no delamination occurred at the REBCO film during the subcritical cyclic loading. Different fracture morphologies were observed under cyclic loading depicting branch-like patterns of the remaining REBCO layer on the substrate of the CC tape.
Fabrication of thin SU-8 cantilevers: initial bending, release and time stability
DEFF Research Database (Denmark)
Keller, Stephan Urs; Haefliger, D.; Boisen, Anja
2010-01-01
development of the thin SU-8 film resulted in reduced cantilever bending due to removal of residual stress gradients. Further, improved time-stability of the devices was achieved due to the enhanced cross-linking of the polymer. A post-exposure bake at a temperature T-PEB = 50 degrees C followed by a hard...
Effects of repetitive bending on the magnetoresistance of a flexible spin-valve
Energy Technology Data Exchange (ETDEWEB)
Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K., E-mail: chobk@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Choi, H. Y. [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, G. H. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)
2015-05-07
A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.
Effects of repetitive bending on the magnetoresistance of a flexible spin-valve
Kwon, J.-H.; Kwak, W.-Y.; Choi, H. Y.; Kim, G. H.; Cho, B. K.
2015-05-01
A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.
Rheology of a Twist-bend Nematic Liquid Crystal
Salili, Seyyed Muhammad; Kim, Chanjoong; Sprunt, Samuel; Gleeson, James; Parri, Owain; Jakli, Antal; Kim Lab Team; Merck Lab Team
2015-03-01
First detailed flow shear alignment studies and rheological measurements in the twist-bend nematic (Ntb) liquid crystalline phase of odd numbered flexible dimer molecules is presented. It is found that the Ntb phase is strongly shear-thinning. At shear stresses below 1 Pa the apparent viscosity of the Ntb phase is 1000 times larger than in the nematic phase. At stresses above 10 Pa the Ntb viscosity drops by two orders of magnitude and the material exhibits Newtonian fluid behavior. The results are consistent with the behavior of a system with pseudo-layer structure with layer spacing determined by the heliconical pitch. From the measurements of dynamic modulus we estimate the compression modulus of the pseudo-layers to be B ~ 2 kPa this value is discussed within the context of a simple theoretical model based upon a coarse-grained elastic free energy. www.jakligroup.com.
Bending analysis of shallow sperical shells by BEM
International Nuclear Information System (INIS)
The problem of investigation of the stress-strain state of shells and plates is a problem of importance for structures. This problem has been established by finite element method, asymptotical analysis, etc. In the present paper the boundary element technique is used as a tool for numerical analysis of elastic shell bending problem. Using well known linear shallow shell theory for determination of normal displacement w and the membrane stress function f (or their complex combination-the function ψ, the inverse formulation for single fundamental equation and the fundamental solution for a weighing function) the new coupled set of integral equations is applied to the determination of the functions w and f by BEM
Microstructure-Based RVE Approach for Stretch-Bending of Dual-Phase Steels
Huang, Sheng; He, ChunFeng; Zhao, YiXi
2016-03-01
Fracture behavior and micro-failure mechanism in stretch-bending of dual-phase (DP) steels are still unclear. Representative volume elements (RVE) have been proved to be an applicable approach for describing microstructural deformation in order to reveal the micro-failure mechanism. In this paper, 2D RVE models are built. The deformation behavior of DP steels under stretch-bending is investigated by means of RVE models based on the metallographic graphs with particle geometry, distribution, and morphology. Microstructural failure modes under different loading conditions in stretch-bending tests are studied, and different failure mechanisms in stretch-bending are analyzed. The computational results and stress-strain distribution analysis indicate that in the RVE models, the strain mostly occurs in ferrite phase, while martensite phase undertakes most stress without significant strain. The failure is the results of the deformation inhomogeneity between martensite phase and ferrite phase. The various appearance and growth of initial voids are different depending on the bending radius.
Four-point bending test of the Bauschinger effect in prestrained IF steel thin sheet
Energy Technology Data Exchange (ETDEWEB)
Kato, Hiroyuki, E-mail: hkato@eng.hokudai.ac.jp [Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Sasaki, Kazuaki [Mechanical and Space Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Mori, T. [National Defense Academy, Yokosuka 239-0811 (Japan)
2015-08-26
The Bauschinger effect in a 1 mm thick sheet of interstitial free (IF) steel was examined by tensile testing (prestraining) and subsequent four-point bending. The effect was absent when the prestrain was below 4% and was present when the prestrain was above 4%. The Bauschinger effect parameter determined the elastic back stress which developed after prestraining. The occurrence of back stress coincided with the development of dislocation cell structures, observed with transmission electron microscopy.
The effect of skin passing on the material behavior of metal strip in pure bending and tension
Weiss, Matthias; Ryan, Will; Rolfe, Bernard; Yang, Chunhui
2010-06-01
The metal strip used in roll forming has often been preprocessed by (tension or roller) leveling or by skin-pass rolling, and as a consequence, may contain residual stresses. These stresses are not well observed by the tensile test, but could have a significant effect on the bending and springback behavior. With the advent of improved process design techniques for roll forming, including advanced finite element techniques, the need for precise material property data has become important. The major deformation mode of roll forming is that of bending combined with unloading and reverse bending, and hence property data derived from bend tests could be more relevant than that from tensile testing. This work presents a numerical study on the effect of skin passing on the material behavior of stainless steel strip in pure bending and tension. A two dimensional (2-D) numerical model was developed using Abaqus Explicit to analyze the affect of skin passing on the residual stress profile across a section for various working conditions. The deformed meshes and their final stress fields were then imported as pre-defined fields into Abaqus Standard, and the post-skin passing material behavior in pure bending was determined. The results show that a residual stress profile is introduced into the steel strip during skin passing, and that its shape and stress level depend on the overall thickness reduction as well as the number of rolling passes used in the skin passing process. The material behavior in bending and the amount of springback changed significantly depending on the skin pass condition.
Sharp bends of phononic crystal surface modes
International Nuclear Information System (INIS)
Sharp bending of surface waves at the interface of a two-dimensional phononic crystal (PnC) of steel cylinders in air and the method of using a diagonally offset cylindrical scatterer are numerically demonstrated by finite-element method simulations. The radii of the diagonally offset scatterer and the cylinder at the PnC corner, along with the distance between them, are treated as optimization parameters in the genetic algorithm optimization of sharp bends. Surface wave transmittance of at most 5% for the unmodified sharp bend is significantly enhanced to approximately 75% as a result of optimization. A series of transmittance peaks whose maxima increase exponentially, as their widths reduce, with increasing frequency is observed for the optimized sharp bend. The transmittance peaks appear at frequencies corresponding to integer plus half-beat periods, depending on the finite surface length. The optimal parameters are such that the cylinder radius at the PnC corner is not significantly modified, whereas a diagonally offset scatterer having a diameter of almost two periods and a shortest distance of about 0.7 periods between them is required for the strongest transmittance peak. Utilization of PnC surface sharp bends as acoustic ring resonators is demonstrated. (paper)
Sharp bends of phononic crystal surface modes
Cicek, Ahmet; Salman, Aysevil; Adem Kaya, Olgun; Ulug, Bulent
2015-12-01
Sharp bending of surface waves at the interface of a two-dimensional phononic crystal (PnC) of steel cylinders in air and the method of using a diagonally offset cylindrical scatterer are numerically demonstrated by finite-element method simulations. The radii of the diagonally offset scatterer and the cylinder at the PnC corner, along with the distance between them, are treated as optimization parameters in the genetic algorithm optimization of sharp bends. Surface wave transmittance of at most 5% for the unmodified sharp bend is significantly enhanced to approximately 75% as a result of optimization. A series of transmittance peaks whose maxima increase exponentially, as their widths reduce, with increasing frequency is observed for the optimized sharp bend. The transmittance peaks appear at frequencies corresponding to integer plus half-beat periods, depending on the finite surface length. The optimal parameters are such that the cylinder radius at the PnC corner is not significantly modified, whereas a diagonally offset scatterer having a diameter of almost two periods and a shortest distance of about 0.7 periods between them is required for the strongest transmittance peak. Utilization of PnC surface sharp bends as acoustic ring resonators is demonstrated.
Tunable thermoelectric properties in bended graphene nanoribbons
Institute of Scientific and Technical Information of China (English)
潘长宁; 何军; 方卯发
2016-01-01
The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic–semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quan-tum interference effect occurs in the metallic–metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene.
Tunable thermoelectric properties in bended graphene nanoribbons
Chang-Ning, Pan; Jun, He; Mao-Fa, Fang
2016-07-01
The ballistic thermoelectric properties in bended graphene nanoribbons (GNRs) are systematically investigated by using atomistic simulation of electron and phonon transport. We find that the electron resonant tunneling effect occurs in the metallic-semiconducting linked ZZ-GNRs (the bended GNRs with zigzag edge leads). The electron-wave quantum interference effect occurs in the metallic-metallic linked AA-GNRs (the bended GNRs with armchair edge leads). These different physical mechanisms lead to the large Seebeck coefficient S and high electron conductance in bended ZZ-GNRs/AA-GNRs. Combined with the reduced lattice thermal conduction, the significant enhancement of the figure of merit ZT is predicted. Moreover, we find that the ZTmax (the maximum peak of ZT) is sensitive to the structural parameters. It can be conveniently tuned by changing the interbend length of bended GNRs. The magnitude of ZT ranges from the 0.15 to 0.72. Geometry-controlled ballistic thermoelectric effect offers an effective way to design thermoelectric devices such as thermocouples based on graphene. Project supported by the National Natural Science Foundation of China (Grant No. 61401153) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2050 and 14JJ3126).
The quantitative check-measure of the bend strain parameters of the rotating components
Institute of Scientific and Technical Information of China (English)
李文华; 乔中涛
2002-01-01
Based on the principle of the electric-magnetic check-measure, this paper puts forward a new technology and method that use the magnetic marks to check and measure the dynamic physical parameters such as angle speed, bending strain,stress and bending moment. The principles of the check-measure and the dealing and exchanging technology about signals have been demonstrated and the rotating components have been made up. The timely and quantitative check-measure of the dynamic physical parameters during the component in working has been realized by using computer control.
Kim, Byoung-Joon; Shin, Hae-A.-Seul; Lee, Ji-Hoon; Joo, Young-Chang
2016-06-01
The electrical reliability of a multi-layer metal film on a polymer substrate during cyclic inner bending and outer bending is investigated using a bending fatigue system. The electrical resistance of a Cu film on a polymer substrate during cyclic outer bending increases due to fatigue damage formation, such as cracks and extrusion. Cyclic inner bending also leads to fatigue damage and a similar increase in the electrical resistance. In a sample having a NiCr under-layer, however, the electrical resistance increases significantly during outer bending but not during inner bending mode. Cross-sectional observations reveal that brittle cracking in the hard under-layer results in different fatigue behaviors according to the stress mode. By applying an Al over-layer, the fatigue resistance is improved during both outer bending and inner bending by suppressing fatigue damage formation. The effects of the position, materials, and thickness of the inter-layer on the electrical reliability of a multi-layer sample are also investigated. This study can provide meaningful information for designing a multi-layer structure under various mechanical deformations including tensile and compressive stress.
Flexural behavior of in-plane bending glass structures for design method
Institute of Scientific and Technical Information of China (English)
吴丽丽; 石永久; 王元清; 张恒秋; 严茂超
2015-01-01
Experimental study was carried out on the in-plane bending behavior of glass plates without lateral supports, and the effects of the factors, such as height-to-span ratio, on the stability of glass panels were studied. Results show that the in-plane bending glass plates with both ends simply supported and their upper edge free lose overall stability under loads, which belongs to the limit-point type of instability. It is found that the buckling load increases linearly with the increase of height-to-span ratio of the glass plates. The lateral stress of in-plane bending glass plates without lateral supports increases linearly under loads; while the large-area stress increases nonlinearly and the lateral stress is not the controlling factor of instability. In finite element analysis, the first buckling mode is regarded as the initial imperfection and imposed on the model as 1/1000 of the span of the components. The numerical buckling load according to the theory of large deflection is less than the experiment result, which is more conservative and can provide some reference for design. For the design method, when the in-plane load is imposed on the glass plate, its lateral strength and the deflection should be verified. Considering the stability of the in-plane bending glass plate without reliable lateral support, buckling is another possible failure mode and calls for verification.
International Nuclear Information System (INIS)
Polycrystalline Cu samples 20 × 20 μm2 in size were cyclically bent inside a scanning electron microscope until fracture occurred. The microstructural changes were investigated by secondary electron imaging and electron backscatter diffraction. The in situ experiments revealed that, for the coarse-grained samples, it is not the external stress that dominates the cyclic deformation, but the local internal strength. This is in strong contrast to macroscopic bending samples, where deformation always happens near the fixed end of the bending beam and decreases constantly with increasing distance from the fixation. For micron-sized polycrystalline samples, the grain dimensions, dislocation density evolution and grain orientation (Taylor factor) can define the location of failure if the grain size and sample diameter become similar in size. A comparison with cyclic in situ tension–tension experiments (ratio of minimum stress to maximum stress R ≈ 0) reveals that cyclic bending experiments (R ≈ −1) undergo bulk-like fatigue deformation with extrusions/intrusions, in contrast to the experiments with R ≈ 0. Both the cyclic tension–tension and bending experiments can be described by a Basquin equation, although different mechanisms lead to failure of the samples
Calculation of muscle forces during normal gait under consideration of femoral bending moments.
Lutz, Frederick; Mastel, Roland; Runge, Martin; Stief, Felix; Schmidt, André; Meurer, Andrea; Witte, Hartmut
2016-09-01
This paper introduces a new approach for computing lower extremity muscle forces by incorporating equations that consider "bone structure" and "prevention of bending by load reduction" into existing optimization algorithms. Lower extremity muscle and joint forces, during normal gait, were calculated and compared using two different optimization approaches. We added constraint equations that prevent femoral bending loads to an existing approach that considers "minimal total muscular force". Gait parameters such as kinematics, ground reaction forces, and surface electromyographic activation patterns were examined using standardized gait analysis. A subject-specific anatomic model of the lower extremities, obtained from magnetic resonance images of a healthy male, was used for the simulations. Finite element analysis was used to calculate femoral loads. The conventional method of calculating muscle forces leads to higher rates of femoral bending and structural stress than the new approach. Adding equations with structural subject-specific parameters in our new approach resulted in reduced femoral stress patterns. These findings show that our new approach improves the accuracy of femoral stress and strain simulations. Structural overloads caused by bending can be avoided during inverse calculation of muscle forces.
Starbuck, J. Michael; Guerdal, Zafer; Pindera, Marek-Jerzy; Poe, Clarence C.
1990-01-01
Damage states in laminated composites were studied by considering the model problem of a laminated beam subjected to three-point bending. A combination of experimental and theoretical research techniques was used to correlate the experimental results with the analytical stress distributions. The analytical solution procedure was based on the stress formulation approach of the mathematical theory of elasticity. The solution procedure is capable of calculating the ply-level stresses and beam displacements for any laminated beam of finite length using the generalized plane deformation or plane stress state assumption. Prior to conducting the experimental phase, the results from preliminary analyses were examined. Significant effects in the ply-level stress distributions were seen depending on the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking sequence was used. The experimental investigation was conducted to determine the different damage modes in laminated three-point bend specimens. The test matrix consisted of three-point bend specimens of 0 deg unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the damage initiation loads and ultimate failure loads were studied, and their relation to damage susceptibility and damage tolerance of the mean configuration was discussed. Damage modes were identified by visual inspection of the damaged specimens using an optical microscope. The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber breakage, and crushing. The correlation study between the experimental results and the analytical results were performed for the midspan deflection, indentation, damage modes, and damage susceptibility.
Strength Characteristics of OSB in Bending – Difference between Upper and Lower Panel Faces
Directory of Open Access Journals (Sweden)
Martin Böhm
2011-06-01
Full Text Available This article is focused on evaluating the differences between the upper and lower faces of OSB/3 – Superfinish in the course of bending stress. OSB is a material manufactured from wood chips of a large surface area, irregular shape and unequal length, which are partly randomly distributed and at the same time not perfectly oriented. Differences regarding the content of OSB surface layers cause unequal properties, which can be demonstrated, especially under bending load. The measurements made show that OSB positioned with upper face downwards in the course of the bending test are capable of withstanding a higher load, and reaching an evidentially lower deflection, compared to those with lower face downwards.
The first ANDES elements: 9-DOF plate bending triangles
Militello, Carmelo; Felippa, Carlos A.
1991-01-01
New elements are derived to validate and assess the assumed natural deviatoric strain (ANDES) formulation. This is a brand new variant of the assumed natural strain (ANS) formulation of finite elements, which has recently attracted attention as an effective method for constructing high-performance elements for linear and nonlinear analysis. The ANDES formulation is based on an extended parametrized variational principle developed in recent publications. The key concept is that only the deviatoric part of the strains is assumed over the element whereas the mean strain part is discarded in favor of a constant stress assumption. Unlike conventional ANS elements, ANDES elements satisfy the individual element test (a stringent form of the patch test) a priori while retaining the favorable distortion-insensitivity properties of ANS elements. The first application of this formulation is the development of several Kirchhoff plate bending triangular elements with the standard nine degrees of freedom. Linear curvature variations are sampled along the three sides with the corners as gage reading points. These sample values are interpolated over the triangle using three schemes. Two schemes merge back to conventional ANS elements, one being identical to the Discrete Kirchhoff Triangle (DKT), whereas the third one produces two new ANDES elements. Numerical experiments indicate that one of the ANDES element is relatively insensitive to distortion compared to previously derived high-performance plate-bending elements, while retaining accuracy for nondistorted elements.
Composite failure prediction of π-joint structures under bending
Institute of Scientific and Technical Information of China (English)
HUANG Hong-me; YUAN Shen-fang
2012-01-01
In this article,the composite π-joint is investigated under bending loads.The "L" preform is the critical component regarding composite π-joint failure.The study is presented in the failure detection of a carbon fiber composite π-joint structure under bending loads using fiber Bragg grating (FBG) sensor.Firstly,based on the general finite element method (FEM)software,the 3-D finite element (FE) model of composite π-joint is established,and the failure process and every lamina failure load of composite π-joint are investigated by maximum stress criteria.Then,strain distributions along the length of FBG are extracted,and the reflection spectra of FBG are calculated according to the strain distribution.Finally,to verify the numerical results,a test scheme is performed and the experimental spectra of FBG are recorded.The experimental results indicate that the failure sequence and the corresponding critical loads of failure are consistent with the numerical predictions,and the computational error of failure load is less than 6.4％.Furthermore,it also verifies the feasibility of the damage detection system.
Electrical Bending and Mechanical Buckling Instabilities in Electrospinning Jets
Han, Tao; Reneker, Darrell H.
2007-03-01
The electrospinning jet was a continuous fluid flow ejected from the surface of a fluid when the applied electrical force overcomes the surface tension. The jet moved straight away from the tip and then became unstable and bent into coils. This phenomenon is the electrical bending instability [1]. When the distance between the tip and collector was reduced to less than the maximal straight segment length, the electrical bending instability did not occur. The periodic buckling of a fluid jet incident onto a surface is a striking fluid mechanical instability [2]. When axial compressive stress along the jet reached a sufficient value, it produced the fluid mechanics analogue to the buckling of a slender solid column. In the electrospinning, the buckling instability occurred just above the collector where the jet was compressed as it encountered the collector. The buckling frequencies of these jets are in the range of 10^4 to 10^5 Hz. The buckling lengths of these jets are in the range of 10 to 100μm. *Reneker,D.H.; Yarin, A. L.; Fong, H.; Koombhongse, S., Journal of Applied Physics, 87, 4531, 2000 *Tchavdarov B.; Yarin, A. L.; Radev S., Journal of Fluid Mechanics; 253, 593,1993
Composite failure prediction of π-joint structures under bending
Huang, Hong-mei; Yuan, Shen-fang
2012-03-01
In this article, the composite -joint is investigated under bending loads. The "L" preform is the critical component regarding composite -joint failure. The study is presented in the failure detection of a carbon fiber composite -joint structure under bending loads using fiber Bragg grating (FBG) sensor. Firstly, based on the general finite element method (FEM) software, the 3-D finite element (FE) model of composite -joint is established, and the failure process and every lamina failure load of composite -joint are investigated by maximum stress criteria. Then, strain distributions along the length of FBG are extracted, and the reflection spectra of FBG are calculated according to the strain distribution. Finally, to verify the numerical results, a test scheme is performed and the experimental spectra of FBG are recorded. The experimental results indicate that the failure sequence and the corresponding critical loads of failure are consistent with the numerical predictions, and the computational error of failure load is less than 6.4%. Furthermore, it also verifies the feasibility of the damage detection system.
Finger-jointed beams in bending
DEFF Research Database (Denmark)
Andreasen, Lotte; Hoffmeyer, Preben
1997-01-01
An investigation of the dynamic and static fatique of finger-jointed beams in bending was carried out. Results were obtained for five different frequencies from static loading to a load cycle period of two minutes. A total of seven series were long-term tested and five series were short-term tested...
Inelastic Deformation Analysis of Aluminum Bending Members
Institute of Scientific and Technical Information of China (English)
CHENG Ming; SHI Yongjiu; WANG Yuanqing
2006-01-01
Aluminum alloys are typical nonlinear materials, and consequently bending members made of this material exhibit a nonlinear behavior. Most design codes do not pay much attention to such deformations and adopt a simple linear analysis for the calculation of deflections. This paper presents an investigation of the nonlinear deformation of aluminum bending members using the finite-element analysis (FEA). The plastic adaptation coefficient, which can be used to limit the residual deflection, is introduced, and the influence of residual deflection is investigated. A method for evaluating the plastic adoption coefficient is proposed. This paper also shows the load-deflection curve of aluminum bending members and the influence of several parameters. A semi-empirical formula is derived, and some numerical examples are given by FEA. The coefficients of the semi-empirical formula are modified by the FEA results using the nonlinear fitting method. Based on these results, two improved design methods for strength and deformation of aluminum bending members are proposed. Through the comparison with test data, these methods are proved to be suitable for structural design.
Demonstration model of LEP bending magnet
CERN PhotoLab
1981-01-01
To save iron and raise the flux density, the LEP bending magnet laminations were separated by spacers and the space between the laminations was filled with concrete. This is a demonstration model, part of it with the spaced laminations only, the other part filled with concrete.
Axisymmetric bending oscillations of stellar disks
Sellwood, J A
1996-01-01
Self-gravitating stellar disks with random motion support both exponentially growing and, in some cases, purely oscillatory axisymmetric bending modes, unlike their cold disk counterparts. A razor-thin disk with even a very small degree of random motion in the plane is both unstable and possesses a discrete spectrum of neutral modes, irrespective of the sharpness of the edge. Random motion normal to the disk plane has a stabilizing effect but at the same time allows bending waves to couple to the internal vibrations of the particles, which causes the formerly neutral modes to decay through Landau damping. Focusing first on instabilities, I here determine the degree of random motion normal to the plane needed to suppress global, axisymmetric, bending instabilities in a family of self-gravitating disks. As found previously, bending instabilities are suppressed only when the thickness exceeds that expected from a na\\"\\i ve local criterion when the degree of pressure support within the disk plane is comparable to...
Aerosol deposition in bends with turbulent flow
Energy Technology Data Exchange (ETDEWEB)
McFarland, A.R.; Gong, H.; Wente, W.B. [Texas A& M Univ., College Station, TX (United States)] [and others
1997-08-01
The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.
Fuzzy model for Laser Assisted Bending Process
Directory of Open Access Journals (Sweden)
Giannini Oliviero
2016-01-01
Full Text Available In the present study, a fuzzy model was developed to predict the residual bending in a conventional metal bending process assisted by a high power diode laser. The study was focused on AA6082T6 aluminium thin sheets. In most dynamic sheet metal forming operations, the highly nonlinear deformation processes cause large amounts of elastic strain energy stored in the formed material. The novel hybrid forming process was thus aimed at inducing the local heating of the mechanically bent workpiece in order to decrease or eliminate the related springback phenomena. In particular, the influence on the extent of springback phenomena of laser process parameters such as source power, scan speed and starting elastic deformation of mechanically bent sheets, was experimentally assessed. Consistent trends in experimental response according to operational parameters were found. Accordingly, 3D process maps of the extent of the springback phenomena according to operational parameters were constructed. The effect of the inherent uncertainties on the predicted residual bending caused by the approximation in the model parameters was evaluated. In particular, a fuzzy-logic based approach was used to describe the model uncertainties and the transformation method was applied to propagate their effect on the residual bending.
Tubular lining material for pipelines having bends
Energy Technology Data Exchange (ETDEWEB)
Moringa, A.; Sakaguchi, Y.; Hyodo, M.; Yagi, I.
1987-03-24
A tubular lining material for pipelines having bends or curved portions comprises a tubular textile jacket made of warps and wefts woven in a tubular form overlaid with a coating of a flexible synthetic resin. It is applicable onto the inner surface of a pipeline having bends or curved portions in such manner that the tubular lining material with a binder onto the inner surface thereof is inserted into the pipeline and allowed to advance within the pipeline, with or without the aid of a leading rope-like elongated element, while turning the tubular lining material inside out under fluid pressure. In this manner the tubular lining material is applied onto the inner surface of the pipeline with the binder being interposed between the pipeline and the tubular lining material. The lining material is characterized in that a part of all of the warps are comprised of an elastic yarn around which, over the full length thereof, a synthetic fiber yarn or yarns have been left-and/or right-handedly coiled. This tubular lining material is particularly suitable for lining a pipeline having an inner diameter of 25-200 mm and a plurality of bends, such as gas service pipelines or house pipelines, without occurrence of wrinkles in the lining material in a bend.
Bending of a thin flexible plate
Energy Technology Data Exchange (ETDEWEB)
Pobedria, B.E.
1990-12-01
A system of equations is derived which describes the one-dimensional deformation of thin shells. The analysis does not impose any constraints on the relative elongation and deflections. As an example, a solution is presented for the problem of the bending of a thin plate under uniform pressure.
Dust deposition in ventilation and air-conditioning duct bend flows
International Nuclear Information System (INIS)
Highlights: ► We study particle deposition on the four inner surface of the duct bend. ► We analyse the effect of five ways of placements of the bend on particle deposition. ► Gravity and inertia force enhance the deposition as relaxation time rises. ► Deposition coefficient increases as air velocity or particle diameter increases. - Abstract: Particles carried by airflows in ventilation and air-conditioning systems have adverse effects on the quality of air in buildings and hence the health of building occupants. Gaining insight on particle deposition onto ventilation and air-conditioning duct bends is important for controlling pollutant dispersion. Based on the Reynolds stress transport model (RSM), this paper has taken into account the effects of drag, lift force, gravity, inertia force, turbulent diffusions, particle size and air velocity on the dimensionless deposition velocity of particles in smooth duct bends using fully developed velocity profiles. At two different air velocities of 3.0 m/s and 7.0 m/s, the aforementioned effects were predicted by Reynolds-averaged Navier–Stokes (RANS)-Lagrangian simulation on square shaped duct bends with different ways of placement. Preliminary results suggest that gravity and inertia force enhance the dimensionless deposition as dimensionless relaxation time rises. Change tendency of the dimensionless particle deposition velocity on different surfaces of bend duct agrees well with previous studies. As air velocity and particle diameter increase, a significant increase of particle deposition coefficient in the duct bends is observed. Particle deposition to intrados can be intensified by the combined action of gravity and inertia force in different direction.
Anharmonic effects in the optical and acoustic bending modes of graphene
Ramírez, R.; Chacón, E.; Herrero, C. P.
2016-06-01
The out-of-plane fluctuations of carbon atoms in a graphene sheet have been studied by means of classical molecular dynamic simulations with an empirical force field as a function of temperature. The Fourier analysis of the out-of-plane fluctuations often applied to characterize the acoustic bending mode of graphene is extended to the optical branch, whose polarization vector is perpendicular to the graphene layer. This observable is inaccessible in a continuous elastic model of graphene but it is readily obtained by the atomistic treatment. Our results suggest that the long-wavelength limit of the acoustic out-of-plane fluctuations of a free layer without stress is qualitatively similar to that predicted by a harmonic model under a tensile stress. This conclusion is a consequence of the anharmonicity of both in-plane and out-of-plane vibrational modes of the lattice. The most striking anharmonic effect is the presence of a linear term, ωA=vAk , in the dispersion relation of the acoustic bending band of graphene at long wavelengths (k →0 ). This term implies a strong reduction of the amplitude of out-of-plane oscillations in comparison to a flexural mode with a k2 dependence in the long-wavelength limit. Our simulations show an increase of the sound velocity associated to the bending mode, as well as an increase of its bending constant, κ , as the temperature increases. Moreover, the frequency of the optical bending mode, ωO(Γ ), also increases with the temperature. Our results are in agreement with recent analytical studies of the bending modes of graphene using either perturbation theory or an adiabatic approximation in the framework of continuous layer models.
Symmetric bends how to join two lengths of cord
Miles, Roger E
1995-01-01
A bend is a knot securely joining together two lengths of cord (or string or rope), thereby yielding a single longer length. There are many possible different bends, and a natural question that has probably occurred to many is: "Is there a 'best' bend and, if so, what is it?"Most of the well-known bends happen to be symmetric - that is, the two constituent cords within the bend have the same geometric shape and size, and interrelationship with the other. Such 'symmetric bends' have great beauty, especially when the two cords bear different colours. Moreover, they have the practical advantage o
Bending behavior of double-row stabilizing piles with constructional time delay
Institute of Scientific and Technical Information of China (English)
Yang YU; Yue-quan SHANG; Hong-yue SUN
2012-01-01
The bending behavior of double-row stabilizing plies is associated with the constructional time delay (CTD),which can be defined as the time interval between the installations of the front stabilizing pile and the rear stabilizing pile.This paper investigates the effect of CTD on the bending moments of double-row stabilizing piles and a method for determining the optimal CTD is proposed.The stabilizing pile is modeled as a cantilever pile embedded in the Winkler elastic foundation.A triangular distributed earth pressure is assumed on the pile segment in the sliding layer.The front stabilizing pile and the rear stabilizing pile are connected by a beam with pinned joints.The analytical solutions of bending moments on the front and the rear stabilizing piles are derived and the accuracy of bending moment solutions is validated by comparing the tensile strain measured from the Hongyan landslide project,Taizhou,Zhejiang,China.It is concluded that CTD has a significant influence on the bending moments of double-row stabilizing piles.An optimal CTD can be obtained when the maximum tensile stress in the front stabilizing pile is equal to that in the rear stabilizing pile,which is 1.4 months for the Hongyan landslide project.
Local Deplanation Of Double Reinforced Beam Cross Section Under Bending
Baltov, Anguel; Yanakieva, Ana
2015-12-01
Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model's plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB).
Homogenization of long fiber reinforced composites including fiber bending effects
Poulios, Konstantinos; Niordson, Christian F.
2016-09-01
This paper presents a homogenization method, which accounts for intrinsic size effects related to the fiber diameter in long fiber reinforced composite materials with two independent constitutive models for the matrix and fiber materials. A new choice of internal kinematic variables allows to maintain the kinematics of the two material phases independent from the assumed constitutive models, so that stress-deformation relationships, can be expressed in the framework of hyper-elasticity and hyper-elastoplasticity for the fiber and the matrix materials respectively. The bending stiffness of the reinforcing fibers is captured by higher order strain terms, resulting in an accurate representation of the micro-mechanical behavior of the composite. Numerical examples show that the accuracy of the proposed model is very close to a non-homogenized finite-element model with an explicit discretization of the matrix and the fibers.
A mechanical model for FRP-strengthened beams in bending
Directory of Open Access Journals (Sweden)
P. S. Valvo
2012-10-01
Full Text Available We analyse the problem of a simply supported beam, strengthened with a fibre-reinforced polymer (FRP strip bonded to its intrados and subjected to bending couples applied to its end sections. A mechanical model is proposed, whereby the beam and FRP strip are modelled according to classical beam theory, while the adhesive and its neighbouring layers are modelled as an interface having a piecewise linear constitutive law defined over three intervals (elastic response – softening response – debonding. The model is described by a set of differential equations with appropriate boundary conditions. An analytical solution to the problem is determined, including explicit expressions for the internal forces, displacements and interfacial stresses. The model predicts an overall non-linear mechanical response for the strengthened beam, ranging over several stages: from linearly elastic behaviour to damage, until the complete detachment of the FRP reinforcement.
Local Deplanation Of Double Reinforced Beam Cross Section Under Bending*
Directory of Open Access Journals (Sweden)
Baltov Anguel
2015-12-01
Full Text Available Bending of beams, double reinforced by means of thin composite layers, is considered in the study. Approximate numerical solution is proposed, considering transitional boundary areas, where smooth quadratic transition of the elasticity modulus and deformations take place. Deplanation of the cross section is also accounted for in the areas. Their thickness is found equalizing the total stiffness of the cross section and the layer stiffness. Deplanation of the cross section of the transitional area is determined via the longitudinal deformation in the reinforcing layer, accounting for the equilibrium between the internal and the external moment, generated by the longitudinal stresses in the cross section. A numerical example is given as an illustration demonstrating model’s plausibility. The model allows the design and the calculation of recycled concrete beams double reinforced by means of thin layers. The approach is in agreement with modern design of nearly zero energy buildings (NZEB.
Study on Thickness Effect of Three-Point-Bend Specimen
Kikuchi, Masanori; Ishihara, Takehito
The thickness effect of a three-point-bend (3PB) specimen on dimple fracture behavior is studied experimentally and numerically. At first, fracture toughness tests were conducted using 3PB specimens of different thicknesses. Fracture toughness values and R-curves are obtained, and the thickness effect is discussed. Using scanning electron microscopy (SEM), dimple fracture surfaces are observed precisely. It is found that the thickness effect appears clearly in the void growth process. Finite element (FEM) analyses are conducted based on these experimental data. Using Gurson’s constitutive equation, the nucleation and growth of voids during the dimple fracture process are simulated. The distribution patterns of stress triaxiality and the crack growth process are obtained. The results show a good agreement with experimental ones qualitatively. The effects of specimen thickness on R-curves are explained well on the basis of these numerical simulations.
Spring-back of flexible roll forming bending process
Zhang, Y.; Kim, D. H.; Jung, D. W.
2015-12-01
Simulations are now widely used in the field of roll forming because of their convenience. Simulations provide a low cost, secure and fast analysis tool. Flexible roll forming provides the desired shapes with a one time forming process. For roll forming, the velocity of the sheet and friction are important factors to attain an ideal shape. Because it is a complicated process, simulations provide a better understanding of the roll forming process. Simulations were peformed using ABAQUS software linked to elastic-plastic modules which we developed taking into account of interactions between these fields [1]. The application of this method makes it possible to highlight the strain-stress and mechanical behaviour laws and the spring-back. Thus, the flexible roll forming and bending process can bewell described by the simulation software and guide the actual machine.
The Problem of Bending of Rectangular Plate Taking into Account the Transversal Shear
Directory of Open Access Journals (Sweden)
Baghdasaryan Z.R.
2008-06-01
Full Text Available In this work the problems on the bending of rectangular plate on the basis of classical theory by Kirchhoff and Ambartsumyan’s theory is observed. It is shown, that when the plate is leaned free on two opposite sides, and on two others is hinge joint, the exactness of Kirchhoff's hypothesis is the neglecting of a related thickness in comparison with unit. Formulas for a deflection and also for shear stress resultant and generalized shear stress resultant are received. In different private cases expressions of maximal deflection and shear stress resultant are received.
