WorldWideScience

Sample records for bendable low-loss topas

  1. Bendable, low-loss Topas fibers for the terahertz frequency range

    NARCIS (Netherlands)

    Nielsen, K.; Rasmussen, H.K.; Adam, A.J.L.; Planken, P.C.M.; Bang, O.; Jepsen, P.U.

    2009-01-01

    We report on a new class of polymer photonic crystal fibers for low-loss guidance of THz radiation. The use of the cyclic olefin copolymer Topas, in combination with advanced fabrication technology, results in bendable THz fibers with unprecedented low loss and low material dispersion in the THz

  2. Bendable, low-loss Topas fibers for the terahertz frequency range

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Adam, Aurèle J.L.

    2009-01-01

    structure proves that the fiber is single-moded over a wide frequency range, and we see the onset of higher-order modes at high frequencies as well as indication of microporous guiding at low frequencies and high porosity of the fiber. Transmission spectroscopy demonstrates low-loss propagation (

  3. Humidity insensitive TOPAS polymer fiber Bragg grating sensor

    DEFF Research Database (Denmark)

    Yuan, Scott Wu; Khan, Lutul; Webb, David J.

    2011-01-01

    We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance...... wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both...... wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG....

  4. Bragg gratings in Topas

    DEFF Research Database (Denmark)

    Zhang, C.; Webb, D.J.; Kalli, K.

    We report for the first time fibre Bragg grating inscription in microstructured optical fibre fabricated from Topas® cyclic olefin copolymer. The temperature sensitivity of the grating was studied revealing a positive Bragg wavelength shift of approximately 0.8 nmK-1,the largest sensitivity yet...

  5. Extremely Low Loss THz Guidance Using Kagome Lattice Porous Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Hossain, Anwar; Hasanuzzaman, G.K.M.; Habib, Selim

    2015-01-01

    A novel porous core Kagome lattice photonic crystal fiber is proposed for extremely low loss THz waves guiding. It has been reported that 82.5% of bulk effective material loss of Topas can be reduced...

  6. Capillary Deformations of Bendable Films

    KAUST Repository

    Schroll, R. D.

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling "drop-on-a-floating-sheet" experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films. © 2013 American Physical Society.

  7. Robust Refinement as Implemented in TOPAS

    Energy Technology Data Exchange (ETDEWEB)

    Stone, K.; Stephens, P

    2010-01-01

    A robust refinement procedure is implemented in the program TOPAS through an iterative reweighting of the data. Examples are given of the procedure as applied to fitting partially overlapped peaks by full and partial models and also of the structures of ibuprofen and acetaminophen in the presence of unmodeled impurity contributions

  8. Multi-antibody biosensing with Topas microstructured polymer optical fiber

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Bang, Ole; Hoiby, Poul E.

    We present a Topas based microstructured polymer optical fiber multi-antibody biosensor. This polymer allows localized activation of sensor layers on the inner side of the air holes. This concept is used to create two different sensor sections in the same fiber. Simultaneous detection of two kinds...

  9. Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, I.P.; Yuan, Scott Wu; Stefani, Alessio

    2011-01-01

    A report is presented on the inscription of a fibre Bragg grating into a microstructured polymer optical fibre fabricated from TOPAS cyclic olefin copolymer. This material offers two important advantages over poly (methyl methacrylate), which up to now has formed the basis for polymer fibre Bragg...

  10. Karakteristike trzanja elektromagnetskog topa / Recoil characteristics of an electromagnetic rail gun

    Directory of Open Access Journals (Sweden)

    Zoran B. Ristić

    2009-10-01

    Full Text Available U radu je razmatrano trzanje elektromagnetskog šinskog topa i upoređeno sa trzanjem konvencionalnog topa sa barutnim punjenjem. Zaključuje se da je kod elektromagnetskog topa trzanje manje nego kod topa sa barutnim punjenjem. Takođe, pokazano je da pri istim uslovima lansiranja upotreba gasne kočnice topa sa barutnim punjenjem može izmeniti karakteristike trzanja i više ih približiti ponašanju elektromagnetskog topa. / In this paper the electromagnetic rail gun recoil is discussed and compared with the recoil of a conventional, propellant gas driven gun. It is shown that, under similar launch conditions, the recoil of an electromagnetic gun is weaker than that of the powder-driven gun. The use of a muzzle brake on a powder-driven gun can alter its recoil characteristics and make its behavior closer to that of the electromagnetic rail gun.

  11. Characterization of a piezo bendable X-ray mirror.

    Science.gov (United States)

    Vannoni, Maurizio; Freijo Martín, Idoia; Siewert, Frank; Signorato, Riccardo; Yang, Fan; Sinn, Harald

    2016-01-01

    A full-scale piezo bendable mirror built as a prototype for an offset mirror at the European XFEL is characterized. The piezo ceramic elements are glued onto the mirror substrate, side-face on with respect to the reflecting surface. Using a nanometre optical component measuring machine and a large-aperture Fizeau interferometer, the mirror profile and influence functions were characterized, and further analysis was made to investigate the junction effect, hysteresis, twisting and reproducibility.

  12. Polymer PCF Bragg grating sensors based on poly(methyl methacrylate) and TOPAS cyclic olefin copolymer

    DEFF Research Database (Denmark)

    Johnson, Ian P; Webb, David J; Kalli, Kyriacos

    2011-01-01

    mode PCF with a core diameter of 6μm based on TOPAS cyclic olefin copolymer. Bragg grating inscription was achieved using a 30mW continuous wave 325nm helium cadmium laser. Both TOPAS and PMMA fibre have a large attenuation of around 1dB/cm in the 1550nm spectral region, limiting fibre lengths...

  13. Localized biosensing with Topas microstructured Polymer Optical Fiber

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Jensen, Jesper Bo; Bang, Ole

    2007-01-01

    We present what is believed to be the first microstructured polymer optical fiber (mPOF) fabricated from Topas cyclic olefin copolymer, which has attractive material and biochemical properties. This polymer allows for a novel type of fiber-optic biosensor, where localized sensor layers may...... be activated on the inner side of the air holes in a predetermined section of the mPOF. The concept is demonstrated using a fluorescencebased method for selective detection of fluorophore-labeled antibodies. © 2007 Optical Society of America...

  14. MO-DE-BRA-03: TOPAS-edu: A Window Into the Stochastic World Through the TOPAS Tool for Particle Simulation

    International Nuclear Information System (INIS)

    Perl, J; Villagomez-Bernabe, B; Currell, F

    2015-01-01

    Purpose: The stochastic nature of the subatomic world presents a challenge for physics education. Even experienced physicists can be amazed at the varied behavior of electrons, x-rays, protons, neutrons, ions and the any short-lived particles that make up the overall behavior of our accelerators, brachytherapy sources and medical imaging systems. The all-particle Monte Carlo particle transport tool, TOPAS Tool for Particle Simulation, originally developed for proton therapy research, has been repurposed into a physics teaching tool, TOPAS-edu. Methods: TOPAS-edu students set up simulated particle sources, collimators, scatterers, imagers and scoring setups by writing simple ASCII files (in the TOPAS Parameter Control System format). Students visualize geometry setups and particle trajectories in a variety of modes from OpenGL graphics to VRML 3D viewers to gif and PostScript image files. Results written to simple comma separated values files are imported by the student into their preferred data analysis tool. Students can vary random seeds or adjust parameters of physics processes to better understand the stochastic nature of subatomic physics. Results: TOPAS-edu has been successfully deployed as the centerpiece of a physics course for master’s students at Queen’s University Belfast. Tutorials developed there takes students through a step by step course on the basics of particle transport and interaction, scattering, Bremsstrahlung, etc. At each step in the course, students build simulated experimental setups and then analyze the simulated results. Lessons build one upon another so that a student might end up with a full simulation of a medical accelerator, a water-phantom or an imager. Conclusion: TOPAS-edu was well received by students. A second application of TOPAS-edu is currently in development at Zurich University of Applied Sciences, Switzerland. It is our eventual goal to make TOPAS-edu available free of charge to any non-profit organization, along with

  15. MO-DE-BRA-03: TOPAS-edu: A Window Into the Stochastic World Through the TOPAS Tool for Particle Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Perl, J [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Villagomez-Bernabe, B; Currell, F [Queen’s University Belfast, Belfast, Northern Ireland (United Kingdom)

    2015-06-15

    Purpose: The stochastic nature of the subatomic world presents a challenge for physics education. Even experienced physicists can be amazed at the varied behavior of electrons, x-rays, protons, neutrons, ions and the any short-lived particles that make up the overall behavior of our accelerators, brachytherapy sources and medical imaging systems. The all-particle Monte Carlo particle transport tool, TOPAS Tool for Particle Simulation, originally developed for proton therapy research, has been repurposed into a physics teaching tool, TOPAS-edu. Methods: TOPAS-edu students set up simulated particle sources, collimators, scatterers, imagers and scoring setups by writing simple ASCII files (in the TOPAS Parameter Control System format). Students visualize geometry setups and particle trajectories in a variety of modes from OpenGL graphics to VRML 3D viewers to gif and PostScript image files. Results written to simple comma separated values files are imported by the student into their preferred data analysis tool. Students can vary random seeds or adjust parameters of physics processes to better understand the stochastic nature of subatomic physics. Results: TOPAS-edu has been successfully deployed as the centerpiece of a physics course for master’s students at Queen’s University Belfast. Tutorials developed there takes students through a step by step course on the basics of particle transport and interaction, scattering, Bremsstrahlung, etc. At each step in the course, students build simulated experimental setups and then analyze the simulated results. Lessons build one upon another so that a student might end up with a full simulation of a medical accelerator, a water-phantom or an imager. Conclusion: TOPAS-edu was well received by students. A second application of TOPAS-edu is currently in development at Zurich University of Applied Sciences, Switzerland. It is our eventual goal to make TOPAS-edu available free of charge to any non-profit organization, along with

  16. Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode

    International Nuclear Information System (INIS)

    Choi, Hak-Jong; Choo, Soyoung; Jung, Pil-Hoon; Shin, Ju-Hyeon; Kim, Yang-Doo; Lee, Heon

    2015-01-01

    Ag-nanomesh-based highly bendable conducting electrodes are developed using a combination of metal nanotransfer printing and embossing for the 6-inch wafer scale. Two Ag nanomeshes, including pitch sizes of 7.5 and 10 μm, are used to obtain highly transparent (approximately 85% transmittance at a wavelength of 550 nm) and electrically conducting properties (below 10 Ω sq −1 ). The Ag nanomeshes are also distinguished according to the fabrication process, which is called transferred or embedded Ag nanomesh on polyethylene terephthalate (PET) substrate, in order to compare their stability against bending stress. Then the enhancement of bending stability when the Ag nanomesh is embedded in the PET substrate is confirmed. (paper)

  17. Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode

    Science.gov (United States)

    Choi, Hak-Jong; Choo, Soyoung; Jung, Pil-Hoon; Shin, Ju-Hyeon; Kim, Yang-Doo; Lee, Heon

    2015-02-01

    Ag-nanomesh-based highly bendable conducting electrodes are developed using a combination of metal nanotransfer printing and embossing for the 6-inch wafer scale. Two Ag nanomeshes, including pitch sizes of 7.5 and 10 μm, are used to obtain highly transparent (approximately 85% transmittance at a wavelength of 550 nm) and electrically conducting properties (below 10 Ω sq-1). The Ag nanomeshes are also distinguished according to the fabrication process, which is called transferred or embedded Ag nanomesh on polyethylene terephthalate (PET) substrate, in order to compare their stability against bending stress. Then the enhancement of bending stability when the Ag nanomesh is embedded in the PET substrate is confirmed.