Creep of Sn-9Zn as Measured by a Bending Test Method
Institute of Scientific and Technical Information of China (English)
WEI Xiuqin; LIAO Fuping; HUANG Huizhen; ZHOU Lang
2011-01-01
A bending creep setup was introduced and its feasibility to evaluate creep behavior of materials was experimentally verified on pure Sn. Thereby, the creep ofeutectic Sn-9Zn was studied.It was identified that high and low stress regimes exist in the creep of Sn-9Zn, and in both stress regimes, the data obtained well fit the modified equation of Norton power law. Parameters n and Q in the modified Norton equation obtained are very closed to those reported by other researchers by means of conventional tensile creep tests. The mechanisms governing the creep deformation of Sn-9Zn in both stress regimes were also discussed.
Plastic collapse loads in shape-imperfect pipe bends under in-plane opening bending moment
International Nuclear Information System (INIS)
The combined effect of ovality and thinning/thickening on collapse load of pipe bends under in-plane opening bending moment was investigated using finite element limit analysis considering large geometric change effect. The material is assumed to be elastic-perfectly plastic. Twice-elastic-slope method is used to obtain collapse moment from moment–rotation curves drawn for each bend. Variation of thickness due to thinning in the cross section of pipe bend produces negligible effect on collapse load. The effect of ovality is significant except for pipe ratio 20 with λ = 0.5. A new closed-form solution is proposed to determine collapse moment of pipe bends with ovality and it is validated with existing experimental data. -- Highlights: • Collapse loads for shape-imperfect pipe bends is determined. • Ovality and thinning are the shape imperfections considered. • Finite element limit analysis uses large geometry change effects. • Twice-elastic-slope method was used to obtain plastic loads. • Ovality needs to be considered to determine collapse load while thinning produces negligible effect
Fresh-wood bending: linking the mechanical and growth properties of a Norway spruce stem.
Lundström, Tor; Heiz, Urs; Stoffel, Markus; Stöckli, Veronika
2007-09-01
To provide data and methods for analyzing stem mechanics, we investigated bending, density and growth characteristics of 207 specimens of fresh wood from different heights and radial positions of the stem of one mature Norway spruce (Picea abies L. Karst.) tree. From the shape of each stress-strain curve, which was calculated from bending tests that accounted for shear deformation, we determined the modulus of elasticity (MOE), the modulus of rupture (MOR), the completeness of the material, an idealized stress-strain curve and the work involved in bending. In general, all mechanical properties increased with distance from the pith, with values in the ranges of 5.7-18 GPa for MOE, 23-90 MPa for MOR and 370-630 and 430-1100 kg m(-3) for dry and fresh wood densities, respectively. The first three properties generally decreased with stem height, whereas fresh wood density increased. Multiple regression equations were calculated, relating MOR, MOE and dry wood density to growth properties. We applied these equations to the growth of the entire stem and considered the annual rings as superimposed cylindrical shells, resulting in stem-section values of MOE, MOR and dry and fresh densities as a function of stem height and cambial age. The standing tree exhibits an inner stem structure that is well designed for bending, especially at a mature stage. PMID:17545123
Hanzon, Drew Wyatt
This work consists on the quantification of sheet metal uniaxial stress-strain reversals from pure bending tests. Bending strains to approximately 10% were measured by strain gages and interferometry. Bending-unbending moments and strains were modeled and compared closely to the experimental data. The reverse uniaxial stress-strains curves were determined from the optimal fit of the model. Bauschinger effects were described by the reverse uniaxial response at the elasto-plastic range, between the elastic and the large strain, power fit ranges. Arc and straight line fittings on the lnsigma-lnepsilon scale proved accurate to describe the elasto-plastic behavior. Reverse uniaxial data determined for DP590 and DP780 steels and two Aluminum alloys showed significant Bauschinger effects with distinct features. For the DP steels the magnitudes of the reverse compressive sigma-epsilon curves compared moderately higher, and merging to a power curve with parameters K, n previously defined by tension testing. Bauschinger effects at small reversed strains were less pronounced for the aluminum alloys. However, at higher strains the reverse elasto-plastic response softened considerably, and during the unbending span the magnitudes of the reverse compressive strains remained below the corresponding K, n tensile values. The results showed pure bending as an efficient, simple to use technique to generate sigma-epsilon data for sheet metal at large reverse strains without the complicating restraining hardware required by direct compression methods.
When Blood Cells Bend: Understanding Sickle Cell Disease
... please review our exit disclaimer . Subscribe When Blood Cells Bend Understanding Sickle Cell Disease For people who don’t suspect they ... Cells Bend Wise Choices Links Living with Sickle Cell Disease See a sickle cell disease expert regularly. ...
A preliminary bending fatigue spectrum for steel monostrand cables
DEFF Research Database (Denmark)
Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.;
2011-01-01
service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...
Effect of Solder Joint Length on Fracture Under Bending
Akbari, Saeed; Nourani, Amir; Spelt, Jan K.
2016-01-01
Fracture tests were conducted on copper-solder-copper joints of various lengths using double-cantilever-beam (DCB) specimens under mode I loading conditions. The thickness and length of the solder joints were large enough to neglect any anisotropy associated with the solder microstructure. It was found that the critical strain energy release rate at crack initiation, G ci, was insensitive to the length of the solder joint; however, for joints shorter than a characteristic length which was a function of the thickness and the mechanical properties of the solder layer and the substrates, the fracture load increased with increasing solder joint length. A sandwich model was developed for the analysis of the stress and strain in solder joints, taking into account the influence of both the bending deformation and the shear deformation of the substrates on the solder joint stresses. Consistent with the experimental results, it was found that solder joints longer than the characteristic length have a maximum peel stress that remains unchanged with joint length, causing the joint strength to become independent of the joint length. A closed-form analytical solution was developed for the characteristic length of DCB specimens under mode I loading. The experimental results were in good agreement with the analytical model and with finite element results. The generality of the G ci failure criterion was demonstrated by comparing the experimental results and the fracture load predictions of mode I DCB solder joints with different lengths.
The design of an agent to bend DNA.
Akiyama, T; Hogan, M E
1996-01-01
An artificial DNA bending agent has been designed to assess helix flexibility over regions as small as a protein binding site. Bending was obtained by linking a pair of 15-base-long triple helix forming oligonucleotides (TFOs) by an adjustable polymeric linker. By design, DNA bending was introduced into the double helix within a 10-bp spacer region positioned between the two sites of 15-base triple helix formation. The existence of this bend has been confirmed by circular permutation and phas...
Energy Technology Data Exchange (ETDEWEB)
Fukuda, H. [Science Univ. of Tokyo (Japan)
1998-05-15
In the second generation report of 1982 fiscal year, most of testing methods at that time are included. For bending test, not only the bending testing method of hard plastics in ISO 178-1975, that of woven glass roving reinforced plastics in ISO 3597-1971, that of hard plastics in JIS K7203-1982, and that of plastics and electrical insulating materials in ASTM D790-80, but also private companies` specifications as well as BS, DIN, NF and so forth are recorded. In this paper, to avoid duplication with them, those established after them are describe. In JIS K7055-1987 established in following of JIS K7203, only glass fiber reinforced plastics is limited to specify the three points bending (A method) and the four points bending (B method). In JIS K7074-1988, a bending testing method of carbon fiber reinforced plastics is specified. As a research on bending test, stress distribution at bending test, effect of insert material, simple bending, compression bending and so on are conducted. 15 refs., 9 figs., 3 tabs.
Thermal Analysis of Bending Under Tension Test
DEFF Research Database (Denmark)
Ceron, Ermanno; Martins, Paulo A.F.; Bay, Niels
2014-01-01
during testing is similar to the one in the production tool. A universal sheet tribo-tester has been developed, which can run multiple tests automatically from coil. This allows emulating the temperature increase as in production. The present work performs finite element analysis of the evolution...... and distribution of temperature in the bending under tension test by making use of boundary conditions and calibration values directly measured from experiments. The overall methodology combines 2D and 3D models of the bending under tension test with steady state and transient thermal and thermo......-mechanical procedures. Results show that the proposed methodology applied to a single stroke can effectively and accurately predict the interface temperature in the test tool, thus avoiding the otherwise required thousands of thermo-mechanical FEM analyses of temperature development during testing before thermal steady...
Rock bending creep and disturbance effects
Institute of Scientific and Technical Information of China (English)
付志亮; 郑颖人; 刘元雪
2008-01-01
The bending creep and its disturbance effects of red sandstone rock beam and oil shale rock beam were studied by adopting the self-developed gravitation level style rock creep test machine and bending creep test system,and the constitutive equations were established.It is found that fracture morphology of rock beams under no disturbance load is regular,cracking position of fractures is on part of loading concentration,the crack starts from a neutral plane.However,fracture morphology of rock beams under disturbance load is irregular,cracking position of fractures deviates from a neutral plane.Delayed instability of rock beam occurs for some time under constant disturbance load.When disturbance load is beyond a certain range,suddenly instability of occurs rock beam in a certain time.The results show that there is a guiding significance for creep stability in the geotechnical engineering fields.
Monitoring thermoplastic composites under cyclic bending tests
Boccardi, Simone; Meola, Carosena; Carlomagno, Giovanni Maria; Simeoli, Giorgio; Acierno, Domenico; Russo, Pietro
2016-05-01
This work is concerned with the use of infrared thermography to visualize temperature variations linked to thermo-elastic effects developing over the surface of a specimen undergoing deflection under bending tests. Several specimens are herein considered, which involve change of matrix and/or reinforcement. More specifically, the matrix is either a pure polypropylene, or a polypropylene added with a certain percentage of compatibilizing agent; the reinforcement is made of glass, or jute. Cyclic bending tests are carried out by the aid of an electromechanical actuator. Each specimen is viewed, during deflection, from one surface by an infrared imaging device. As main finding the different specimens display surface temperature variations which depend on the type of material in terms of both matrix and reinforcement.
Parallel monostrand stay cable bending fatigue
DEFF Research Database (Denmark)
Winkler, Jan Pawel
This dissertation investigates the bending fatigue response of high-strength steel monostrands and multistrand stay cables to cyclic transverse deformations. Increasing bridge stock numbers and a push for longer cable-supported span lengths have led to an increased number of reported incidents...... of damage and replacement of bridge stay cables due to wind and traffic-induced fatigue. The understanding of fatigue mechanisms in most steel structures is well established. However, in the case of cables composed of steel strands, many important aspects related with bending fatigue remain to be clarified....... The thesis starts with a literature review of the state-of-the-art in the fields of stay cable fatigue testing and cable fatigue resistance. The study helped to systemize the understanding of the fatigue characteristics of bridge cables subjected to cyclic transverse displacements, failure mechanisms...
Oide Effect and Radiation in Bending Magnets
Blanco, Oscar; Bambade, Philip
2014-01-01
Including radiation effects during lattice design optimization is crucial in high energy accelerators. Oide effect and radiation in bending magnets are reviewed aiming to include them in the optical design process to minimize the IP beam size. The Oide double integral is expressed in simpler terms in order to speed up calculations, concluding in how longer quadrupoles with lower gradients may help reducing the Oide effect. Radiation in bending magnets is reviewed for linear lattices, generalizing to the case when the final dispersion is different from zero and making comparisons with theoretical results and particle tracking. An agreement between the theory, the implemented approximation included in MAPCLASS2 and the six-dimensional tracking in PLACET has been found.
ANALYTICAL SOLUTION FOR BENDING BEAM SUBJECT TO LATERAL FORCE WITH DIFFERENT MODULUS
Institute of Scientific and Technical Information of China (English)
姚文娟; 叶志明
2004-01-01
A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.
Hydrodynamic processes in sharp meander bends and their morphological implications
Blanckaert, K.
2011-01-01
The migration rate of sharp meander bends exhibits large variance and indicates that some sharply curved bends tend to stabilize. These observations remain unexplained. This paper examines three hydrodynamic processes in sharp bends with fixed banks and discusses their morphological implications: se
Superconducting beam bending magnets at CERN
1977-01-01
The photo shows Gerhard Kesseler with the cyogenic vessels for one of the 10.8 Tesla-metre beam bending magnets. The magnet itself (not visible) is sitting inside the superinsukated helium vessel (white). The next larger shell and the biggest tubular structure (with the largest part behind the person) is the insulation vacuum tank. See CERN Courier 1970 pp. 228-229 CERN Courier 1973 pp. 144-145 Yellow Report CERN 78-03, 1978
Electron cooling device without bending magnets
Sharapa, A. N.; Shemyakin, A. V.
1993-11-01
The scheme of an axisymmetric electron cooling device without bending magnets is proposed. Solutions for the most important elements, i.e., a gun and a recuperator, are considered. The main characteristics of the recuperator of the Faraday cup type having a reflector and a gun with a ring emitter are explored. In the gun, the beam is formed, the diameter of which is 40 mm and the dimension of a disturbance region is several millimeters.
AA, assembly of wide bending magnet
1980-01-01
The very particular lattice of the AA required 2 types of dipoles (bending magnets; BST, short and wide; BLG, long and narrow). The wide ones had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. Here we see the copper coils being hoisted onto the lower half of a BST. See also 7811105, 8006050. For a BLG, see 8001044.
Drag Reduction, from Bending to Pruning
Lopez, Diego; Michelin, Sébastien; de Langre, Emmanuel
2013-01-01
Most plants and benthic organisms have evolved efficient reconfiguration mechanisms to resist flow-induced loads. These mechanisms can be divided into bending, in which plants reduce their sail area through elastic deformation, and pruning, in which the loads are decreased through partial breakage of the structure. In this work, we show by using idealized models that these two mechanisms or, in fact, any combination of the two, are equally efficient to reduce the drag experienced by terrestrial and aquatic vegetation.
Large deformation dynamic bending of composite beams
Derian, Edward J.
1985-01-01
The large deformation response of composite beams subjected to a dynamic axial load was studied. The beams were loaded with a moderate amount of eccentricity to promote bending. The study was primarily experimental but some finite element results were obtained. Both the deformation and the failure of the beams were of interest. The static response of the beams was also studied in order to determine the difference between the static and dynamic failure. Twelve different la...
More on the bending of light !
Lake, Kayll
2007-01-01
Recently, Rindler and Ishak have argued that the bending of light is, in principle, changed by the presence of a cosmological constant since one must consider not only the null geodesic equation, but also the process of measurement. I agree with the fact that both must be considered. Here, on the basis of the mathematically exact solution to the classical bending problem, and independent of the cosmological constant, I show that the approximate argument found in the vast majority of texts (new and old) for the measured value of the bending of light for a single source is, despite getting a good answer, bogus. In fact, the measured value for a single source is in part the result of the almost perfect cancelation of two terms, one of which is seldom considered. When one considers two sources, this cancelation is of no consequence, and if the sources are opposite with the same associated apsidal distance, the approximate argument gives the rigorously correct answer (up to numerical evaluation), an answer which i...
Bending deformation and its influence on critical current in Bi2223 composite superconducting tapes
Energy Technology Data Exchange (ETDEWEB)
Hojo, M.; Matsuoka, T.; Nakaoka, S.; Tanaka, M.; Ochiai, S.; Sugano, M.; Osamura, K
2003-10-15
The strain dependence of the critical current, I{sub c}, of Ag and Ag-alloy sheathed Bi2223 composite superconducting tapes has been studied under bending deformation. The tensile stress-strain behavior of the composite tapes was first analyzed to determine several unknown parameters such as Young's modulus, yield strength and the thermal expansion coefficients of each component. In this analysis, these were inversely decided to meet the global tensile stress-strain behavior including intermediate unloading and reloading processes and the thermal expansion of the composite tapes. Thus evaluated values were used for the bending analysis in which the movement of the neutral axis was taken into account. Based on the analyzed strain distribution, the relative decrease of the critical current with the increase of the Bi2223 tape curvature was calculated from the volume fraction of the broken filaments. The calculated value agreed well with the experimental results.
Fatigue Assessment of High Strength Steel Welded Joints Under Bending Loading
International Nuclear Information System (INIS)
In this study, a fatigue assessment method for vehicle suspension systems having welded geometries was established under a bending loading condition. For the fatigue life estimation of the actual products welded joints made of different steels, bending fatigue tests were performed on welded specimens with a simplified shape for obtaining the moment-fatigue-life plot. Further, geometry modeling of the simplified welded specimens was conducted. Results of finite element analysis were used to obtain the stress-fatigue-life plot. The analysis results were also used to calculate the stress concentration factors for notch-factor-based fatigue life estimation. The test results were compared with results of the general notch-factor-based fatigue life estimation for improving fatigue assessment. As a result, it was concluded that both the welded fatigue tests and the notch-factor-based fatigue life estimation are necessary for accurate fatigue assessment
2011-12-29
... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION PPL Bell Bend, LLC; Combined License Application for Bell Bend Nuclear Power Plant; Exemption 1.0..., Certifications, and Approvals for Nuclear Power Plants.'' This reactor is to be identified as Bell Bend...
Semi-analytical solution of groundwater flow in a leaky aquifer system subject to bending effect
Yu, Chia-Chi; Yang, Shaw-Yang; Yeh, Hund-Der
2013-04-01
SummaryThe bending of aquitard like a plate due to aquifer pumping and compression is often encountered in many practical problems of subsurface flow. This reaction will have large influence on the release of the volume of water from the aquifer, which is essential for the planning and management of groundwater resources in aquifers. However, the groundwater flow induced by pumping in a leaky aquifer system is often assumed that the total stress of aquifer maintains constant all the time and the mechanical behavior of the aquitard formation is negligible. Therefore, this paper devotes to the investigation of the effect of aquitard bending on the drawdown distribution in a leaky aquifer system, which is obviously of interest in groundwater hydrology. Based on the work of Wang et al. (2004) this study develops a mathematical model for investigating the impacts of aquitard bending and leakage rate on the drawdown of the confined aquifer due to a constant-rate pumping in the leaky aquifer system. This model contains three equations; two flow equations delineate the transient drawdown distributions in the aquitard and the confined aquifer, while the other describes the vertical displacement in response to the aquitard bending. For the case of no aquitard bending, this new solution can reduce to the Hantush Laplace-domain solution (Hantush, 1960). On the other hand, this solution without the leakage effect can reduce to the time domain solution of Wang et al. (2004). The results show that the aquifer drawdown is influenced by the bending effect at early time and by the leakage effect at late time. The results of sensitivity analysis indicate that the aquifer compaction is sensitive only at early time, causing less amount of water released from the pumped aquifer than that predicted by the traditional groundwater theory. The dimensionless drawdown is rather sensitive to aquitard's hydraulic conductivity at late time. Additionally, both the hydraulic conductivity and
Anton, Steven R; Erturk, Alper; Inman, Daniel
2012-06-01
The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT- 5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads.
Anton, Steven R; Erturk, Alper; Inman, Daniel
2012-06-01
The topic of multifunctional material systems using active or smart materials has recently gained attention in the research community. Multifunctional piezoelectric systems present the ability to combine multiple functions into a single active piezoelectric element, namely, combining sensing, actuation, or energy conversion ability with load-bearing capacity. Quantification of the bending strength of various piezoelectric materials is, therefore, critical in the development of load-bearing piezoelectric systems. Three-point bend tests are carried out on a variety of piezoelectric ceramics including soft monolithic piezoceramics (PZT-5A and PZT-5H), hard monolithic ceramics (PZT-4 and PZT-8), single-crystal piezoelectrics (PMN-PT and PMN-PZT), and commercially packaged composite devices (which contain active PZT-5A layers). A common 3-point bend test procedure is used throughout the experimental tests. The bending strengths of these materials are found using Euler-Bernoulli beam theory to be 44.9 MPa for PMN-PZT, 60.6 MPa for PMN-PT, 114.8 MPa for PZT- 5H, 123.2 MPa for PZT-4, 127.5 MPa for PZT-8, 140.4 MPa for PZT-5A, and 186.6 MPa for the commercial composite. The high strength of the commercial configuration is a result of the composite structure that allows for shear stresses on the surfaces of the piezoelectric layers, whereas the low strength of the single-crystal materials is due to their unique crystal structure, which allows for rapid propagation of cracks initiating at flaw sites. The experimental bending strength results reported, which are linear estimates without nonlinear ferroelastic considerations, are intended for use in the design of multifunctional piezoelectric systems in which the active device is subjected to bending loads. PMID:22711404
Tunable waveguide bends with graphene-based anisotropic metamaterials
Chen, Zhao-xian
2016-01-15
We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.
Finite element analysis of composite tubes with integral ends subjected to bending loads
Adams, Michael B.
1995-01-01
An analytical investigation was perfonned to study the effect of applied bending loads on laminated composite tubes. Elasticity-based linear models were developed using finite element software to predict stresses within the individual plies of the tubes. The tubes under investigation were graphite/epoxy laminated composites with a stacking sequence of [0/-45/+45/90/90/+45/ -45/0] X 2 (Sixteen plies per tube). End pieces of isotropic titanium were integrally constructed with bon...
Insights into the damage zones in fault-bend folds from geomechanical models and field data
Ju, Wei; Hou, Guiting; Zhang, Bo
2014-01-01
Understanding the rock mass deformation and stress states, the fracture development and distribution are critical to a range of endeavors including oil and gas exploration and development, and geothermal reservoir characterization and management. Geomechanical modeling can be used to simulate the forming processes of faults and folds, and predict the onset of failure and the type and abundance of deformation features along with the orientations and magnitudes of stresses. This approach enables the development of forward models that incorporate realistic mechanical stratigraphy (e.g., the bed thickness, bedding planes and competence contrasts), include faults and bedding-slip surfaces as frictional sliding interfaces, reproduce the geometry of the fold structures, and allow tracking strain and stress through the whole deformation process. In this present study, we combine field observations and finite element models to calibrate the development and distribution of fractures in the fault-bend folds, and discuss the mechanical controls (e.g., the slip displacement, ramp cutoff angle, frictional coefficient of interlayers and faults) that are able to influence the development and distribution of fractures during fault-bend folding. A linear relationship between the slip displacement and the fracture damage zone, the ramp cutoff angle and the fracture damage zone, and the frictional coefficient of interlayers and faults and the fracture damage zone was established respectively based on the geomechanical modeling results. These mechanical controls mentioned above altogether contribute to influence and control the development and distribution of fractures in the fault-bend folds.
Weibull statistical analysis of Krouse type bending fatigue of nuclear materials
Haidyrah, Ahmed S.; Newkirk, Joseph W.; Castaño, Carlos H.
2016-03-01
A bending fatigue mini-specimen (Krouse-type) was used to study the fatigue properties of nuclear materials. The objective of this paper is to study fatigue for Grade 91 ferritic-martensitic steel using a mini-specimen (Krouse-type) suitable for reactor irradiation studies. These mini-specimens are similar in design (but smaller) to those described in the ASTM B593 standard. The mini specimen was machined by waterjet and tested as-received. The bending fatigue machine was modified to test the mini-specimen with a specially designed adapter. The cycle bending fatigue behavior of Grade 91 was studied under constant deflection. The S-N curve was created and mean fatigue life was analyzed using mean fatigue life. In this study, the Weibull function was predicted probably for high stress to low stress at 563, 310 and 265 MPa. The commercial software Minitab 17 was used to calculate the distribution of fatigue life under different stress levels. We have used 2 and 3- parameters Weibull analysis to introduce the probability of failure. The plots indicated that the 3- parameter Weibull distribution fits the data well.
Evolving efficiency of restraining bends within wet kaolin analog experiments
Hatem, Alexandra E.; Cooke, Michele L.; Madden, Elizabeth H.
2015-03-01
Restraining bends along strike-slip fault systems evolve by both propagation of new faults and abandonment of fault segments. Scaled analog modeling using wet kaolin allows for qualitative and quantitative observations of this evolution. To explore how bend geometry affects evolution, we model bends with a variety of initial angles, θ, from θ = 0° for a straight fault to θ = 30°. High-angle restraining bends (θ ≥ 20°) overcome initial inefficiencies by abandoning unfavorably oriented restraining segments and propagating multiple new, inwardly dipping, oblique-slip faults that are well oriented to accommodate convergence within the bend. Restraining bends with 0° < θ ≤ 15° maintain activity along the restraining bend segment and grow a single new oblique slip fault on one side of the bend. In all restraining bends, the first new fault propagates at ~5 mm of accumulated convergence. Particle Image Velocimetry analysis provides a complete velocity field throughout the experiments. From these data, we quantify the strike-slip efficiency of the system as the percentage of applied plate-parallel velocity accommodated as slip in the direction of plate motion along faults within the restraining bend. Bends with small θ initially have higher strike-slip efficiency compared to bends with large θ. Although they have different fault geometries, all systems with a 5 cm bend width reach a steady strike-slip efficiency of 80% after 50 mm of applied plate displacement. These experimental restraining bends resemble crustal faults in their asymmetric fault growth, asymmetric topographic gradient, and strike-slip efficiency.
Bending of Pinus jeffreyi in response to wind
Directory of Open Access Journals (Sweden)
Stephen H. Bullock
2015-12-01
Full Text Available Aim of study: To evaluate the degree of trunk sway in relation to wind velocity, with varying temporal integration and to compare this relation among seasons.Area of study: Sierra de Juárez, Baja California, MéxicoMaterials and Methods: Displacements of a 19 m tall Jeffrey pine tree were recorded at 6 m from a three dimensional digital compass during one year, at c. 4 Hz. Adjacent wind speed at 6 m was recorded at 1 Hz.Main results: Sway was essentially unaffected by wind in the same second but increasing dependence of cumulative displacement on average sustained wind speed was found for intervals of 1 to 60 minutes (r2 up to 0.89. The relation is generally log-linear but apparently differs in parameters between seasons.Research highlights: Wind-sway relations are clear from integration of several-to-many minutes. However, to estimate cumulative stress, sub-second data on sway are essential. Sub-second, precision measurements of sway can be registered from small, inexpensive sensors.Keywords: biomechanics; Pinus jeffreyi; seasonality; stress accumulation; time series; tree bending.
International Nuclear Information System (INIS)
Highlights: • The first time FSP modification of bending properties in the TIG-welded steel plates. • FSP produced about 40% increase in bending strength at RT. • FSP produced about 170% increase in the number of cycles to failure at 270 MPa at RT. • FSP produced a zigzag-shaped crack at the fatigue fracture start portion. • A fine-grained FSP region (grain sizes of about 1–2 μm in diameter) was observed. - Abstract: To improve the fatigue resistance of tungsten inert gas (TIG)-welded SS400 steel plates, friction stir processing (FSP) was performed on TIG weld beads. Although the tensile properties of the TIG-welded steel plates with FSP were similar to those without FSP, their bending strength exhibited about 1.4 GPa at room temperature, which was 40% higher than that without FSP (about 1 GPa). Similarly, FSP produced about 170% increase in the number of cycles to failure at an applied stress amplitude of 270 MPa during three-point bending fatigue at room temperature. A fine-grained FSP region (grain sizes of about 1–2 μm in diameter) enhanced grain-boundary strengthening, leading to the higher bending strength and bending fatigue resistance
Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory
Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.
2015-12-01
In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.
Storm, C; Storm, Cornelis; Nelson, Philip
2002-01-01
We formulate and solve a two-state model for the elasticity of nicked, double-stranded DNA that borrows features from both the Worm Like Chain and the Bragg--Zimm model. Our model is computationally simple, and gives an excellent fit to recent experimental data through the entire overstretching transition. The fit gives the first value for the bending stiffness of the overstretched state as about 10 nm*kbt, a value quite different from either B-form or single-stranded DNA.
Wooden Model of Wide AA Bending Magnet
1978-01-01
The very particular lattice of the AA required 2 types of dipoles (bending magnets: BLG, long and narrow; BST, short and wide). A wide one had a steel length of 2.71 m, a "good field" width of 0.564 m, and a weight of about 75 t. A wooden model was build in 1978, to gain dimensional experience. Here, Peter Zettwoch, one of the largest men at CERN at that time, is putting a hand in the mouth of the wooden BST monster.
Great Bend tornadoes of August 30, 1974
Umenhofer, T. A.; Fujita, T. T.; Dundas, R.
1977-01-01
Photogrammetric analyses of movies and still pictures taken of the Great Bend, Kansas Tornado series have been used to develop design specifications for nuclear power plants and facilities. A maximum tangential velocity of 57 m/sec and a maximum vertical velocity of 27 m/sec are determined for one suction vortex having a translational velocity of 32 m/sec. Three suction vortices with radii in the 20 to 30 m range are noted in the flow field of one tornado; these suction vortices apparently form a local convergence of inflow air inside the outer portion of the tornado core.
Extension versus Bending for Continuum Robots
Directory of Open Access Journals (Sweden)
George Grimes
2008-11-01
Full Text Available In this paper, we analyze the capabilities of a novel class of continuous-backbone ("continuum" robots. These robots are inspired by biological "trunks, and tentacles". However, the capabilities of established continuum robot designs, which feature controlled bending but not extension, fall short of those of their biological counterparts. In this paper, we argue that the addition of controlled extension provides dual and complementary functionality, and correspondingly enhanced performance, in continuum robots. We present an interval-based analysis to show how the inclusion of controllable extension significantly enhances the workspace and capabilities of continuum robots.
Potential of acoustic emissions from three point bending tests as rock failure precursors
Institute of Scientific and Technical Information of China (English)
Agioutantis Z.; Kaklis K.; Mavrigiannakis S.; Verigakis M.; Vallianatos F.; Saltas V.
2016-01-01
Development of failure in brittle materials is associated with microcracks, which release energy in the form of elastic waves called acoustic emissions. This paper presents results from acoustic emission mea-surements obtained during three point bending tests on Nestos marble under laboratory conditions. Acoustic emission activity was monitored using piezoelectric acoustic emission sensors, and the potential for accurate prediction of rock damage based on acoustic emission data was investigated. Damage local-ization was determined based on acoustic emissions generated from the critically stressed region as scat-tered events at stresses below and close to the strength of the material.
A weighted extended B-spline solver for bending and buckling of stiffened plates
Verschaeve, Joris C G
2015-01-01
The weighted extended B-spline method [Hoellig (2003)] is applied to bending and buckling problems of plates with different shapes and stiffener arrangements. The discrete equations are obtained from the energy contributions of the different components constituting the system by means of the Rayleigh-Ritz approach. The pre-buckling or plane stress is computed by means of Airy's stress function. A boundary data extension algorithm for the weighted extended B-spline method is derived in order to solve for inhomogeneous Dirichlet boundary conditions. A series of benchmark tests is performed touching various aspects influencing the accuracy of the method.
Mayr, Stefan; Bertel, Clara; Dämon, Birgit; Beikircher, Barbara
2014-09-01
The xylem hydraulic efficiency and safety is usually measured on mechanically unstressed samples, although trees may be exposed to combined hydraulic and mechanical stress in the field. We analysed changes in hydraulic conductivity and vulnerability to drought-induced embolism during static bending of Picea abies and Pinus sylvestris branches as well as the effect of dynamic bending on the vulnerability. We hypothesized this mechanical stress to substantially impair xylem hydraulics. Intense static bending caused an only small decrease in hydraulic conductance (-19.5 ± 2.4% in P. abies) but no shift in vulnerability thresholds. Dynamic bending caused a 0.4 and 0.8 MPa decrease of the water potential at 50 and 88% loss of conductivity in P. sylvestris, but did not affect vulnerability thresholds in P. abies. With respect to applied extreme bending radii, effects on plant hydraulics were surprisingly small and are thus probably of minor eco-physiological importance. More importantly, results indicate that available xylem hydraulic analyses (of conifers) sufficiently reflect plant hydraulics under field conditions. PMID:24697679
COMPARATIVE STUDY ON BENDING LOSS BETWEEN DIFFERENT S-SHAPED WAVEGUIDE BENDS USING MATRIX METHOD
Directory of Open Access Journals (Sweden)
Koushik Bhattacharya
2013-02-01
Full Text Available Bending loss in the waveguide as well as the leakage losses and absorption losses along with a comparative study among different types of S-shaped bend structures has been computed with the help of a simple matrix method.This method needs simple 2×2 matrix multiplication. The effective-index profile of the bended waveguide is then transformed to an equivalent straight waveguide with the help of a suitable mapping technique and is partitioned into large number of thin sections of different refractive indices. The transfer matrix of the two adjacent layers will be a 2×2 matrix relating the field components in adjacent layers. The total transfer matrix is obtained through multiplication of all these transfer matrices. The excitation efficiency of the wave in the guiding layer shows a Lorentzian profile. The power attenuation coefficient of the bent waveguide is the full-width-half-maximum (FWHM of this peak .Now the transition losses and pure bending losses can be computed from these FWHM datas.The computation technique is quite fast and it is applicable for any waveguide having different parameters and wavelength of light for both polarizations(TE and TM.
Energy Technology Data Exchange (ETDEWEB)
Utkin, V.S.; Salibekov, S.E.; Chubarov, V.M.
1986-06-01
Specimens of AD33-V, an aluminum/boron composite, were tested in cyclic bending to determine the dependence of accumulated damage and fatigue life on the stress amplitude under conditions of pure bending. It is shown that the fatigue life of the composite is proportional to its ultimate strength. Conditional endurance limits are determined as a function of the permissible amount of accumulated damage.
Flexible bending of aluminum profiles with polyurethane pad
Institute of Scientific and Technical Information of China (English)
HE Zhu-bin; LIU Gang; WANG Zhong-ren
2006-01-01
The high flexibility of profile bending with hyperelastic pad enables it to be a promising method for small lot or single part production, especially for space frame and roof-rail parts in automotive and aerospace industries. Bending of two aluminum profiles with different sections was carried out to investigate the effect of main process parameters on the bending process. Results show that the shape of the cross-section and its relative thickness and section modulus in bending are the main factors that determine the bending properties of the profiles. Roller stroke, properties of polyurethane pad and constraints on profiles are key factors that determine the bending radius and section deformation of bent profiles. Failures and quality problems met in experiments were also analyzed.
Reduction Bending of Thin Crystalline Silicon Solar Cells
Institute of Scientific and Technical Information of China (English)
SHEN Lan-xian; LIU Zu-ming; LIAO Hua; TU Jie-lei; DENG Shu-kang
2009-01-01
Reported are the results of reduction the bending of thin crystalline silicon solar ceils after printing and sintering of back electrode by changing the back electrode paste and adjusting the screen printing parameters without effecting the electrical properties of the cell. Theory and experiments showed that the bending of the cell is changed with its thickness of suhstrate, the thinner cell, the more serious bending. The bending of the cell is decreased with the thickness decrease of the back contact paste. The substrate with the thickness of 190μm printing with sheet aluminum paste shows a relatively lower bend compared with that of the substrate printing with ordinary aluminum paste, and the minimum bend is 0.55 mm which is reduced by52%.
BEND3 mediates transcriptional repression and heterochromatin organization.
Khan, Abid; Prasanth, Supriya G
2015-01-01
Transcription repression plays a central role in gene regulation. Transcription repressors utilize diverse strategies to mediate transcriptional repression. We have recently demonstrated that BEND3 (BANP, E5R and Nac1 domain) protein represses rDNA transcription by stabilizing a NoRC component. We discuss the role of BEND3 as a global regulator of gene expression and propose a model whereby BEND3 associates with chromatin remodeling complexes to modulate gene expression and heterochromatin organization.
Bending instability characteristics of double-walled carbon nanotubes
Wang, Q.; Hu, T.; Chen, G.; Jiang, Q.