  18. Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly ultraviolet-transparent and chemically resistant thermoplast

    DEFF Research Database (Denmark)

    Nielsen, T.; Nilsson, D.; Bundgaard, F.

    2004-01-01

    -on-a-chipapplications. In particular, Topas® is suitable for micro systems made for optical bio-detection since waveguides for UV-light can be made directly in Topas®. In this article full process sequences for spin coating Topas® onto 4 in. silicon wafers, NIL silicon stamp fabrication with micro and nanometer sized features...... by metal deposition and lift-off ontop of a Topas® film patterned by NIL is demonstrated. This exploits the chemical resistance ofTopas® to sodium hydroxide and acetone. The demonstrated UVL and lift-off on top of an imprinted Topas® film opens new possibilities for post-NIL processing....

  19. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ain, Qurat Ul [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Khan, Ahmad Nawaz, E-mail: ahmad.nawaz@scme.nust.edu.pk [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Nabavinia, Mahboubeh [Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States); Mujahid, Mohammad [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan)

    2017-06-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60 ± 20 nm. Various concentrations of HA ranging from 1 to 30 wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA ≤ 10 wt% in TOPAS and at higher concentrations > 10 wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3 MPa and 185% from 0.26 to 0.74 MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1 day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. - Highlights: • TOPAS/HA hybrid composites exhibited enhanced mechanical properties owing to better dispersion and interaction of HA. • Without affecting the degradation rate, the

  20. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Ain, Qurat Ul; Khan, Ahmad Nawaz; Nabavinia, Mahboubeh; Mujahid, Mohammad

    2017-01-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60 ± 20 nm. Various concentrations of HA ranging from 1 to 30 wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA ≤ 10 wt% in TOPAS and at higher concentrations > 10 wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3 MPa and 185% from 0.26 to 0.74 MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1 day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. - Highlights: • TOPAS/HA hybrid composites exhibited enhanced mechanical properties owing to better dispersion and interaction of HA. • Without affecting the degradation rate, the

  1. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints

    International Nuclear Information System (INIS)

    Polster, Lisa; Schuemann, Jan; Rinaldi, Ilaria; McNamara, Aimee L; Paganetti, Harald; Burigo, Lucas; Stewart, Robert D; Attili, Andrea; Carlson, David J; Sato, Tatsuhiko; Ramos Méndez, José; Faddegon, Bruce; Perl, Joseph

    2015-01-01

    The aim of this work is to extend a widely used proton Monte Carlo tool, TOPAS, towards the modeling of relative biological effect (RBE) distributions in experimental arrangements as well as patients.TOPAS provides a software core which users configure by writing parameter files to, for instance, define application specific geometries and scoring conditions. Expert users may further extend TOPAS scoring capabilities by plugging in their own additional C++ code. This structure was utilized for the implementation of eight biophysical models suited to calculate proton RBE. As far as physics parameters are concerned, four of these models are based on the proton linear energy transfer, while the others are based on DNA double strand break induction and the frequency-mean specific energy, lineal energy, or delta electron generated track structure. The biological input parameters for all models are typically inferred from fits of the models to radiobiological experiments.The model structures have been implemented in a coherent way within the TOPAS architecture. Their performance was validated against measured experimental data on proton RBE in a spread-out Bragg peak using V79 Chinese Hamster cells.This work is an important step in bringing biologically optimized treatment planning for proton therapy closer to the clinical practice as it will allow researchers to refine and compare pre-defined as well as user-defined models. (paper)

  2. The proton therapy nozzles at Samsung Medical Center: A Monte Carlo simulation study using TOPAS

    Science.gov (United States)

    Chung, Kwangzoo; Kim, Jinsung; Kim, Dae-Hyun; Ahn, Sunghwan; Han, Youngyih

    2015-07-01

    To expedite the commissioning process of the proton therapy system at Samsung Medical Center (SMC), we have developed a Monte Carlo simulation model of the proton therapy nozzles by using TOol for PArticle Simulation (TOPAS). At SMC proton therapy center, we have two gantry rooms with different types of nozzles: a multi-purpose nozzle and a dedicated scanning nozzle. Each nozzle has been modeled in detail following the geometry information provided by the manufacturer, Sumitomo Heavy Industries, Ltd. For this purpose, the novel features of TOPAS, such as the time feature or the ridge filter class, have been used, and the appropriate physics models for proton nozzle simulation have been defined. Dosimetric properties, like percent depth dose curve, spreadout Bragg peak (SOBP), and beam spot size, have been simulated and verified against measured beam data. Beyond the Monte Carlo nozzle modeling, we have developed an interface between TOPAS and the treatment planning system (TPS), RayStation. An exported radiotherapy (RT) plan from the TPS is interpreted by using an interface and is then translated into the TOPAS input text. The developed Monte Carlo nozzle model can be used to estimate the non-beam performance, such as the neutron background, of the nozzles. Furthermore, the nozzle model can be used to study the mechanical optimization of the design of the nozzle.

  3. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    , good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing...

  4. Selective Serial Multi-Antibody Biosensing with TOPAS Microstructured Polymer Optical Fibers

    DEFF Research Database (Denmark)

    Emiliyanov, Grigoriy Andreev; Høiby, Poul E.; Pedersen, Lars H.

    2013-01-01

    We have developed a fluorescence-based fiber-optical biosensor, which can selectively detect different antibodies in serial at preselected positions inside a single piece of fiber. The fiber is a microstructured polymer optical fiber fabricated from TOPAS cyclic olefin copolymer, which allows...

  5. Recent developments of Bragg gratings in PMMA and TOPAS polymer optical fibers

    DEFF Research Database (Denmark)

    Webb, David; Kyriacos, Kalli; Carroll, Karen

    temperature to the glass transition temperature, and this permanent change is affected by the thermal history of the gratings. We also report the first FBG inscription in microstructured polymer optical fibres fabricated from Topas. This material is fully polymerised and has a very low moisture absorption...

  6. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications.

    Science.gov (United States)

    Ain, Qurat Ul; Khan, Ahmad Nawaz; Nabavinia, Mahboubeh; Mujahid, Mohammad

    2017-06-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60±20nm. Various concentrations of HA ranging from 1 to 30wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA≤10wt% in TOPAS and at higher concentrations >10wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3MPa and 185% from 0.26 to 0.74MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications

    Energy Technology Data Exchange (ETDEWEB)

    Perl, J.; Shin, J.; Schuemann, J.; Faddegon, B.; Paganetti, H. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States); University of California San Francisco Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States); Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114 (United States)

    2012-11-15

    Purpose: While Monte Carlo particle transport has proven useful in many areas (treatment head design, dose calculation, shielding design, and imaging studies) and has been particularly important for proton therapy (due to the conformal dose distributions and a finite beam range in the patient), the available general purpose Monte Carlo codes in proton therapy have been overly complex for most clinical medical physicists. The learning process has large costs not only in time but also in reliability. To address this issue, we developed an innovative proton Monte Carlo platform and tested the tool in a variety of proton therapy applications. Methods: Our approach was to take one of the already-established general purpose Monte Carlo codes and wrap and extend it to create a specialized user-friendly tool for proton therapy. The resulting tool, TOol for PArticle Simulation (TOPAS), should make Monte Carlo simulation more readily available for research and clinical physicists. TOPAS can model a passive scattering or scanning beam treatment head, model a patient geometry based on computed tomography (CT) images, score dose, fluence, etc., save and restart a phase space, provides advanced graphics, and is fully four-dimensional (4D) to handle variations in beam delivery and patient geometry during treatment. A custom-designed TOPAS parameter control system was placed at the heart of the code to meet requirements for ease of use, reliability, and repeatability without sacrificing flexibility. Results: We built and tested the TOPAS code. We have shown that the TOPAS parameter system provides easy yet flexible control over all key simulation areas such as geometry setup, particle source setup, scoring setup, etc. Through design consistency, we have insured that user experience gained in configuring one component, scorer or filter applies equally well to configuring any other component, scorer or filter. We have incorporated key lessons from safety management, proactively

  8. TOPAS: An innovative proton Monte Carlo platform for research and clinical applications

    International Nuclear Information System (INIS)

    Perl, J.; Shin, J.; Schümann, J.; Faddegon, B.; Paganetti, H.

    2012-01-01

    Purpose: While Monte Carlo particle transport has proven useful in many areas (treatment head design, dose calculation, shielding design, and imaging studies) and has been particularly important for proton therapy (due to the conformal dose distributions and a finite beam range in the patient), the available general purpose Monte Carlo codes in proton therapy have been overly complex for most clinical medical physicists. The learning process has large costs not only in time but also in reliability. To address this issue, we developed an innovative proton Monte Carlo platform and tested the tool in a variety of proton therapy applications. Methods: Our approach was to take one of the already-established general purpose Monte Carlo codes and wrap and extend it to create a specialized user-friendly tool for proton therapy. The resulting tool, TOol for PArticle Simulation (TOPAS), should make Monte Carlo simulation more readily available for research and clinical physicists. TOPAS can model a passive scattering or scanning beam treatment head, model a patient geometry based on computed tomography (CT) images, score dose, fluence, etc., save and restart a phase space, provides advanced graphics, and is fully four-dimensional (4D) to handle variations in beam delivery and patient geometry during treatment. A custom-designed TOPAS parameter control system was placed at the heart of the code to meet requirements for ease of use, reliability, and repeatability without sacrificing flexibility. Results: We built and tested the TOPAS code. We have shown that the TOPAS parameter system provides easy yet flexible control over all key simulation areas such as geometry setup, particle source setup, scoring setup, etc. Through design consistency, we have insured that user experience gained in configuring one component, scorer or filter applies equally well to configuring any other component, scorer or filter. We have incorporated key lessons from safety management, proactively

  9. Experimental validation of the TOPAS Monte Carlo system for passive scattering proton therapy

    International Nuclear Information System (INIS)

    Testa, M.; Schümann, J.; Lu, H.-M.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2013-01-01

    Purpose: TOPAS (TOol for PArticle Simulation) is a particle simulation code recently developed with the specific aim of making Monte Carlo simulations user-friendly for research and clinical physicists in the particle therapy community. The authors present a thorough and extensive experimental validation of Monte Carlo simulations performed with TOPAS in a variety of setups relevant for proton therapy applications. The set of validation measurements performed in this work represents an overall end-to-end testing strategy recommended for all clinical centers planning to rely on TOPAS for quality assurance or patient dose calculation and, more generally, for all the institutions using passive-scattering proton therapy systems. Methods: The authors systematically compared TOPAS simulations with measurements that are performed routinely within the quality assurance (QA) program in our institution as well as experiments specifically designed for this validation study. First, the authors compared TOPAS simulations with measurements of depth-dose curves for spread-out Bragg peak (SOBP) fields. Second, absolute dosimetry simulations were benchmarked against measured machine output factors (OFs). Third, the authors simulated and measured 2D dose profiles and analyzed the differences in terms of field flatness and symmetry and usable field size. Fourth, the authors designed a simple experiment using a half-beam shifter to assess the effects of multiple Coulomb scattering, beam divergence, and inverse square attenuation on lateral and longitudinal dose profiles measured and simulated in a water phantom. Fifth, TOPAS’ capabilities to simulate time dependent beam delivery was benchmarked against dose rate functions (i.e., dose per unit time vs time) measured at different depths inside an SOBP field. Sixth, simulations of the charge deposited by protons fully stopping in two different types of multilayer Faraday cups (MLFCs) were compared with measurements to benchmark the

  10. Monte Carlo simulation of chemistry following radiolysis with TOPAS-nBio

    Science.gov (United States)

    Ramos-Méndez, J.; Perl, J.; Schuemann, J.; McNamara, A.; Paganetti, H.; Faddegon, B.

    2018-05-01

    Simulation of water radiolysis and the subsequent chemistry provides important information on the effect of ionizing radiation on biological material. The Geant4 Monte Carlo toolkit has added chemical processes via the Geant4-DNA project. The TOPAS tool simplifies the modeling of complex radiotherapy applications with Geant4 without requiring advanced computational skills, extending the pool of users. Thus, a new extension to TOPAS, TOPAS-nBio, is under development to facilitate the configuration of track-structure simulations as well as water radiolysis simulations with Geant4-DNA for radiobiological studies. In this work, radiolysis simulations were implemented in TOPAS-nBio. Users may now easily add chemical species and their reactions, and set parameters including branching ratios, dissociation schemes, diffusion coefficients, and reaction rates. In addition, parameters for the chemical stage were re-evaluated and updated from those used by default in Geant4-DNA to improve the accuracy of chemical yields. Simulation results of time-dependent and LET-dependent primary yields Gx (chemical species per 100 eV deposited) produced at neutral pH and 25 °C by short track-segments of charged particles were compared to published measurements. The LET range was 0.05–230 keV µm‑1. The calculated Gx values for electrons satisfied the material balance equation within 0.3%, similar for protons albeit with long calculation time. A smaller geometry was used to speed up proton and alpha simulations, with an acceptable difference in the balance equation of 1.3%. Available experimental data of time-dependent G-values for agreed with simulated results within 7%  ±  8% over the entire time range; for over the full time range within 3%  ±  4% for H2O2 from 49%  ±  7% at earliest stages and 3%  ±  12% at saturation. For the LET-dependent Gx, the mean ratios to the experimental data were 1.11  ±  0.98, 1.21  ±  1.11, 1.05

  11. A preliminary Monte Carlo study for the treatment head of a carbon-ion radiotherapy facility using TOPAS

    Science.gov (United States)

    Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George

    2017-09-01

    In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.

  12. High-Tg TOPAS mPOF strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Markos, Christos; Stefani, Alessio

    2013-01-01

    We demonstrate a mPOF made of high-Tg TOPAS grade 5013 with Tg = 135°C. We inscribe FBGs into the fiber and demonstrate strain sensing of 2.5% strain at 98°C, further we also demonstrate strain sensing at a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, whe...... the propagation loss is 5.1dB/m, close to the fiber loss minimum of 3.67dB/m at 787nm....

  13. New schemes in the adjustment of bendable, elliptical mirrors using a long trace profiler

    International Nuclear Information System (INIS)

    Rah, S.

    1997-08-01

    The Long Trace Profiler (LTP), an instrument for measuring the slope profile of long X-ray mirrors, has been used for adjusting bendable mirrors. Often an elliptical profile is desired for the mirror surface, since many synchrotron applications involve imaging a point source to a point image. Several techniques have been used in the past for adjusting the profile measured in height or slope of a bendable mirror. Underwood et al. have used collimated X-rays for achieving desired surface shape for bent glass optics. Non linear curve fitting using the simplex algorithm was later used to determine the best fit ellipse to the surface under test. A more recent method uses a combination of least squares polynomial fitting to the measured slope function in order to enable rapid adjustment to the desired shape. The mirror has mechanical adjustments corresponding to the first and second order terms of the desired slope polynomial, which correspond to defocus and coma, respectively. The higher order terms are realized by shaping the width of the mirror to produce the optimal elliptical surface when bent. The difference between desired and measured surface slope profiles allows us to make methodical adjustments to the bendable mirror based on changes in the signs and magnitudes of the polynomial coefficients. This technique gives rapid convergence to the desired shape of the measured surface, even when we have no information about the bender, other than the desired shape of the optical surface. Nonlinear curve fitting can be used at the end of the process for fine adjustments, and to determine the over all best fit parameters of the surface. This technique could be generalized to other shapes such as toroids

  14. A bendable and wearable cardiorespiratory monitoring device fusing two noncontact sensor principles.

    Science.gov (United States)

    Teichmann, Daniel; De Matteis, Dennis; Bartelt, Thorsten; Walter, Marian; Leonhardt, Steffen

    2015-05-01

    A mobile device is presented for monitoring both respiration and pulse. The device is developed as a bendable/flexible inlay that can be placed in a shirt pocket or the inside pocket of a jacket. To achieve optimum monitoring performance, the device combines two sensor principles, which work in a safe noncontact way through several layers of cotton or other textiles. One sensor, based on magnetic induction, is intended for respiratory monitoring, and the other is a reflective photoplethysmography sensor intended for pulse detection. Because each sensor signal has some dependence on both physiological parameters, fusing the sensor signals allows enhanced signal coverage.

  15. Low-loss single mode light waveguides in polymer

    Science.gov (United States)

    Sieber, Heinrich; Boehm, Hans-Jürgen; Hollenbach, Uwe; Mohr, Jürgen; Ostrzinski, Ute; Pfeiffer, Karl; Szczurowski, Marcin; Urbanczyk, Waclaw

    2012-06-01

    We report on the development of a UV-lithography manufacturing process for low loss single mode light waveguides in a novel polymer and the characterization of the fabricated components in a broad wavelength range from 808 nm to 1550 nm. The main focus of this work lies in providing a quick and cost efficient production technique for single mode waveguides and low loss integrated optical circuits. To achieve this goal we chose a novel photo-structurable polymer host-guest-system consisting of SU8 and a low refractive dopant monomer. Near and far-field measurements at different wavelengths show that the mode propagating within a well designed integrated waveguide structure and the mode of a standard fiber can exhibit a mode overlap value of approximately 1 and suffer only very low coupling losses. We demonstrate excess loss of 0.14 dB/cm for 808 nm, 0.33 dB/cm for 1310 nm and 2.86 dB/cm for 1550 nm. Typical insertion loss values of straight waveguides with a length of 36 mm are 0.9 dB for 808 nm, 1.5 dB for 1310 nm and 10.4 dB for 1550 nm. Polarization dependent loss was found to be less than 0.2 dB on sets of test structures of 36 mm length. We measured material attenuation in the novel polymer material before cross-linking of approximately 0.04 dB/cm for 808 nm and around 0.20 dB/cm for 1310 nm respectively. The presented production technique is suitable to provide low loss and low cost integrated optical circuits for sensor and communication applications in a broad wavelength range.

  16. Integrated Photonic Devices Incorporating Low-Loss Fluorinated Polymer Materials

    Directory of Open Access Journals (Sweden)

    Hyung-Jong Lee

    2011-06-01

    Full Text Available Low-loss polymer materials incorporating fluorinated compounds have been utilized for the investigation of various functional optical devices useful for optical communication and optical sensor systems. Since reliability issues concerning the polymer device have been resolved, polymeric waveguide devices have been gradually adopted for commercial application systems. The two most successfully commercialized polymeric integrated optic devices, variable optical attenuators and digital optical switches, are reviewed in this paper. Utilizing unique properties of optical polymers which are not available in other optical materials, novel polymeric optical devices are proposed including widely tunable external cavity lasers and integrated optical current sensors.

  17. Parallel Low-Loss Measurement of Multiple Atomic Qubits.

    Science.gov (United States)

    Kwon, Minho; Ebert, Matthew F; Walker, Thad G; Saffman, M

    2017-11-03

    We demonstrate low-loss measurement of the hyperfine ground state of rubidium atoms by state dependent fluorescence detection in a dipole trap array of five sites. The presence of atoms and their internal states are minimally altered by utilizing circularly polarized probe light and a strictly controlled quantization axis. We achieve mean state detection fidelity of 97% without correcting for imperfect state preparation or background losses, and 98.7% when corrected. After state detection and correction for background losses, the probability of atom loss due to the state measurement is state is preserved with >98% probability.