2005-01-01
The bending instability characteristics of double-walled carbon nanotubes (DWNTs) of various configurations are studied using a hybrid approach in which the deformation-induced increase of the intratube interaction energy is modeled with the bending deformation energy using the elastic theory of beams. The intertube interaction energy is calculated using the van der Waals interatomic potential. This study shows that the bending instability may take place through the formation of a single kink...
PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING
Energy Technology Data Exchange (ETDEWEB)
Harbour, J; Tommy Edwards, T; Vickie Williams, V
2008-01-30
One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10{sup -9} cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for
PERMEABILITY OF SALTSTONE MEASUREMENT BY BEAM BENDING
International Nuclear Information System (INIS)
One of the goals of the Saltstone variability study is to identify (and, quantify the impact of) the operational and compositional variables that control or influence the important processing and performance properties of Saltstone mixes. A performance property for Saltstone mixes that is important but not routinely measured is the liquid permeability or saturated hydraulic conductivity of the cured Saltstone mix. The value for the saturated hydraulic conductivity is an input into the Performance Assessment for the SRS Z-Area vaults. Therefore, it is important to have a method available that allows for an accurate and reproducible measurement of permeability quickly and inexpensively. One such method that could potentially meet these requirements for the measurement of saturated hydraulic conductivity is the technique of beam bending, developed by Professor George Scherer at Princeton University. In order to determine the feasibility of this technique for Saltstone mixes, a summer student, David Feliciano, was hired to work at Princeton under the direction of George Scherer. This report details the results of this study which demonstrated the feasibility and applicability of the beam bending method to measurement of permeability of Saltstone samples. This research effort used samples made at Princeton from a Modular Caustic side solvent extraction Unit based simulant (MCU) and premix at a water to premix ratio of 0.60. The saturated hydraulic conductivities for these mixes were measured by the beam bending technique and the values determined were of the order of 1.4 to 3.4 x 10-9 cm/sec. These values of hydraulic conductivity are consistent with independently measured values of this property on similar MCU based mixes by Dixon and Phifer. These values are also consistent with the hydraulic conductivity of a generic Saltstone mix measured by Langton in 1985. The high water to premix ratio used for Saltstone along with the relatively low degree of hydration for MCU
Bend loss in surface plasmon polariton band-gap structures
DEFF Research Database (Denmark)
Bozhevolnyi, S.I.; Volkov, V.S.; Leosson, Kristjan;
2001-01-01
Using near-field optical microscopy, we investigate propagation of surface plasmon polaritons (SPPs) excited in the wavelength range of 720-830 nm at a corrugated gold-film surface with areas of 200-nm-wide and 45-nm-high scatterers arranged in a 410-nm-period triangular lattice containing line...... defects with double bends. We find that, for similar to2-mum-wide line defects and the wavelength of similar to 740 nm, the double bend losses for bend angles of 15 degrees and 30 degrees are below 2 and 10 dB, respectively. Our data indicate that the bend loss increases approximately quadratically...
Bend sensors based on periodically-tapered soft glass fibers
Wang, Y.; Richardson, D. J.; Brambilla, G; Feng, X.; Petrovich, M.N.; Ding, M.; Song, Z.(Central China Normal University, Wuhan, China)
2011-01-01
We demonstrate a technique for tapering periodically an all-solid soft glass fiber consisting of two types of lead silicate glasses by the use of a CO2 laser and investigate the bend sensing applications of the periodically-tapered soft glass fiber. Such a soft glass fiber with periodic microtapers could be used to develop a promising bend sensor with a sensitivity of ?27.75 ?W/m-1 by means of measuring the bend-induced change of light intensity. The proposed bend sensor exhibits a very low m...
SRI CAT Section 1 bending magnet beamline description
International Nuclear Information System (INIS)
This report discusses: APS bending magnet source; beamline layout; beamline optical components; beamline operation; time-resolved studies station; polarization studies station; and commissioning and operational schedule
International Nuclear Information System (INIS)
A special device was designed and set up to investigate the electrical behavior of conductive layers on flexible substrates under oscillatory bending. The resistance of conductive coatings can be measured during various oscillatory bending conditions. The bending radius, the amplitude and the frequency can be set to well-defined values. Furthermore, the setup allows us to apply tensile or compressive stress to the coating as well as both stresses alternately. Thus, various bending loads occurring in printable electronics applications can be simulated to investigate the electrical reliability of conductive coatings. In addition, it is possible to simulate different environmental conditions during oscillatory bending by running the device in an environmental chamber. Characterizations of the electrical behavior under oscillatory bending were carried out on commercially available polyethyleneterephthalate (PET) films sputtered with indium-tin oxide (ITO) and coated with poly3,4ethylenedioxythiophene (PEDOT). For coatings of sputtered ITO, a dramatic increase of the resistance is observed for bending radii smaller than 14 mm due to cracks spanning the whole sample width. The higher the amplitude, the more pronounced is the increase of the resistance. Coatings of PEDOT show high stability under oscillatory bending. There is no change in resistance observed for all bending radii and amplitudes applied over a large number of cycles
Bending of pipes with inconel cladding
Energy Technology Data Exchange (ETDEWEB)
Nachpitz, Leonardo; Menezes, Carlos Eduardo B.; Vieira, Carlos R. Tavares [Primus Processamento de Tubos S.A. (PROTUBO), Macae, RJ (Brazil)
2009-07-01
The high-frequency induction bending process, using API pipes coated with Inconel 625 reconciled to a mechanical transformation for a higher degree of resistance, was developed through a careful specification and control of the manufacturing parameters and inherent heat treatments. The effects of this technology were investigated by a qualification process consisting of a sequence of tests and acceptance criteria typically required by the offshore industry, and through the obtained results was proved the effectiveness of this entire manufacturing process, without causing interference in the properties and the quality of the inconel cladding, adding a gain of resistance to the base material, guaranteed by the requirements of the API 5L Standard. (author)
Bending the Cost Curve in Childhood Cancer.
Russell, Heidi; Bernhardt, M Brooke
2016-08-01
Healthcare for children with cancer costs significantly more than other children. Cost reduction efforts aimed toward relatively small populations of patients that use a disproportionate amount of care, like childhood cancer, could have a dramatic impact on healthcare spending. The aims of this review are to provide stakeholders with an overview of the drivers of financial costs of childhood cancer and to identify possible directions to curb or decrease these costs. Costs are incurred throughout the spectrum of care. Recent trends in pharmaceutical costs, evidence identifying the contribution of administration costs, and overuse of surveillance studies are described. Awareness of cost and value, i.e., the outcome achieved per dollar or burden spent, in delivery of care and research is necessary to bend the cost curve. Incorporation of these dimensions of care requires methodology development, prioritization, and ethical balance. PMID:27193602
Design Study: ELENA Bending Magnet Prototype
Schoerling, D
2013-01-01
The ELENA bending magnet prototype shall prove that the proposed design meets the requirements set by the ELENA beam dynamics. The following points will be discussed in detail: (i) production process of a magnetic yoke diluted with stainless steel plates, (ii) the stability and repeatability of the field homogeneity of such a yoke over the full working range, (iii) choice of soft magnetic steel, (iv) hysteresis effects, (v) mechanical deformations, (vi) thermal insulation to intercept heat load from baking for activation of NEG coating in the vacuum chamber, (vii) end shim design. In order to verify these points the following measurements will be performed: (i) Hall probe scanning, (ii) integrated field homogeneity measurement (DC), (iii) integrated field homogeneity measurement (AC).
Separation of blood in microchannel bends
Blattert, Christoph; Jurischka, Reinhold; Schoth, Andreas; Kerth, Paul; Menz, Wolfgang
2004-01-01
Biological applications of micro assay devices require integrated on-chip microfluidics for separation of plasma or serum from blood. This is achieved by a new blood separation technique based on a microchannel bend structure developed within the collaborative Micro-Tele-BioChip (μTBC) project co-funded by the German Ministry For Education and Research (BMBF). Different prototype polymer chips have been manufactured with an UV-LIGA process and hot embossing technology. The separation efficiency of these chips has been determined by experimental measurements using human whole blood. Results show different separation efficiencies for cells and plasma depending on microchannel geometry and blood sample characteristics and suggest an alternative blood separation method as compared to existing micro separation technologies.
Energy Technology Data Exchange (ETDEWEB)
Shih, H.R. [Jackson State Univ., MS (United States); Duffield, R.C.; Lin, J. [Univ. of Missouri, Columbia, MO (United States)
1996-10-01
An integral equation formulation and a numerical procedure for a boundary-finite element technique are developed for the static analysis of a stiffened plate with eccentric stiffeners. This formulation employs the fundamental solution associated with unstiffened plate bending and plane stress problems. With this approach, the resulting integral equation not only contained integrals along the perimeter of the stiffened but additional integrals along the stiffeners and the interface between the plate and its stiffeners. Thus the domain of the plate has to be divided into zones between the stiffeners. Each zone is modeled by boundary elements and stiffeners by finite elements. In this paper, the boundary element solution procedures for plate bending and in-plane problems are presented. The zone technique which permits coupling of unstiffened plate boundary element with stiffener finite elements is presented as well. Numerical example is given to demonstrate the effectiveness of this approach.
Mukundan, V; Geyer, V F; Julicher, F; Howard, J
2014-01-01
The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscilla- tory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. While experimenting with axonemes subjected to mild proteolysis, we observed pairs of doublets associate with each other and form bends with almost constant curvature. By model- ing the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis...
Institute of Scientific and Technical Information of China (English)
丁皓江; 陈伟球; 徐荣桥
2001-01-01
A method based on newly presented state space formulations is developed for analyzing the bending, vibration and stability of laminated transversely isotropic rectangular plates with simply supported edges. By introducing two displacement functions and two stress functions, two independent state equations were constructed based on the three-dimensional elasticity equations for transverse isotropy. The original differential equations are thus decoupled with the order reduced that will facilitate obtaining solutions of various problems.For the simply supported rectangular plate, two relations between the state variables at the top and bottom surfaces were established. In particular, for the free vibration (stability)problem, it is found that there exist two independent classes: One corresponds to the pure in-plane vibration (stability) and the other to the general bending vibration ( stability).Numerical examples are finally presented and the effects of some parameters are discussed.
Computational comparison of the bending behavior of aortic stent-grafts
Demanget, Nicolas; Badel, Pierre; Orgéas, Laurent; Geindreau, Christian; Albertini, Jean-Noël; Favre, Jean-Pierre; 10.1016/j.jmbbm.2011.09.006
2012-01-01
Secondary interventions after endovascular repair of abdominal aortic aneurysms are frequent because stent-graft (SG) related complications may occur (mainly endoleak and SG thrombosis). Complications have been related to insufficient SG flexibility, especially when devices are deployed in tortuous arteries. Little is known on the relationship between SG design and flexibility. Therefore, the aim of this study was to simulate numerically the bending of two manufactured SGs (Aorfix-Lombard Medical (A) and Zenith-Cook Medical Europe (Z)) using finite element analysis (FEA). Global SG behavior was studied by assessing stent spacing variation and cross-section deformation. Four criteria were defined to compare flexibility of SGs: maximal luminal reduction rate, torque required for bending, maximal membrane strains in graft and maximal Von Mises stress in stents. For angulation greater than 60\\degree, values of these four criteria were lower with A-SG, compared to Z-SG. In conclusion, A-SG was more flexible than Z...
Draw-Bending Analysis of a Cold Rolled DP980 Steel Sheet
Verma, Rahul K.; Noma, Nobuyasu; Chung, Kwansoo; Kuwabara, Toshihiko
2011-05-01
To assess the springback prediction accuracy of the recently proposed model (Verma et. al., 2011), simulations for tension-compression (TC) and draw-bending of a cold rolled DP980 steel sheet (Noma and Kuwabara, 2010b) were performed. Using a rotating die and a specimen specially designed to introduce the uniaxial state of stress during the draw bending test, friction could be neglected and the shape of the yield surface did not play any role in accurate simulations. The effects of incorporating permanent softening and the plastic strain dependent Young's modulus were studied in detail and it was found that the incorporation of permanent softening and the plastic strain dependent Young's modulus both was important for accurate springback prediction.
Falahatgar, S. R.; Salehi, Manouchehr
2011-12-01
Nonlinear bending analysis of polymeric laminated composite plate is examined considering material nonlinearity for viscoelastic matrix material through a Micro-macro approach. The micromechanical Simplified Unit Cell Method (SUCM) in three-dimensional closed-form solution is used for the overall behavior of the unidirectional composite in any combination of loading conditions. The elastic fibers are transversely isotropic where Schapery single integral equation in multiaxial stress state describes the matrix material by recursive-iterative formulation. The finite difference Dynamic Relaxation (DR) method is utilized to study the bending behavior of Mindlin annular sector plate including geometric nonlinearity under uniform lateral pressure with clamped and hinged edge constraints. The unsymmetrical laminated plate deflection is predicted for different thicknesses and also various pressures in different time steps and they are compared with elastic finite element results. As a main objective, the deflection results of viscoelastic laminated sector plate are obtained for various fiber volume fractions in the composite system.
AXISYMMETRIC BENDING OF TWO-DIRECTIONAL FUNCTIONALLY GRADED CIRCULAR AND ANNULAR PLATES
Institute of Scientific and Technical Information of China (English)
Guojun Nie; Zheng Zhong
2007-01-01
Assuming the material properties varying with an exponential law both in the thickness and radial directions, axisymmetric bending of two-directional functionally graded circular and annular plates is studied using the semi-analytical numerical method in this paper. The deflections and stresses of the plates are presented. Numerical results show the well accuracy and convergence of the method. Compared with the finite element method, the semi-analytical numerical method is with great advantage in the computational efficiency. Moreover, study on axisymmetric bending of two-directional functionally graded annular plate shows that such plates have better performance than those made of isotropic homogeneous materials or one-directional functionally graded materials. Two-directional functionally graded material is a potential alternative to the one-directional functionally graded material. And the integrated design of materials and structures can really be achieved in two-directional functionally graded materials.
ACCURATE BENDING STRENGTH ANALYSIS OF ASYMMETRIC GEARS USING THE NOVEL ES-PIM WITH TRIANGULAR MESH
Directory of Open Access Journals (Sweden)
G. Y. Zhang
2011-12-01
Full Text Available This paper extends the edge-based smoothed point interpolation method (ES-PIM to bending strength analysis of asymmetric gears with complex outlines. Five sets of asymmetric gears with pressure angles of 20°/20°, 25°/20°, 30°/20°, 35°/20° and 40°/20° were generated by a specially designed rack cutter. Four key factors, e.g. accuracy, convergence, the convergence rate and the computational efficiency of the present ES-PIM were checked in great detail on these five models, and the distributions of bending stresses at the fillet of the drive side were carefully investigated. The finite element method (FEM was also used to calculate the abovementioned factors to stress the advantages of ES-PIM. The numerical results indicate that ES-PIM can provide more efficient and accurate solutions in the stress field than the FEM, and is very suitable for stress analysis of complicated asymmetric gears.
The effect of cracks on the limit load of pipe bends under in-plane bending
International Nuclear Information System (INIS)
The limit analysis of the in-plane bending of curved tubes had received attention previously, but the effect of defects in the tube has not been considered. A lower bound has been established which, with no defects present, is in agreement with previous theoretical work. The method of linear programming allows cracks to be introduced into analysis, and results have been obtained for various geometries of defect. The results show that the presence of cracks in the pipe bend can have a marked effect on the theoretical limit load: a part-through crack penetrating only half the wall thickness will reduce the limit moment by up to 10%. The worst possible case of a through-crack may reduce the limit load by 60%. (author)
Evaluation of ultimate tensile strength using Miniature Disk Bend Test
Kumar, Kundan; Pooleery, Arun; Madhusoodanan, K.; Singh, R. N.; Chakravartty, J. K.; Shriwastaw, R. S.; Dutta, B. K.; Sinha, R. K.
2015-06-01
Correlations for evaluation of Ultimate Tensile Strength (UTS) using Miniature Disk Bend Test (MDBT) or Small Punch Test (SPT) has been an open issue since the development of the techniques. The larger plastic strains, in tri-axial state of stress during SPT, make the translation to the equivalent uniaxial parameter less certain. Correlations based on Pmax of load-displacement curve are also in disagreement as the point corresponding to Pmax does not represent a necking situation as in case of UTS, in a uniaxial tensile test. In present work, an attempt has been made for locating necking zone, which appears prior to Pmax, through experiments and FEM analyses. Experimental results on disk specimens from 20MnMoNi55, CrMoV ferritic steel and SS304LN materials along with FEM analyses found that load corresponding to 0.48 mm displacement is to be very close to the necking zone, and gives best fit for a UTS correlation.
Bending of a nonlinear beam reposing on an unilateral foundation
Directory of Open Access Journals (Sweden)
Machalová J.
2011-06-01
Full Text Available This article is going to deal with bending of a nonlinear beam whose mathematical model was proposed by D. Y. Gao in (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches,Mech. Research Communication, 23 (1 1996. The model is based on the Euler-Bernoulli hypothesis and under assumption of nonzero lateral stress component enables moderately large deflections but with small strains. This is here extended by the unilateralWinkler foundation. The attribution unilateral means that the foundation is not connected with the beam. For this problem we demonstrate a mathematical formulation resulting from its natural decomposition which leads to a saddle-point problem with a proper Lagrangian. Next we are concerned with methods of solution for our problem by means of the finite element method as the paper (Gao, D. Y., Nonlinear elastic beam theory with application in contact problems and variational approaches, Mech. Research Communication, 23 (1 1996 has no mention of it. The main alternatives are here the solution of a system of nonlinear nondifferentiable equations or finding of a saddle point through the use of the augmented Lagrangian method. This is illustrated by an example in the final part of the article.
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
This paper is based on the fundamental loading model of pure bending and the analytical model of a circular beam element with arbitrary initial deflection. The L.W. Guo solution is modified and generalized according to the elastic theory, and the analytical solution for the stress of the beam element with arbitrary initial deflection under pure bending is derived. Using yield theory of edge strength, an expression for the safety margin of one point in the arbitrary curved beam under pure bending (ACPB) is built. This paper modifies the model for weak points of service structures and establishes a foundation for safe design and inspection of imperfect structures. Also, according to the theory of the method of advanced first-order second-moment(AFOSM), this paper derives an expression for the reliability index of one point in ACPB. Lastly, it modifies the solution for weak points by solving the minimal reliability index.
Turbulence characteristics in sharp open-channel bends
Blanckaert, K.; De Vriend, H.J.
2005-01-01
In spite of its importance, little is known about the turbulence characteristics in open-channel bends. This paper reports on an experimental investigation of turbulence in one cross section of an open-channel bend. Typical flow features are a bicellular pattern of cross-stream circulation (secondar
On the Bending Problem for Large Scale Mapping
Esteban, I.; Booij, O.; Dijk, J.; Groen, F.
2010-01-01
During Simultaneous Localization And Mapping, geometrical constraints are established between map features. These constraints, introduced through measurements and motion prediction, produce a bending effect in the event of closing a large loop. In this paper we present a discussion of the bending pr
On the bending problem for large scale mapping
I. Esteban; O. Booij; J. Dijk; F. Groen
2009-01-01
During Simultaneous Localization And Mapping, geometrical constraints are established between map features. These constraints, introduced through measurements and motion prediction, produce a bending effect in the event of closing a large loop. In this paper we present a discussion of the bending pr
APPLICABILITY OF THE BEND DEVELOPMENT THEORY IN NATURAL ALLUVIAL RIVERS
Institute of Scientific and Technical Information of China (English)
M.M.RAHMAN; M.A.HAQUE; M.M.HOQUE
2002-01-01
The theoretical conditions for the bend development or attenuation have been reviewed and tested for a study reach of the Meghna river.The field observations in the natural alluvial meander do not support the theories developed for bend development.The limitations of the theory to apply in the natural meandering river are discussed.
36 CFR 7.41 - Big Bend National Park.
2010-07-01
... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Big Bend National Park. 7.41 Section 7.41 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR SPECIAL REGULATIONS, AREAS OF THE NATIONAL PARK SYSTEM § 7.41 Big Bend National Park. (a) Fishing; closed...
Regulation of transcription by synthetic DNA-bending agents.
Bednarski, David; Firestine, Steven M
2006-11-01
Gene expression is regulated by a complex interplay between binding and the three-dimensional arrangement of transcription factors with RNA polymerase and DNA. Previous studies have supported a direct role for DNA bending and conformation in gene expression, which suggests that agents that induce bends in DNA might be able to control gene expression. To test this hypothesis, we examined the effect of triple-helix-forming oligonucleotide (TFO) bending agents on the transcription of luciferase in an in vitro transcriptional/translational system. We find that transcription is regulated only by a TFO that induces a bend in the DNA. Related TFOs that do not induce bends in DNA have no effect on transcription. Reporter expression can be increased by as much as 80 % or decreased by as much as 50 % depending on the phasing of the upstream bend relative to the promoter. We interpret the results as follows: when the bend is positioned such that the upstream DNA is curved toward the RNA polymerase on the same DNA face, transcription is enhanced. When the upstream DNA is curved away, transcription is attenuated. These results support the hypothesis that DNA-bending agents might have the capability to regulate gene expression, thereby opening up a previously undervalued avenue in research on the artificial control of gene expression. PMID:17004274
System effects influencing the bending strength of timber beams
DEFF Research Database (Denmark)
Ditlevsen, Ove Dalager; Källsner, B.
1998-01-01
A stochastic model of hierarchical series system type for the bending strength of spruce beams isdefined from the anticipation that the bending failure takes place at a cross-section with a defect cluster formed by knots or grain irregularities. The parameters of the model are estimated from meas...
A numerical investigation of the continuous bending under tension test
Hadoush, A.; Boogaard, van den A.H.; Emmens, W.C.
2011-01-01
In this paper the continuous bending under tension test is analyzed by numerical simulation. The ability of achieving high strains by combined stretching and bending is considered. This deformation mode has similarities with the deformation that takes place in incremental sheet forming (ISF) and may
Kim, Hyunok; Mohr, William; Yang, Yu-Ping; Zelenak, Paul; Kimchi, Menachem
2011-08-01
Numerical modeling of local formability, such as hole-edge cracking and shear fracture in bending of AHSS, is one of the challenging issues for simulation engineers for prediction and evaluation of stamping and crash performance of materials. This is because continuum-mechanics-based finite element method (FEM) modeling requires additional input data, "failure criteria" to predict the local formability limit of materials, in addition to the material flow stress data input for simulation. This paper presents a numerical modeling approach for predicting hole-edge failures during static bend tests of AHSS structures. A local-strain-based failure criterion and a stress-triaxiality-based failure criterion were developed and implemented in LS-DYNA simulation code to predict hole-edge failures in component bend tests. The holes were prepared using two different methods: mechanical punching and water-jet cutting. In the component bend tests, the water-jet trimmed hole showed delayed fracture at the hole-edges, while the mechanical punched hole showed early fracture as the bending angle increased. In comparing the numerical modeling and test results, the load-displacement curve, the displacement at the onset of cracking, and the final crack shape/length were used. Both failure criteria also enable the numerical model to differentiate between the local formability limit of mechanical-punched and water-jet-trimmed holes. The failure criteria and static bend test developed here are useful to evaluate the local formability limit at a structural component level for automotive crash tests.
Keivani, M.; Abadian, N.; Koochi, A.; Mokhtari, J.; Abadyan, M.
2016-10-01
It has been well established that the physical performance of nanodevices might be affected by the microstructure. Herein, a two-degree-of-freedom model base on the modified couple stress theory is developed to incorporate the impact of microstructure in the torsion/bending coupled instability of rotational nanoscanner. Effect of microstructure dependency on the instability parameters is determined as a function of the microstructure parameter, bending/torsion coupling ratio, van der Waals force parameter and geometrical dimensions. It is found that the bending/torsion coupling substantially affects the stable behavior of the scanners especially those with long rotational beam elements. Impact of microstructure on instability voltage of the nanoscanner depends on coupling ratio and the conquering bending mode over torsion mode. This effect is more highlighted for higher values of coupling ratio. Depending on the geometry and material characteristics, the presented model is able to simulate both hardening behavior (due to microstructure) and softening behavior (due to torsion/bending coupling) of the nanoscanners.
Ultrasensitive vector bending sensor based on multicore optical fiber.
Villatoro, Joel; Van Newkirk, Amy; Antonio-Lopez, Enrique; Zubia, Joseba; Schülzgen, Axel; Amezcua-Correa, Rodrigo
2016-02-15
In this Letter, we demonstrate a compellingly simple directional bending sensor based on multicore optical fibers (MCF). The device operates in reflection mode and consists of a short segment of a three-core MCF that is fusion spliced at the distal end of a standard single mode optical fiber. The asymmetry of our MCF along with the high sensitivity of the supermodes of the MCF make the small bending on the MCF induce drastic changes in the supermodes, their excitation, and, consequently, on the reflected spectrum. Our MCF bending sensor was found to be highly sensitive (4094 pm/deg) to small bending angles. Moreover, it is capable of distinguishing multiple bending orientations. PMID:26872200
Sorting of bending magnets for the SSRF booster
Institute of Scientific and Technical Information of China (English)
HOU Jie; LIU Gui-Min; LI Hao-Hu; ZHANG Man-Zhou
2008-01-01
The Shanghai Synchrotron Radiation Facility(SSRF)booster ring,a full energy injector for the storage ring,is deigned to accelerate the electron beam energy from 150MeV to 3.5GeV that demands high extraction efficiency at the extraction energy with low beam loss rate when electrons are ramping.Closed orbit distortion(COD)caused by bending magnet field uniformity errors which affects the machine performance harmfully could be effectively reduced by bending magnet location sorting.Considering the affections of random errors in measurement,both ideal sorting and realistic sorting are studied based on measured bending magnet field uniformity errors and one reasonable combination of bending magnets which can reduce the horizontal COD by a factor of 5is given as the final installation sequence of the booster bending magnets in this paper.
Sorting of bending magnets for the SSRF booster
Hou, Jie; Liu, Gui-Min; Li, Hao-Hu; Zhang, Man-Zhou
2008-04-01
The Shanghai Synchrotron Radiation Facility (SSRF)booster ring, a full energy injector for the storage ring, is deigned to accelerate the electron beam energy from 150 MeV to 3.5 GeV that demands high extraction efficiency at the extraction energy with low beam loss rate when electrons are ramping. Closed orbit distortion (COD) caused by bending magnet field uniformity errors which affects the machine performance harmfully could be effectively reduced by bending magnet location sorting. Considering the affections of random errors in measurement, both ideal sorting and realistic sorting are studied based on measured bending magnet field uniformity errors and one reasonable combination of bending magnets which can reduce the horizontal COD by a factor of 5 is given as the final installation sequence of the booster bending magnets in this paper. Supported by SSRF Project
Analysis and Simulation of Adiabatic Bend Transitions in Optical Fibers
Institute of Scientific and Technical Information of China (English)
YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng
2009-01-01
A low-loss criterion for bend transitions in optical fibers is proposed. An optical fiber can be tightly bent with low loss to be adiabatic for the fundamental mode, provided that an approximate upper bound on the rate of change of bend curvature for a given bend curvature is satisfied. Two typical adiabatic bend transition paths, the optimum profile and linear profile, are analyzed and studied numerically. A realizable adiabatic transition with an Archimedean spiral profile is introduced for low bend loss in tightly bent optical fibers. Design of the transitions is based on modeling of the propagation and coupling characteristics of the core and cladding modes,which clearly illustrate the physical processes involved.
Ultimate Bending Capacity of Strain Hardening Steel Pipes
Institute of Scientific and Technical Information of China (English)
陈严飞; 张娟; 张宏; 李昕; 周晶; 曹静
2016-01-01
Based on Hencky’s total strain theory of plasticity, ultimate bending capacity of steel pipes can be determined analytically assuming an elastic-linear strain hardening material, the simplified analytical solution is proposed as well. Good agreement is observed when ultimate bending capacities obtained from analytical solutions are compared with experimental results from full-size tests of steel pipes. Parametric study conducted as part of this paper indicates that the strain hardening effect has significant influence on the ultimate bending capacity of steel pipes. It is shown that pipe considering strain hardening yields higher bending capacity than that of pipe assumed as elastic-perfectly plastic material. Thus, the ignorance of strain hardening effect, as commonly assumed in current codes, may underestimate the ultimate bending capacity of steel pipes. The solutions proposed in this paper are applicable in the design of offshore/onshore steel pipes, supports of offshore platforms and other tubular structural steel members.
Atmospheric Refractive Electromagnetic Wave Bending and Propagation Delay
Mangum, Jeffrey G
2014-01-01
In this tutorial we summarize the physics and mathematics behind refractive electromagnetic wave bending and delay. Refractive bending and delay through the Earth's atmosphere at both radio/millimetric and optical/IR wavelengths are discussed, but with most emphasis on the former, and with Atacama Large Millimeter Array (ALMA) applications in mind. As modern astronomical measurements often require sub-arcsecond position accuracy, care is required when selecting refractive bending and delay algorithms. For the spherically-uniform model atmospheres generally used for all refractive bending and delay algorithms, positional accuracies $\\lesssim 1^{\\prime\\prime}$ are achievable when observing at zenith angles $\\lesssim 75^\\circ$. A number of computationally economical approximate methods for atmospheric refractive bending and delay calculation are presented, appropriate for astronomical observations under these conditions. For observations under more realistic atmospheric conditions, for zenith angles $\\gtrsim 75^...
Bending Modulus Measurement of Single High Performance Fiber
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The bending modulus property of high performance fiber is an important property for both polymer science and engineering. The measurement of the bending performance is, however, difficult because of the thin size of the fiber. We have measured this property by the axial compression bending method where single fiber with suitable slenderness is compressed in the fiber axial direction to obtain the peak point of the force-displacement curve. Then the bending modulus and the flexural rigidity can be calculated by measuring the protruding length and diameter of fiber needles and the critical force, Pcr. The measured data show that the bending characteristics of all kinds of high performance fiber are dissimilar evidently.
Evaluation of ultimate tensile strength using Miniature Disk Bend Test
Energy Technology Data Exchange (ETDEWEB)
Kumar, Kundan, E-mail: kundan@barc.gov.in [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Pooleery, Arun; Madhusoodanan, K. [Reactor Engineering Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Singh, R.N.; Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Shriwastaw, R.S. [Post Irradiation Examination Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Dutta, B.K. [Reactor Safety Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sinha, R.K. [Atomic Energy Commission, DAE, Anushakti Bhavan, Mumbai 400001 (India)
2015-06-15
Graphical abstract: Since inception of Miniature Disk Bend Test (MDBT) technique, UTS correlations have been an open issue. Correlations based on P{sub max} of load–displacement curve are also in disagreement as the point corresponding to P{sub max} does not represent a necking situation as in case of UTS, in a uniaxial tensile test. In present work, an attempt has been made for locating necking zone, which appears prior to P{sub max}, through experiments and FEM analyses. Experimental results on disk specimens from 20MnMoNi55, CrMoV ferritic steel and SS304LN materials along with FEM analyses found that load corresponding to 0.48 mm displacement is to be very close to the necking zone, and gives best fit for a UTS correlation. (a) Plots of thickness of disk at various radial locations for different punch travel distances for 20MnMoNi55 and (b) derivative of minimum thickness on the disk with punch travel. - Highlights: • Correlations for UTS in a SPT have been an open issue since the development of this technique. • The point P{sub max} in SPT curve does not correspond to a necking as in P-δ curve in tensile test. • In this work attempt has been made to locate necking in SPT curve using experiments and FEM. • The data corresponding to 0.48 mm displacement is found to be very close to the necking zone. • It is found that correlation for UTS is best suited for data corresponding to the necking zone. - Abstract: Correlations for evaluation of Ultimate Tensile Strength (UTS) using Miniature Disk Bend Test (MDBT) or Small Punch Test (SPT) has been an open issue since the development of the techniques. The larger plastic strains, in tri-axial state of stress during SPT, make the translation to the equivalent uniaxial parameter less certain. Correlations based on P{sub max} of load–displacement curve are also in disagreement as the point corresponding to P{sub max} does not represent a necking situation as in case of UTS, in a uniaxial tensile test. In
2010-11-24
... decision-making process so interested and affected public may ] participate and contribute to the final... improve forest health and fuel conditions within the 25,700-acre West Bend planning area. The planning..., and on the west by the Bend Watershed Roadless Area. The planning area is entirely within public...
Zhang, Y.; Abraham, O.; Chapeleau, X.; Cottineau, L.-M.; Tournat, V.; Le Duff, A.; Lascoup, B.; Durand, O.
2013-01-01
Coda Wave Interferometry (CWI) is an ultrasonic NDT method suitable for complex material such as concrete that can precisely measure small propagation velocity variation (10-2%). By measuring variation of propagation velocity in concrete caused by acoustoelasticity phenomena, CWI analysis can be used to monitor concrete's internal stress level. For the first time, CWI is used to measure propagation velocity variations due to a stress field in a concrete beam under four-points bending test, which contains simultaneously compressive and tensile stress. Embedded optical-fiber sensors, strain gauges are used in the experiment, in order to confirm and validate the CWI analysis result. Thermocouples are also embedded into concrete beams for monitoring internal temperature fluctuations.
Kececioglu, D.; Broome, H.
1969-01-01
Fatigue data generated by three combined bending-torsion fatigue reliability research machines at The University of Arizona are probabilistic-graphically and phenomenologically analyzed. Distributions that are applicable to fatique life and static strength data are discussed. Phenomenological justifications for the use of these distributions are presented. It is found that the normal distribution represents the cycles-to-failure data at the highest stress levels best. The lognormal distribution appears to fit the cycles-to-failure data at the lower stress levels best and quite well at all stress levels including the highest. A regression analysis and least-squares goodness-of-fit test was performed for normal and lognormal plots. In most cases, the correlation coefficient gave a better fit to the data using the normal distribution, but the difference between the two was so slight that positive discrimination could not be made.
Field measurement for large bending magnets
Energy Technology Data Exchange (ETDEWEB)
Lazzaro, A. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Cappuzzello, F. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy)], E-mail: cappuzzello@lns.infn.it; Cunsolo, A.; Cavallaro, M. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy); Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Foti, A. [Dipartimento di Fisica e Astronomia, Universita di Catania, Via S. Sofia 64, I-95123 Catania (Italy); INFN-Sezione di Catania, Via S. Sofia 64, I-95123 Catania (Italy); Orrigo, S.E.A.; Rodrigues, M.R.D.; Winfield, J.S. [INFN-Laboratori Nazionali del Sud, Via S. Sofia 62, I-95123 Catania (Italy)
2008-02-01
The results of magnetic field measurements of the large bending magnet of the MAGNEX spectrometer are presented. The experimental values are used to build an Enge function by the least-squares method. The resulting field is compared to the measured one, showing too large deviation for application to ray reconstruction techniques. Similarly, the experimental values are compared with results from a three-dimensional finite elements calculation. Again the deviations between measured and calculated field are too large for a direct application of the latter to ray reconstruction, while its reliability is sufficient for analysis purposes. In particular, it has been applied to study the effect of the inaccuracies in the probe location and orientation on the precision of field reconstruction, and to establish the requirements for the field interpolation. These inaccuracies are found to be rather important, especially for the transversal components of the field, with the consequence that their effect on the reconstructed field should be minimized by special interpolation algorithms.
Bending strength of delaminated aerospace composites.