  18. A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy

    International Nuclear Information System (INIS)

    Ramos-Méndez, J; Faddegon, B; Perl, J; Schümann, J; Paganetti, H; Shin, J

    2015-01-01

    The aim of this work was to develop a framework for modeling organ effects within TOPAS (TOol for PArticle Simulation), a wrapper of the Geant4 Monte Carlo toolkit that facilitates particle therapy simulation. The DICOM interface for TOPAS was extended to permit contour input, used to assign voxels to organs. The following dose response models were implemented: The Lyman–Kutcher–Burman model, the critical element model, the population based critical volume model, the parallel-serial model, a sigmoid-based model of Niemierko for normal tissue complication probability and tumor control probability (TCP), and a Poisson-based model for TCP. The framework allows easy manipulation of the parameters of these models and the implementation of other models.As part of the verification, results for the parallel-serial and Poisson model for x-ray irradiation of a water phantom were compared to data from the AAPM Task Group 166. When using the task group dose-volume histograms (DVHs), results were found to be sensitive to the number of points in the DVH, with differences up to 2.4%, some of which are attributable to differences between the implemented models. New results are given with the point spacing specified. When using Monte Carlo calculations with TOPAS, despite the relatively good match to the published DVH’s, differences up to 9% were found for the parallel-serial model (for a maximum DVH difference of 2%) and up to 0.5% for the Poisson model (for a maximum DVH difference of 0.5%). However, differences of 74.5% (in Rectangle1), 34.8% (in PTV) and 52.1% (in Triangle) for the critical element, critical volume and the sigmoid-based models were found respectively.We propose a new benchmark for verification of organ effect models in proton therapy. The benchmark consists of customized structures in the spread out Bragg peak plateau, normal tissue, tumor, penumbra and in the distal region. The DVH’s, DVH point spacing, and results of the organ effect models are

  19. Bendable solid-state supercapacitors with Au nanoparticle-embedded graphene hydrogel films

    Science.gov (United States)

    Yang, Kyungwhan; Cho, Kyoungah; Yoon, Dae Sung; Kim, Sangsig

    2017-01-01

    In this study, we fabricate bendable solid-state supercapacitors with Au nanoparticle (NP)-embedded graphene hydrogel (GH) electrodes and investigate the influence of the Au NP embedment on the internal resistance and capacitive performance. Embedding the Au NPs into the GH electrodes results in a decrease of the internal resistance from 35 to 21 Ω, and a threefold reduction of the IR drop at a current density of 5 A/g when compared with GH electrodes without Au NPs. The Au NP-embedded GH supercapacitors (NP-GH SCs) exhibit excellent capacitive performances, with large specific capacitance (135 F/g) and high energy density (15.2 W·h/kg). Moreover, the NP-GH SCs exhibit comparable areal capacitance (168 mF/cm2) and operate under tensile/compressive bending. PMID:28074865

  20. SU-F-T-139: Meeting the Challenges of Quality Control in the TOPAS Monte Carlo Simulation Toolkit for Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hall, D; Schuemann, J; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States); Perl, J [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Faddegon, B [UC San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: Monte Carlo particle transport simulation (MC) codes have become important tools in proton therapy and biology, both for research and practice. TOPAS is an MC toolkit serving users worldwide (213 licensed users at 95 institutions in 21 countries). It provides unprecedented ease in 4D placement of geometry components, beam sources and scoring through its user-friendly and reproducible parameter file interface. Quality control (QC) of stochastic simulation software is inherently difficult, and the versatility of TOPAS introduces additional challenges. But QC is vital as the TOPAS development team implements new features, addresses user feedback and reacts to upgrades of underlying software (i.e. Geant4). Methods: Whenever code is committed to our repository, over 50 separate module tests are automatically triggered via a continuous integration service. They check that the various module options execute successfully and that their results are statistically consistent with previous reference values. Prior to each software release, longer end-to-end tests automatically validate TOPAS against experimental data and a TOPAS benchmark. These include simulating multiple properties of spread-out Bragg peaks, validating nuclear models, and searching for differences in patient simulations. Results: Continuous integration has proven effective in catching regressions at the time they are introduced, particularly when implementing new features that involve refactoring code (e.g. multithreading and ntuple output). Code coverage statistics highlight untested portions of code and guide development of new tests. The various end-to-end tests demonstrate that TOPAS accurately describes the physics of proton therapy within clinical tolerances. Conclusion: The TOPAS QC strategy of frequent short tests and pre-release long tests has led to a more reliable tool. However, the versatility of TOPAS makes it difficult to predict how users might combine different modules, and so QC

  1. High quality factor HTS Josephson junctions on low loss substrates

    Energy Technology Data Exchange (ETDEWEB)

    Stornaiuolo, D; Longobardi, L; Massarotti, D; Barone, A; Tafuri, F [CNR-SPIN Napoli, Complesso Universitario di Monte Sant' Angelo, via Cinthia, 80126 Napoli (Italy); Papari, G; Carillo, F [NEST, CNR-NANO and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Cennamo, N [Dipartimento Ingegneria dell' Informazione, Seconda Universita degli Studi di Napoli, via Roma 29, 81031 Aversa (Italy)

    2011-04-15

    We have extended the off-axis biepitaxial technique to produce YBCO grain boundary junctions on low loss substrates. Excellent transport properties have been reproducibly found, with remarkable values of the quality factor I{sub c}R{sub n} (with I{sub c} the critical current and R{sub n} the normal state resistance) above 10 mV, far higher than the values commonly reported in the literature for high temperature superconductor (HTS) based Josephson junctions. The outcomes are consistent with a picture of a more uniform grain boundary region along the current path. This work supports a possible implementation of grain boundary junctions for various applications including terahertz sensors and HTS quantum circuits in the presence of microwaves.

  2. Resonance transparency with low-loss in toroidal planar metamaterial

    Science.gov (United States)

    Xiang, Tianyu; Lei, Tao; Hu, Sen; Chen, Jiao; Huang, Xiaojun; Yang, Helin

    2018-03-01

    A compact planar construction composed of asymmetric split ring resonators was designed with a low-loss, high Q-factor resonance transparency at microwave frequency. The singularity property of the proposed metamaterial owing to the enhanced toroidal dipole T is demonstrated via numerical and experimental methods. The transmission peak can reach up to 0.91 and the loss is perfectly repressed, which can be testified by radiated power, H-field distributions, and the imaginary parts of effective permittivity and permeability. The designed planar metamaterial may have numerous potential applications at microwave, terahertz, and optical frequency, e.g., for ultrasensitive sensing, slow-light devices, lasing spacers, even invisible information transfer.

  3. High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees

    DEFF Research Database (Denmark)

    Markos, Christos; Stefani, Alessio; Nielsen, Kristian

    2013-01-01

    We present the fabrication and characterization of fiber Bragg gratings (FBGs) in an endlessly single-mode microstructured polymer optical fiber (mPOF) made of humidity-insensitive high-Tg TOPAS cyclic olefin copolymer. The mPOF is the first made from grade 5013 TOPAS with a glass transition...... temperature of Tg = 135°C and we experimentally demonstrate high strain operation (2.5%) of the FBG at 98°C and stable operation up to a record high temperature of 110°C. The Bragg wavelengths of the FBGs are around 860 nm, where the propagation loss is 5.1dB/m, close to the fiber loss minimum of 3.67d...

  4. Low loss hollow-core waveguide on a silicon substrate

    Science.gov (United States)

    Yang, Weijian; Ferrara, James; Grutter, Karen; Yeh, Anthony; Chase, Chris; Yue, Yang; Willner, Alan E.; Wu, Ming C.; Chang-Hasnain, Connie J.

    2012-07-01

    Optical-fiber-based, hollow-core waveguides (HCWs) have opened up many new applications in laser surgery, gas sensors, and non-linear optics. Chip-scale HCWs are desirable because they are compact, light-weight and can be integrated with other devices into systems-on-a-chip. However, their progress has been hindered by the lack of a low loss waveguide architecture. Here, a completely new waveguiding concept is demonstrated using two planar, parallel, silicon-on-insulator wafers with high-contrast subwavelength gratings to reflect light in-between. We report a record low optical loss of 0.37 dB/cm for a 9-μm waveguide, mode-matched to a single mode fiber. Two-dimensional light confinement is experimentally realized without sidewalls in the HCWs, which is promising for ultrafast sensing response with nearly instantaneous flow of gases or fluids. This unique waveguide geometry establishes an entirely new scheme for low-cost chip-scale sensor arrays and lab-on-a-chip applications.

  5. Low-loss multimode interference couplers for terahertz waves

    Science.gov (United States)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.

    2012-04-01

    The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.

  6. Low Loss Nanostructured Polymers for Chip-scale Waveguide Amplifiers.

    Science.gov (United States)

    Chen, George F R; Zhao, Xinyu; Sun, Yang; He, Chaobin; Tan, Mei Chee; Tan, Dawn T H

    2017-06-13

    On-chip waveguide amplifiers offer higher gain in small device sizes and better integration with photonic devices than the commonly available fiber amplifiers. However, on-chip amplifiers have yet to make its way into the mainstream due to the limited availability of materials with ideal light guiding and amplification properties. A low-loss nanostructured on-chip channel polymeric waveguide amplifier was designed, characterized, fabricated and its gain experimentally measured at telecommunication wavelength. The active polymeric waveguide core comprises of NaYF 4 :Yb,Er,Ce core-shell nanocrystals dispersed within a SU8 polymer, where the nanoparticle interfacial characteristics were tailored using hydrolyzed polyhedral oligomeric silsesquioxane-graft-poly(methyl methacrylate) to improve particle dispersion. Both the enhanced IR emission intensity from our nanocrystals using a tri-dopant scheme and the reduced scattering losses from our excellent particle dispersion at a high solid loading of 6.0 vol% contributed to the outstanding optical performance of our polymeric waveguide. We achieved one of the highest reported gain of 6.6 dB/cm using a relatively low coupled pump power of 80 mW. These polymeric waveguide amplifiers offer greater promise for integrated optical circuits due to their processability and integration advantages which will play a key role in the emerging areas of flexible communication and optoelectronic devices.

  7. Development of a New Gradient Based Strain-Criterion for Prediction of Bendability in Quality Assurance and FEA

    Science.gov (United States)

    Denninger, Ralf; Liewald, Mathias; Sindel, Manfred

    2011-08-01

    Numerical simulation systems are more and more used in process development of car bodies. Nowadays, also the hemming process is optimised in FEA. Thus, the analysing of process robustness calls for a failure criterion for the specific bending and hemming load condition. For that purpose the experimental determination of bendability under various pre-load conditions that occur in real production, e.g. during deep drawing in press shop, is content of this contribution. Using these experimental results, a new approach for a strain-gradient based failure criterion for bending operations is presented to optimise bendability prediction. The bending-strain-gradient approach can be used both in production related departments of quality assurance as well as for simulative process design or process validation for vehicle manufacturing planning.

  8. TiO2 Nanowire Networks Prepared by Titanium Corrosion and Their Application to Bendable Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Saera Jin

    2017-10-01

    Full Text Available TiO2 nanowire networks were prepared, using the corrosion of Ti foils in alkaline (potassium hydroxide, KOH solution at different temperatures, and then a further ion-exchange process. The prepared nanostructures were characterized by field emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The wet corroded foils were utilized as the photoanodes of bendable dye-sensitized solar cells (DSSCs, which exhibited a power conversion efficiency of 1.11% under back illumination.

  9. TiO₂ Nanowire Networks Prepared by Titanium Corrosion and Their Application to Bendable Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jin, Saera; Shin, Eunhye; Hong, Jongin

    2017-10-12

    TiO₂ nanowire networks were prepared, using the corrosion of Ti foils in alkaline (potassium hydroxide, KOH) solution at different temperatures, and then a further ion-exchange process. The prepared nanostructures were characterized by field emission scanning electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The wet corroded foils were utilized as the photoanodes of bendable dye-sensitized solar cells (DSSCs), which exhibited a power conversion efficiency of 1.11% under back illumination.

  10. Cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror

    International Nuclear Information System (INIS)

    Yuan Sheng; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; McKinney, Wayne R.; Morrison, Gregory; Macdougall, James; Mochi, Iacopo; Warwick, Tony

    2011-01-01

    At the Advanced Light Source (ALS), we are developing broadly applicable, high-accuracy, in-situ, at-wavelength wavefront slope measurement techniques for Kirkpatrick-Baez (KB) mirror nano-focusing. In this paper, we report an initial cross-check of ex-situ and in-situ metrology of a bendable temperature stabilized KB mirror. This cross-check provides a validation of the in-situ shearing interferometry, currently under development at the ALS.

  11. ANIVERSALIA: 110 YEARS SINCE THE BIRTH OF BOTANIST DR. EMILIAN TOPA (1900 – 1987

    Directory of Open Access Journals (Sweden)

    OPREA ADRIAN

    2010-12-01

    Full Text Available He was born on February 9th 1900, only son of a poor family in the Cuciurul Mic village from the old County named Chernivtsi (today in Ukraine. He did the primary classes in his native village, and the middle and high school in Chernivtsi. He graduated in 1925, the Department of Natural Sciences, University of Chernivtsi. After his graduation Emilian Topa enters into secondary education level, where he worked for the next years (between 1925 and 1943 - at the “Mihai Eminescu” girls High School, the Pedagogic Seminar of University and the School of health officers. Also in this period becomes botany assistant at the University of Chernivtsi, the Chair Professor Gusuleac, where he worked no more than 17 years. During this period he had the responsibility and leadership for the botanical garden from the same city. It then becomes Assistant Botany at Bucharest University (1940-1941, lecturer at Chernivtsi University (1942-1943, lecturer (delegation for applied botany at the Polytechnic Institute “Gheorghe Asachi” of Iasi (1945-1946, conservator at the Museum of the Botanical Garden in Cluj (1946-1947. Between 1948 and 1953 is geobotany lecturer at University of Cluj and, simultaneously, an associate professor of pharmaceutical botany at the Medico-Pharmaceutical Institute in the same city (1948-1951. From 1952 to 1959, we meet him as director of the Botanical Garden of the University of Cluj, and from 1963 until his retirement in 1970, is director of the Botanical Gardens of Iasi.Emilian Topa held a prolific and sustainable scientific research, educational or cultural, national or social, during no less than 60 years. Thus, he has published over 200 books, articles, studies and scientific reviews in different areas: plant taxonomy, plant ecology and chorology, phytosociology, phylogeny, phytopathology, phytotherapy, ethnobotanical, nature protection, ornamental flora, Romanian or European botanical histories etc.His doctoral thesis, titled

  12. Bendable Electro-Acoustic Transducer Fabricated Utilizing Frequency Dispersion of Elastic Modulus

    Science.gov (United States)

    Miyoshi, Tetsu; Ohga, Juro

    2013-09-01

    To realize the speaker diaphragm that can be united with a flexible display without deteriorating lightweight properties and flexibility, a novel bendable electro-acoustic transducer (BEAT) based on 0-3-type piezoelectric composites has been developed. To overcome the trade-off between flexibility and the transmission efficiency of vibration energy, a viscoelastic polymer that has local maximum points in the loss factor as well as large frequency dispersion in the storage modulus near room temperature was employed as the matrix of the piezoelectric composite layer. Against the comparatively slow (10 Hz or less) deformation from the outside, the viscoelastic matrix is viscous enough to prevent cracking and delamination. On the other hand, in the audible range (20 Hz to 20 kHz), the matrix is elastic enough to transmit piezoelectric vibration energy, maintaining a moderately large loss factor as well as a high sound velocity. For the first time, we successfully demonstrated a rollable speaker that can continue to generate a high-quality sound while being rolled and unrolled repeatedly onto a cylinder with a curvature radius of 4 mm.

  13. Polyimide-Epoxy Composites with Superior Bendable Properties for Application in Flexible Electronics

    Science.gov (United States)

    Lee, Sangyoup; Yoo, Taewon; Han, Youngyu; Kim, Hanglim; Han, Haksoo

    2017-08-01

    The need for flexible electronics with outstanding bending properties is increasing due to the demand for wearable devices and next-generation flexible or rollable smartphones. In addition, the requirements for flexible or rigid-flexible electronics are sharply increasing to achieve the design of space-saving electronic devices. In this regard, coverlay (CL) film is a key material used in the bending area of flexible electronics, albeit infrequently. Because flexible electronics undergo folding and unfolding numerous times, CL films with superior mechanical and bending properties are required so that the bending area can endure such severe stress. However, because current CL films are only used for a designated bending area in the flexible electronics panel, their highly complicated and expensive manufacturing procedure is a disadvantage. In addition, the thickness of CL films must be decreased to satisfy the ongoing requirement for increasingly thin products. However, due to the limitations of the two-layer structure of existing CL films, the manufacturing process cannot be made more cost effective by simply applying more thin film onto the board. To address this problem, we have developed liquid coverlay inks (LCIs) with superior bendable properties, in comparison with CL films, when applied onto flexible electronics using a screen-printing method. The results show that LCIs have the potential to become one of the leading candidates to replace existing CL films because of their lower cost and faster manufacturing process.

  14. El poblado en altura de Topaín (segunda región, Chile: una residencia en la Tierra

    Directory of Open Access Journals (Sweden)

    Ayán Vila, Xurxo M.

    2015-12-01

    Full Text Available This article embraces our archaeological research about domestic space of Topaín settlement. This village was occupied during the final phase of the Late Intermediate Period, before the arrival of Inka Empire (850-1470 A.D.. From Landscape Archaeology and Archaeology of Architecture, we conducted a reading of the built space of Topaín, using as methodological tools formal analysis and syntax analysis. Our interpretation emphasizes the existence of an urban planning and an architectural scene that reflects both socioeconomic factors (emerging social division as cultural traditions (sacrifices and offerings to ancestors and sacred mountains.Este artículo aborda el estudio arqueológico del espacio doméstico del asentamiento de Topaín, ocupado durante la fase final del Período Intermedio Tardío (850-1470 A. D.. Desde la Arqueología del Paisaje y la Arqueología de la Arquitectura llevamos a cabo una relectura de la trama edificada del poblado, empleando como herramientas metodológicas el análisis formal y el análisis sintáctico del espacio. Nuestra interpretación hace hincapié en la existencia de un ordenamiento urbanístico y de toda una escenografía arquitectónica que obedece tanto a factores socioeconómicos (emergente división social como a tradiciones culturales (culto a los ancestros y a los cerros tutelares.

  15. New approach of long-term modification of Topas® to acquire surface hydrophilicity for chromosome spreading

    DEFF Research Database (Denmark)

    Mednova, Olga; Kwasny, Dorota; Rozlosnik, Noemi

    2014-01-01

    as a description of the optimal cleaning procedure and storage conditions to maintain the modified surface. Three minutes of oxygen plasma activation followed by 4 min of acrylic acid UV-photografting at 50 °C leads to the most stable hydrophilicity that was characterized by an initial water contact angle of 53.......5° ± 1.2°. Storage of the modified material in cold water at 4 °C and refraining from ultrasonic cleaning limit water contact angle increase to 5° over 30 days. In comparison with pristine hydrophobic Topas, the proposed treatment improves chromosome spreading ability significantly....

  16. Stretchable and bendable carbon nanotube on PDMS super-lyophobic sheet for liquid metal manipulation

    International Nuclear Information System (INIS)

    Kim, Daeyoung; Jung, Daewoong; Yoo, Jun Hyeon; Lee, Gil S; Lee, Jeong-Bong; Lee, Yunho; Choi, Wonjae; Yoo, Koangki

    2014-01-01

    We report a vertically-aligned carbon nanotube (CNT) forest on polydimethylsiloxane (PDMS) sheet as a novel widely stretchable and bendable anti-wetting super-lyophobic surface for naturally oxidized gallium-based liquid metals. The vertically-aligned CNT has inherent chemical inertness and a hierarchical texture combining micro/nanoscale roughness; these two characters render the developed sheet as a super-lyophobic substrate against gallium-based liquid metals. The vertically-aligned CNT forest was first grown on Si substrate and then transferred onto a PDMS sheet by imprinting. It was found that the transferred CNT on the PDMS sheet maintained its vertically-aligned nature as well as hierarchical micro/nano surface morphology. It was found that the static contact angles of the gallium-based liquid metal droplet on the CNT on Si and on the CNT on PDMS were both greater than 155° and the contact angle hysteresis on the CNT on Si was 4° and that on the transferred CNT on PDMS was 19°. These measurement results showed that the surface retains a super-lyophobic property before and after the CNT transfer onto PDMS. We tested the CNT on PDMS sheet for its mechanical flexibility using stretching (50% and 100%) and bending (curvature of 0.1 and 0.4 mm −1 ). We carried out a bouncing test and a rolling test on the stretched/bent CNT on the PDMS sheet and the results confirmed that the flexible sheet maintains anti-wetting characteristics under bending or stretching conditions. (paper)