Kinawy, Moustafa; Butler, Richard; Hunt, Giles W
2012-04-28
Buckling-driven delamination is considered among the most critical failure modes in composite laminates. This paper examines the propagation of delaminations in a beam under pure bending. A pre-developed analytical model to predict the critical buckling moment of a thin sub-laminate is extended to account for propagation prediction, using mixed-mode fracture analysis. Fractography analysis is performed to distinguish between mode I and mode II contributions to the final failure of specimens. Comparison between experimental results and analysis shows agreement to within 5 per cent in static propagation moment for two different materials. It is concluded that static fracture is almost entirely driven by mode II effects. This result was unexpected because it arises from a buckling mode that opens the delamination. For this reason, and because of the excellent repeatability of the experiments, the method of testing may be a promising means of establishing the critical value of mode II fracture toughness, G(IIC), of the material. Fatigue testing on similar samples showed that buckled delamination resulted in a fatigue threshold that was over 80 per cent lower than the static propagation moment. Such an outcome highlights the significance of predicting snap-buckling moment and subsequent propagation for design purposes.
Occipital bending (Yakovlevian torque) in bipolar depression.
Maller, Jerome J; Anderson, Rodney; Thomson, Richard H; Rosenfeld, Jeffrey V; Daskalakis, Zafiris J; Fitzgerald, Paul B
2015-01-30
Differing levels of occipital lobe asymmetry and enlarged lateral ventricles have been reported within patients with bipolar disorder (BD) compared with healthy controls, suggesting different rates of occipital bending (OB). This may exert pressure on subcortical structures, such as the hippocampus, reduced among psychiatric patients. We investigated OB prevalence in 35 patients with BD and 36 healthy controls, and ventricular and occipital volumes. Prevalence was four times higher among BD patients (12/35 [34.3%]) than in control subjects (3/36 [8.3%]), as well as larger lateral ventricular volumes (LVVs). Furthermore, we found OB to relate to left-to-right ventricular and occipital lobe volume (OLV) ratios. Those with OB also had reduced left-to-right hippocampal volume ratios. The results suggest that OB is more common among BD patients than healthy subjects, and prevalent in both BD Type I and Type II patients. We posit that anomalies in neural pruning or ventricular enlargement may precipitate OB, consequently resulting in one occipital lobe twisting around the other. Although the clinical implications of these results are unclear, the study suggests that asymmetrical ventricular volume matched with a pattern of oppositely asymmetrical occipital volume is related to OB and may be a marker of psychiatric illness. PMID:25480522
The analysis of the bending stiffness and intensity of cylindrical tubes
Institute of Scientific and Technical Information of China (English)
2007-01-01
Based on the mechanics of material,the bending stiffness and intensity of cylin-drical bar and tube are analyzed. By comparing the cylindrical tube whose ratio of outside diameter to internal diameter is 0.7 with the cylindrical bar,it is concluded that when both of them have the same mass,the section stiffness of the cylindrical tube is three times that of the cylindrical bar;when both of them have the same external diameter,the mass of the cylindrical tube is only 1/2 that of the cylindrical bar,but the section stiffness of the cylindrical tube is 3/4 that of the cylindrical bar. By virtue of the elemental elastic-plastic theory,the yield stress of the liquid-filled cylindrical tube is investigated. Due to the incompressibility of liquid and the strain hardening effect of material,the yield stress of the liquid-filled tube is enlarged compared with the hollow tube,thus raising its bending intensity. Under the dy-namic load,compared with the hollow tube,the impact resistance of the liquid-filled tube is also raised due to elastic recovery. Because the hydraulic pressures per-pendicular to the inner surface are identical everywhere,the local stress concen-tration resulting from the ovalisation of the tube would be decreased,and the re-sistance to buckling would be improved.
Dancing Discs: Bending and Twisting of Soft Materials by Anisotropic Swelling
Holmes, Douglas; Roché, Matthieu; Sinha, Tarun; Stone, Howard
2011-03-01
Soft materials, e.g. biological tissues and gels, undergo morphological changes, motion, and instabilities when subjected to external stimuli. Tissues can exhibit residual internal stresses induced by growth, and generate elastic deformations to move in response to light or touch, curl articular cartilage, aid in seed dispersal, and actuate hygromorphs, such as pine cones. Understanding the dynamics of such osmotically driven movements, in the influence of geometry and boundary conditions, is crucial to the controlled deformation of soft materials. We examine how thin elastic plates undergo rapid bending and buckling instabilities after anisotropic exposure to a favorable solvent that swells the network. An unconstrained beam bends along its length, while a circular disc bends and buckles with multiple curvatures. In the case of a disc, a large-amplitude transverse travelling wave rotates azimuthally around the disc. Theoretical interpretations inspired by the complementary thermal expansion problem of transient shape changes triggered by time-dependent heating are presented and allow collapse of time-dependent data on universal curves. Understanding the dynamics of strain-driven shape changes provides new insight into natural systems and control of advanced functional materials.
Directory of Open Access Journals (Sweden)
Sergio Baragetti
2016-01-01
Full Text Available Hydraulic actuators are commonly adopted in machines and structures to provide translating forces with significant magnitudes. Although their application dates back to the industrial revolution, their bending behavior under compression is typically addressed by simple Euler’s instability analysis on the rod, neglecting effects such as the cylinder inertia and stiffness, the presence of contact elements in the cylinder-rod junction and on the piston, geometrical misalignments and imperfections, and friction moments at the support. Such simplifications lead to unjustified reduced critical load calculations on the component. In the present paper, a complete mathematical formulation, which accounts for such effects, is presented and validated against experimental data. A numerical sensitivity analysis is conducted, to assess the contributions of initial rectilinear imperfections, wear rings stiffness and dimension, and supports friction on the actuator’s limit buckling load and bending behavior under compression. Results are presented, including the effect of the cited parameters on the buckling load, providing a reliable tool for the mechanical designer. In particular, an optimum position for the wear ring distance is found. Moreover, increased wear ring stiffness and reduced imperfections increase the buckling load and reduce the bending stresses before the critical load.
The use of experimental bending tests to more accurate numerical description of TBC damage process
Sadowski, T.; Golewski, P.
2016-04-01
Thermal barrier coatings (TBCs) have been extensively used in aircraft engines to protect critical engine parts such as blades and combustion chambers, which are exposed to high temperatures and corrosive environment. The blades of turbine engines are additionally exposed to high mechanical loads. These loads are created by the high rotational speed of the rotor (30 000 rot/min), causing the tensile and bending stresses. Therefore, experimental testing of coated samples is necessary in order to determine strength properties of TBCs. Beam samples with dimensions 50×10×2 mm were used in those studies. The TBC system consisted of 150 μm thick bond coat (NiCoCrAlY) and 300 μm thick top coat (YSZ) made by APS (air plasma spray) process. Samples were tested by three-point bending test with various loads. After bending tests, the samples were subjected to microscopic observation to determine the quantity of cracks and their depth. The above mentioned results were used to build numerical model and calibrate material data in Abaqus program. Brittle cracking damage model was applied for the TBC layer, which allows to remove elements after reaching criterion. Surface based cohesive behavior was used to model the delamination which may occur at the boundary between bond coat and top coat.
EFFECT OF THE SPECIFIC GRAVITY ON STATIC BENDING PROPERTIES IN PLYWOOD OF Pinus elliotti Engelm
Directory of Open Access Journals (Sweden)
Hernando Alfonso Lara Palma
2009-09-01
Full Text Available The objetive of this work was to determine the relation between the rigidity and strength properties in static bending and specifie gravity of plywood manufactured from five veneer of Pinus elliotti Engelm, plantation from a 30 year-old. Linear simples, multiple and polynomial relations involving the modulus of rupture (MOR, modulus of elasticity (MOE, strees at proportional limit (TLP and specifie gravity (Me of the plywood were studied. The specifie gravity did not prove to be a very exact indicator of the rigidity and strength properties of the plywood. The MOE, MOR and TLP in static bending of the plywood showed low coefficients of correlations and determination adjusted for simple linear regression, indicating a little dependence of the specific gravity. The modulus of rupture in static bending on the principal directions (x and y had a strong dependence of the modulus of elasticity and stress at proporcional limit. The coefficients of correlations of the best models of regression in the two directions varied from 0,85 to 0,91. The frequency histograms of the specifie gravity of plywood showed an unimodal homogeneous distribution, while the MOE and MOR showed an unimodal distribution with positive asymmetric skewness.
EFFECT OF CORROSION ON BOND BEHAVIOR AND BENDING STRENGTH OF REINFORCED CONCRETE BEAMS
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
There is growing concern for corrosion damage in reinforced concrete structures with several decades' service. Pullout tests and beam tests were carried out to study the effect of reinforcement corrosion on the bond behavior and bending strength of reinforced concrete beams. The bond strength of plain bars and concrete initially increases with increasing corrosion, then declines. The turning point depends on the cracking of the concrete cover. The bond strength of deformed bars and concrete increases with corrosion up to a certain amount, but with progressive increase in corrosion, the bond strength decreases, and the cracking of the concrete cover seems to have no effect on the bond strength. On the basis of test data, the bond strength coefficient recommended here, which, together with the bond strength of uncorroded steel bars and concrete, can be used to easily calculate the bond strength of corroded steel bars and concrete. The bond strength coefficient proposed in this paper can be used to study the bond stress-slip relationship of corroded steel bars and concrete. The bending strength of corroded reinforced concrete beams declines with increasing reinforcement corrosion. Decreased bending strength of corroded RC beam is due to reduction in steel bar cross section, reduction of yield strength of steel bar, and reduction of bond capacity between steel bar and concrete.
PROGRESS IN STUDIES ON ICE ACCUMULATION IN RIVER BENDS
Institute of Scientific and Technical Information of China (English)
WANG Jun; CHEN Pang-pang; SUI Jue-yi
2011-01-01
River ice is an important hydraulic element in temperate and polar environments and would affect hydrodynamic conditions of rivers through changes both in the boundary conditions and the thermal regime.The river bend has been reported as the common location for the initiation of ice jams because the water flow along a river bend is markedly affected by the channel curvature.In this article,the experimental studies about the ice accumulation in a river bend are reviewed.Based on experiments conducted so far,the criteria for the formation of ice jams in the river bend,the mechanisms of the ice accumulation in the river bend and the thickness profile of the ice accumulation in the river bend are discussed.The k- ε two-equation turbulence model is used to simulate the ice accumulation under an ice cover along a river bend.A formula is proposed for describing the deformation of the ice jam bottom.Our results indicate that all simulated thickness of the ice accumulation agrees reasonably well with the measured thickness of the ice accumulation in the laboratory.
Nestola, Yago; Storti, Fabrizio; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Piero Righetti, Fabrizio
2016-04-01
Structural inheritance plays a fundamental role during crustal deformation because pre-existing fault and shear zones typically provide weakness zone suitable to fail again when affected by a new regional stress field. Re-activation of structural inheritance is expected to unavoidably increase the complexity of structural architectures, whose geometric and kinematic patterns can significantly deviate from what expected in newly deformed crustal sectors. Availability of templates from analogue models can provide a very effective tool to help unraveling such a structural complexity. For this purpose, we simulated the reworking of a set of basement hosted pre-existing fault zones at strike-slip restraining fault bends. In the models, the mechanical stratigraphy consists of a basement, made of a mixture of dry kaolin and sand to slightly increase cohesion, and a sedimentary cover made by pure dry sand. Inherited fault zones are confined to the basement and coated by a thin veneer of silicone putty. In the experimental programme, the geometry of the left-lateral restraining bend is maintained the same, with a bending angle of 30° of the restraining fault segment. The strike of the inherited fault zones, measured counterclockwise with respect to that of the master strike-slip fault zone outside the restraining bend, was 0°, 30°, and 60° in different experiments, respectively. An end member experiment without inheritance was also run for comparison. Our experimental results show that the angle that the inherited fault zones make with the restraining bend plays a fundamental role in governing the deformation pattern. When structural inheritance is near parallel to the master strike-slip fault zone, synthetic shears form and severely compartmentalize the transpressional pop-up anticline growing on top of the restraining bend. Fault-bounded blocks undergo sinistral escape during transpression. On the other hand, when structural inheritance makes a high angle to the
Effect of materials and manufacturing on the bending stiffness of vaulting poles
Davis, C. L.; Kukureka, S. N.
2012-09-01
The increase in the world record height achieved in pole vaulting can be related to the improved ability of the athletes, in terms of their fitness and technique, and to the change in materials used to construct the pole. For example in 1960 there was a change in vaulting pole construction from bamboo to glass fibre reinforced polymer (GFRP) composites. The lighter GFRP pole enabled the athletes to have a faster run-up, resulting in a greater take-off speed, giving them more kinetic energy to convert into potential energy and hence height. GFRP poles also have a much higher failure stress than bamboo, so the poles were engineered to bend under the load of the athlete, thereby storing elastic strain energy that can be released as the pole straightens, resulting in greater energy efficiency. The bending also allowed athletes to change their vaulting technique from a style that involved the body remaining almost upright during the vault to one where the athlete goes over the bar with their feet upwards. Modern vaulting poles can be made from GFRP and/or carbon fibre reinforced polymer (CFRP) composites. The addition of carbon fibres maintains the mechanical properties of the pole, but allows a reduction in the weight. The number and arrangement of the fibres determines the mechanical properties, in particular the bending stiffness. Vaulting poles are also designed for an individual athlete to take into account each athlete’s ability and physical characteristics. The poles are rated by ‘weight’ to allow athletes to select an appropriate pole for their ability. This paper will review the development of vaulting poles and the requirements to maximize performance. The properties (bending stiffness and pre-bend) and microstructure (fibre volume fraction and lay-up) of typical vaulting poles will be discussed. Originally published as Davis C L and Kukureka S N (2004) Effect of materials and manufacturing on the bending stiffness of vaulting poles The Engineering of
Simulation analysis of minimum bending radius for lead frame copper alloys
Su, Juanhua; Shuguo, Jia; Fengzhang, Ren
2013-01-01
Copper alloy has a lot of excellent properties, so it becomes an important alloy for lead frame materials for the integrated circuit. The minimum bending radius of three different copper alloys (Cu-Fe-P, Cu-Ni-Si, Cu-Cr-Sn-Zn) for lead frame materials was analyzed by using finite element. Tensile tests for the three kinds of materials were done to obtain yield stress, ultimate strength and other parameters. The strain-hardening exponent n and normal anisotropy index r of the materials were ob...
Behaviour of cracked branch pipes subjected to out of plane bending
International Nuclear Information System (INIS)
This article presents the results of a test campaign on the behavior of cracked branch pipes subjected to increasing out of plane bending. The test series was conducted to investigate the influence of a weld or an internal pressure on the global comportment of the structure (maximum load or excessive strain load) or crack tear initiation loading. To supplement the test results, a numerical analysis was performed to simulate phenomena observed and to calculate the stresses around the junction. Experimental comparison between the tests and a numerical analysis on the comportment of the branch pipe without crack are presented. (orig.)
Light-induced nonhomogeneity and gradient bending in photochromic liquid crystal elastomers
Institute of Scientific and Technical Information of China (English)
JIN; Lihua; JIANG; Xin; HUO; Yongzhong
2006-01-01
The recently reported opto-mechanical effect of some photochromic liquid crystal elastomers (LCEs) is studied. It is found that in such LCEs, material parameters such as the Young's modulus and the stress-free strains will become nonhomogeneous Analytical expressions for the dependence of the material parameters on the space variable and possibly on the time variable are obtained. Exponential dependence can be derived under certain approximations. As an example, the light-induced bending of a beam is studied. Two neutral planes are found in the beam. Thus, along the thickness of the beam,there are extensions in the upper and lower parts and contractions in the middle.
Stress Analysis and Fracture in Nanolaminate Composites
Chamis, Christos C.
2008-01-01
A stress analysis is performed on a nanolaminate subjected to bending. A composite mechanics computer code that is based on constituent properties and nanoelement formulation is used to evaluate the nanolaminate stresses. The results indicate that the computer code is sufficient for the analysis. The results also show that when a stress concentration is present, the nanolaminate stresses exceed their corresponding matrix-dominated strengths and the nanofiber fracture strength.
Response of Flexible Risers in Bend Stiffener Area
Løseth, Kim
2011-01-01
Flexible risers is a vital part of a floating production system (FPS). In order to predict the riser life time, many procedure may be applied. In this thesis it is assumed that the pipe could be represented with help of performing two sets of global anlayis. Where in the first set it is assumed that the bending stiffness of the pipe is similar to the stick region of the flexible pipe and in the second part the bending stiffness it is assumed a bending stiffness similar to the slip regime of t...
Response of Flexible Risers in Bend Stiffener Area
Løseth, Kim
2011-01-01
Flexible risers is a vital part of a floating production system (FPS). In order to predict the riser life time, many procedure may be applied.In this thesis it is assumed that the pipe could be represented with help of performing two sets of global anlayis. Where in the first set it is assumed that the bending stiffness of the pipe is similar to the stick region of the flexible pipe and in the second part the bending stiffness it is assumed a bending stiffness similar to the slip regime of th...
Buffers Affect the Bending Rigidity of Model Lipid Membranes
DEFF Research Database (Denmark)
Bouvrais, H.; Duelund, L.; Ipsen, J. H.
2014-01-01
In biophysical and biochemical studies of lipid bilayers the influence of the used buffer is often ignored or assumed to be negligible on membrane structure, elasticity, or physical properties. However, we here present experimental evidence, through bending rigidity measurements performed on giant...... vesicles, of a more complex behavior, where the buffering molecules may considerably affect the bending rigidity of phosphatidylcholine bilayers. Furthermore, a synergistic effect on the bending modulus is observed in the presence of both salt and buffer molecules, which serves as a warning...... to experimentalists in the data interpretation of their studies, since typical lipid bilayer studies contain buffer and ion molecules....
Investigation of ion induced bending mechanism for nanostructures
International Nuclear Information System (INIS)
Ion induced bending is a promising controlled technique for manipulating nanoscale structures. However, the underlying mechanism of the process is not well understood. In this letter, we report a detailed study of the bending mechanism of Si nanowires (NWs) under Ga+ irradiation. The microstructural changes in the NW due to ion beam irradiation are studied and molecular dynamics simulations are used to explore the ion–NW interaction processes. The simulation results are compared with the microstructural studies of the NW. The investigations inform a generic understanding of the bending process in crystalline materials, which we suggest to be feasible as a versatile manipulation and integration technique in nanotechnology. (paper)
Bends in nanotubes allow electric spin control and coupling
DEFF Research Database (Denmark)
Flensberg, Karsten; Marcus, Charles Masamed
2010-01-01
We investigate combined effects of spin-orbit coupling and magnetic field in carbon nanotubes containing one or more bends along their length. We show how bends can be used to provide electrical control of confined spins, while spins confined in straight segments remain insensitive to electric...... fields. Device geometries that allow general rotation of single spins are presented and analyzed. In addition, capacitive coupling along bends provides coherent spin-spin interaction, including between otherwise disconnected nanotubes, completing a universal set of one- and two-qubit gates....
Hamiltonian system for orthotropic plate bending based on analogy theory
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on analogy between plane elasticity and plate bending as well as variational principles of mixed energy, Hamiltonian system is further led to orthotropic plate bending problems in this paper. Thus many effective methods of mathematical physics such as separation of variables and eigenfunction expansion can be employed in orthotropic plate bending problems as they are used in plane elasticity. Analytical solutions of rectangular plate are presented directly, which expands the range of analytical solutions. There is an essential distinction between this method and traditional semi-inverse method. Numerical results of orthotropic plate with two lateral sides fixed are included to demonstrate the effectiveness and accuracy of this method.
Localized bending fatigue behavior of high-strength steel monostrands
DEFF Research Database (Denmark)
Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.
2012-01-01
strain distribution in the strand and helps in identifying potential failure mechanisms along the strand and at the wedge location. Initial analysis of the deformations shows that the bending fatigue behavior of the monostrand may be controlled either by local bending deformations or by relative......In this paper, the localized bending fatigue behavior of pretensioned high strength steel monostrands is investigated. Furthermore, a new methodology using an optical photogrammetry system, which can quantify surface deformations on the strand is presented. The system allows measurement of the...
Directory of Open Access Journals (Sweden)
BOUROUIS FAIROUZ
2012-04-01
Full Text Available Sandwich beams loaded in three points bending may fail in several ways including tension or compression failure of facings. In this paper , The effect of the transverse shear on the face yielding and face wrinkling failure modes of sandwich beams loaded in three points bending have been studied, the beams were made of various composites materials carbon/epoxy, kevlar/epoxy, glass/epoxy at sequence [+θ/-θ]3s, [0°/90°]3s. . The stresses in the face were calculated using maximum stress criterion and the simple beam theory. The obtained different results show that the sandwich beams with carbon/epoxy, and glass/epoxy face sheets are the best materials, inreturn the kevlar /epoxy facing characterised by low resistance of transverse shear in compression and tensile.
Microelectromechanical systems contact stress sensor
Kotovsky, Jack
2007-12-25
A microelectromechanical systems stress sensor comprising a microelectromechanical systems silicon body. A recess is formed in the silicon body. A silicon element extends into the recess. The silicon element has limited freedom of movement within the recess. An electrical circuit in the silicon element includes a piezoresistor material that allows for sensing changes in resistance that is proportional to bending of the silicon element.
Advantages of customer/supplier involvement in the upgrade of River Bend`s IST program
Energy Technology Data Exchange (ETDEWEB)
Womack, R.L.; Addison, J.A.
1996-12-01
At River Bend Station, IST testing had problems. Operations could not perform the test with the required repeatability; engineering could not reliably trend test data to detect degradation; licensing was heavily burdened with regulatory concerns; and maintenance could not do preventative maintenance because of poor prediction of system health status. Using Energy`s Total Quality principles, it was determined that the causes were: lack of ownership, inadequate test equipment usage, lack of adequate procedures, and lack of program maintenance. After identifying the customers and suppliers of the IST program data, Energy management put together an upgrade team to address these concerns. These customers and suppliers made up the IST upgrade team. The team`s mission was to supply River Bend with a reliable, functional, industry correct and user friendly IST program. The IST program in place went through a verification process that identified and corrected over 400 individual program discrepancies. Over 200 components were identified for improved testing methods. An IST basis document was developed. The operations department was trained on ASME Section XI testing. All IST tests have been simplified and shortened, due to heavy involvement by operations in the procedure development process. This significantly reduced testing time, resulting in lower cost, less dose and greater system availability.
Xing, Libo; Zhang, Dong; Zhao, Caiping; Li, Youmei; Ma, Juanjuan; An, Na; Han, Mingyu
2016-02-01
Flower induction in apple (Malus domestica Borkh.) trees plays an important life cycle role, but young trees produce fewer and inferior quality flower buds. Therefore, shoot bending has become an important cultural practice, significantly promoting the capacity to develop more flower buds during the growing seasons. Additionally, microRNAs (miRNAs) play essential roles in plant growth, flower induction and stress responses. In this study, we identified miRNAs potentially involved in the regulation of bud growth, and flower induction and development, as well as in the response to shoot bending. Of the 195 miRNAs identified, 137 were novel miRNAs. The miRNA expression profiles revealed that the expression levels of 68 and 27 known miRNAs were down-regulated and up-regulated, respectively, in response to shoot bending, and that the 31 differentially expressed novel miRNAs between them formed five major clusters. Additionally, a complex regulatory network associated with auxin, cytokinin, abscisic acid (ABA) and gibberellic acid (GA) plays important roles in cell division, bud growth and flower induction, in which related miRNAs and targets mediated regulation. Among them, miR396, 160, 393, and their targets associated with AUX, miR159, 319, 164, and their targets associated with ABA and GA, and flowering-related miRNAs and genes, regulate bud growth and flower bud formation in response to shoot bending. Meanwhile, the flowering genes had significantly higher expression levels during shoot bending, suggesting that they are involved in this regulatory process. This study provides a framework for the future analysis of miRNAs associated with multiple hormones and their roles in the regulation of bud growth, and flower induction and formation in response to shoot bending in apple trees.
Investigation of meso-failure behaviors of Jinping marble using SEM with bending loading system
Directory of Open Access Journals (Sweden)
Jianping Zuo
2015-10-01
Full Text Available In this study, the meso-failure mechanism and fracture surface of Jinping marble were investigated by means of scanning electron microscope (SEM with bending loading system and laser-scanner equipment. The Yantang and Baishan marbles specimens from Jinping II hydropower station were used. Test results show that the fracture toughness and mechanical behaviors of Yantang marble were basically higher than those of Baishan marble. This is mainly due to the fact that Baishan marble contains a large percentage of dolomite and minor mica. Crack propagation path and fracture morphology indicated that the direction of tensile stress has a significant effect on the mechanical behaviors and fracture toughness of Baishan marble. For Yantang and Baishan marbles, a large number of microcracks around the main crack tip were observed when the direction of tensile stress was parallel to the bedding plane. Conversely, few microcracks occurred when the direction of tensile stress was perpendicular to the bedding plane. The presence of a large number of microcracks at the main crack tip decreased the global fracture toughness of marble. The results of three-point bending tests showed that the average bearing capacity of intact marble is 3.4 times the notched marble, but the ductility property of the defective marble after peak load is better than that of the intact marble. Hence, large deformation may be generated before failure of intact marbles at Jinping II hydropower station. The fractal dimension of fracture surface was also calculated by the cube covering method. Observational result showed that the largest fractal dimension of Yantang marble is captured when the direction of tensile stress is parallel to the bedding plane. However, the fractal dimension of fracture surface of Yantang and Baishan marbles with tensile stress vertical to the bedding plane is relatively small. The fractal dimension can also be used to characterize the roughness of fracture
Investigation of meso-failure behaviors of Jinping marble using SEM with bending loading system
Institute of Scientific and Technical Information of China (English)
Jianping Zuo; Xu Wei; Jianliang Pei; Xiaoping Zhao
2015-01-01
In this study, the meso-failure mechanism and fracture surface of Jinping marble were investigated by means of scanning electron microscope (SEM) with bending loading system and laser-scanner equip-ment. The Yantang and Baishan marbles specimens from Jinping II hydropower station were used. Test results show that the fracture toughness and mechanical behaviors of Yantang marble were basically higher than those of Baishan marble. This is mainly due to the fact that Baishan marble contains a large percentage of dolomite and minor mica. Crack propagation path and fracture morphology indicated that the direction of tensile stress has a significant effect on the mechanical behaviors and fracture toughness of Baishan marble. For Yantang and Baishan marbles, a large number of microcracks around the main crack tip were observed when the direction of tensile stress was parallel to the bedding plane. Conversely, few microcracks occurred when the direction of tensile stress was perpendicular to the bedding plane. The presence of a large number of microcracks at the main crack tip decreased the global fracture toughness of marble. The results of three-point bending tests showed that the average bearing capacity of intact marble is 3.4 times the notched marble, but the ductility property of the defective marble after peak load is better than that of the intact marble. Hence, large deformation may be generated before failure of intact marbles at Jinping II hydropower station. The fractal dimension of fracture surface was also calculated by the cube covering method. Observational result showed that the largest fractal dimension of Yantang marble is captured when the direction of tensile stress is parallel to the bedding plane. However, the fractal dimension of fracture surface of Yantang and Baishan marbles with tensile stress vertical to the bedding plane is relatively small. The fractal dimension can also be used to characterize the roughness of fracture surface of rock
NUMERICAL INVESTIGATION ON FLOW CHARACTERISTICS IN RIBBED BEND
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Previous research［1］by the author has proved that ribbed bend technology is a simple and efficient anti-erosion method. The present paper is a further study to unveil the mechanism of the technology by using numerical method. The flow characteristics in ribbed bend were studied. A k-ε turbulence model was used and the simulations were carried out in the body-fitted coordinates. This procedure was confirmed to be credible by showing the satisfactory agreement between the predications and experimental results. It is concluded that the character of the longitudinal flow in ribbed bend especially in the concave parts between ribs has a beneficial effect on increasing the anti-erosion ability of ribbed bend but the secondary flow will have little effect on determining the particle trajectory.
Monitoring Composites under Bending Tests with Infrared Thermography
Directory of Open Access Journals (Sweden)
Carosena Meola
2012-01-01
Full Text Available The attention of the present paper is focused on the use of an infrared imaging device to monitor the thermal response of composite materials under cyclic bending. Three types of composites are considered including an epoxy matrix reinforced with either carbon fibres (CFRP or glass fibres (GFRP and a hybrid composite involving glass fibres and aluminium layers (FRML. The specimen surface, under bending, displays temperature variations pursuing the load variations with cooling down under tension and warming up under compression; such temperature variations are in agreement with the bending moment. It has been observed that the amplitude of temperature variations over the specimen surface depends on the material characteristics. In particular, the presence of a defect inside the material affects the temperature distribution with deviation from the usual bending moment trend.
Computational Strategies for the Architectural Design of Bending Active Structures
DEFF Research Database (Denmark)
Tamke, Martin; Nicholas, Paul
2013-01-01
Active bending introduces a new level of integration into the design of architectural structures, and opens up new complexities for the architectural design process. In particular, the introduction of material variation reconfigures the design space. Through the precise specification...... of their stiffness, it is possible to control and pre-calibrate the bending behaviour of a composite element. This material capacity challenges architecture’s existing methods for design, specification and prediction. In this paper, we demonstrate how architects might connect the designed nature of composites...... with the design of bending-active structures, through computational strategies. We report three built structures that develop architecturally oriented design methods for bending-active systems using composite materials. These projects demonstrate the application and limits of the introduction of advanced...
Holla Bend National Wildlife Refuge: Comprehensive Conservation Plan
US Fish and Wildlife Service, Department of the Interior — This Comprehensive Conservation Plan (CCP) was written to guide management on Holla Bend NWR for the next 15 years. This plan outlines the Refuge vision and purpose...
Preliminary Project Investigation : Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This report covers the proposed expansion of Holla Bend National Wildlife Refuge to increase the quantity and quality of wintering habitat primarily for mallards...
1984 Deer Harvest Summary for Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This memo summarizes the 1984 deer harvest for Holla Bend National Wildlife Refuge. Tables summarize numerical findings, including bucks, does, and points.
Fishery Manangement Plan : Holla Bend National Wildlife Refuge
US Fish and Wildlife Service, Department of the Interior — This plan describes fishery management for Holla Bend National Wildlife Refuge in 1990. The plan outlines goals, objectives for fishery management for the benefit...
Institute of Scientific and Technical Information of China (English)
黄家寅
2004-01-01
Under the case of ignoring the body forces and considering components caused by diversion of membrane in vertical direction ( z-direction ), the constitutive equations of the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with variable thickness are given; then introducing the dimensionless variables and three small parameters, the dimensionaless governing equations of the deflection function and stress function are given.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
A numerical model is developed in this paper to calculate the bending moments of flexural members through integration in 3D solid finite element analyses according to the nonlinear constitutive model of concrete and the elastoplastic constitutive model of steel,utilizing the stress condition of the cross-section,considering the destruction characteristic of reinforced concrete members,and based on the plane cross-section assumption.The results of this model give good agreement with those of the classical me...
Energy Technology Data Exchange (ETDEWEB)
Rozumek, D.; Macha, E. [Opole University of Technology, Department of Mechanics and Machine Design, Opole (Poland)
2009-10-15
The paper presents the results of tests on fatigue crack growth under proportional torsion with bending in AlCu4Mg1 aluminium alloy. Specimens with rectangular cross-sections and stress concentrator in the form of external one-sided sharp notch were used. The tests were performed under the different ratios of torsion to bending moments. The results of the experimental tests have been described by a nonlinear formula based on {delta}J-integral range. The tests have shown that the change of ratio of torsion to bending moments from 0.58 to 1.73 caused an increase in crack growth rate. It has been shown that at the constant loading and the change of stress ratio (R) from - 1 to 0, the fatigue crack growth rate also increases. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Theory of bending waves with applications to disk galaxies
International Nuclear Information System (INIS)
A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way
Dynamics of fast charged particle beam rotation in bended crystals
International Nuclear Information System (INIS)
Dynamics of fast charged particle beam rotation in a bended monocrystal is considered. Face and volume mechanisms of capture in channels are taken into account simultaneously in the model presented. Functions of distribution in transverse energies (φ) of channeled and dechanneled particles are obtained. Charge-energy ''scale invariance'' in ion channeling with charge Z in a bended crystal determined by scale parameter W=pv/Z (p and v are pulse and velocity local to transverse planes) follows from the model presented
Theory of bending waves with applications to disk galaxies
Energy Technology Data Exchange (ETDEWEB)
Mark, J.W.K.
1982-01-01
A theory of bending waves is surveyed which provides an explanation for the required amplification of the warp in the Milky Way. It also provides for self-generated warps in isolated external galaxies. The shape of observed warps and partly their existence in isolated galaxies are indicative of substantial spheroidal components. The theory also provides a plausible explanation for the bending of the inner disk (<2 kpc) of the Milky Way.
Optimal Orthogonal Graph Drawing with Convex Bend Costs
Bläsius, Thomas; Wagner, Dorothea
2012-01-01
Traditionally, the quality of orthogonal planar drawings is quantified by either the total number of bends, or the maximum number of bends per edge. However, this neglects that in typical applications, edges have varying importance. Moreover, as bend minimization over all planar embeddings is NP-hard, most approaches focus on a fixed planar embedding. We consider the problem OptimalFlexDraw that is defined as follows. Given a planar graph G on n vertices with maximum degree 4 and for each edge e a cost function cost_e : N_0 --> R defining costs depending on the number of bends on e, compute an orthogonal drawing of G of minimum cost. Note that this optimizes over all planar embeddings of the input graphs, and the cost functions allow fine-grained control on the bends of edges. In this generality OptimalFlexDraw is NP-hard. We show that it can be solved efficiently if 1) the cost function of each edge is convex and 2) the first bend on each edge does not cause any cost (which is a condition similar to the posi...
Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Chen, Lei; Li, Ping; Wen, Yu-Mei; Zhu, Yong
2013-07-01
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation, the ME effect is significantly enhanced in the vicinity of resonance frequency. The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied, and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the ΔE effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses. The experimental results show that with Hdc increasing from 0 Oe (1 Oe=79.5775 A/m) to 700 Oe, the bending resonance frequency can be shifted in a range of 32.68 kHz bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz. This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite, which plays a guiding role in the ME composite design for real applications.
Tunable characteristics of bending resonance frequency in magnetoelectric laminated composites
Institute of Scientific and Technical Information of China (English)
Chen Lei; Li Ping; Wen Yu-Mei; Zhu Yong
2013-01-01
As the magnetoelectric (ME) effect in piezoelectric/magnetostrictive laminated composites is mediated by mechanical deformation,the ME effect is significantly enhanced in the vicinity of resonance frequency.The bending resonance frequency (fr) of bilayered Terfenol-D/PZT (MP) laminated composites is studied,and our analysis predicts that (i) the bending resonance frequency of an MP laminated composite can be tuned by an applied dc magnetic bias (Hdc) due to the △E effect; (ii) the bending resonance frequency of the MP laminated composite can be controlled by incorporating FeCuNbSiB layers with different thicknesses.The experimental results show that with Hdc increasing from 0Oe (1 Oe=79.5775 A/m)to 700 Oe,the bending resonance frequency can be shifted in a range of 32.68 kHz ≤ fr ≤ 33.96 kHz.In addition,with the thickness of the FeCuNbSiB layer increasing from 0 μm to 90 μm,the bending resonance frequency of the MP laminated composite gradually increases from 33.66 kHz to 39.18 kHz.This study offers a method of adjusting the strength of dc magnetic bias or the thicknesses of the FeCuNbSiB layer to tune the bending resonance frequency for ME composite,which plays a guiding role in the ME composite design for real applications.
Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells
Nemeth, Michael P.; Smeltzer, Stanley S., III
2000-01-01
A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.
Li, Heng; Yang, He; Zhan, Mei
2010-06-01
Thin-walled tube bending(TWTB) method of Al-alloy tube has attracted wide applications in aerospace, aviation and automobile,etc. While, under in-plane double tensile stress states at the extrados of bending tube, the over-thinning induced ductile fracture is one dominant defect in Al-alloy tube bending. The main objective of this study is to predict the critical wall-thinning of Al-alloy tube bending by coupling two ductile fracture criteria(DFCs) into FE simulation. The DFCs include Continuum Damage Mechanics(CDM)-based model and GTN porous model. Through the uniaxial tensile test of the curved specimen, the basic material properties of the Al-alloy 5052O tube is obtained; via the inverse problem solution, the damage parameters of both the two fracture criteria are interatively determined. Thus the application study of the above DFCs in the TWTB is performed, and the more reasonable one is selected to obtain the critical thinning of Al-alloy tube in bending. The virtual damage initiation and evolution (when and where the ductile fracture occurs) in TWTB are investigated, and the fracture mechanisms of the voided Al-alloy tube in tube bending are consequently discussed.
Arya, Vinod K.; Halford, Gary R.
1994-01-01
Large-displacement elastic and elastic-plastic, finite-element stress-strain analyses of an oxygen-tree high-conductivity (OFHC) copper plate specimen were performed using an updated Lagrangian formulation. The plate specimen is intended for low-cost experiments that emulate the most important thermomechanical loading and failure modes of a more complex rocket nozzle. The plate, which is loaded in bending at 593 C, contains a centrally located and internally pressurized channel. The cyclic crack initiation lives were estimated using the results from the analyses and isothermal strain-controlled low-cycle fatigue data for OFHC copper. A comparison of the predicted and experimental cyclic lives showed that an elastic analysis predicts a longer cyclic life than that observed in experiments by a factor greater than 4. The results from elastic-plastic analysis for the plate bend specimen, however, predicted a cyclic life in close agreement with experiment, thus justifying the need for the more rigorous stress-strain analysis.
Molecular mechanics of the alpha-actinin rod domain: bending, torsional, and extensional behavior.
Directory of Open Access Journals (Sweden)
Javad Golji
2009-05-01
Full Text Available alpha-Actinin is an actin crosslinking molecule that can serve as a scaffold and maintain dynamic actin filament networks. As a crosslinker in the stressed cytoskeleton, alpha-actinin can retain conformation, function, and strength. alpha-Actinin has an actin binding domain and a calmodulin homology domain separated by a long rod domain. Using molecular dynamics and normal mode analysis, we suggest that the alpha-actinin rod domain has flexible terminal regions which can twist and extend under mechanical stress, yet has a highly rigid interior region stabilized by aromatic packing within each spectrin repeat, by electrostatic interactions between the spectrin repeats, and by strong salt bridges between its two anti-parallel monomers. By exploring the natural vibrations of the alpha-actinin rod domain and by conducting bending molecular dynamics simulations we also predict that bending of the rod domain is possible with minimal force. We introduce computational methods for analyzing the torsional strain of molecules using rotating constraints. Molecular dynamics extension of the alpha-actinin rod is also performed, demonstrating transduction of the unfolding forces across salt bridges to the associated monomer of the alpha-actinin rod domain.
Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires
Carl, Matthew; Zhang, Baozhuo; Young, Marcus L.
2016-07-01
Shape memory alloys (SMAs) are a new generation of materials that exhibit unique nonlinear deformations due to a phase transformation which allows the material to return to its original shape after removal of stress or a change in temperature. These unique properties are the result of a martensitic/austenitic phase transformation through the application of temperature changes or applied stress. Many technological applications of austenitic SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this paper, commercial pseudoelastic NiTi SMA wires (50.7 at.% Ni) were placed under different bending strains and examined using scanning electron microscopy and high-energy synchrotron radiation X-ray diffraction (SR-XRD). By observing the microstructure, phase transformation temperatures, surface texture and diffraction patterns along the wire, it is shown that the wire exhibits a strong anisotropic behavior whether on the tensile or compressive side of the bending axis and that the initiation of micro-cracks in the wires is localized on the compression side, but that crack propagation will still happen if the wire is reloaded in the opposite direction. In addition, lattice strains are examined for both the austenite and martensite phases.
Institute of Scientific and Technical Information of China (English)
Song Cen; Xiangrong Fu; Yuqiu Long; Hongguang Li; Zhenhan Yao
2007-01-01
Recently, some new quadrilateral finite elements were successfully developed by the Quadrilateral Area Coordinate (QAC) method. Compared with those traditional models using isoparametric coordinates, these new models are less sensitive to mesh distortion. In this paper, a new displacement-based, 4-node 20-DOF (5-DOF per node)quadrilateral bending element based on the first-order shear deformation theory for analysis of arbitrary laminated composite plates is presented. Its bending part is based on the element AC-MQ4, a recent-developed high-performance Mindlin-Reissner plate element formulated by QAC method and the generalized conforming condition method; and its in-plane displacement fields are interpolated by bilinear shape functions in isoparametric coordinates. Furthermore,the hybrid post-processing procedure, which was firstly proposed by the authors, is employed again to improve the stress solutions, especially for the transverse shear stresses. The resulting element, denoted as AC-MQ4-LC, exhibits excellent performance in all linear static and dynamic numerical examples. It demonstrates again that the QAC method, the generalized conforming condition method, and the hybrid post-processing procedure are efficient tools for developing simple, effective and reliable finite element models.
The Effect of Composite Patches on the Failure of Adhesively-Bonded Joints Under Bending Moment
Akpinar, Salih
2013-12-01
In this study, it was aimed to compare mechanical behavior of double-strap joints with aluminum (AA2024-T3) or 16-ply laminate of carbon/epoxy composite (T300/934) patches of different orientation angles at their overlap area subjected to bending moment. For this purpose, AA2024-T3 aluminum was used as adherend, while the adhesive was a two-part paste (DP 460). Six different types of joint samples were subjected to bending moment. The effect of patch material on failure load and stress distribution was examined experimentally and numerically. In the numerical analysis, the composite patches were assumed to behave linearly elastic, while adherend and adhesive layers were assumed to be nonlinear. It was found that the data obtained from 3-D finite element analysis were coherent with experimental results. Meanwhile, experiments showed that fiber orientation angles of the patches markedly affected the failure load of joints, failure mode and stress distributions appeared in adhesive and composite.
Elastic and plastic analysis of pipe bends
International Nuclear Information System (INIS)
The analysis of a complete piping system can be performed, in elasticity or plasticity, at a reasonable cost using a global method, but local loads such as thermal gradients across the thickness cannot be accounted for. A special elbow element has been developped, which supplies a full description of the local state of stresses and strains over the cross section of the pipe, while keeping the advantages of a classical beam element. Moreover, it enables an accurate evaluation of the flexibility of the elbow in plasticity or creep
Institute of Scientific and Technical Information of China (English)
黄家寅
2004-01-01
By using "the method of modified two-variable ", "the method of mixing perturbation" and introducing four small parameters, the problem of the nonlinear unsymmetrical bending for orthotropic rectangular thin plate with linear variable thickness is studied. And the uniformly valid asymptotic solution of Nth- order for ε 1 and Mth- order for ε 2of the deflection functions and stress function are obtained.
Local Projection-Based Stabilized Mixed Finite Element Methods for Kirchhoff Plate Bending Problems
Directory of Open Access Journals (Sweden)
Xuehai Huang
2013-01-01
Full Text Available Based on stress-deflection variational formulation, we propose a family of local projection-based stabilized mixed finite element methods for Kirchhoff plate bending problems. According to the error equations, we obtain the error estimates of the approximation to stress tensor in energy norm. And by duality argument, error estimates of the approximation to deflection in H1-norm are achieved. Then we design an a posteriori error estimator which is closely related to the equilibrium equation, constitutive equation, and nonconformity of the finite element spaces. With the help of Zienkiewicz-Guzmán-Neilan element spaces, we prove the reliability of the a posteriori error estimator. And the efficiency of the a posteriori error estimator is proved by standard bubble function argument.
Surface effects on static bending of nanowires based on non-local elasticity theory
Directory of Open Access Journals (Sweden)
Quan Wu
2015-10-01
Full Text Available The surface elasticity and non-local elasticity effects on the elastic behavior of statically bent nanowires are investigated in the present investigation. Explicit solutions are presented to evaluate the surface stress and non-local elasticity effects with various boundary conditions. Compared with the classical Euler beam, a nanowire with surface stress and/or non-local elasticity can be either stiffer or less stiff, depending on the boundary conditions. The concept of surface non-local elasticity was proposed and its physical interpretation discussed to explain the combined effect of surface elasticity and non-local elasticity. The effect of the nanowire size on its elastic bending behavior was investigated. The results obtained herein are helpful to characterize mechanical properties of nanowires and aid nanowire-based devices design.
Institute of Scientific and Technical Information of China (English)
A.M. Zenkour
2011-01-01
The mixed first-order shear deformation plate theory (MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasternak's model or Winkler's model of elastic foundation or without any elastic foundation.Several examples are presented to verify the accuracy of the present theory.Numerical results for deflection and stresses are presented.The proposed MFPT is shown simplely to implement and capable of giving satisfactory results for shear deformable plates under static loads and resting on two-parameter elastic foundation.The results presented here show that the characteristics of deflection and stresses are significantly influenced by the elastic foundation stiffness,plate aspect ratio and side-to-thickness ratio.
Determination of Concrete Fracture Parameters from a Three-Point Bending Test
Institute of Scientific and Technical Information of China (English)
张君; 刘骞
2003-01-01
The mechanical behavior within the processing zone of concrete material can be well described by the crack bridging performance. The material properties related to the crack bridging are cracking strength, tensile strength, and the stress-crack width relationship. In general, the cracking strength is lower than the tensile strength of concrete. Crack propagation is governed by the cracking strength. This paper presents a method to determine the above material parameters from a three-point bending test. In the experiment, a pre-notched beam is used. Corresponding values of load, crack mouth opening displacement, and load point displacement are simultaneously recorded. From experimentally determined load-crack mouth opening displacement curves, the above-mentioned crack bridging parameters are deduced by a numerical procedure. The method can be used to evaluate the influence of coarse aggregate and cementitious matrix strength on the stress-crack width relationship, tensile strength, and fracture energy of concrete.
International Nuclear Information System (INIS)
The German standards KTA 3201.2 and 3201.3 include regulations and requirements for the inductive bending. The given methodology allows an assessment of the inductive bending caused wall thickness increase effects on the global stiffness of the piping system with sufficient accuracy, even in the planning phase. The piping system calculations are performed for straight pipes and for pipe elbows and bends with approximately medium wall thicknesses. For medium size wall thicknesses the mechanical behaviour of piping systems is assessed using a best-estimate approach. In order to compensate for the wall thickness uncertainties - and other influencing factors - and the limited calculation accuracy, the standards require safety factors for allowable stresses within the system structure analyses. Since these safety factors have now influence on the attachment and component terminal loads it is recommended to include safety reserves. For dynamic analyses it is recommended to use a so-called frequency shift that compensates the influence of eigenfrequency deviations. Actually a re-evaluation is performed for implemented inductive bendings of all nuclear power plants
International Nuclear Information System (INIS)
In order to study the protection offered by reinforced concrete shell structures against soft projectiles impacts, we need first to characterize that kind of impact. In this document, we propose a new unified classification of shocks, allowing to distinguish soft and hard impacts. We show that aircraft crash, like every soft impact, produces bending and shear waves, which generate global and local damage: concrete cracking and reinforcement yielding in the whole structure, and possible perforation with a yield cone in the impact area. To model these phenomena we propose two computational tools. The first one is a membrane-bending non linear constitutive law for reinforced concrete slabs. This global model, using resultant variables, can simulate concrete cracking through damage theory and inelastic strains through plasticity theory. The Johansen bending yield criterion is improved to account for membrane effects. This material law has been implemented in Europlexus, an industrial finite element software for fast dynamics, and validated by comparison with experimental tests and other computational models. The second simulation tool is a perforation criterion for reinforced concrete slabs. It is a static criterion depending on bending moment, normal force, and shear force, and derived using limit analysis. We prove that it is possible to predict perforation in case of soft impact, applying this criterion on stress resultant variables coming from a dynamic computation. (author)
Impact of Road Bends on Traffic Flow in a Single-Lane Traffic System
Directory of Open Access Journals (Sweden)
Zeng Junwei
2014-01-01
Full Text Available Taking the characteristics of road bends as a research object, this work proposes the cellular model (CA with road bends based on the NaSch model, with which the traffic flow is examined under different conditions, such as bend radius, bend arc length, and road friction coefficiency. The simulation results show that, with the increase of the bend radius, the peak flow will be continuously increased, and the fundamental diagram will become more similar to that of the classic NaSch model; the smaller the bend radius is, the easier it is for the occurrence of blockage; for different bend lengths, all the corresponding traffic flows show that the phenomenon of go-and-stop and the bends exert slight inhibitory effect on traffic flow; under the same bend radius, the inhibition effect of the bends on the traffic flow will be weakened with the increase of the friction coefficiency.
Advances and Trends on Tube Bending Forming Technologies
Institute of Scientific and Technical Information of China (English)
YANG He; LI Heng; ZHANG Zhiyong; ZHAN Mei; LIU Jing; LI Guangjun
2012-01-01
As one kind of key components with enormous quantities and diversities,the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspects.The bent tubes have been widely used in many high-end industries such as aviation,aerospaee,shipbuilding,automobile,energy and health care.The tube bending has become one of the key manufacturing technologies for lightweight product forming.Via the analysis of bending characteristics and multiple defects,advances on exploring the common issues in tube bending are summarized regarding wrinkling instability at the intrados,wall thinning (cracking) at the extrados,springback phenomenon,cross-section deformation,forming limit and process/tooling design/optimization.Some currently developed bending techniques are reviewed in terms of their advantages and limitations.Finally,in view of the urgent requirements of high-performance complex bent tube components with difficult-to-deform and lightweight materials in aviation and aerospace fields,the development trends and corresponding challenges are presented for realizing the precise and high-efficiency tube bending deformation.
Temperature Induced Instabilities in Macro-bend Fiber Based Wavelength Measurement Systems
Rajan, Ginu; Semenova, Yuliya; Wang, Pengfei; Farrell, Gerald
2009-01-01
An investigation of temperature-induced instabilities in a wavelength measurement system based on macro-bend fiber filter used in the ratiometric scheme are presented. Two wavelength measurement systems based on macro-bend fiber, a standard low bend loss single-mode fiber filter based system and a high bend loss fiber filter based system are considered. In the case of a low bend loss fiber filter based system, the oscillatory variation in the ratio response with temperature and the difference...
Amiri, Ali
Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about
Segmental Bridges under Combined Torsion, Bending and Shear
Institute of Scientific and Technical Information of China (English)
黄真; 刘西拉
2003-01-01
Segmental bridges with unbonded prestressed tendons have some advantages, such as the weather independence and the corrosion protection of prestressing tendons. This paper analyzed the behavior of a prestressed segmental bridge with unbonded tendons under combined loading of torsion, bending and shear. According to the experiment research, a modified skew bending model was developed to calculate the bearing capacity of segmental bridges subjected to combined bending, shear and torsion. The finite element method was used to investigate the deflection behaviors of such structure, also to check the theoretical model. The theoretical and FEM research resuits were compared favorably with the test results from Technical University of Braunschweig, Germany. Finally, suggestion for the design and construction of segmental bridges with external prestressing was made.
Flow resistance of ice slurry in bends and elbow pipes
Niezgoda-Żelasko, B.; Żelasko, J.
2014-08-01
The present paper covers the flow of ice slurry made of a 10.6% ethanol solution through small-radius bends and elbow pipes. The paper presents the results of experimental research on the flow resistances of Bingham-fluid ice slurry in bends and elbows. The research, performed for three pipe diameters and a relative bend radius of 1<=D/di<=2, has made it possible to take into consideration the influence of friction resistances as well the of the flow geometry on the total local resistance coefficients. The study attempts to make the local resistance coefficient dependent on the Dean number defined for a generalized Reynolds number according to Metzner-Reade
Strain localization and damage development in 2060 alloy during bending
Institute of Scientific and Technical Information of China (English)
Xiao Jin; Bao-qin Fu; Cheng-lu Zhang; Wei Liu
2015-01-01
The microstructure evolution and damage development of the third-generation Al–Li alloy 2060 (T8) were studied using in situ bending tests. Specimens were loaded with a series of punches of different radii, and the microstructure evolution was studied by scanning electron microscopy, electron backscatter diffraction, and digital image correlation (DIC) methods. The evolution of the microscopic fracture strain distribution and microstructure in 2060 alloy during bending was characterized, where the dispersion distribution of precipitates was recorded by backscattered electron imaging and later inputted into a DIC system for strain calculations. The experimental results showed that strain localization in the free surface of bent specimens induced damage to the microstructure. The region of crack initiation lies on the free surface with maximum strain, and the shear crack propagates along the macro-shear band in the early stages of bending. Crack propagation in the later stages was interpreted on the basis of the conventional mechanism of ductile fracture.
Bend-twist coupling potential of wind turbine blades
DEFF Research Database (Denmark)
Fedorov, Vladimir; Berggreen, Christian
2014-01-01
and tested on small-scale coupled composite beams. In the proposed method the coupling coefficient for a generic beam is introduced based on the Euler-Bernoulli beam formulation. By applying the developed method for analysis of a commercial wind turbine blade structure it is demonstrated that a bend......In the present study an evaluation of the potential for bend-twist coupling effects in wind turbine blades is addressed. A method for evaluation of the coupling magnitude based on the results of finite element modeling and full-field displacement measurements obtained by experiments is developed......-twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...
Platonic scattering cancellation for bending waves in a thin plate
Farhat, M.
2014-04-10
We propose an ultra-thin elastic cloak to control the scattering of bending waves in isotropic heterogeneous thin plates. The cloak design makes use of the scattering cancellation technique applied, for the first time, to the biharmonic operator describing the propagation of bending waves in thin plates. We first analyze scattering from hard and soft cylindrical objects in the quasistatic limit, then we prove that the scattering of bending waves from an object in the near and far-field regions can be suppressed significantly by covering it with a suitably designed coating. Beyond camouflaging, these findings may have potential applications in protection of buildings from earthquakes and isolating structures from vibrations in the motor vehicle industry.
Doraiswamy, Srikrishna; Rao, Ashwin; Srinivasa, A. R.
2013-04-01
Modeling superelastic behavior of shape memory alloys (SMA) has received considerable attention due to SMAs ability to recover large strains with associated loading{unloading hysteresis enabling them to find many applications. In this work, a simple mechanics of materials modeling approach for simulating superelastic responses of SMA components under tension and bending loading conditions is developed. Following Doraiswamy, Rao and Srinivasa's1 approach, the key idea here would be in separating the thermoelastic and the dissipative part of the hysteretic response with a Gibbs potential based formulation which includes both thermal and mechanical loading in the same framework. The dissipative part is then handled by a discrete Preisach model. The model is formulated directly using tensile stress{strain or bending moment{curvature rather than solving for non-homogeneous stress and strains across the specimen cross-sections and then integrating the same especially for bending loading conditions. The model is capable of simulating complex superelastic responses with multiple internal loops and provides an improved treatment for temperature dependence associated with superelastic responses. The model results are verified with experimental results on SMA components like wires and beams at different temperatures.
Directory of Open Access Journals (Sweden)
Prof. R. G. Desavale , A. M. Patil
2013-10-01
Full Text Available The problem of torsional vibration of the crankshaft of high-speed diesel engine has become critical with increase in excitation forces. This results in high torsional vibration amplitudes and hence high stresses the paper aims at complete FEM analysis of a crankshaft for torsional and bending vibrations, identification of stresses. It is analyzed for natural frequency, rigid body mode shape by ANSYS and Holzer method. The complete simulation of actual boundary conditions is done for journal bearing support, inertia lumping for reciprocating parts and bearing stiffness. Customized code is developed in ANSYS-Macros, which will convert user input Pressure-Crank angle variation to excitation forces for various orders through FFT. The dynamic responses obtained for displacement and stresses. Finally all results are combined to obtain the variation of Fillet Stress as a function of engine speed and harmonic orders. The critical dynamic response is compared with results obtained experimentally for torsional amplitudes.
Bending of light in modified gravity at large distances
Sultana, Joseph; Kazanas, Demosthenes
2012-04-01
We discuss the bending of light in a recent model for gravity at large distances containing a Rindler-type acceleration proposed by Grumiller [Phys. Rev. Lett. 105, 211303 (2010)10.1103/PhysRevLett.105.211303PRLTAO0031-9007]. We consider the static, spherically symmetric metric with cosmological constant Λ and Rindler-like term 2ar presented in this model, and we use the procedure by Rindler and Ishak [W. Rindler and M. Ishak, Phys. Rev. DPRVDAQ1550-7998 76, 043006 (2007).10.1103/PhysRevD.76.043006] to obtain the bending angle of light in this metric. Earlier work on light bending in this model by Carloni, Grumiller, and Preis [Phys. Rev. DPRVDAQ1550-7998 83, 124024 (2011)10.1103/PhysRevD.83.124024], using the method normally employed for asymptotically flat space-times, led to a conflicting result (caused by the Rindler-like term in the metric) of a bending angle that increases with the distance of closest approach r0 of the light ray from the centrally concentrated spherically symmetric matter distribution. However, when using the alternative approach for light bending in nonasymptotically flat space-times, we show that the linear Rindler-like term produces a small correction to the general relativistic result that is inversely proportional to r0. This will in turn affect the bounds on Rindler acceleration obtained earlier from light bending and casts doubts on the nature of the linear term 2ar in the metric.
High-temperature relaxation of stresses in Mo, W monocrystals and Mo-3 wt. % Nb alloy
International Nuclear Information System (INIS)
Stress relaxation tests are carried out by the method of three-point bending at 1246P installation within the temperature range of 1270-1870 K at the initial stresses not exceeding 80% of the relative bending yield strength. It is established that the logarithmic law of stress relaxation is realized for the studied materials. Values of the activation energy in the relaxation process are determined. Sliding of screw dislocations with steps is a mechanism controlling the relaxation
Bruce NGS B U-bend support stabilization
International Nuclear Information System (INIS)
The steam generators at Bruce NGS B have experienced a degree of tube fretting at the U-bend scalloped bar support locations. Investigation attributed the tube fretting to flow induced vibration induced wear as a result of U-bend supports which were too widely spaced (compared to current criteria), and insufficiently rigid. The paper describes the problem, the development of a stabilization configuration, its qualification, its installation tooling and procedures, and the installation of the initial trial assemblies. 4 refs., 9 figs
On the global ship hull bending energy in ship collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Li, Yujie
2009-01-01
of the struck ship hull during ship–ship collisions. The striking ship is still considered as a rigid body. The local interaction between the two ships is modeled by a linear load–deflection relation. The analysis results for a simplified model of a struck coaster and of a large tanker show that the elastic...... is confined to the impact location and where local and global bending vibration modes are neglected. That is, the structural deformation problem is considered quasi-static. In this paper a simple uniform free–free beam model is presented for estimating the energy transported into the global bending vibrations...
On the Global Ship Hull Bending Energy in Ship Collisions
DEFF Research Database (Denmark)
Pedersen, Preben Terndrup; Li, Y.
2004-01-01
ship hull during ship-ship collisions. The striking ship is still considered as a rigid body. The local interaction between the two ships is modeled by a linear load-deflection relation. The analysis results for a simplified model of a struck coaster and of a large tanker show that the elastic energy...... to the impact location and where local and global bending vibration modes are neglected. That is, the structural deformation problem is considered quasi-static. In this paper a simple uniform free-free beam model is presented for estimating the energy transported into the global bending vibrations of the struck...
Nonstandard bending mechanism in Bi2Te3 single crystals
International Nuclear Information System (INIS)
Nonstandard bending mechanism for layered Bi2Te3 single crystals is studied by their three-point loading in the direction perpendicular to the cleavage planes (0001). It is shown that the Bi2Te3 sample under the influence of external load acquires complex internal substructure analogous to the known mechanism two-dimensional plane-parallel spring-actuated suspension. Change in form of the sample bend from the V-type regular one for monolithic solid bodies to the Ω-type nonstandard from. 7 refs.; 5 figs
Four point bending setup for characterization of semiconductor piezoresistance
DEFF Research Database (Denmark)
Richter, Jacob; Arnoldus, Morten Berg; Hansen, Ole;
2008-01-01
We present a four point bending setup suitable for high precision characterization of piezoresistance in semiconductors. The compact setup has a total size of 635 cm3. Thermal stability is ensured by an aluminum housing wherein the actual four point bending fixture is located. The four point...... characterization. As a proof of concept, we show measurements of the piezocoefficient pi44 in p-type silicon at three different doping concentrations in the temperature range from T=30 °C to T=80 °C. The extracted piezocoefficients are determined with an uncertainty of 1.8%. ©2008 American Institute of Physics...
Quasimolecular Dynamic Simulation for Bending Fracture of Laminar Composite Materials
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Recently, quasimolecular dynamics has been successfully used to simulate the deformation characteristics of actual size solid materials. In quasimolecular dynamics, which is an attempt to bridge the gap between atomistic and continuum simulations, molecules are aggregated into large units, called quasimolecules, to evaluate large scale material behavior. In this paper, a 2-dimensional numerical simulation using quasimolecular dynamics was performed to investigate laminar composite material fractures and crack propagation behavior in the uniform bending of laminar composite materials. It was verified that under bending deformation laminar composite materials deform quite differently from homogeneous materials
Solution structure of an A-tract DNA bend.
MacDonald, D; Herbert, K; Zhang, X; Pologruto, T; Lu, P; Polgruto, T
2001-03-01
The solution structure of a DNA dodecamer d(GGCAAAAAACGG)/d(CCGTTTTTTGCC) containing an A-tract has been determined by NMR spectroscopy with residual dipolar couplings. The structure shows an overall helix axis bend of 19 degrees in a geometry consistent with solution and gel electrophoresis experiments. Fourteen degrees of the bending occurs in the GC regions flanking the A-tract. The remaining 5 degrees is spread evenly over its six AT base-pairs. The A-tract is characterized by decreasing minor groove width from the 5' to the 3' direction along the A strand. This is a result of propeller twist in the AT pairs and the increasing negative inclination of the adenine bases at the 3' side of the run of adenine bases. The four central thymine bases all have negative inclination throughout the A-tract with an average value of -6.1 degrees. Although this negative inclination makes the geometry of the A-tract different from all X-ray structures, the proton on N6 of adenine and the O4 of thymine one step down the helix are within distance to form bifurcated hydrogen bonds. The 5' bend of 4 degrees occurs at the junction between the GC flank and the A-tract through a combination of tilt and roll. The larger 3' bend, 10 degrees, occurs in two base steps: the first composed of tilt, -4.1 degrees, and the second a combination of tilt, -4.2 degrees, and roll, 6.0 degrees. This second step is a direct consequence of the change in inclination between an adjacent cytosine base, which has an inclination of -12 degrees, and the next base, a guanine, which has 3 degrees inclination. This bend is a combination of tilt and roll. The large change in inclination allows the formation of a hydrogen bond between the protons of N4 of the 3' cytosine and the O6 of the next 3' base, a guanine, stabilizing the roll component in the bend. These structural features differ from existing models for A-tract bends.For comparison, we also determined the structure of the control sequence, d
Ballistic thermoelectric properties in double-bend graphene nanoribbons
International Nuclear Information System (INIS)
Ballistic thermoelectric properties in double-bend graphene nanoribbons (GNRs) are investigated by using the nonequilibrium Green's function. We find that due to the elastic scattering caused by the interface mismatching, the thermal conductance contributed by phonons is greatly reduced, while ballistic transport behaviors for electrons are dramatically demolished, and even some gaps can be opened at antiresonance energies. Near these antiresonance gaps, the maximum value of ZT (ZTmax) can be observed, much larger than that for straight GNRs. Moreover, this ZTmax can be effectively tuned by modulating the length or width of double-bend GNRs.
Bending of solitons in weak and slowly varying inhomogeneous plasma
Energy Technology Data Exchange (ETDEWEB)
Mukherjee, Abhik, E-mail: abhik.mukherjee@saha.ac.in; Janaki, M. S., E-mail: ms.janaki@saha.ac.in; Kundu, Anjan, E-mail: anjan.kundu@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata-700064 (India)
2015-12-15
The bending of solitons in two dimensional plane is presented in the presence of weak and slowly varying inhomogeneous ion density for the propagation of ion acoustic soliton in unmagnetized cold plasma with isothermal electrons. Using reductive perturbation technique, a modified Kadomtsev-Petviashvili equation is obtained with a chosen unperturbed ion density profile. The exact solution of the equation shows that the phase of the solitary wave gets modified by a function related to the unperturbed inhomogeneous ion density causing the soliton to bend in the two dimensional plane, while the amplitude of the soliton remains constant.
Analysis of Variscan dynamics; early bending of the Cantabria-Asturias Arc, northern Spain
Kollmeier, J. M.; van der Pluijm, B. A.; Van der Voo, R.
2000-08-01
Calcite twinning analysis in the Cantabria-Asturias Arc (CAA) of northern Spain provides a basis for evaluating conditions of Variscan stress and constrains the arc's structural evolution. Twinning typically occurs during earliest layer-parallel shortening, offering the ability to define early conditions of regional stress. Results from the Somiedo-Correcilla region are of two kinds: early maximum compressive stress oriented layer-parallel and at high angles to bedding strike (D1 σ1) and later twin producing compression oriented sub-parallel to strike (D2 σ1). When all D1 compressions are rotated into a uniform east-west reference orientation, a quite linear, north-south trending fold-thrust belt results showing a slight deflection of the southern zone to the south-southeast. North-south-directed D2 σ1 compression was recorded prior to bending of the belt. Calcite twinning data elucidate earliest structural conditions that could not be obtained by other means, whereas the kinematics of arc tightening during D2 is constrained by paleomagnetism. A large and perhaps protracted D2 σ1 is suggested by our results, as manifested by approximately 50% arc tightening prior to acquisition of paleomagnetic remagnetizations throughout the CAA. Early east-west compression (D1 σ1) likely resulted from the Ebro-Aquitaine massif docking to Laurussia whereas the north-directed collision of Africa (D2 σ1) produced clockwise bending in the northern zone, radial folding in the hinge, and rotation of thrusts in the southern zone.
ELASTIC-PLASTIC TRANSVERSE BENDING OF A ROD DURING LIMITED PLASTIC DEFORMATION
Directory of Open Access Journals (Sweden)
S.V.Bakushev
2015-02-01
Full Text Available Issue No1(25,2015ISSN 2075-081175UDC539.373Penza State University of Architecture and ConstructionD.Sc.in Engineering, Prof. of Dept. of Mechanics S.V.BakushevRussia, Penza, tel.: (841248-27-37;e-mail: tim-graf_penza@rambler.ruS.V.BakushevELASTIC-PLASTIC TRANSVERSE BENDING OF A ROD DURING LIMITED PLASTIC DEFORMATIONStatement of the problem. Theproblem of calculating bending of a rod in the state of flat trans-verse elastoplastic bend during limited plastic deformation is discussed. The transverse section of a rod with two axes of symmetry has a form of a fifty-fifty beam with two shelves: external and in-ternal. A complex form of cross section explains practically unsolved difficulties in terms of its analytical solution. It leads to the use of math software and programming and math support, par-ticularly MathCAD. In the first case we take as external loading a point force applied in the middle of the flange; in the second case it is an evenly distributed loading acting along the whole rod.Results.As a result the bearing ability of the rod during limited plasticity is determined as well as the boundary of plastic and elastic deformations; residual stress in the rod following its complete unloading; deflected rod axe and residual deflection in the rod following its complete unloading.Conclusions. The calculation shows that the use of modern information technologies, particularly software and math support of PC allow one to deal with difficult and laborious problems, in terms of the design of the analytical solution of mechanics of a deformed solid body.
Four-point Bend Testing of Irradiated Monolithic U-10Mo Fuel
Energy Technology Data Exchange (ETDEWEB)
Rabin, B. H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lloyd, W. R. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schulthess, J. L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, J. K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lind, R. P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Scott, L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wachs, K. M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-03-01
This paper presents results of recently completed studies aimed at characterizing the mechanical properties of irradiated U-10Mo fuel in support of monolithic base fuel qualification. Mechanical properties were evaluated in four-point bending. Specimens were taken from fuel plates irradiated in the RERTR-12 and AFIP-6 Mk. II irradiation campaigns, and tests were conducted in the Hot Fuel Examination Facility (HFEF) at Idaho National Laboratory (INL). The monolithic fuel plates consist of a U-10Mo fuel meat covered with a Zr diffusion barrier layer fabricated by co-rolling, clad in 6061 Al using a hot isostatic press (HIP) bonding process. Specimens exhibited nominal (fresh) fuel meat thickness ranging from 0.25 mm to 0.64 mm, and fuel plate average burnup ranged from approximately 0.4 x 1021 fissions/cm^{3} to 6.0 x 1021 fissions/cm^{3}. After sectioning the fuel plates, the 6061 Al cladding was removed by dissolution in concentrated NaOH. Pre- and post-dissolution dimensional inspections were conducted on test specimens to facilitate accurate analysis of bend test results. Four-point bend testing was conducted on the HFEF Remote Load Frame at a crosshead speed of 0.1 mm/min using custom-designed test fixtures and calibrated load cells. All specimens exhibited substantially linear elastic behavior and failed in a brittle manner. The influence of burnup on the observed slope of the stress-strain curve and the calculated fracture strength is discussed.
Ultrahigh strain-rate bending of copper nanopillars with laser-generated shock waves
Energy Technology Data Exchange (ETDEWEB)
Colorado, H. A. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Department of Mechanical Engineering, Universidad de Antioquia, Medellin (Colombia); Navarro, A. [Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Prikhodko, S. V.; Yang, J. M. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Ghoniem, N.; Gupta, V. [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Department of Mechanical and Aerospace Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States)
2013-12-21
An experimental study to bend FIB-prepared cantilevered single crystal Cu nanopillars of several hundred nanometers in diameter and length at ultrahigh strain rate is presented. The deformation is induced by laser-generated stress waves, resulting in local strain rates exceeding 10{sup 7} s{sup −1}. Loading of nano-scale Cu structures at these extremely short loading times shows unique deformation characteristics. At a nominal stress value of 297 MPa, TEM examination along with selected area electron diffraction characterization revealed that twins within the unshocked Cu pillars interacted with dislocations that nucleated from free surfaces of the pillars to form new subgrain boundaries. MD simulation results were found to be consistent with the very low values of the stress required for dislocation activation and nucleation because of the extremely high surface area to volume ratio of the nanopillars. Specifically, simulations show that the stress required to nucleate dislocations at these ultrahigh strain rates is about one order of magnitude smaller than typical values required for homogeneous nucleation of dislocation loops in bulk copper single crystals under quasi-static conditions.