  17. Multi-material micro-electromechanical fibers with bendable functional domains

    Science.gov (United States)

    Nguyen-Dang, Tung; Page, Alexis G.; Qu, Yunpeng; Volpi, Marco; Yan, Wei; Sorin, Fabien

    2017-04-01

    The integration of increasingly complex functionalities within thermally drawn multi-material fibers is heralding a novel path towards advanced soft electronics and smart fabrics. Fibers capable of electronic, optoelectronic, piezoelectric or energy harvesting functions are created by assembling new materials in intimate contact within increasingly complex architectures. Thus far, however, the opportunities associated with the integration of cantilever-like structures with freely moving functional domains within multi-material fibers have not been explored. Used extensively in the micro-electromechanical system (MEMS) technology, electro-mechanical transductance from moving and bendable domains is used in a myriad of applications. In this article we demonstrate the thermal drawing of micro-electromechanical fibers (MEMF) that can detect and localize pressure with high accuracy along their entire length. This ability results from an original cantilever-like design where a freestanding electrically conductive polymer composite film bends under an applied pressure. As it comes into contact with another conducting domain, placed at a prescribed position in the fiber cross-section, an electrical signal is generated. We show that by a judicious choice of materials and electrical connectivity, this signal can be uniquely related to a position along the fiber axis. We establish a model that predicts the position of a local touch from the measurement of currents generated in the 1D MEMF device, and demonstrate an excellent agreement with the experimental data. This ability to detect and localize touch over large areas, curved surfaces and textiles holds significant opportunities in robotics and prosthetics, flexible electronic interfaces, and medical textiles. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Fabien Sorin

  18. Efficient voxel navigation for proton therapy dose calculation in TOPAS and Geant4

    Science.gov (United States)

    Schümann, J.; Paganetti, H.; Shin, J.; Faddegon, B.; Perl, J.

    2012-06-01

    A key task within all Monte Carlo particle transport codes is ‘navigation’, the calculation to determine at each particle step what volume the particle may be leaving and what volume the particle may be entering. Navigation should be optimized to the specific geometry at hand. For patient dose calculation, this geometry generally involves voxelized computed tomography (CT) data. We investigated the efficiency of navigation algorithms on currently available voxel geometry parameterizations in the Monte Carlo simulation package Geant4: G4VPVParameterisation, G4VNestedParameterisation and G4PhantomParameterisation, the last with and without boundary skipping, a method where neighboring voxels with the same Hounsfield unit are combined into one larger voxel. A fourth parameterization approach (MGHParameterization), developed in-house before the latter two parameterizations became available in Geant4, was also included in this study. All simulations were performed using TOPAS, a tool for particle simulations layered on top of Geant4. Runtime comparisons were made on three distinct patient CT data sets: a head and neck, a liver and a prostate patient. We included an additional version of these three patients where all voxels, including the air voxels outside of the patient, were uniformly set to water in the runtime study. The G4VPVParameterisation offers two optimization options. One option has a 60-150 times slower simulation speed. The other is compatible in speed but requires 15-19 times more memory compared to the other parameterizations. We found the average CPU time used for the simulation relative to G4VNestedParameterisation to be 1.014 for G4PhantomParameterisation without boundary skipping and 1.015 for MGHParameterization. The average runtime ratio for G4PhantomParameterisation with and without boundary skipping for our heterogeneous data was equal to 0.97: 1. The calculated dose distributions agreed with the reference distribution for all but the G4

  19. THz Tube Waveguides With Low Loss, Low Dispersion, and High Bandwidth

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Bang, Ole

    2014-01-01

    We propose, model and experimentally characterize a novel class of terahertz hollow-core tube waveguides with high-loss cladding material, resulting in propagation with low loss, low dispersion, and high useful bandwidth.......We propose, model and experimentally characterize a novel class of terahertz hollow-core tube waveguides with high-loss cladding material, resulting in propagation with low loss, low dispersion, and high useful bandwidth....

  20. Low Loss and Highly Birefringent Hollow-Core Photonic Crystal Fiber

    DEFF Research Database (Denmark)

    Roberts, P. John; Williams, D.P.; Mangan, Brian J.

    2006-01-01

    A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core.......A hollow-core photonic crystal fiber design is proposed which enables both low-loss and polarization-maintained signal propagation. The design relies on an arrangement of antiresonant features positioned on the glass ring that surrounds the air core....

  1. Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hai-ming; Liu, Shao-bin, E-mail: lsb@nuaa.edu.cn; Liu, Si-yuan; Ding, Guo-wen; Yang, Hua; Yu, Zhi-yang; Zhang, Hai-feng [Key Laboratory of Radar Imaging and Microwave Photonics, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016 (China); Wang, Shen-yun [Research Center of Applied Electromagnetic, Nanjing University of Information Science and Technology, Nanjing, 210044 (China)

    2015-02-23

    In this paper, a low-loss and high transmission analogy of electromagnetically induced transparency based on electric toroidal dipolar response is numerically and experimentally demonstrated. It is obtained by the excitation of the low-loss electric toroidal dipolar response, which confines the magnetic field inside a dielectric substrate with toroidal geometry. The metamaterial electromagnetically induced transparency (EIT) structure is composed of the cut wire and asymmetric split-ring resonators. The transmission level is as high as 0.88, and the radiation loss is greatly suppressed, which can be proved by the surface currents distributions, the magnetic field distributions, and the imaginary parts of the effective permeability and permittivity. It offers an effective way to produce low-loss and high transmission metamaterial EIT.

  2. Low loss power splitter for antenna beam forming networks using probes in a waveguide

    OpenAIRE

    Dich, Mikael; Mortensen, Mette Dahl

    1994-01-01

    The design of a low loss one-to-four power splitter suitable for beam forming networks in antenna arrays is presented. The power splitter is constructed of a shorted waveguide in which five coaxial probes are inserted. Methods for the design of the power splitter are presented together with an experimental verification

  3. Low loss power splitter for antenna beam forming networks using probes in a waveguide

    DEFF Research Database (Denmark)

    Dich, Mikael; Mortensen, Mette Dahl

    1994-01-01

    The design of a low loss one-to-four power splitter suitable for beam forming networks in antenna arrays is presented. The power splitter is constructed of a shorted waveguide in which five coaxial probes are inserted. Methods for the design of the power splitter are presented together...

  4. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    A hollow-core fiber using anisotropic anti-resonant tubes in thecladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic antiresonant tubes i...

  5. A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Rana, Sohel; Habib, Selim

    2016-01-01

    We present a new kind of dual-hole unit-based porous-core hexagonal photonic crystal fiber (H-PCF) with low loss and high birefringence in terahertz regime. The proposed fiber offers simultaneously high birefringence and low effective material loss (EML) in the frequency range of 0.5-0.85 THz wit...

  6. Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with a single ring of circular antiresonant tubes as the cladding provide a simple way of getting a negative-curvature hollow core, resulting in broadband low-loss transmission with little power overlap in the glass. These fibers show a significant improvement in loss performan...

  7. The Generalized Multipole Technique for the Simulation of Low-Loss Electron Energy Loss Spectroscopy

    DEFF Research Database (Denmark)

    Kiewidt, Lars; Karamehmedovic, Mirza

    2018-01-01

    In this study, we demonstrate the use of a Generalized Multipole Technique (GMT) to simulate low-loss Electron Energy Loss Spectroscopy (EELS) spectra of isolated spheriodal nanoparticles. The GMT provides certain properties, such as semi-analytical description of the electromagnetic fields...

  8. Free-standing and bendable carbon nanotubes/TiO2 nanofibres composite electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Zhang, Peng; Qiu, Jingxia; Zheng, Zhanfeng; Liu, Gao; Ling, Min; Martens, Wayde; Wang, Haihui; Zhao, Huijun; Zhang, Shanqing

    2013-01-01

    Carbon nanotube (CNT) and TiO 2 nanofibre composite films are prepared and used as anode materials for lithium ion batteries (LIBs) without the use of binders and conventional copper current collector. The preliminary experimental results from X-ray diffraction, scanning electron microscopy and transmission electron microscopy suggest that the TiO 2 nanofibres were well-dispersed and interwoven by the CNTs, forming freestanding, bendable and light weighted composite. In comparison with TiO 2 nanofibre based LIBs, the CNTs could significantly improve the battery performance due to their high conductivity property and 3D network morphology. In both 1–3 V and 0.01–3 V testing voltage ranges, the as-prepared composites show excellent reversible capacity and capacity retention. The superior lithium storage capacity of the CNT/TiO 2 composite was mainly attributed to dual functions of the CNTs – the CNTs not only provide conductive networks to assist the electron transfer but also facilitate lithium ion diffusion between the electrolyte and the TiO 2 active materials by preventing agglomeration of TiO 2 nanofibres. This work demonstrates that the CNT–TiO 2 composite film could be one type of potential electrode material for large-scale LIB applications

  9. Low-loss compact multilayer silicon nitride platform for 3D photonic integrated circuits.

    Science.gov (United States)

    Shang, Kuanping; Pathak, Shibnath; Guan, Binbin; Liu, Guangyao; Yoo, S J B

    2015-08-10

    We design, fabricate, and demonstrate a silicon nitride (Si(3)N(4)) multilayer platform optimized for low-loss and compact multilayer photonic integrated circuits. The designed platform, with 200 nm thick waveguide core and 700 nm interlayer gap, is compatible for active thermal tuning and applicable to realizing compact photonic devices such as arrayed waveguide gratings (AWGs). We achieve ultra-low loss vertical couplers with 0.01 dB coupling loss, multilayer crossing loss of 0.167 dB at 90° crossing angle, 50 μm bending radius, 100 × 2 μm(2) footprint, lateral misalignment tolerance up to 400 nm, and less than -52 dB interlayer crosstalk at 1550 nm wavelength. Based on the designed platform, we demonstrate a 27 × 32 × 2 multilayer star coupler.

  10. Low losses left-handed materials with optimized electric and magnetic resonance

    Science.gov (United States)

    Zhou, Xin; Liu, Yahong; Zhao, Xiaopeng

    2010-03-01

    We propose that the losses in left-handed materials (LHMs) can be significantly affected by changing the coupling relationship between electric and magnetic resonance. A double bowknot shaped structure (DBS) is used to construct the LHMs. And the magnetic resonance of the DBS, which resonated in the case of lower and higher frequencies than the electric resonant dip, is studied in simulation and experiment by tailoring the structural parameters. The case of magnetic resonance located at low electric resonance frequencies band is confirmed to have relatively low losses. Using full wave simulation of prism shaped structure composed of DBS unit cells, we prove the negative refraction behavior in such a frame. This study can serve as a guide for designing other similar metal-dielectric-metal (MDM) in low losses at terahertz or higher frequencies.

  11. Low-loss tunable all-in-fiber filter for Raman spectroscopy

    DEFF Research Database (Denmark)

    Brunetti, Anna Chiara; Scolari, Lara; Lund-Hansen, Toke

    2011-01-01

    We show a novel in-line Rayleigh-rejection filter for Raman spectroscopy, based on a solid-core Photonic Crystal Fiber (PCF) filled with a high-index material. The device is low-loss and thermally tunable, and allows for a strong attenuation of the Rayleigh line at 532nm and the transmission...... of the Raman lines in a broad wavenumber range....

  12. Efficient parametric interactions in a low loss GaInP photonic crystal waveguide

    DEFF Research Database (Denmark)

    Cestier, I.; Willinger, A.; Colman, Pierre

    2011-01-01

    We describe time domain characterizations of dynamic four-wave mixing in a low loss modified W1 GaInP photonic crystal waveguide. Using 32 ps wide pump pulses with peak powers of up to 1:1W we achieved a very large conversion efficiency of ?6:8 dB as well as a 1:3 dB parametric gain experienced...

  13. Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensing

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Markos, Christos

    2017-01-01

    We report the fabrication and characterization of a polycarbonate (PC) microstructured polymer optical fiber (mPOF) Bragg grating (FBG) humidity sensor that can operate beyond 100°C. The PC preform, from which the fiber was drawn, was produced using an improved casting approach to reduce...... the attenuation of the fiber. The fiber loss was found reduced by a factor of two compared to the latest reported PC mPOF [20], holding the low loss record in PC based fibers. PC mPOFBG was characterized to humidity and temperature, and a relative humidity (RH) sensitivity of 7.31± 0.13 pm/% RH in the range 10...

  14. Low-loss slot waveguides with silicon (111 surfaces realized using anisotropic wet etching

    Directory of Open Access Journals (Sweden)

    Kapil Debnath

    2016-11-01

    Full Text Available We demonstrate low-loss slot waveguides on silicon-on-insulator (SOI platform. Waveguides oriented along the (11-2 direction on the Si (110 plane were first fabricated by a standard e-beam lithography and dry etching process. A TMAH based anisotropic wet etching technique was then used to remove any residual side wall roughness. Using this fabrication technique propagation loss as low as 3.7dB/cm was realized in silicon slot waveguide for wavelengths near 1550nm. We also realized low propagation loss of 1dB/cm for silicon strip waveguides.

  15. TM grating coupler on low-loss LPCVD based Si3N4 waveguide platform

    Science.gov (United States)

    Dabos, G.; Manolis, A.; Giesecke, A. L.; Porschatis, C.; Chmielak, B.; Wahlbrink, T.; Pleros, N.; Tsiokos, D.

    2017-12-01

    We demonstrate, for the first time to our knowledge, a fully etched TM grating coupler for low-loss Low-Pressure-Chemical-Vapor-Deposition (LPCVD) based silicon nitride platform with a coupling loss of 6.5 dB at 1541 nm and a 1 dB bandwidth of 55 nm, addressing applications where TM polarization is a pre-requisite. The proposed GC and the 360 nm × 800 nm strip based Si3N4 waveguides have been fabricated by optical projection lithography using an i-line stepper tool enabling low-cost and mass manufacturing of photonic-integrated-circuits.

  16. Design of low-loss and highly birefringent hollow-core photonic crystal fiber

    DEFF Research Database (Denmark)

    Roberts, Peter John; Williams, D.P.; Sabert, H.

    2006-01-01

    A practical hollow-core photonic crystal fiber design suitable for attaining low-loss propagation is analyzed. The geometry involves a number of localized elliptical features positioned on the glass ring that surrounds the air core and separates the core and cladding regions. The size of each...... feature is tuned so that the composite core-surround geometry is antiresonant within the cladding band gap, thus minimizing the guided mode field intensity both within the fiber material and at material / air interfaces. A birefringent design, which involves a 2-fold symmetric arrangement of the features...

  17. Low-loss photonic crystal fibers for data transmission and their dispersion properties

    DEFF Research Database (Denmark)

    Nielsen, Martin Dybendal; Jacobsen, Christian; Mortensen, Niels Asger

    2004-01-01

    We report on a single-mode photonic crystal fiber with attenuation and effective area at 1550 nm of 0.48 dB/km and 130 µm2, respectively. This is, to our knowledge, the lowest loss reported for a PCF not made from VAD prepared silica and at the same time the largest effective area for a low......-loss (data transmission and show for the first time, both numerically and experimentally, how the group velocity dispersion is related to the mode field diameter....

  18. Fine structures on zero-field steps in low-loss Josephson tunnel junctions

    DEFF Research Database (Denmark)

    Monaco, Roberto; Barbara, Paola; Mygind, Jesper

    1993-01-01

    The first zero-field step in the current-voltage characteristic of intermediate-length, high-quality, low-loss Nb/Al-AlOx/Nb Josephson tunnel junctions has been carefully investigated as a function of temperature. When decreasing the temperature, a number of structures develop in the form...... of regular and slightly hysteretic steps whose voltage position depends on the junction temperature and length. This phenomenon is interesting for the study of nonlinear dynamics and for application of long Josephson tunnel junctions as microwave and millimeter-wavelength oscillators....

  19. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, Maxim, E-mail: maxim.goryachev@uwa.edu.au; Farr, Warrick G.; Tobar, Michael E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, Serge [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe 25000 Besançon (France)

    2014-08-11

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  20. Electropolishing on single-cell: (TESLA, Reentrant and Low Loss shapes) Comsol modelling

    International Nuclear Information System (INIS)

    Bruchon, M.

    2007-01-01

    In the framework of improvement of cavity electropolishing, modelling permits to evaluate some parameters not easily accessible by experiments and can also help us to guide them. Different laboratories (DESY, Fermilab) work on electro or chemical polishing modelling with different approaches and softwares. At CEA Saclay, COMSOL software is used to model horizontal electropolishing of cavity in two dimensions. The goal of this study has been motivated by improvement of our electropolishing setup by modifying the arrival of the acid. The influence of a protuberant cathode has been evaluated and compared for different shapes of single cell cavities: TESLA, ILC Low Loss (LL ILC ), and ILC Reentrant (RE ILC ). (author)

  1. A low loss superconducting filter with four states based on symmetrical interdigital-loaded structure

    International Nuclear Information System (INIS)

    Gao, Tianqi; Wei, Bin; Cao, Bisong; Wang, Dan; Guo, Xubo

    2016-01-01

    Highlights: • A novel symmetrical interdigital-loaded microstrip structure is presents. • A six-pole L-band HTS filter with four states has similar in-band responses. • The coupling coefficients between resonators keep unchanged during tuning. • The low loss HTS filter can be tuned from 1.382 GHz to 1.193 GHz. - Abstract: This paper presents a new symmetrical interdigital-loaded microstrip structure. The symmetrical structure can be applied to design a filter that can work at different frequencies. The filter has similar in-band response at each working frequency with low insertion loss. Based on the proposed structures, a low-loss six-pole high temperature superconducting (HTS) filter with four different working states is designed and fabricated. The center frequency of the filter can be tuned discretely from 1.382 GHz to 1.193 GHz. All four states have similar in-band characters, whereas the insertion losses are less than 0.3 dB. The measured results are consistent with the simulations.

  2. Low-loss bloch wave guiding in open structures and highly compact efficient waveguide-crossing arrays

    Science.gov (United States)

    Popovic, Milos

    2011-03-08

    Low-loss waveguide structures may comprise a multimode waveguide supporting a periodic light intensity pattern, and attachments disposed at the waveguide adjacent low-intensity regions of the light intensity pattern.

  3. Error Analysis of High Frequency Core Loss Measurement for Low-Permeability Low-Loss Magnetic Cores

    DEFF Research Database (Denmark)

    Niroumand, Farideh Javidi; Nymand, Morten

    2016-01-01

    in magnetic cores is B-H loop measurement where two windings are placed on the core under test. However, this method is highly vulnerable to phase shift error, especially for low-permeability, low-loss cores. Due to soft saturation and very low core loss, low-permeability low-loss magnetic cores are favorable...... in many of the high-efficiency high power-density power converters. Magnetic powder cores, among the low-permeability low-loss cores, are very attractive since they possess lower magnetic losses in compared to gapped ferrites. This paper presents an analytical study of the phase shift error in the core...... loss measuring of low-permeability, low-loss magnetic cores. Furthermore, the susceptibility of this measurement approach has been analytically investigated under different excitations. It has been shown that this method, under square-wave excitation, is more accurate compared to sinusoidal excitation...

  4. Low-loss wire design for the DiSCoRaP dipole

    CERN Document Server

    Volpini, G; Bellomo, G; Sorbi, M; Fabbricatore, P; Farinon, S; Musenich, R; Gambardella, U; Kaugerts, J; Moritz, G; Wilson, M N

    2009-01-01

    The SIS-300 synchrotron of the new FAIR facility at GSI (Germany) will use fast-cycled superconducting magnets. Its dipoles will be pulsed at 1 T/s; for comparison, LHC is ramped at 0.007 T/s and RHIC at 0.042 T/s. Within the frame of a collaboration between INFN and GSI, INFN has funded the project DISCORAP (DIpoli SuperCOnduttori RApidamente Pulsati, or Fast Pulsed Superconducting Dipoles) whose goal is to design, construct and test a half-length (4 m), curved, model of one lattice dipole. This paper focuses on the low loss superconducting wire design, and in particular to the transverse resistivity calculations and the dynamic stability verification.

  5. Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    An ultra-low-loss coupler for interfacing a silicon-on-insulator ridge waveguide and a single-mode fiber in both polarizations is presented. The inverted taper coupler, embedded in a polymer waveguide, is optimized for both the transverse-magnetic and transverse-electric modes through tapering...... the width of the silicon-on-insulator waveguide from 450 nm down to less than 15 nm applying a thermal oxidation process. Two inverted taper couplers are integrated with a 3-mm long silicon-on-insulator ridge waveguide in the fabricated sample. The measured coupling losses of the inverted taper coupler...... for transverse-magnetic and transverse-electric modes are ~0.36 dB and ~0.66 dB per connection, respectively....