Energy Technology Data Exchange (ETDEWEB)
Kawada, Hiroyuki; Hayashi, Ikuhiko [Waseda Univ., Tokyo (Japan). School of Science and Engineering; Matsumori, Makoto; Omata, Hideo; Uruno, Tomoyuki; Hiramoto, Jiro
1994-04-01
To evaluate fracture toughness of C/C composites, four-point bending tests (SEN) are performed. The C/C composites are carbonized from the CFRPs, which are fabricated by means of two different methods (a hot-press method and a vacuum-bagging one). It is found that each fabrication method leads to a different distribution of bending strength. The vacuum-bagging method is preferable to obtain uniform bending strength properties. Crack growth resistance curves are obtained based on the compliance matching method. These curves have an inclination of convergence at a nearly equal constant value regardless of fabrication method. Existence of the stress shielding mechanism in the C/C composites is suggested by the R curves. From a fractographic observation, crack propagates three-dimensionally, and then pullouts of the fiber bundle occur at a large scale in the fiber-bridging mechanism. (author).
Size-dependent static bending and free vibration of 0–3 polarized PLZT microcantilevers
Zheng, Shijie; Li, Zongjun; Chen, Ming; Wang, Hongtao
2016-08-01
In this paper, analytical solutions for size-dependent static bending and free vibration of a pure 0–3 polarized PbLaZrTi (PLZT) cantilever are developed. This paper also makes the first attempt to investigate the static bending of a cantilever metal beam bonded with discretized 0–3 polarized PLZT actuator based on the modified couple stress theory and composite laminated beam theory. These models involve an internal material length scale parameter used to capture the size effect. In the limit when the internal material length scale parameter goes to zero, this model reduces to classical (local) solutions available in the literature. Exact solutions for the normalized static deflection are obtained as a function of the actuator thickness and the internal material length scale parameter. The simulations show that the size-dependent results developed by the present models have a remarkable difference with those got by the classical solutions when the ratio of the actuator thickness to the internal material length scale parameter is small. It is also observed that an increase in the stiffness parameter of the substrate beam gives rise to an increase in the effect of the material length scale parameter on tip deflections of the cantilever metal beam.
Mukundan, V.; Sartori, P.; Geyer, V. F.; Jülicher, F.; Howard, J.
2014-06-01
The bending of cilia and flagella is driven by forces generated by dynein motor proteins. These forces slide adjacent microtubule doublets within the axoneme, the motile cytoskeletal structure. To create regular, oscilla- tory beating patterns, the activities of the axonemal dyneins must be coordinated both spatially and temporally. It is thought that coordination is mediated by stresses or strains, which build up within the moving axoneme, and somehow regulate dynein activity. While experimenting with axonemes subjected to mild proteolysis, we observed pairs of doublets associate with each other and form bends with almost constant curvature. By model- ing the statics of a pair of filaments, we show that the activity of the motors concentrates at the distal tips of the doublets. Furthermore, we show that this distribution of motor activity accords with models in which curvature, or curvature-induced normal forces, regulates the activity of the motors. These observations, together with our theoretical analysis, provide evidence that dynein activity can be regulated by curvature or normal forces, which may, therefore, play a role in coordinating the beating of cilia and flagella.
Effect of bending on anodized Ti6Al4V alloy: I. Surface layers characteristics
Directory of Open Access Journals (Sweden)
A. Kierzkowska
2006-08-01
Full Text Available Purpose: The plastic deformation behaviour of the anodized binary titanium alloy Ti6Al4V was characterizedin mechanical and electrochemical tests.Design/methodology/approach: The effect of tensile and compressive stresses on properties of differentclinically relevant surfaces of the deformed by bending implant rods was investigated. The deformationbehaviour was characterized by FEM analysis. Relevant surfaces in tensile and compressive zones werecharacteristics by microhardness and roughness measurements, and electrochemical testing (Ecor, anodicpolarization, EIS in oxygen-saturated Ringer’s solution.Findings: It was concluded that bending influenced mostly the properties of material in the tensile zone of thespecimen, whereas the properties of surface layer in the compressive zone and the properties of surface layer intensile zone after rebending are comparable and not so severe.Research limitations/implications: Studies were performed in static conditions, fatique studies are planned inthe future.Practical implications: Results are of great importance in for surgical practice in the in the evaluation of theinfluence of shaping process applied during pre-operative procedures on the performance of spinal implantsystems.Originality/value: In the paper a typical pre-operative procedure of shaping was applied to anodized titaniumimplants in order to evaluate its influence on the characteristics of the surface layer. Studies were focused onthe safety their application in vivo.
Fatigue Crack Propagation in Steel A131 Under Ice Loading of Crushing, Bending and Buckling
Institute of Scientific and Technical Information of China (English)
DUAN Menglan(段梦兰); SONG Lisong(宋立崧); FAN Xiaodong(樊晓东); James C.M.LId; FANG Huacan(方华灿)
2001-01-01
Three types of ice loading, which are most commonly present when ice acts on structures,are chosen and simulated for use of fatigue crack propagation tests on offshore structural steel Al31. The three types of ice categorized in accordance with the failure modes when acting on structures called crushing ice, bending ice, and buckling ice,respectively. This paper presents an experimental investigation on the fatigue crack propagation behavior of widely used high strength steel A 131 for offshore jackets in the loading environment of ice crushing, bending, and buckling. The test results of fatigue crack propagation in steel A 13 l under these simulated ice loading at temperature 292K are presented and analyzed in detail in this paper. The amplitude root mean square stress intensity factor is optimized to be the fundamental parameter of fatigue crack propagation for all types of ice loading histories. The results are also compared with constant amplitude fatigue crack propagation conclusions as in wave load mode, and a joint investigation on the results from ice forces, ice-induced vibrations, and ice-induced fatigue crack propagation is conducted, Conclusions are drawn for reference in structural design and material selection for offshore structures in ice environments.
Modeling and computation of the three-roller bending process of steel sheets
Energy Technology Data Exchange (ETDEWEB)
Ktari, Ahmed; Antar, Zied; Haddar, Nader; Elleuch, Khaled [Unite de Recherche de Chimie Industrielle et Materiaux, ENIS, Tunisie (Turkey)
2012-01-15
Sheet metal bending processes are some of the most commonly used industrial manufacturing operations. The development and optimization of these processes are time consuming and costly. Therefore, finite element simulations may aid the design and quality assurance of sheet metal products. In the present study, a commercial finite element package was used to analyze the three-roller bending of a steel sheet. A two-dimensional finite element model of this process was built under the ABAQUS/Explicit environment based on the solution of several key techniques, such as contact boundary condition treatment, material property definition, meshing technique, and so on. Maps with desired curvature radii were established by varying the distance between the two bottom rollers and the position of the upper one. The developed maps made the rolling process easier and less time consuming. An industrial experiment using optimized numerical results was carried out to validate the numerical model. Residual stress and equivalent plastic strain distributions were also studied. The numerical spring back phenomenon was compared with analytical results.
Evolution of crack paths and compliance in round bars under cyclic tension and bending
Directory of Open Access Journals (Sweden)
J. Toribio
2014-10-01
Full Text Available The aim of this paper is to calculate how the surface crack front and the dimensionless compliance evolve in cracked cylindrical bars subjected to cyclic tension or bending with different initial crack geometries (crack depths and aspect ratios. To this end, a computer application (in the Java programming language that calculates the crack front’s geometric evolution and the dimensionless compliance was made by discretizing the crack front (characterized with elliptical shape and assuming that every point advances perpendicularly to the crack front according to the Paris law, and using a three-parameter stress intensity factor (SIF. The results show that in fatigue crack propagation, relative crack depth influences more on dimensionless compliance than the aspect ratio, because the crack front tends to converge when the crack propagates from different initial geometries, showing greater values for tension than for bending. Furthermore, during fatigue crack growth, materials with higher values of the exponent of the Paris law produce slightly greater dimensionless compliance and a better convergence between the results for straight-fronted and circular initial cracks.
Rotary-bending fatigue characteristics of medical-grade Nitinol wire.
Pelton, A R; Fino-Decker, J; Vien, L; Bonsignore, C; Saffari, P; Launey, M; Mitchell, M R
2013-11-01
The rotary bending fatigue properties of medical-grade Nitinol wires were investigated under conditions of 0.5-10% strain amplitudes to a maximum of 10(7) cycles. The results from this study provide insight into the behavior of Nitinol under fully reversed (εmin/εmax=-1) fatigue conditions for three compositions, two surface conditions and three test temperatures. For pseudoelastic conditions there are four distinct regions of the strain-cycle curves that are related to phases (austenite, stress-induced martensite, and R-Phase) and their respective strain accommodation mechanisms. In contrast, there are only two regions for the strain-cycle curves for thermal martensite. It was further observed that the strain amplitude to achieve 10(7)-cycles increases with both decreasing test temperature and increasing transformation temperature. Fatigue behavior was not, however, strongly influenced by wire surface condition. SEM of the fracture surfaces showed that the fatigue fracture area increased with decreasing strain amplitude. Finite element analysis was used to illustrate strain distributions across the wire as well as to calculate the tension-compression contributions to the rotary bending curves. The results from this investigation are discussed with respect to mechanisms of strain accommodation under cyclic tensile and compressive conditions.
Ullah, Himayat; Harland, Andy R.; Silberschmidt, Vadim V.
2012-10-01
Textile-reinforced composites such as glass fibre-reinforced polymer (GFRP) used in sports products can be exposed to different in-service conditions such as large bending deformation and multiple impacts. Such loading conditions cause high local stresses and strains, which result in multiple modes of damage and fracture in composite laminates due to their inherent heterogeneity and non-trivial microstructure. In this paper, various damage modes in GFRP laminates are studied using experimental material characterisation, non-destructive micro-structural damage evaluation and numerical simulations. Experimental tests are carried out to characterise the behaviour of these materials under large-deflection bending. To obtain in-plane shear properties of laminates, tensile tests are performed using a full-field strain-measurement digital image correlation technique. X-ray micro computed tomography (Micro CT) is used to investigate internal material damage modes - delamination and cracking. Two-dimensional finite element (FE) models are implemented in the commercial code Abaqus to study the deformation behaviour and damage in GFRP. In these models, multiple layers of bilinear cohesive-zone elements are employed to study the onset and progression of inter-ply delamination and intra-ply fabric fracture of composite laminate, based on the X-ray Micro CT study. The developed numerical models are capable to simulate these features with their mechanisms as well as subsequent mode coupling observed in tests and Micro CT scanning. The obtained results of simulations are in agreement with experimental data.
Optimization of bandwidth in 60^o photonic crystal waveguide bends
DEFF Research Database (Denmark)
Xing, P. F.; Borel, Peter Ingo; Frandsen, Lars Hagedorn;
2005-01-01
A systematic scheme utilizing 2D and 3D finite-difference time-domain calculations to design 60^o photonic crystal waveguide bends is presented. The method results in an improved transmission bandwidth from 70 to 160 nm in 2D simulations, and from 50 to 100 nm in 3D simulations. The design...
Secondary flow in sharp open-channel bends
Blanckaert, K.; De Vriend, H.J.
2004-01-01
Secondary currents are a characteristic feature of flow in open-channel bends. Besides the classical helical motion (centre-region cell), a weaker and smaller counter-rotating circulation cell (outer-bank cell) is often observed near the outer bank, which is believed to play an important role in ban
Space charge effects in a bending magnet system
International Nuclear Information System (INIS)
In order to examine problems and phenomena associated with space charge in a beam bending system, the beam dynamics code HICURB has been written. Its principal features include momentum variations, vertical and horizontal envelope dynamics coupled to the off-axis centroid, curvature effect on fields, and images. Preliminary results for an achromatic lattice configuration are presented
Band bending and electrical transport at chemically modified silicon surfaces
Lopinski, Greg; Ward, Tim; Hul'Ko, Oleksa; Boukherroub, Rabah
2002-03-01
High resolution electron energy loss spectroscopy (HREELS) and electrical transport measurements have been used to investigate how various chemical modifications give rise to band bending and alter the conductivity of Si(111) surfaces. HREELS is a sensitive probe of band bending through observations of the low frequency free carrier plasmon mode. For hydrogen terminated surfaces, prepared by the standard etch in ammonium flouride, HREELS measurements on both n and n+ substrates are consistent with nearly flat bands. Chlorination of these surfaces results in substantial upward band bending due to the strong electron withdrawing nature of the chlorine, driving the surface into inversion. The presence of this inversion layer on high resistivity n-type samples is observed through a substantial enhancement of the surface conductivity (relative to the H-terminated surface), as well as through broadening of the quasi-elastic peak in the HREELS measurements. We have also begun to examine organically modified silicon surfaces, prepared by various wet chemical reactions with the H-terminated surface. Decyl modified Si(111) surfaces are seen to exhibit a small degree of band bending, attributed to extrinsic defect states cause by a small degree of oxidation accompanying the modification reaction. The prospects of using conductivity as an in-situ monitor of the rate of these reactions will be discussed.
A theoretical model for suspended sediment transport in river bends
Talmon, A.M.
1989-01-01
A two dimensional depth-averaged model for the concentration field of suspended sediment in river bend flow is formulated. Transport of suspended sediment in horizontal and vertical directions is modelled. Convection by the main and secondary flow and turbulent diffusion are incorporated. The model
Tidal bending of glaciers: a linear viscoelastic approach
DEFF Research Database (Denmark)
Reeh, Niels; Christensen, Erik Lintz; Mayer, Christoph;
2003-01-01
glaciers are in the range 0.9-3 GPa. It has therefore been suggested that the elastic-beam model with a single value of E approximate to 1 GPa adequately describes tidal bending of glaciers.In contrast, laboratory experiments with ice give E =93 GPa, i.e. 3-10 times higher than the glacier-derived values...
Basic Characteristics of a New Flexible Pneumatic Bending Joint
Institute of Scientific and Technical Information of China (English)
SHAO Tiefeng; ZHANG Libin; BAO Guanjun; LUO Xinyuan; YANG Qinghua
2014-01-01
Several typical flexible pneumatic actuators (FPA) and different mechanical models describing their behaviors have been proposed, however, it is difficult to balance compliance and load capacity in conventional designs, and these models still have limitations in predicting behavior of FPAs. A new flexible pneumatic bending joint (FPBJ) with special anisotropic rigidity structure is proposed. The FPBJ is developed as an improvement with regard to existing types of FPA, and its principal characteristic is derived from the special anisotropic rigidity structure. With this structure, the load capacity in the direction perpendicular to bending plane is strengthened. The structure of the new FPBJ is explained and a mathematical model is derived based on Euler-Bernoulli beam model and Hook’s law. To obtain optimum design and usage, some key structure parameters and input-output characteristics are simulated. The simulation results reveal that the relationship between the structure parameters and FPBJ’s bending angle is nonlinear. At last, according to the simulation results, the FPBJ is manufactured with optional parameters and tested. The experimental results show that the joint’s statics characteristics are reflected by the mathematical model accurately when the FPBJ is deflated. The maximum relative error between simulation and experimental results is less than 6%. However, the model still has limitations. When the joint is inflated, the maximum relative error reaches 20%. This paper proposes a new flexible pneumatic bending joint which has sufficient load capacity and compliance, and the mathematical model provides theoretical guidance for the FPBJ’s structure design.
Finite element analysis of damage in pipeline bends
Swart, A.E.; Karamanos, S.A.; Scarpas, A.; Blaauwendraad, J.
2010-01-01
The present paper describes a numerical formulation for the analysis of damage in steel pipeline bends. In particular, the numerical implementation of Gurson plasticity model is described in the framework of a special element, referred to as “tube element”. This is a three-node element, which simula
A COMBINED HYBRID FINITE ELEMENT METHOD FOR PLATE BENDING PROBLEMS
Institute of Scientific and Technical Information of China (English)
Tian-xiao Zhou; Xiao-ping Xie
2003-01-01
In this paper, a combined hybrid method is applied to finite element discretization ofplate bending problems. It is shown that the resultant schemes are stabilized, i.e., theconvergence of the schemes is independent of inf-sup conditions and any other patch test.Based on this, two new series of plate elements are proposed.
Enhanced resolution of long-period grating bend sensor
DEFF Research Database (Denmark)
Glavind, Lars; Gao, S; Cook, K;
2013-01-01
We present an optical fiber bend sensor with enhanced resolution based on the principle of a Mach-Zehnder interferometer in transmission. The sensor is based on two identical Long-Period Gratings separated by approximately 100 mm in a D-shaped single-mode optical fiber. The sensor provides a narrow...
Multiphase fluid structure interaction in bends and T-joints
Cargnelutti, M.F.; Belfroid, S.P.C.; Schiferli, W.; Osch, M.M.E. van
2010-01-01
Air-water experiments were carried out in a horizontal 1" pipe system to measure the magnitude of the forces induced by the multiphase flow. Forces and accelerations were measured on a number of bends and T-joint configurations for a wide range of operating conditions. Five different configurations
Size Effects on the Bending Behaviour of Reinforced Concrete Beams
DEFF Research Database (Denmark)
Brincker, Rune; Henriksen, M. S.; Christensen, F. A.;
1999-01-01
Load-deformation curves for reinforced concrete beams subjected to bending show size effects due to tensile failure of the concrete at early stages in the failure process and due to compression failure of the concrete when the final failure takes place. In this paper these effects are modelled...
The Clinch Bend Regional Industrial Site and economic development opportunities
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
This effort focuses initially on the Clinch Bend site. Other sites and developable tracts of land are identified with the assistance of communities in proximity to Oak Ridge, the State of Tennessee, and others, and compared with the projected site requirements for large industrial facilities.
A Second Look at Brian Simon's "Bending the Rules"
Cox, Sue
2016-01-01
In this article the author revisits an important book: Brian Simon's "Bending the Rules: the Baker reform of education." Written by a key figure in the history of the journal FORUM as well as in the history of education, Simon's book documented the features of the Education Reform Bill of 1987 (the precursor to the Education Reform Act…
Photoacoustic elastic bending in thin film—Substrate system
Energy Technology Data Exchange (ETDEWEB)
Todorović, D. M., E-mail: dmtodor@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, P.O. Box 33, 11030 Belgrade (Serbia); Rabasović, M. D.; Markushev, D. D. [Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade-Zemun (Serbia)
2013-12-07
Theoretical model for optically excited two-layer elastic plate, which includes plasmaelastic, thermoelastic, and thermodiffusion mechanisms, is given in order to study the dependence of the photoacoustic (PA) elastic bending signal on the optical, thermal, and elastic properties of thin film—substrate system. Thin film-semiconductor sample (in our case Silicon) is modeled by simultaneous analysis of the plasma, thermal, and elastic wave equations. Multireflection effects in thin film are included in theoretical model and analyzed. Relations for the amplitude and phase of electronic and thermal elastic bending in the optically excited two-layer mechanically-supported circular plate are derived. Theoretical analysis of the thermodiffusion, plasmaelastic, and thermoelastic effects in a sample-gas-microphone photoacoustic detection configuration is given. Two normalization procedures of the photoacoustic elastic bending signal in function of the modulation frequency of the optical excitation are established. Given theoretical model can be used for various photoacoustic detection configurations, for example, in the study of optical, thermal, and elastic properties of the dielectric-semiconductor or metal-semiconductor structure, etc., Theoretical analysis shows that it is possible to develop new noncontact and nondestructive experimental method—PA elastic bending method for thin film study, with possibility to obtain the optical, thermal, and elastic parameters of the film thinner than 1 μm.
Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons
DEFF Research Database (Denmark)
Yang, Yihao; Chen, Hongsheng; Xiao, Sanshui;
2015-01-01
surface plasmons around 90-degree sharp bends on ultrathin metallic films in the microwave regime. We demonstrate that by judiciously engineering the structure, the dispersion relation can be designed to reduce the scattering. Furthermore, the reflection can be suppressed by proper structural decoration...
A Novel Rotary Piezoelectric Motor Using First Bending Hybrid Transducers
Directory of Open Access Journals (Sweden)
Yingxiang Liu
2015-08-01
Full Text Available We report a novel rotary piezoelectric motor using bending transducers in this work. Three transducers are used to drive a disk-shaped rotor together by the elliptical movements of their driving tips; these motions are produced by the hybrid of two first bending vibration modes. The proposed piezoelectric transducer has a simple structure as it only contains an aluminum alloy beam and four pieces of PZT plates. Symmetrical structure is the only necessary condition in the design process as it will ensure the resonance frequencies of the two orthogonal first bending modes are equal. Transducers with first bending resonance frequency of about 53 kHz were fabricated and assembled into a rotary motor. The proposed motor exhibits good performance on speed and torque control. Under a working frequency of 53.2 kHz, the maximum no-load speed and the maximum torque of the prototype are tested to be 53.3 rpm and of 27 mN·m.
Institute of Scientific and Technical Information of China (English)
王成勇; 鲁志兵; 张鹏; 李亨; 李伟
2014-01-01
材料成形过程中，模具型面磨损分析的关键是获得接触应力的分布及演化特点。利用高强钢 U形件弯曲模型得到模具型面接触应力解析式。通过准静态有限元仿真分析，获得了弯曲凹模圆角型面瞬态→稳态的接触应力演化趋势及单-双峰分布特征。瞬态区接触应力峰值波动剧烈呈现尖锐的双峰分布；稳态区平缓趋于直线。对比分析高强钢DP600与低强度钢DC04的接触应力峰值曲线，揭示了高强钢成形模具型面局部磨损的主要原因，并通过实例验证了其合理性，为提高模具寿命提供了途径。%In forming process ,the key issue forwear analysisat the contact surface between the die and blank is to obtain thedistri-bution and evolutionofcontact stress.The analytic expression of the contact stress is deduced through the U-shape stamping part of high strength steel. The evolution trend and the single-bimodal distribution characteristics from the transient state to the steady state are acquired on the fillet surface of die ,which is followed by FEM modeling and numerical simulation. The investigation shows that the curve of the contact stress in the transient zone fluctuatesdrasticallyand it shows bimodal distribution ,and the curve of the steady zone is smooth as a straight line. Research result reveals the main reasons for the wear ,through comparison a-nalysis the curves of contact stress peak between DP600 and DC04.Through observation on factory experiments ,the rationality of the estimation was verified ,it provides a way to improve the life of die .
The Relation Between Rotation Deformity and Nerve Root Stress in Lumbar Scoliosis
Kim, Ho-Joong; Lee, Hwan-Mo; Moon, Seong-Hwan; Chun, Heoung-Jae; Kang, Kyoung-Tak
Even though several finite element models of lumbar spine were introduced, there has been no model including the neural structure. Therefore, the authors made the novel lumbar spine finite element model including neural structure. Using this model, we investigated the relation between the deformity pattern and nerve root stress. Two lumbar models with different types of curve pattern (lateral bending and lateral bending with rotation curve) were made. In the model of lateral bending curves without rotation, the principal compressive nerve root stress on the concave side was greater than the principal tensile stress on the convex side at the apex vertebra. Contrarily, in the lateral bending curve with rotational deformity, the nerve stress on the convex side was higher than that on the concave side. Therefore, this study elicit that deformity pattern could have significantly influence on the nerve root stress in the lumbar spine.
Research on Carbonation Rule of Fly Ash Concrete Influenced by Bending Load%弯曲荷载影响粉煤灰混凝土碳化规律的研究
Institute of Scientific and Technical Information of China (English)
牛建刚; 牛荻涛; 刘万里
2011-01-01
Based on the accelerated carbonation test of fly ash concrete under load, carbonation velocity of concrete under bending load was investigated. The experiment results indicate that the concrete carbonation depths under the bending tensile (compressive) stress are larger (smaller) than the concrete carbonation depths under the non-stressing condition. By virtue of the bending stress coefficient of concrete carbonation, the influence of stress levels on concrete carbonation was analyzed. The bending stress coefficient of concrete carbonation and stress levels are consistent with quadratic polynomial quadratic.%通过承载混凝土试件的快速碳化试验,研究了弯曲荷载作用下混凝土的碳化速度,试验结果表明,弯曲拉(压)应力作用下混凝土碳化速度均大(小)于无应力状态下的混凝土碳化速度.定义了混凝土碳化弯曲应力影响系数,分析了弯曲应力影响系数的变化规律,得出混凝土碳化弯曲应力影响系数与应力水平符合二次多项式关系.
Bend Testing of Silicon Microcantilevers from 21°C to 770°C
Armstrong, David E. J.; Tarleton, Edmund
2015-12-01
The measurement of mechanical properties at the microscale is of interest across a wide range of engineering applications. Much recent work has demonstrated that micropillar compression can be used to measure changes in flow properties at temperatures up to 600°C. In this work, we demonstrate that an alternative microscale bend testing geometry can be used to measure elastic, plastic, and fracture behavior up to 770°C in silicon. We measure a Young's modulus value of 130 GPa at room temperature, which is seen to drop with increasing temperature to ≈125 GPa. Below 500°C, no failure is seen up to elastic strains of 3%. At 530°C, the microcantilever fractures in a brittle fashion. At temperatures of 600°C and above plastic deformation is seen before brittle fracture. The yield stresses at these temperatures are in good agreement with literature values measured using micropillar compression.
Intensely deformed state of the shell with the inclusion in bending
Directory of Open Access Journals (Sweden)
Oleksandr B. Kozin
2014-12-01
Full Text Available Currently interest in the study of the properties of composite materials significantly increases due to the expansion of their application. The aim research is to develop a technique based on singular integral equations method of estimation of the stress-strain state of shallow shell with a thin rigid inclusion; as well as the study of the influence of geometrical parameters of inclusion, stiffness and geometric parameters of the shell on the value of inclusion bending. The value of the study is in further development and specification of used methods for solving the problem of elasticity of composite materials. The obtained results can be used in determining the strength properties of construction elements consisting of composite materials. The numerical scheme for problem solving can be used for computer simulation of solving the problem of predicting the mechanical strength of the composite.
Load-to-failure bending test of wood composite beams connected by gang nail
Directory of Open Access Journals (Sweden)
A.V. Karelskiy
2015-03-01
Full Text Available The results of a bending test of wood composite beams connected by gang nail are presented in this paper. Two types of wood composite beams fracture were observed: brittle and ductile. In addition, a numerical model of wood composite beams was produced and the results of the numerical investigations were analyzed. Compliance of connection «gang nail – wood» was considered by means of input elements with a reduced modulus of elasticity in the numerical model. Then the theoretical and experimental results of stress and strain state of a composite beam with gang nail were compared. The conclusion was made about the efficiency of gang nail application for increased shear resistance of wood composite structures not only for reinforcement but also for production of new beam structures.
Effects of self-healing microcapsules on bending performance in composite brake pads
Zhang, Li; Dong, Xiu-ping; Wang, Hui
2009-07-01
For the purpose of reducing self-weight, friction noise and cost, improving shock absorption, enhancing corrosion and wear resistance, brake pads made of composite materials with self-healing function are prepared to substitute metal ones by designing ingredients and applying optimized production technology. As self-healing capsules are chosen, new method with technology of self-healing microcapsules, dicyclpentadiene (DCPD) microcapsules coated with poly (urea-formaldehyde), is put forward in this paper. In the crack's extending process, the stress is concentrated at the crack end, where the microcapsule is designed to be located. When the stress goes through the microcapsules and causes them to break, the self-healing liquid runs out to fill the crack by the capillary and it will poly-react with catalyst in the composite. As a result, the crack is healed. In this paper, polymer matrix composite brake pads with 6 prescriptions are prepared and studied. Three-point bending tests are carried out according to standards in GB/T 3356-1999 and the elastic constants of these polymer matrix composites are obtained by experiments. In accordance with the law of the continuous fiber composite, elastic constants of the short-fiber composite can be calculated by proportions of each ingredient. Results show that the theoretical expected results and the experimental values are consistent. 0.3-1.2 % mass proportion of microcapsules has little effects on the composite's bending intensity and modulus of elasticity. These studies also show that self-healing microcapsules used in composite brake pads is feasible.
Comparison of ring compression testing to three point bend testing for unirradiated ZIRLO cladding
Energy Technology Data Exchange (ETDEWEB)
None, None
2015-04-01
Safe shipment and storage of nuclear reactor discharged fuel requires an understanding of how the fuel may perform under the various conditions that can be encountered. One specific focus of concern is performance during a shipment drop accident. Tests at Savannah River National Laboratory (SRNL) are being performed to characterize the properties of fuel clad relative to a mechanical accident condition such as a container drop. Unirradiated ZIRLO tubing samples have been charged with a range of hydride levels to simulate actual fuel rod levels. Samples of the hydrogen charged tubes were exposed to a radial hydride growth treatment (RHGT) consisting of heating to 400°C, applying initial hoop stresses of 90 to 170 MPa with controlled cooling and producing hydride precipitates. Initial samples have been tested using both a) ring compression test (RCT) which is shown to be sensitive to radial hydride and b) three-point bend tests which are less sensitive to radial hydride effects. Hydrides are generated in Zirconium based fuel cladding as a result of coolant (water) oxidation of the clad, hydrogen release, and a portion of the released (nascent) hydrogen absorbed into the clad and eventually exceeding the hydrogen solubility limit. The orientation of the hydrides relative to the subsequent normal and accident strains has a significant impact on the failure susceptability. In this study the impacts of stress, temperature and hydrogen levels are evaluated in reference to the propensity for hydride reorientation from the circumferential to the radial orientation. In addition the effects of radial hydrides on the Quasi Ductile Brittle Transition Temperature (DBTT) were measured. The results suggest that a) the severity of the radial hydride impact is related to the hydrogen level-peak temperature combination (for example at a peak drying temperature of 400°C; 800 PPM hydrogen has less of an impact/ less radial hydride fraction than 200 PPM hydrogen for the same thermal
Influence of Additional Tensile Force on Springback of Tube Under Rotary Draw Bending
E, Daxin; Guan, Zhiping; Chen, Jisheng
2012-11-01
According to the characteristics of tube under rotary draw bending, the formulae were derived to calculate the springback angles of tubes subjected to combined bending and additional tension. Especially, as the neutral layer (NL) moves to the inner concave surface of the bend, the analytical values agree very well with the experimental results. The analysis shows that the additional tensile force causes the movement of the NL toward the bending center and makes the deformation behavior under rotary draw bending or numerically controlled (NC) bending different with that under pure bending, and also it could enlarge the springback angle if taking the movement of the NL into consideration. In some range, the springback angle would increase slightly with larger wall thickness/diameter ratio and decrease with wall thinning. The investigation could provide reference for the analysis of rotary draw bending, the design of NC tube bender and the related techniques.
Influence of Synthetic Fibers Angle Orientation on Bending Properties of Composite Plywood
Directory of Open Access Journals (Sweden)
Mladen Brezović
2010-12-01
Full Text Available This paper presents the results of research on carbon fiber angle orientation and quantity of carbon fi bers in yarn on bending properties of plywood. For that purpose the specimens have been defined as multilayer composites made from carbon fibers and veneer. Carbon fibers were inserted in the second and third glue line of the composite with angle variation of 15°. Stresses and strain were analyzed in significant layers together with displacement of the whole composite plate. The influence of carbon fiber angle orientation on properties of the composite (amount of stresses and related strains was significant. The best results have been achieved with carbon fiber angle of 0°, and bidirectional carbon fiber type (BCF with the orientation angle of 90°. The lowest values have been achieved with carbon fiber angle of 65° (unidirectional carbon fibers-UCF, and bidirectional carbon fiber type (BCF with the orientation angle of 45°. Greater quantity of carbon fibers per one yarn has positive influence on decrease of stresses and strains in veneer layers and provides better stiffness of plywood.
Energy Technology Data Exchange (ETDEWEB)
Barbero, E.J.
1989-01-01
In this study, a computational model for accurate analysis of composite laminates and laminates with including delaminated interfaces is developed. An accurate prediction of stress distributions, including interlaminar stresses, is obtained by using the Generalized Laminate Plate Theory of Reddy in which layer-wise linear approximation of the displacements through the thickness is used. Analytical as well as finite-element solutions of the theory are developed for bending and vibrations of laminated composite plates for the linear theory. Geometrical nonlinearity, including buckling and postbuckling are included and used to perform stress analysis of laminated plates. A general two dimensional theory of laminated cylindrical shells is also developed in this study. Geometrical nonlinearity and transverse compressibility are included. Delaminations between layers of composite plates are modelled by jump discontinuity conditions at the interfaces. The theory includes multiple delaminations through the thickness. Geometric nonlinearity is included to capture layer buckling. The strain energy release rate distribution along the boundary of delaminations is computed by a novel algorithm. The computational models presented herein are accurate for global behavior and particularly appropriate for the study of local effects.
Jui-Chang Lin; Kingsun Lee
2015-01-01
The three-dimensional tube (or pipe) is manufactured by CNC tube bending machine. The key techniques are determined by tube diameter, wall thickness, material, and bending radius. The obtained technique through experience and the trial and error method is unreliable. Finite element method (FEM) simulation for the tube bending process before production can avoid wasting manpower and raw materials. The computer-aided engineering (CAE) software ABAQUS 6.12 is applied to simulate bending characte...
An All-fiber Temperature Sensor Based on a Macro-bend Singlemode Fiber Loop
Rajan, Ginu; Semenova, Yuliya; Farrell, Gerald
2008-01-01
An all-fibre temperature sensor is proposed based on a macro-bend singlemode fibre loop using a ratiometric power measurement scheme. The sensor has a linear characteristic with temperature at a fixed wavelength and bend radius. A direct linear relationship between the bend loss of the singlemode fibre and temperature is reported for the first time. By measuring the change in bend loss of the system a change in temperature can be measured assuming the system is calibrated. The proposed sensor...
Institute of Scientific and Technical Information of China (English)
Odishelidze; N; Criado-Aldeanueva; F
2010-01-01
This paper addresses the problem of plate bending for a doubly connected body with outer and inner boundaries in the form of regular polygons with a common center and parallel sides.The neighborhoods of the vertices of the inner boundary are equal full-strength smooth arcs symmetric about the rays coming from the vertices to the center,but have unknown positions.Rigid bars are attached to the linear parts of the boundary.The plate bends by the moments applied to the middle point bars.The unknown arcs are free from external stresses.The same problem of plate bending is considered for a regular hexagon weakened by a full-strength hole.Using the methods of complex analysis,the analytical image of Kolosov-Muskhelishvili’s complex potentials (characterizing an elastic equilibrium of the body),the plate deflection and unknown parts of its boundary are determined under the condition that the tangential normal moment on that plate takes a constant value.Numerical analyses are also performed and the corresponding graphs are constructed.
Hasanyan, D.; Gao, J.; Wang, Y.; Viswan, R.; Li, M.; Shen, Y.; Li, J.; Viehland, D.
2012-07-01
In this paper, we discuss a theoretical model with experimental verification for the resonance enhancement of magnetoelectric (ME) interactions at frequencies corresponding to bending-tension oscillations. A dynamic theory of arbitrary laminated magneto-elasto-electric bars was constructed. The model included bending and longitudinal vibration effects for predicting ME coefficients in laminate bar composite structures consisting of magnetostrictive, piezoelectric, and pure elastic layers. The thickness dependence of stress, strain, and magnetic and electric fields within a sample are taken into account, as such the bending deformations should be considered in an applied magnetic or electric field. The frequency dependence of the ME voltage coefficients has obtained by solving electrostatic, magnetostatic, and elastodynamic equations. We consider boundary conditions corresponding to free vibrations at both ends. As a demonstration, our theory for multilayer ME composites was then applied to ferromagnetic-ferroelectric bilayers, specifically Metglas-PZT ones. A theoretical model is presented for static (low-frequency) ME effects in such bilayers. We also performed experiments for these Metglas-PZT bilayers and analyzed the influence of Metglas geometry (length and thickness) and Metglas/PZT volume fraction on the ME coefficient. The frequency dependence of the ME coefficient is also presented for different geometries (length, thickness) of Metglas. The theory shows good agreement with experimental data, even near the resonance frequency.
Directory of Open Access Journals (Sweden)
Jiong-Shiun Hsu
2016-08-01
Full Text Available Stress-induced failure is a critical concern that influences the mechanical reliability of an indium tin oxide (ITO film deposited on a transparently flexible polyethylene terephthalate (PET substrate. In this study, a cycling bending mechanism was proposed and used to experimentally investigate the influences of compressive and tensile stresses on the mechanical stability of an ITO film deposited on PET substrates. The sheet resistance of the ITO film, optical transmittance of the ITO-coated PET substrates, and failure scheme within the ITO film were measured to evaluate the mechanical stability of the concerned thin films. The results indicated that compressive and tensile stresses generated distinct failure schemes within an ITO film and both led to increased sheet resistance and optical transmittance. In addition, tensile stress increased the sheet resistance of an ITO film more easily than compressive stress did. However, the influences of both compressive and tensile stress on increased optical transmittance were demonstrated to be highly similar. Increasing the thickness of a PET substrate resulted in increased sheet resistance and optical transmittance regardless of the presence of compressive or tensile stress. Moreover, J-Integral, a method based on strain energy, was used to estimate the interfacial adhesion strength of the ITO-PET film through the simulation approach enabled by a finite element analysis.
Institute of Scientific and Technical Information of China (English)
Jin Wencheng; Zhou Xiaoyong; Li Na
2008-01-01
A numerical model is developed in this paper to calculate the bending moments of flexural members through integration in 3D solid finite element analyses according to the nonlinear constitutive model of concrete and the elastoplastic constitutive model of steel, utilizing the stress condition of the cross-section, considering the destruction characteristic of reinforced concrete members, and based on the plane cross-section assumption. The results of this model give good agreement with those of the classical method. Consequently, we can also deduce the corresponding numerical expression for eccentrically loaded members according to the analysis method.
Bending characteristic of a cantilevered magnetostrictive film-substrate system
Institute of Scientific and Technical Information of China (English)
B.; Narsu
2007-01-01
The bending problem of a film-substrate cantilever with arbitrary film-to-substrate thickness ratio is solved exactly by employing the force equilibrium equation, and then the optimization and application of the bending characteristic of the magne-tostrictive cantilever is discussed. Furthermore, the influence of geometrical and physical parameters of the two cantilever components on the maximum free-end deflection of the cantilever is addressed. The results indicate that as the substrate thickness is kept constant, the greater film-to-substrate stiffness ratio will induce a larger deflection, while for the case of fixed total cantilever thickness, the optimal cantilever deflection is independent of the physical parameters of the materials such as Young’s modulus and Poisson’s ratio.
Bending characteristic of a cantilevered magnetostrictive film-substrate system
Institute of Scientific and Technical Information of China (English)
B. Narsu; YUN GuoHong
2007-01-01
The bending problem of a film-substrate cantilever with arbitrary film-to-substrate thickness ratio is solved exactly by employing the force equilibrium equation, and then the optimization and application of the bending characteristic of the magnetostrictive cantilever is discussed. Furthermore, the influence of geometrical and physical parameters of the two cantilever components on the maximum free-end deflection of the cantilever is addressed. The results indicate that as the substrate thickness is kept constant, the greater film-to-substrate stiffness ratio will induce a larger deflection, while for the case of fixed total cantilever thickness, the optimal cantilever deflection is independent of the physical parameters of the materials such as Young's modulus and Poisson's ratio.
NUMERICAL MODELING OF SUSPENDED SEDIMENT TRANSPORT IN CHANNEL BENDS
Institute of Scientific and Technical Information of China (English)
HUANG Sui-liang; JIA Y. F.; WANG Sam S. Y.
2006-01-01
An algorithm to compute three-dimensional sediment transport effect was proposed in this paper to enhance the capability of depth-averaged numerical models. This algorithm took into account of non-uniform distributions of flow velocities and suspended sediment concentrations along water depth, it significantly enhanced the applicability of 2D models in simulating open channel flows, especially in channel bends. Preliminary numerical experiments in a U-shaped and a sine-generated experimental channel indicate that the proposed method performs quite well in predicting the change of bed-deformation in channel bends due to suspended sediment transport. This method provides an effective alternative for the simulations of channel morphodynamic changes.
Analytical dynamic modeling of fast trilayer polypyrrole bending actuators
International Nuclear Information System (INIS)
Analytical modeling of conjugated polymer actuators with complicated electro-chemo-mechanical dynamics is an interesting area for research, due to the wide range of applications including biomimetic robots and biomedical devices. Although there have been extensive reports on modeling the electrochemical dynamics of polypyrrole (PPy) bending actuators, mechanical dynamics modeling of the actuators remains unexplored. PPy actuators can operate with low voltage while producing large displacement in comparison to robotic joints, they do not have friction or backlash, but they suffer from some disadvantages such as creep and hysteresis. In this paper, a complete analytical dynamic model for fast trilayer polypyrrole bending actuators has been proposed and named the analytical multi-domain dynamic actuator (AMDDA) model. First an electrical admittance model of the actuator will be obtained based on a distributed RC line; subsequently a proper mechanical dynamic model will be derived, based on Hamilton's principle. The purposed modeling approach will be validated based on recently published experimental results
About resonance frequencies of aluminium alloy bending vibrations
International Nuclear Information System (INIS)
Using ultrasonic method resonance frequencies of bending vibrations and elastic moduli of aluminium alloy SAV-1 samples are investigated. On the base of spectra of bending vibrations in low-frequency range data on values of a number of elastic properties are obtained as well as dispersion characteristics of main moduli for number of frequencies before and after ionizing irradiation (60Co, 5x103-1.6x107 Gy) of samples. Considerable stability of sample elastic moduli during common storage conditions and nonlinear dose dependence of these parameters within wide range of absorbed doses are pointed out. Possible causes of revealed effects of radiation modification of elastic properties of SAV-1 alloy are analyzed
Plastic Optical Fiber Displacement Sensor Based on Dual Cycling Bending
Directory of Open Access Journals (Sweden)
Yung-Chuan Chen
2010-11-01
Full Text Available In this study, a high sensitivity and easy fabricated plastic optical fiber (POF displacement sensor is proposed. A POF specimen subjected to dual cyclic bending is used to improve the sensitivity of the POF displacement sensor. The effects of interval between rollers, relative displacement and number of rollers on the sensitivity of the displacement sensor are analyzed both experimentally and numerically. A good agreement between the experimental measurements and numerical calculations is obtained. The results show that the interval between rollers affects sensitivity most significantly than the other design parameters. Based on the experimental data, a linear equation is derived to estimate the relationship between the power loss and the relative displacement. The difference between the estimated results and the experimental results is found to be less than 8%. The results also show that the proposed POF displacement sensor based on dual cyclic bending can be used to detect displacement accurately.
Pure Bending Characteristic of Tilted Fiber Bragg Grating
Institute of Scientific and Technical Information of China (English)
Bo Liu; Yin-Ping Miao; Hai-Bin Zhou; Qi-Da Zhao
2008-01-01
a novel structure of the pure macro-bending sensor based on the tilted fiber Bragg grating (TFBG) is proposed. The TFBG located in the half circle with the different diameters is bent at a constant angle with respect to the tilted grating planes. With the variations of the curvature, the core-mode resonance is unchanged and the transmission power of cladding modes detected by the photodiodes varies linearly with curvature, while the ghost mode changes by the form of two-order polynomial. So we can use the transmission power of ghost mode or other cladding modes to detect bending curvature as shape sensor. From a practical point of view, the sensor proposed here is simple, low cost and easy to implement. Moreover, it is possible to make a temperature-insensitive shape sensor due to the same temperature characteristic between the core mode and the cladding modes.
Elastoswellability: Will it bend or will it buckle?
Holmes, Douglas; Pandey, Anupam
2013-03-01
Soft mechanical structures such as biological tissues and gels exhibit motion, instabilities, and large morphological changes when subjected to external stimuli. Swelling is a robust approach for inducing structural change as it occurs naturally in humid environments and can be easily adapted for industrial design. Small volumes of fluid that interact favorably with a material can cause large, dramatic, and geometrically nonlinear deformations including beam bending, plate buckling, and surface wrinkling. In this talk we address an overarching question regarding swelling-induced deformations: will the structural change occur globally, or will it be confined to the material's surface? We introduce a materials and geometry defined transition point that describes a fluid-structure's characteristic ``elastoswellability'' lengthscale. By locally swelling unconstrained slender beams and plates with solvents of varying solubility, we identify a transition between local surface wrinkling and global structural bending.
Effect of Accelerated Global Expansion on Bending of Light
Aghili, Mir Emad; Bombelli, Luca
2014-01-01
In 2007 Rindler and Ishak showed that, contrary to previous claims, the value of the cosmological constant does have an effect on light deflection by a gravitating object in an expanding universe, modeled by a Schwarzschild-de~Sitter spacetime. In this paper we consider light bending in the more general situation of a gravitating object in a cosmological background with varying expansion rate $H(t)$. We calculate numerically the null geodesics representing light rays deflected by a black hole in an accelerating Friedmann-Lema\\^itre-Robertson-Walker universe, modeled by a McVittie metric. Keeping the values of the distances from the observer to the lensing object and to the source fixed, we plot the dependence of the bending angle measured by two different sets of observers in this spacetime on the rate of change of $H(t)$.
Transfer matrices of dipoles with bending radius variation
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
With the increasing demand of high brightness in light source, the uniform dipole can not meet the needs of low emittance, and thus the dipole with bending radius variation is introduced in this paper. The transfer matrix of a non-uniform dipole whose bending radius is linearly changed is chosen as an example and a very simple calculation formula of non-uniform dipole transfer matrices is given. The transfer matrices of some common profile non-uniform dipoles are also listed. The comparison of these transfer matrices and the matrices calculated with slices method verifies the numerical accuracy of this formula. This method can make the non-uniform beam dynamic problem simpler, very helpful for emittance research and lattice design with non-uniform dipoles.
Elasticity solutions for functionally graded plates in cylindrical bending
Institute of Scientific and Technical Information of China (English)
YANG Bo; DING Hao-jiang; CHEN Wei-qiu
2008-01-01
The plate theory of functionally graded materials suggested by Mian and Spencer is extended to analyze the cylindrical bending problem of a functionally graded rectangular plate subject to uniform load. The expansion formula for displacements is adopted. While keeping the assumption that the material parameters can vary along the thickness direction in an arbitrary fashion, this paper considers orthotropic materials rather than isotropic materials. In addition, the traction-free condition on the top surface is replaced with the condition of uniform load applied on the top surface. The plate theory for the particular case of cylindrical bending is presented by considering an infinite extent in the y-direction. Effects of boundary conditions and material inhomogeneity on the static response of functionally graded plates are investigated through a numerical example.
Influence of bending test configuration on cracking behavior of FRC
DEFF Research Database (Denmark)
Finazzi, Silvia; Paegle, Ieva; Fischer, Gregor;
2014-01-01
This paper describes an investigation of the influence of the testing configuration for Fiber Reinforced Concrete in bending and aims at evaluating the influence of the test configuration details on the characterization of the material. Two different types of FRC, Steel Fiber Reinforced Concrete...... (SFRC) and Engineered Cementitious Composites (ECC), were tested and are described in this study. The materials were chosen so that one of them would be strain hardening (ECC) and the other tension softening (SFRC). Notched and un-notched three- and four-point bending tests were carried out to determine...... the flexural load-deformation response of FRC. This research focuses particularly on the influence of the appearance and depth of the notch on the cracking behavior of FRC. For this purpose, several specimens, both un-notched and notched with different depths of the notch (25 mm and 45 mm), were tested...
A new set of bending Td symmetry coordinates for MX4 molecules.
Schmidling, David
2013-12-15
The conventional set of Td symmetry coordinates for the bending modes of MX4 molecules can lead to ambiguous geometries when displacements from equilibrium are large. It is proposed here to use internal coordinates that are haversines of the bending angles divided by their sum. The A1 representation becomes a constant, enabling recovery of the bending angles unambiguously, analytically, and without approximation.
Requirements for Bend Insensitive Fiber in Millimeter-Wave Fronthaul Systems
DEFF Research Database (Denmark)
Rommel, Simon; Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José;
2015-01-01
The impact of fiber bending on mm-wave radioover-fiber transmission is investigated and the need for bend insensitive fiber for front-haul installation confirmed. A 70m Wband hybrid photonic-wireless link including bend insensitive fiber is demonstrated with BER
BENDING-SHEAR INTERACTION OF LONGITUDINALLY STIFFENED GIRDERS
Beg, Darko; Sinur, Franc
2011-01-01
To understand behaviour of longitudinally stiffened plated girders subjected to high bending moments and shear forces, four tests on large scale test specimens were performed. The results of these tests were used to verify the numerical model, which was employed for further parametric studies. With a verified simplified numerical model a parametric nonlinear analysis was systematically carried out to determine the resistance of longitudinally stiffened plated girders. Based on 630 numerical s...
Wooden models of an AA quadrupole between bending magnets
1978-01-01
At two points in the AA lattice, a quadrupole (QDN, defocusing, narrow) was tightly wedged between two bending magnets (BST, short, wide). This picture of wooden models lets one imagine the strong interaction between their magnetic fields. There was no way one could calculate with the necessary accuracy the magnetic effects and their consequences for the machine optics. The necessary corrections were made after measurements with a circulating beam, in a tedious iterative procedure, with corrrection coils and shims.
Problems with cryogenic operation of piezoelectric bending elements
Duffield, C. L.; Moreland, John; Fickett, F. R.
1986-05-01
Piezoelectric bimorphs constructed from lead titanate-zirconate (PZT) ceramic bonded to a brass sheet have been tested at cryogenic temperatures to determine their suitability for use in a low-temperature micropositioner. Experimental data are presented on bimorph sensitivity (displacement per volt) as a function of the number of temperature cycles. Results indicate that bimorphs of this type cannot be calibrated because of irreversible changes in the bending characteristics that occur while cycling from room temperature to 4 K.
Bending rigid molecular rods: formation of oligoproline macrocycles.
Scully, Conor C G; Rai, Vishal; Poda, Gennadiy; Zaretsky, Serge; Burns, Darcy C; Houliston, R Scott; Lou, Tiantong; Yudin, Andrei K
2012-12-01
Bent but not broken: cyclic oligoprolines are accessed in a reaction that effectively bends rigid oligoproline peptides (see scheme; TBDMS=tert-butyldimethylsilyl). The stitching is accomplished during macrocyclization enabled by aziridine aldehydes and isocyanides. Molecular modeling studies suggest that electrostatic attraction between the termini of the linear peptide is pivotal for macrocyclization. The macrocycles were studied by circular dichroism with a polyproline II structure being observed in larger macrocycles.
Influence of Whipping on Long term Vertical Bending Moment
DEFF Research Database (Denmark)
Baarholm, G. S.; Jensen, Jørgen Juncher
2004-01-01
This paper is concerned with estimating the response value corresponding to a long return period, say a twenty years. Time domain simulation is required to obtain the nonlinear response, and long time series are required to limit the statistical uncertainty in the simulations. It is crucial to in......). Results are presented for the S-175 container ship, (15th & 16th ITTC Seakeeping Committee 1983). The analysis shoes that whipping increases the vertical bending moment and that the correlation is significant...
GFRP Bar: Determining Tensile Strength with Bending Test
Almerich Chulia, Ana Isabel; Fenollosa Forner, Ernesto Jesús; Cabrera Fausto, Ivan
2015-01-01
In order to obtain GFRP reinforcement bars it is necessary to undertake tests regulated code which require important mechanical tools. This paper presents a method which allows for determining GFRP rebars tensile strength value from their flexural strength value which has been obtained with a simple, inexpensive and reliable test. This method results will be verified by applying it to values obtained in a series of bending tests and comparing these results with values obtained in tensile test...
Bending and Deformation of Sandwich Panels Due to Localized Pressure
Bambang K. Hadi; Fajar, A.
2005-01-01
Bending and deformation of sandwich panels due to localized pressure were analyzed using both Rayleigh-Ritz and finite element methods. The faces were made of laminated composite plates, while the core was a honeycomb material. Carbon fiber and glass fiber reinforced plastics were used for composite plate faces. In the case of Rayleigh-Ritz method, first the total energy of the system was calculated and then taking the variations of the total energy, the sandwich panel deflections could be co...
Predicting the static bending behavior of pallets with panel decks
Mackes, Kurt H.
1998-01-01
With increased use of pallets constructed utilizing structural panel decks, there is a need for a standardized, reliability-based design system, PDS-PANEL, to assist in the design and manufacture of panel-deck pallets. The primary objective of this research was to develop finite element models which predict the static bending behavior of pallets with at least one panel deck. stringer and block pallets were modeled using plate elements to simulate deck behavior and were...
Bending Capacity of Middle Joints of Upholstered Furniture Frames
Directory of Open Access Journals (Sweden)
Vasiliki Kamperidou, Vasileios Vasileiou
2012-12-01
Full Text Available This study evaluates the edgewise bending moment capacity of the four most frequently used middle joints in the upholstered furniture frames. The research included the following joints: Mortise and Tenon, double Dowel, Corner Blocks and double Gusset Plates, designed in the form of middle joints and made of beech and poplar solid wood. The test results indicated that regarding the edgewise bending force, the strongest middle joint was the double dowel joint made of beech wood (1896.9 N, while the respective joint made of poplar marked quite a low value of bending force (937.2 N. The strength of wooden corner blocks was proved to be quite powerful, made either of beech wood, poplar wood or the combination of the two wood species (beech: 1881.8 N, poplar: 1237.6 N, beech-poplar: 1783.6 N. The gusset plate joint made of beech resulted in weaker values (1378.2 N, compared to the dowel and corner block joints made of beech, whereas the same joint made of poplar demonstrated very satisfying values of edgewise bending force (1471.8 N. Finally, the mortise and tenon joint appeared to have the lowest strength, both in the case of beech (1306 N and poplar (634 N. The highest coeffi cient of elasticity (CE derived from double gusset plate joint, made of beech. All the joints showed good elasticity, except the mortise and tenon joint made of poplar, as well as, the dowel joint made of poplar, which recorded the lowest elasticity values of all. Generally, beech wood resulted in stronger and more elastic joints compared to poplar.
[On fatigue bending strength of PMMA-specimen (author's transl)].
Rojczyk, M; Rojczyk-Pflüger, J
1980-01-01
The fatigue response of PMMA-specimen was tested under cyclic bending of 1.5 Hz in a particularly designed testing device. Specimen were tested that a "Wöhler" curve and the corresponding fatigue strength could be evaluated. The fatigue strength was reached after a comparatively short time and ranged in the order of 33 per cent of static breaking strength. PMID:7447658
Bending resistance of composite steel truss and concrete beam
Silva, Mickael; Piloto, P.A.G.; Roque, Sérgio; VILA REAL Paulo; Plizzari, Giovanni
2013-01-01
This study presents the numerical simulation of the bending resistance of CSTCB in stage 1 (element made only by the self-supported steel truss and base plate). Two different base plates were considered (Steel and Concrete) and two different types of steel trusses (Type I and II). The numerical results are also compared with analytical results, assuming the full interaction between steel truss and concrete, neglecting the tensile strength of concrete, considering the effective area of concret...
BENDING ANALYSIS OF COMPOSITE PLATES USING HIGHER ORDER THEORY
N UPENDRA; B. Sidda Reddy; K TIRUPATI REDDY; AJAY KUMAR REDDY K
2013-01-01
In this paper, an analytical formulation and solutions are developed to investigate the bending characteristics of laminated composite plates based on higher order shear deformation theory. The equation ofmotion of laminated plates is deduced using Hamilton’s principle. Closed-form solutions are obtained by using the Navier’s technique for simply supported boundary conditions. The effect of side to thickness ratio, aspect ratio, degree of orthotropic, stacking sequence ad no of layers on defl...
Cylindrical Bending of Deformable Textile Rectangular Patch Antennas
Directory of Open Access Journals (Sweden)
Freek Boeykens
2012-01-01
Full Text Available Textile patch antennas are well known as basic components for wearable systems that allow communication between a human body and the external world. Due to their flexibility, textile antennas are subjected to bending when worn, causing a variation in resonance frequency and radiation pattern with respect to the flat state in which their nominal design is performed. Hence, it is important for textile antenna engineers to be able to predict these performance parameters as a function of the bending radius. Therefore, we propose a comprehensive analytical model that extends the cylindrical cavity model for conformal rigid patch antennas by incorporating the effects of patch stretching and substrate compression. It allows to predict the resonance frequency and the radiation pattern as a function of the bending radius. Its validity has been verified experimentally. Unlike previous contributions, which concerned only qualitative studies by means of measurements and numerical full-wave simulations, the proposed model offers advantages in terms of physical insight, accuracy, speed, and cost.
Modeling of a cracked beam section under bending
International Nuclear Information System (INIS)
Numerical simulations are widely used to study the dynamical behaviour of turbines cracked shaft as this event is rare and then doesn't enable to have an useful industrial feedback. A new method, which enables to calculate the constitutive law of a cracked beam subjected to bending was previously proposed. Based on three-dimensional computations taking into account the unilateral contact between both lips of the crack, it consists in defining a (non-linear) behaviour relation between the bending moment applied to the cracked section and the resulting field of displacements, compatible with the beam theory so that it can be used in rotor-dynamics software. The aim of this paper is to complete this first model by adding shear effects. For some crack geometries, a simpler model can be derived, based on the recognition that bending moments and shear forces are uncoupled and the dependence of the behaviour law with respect to the shear forces becomes linear. Developments have been achieved in this case and some results of the validation tests are shown. (authors)
A missing-bending-magnet scheme for PEP
International Nuclear Information System (INIS)
This article presents a missing-bending-magnet scheme for PEP as a modification that could be considered if PEP were available as a fully dedicated synchrotron radiation source. The scheme can be applied to one or more PEP sextants without changing the rest. By removing some bending magnets, rearranging the remaining magnets, and adding two quadrupoles, ten additional straight sections per sextant can be created, each 5 m or more in length, for insertion devices. Beam lines therefrom, plus possible beam lines from bending magnets would enter a continuous experimental hall instead of individual tunnels and halls for each beam line. This should result in construction cost savings and increased operations efficiency. The ideal beam orbit is unchanged at the two ends and the middle of the sextant. At the end of the curved part of the sextant the lattice functions match those of the long interaction region straight section in the low emittance configuration of PEP. The electron beam characteristics in the newly created straight sections are described, including the enlargement of the horizontal beam size due to the nonzero dispersion. Some disadvantages of the scheme are increased operations complexity due to the need for nine new quadrupole families, increased beam emittance (by 14.5% is one sextant is modified), and reduced dynamic aperture. However, the dynamic aperture is still about as large as the physical aperture and should be adequate for good beam lifetime and injection. (orig.)
Optimal Recursive Digital Filters for Active Bending Stabilization
Orr, Jeb S.
2013-01-01
In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.
Biomorphodynamic modelling of inner bank advance in migrating meander bends
Zen, Simone; Zolezzi, Guido; Toffolon, Marco; Gurnell, Angela M.
2016-07-01
We propose a bio-morphodynamic model at bend cross-sectional scale for the lateral migration of river meander bends, where the two banks can migrate separately as a result of the mutual interaction between river flow, sediments and riparian vegetation, particularly at the interface between the permanently wet channel and the advancing floodplain. The model combines a non-linear analytical model for the morphodynamic evolution of the channel bed, a quasi-1D model to account for flow unsteadiness, and an ecological model describing riparian vegetation dynamics. Simplified closures are included to estimate the feedbacks among vegetation, hydrodynamics and sediment transport, which affect the morphology of the river-floodplain system. Model tests reveal the fundamental role of riparian plants in generating bio-morphological patterns at the advancing floodplain margin. Importantly, they provide insight into the biophysical controls of the 'bar push' mechanism and into its role in the lateral migration of meander bends and in the temporal variations of the active channel width.
Bending instability in galactic discs. Advocacy of the linear theory
Rodionov, S A
2013-01-01
We demonstrate that in N-body simulations of isolated disc galaxies there is numerical vertical heating which slowly increases the vertical velocity dispersion and the disc thickness. Even for models with over a million particles in a disc, this heating can be significant. Such an effect is just the same as in numerical experiments by Sellwood (2013). We also show that in a stellar disc, outside a boxy/peanut bulge, if it presents, the saturation level of the bending instability is rather close to the value predicted by the linear theory. We pay attention to the fact that the bending instability develops and decays very fast, so it couldn't play any role in secular vertical heating. However the bending instability defines the minimal value of the ratio between the vertical and radial velocity dispersions $\\sigma_z / \\sigma_R \\approx 0.3$ (so indirectly the minimal thickness) which could have stellar discs in real galaxies. We demonstrate that observations confirm last statement.
Bending light on demand by holographic sculpturing its wavefront
Latychevskaia, Tatiana
2015-01-01
A classical light beam propagates along a straight line and does not bend unless in a medium of variable refractive index. It is well known that by modifying the wavefront in a certain manner, the light intensity can be turned into a certain shape. Examples are optical lenses or Fresnel Zone Plates for focusing an incident wave to a point at the focal plane. Another example are Airy beams created by modifying the phase distribution of the wavefront into an Airy function resulting in a bending of the light intensity while propagating. A further example is holography, where the phase of the wavefront passing through a hologram is changed to mimic the object wavefront, thus providing the illusion that the original object is present in space. However, all these known techniques allow for limited light modifications: either focusing within a limited region in space2 or shaping a certain class of parametric curves along the optical axis or creating a bend in a quadratic-dependent declination as in the case of Airy ...
Electro-active material (EAM) based bend sensors
LaComb, Ronald; LaComb, Julie
2010-04-01
The capability to accurately estimate strain and orientation of cables in an undersea environment is important for a multitude of applications. One way to estimate the positional location of a submersed cable is to utilize a network of distributed bend sensors providing inputs to a curve fitting algorithm. In this work commercially available bend sensors are characterized for small deflections. In addition proto-type devices are presented which can potentially improve device sensitivity. Commercially available bend sensors are based upon electro-active materials and variable resistance materials. Electro-active materials (EAM) are known for their actuator functionality but certain EAMs are capable of sensing as well. New advances in materials such as Ionic Polymer Metal Composites (IPMC) are proving suitable for quasi-static sensor applications. These sensors are low power, conformal and produce directionally dependent output voltages which are linearly proportional to deflection, with voltage polarity representative of the deflection direction. IPMCs are capable of being morphed for increased sensitivity. Variable resistivity sensors are based on smart epoxy polymer and carbon loaded inks. These sensors are inexpensive and conformal and unlike EAMs provide static measurements.
Motional Effect on Wall Shear Stresses
DEFF Research Database (Denmark)
Kock, Samuel Alberg; Torben Fründ, Ernst; Yong Kim, Won
Atherosclerosis is the leading cause of death and severe disability. Wall Shear Stress (WSS), the stress exerted on vessel walls by the flowing blood is a key factor in the development of atherosclerosis. Computational Fluid Dynamics (CFD) is widely used for WSS estimations. Most CFD simulations...... are based on static models to ease computational burden leading to inaccurate estimations. The aim of this work was to estimate the effect of vessel wall deformations (expansion and bending) on WSS levels....
Bending elasticity of charged surfactant layers: the effect of mixing.
Bergström, L Magnus
2006-08-01
Expressions have been derived from which the spontaneous curvature (H(0)), bending rigidity (k(c)), and saddle-splay constant (k(c)) of mixed monolayers and bilayers may be calculated from molecular and solution properties as well as experimentally available quantities such as the macroscopic hydrophobic-hydrophilic interfacial tension. Three different cases of binary surfactant mixtures have been treated in detail: (i) mixtures of an ionic and a nonionic surfactant, (ii) mixtures of two oppositely charged surfactants, and (iii) mixtures of two ionic surfactants with identical headgroups but different tail volumes. It is demonstrated that k(c)H(0), k(c), and k(c) for mixtures of surfactants with flexible tails may be subdivided into one contribution that is due to bending properties of an infinitely thin surface as calculated from the Poisson-Boltzmann mean field theory and one contribution appearing as a result of the surfactant film having a finite thickness with the surface of charge located somewhat outside the hydrophobic-hydrophilic interface. As a matter of fact, the picture becomes completely different as finite layer thickness effects are taken into account, and as a result, the spontaneous curvature is extensively lowered whereas the bending rigidity is raised. Furthermore, an additional contribution to k(c) is present for surfactant mixtures but is absent for k(c)H(0) and k(c). This contribution appears as a consequence of the minimization of the free energy with respect to the composition of a surfactant layer that is open in the thermodynamic sense and must always be negative (i.e., k(c) is generally found to be brought down by the process of mixing two or more surfactants). The magnitude of the reduction of k(c) increases with increasing asymmetry between two surfactants with respect to headgroup charge number and tail volume. As a consequence, the bending rigidity assumes the lowest values for layers formed in mixtures of two oppositely charged
Effect of Bend Curvature Ratio on Flow Pattern at a Mixing Tee after a 90 Degree Bend
Directory of Open Access Journals (Sweden)
Hidetoshi Hashizumeh
2009-11-01
Full Text Available Many nuclear power plants report high cycle thermal fatigue in their cooling system, caused by temperature fluctuation in a non-isothermal mixing area. One of these areas is the T-junction, in which fluids of various temperatures and velocities blend. The objective of this research is to classify turbulent jet mechanics in order to examine the flow-field structure under various operating conditions. Furthermore, this research discovers the optimum operating conditions of the mixing tee in this piping system. An experimental model, including the T-junction with a 90 degree bend upstream, is operated to analyze this mixing phenomenon based on the real operation design of the Phenix Reactor. The temperature and velocity data show that a 90 degree bend has a strong effect on the fluid mixing mechanism and the momentum ratio between the main velocity and the branch velocity of the T-junction, which could be an important parameter for the classification of the fluid mixing mechanism. By comparing their mean velocity distributions, velocity fluctuations and time-series data, the behavior of the branch jet is categorized into four types of turbulent jets; sorted from the highest to the lowest momentum ratios, the jets are categorized as follows: the wall jet, the re-attached jet, the turn jet, and the impinging jet. Ultimately, the momentum ration of the turn jet was selected as the optimum operating condition as it has the lowest velocity and the lowest temperature fluctuations near the wall of the mixing tee. By changing the bending ratio from 1.41 to 1.0 the results show that most of data are in the turn jet region. Therefore, with the sharpened bend, the re-attached region is compressed.
EXPERIMENTAL STUDY ON BED SCOUR IN A 90°CHANNEL BEND
Institute of Scientific and Technical Information of China (English)
Masoud GHODSIAN; S. Kamal MOUSAVI
2006-01-01
The special feature of bend flow leads to scouring of the bed and bank. Various parameters like flow depth, flow velocity or discharge, geometry of bend and characteristics of bed material may affect the scour process. Experiments were carried out to study the effect of some important parameters on bend scour under clear water condition. Experiments were conducted in a 0.6m wide and 0.7m high flume with 90 degree bend. The lateral variations of bed slope were studied. The maximum depth of scour was correlated to densimetric Froude number, relative bend radius and relative depth of flow.
Energy Technology Data Exchange (ETDEWEB)
Kohno, Hideo, E-mail: kohno.hideo@kochi-tech.ac.jp [School of Environmental Science and Engineering, Kochi University of Technology, Kami, Kochi 782-8502 (Japan); Masuda, Yusuke [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)
2015-05-11
When the direction of flattening of a carbon nanotube changes during growth mediated by a metal nanoparticle, a carbon nanotetrahedron is formed in the middle of the carbon nanoribbon. We report the bending properties of the carbon nanotetrahedron/nanoribbon structure using a micro-manipulator system in a transmission electron microscope. In many cases, bending occurs at an edge of the carbon nanotetrahedron. No significant change is observed in the tetrahedron's shape during bending, and the bending is reversible and repeatable. Our results show that the carbon nanotetrahedron/nanoribbon structure has good durability against mechanical bending.
Optimal r/b ratio of bend channel in centrifugal compressor
Institute of Scientific and Technical Information of China (English)
Suping WEN; Xiaowen HU; Yong ZHANG; Jun WANG; Tingbin LI
2008-01-01
A numerical investigation on the flow in a bend channel by coupling the impeller with the vaneless diffuser in a centrifugal compressor with different r/b ratios (bend radius r to bend channel width b) is presented. The jet-wake effect of the impeller outlet is considered and flow pattern in the bend channel and the performance of the centrifugal compressor stage are investigated. The results indicate that there is an optimal r/b ratio for increasing the stage efficiency to the highest for a specific compressor stage. The change in r/b ratio significantly affects the flow angle of the bend chan-nel outlet. The prime reason for the total pressure loss in the bend channel is the wall friction in the bend channel.
Influence of Characteristics on Bending Strength of Layered Steel Fiber Reinforced Concrete
Institute of Scientific and Technical Information of China (English)
DAI Shao-bin; SONG Ming-hai; HUANG Jun
2005-01-01
The influence of two main characteristics of steel fiber, the aspect ratio (Df) and volume fraction (pf), on the bending strength of Layered Steel Fiber Reinforced Concrete (LSFRC) is investigated by using orthogonal test. Via the variance analysis on the experimental results and trend analysis on the two characteristics, Df is found significantly related to the bending strength of LSFRC. The influence ratio is 63.3%. The bending strength of LSFRC increases if Df increases, makes better when Df reaches 100. ρf has ordinary influence on the bending strength of LSFRC. The influence ratio is 29.2%. Other characteristics, such as the shape of steel fiber and the mix proportion, have less influence. The best ρf contributing to the bending strength of LSFRC is 1.5 %. If pf is greater than 1.5 %, it has negative influence on the bending strength of LSFRC. So, pf makes a limited contribution to the bending strength of LSFRC.
Bending calculation analysis of composite beam with bolt connection%螺栓连接组合梁的弯曲计算
Institute of Scientific and Technical Information of China (English)
郭作杰
2015-01-01
由于螺栓连接组合梁的弯曲是一个静不定问题，一些文献把螺栓连接组合梁弯曲作为静定问题来处理，有时会导致螺栓连接组合梁叠层梁弯曲应力、弯曲挠度、螺栓剪力的计算结果存在很大的误差。本文按静不定问题研究了螺栓连接组合梁弯曲变形，导出了螺栓连接组合梁弯曲的弯曲应力、弯曲挠度、螺栓剪力计算公式。通过有限元法及实验验证了把螺栓连接组合梁弯曲作为静不定问题处理是正确的。%The bending of composite beam with bolt connection is a statically indeterminate problem in fact;some mechanics of materials textbooks related take it as statically determinate problem, which may lead to large calculation error for the bending stress, bending deflection and shear force of composite beam with bolt connection. By taking it as statically indeterminate structures, the calculation formula for bending stress, bending deflection and shear force of composite beam with bolt connection were derived. The finite element method and experiments verify that taking composite beam with bolt connection as a statically indeterminate problem is right.
1984-01-01
Electrical characterization of defects induced in FZ and CZ silicon stress in four-point bending above 1200 C was started. Techniques to study electrical activity that will permit correlation of defect activity with diffusion length and with room and low temperature EBIC are being developed. Preliminary characterization of defects in ribbon grown at very low speeds of less than 1 cm/min shows that the dislocation density is very low over significant regions of cross section, while regions of high dislocation density (approx. 5 x 10(6)/cm(2)) occur in bands in a number of places. Addition measurements of stress distributions in EFG material were obtained at the University of Illinois using shadow-Moire interferometry.
Repressed Ca(2+) clearance in parthenolide-treated murine brain bEND.3 endothelial cells.
Tsai, Tien-Yao; Lou, Shyh-Liang; Cheng, Ka-Shun; Wong, Kar-Lok; Wang, Mei-Ling; Su, Tzu-Hui; Chan, Paul; Leung, Yuk-Man
2015-12-15
Parthenolide is a sesquiterpene lactone compound isolated from the leaves and flowerheads of the plant feverfew (Tanacetum parthenium). The anticancer effects of parthenolide have been well studied and this lactone compound is currently under clinical trials. Parthenolide is also a protective agent in cardiac reperfusion injury via its inhibition of nuclear factor-κB (NF-κB). Not much is known if this compound affects signal transduction in non-tumor cells. We investigated whether parthenolide affected Ca(2+) signaling in endothelial cells, key components in regulating the vascular tone. In this work using mouse cortical microvascular bEND.3 endothelial cells, we found that a 15-h treatment with parthenolide resulted in amplified ATP-triggered Ca(2+) signal; the latter had a very slow decay rate suggesting suppression of Ca(2+) clearance. Evidence suggests parthenolide suppressed Ca(2+) clearance by inhibiting the plasmalemmal Ca(2+) pump; such suppression did not result from decreased expression of the plasmalemmal Ca(2+) pump protein. Rather, such suppression was possibly a consequence of endoplasmic reticulum (ER) stress, since salubrinal (an ER stress protector) was able to alleviate parthenolide-induced Ca(2+) clearance suppression. Given the current deployment of parthenolide as an anti-cancer drug in clinical trials and the potential usage of this lactone as a cardioprotectant, it is important to examine in details the perturbing effects of parthenolide on Ca(2+) homeostasis in endothelial cells and neighboring vascular smooth muscle cells, activities of which exert profound effects on hemodynamics. PMID:26607466
Contact force and mechanical loss of multistage cable under tension and bending
Ru, Yanyun; Yong, Huadong; Zhou, Youhe
2016-07-01
A theoretical model for calculating the stress and strain states of cabling structures with different loadings has been developed in this paper. We solve the problem for the first- and second-stage cable with tensile or bending strain. The contact and friction forces between the strands are presented by two-dimensional contact model. Several theoretical models have been proposed to verify the results when the triplet subjected to the tensile strain, including contact force, contact stresses, and mechanical loss. It is found that loadings will affect the friction force and the mechanical loss of the triplet. The results show that the contact force and mechanical loss are dependent on the twist pitch. A shorter twist pitch can lead to higher contact force, while the trend of mechanical loss with twist pitch is complicated. The mechanical loss may be reduced by adjusting the twist pitch reasonably. The present model provides a simple analysis method to investigate the mechanical behaviors in multistage-structures under different loads.
Effect of web stiffness on the bending behaviour of timber composite I-beams
Energy Technology Data Exchange (ETDEWEB)
Racher, P. [Civil Engineering Laboratory, CUST, Blaise Pascal University - Campus des Cezeaux, BP 206, 63174 Aubiere Cedex (France)]. E-mail: p.racher@cust.univ-bpclermont.fr; Bocquet, J.F. [LERMAB, ENSTIB, Henri Poincarre University, 88000 Epinal (France); Bouchair, A. [Civil Engineering Laboratory, CUST, Blaise Pascal University - Campus des Cezeaux, BP 206, 63174 Aubiere Cedex (France)
2007-07-01
The design of timber I-beams with glued OSB web is currently based on simplified analytical model and experimental works. At the ultimate limit state, normal forces in the flanges and shear stresses in the web govern the load-carrying capacity of the beams. Applications in industrial or commercial buildings requires cross-section with greater height. In this paper, the effect of the slenderness of the web is analysed through an experimental program and a finite element model. For beams with finger-jointed flanges and butt-joints between web panels, the effective stiffness and the bending capacity are evaluated considering a web of 12 mm in thickness and height varying from 225 to 495 mm. The experimental values of the effective stiffness were compared to the theoretical evaluation taking into account the shear deformations of the web. For highest heights of the cross-section, the results shown that the ultimate capacity is governed by the plate behaviour of the web, resulting in the failure of the glued joint. On this basis, the internal behaviour is examined using a three-dimensional finite element modelling. The effect of the mains parameters such as the relative stiffness of the components and the gap between web panels is investigated. The stress concentration in the area of the web joint is analysed and a new design criterion is calibrated.
Damage mechanisms of Ti-Al intermetallics in three point ultrasonic bending fatigue
Directory of Open Access Journals (Sweden)
E. Bayraktar
2007-09-01
Full Text Available Purpose: Damage mechanisms of two phases (α2−Ti3Al and γ−Ti-Al intermetallics alloy are investigated at room temperature in a new developed resonance type 3- point (3P fatigue bending test device at a frequency of 20 kHz.Design/methodology/approach: Manufacturing and analysis of composition of this alloy were carried out in advanced materials laboratory by collaborating with aircraft design engineering department for non-ferrous metal research centre in China. All of the 3P- fatigue bending were carried out at the stress ratios of R=0.1, R=0.5, R=0.7 mainly in gigacycle regime.Findings: Damage mechanisms were compared in static and dynamic test conditions. The geometries of static tensile test and ultrasonic fatigue test specimens have been calculated by analytical or numerical method as discussed in detail formerly. This paper gives further results and more complicate discussion on this study particularly on the crack formation and the role of the different parameters on the damage mechanisms of this alloy. Damage analysis was made by means of optical (OM and Scanning Electron Microscopies (SEM.Research limitations/implications: Paper gives results and more complicate discussion on the crack formation and the role of the different parameters on the damage mechanisms of this alloy.Originality/value: This study proposes a new methodology for fatigue design and a new idea on the criterion for the damage under very high cycle fatigue regime. The results are well comparables for the specimens under real service conditions. This type of study gives many facilities for the sake of simplicity in industrial application.
Energy Technology Data Exchange (ETDEWEB)
Mohan, R.; Marshall, C.; Ghadiali, N.; Wilkowski, G. [Battelle, Columbus, OH (United States)
1997-04-01
This paper summarizes work on angled through-wall-crack initiation and combined loading effects on ferritic nuclear pipe performed as part of the Nuclear Regulatory Commission`s research program entitled {open_quotes}Short Cracks In Piping an Piping Welds{close_quotes}. The reader is referred to Reference 1 for details of the experiments and analyses conducted as part of this program. The major impetus for this work stemmed from the observation that initially circumferentially oriented cracks in carbon steel pipes exhibited a high tendency to grow at a different angle when the cracked pipes were subjected to bending or bending plus pressure loads. This failure mode was little understood, and the effect of angled crack grown from an initially circumferential crack raised questions about how cracks in a piping system subjected to combined loading with torsional stresses would behave. There were three major efforts undertaken in this study. The first involved a literature review to assess the causes of toughness anisotropy in ferritic pipes and to develop strength and toughness data as a function of angle from the circumferential plane. The second effort was an attempt to develop a screening criterion based on toughness anisotropy and to compare this screening criterion with experimental pipe fracture data. The third and more significant effort involved finite element analyses to examine why cracks grow at an angle and what is the effect of combined loads with torsional stresses on a circumferentially cracked pipe. These three efforts are summarized.
Geologic map of Big Bend National Park, Texas
Turner, Kenzie J.; Berry, Margaret E.; Page, William R.; Lehman, Thomas M.; Bohannon, Robert G.; Scott, Robert B.; Miggins, Daniel P.; Budahn, James R.; Cooper, Roger W.; Drenth, Benjamin J.; Anderson, Eric D.; Williams, Van S.
2011-01-01
The purpose of this map is to provide the National Park Service and the public with an updated digital geologic map of Big Bend National Park (BBNP). The geologic map report of Maxwell and others (1967) provides a fully comprehensive account of the important volcanic, structural, geomorphological, and paleontological features that define BBNP. However, the map is on a geographically distorted planimetric base and lacks topography, which has caused difficulty in conducting GIS-based data analyses and georeferencing the many geologic features investigated and depicted on the map. In addition, the map is outdated, excluding significant data from numerous studies that have been carried out since its publication more than 40 years ago. This report includes a modern digital geologic map that can be utilized with standard GIS applications to aid BBNP researchers in geologic data analysis, natural resource and ecosystem management, monitoring, assessment, inventory activities, and educational and recreational uses. The digital map incorporates new data, many revisions, and greater detail than the original map. Although some geologic issues remain unresolved for BBNP, the updated map serves as a foundation for addressing those issues. Funding for the Big Bend National Park geologic map was provided by the United States Geological Survey (USGS) National Cooperative Geologic Mapping Program and the National Park Service. The Big Bend mapping project was administered by staff in the USGS Geology and Environmental Change Science Center, Denver, Colo. Members of the USGS Mineral and Environmental Resources Science Center completed investigations in parallel with the geologic mapping project. Results of these investigations addressed some significant current issues in BBNP and the U.S.-Mexico border region, including contaminants and human health, ecosystems, and water resources. Funding for the high-resolution aeromagnetic survey in BBNP, and associated data analyses and
On the bending algorithms for soft objects in flows
Guckenberger, Achim; Schraml, Marcel P.; Chen, Paul G.; Leonetti, Marc; Gekle, Stephan
2016-10-01
One of the most challenging aspects in the accurate simulation of three-dimensional soft objects such as vesicles or biological cells is the computation of membrane bending forces. The origin of this difficulty stems from the need to numerically evaluate a fourth order derivative on the discretized surface geometry. Here we investigate six different algorithms to compute membrane bending forces, including regularly used methods as well as novel ones. All are based on the same physical model (due to Canham and Helfrich) and start from a surface discretization with flat triangles. At the same time, they differ substantially in their numerical approach. We start by comparing the numerically obtained mean curvature, the Laplace-Beltrami operator of the mean curvature and finally the surface force density to analytical results for the discocyte resting shape of a red blood cell. We find that none of the considered algorithms converges to zero error at all nodes and that for some algorithms the error even diverges. There is furthermore a pronounced influence of the mesh structure: Discretizations with more irregular triangles and node connectivity present serious difficulties for most investigated methods. To assess the behavior of the algorithms in a realistic physical application, we investigate the deformation of an initially spherical capsule in a linear shear flow at small Reynolds numbers. To exclude any influence of the flow solver, two conceptually very different solvers are employed: the Lattice-Boltzmann and the Boundary Integral Method. Despite the largely different quality of the bending algorithms when applied to the static red blood cell, we find that in the actual flow situation most algorithms give consistent results for both hydrodynamic solvers. Even so, a short review of earlier works reveals a wide scattering of reported results for, e.g., the Taylor deformation parameter. Besides the presented application to biofluidic systems, the investigated
... 5 Things to Know About Zika & Pregnancy Childhood Stress KidsHealth > For Parents > Childhood Stress Print A A ... and feel stress to some degree. Sources of Stress Stress is a function of the demands placed ...
... Awards Healthy Workplace Food and Beverage Toolkit Stress Management Banner 1 - To Stress or Not to Stress - ... Decide But We Can Help What Is Stress Management? Banner 2 - Stress Continuum Graphic Banner Live life ...
NONLINEAR BENDING THEORY OF DIAGONAL SQUARE PYRAMID RETICULATED SHALLOW SHELLS
Institute of Scientific and Technical Information of China (English)
肖潭; 刘人怀
2001-01-01
Double-deck reticulated shells are a main form of large space structures. One of the shells is the diagonal square pyramid reticulated shallow shell, whose its upper and lower faces bear most of the load but its core is comparatively flexible. According to its geometrical and mechanical characteristics, the diagonal square pyramid reticulated shallow shell is treated as a shallow sandwich shell on the basis of three basic assumptions. Its constitutive relations are analyzed from the point of view of energy and internal force equivalence. Basic equations of the geometrically nonlinear bending theory of the diagonal square pyramid reticulated shallow shell are established by means of the virtual work principle .
TRAPEZOIDAL PLATE BENDING ELEMENT WITH DOUBLE SET PARAMETERS
Institute of Scientific and Technical Information of China (English)
Shao-chun Chen; Dong-yang Shi; I chiro Hagiwara
2003-01-01
Using double set parameter method, a 12-parameter trapezoidal plate bending element is presented. The first set of degrees of freedom, which make the element convergent, are the values at the four vertices and the middle points of the four sides together with the mean values of the outer normal derivatives along four sides. The second set of degree of freedom, which make the number of unknowns in the resulting discrete system small and computation convenient are values and the first derivatives at the four vertices of the element. The convergence of the element is proved.
Fiber-Optic Bend Sensor Based on Double Cladding Fiber
Ivanov, Oleg V.; Alexey A. Chertoriyskiy
2015-01-01
We develop and investigate fiber-optic bend sensor, which is formed by a section of double cladding SM630 fiber between standard SMF-28 fibers. The principle of operation of the sensor is based on coupling of the fiber core and cladding modes at the splices of fibers having different refractive index profiles. We use two sources with wavelengths 1328 and 1545 nm to interrogate the sensor. The dependences of transmission on curvature at these wavelengths are significantly different. We show th...
Bending modulus of bidisperse particle rafts: Local and collective contributions
Petit, Pauline; Biance, Anne-Laure; Lorenceau, Elise; Planchette, Carole
2016-04-01
The bending modulus of air-water interfaces covered by a monolayer of bidisperse particles is probed experimentally under quasistatic conditions via the compression of the monolayer, and under dynamical conditions studying capillary-wave propagation. Simple averaging of the modulus obtained solely with small or large particles fails to describe our data. Indeed, as observed in other configurations for monodisperse systems, bidisperse rafts have both a granular and an elastic character: chain forces and collective effects must be taken into account to fully understand our results.
Wake-induced bending of two-dimensional plasma crystals
Röcker, T B; Zhdanov, S K; Couëdel, L; Morfill, G E
2014-01-01
It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.
Wake-induced bending of two-dimensional plasma crystals
Energy Technology Data Exchange (ETDEWEB)
Röcker, T. B., E-mail: tbr@mpe.mpg.de; Ivlev, A. V., E-mail: ivlev@mpe.mpg.de; Zhdanov, S. K.; Morfill, G. E. [Max Planck Institute for Extraterrestrial Physics, 85741 Garching (Germany); Couëdel, L. [CNRS, Aix-Marseille-Université, Laboratoire de Physique des Interactions Ioniques et Moléculaires, UMR 7345, 13397 Marseille Cedex 20 (France)
2014-07-15
It is shown that the wake-mediated interactions between microparticles in a two-dimensional plasma crystal affect the shape of the monolayer, making it non-flat. The equilibrium shape is calculated for various distributions of the particle number density in the monolayer. For typical experimental conditions, the levitation height of particles in the center of the crystal can be noticeably smaller than at the periphery. It is suggested that the effect of wake-induced bending can be utilized in experiments, to deduce important characteristics of the interparticle interaction.
Microstructure controlled bending response in AA6016 Al alloys
International Nuclear Information System (INIS)
Highlights: → The hemmability of two AA6016-type aluminium alloys in T4P temper state is studied. → High Mg content and long solutionizing times increase the precipitation potential. → Inhomogeneous grain boundary particles form by precipitation of alloying elements. → Large amount of particles combined with high matrix strength reduce the hemmability. → Intergranular fracture is promoted by grain boundary debonding and voids formation. - Abstract: A contemporary approach in the car weight reduction is the use of low weight and high strength Al alloys sheets for hang-on body panels production. The final step in the forming route of such panels is the attachment of the outer skin to the inner part of the panel by applying a hemming operation. This joining method is cheap, easy to perform and environment-friendly, but requires severe 180 deg. bending of the edges of the outer skin which quite often results in cracking or complete tearing of the bend surface. Such kind of failure restricts the further application of the hemmed products. The microstructures after solution heat treatment and pre-aging (T4P temper state) of two grades age-hardening AA6016-type aluminium alloy sheets were studied in this work by means of optical microscopy, scanning electron microscopy and electron backscatter diffraction. The obtained results were related to the hemming response of the grades. It was found that the alloy composition is one of the main parameters controlling the bendability of these grades through the amount of the formed strengthening phases. However, the applied thermal treatment remains the key factor responsible for the favorable distribution of these phases into the microstructure. The grain size and the volume fraction of the constituent particles were found to play secondary role in forming the material bending properties and can be only used for their fine tuning. The presence of Mg2Si (β-phase) and/or Al1.9CuMg4.1Si3.3 (Q-phase) particles in the grain
Tilted bending magnet for SPS target area TCC2
1976-01-01
A slow-extracted proton beam from the SPS goes to the underground target zone TCC2. The part of the primary beam which traverses target T4 is recuperated and transported over some 800 m, for further use in the North Area High Intensity facility (NAHIF). The curved and sloped trajectory required 4 of the bending magnets to be tilted. Here we see one of them being attended by Gilbert Françon in hall 867, ready for installation in TCC2.
Held, Christian; Liewald, Mathias; Schleich, Ralf; Sindel, Manfred
2010-06-01
The use of lightweight materials offers substantial strength and weight advantages in car body design. Unfortunately such kinds of sheet material are more susceptible to wrinkling, spring back and fracture during press shop operations. For characterization of capability of sheet material dedicated to deep drawing processes in the automotive industry, mainly Forming Limit Diagrams (FLD) are used. However, new investigations at the Institute for Metal Forming Technology have shown that High Strength Steel Sheet Material and Aluminum Alloys show increased formability in case of bending loads are superposed to stretching loads. Likewise, by superposing shearing on in plane uniaxial or biaxial tension formability changes because of materials crystallographic texture. Such mixed stress and strain conditions including bending and shearing effects can occur in deep-drawing processes of complex car body parts as well as subsequent forming operations like flanging. But changes in formability cannot be described by using the conventional FLC. Hence, for purpose of improvement of failure prediction in numerical simulation codes significant failure criteria for these strain conditions are missing. Considering such aspects in defining suitable failure criteria which is easy to implement into FEA a new semi-empirical model has been developed considering the effect of bending and shearing in sheet metals formability. This failure criterion consists of the combination of the so called cFLC (combined Forming Limit Curve), which considers superposed bending load conditions and the SFLC (Shear Forming Limit Curve), which again includes the effect of shearing on sheet metal's formability.
A Novel Low-Cost, Large Curvature Bend Sensor Based on a Bowden-Cable.
Jeong, Useok; Cho, Kyu-Jin
2016-06-24
Bend sensors have been developed based on conductive ink, optical fiber, and electronic textiles. Each type has advantages and disadvantages in terms of performance, ease of use, and cost. This study proposes a new and low-cost bend sensor that can measure a wide range of accumulated bend angles with large curvatures. This bend sensor utilizes a Bowden-cable, which consists of a coil sheath and an inner wire. Displacement changes of the Bowden-cable's inner wire, when the shape of the sheath changes, have been considered to be a position error in previous studies. However, this study takes advantage of this position error to detect the bend angle of the sheath. The bend angle of the sensor can be calculated from the displacement measurement of the sensing wire using a Hall-effect sensor or a potentiometer. Simulations and experiments have shown that the accumulated bend angle of the sensor is linearly related to the sensor signal, with an R-square value up to 0.9969 and a root mean square error of 2% of the full sensing range. The proposed sensor is not affected by a bend curvature of up to 80.0 m(-1), unlike previous bend sensors. The proposed sensor is expected to be useful for various applications, including motion capture devices, wearable robots, surgical devices, or generally any device that requires an affordable and low-cost bend sensor.
Takahashi, Asami; Ishigure, Takaaki
2015-02-01
We fabricate low-loss graded index (GI) circular core multimode polymer optical waveguides with 90o bending and demonstrate low bending loss even if the bend radius is as small as 1 mm. In the several fabrication methods for GI-core polymer waveguides already proposed, we adopt the "Mosquito method" that utilize a microdispenser because the Mosquito method makes it possible to fabricate waveguides directly on board at desired places on a printed circuit board, and to draw various patterns of cores including curves. However, in the waveguides including such curved cores, the additional transmission loss due to the bending (bending loss) is a concern. Thus, we characterize the fabricated GI-core polymer waveguides with bending: using two kinds of cladding monomer with different refractive indexes for fabricating waveguides with bending. We found when the NA of waveguides was as high as 0.35, no additional loss due to bending was observed even if the bending radius is as small as 1 mm. The core diameter of the fabricated waveguides is 50 μm, and it is possible to further decrease the bending loss in the waveguides with smaller core diameter. Furthermore, utilizing the Mosquito method, we fabricate waveguides with not only horizontally curved cores but also vertically curved ones. Waveguides with vertically curved cores could make it possible to realize three-dimensionally optical wiring applicable to on-board optical interconnects.
Numerical Analysis of the Bending Properties of Cathay Poplar Glulam
Directory of Open Access Journals (Sweden)
Ying Gao
2015-10-01
Full Text Available This paper presents the formulae and finite element analysis models for predicting the Modulus of Elastic (MOE and Modulus of Rupture (MOR of Cathay poplar finger-jointed glulam. The formula of the MOE predicts the MOE of Cathay poplar glulam glued with one-component polyurethane precisely. Three formulae are used to predict the MOR, and Equation (12 predicts the MOR of Cathay poplar glulam precisely. The finite element analysis simulation results of both the MOE and MOR are similar to the experimental results. The predicted results of the finite element analysis are shown to be more accurate than those of the formulae, because the finite element analysis considers the glue layers, but the formulae do not. Three types of typical failure modes due to bending were summarized. The bending properties of Cathay poplar glulam were compared to those of Douglas fir glulam. The results show that Cathay poplar glulam has a lower stiffness, but a marginally higher strength. One-component polyurethane adhesive is shown to be more effective than resorcinol formaldehyde resin adhesive for Cathay poplar glulam. This study shows that Cathay poplar has the potential to be a glulam material in China.
Pressure and bending tests on fibreglass augmented steel technology pipes
Energy Technology Data Exchange (ETDEWEB)
Chen, Qishi; Ozkan, Istemi F. [C-FER Technologies, Edmonton, Alberta, (Canada); Salama, Mamdouh M. [ConocoPhillips Company, Houston, Texas, (United States)
2010-07-01
The economic manufacture of large diameter high pressure pipelines is a challenge. The FAST-PipeTM concept is fabricated from a steel liner hoop-wound with non-impregnated fibreglass stands. This report presents the qualification results of the FAST-PipeTM concept. The qualification testing program studied the effects of external environment (frozen/thawed cycle), load duration and the wrap thickness on the burst and bending capacity of the FAST-PipeTM concept. Burst and pressure-bend tests were performed under different conditions and for different thickness of fibreglass. The values obtained were compared to those from unwrapped pipes. It also established FAST-PipeTM behaviour in several loading scenarios using the FEA model. The burst tests results showed that freezing temperatures do not have an impact on the pressure capacity of FAST-PipeTM. The results of the tests showed the effectiveness of dry fibreglass wrap in increasing the internal pressure capacity of the pipe.
Bending Under Tension Test with Direct Friction Measurement
DEFF Research Database (Denmark)
Andreasen, Jan Lasson; Olsson, David Dam; Chodnikiewicz, K.;
2006-01-01
A special Bending-Under-Tension (BUT) transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all meas...... in drawing of stainless steel showing the influence of varying process conditions and the performance of different lubricants.......A special Bending-Under-Tension (BUT) transducer has been developed in which friction around the tool radius can be directly measured when drawing a plane sheet strip around a cylindrical tool-pin under constant back tension. The front tension, back tension and torque on the tool-pin are all...... measured directly, thus enabling accurate measurement of friction and direct determination of lubricant film breakdown for varying normal pressure, sliding speed, tool radius and tool preheat temperature. The transducer is applied in an experimental investigation focusing on limits of lubrication...
Inertia and Double Bending of Light from Equivalence
Shuler, Robert L., Jr.
2010-01-01
Careful examination of light paths in an accelerated reference frame, with use of Special Relativity, can account fully for the observed bending of light in a gravitational field, not just half of it as reported in 1911. This analysis also leads to a Machian formulation of inertia similar to the one proposed by Einstein in 1912 and later derived from gravitational field equations in Minkowsky Space by Sciama in 1953. There is a clear inference from equivalence that there is some type of inertial mass increase in a gravitational field. It is the purpose of the current paper to suggest that equivalence provides a more complete picture of gravitational effects than previously thought, correctly predicting full light bending, and that since the theory of inertia is derivable from equivalence, any theory based on equivalence must take account of it. Einstein himself clearly was not satisfied with the status of inertia in GRT, as our quotes have shown. Many have tried to account for inertia and met with less than success, for example Davidson s integration of Sciama s inertia into GRT but only for a steady state cosmology [10], and the Machian gravity theory of Brans and Dicke [11]. Yet Mach s idea hasn t gone away, and now it seems that it cannot go away without also disposing of equivalence.
Design of bending multi-layer electroactive polymer actuators
Balakrisnan, Bavani; Nacev, Alek; Smela, Elisabeth
2015-04-01
The effects of layer thickness and stiffness on multilayer bending actuator performance were investigated with an analytical mechanical model. Performance was evaluated in terms of curvature, blocked force, and work. Multilayer device designs corresponding to dielectric elastomer actuator, ionic polymer metal composite, and conjugated polymer structures were examined. Normalized plots of the performance metrics as functions of relative layer thickness and stiffness are presented that should allow initial, starting-point estimates for designs for particular applications. The results show that to achieve high curvature, layer thickness and stiffness may need to be set above or below particular bounds, or varied together, depending on the device configuration; often there is a broad plateau of combinations that work equally well. There is a conflict between achieving high bending and high force: the former requires the device to behave as much as possible like a simple bilayer with optimal ratios of thickness and modulus, while the latter requires thicker layers and shows little dependence on their moduli. Finally, to maximize work there are areas in the thickness-modulus plane that should be avoided, these areas varying with the configuration in sometimes surprising ways.
Radio occultation bending angle anomalies during tropical cyclones
Directory of Open Access Journals (Sweden)
R. Biondi
2011-02-01
Full Text Available The tropical deep convection affects the radiation balance of the atmosphere changing the water vapor mixing ratio and the temperature of the upper troposphere lower stratosphere. The aim of this work is to better understand these processes and to investigate if severe storms leave a significant signature in radio occultation profiles in the tropical tropopause layer. Using tropical cyclone best track database and data from different GPS radio occultation missions (COSMIC, GRACE, CHAMP, SACC and GPSMET, we selected 1194 profiles in a time window of 3 h and a space window of 300 km from the eye of the cyclone. We show that the bending angle anomaly of a GPS radio occultation signal is typically larger than the climatology in the upper troposphere and lower stratosphere and that a double tropopause during deep convection can easily be detected using this technique. Comparisons with co-located radiosondes, climatology of tropopause altitudes and GOES analyses are also shown to support the hypothesis that the bending angle anomaly can be used as an indicator of convective towers. The results are discussed in connection to the GPS radio occultation receiver which will be part of the Atomic Clock Ensemble in Space (ACES payload on the International Space Station.
Optical guiding and beam bending in free-electron lasers
Energy Technology Data Exchange (ETDEWEB)
Scharlemann, E.T.
1987-01-01
The electron beam in a free-electron laser (FEL) can act as an optical fiber, guiding or bending the optical beam. The refractive and gain effects of the bunched electron beam can compensate for diffraction, making possible wigglers that are many Rayleigh ranges (i.e., characteristic diffraction lengths) long. The origin of optical guiding can be understood by examining gain and refractive guiding in a fiber with a complex index of refraction, providing a mathematical description applicable also to the FEL, with some extensions. In the exponential gain regime of the FEL, the electron equations of motion must be included, but a self-consistent description of exponential gain with diffraction fully included becomes possible. The origin of the effective index of refraction of an FEL is illustrated with a simple example of bunched, radiating dipoles. Some of the properties of the index of refraction are described. The limited experimental evidence for optical beam bending is summarized. The evidence does not yet provide conclusive proof of the existence of optical guiding, but supports the idea. Finally, the importance of refractive guiding for the performance of a high-gain tapered-wiggler FEL amplifier is illustrated with numerical simulations.
Sensor enabled closed-loop bending control of soft beams
Case, Jennifer C.; White, Edward L.; Kramer, Rebecca K.
2016-04-01
Control of soft-bodied systems is challenging, as the absence of rigidity typically implies distributed deformations and infinite degrees-of-freedom. In this paper, we demonstrate closed-loop control of three elastomer beams that vary in bending stiffness. The most stiff beam is comprised of a single prismatic structure made from a single elastomer. In the next beam, increased flexibility is introduced via an indentation in the elastomer, forming a joint. The most flexible beam uses a softer elastomer in the joint section, along with an indentation. An antagonistic pair of actuators bend the joint while a pair of liquid-metal-embedded strain sensors provide angle feedback to a control loop. We were able to achieve control of the system with a proportional-integral-derivative control algorithm. The procedure we demonstrate in this work is not dependent on actuator and sensor choice and could be applied to to other hardware systems, as well as more complex multi-joint robotic structures in the future.
Relativity for everyone how space-time bends
Fischer, Kurt
2015-01-01
This book, now in a revised and updated second edition, explains the theory of special and general relativity in detail without approaching Einstein's life or the historical background. The text is formulated in such a way that the reader will be able to understand the essence intuitively, and new sections have been added on time machines, the twin paradoxes, and tensors. The first part of the book focuses on the essentials of special relativity. It explains the famous equivalence between mass and energy and tells why Einstein was able to use the theory of electrodynamics as a template for his "electrodynamics of moving bodies". General relativity is then addressed, mainly with the help of thought experiments. Reference is made to the previously introduced special relativity and the equivalence principle and, using many figures, it is explained how space-time is bending under gravity. The climax of the book is the Einstein equation of gravity, which describes the way in which matter bends space-time. The read...
Bending continuous structures with SMAs: a novel robotic fish design.
Rossi, C; Colorado, J; Coral, W; Barrientos, A
2011-12-01
In this paper, we describe our research on bio-inspired locomotion systems using deformable structures and smart materials, concretely shape memory alloys (SMAs). These types of materials allow us to explore the possibility of building motor-less and gear-less robots. A swimming underwater fish-like robot has been developed whose movements are generated using SMAs. These actuators are suitable for bending the continuous backbone of the fish, which in turn causes a change in the curvature of the body. This type of structural arrangement is inspired by fish red muscles, which are mainly recruited during steady swimming for the bending of a flexible but nearly incompressible structure such as the fishbone. This paper reviews the design process of these bio-inspired structures, from the motivations and physiological inspiration to the mechatronics design, control and simulations, leading to actual experimental trials and results. The focus of this work is to present the mechanisms by which standard swimming patterns can be reproduced with the proposed design. Moreover, the performance of the SMA-based actuators' control in terms of actuation speed and position accuracy is also addressed.
Bending mechanics of the red-eared slider turtle carapace.
Achrai, Ben; Bar-On, Benny; Wagner, H Daniel
2014-02-01
The turtle shell is a natural shield that possesses complex hierarchical structure, giving rise to superior mechanical properties. The keratin-covered boney top (dorsal) part of the shell, termed carapace, is composed of rigid sandwich-like ribs made of a central foam-like interior flanked by two external cortices. The ribs are attached to one another in a 3-D interdigitated manner at soft unmineralized collagenous sutures. This unique structural combination promotes sophisticated mechanical response upon predator attacks. In the present study mechanical bending tests were performed to examine the static behavior of the red-eared slider turtle carapace, in different orientations and from various locations, as well as from whole-rib and sub-layer regions. In addition, the suture properties were evaluated as well and compared with those of the rib. A simplified classical analysis was used here to rationalize the experimental results of the whole rib viewed as a laminated composite. The measured strength (~300MPa) and bending modulus (~7-8.5GPa) of the rib were found to be of the same order of magnitude as the strength and modulus of the cortices. The theoretical prediction of the ribs' moduli, predicted in terms of the individual sub-layers moduli, agreed well with the experimental results. The suture regions were found to be more compliant and weaker than the ribs, but comparatively tough, likely due to the interlocking design of the boney zigzag elements. PMID:24333673
Overall Thermal Performance of Flexible Piping Under Simulated Bending Conditions
Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)
2001-01-01
Flexible, vacuum-insulated transfer lines for low-temperature applications have higher thermal losses than comparable rigid lines. Typical flexible piping construction uses corrugated tubes, inner and outer, with a multilayer insulation (MLI) system in the annular space. Experiments on vacuum insulation systems in a flexible geometry were conducted at the Cryogenics Test Laboratory of NASA Kennedy Space Center. The effects of bending were simulated by causing the inner tube to be eccentric with the outer tube. The effects of spacers were simulated in a controlled way by inserting spacer tubes for the length of the cylindrical test articles. Two material systems, standard MLI and a layered composite insulation (LCI), were tested under the full range of vacuum levels using a liquid nitrogen boiloff calorimeter to determine the apparent thermal conductivity (k-value). The results indicate that the flexible piping under simulated bending conditions significantly degrades the thermal performance of the insulation system. These data are compared to standard MLI for both straight and flexible piping configurations. The definition of an overall k-value for actual field installations (k(sub oafi)) is described for use in design and analysis of cryogenic piping systems.
Klein, Fred W.
2016-04-01
Several lines of earthquake evidence indicate that the lithospheric plate is broken under the load of the island of Hawai`i, where the geometry of the lithosphere is circular with a central depression. The plate bends concave downward surrounding a stress-free hole, rather than bending concave upward as with past assumptions. Earthquake focal mechanisms show that the center of load stress and the weak hole is between the summits of Mauna Loa and Mauna Kea where the load is greatest. The earthquake gap at 21 km depth coincides with the predicted neutral plane of flexure where horizontal stress changes sign. Focal mechanism P axes below the neutral plane display a striking radial pattern pointing to the stress center. Earthquakes above the neutral plane in the north part of the island have opposite stress patterns; T axes tend to be radial. The M6.2 Honomu and M6.7 Kiholo main shocks (both at 39 km depth) are below the neutral plane and show radial compression, and the M6.0 Kiholo aftershock above the neutral plane has tangential compression. Earthquakes deeper than 20 km define a donut of seismicity around the stress center where flexural bending is a maximum. The hole is interpreted as the soft center where the lithospheric plate is broken. Kilauea's deep conduit is seismically active because it is in the ring of maximum bending. A simplified two-dimensional stress model for a bending slab with a load at one end yields stress orientations that agree with earthquake stress axes and radial P axes below the neutral plane. A previous inversion of deep Hawaiian focal mechanisms found a circular solution around the stress center that agrees with the model. For horizontal faults, the shear stress within the bending slab matches the slip in the deep Kilauea seismic zone and enhances outward slip of active flanks.
Theoretical analysis on shear-bending deflection of a ring-shape piezoelectric plate
Directory of Open Access Journals (Sweden)
Zejun Yu
2016-02-01
Full Text Available In this paper, the electromechanical coupling field in shear-bending mode for a ring-shape piezoelectric plate was theoretically established. According to the classical small bending elastic plate theory and piezoelectric constitutive equations, the analytical solution to the bending deformation of the piezo-actuator under electric field and a concentrated or uniformly distributed mechanical load was achieved. The mechanism for generating bending deformation is attributed to axisymmetric shear strain, which further induces the bending deformation of the single ring-shape piezoelectric plate. This mechanism is significant different from that of piezoelectric bimorph or unimorph actuators reported before. Our analysis offers guidance for the optimum design of a ring-shape shear-bending piezo-actuator.