  6. Fabrication of cavities in low loss LTCC materials for microwave applications

    International Nuclear Information System (INIS)

    Malecha, Karol

    2012-01-01

    A method of buried cavity fabrication in low loss DP951 and new DP9K7 LTCC (low-temperature co-fired ceramic) materials is described in this paper. Laser micromachining and method based on sacrificial volume material (SVM) are studied. Cavities are fabricated in LTCC materials using two different SVMs—cetyl alcohol and carbon tape. The influence of laser system parameters on cutting quality of the LTCC materials is studied. Moreover, thermal properties of the LTCCs and used SVMs are analyzed using combined thermo-gravimetric analysis, differential thermal analysis and differential thermo-gravimetry. Geometries of the LTCC test structures fabricated using different SVMs are analyzed using a scanning electron microscope and x-ray tomography. Energy dispersive spectroscopy and surface wettability measurements are used to analyze changes in LTCC materials atomic composition after co-firing with SVMs. (paper)

  7. Low-loss and broadband anomalous Floquet topological insulator for airborne sound

    Science.gov (United States)

    Peng, Yu-Gui; Shen, Ya-Xi; Zhao, De-Gang; Zhu, Xue-Feng

    2017-04-01

    Anomalous Floquet topological insulators (AFIs) for airborne sound have recently been realized in experiments. However, the implemented version suffers from significant loss and narrowband due to thermal viscosity and dispersive coupling strength between unit-cells. Here, we propose a solution for realizing low-loss and broadband acoustic AFI. We show that the loss after passing through one unit-cell can be less than 2% for the topological edge states. It is also theoretically unveiled that in the frequency range of nearly unitary coupling (˜0.97 from 4.8 kHz to 7.0 kHz in our case), around 84% corresponds to topological bands. Our proposal may promote the application of large-dimension acoustic topological devices.

  8. Low-loss ultracompact optical power splitter using a multistep structure.

    Science.gov (United States)

    Huang, Zhe; Chan, Hau Ping; Afsar Uddin, Mohammad

    2010-04-01

    We propose a low-loss ultracompact optical power splitter for broadband passive optical network applications. The design is based on a multistep structure involving a two-material (core/cladding) system. The performance of the proposed device was evaluated through the three-dimensional finite-difference beam propagation method. By using the proposed design, an excess loss of 0.4 dB was achieved at a full branching angle of 24 degrees. The wavelength-dependent loss was found to be less than 0.3 dB, and the polarization-dependent loss was less than 0.05 dB from O to L bands. The device offers the potential of being mass-produced using low-cost polymer-based embossing techniques.

  9. 2-µm wavelength-range low-loss inhibited-coupling hollow-core PCF

    Science.gov (United States)

    Maurel, M.; Chafer, M.; Delahaye, F.; Amrani, F.; Debord, B.; Gerome, F.; Benabid, F.

    2018-02-01

    We report on the design and fabrication of inhibited-coupling guiding hollow-core photonic crystal fiber with a transmission band optimized for low loss guidance around 2 μm. Two fibers design based on a Kagome-lattice cladding have been studied to demonstrate a minimum loss figure of 25 dB/km at 2 μm associated to an ultra-broad transmission band spanning from the visible to our detection limit of 3.4 μm. Such fibers could be an excellent tool to deliver and compress ultra-short pulse laser systems, especially for the emerging 2-3 μm spectral region.

  10. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    Science.gov (United States)

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  11. Evaluation of a cryostable low-loss conductor for pulsed field applications

    International Nuclear Information System (INIS)

    Wollan, J.J.; Walker, M.S.; Zeitlin, B.A.; Pollack, D.A.; Shen, S.S.

    1980-01-01

    A cryostable, low loss conductor as the basic strand in a 50 kA cable for a 20 MJ prototype, tokamak induction heating coil has been developed, fabricated, and evaluated. The conductor has a copper matrix multifilamentary NbTi core surrounded by a CuNi ring and stabilizing copper segmented by radial CuNi fins. Pulsed loss measurements have been made up to 2.2 T and for decay times from 0.7 to 278 ms. Measurements made on samples with various twists and portions etched away have allowed accurate evaluation of the loss components. Stability measurements were also made on insulated and uninsulated single strands and on subcables. Measured recovery heat flux for the bare strand is about 0.3 W/cm 2 ; however, the application of a 0.0005 in. layer of Omega insulation increases the value to about 0.5 W/cm 2

  12. Low-loss negative index metamaterials for X, Ku, and K microwave bands

    Directory of Open Access Journals (Sweden)

    David A. Lee

    2015-04-01

    Full Text Available Low-loss, negative-index of refraction metamaterials were designed and tested for X, Ku, and K microwave frequency bands. An S-shaped, split-ring resonator was used as a unit cell to design homogeneous slabs of negative-index metamaterials. Then, the slabs of metamaterials were cut unto prisms to measure experimentally the negative index of refraction of a plane electromagnetic wave. Theoretical simulations using High-Frequency Structural Simulator, a finite element equation solver, were in good agreement with experimental measurements. The negative index of refraction was retrieved from the angle- and frequency-dependence of the transmitted intensity of the microwave beam through the metamaterial prism and compared well to simulations; in addition, near-field electromagnetic intensity mapping was conducted with an infrared camera, and there was also a good match with the simulations for expected frequency ranges for the negative index of refraction.

  13. Travelling wave resonators fabricated with low-loss hydrogenated amorphous silicon

    Science.gov (United States)

    Lipka, Timo; Amthor, Julia; Trieu, Hoc Khiem; Müller, Jörg

    2013-05-01

    Low-loss hydrogenated amorphous silicon is employed for the fabrication of various planar integrated travelling wave resonators. Microring, racetrack, and disk resonators of different dimensions were fabricated with CMOS-compatible processes and systematically investigated. The key properties of notch filter ring resonators as extinction ratio, Q-factor, free spectral range, and the group refractive index were determined for resonators of varying radius, thereby achieving critically coupled photonic systems with high extinction ratios of about 20 dB for both polarizations. Racetrack resonators that are arranged in add/drop configuration and high quality factor microdisk resonators were optically characterized, with the microdisks exhibiting Q-factors of greater than 100000. Four-channel add/drop wavelength-division multiplexing filters that are based on cascaded racetrack resonators are studied. The design, the fabrication, and the optical characterization are presented.

  14. High Dielectric Low Loss Transparent Glass Material Based Dielectric Resonator Antenna with Wide Bandwidth Operation

    Science.gov (United States)

    Mehmood, Arshad; Zheng, Yuliang; Braun, Hubertus; Hovhannisyan, Martun; Letz, Martin; Jakoby, Rolf

    2015-01-01

    This paper presents the application of new high permittivity and low loss glass material for antennas. This glass material is transparent. A very simple rectangular dielectric resonator antenna is designed first with a simple microstrip feeding line. In order to widen the bandwidth, the feed of the design is modified by forming a T-shaped feeding. This new design enhanced the bandwidth range to cover the WLAN 5 GHz band completely. The dielectric resonator antenna cut into precise dimensions is placed on the modified microstrip feed line. The design is simple and easy to manufacture and also very compact in size of only 36 × 28 mm. A -10 dB impedance bandwidth of 18% has been achieved, which covers the frequency range from 5.15 GHz to 5.95 GHz. Simulations of the measured return loss and radiation patterns are presented and discussed.

  15. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons

    Directory of Open Access Journals (Sweden)

    Caldwell Joshua D.

    2015-04-01

    Full Text Available The excitation of surface-phonon-polariton (SPhP modes in polar dielectric crystals and the associated new developments in the field of SPhPs are reviewed. The emphasis of this work is on providing an understanding of the general phenomenon, including the origin of the Reststrahlen band, the role that optical phonons in polar dielectric lattices play in supporting sub-diffraction-limited modes and how the relatively long optical phonon lifetimes can lead to the low optical losses observed within these materials. Based on this overview, the achievements attained to date and the potential technological advantages of these materials are discussed for localized modes in nanostructures, propagating modes on surfaces and in waveguides and novel metamaterial designs, with the goal of realizing low-loss nanophotonics and metamaterials in the mid-infrared to terahertz spectral ranges.

  16. Key kinematic parameters in a low-loss power splitter written by femtosecond laser micromachining

    Science.gov (United States)

    Peyton, R.; Guarepi, V.; Videla, F.; Torchia, G. A.

    2018-05-01

    In this work we design, fabricate and characterize a 1  ×  2 Y-branch power splitter based on simplified coherent coupling. This device was constructed by type II waveguide structures inscribed by a direct femtosecond laser writing technique in x-cut lithium niobate crystal. First of all, a theoretical study that links the kinematic and writing fluence of the process is developed, which allows us to establish the design trade-off and justify the best geometry chosen. Then, the design was optimized and tested by using commercial software, resulting in a compact and low-loss photonic circuit. The efficiency of the proposed device is compared with two others: a curved and a straight splitter. Finally, the experimental results were compared with simulations and then a statistical analysis of multiple comparisons was also conducted, obtaining 3.7 dB  ±  0.1 dB insertion losses and 4.5% of the unbalanced coupling ratio.

  17. Optical interconnects based on VCSELs and low-loss silicon photonics

    Science.gov (United States)

    Aalto, Timo; Harjanne, Mikko; Karppinen, Mikko; Cherchi, Matteo; Sitomaniemi, Aila; Ollila, Jyrki; Malacarne, Antonio; Neumeyr, Christian

    2018-02-01

    Silicon photonics with micron-scale Si waveguides offers most of the benefits of submicron SOI technology while avoiding most of its limitations. In particular, thick silicon-on-insulator (SOI) waveguides offer 0.1 dB/cm propagation loss, polarization independency, broadband single-mode (SM) operation from 1.2 to >4 µm wavelength and ability to transmit high optical powers (>1 W). Here we describe the feasibility of Thick-SOI technology for advanced optical interconnects. With 12 μm SOI waveguides we demonstrate efficient coupling between standard single-mode fibers, vertical-cavity surface-emitting lasers (VCSELs) and photodetectors (PDs), as well as wavelength multiplexing in small footprint. Discrete VCSELs and PDs already support 28 Gb/s on-off keying (OOK), which shows a path towards 50-100 Gb/s bandwidth per wavelength by using more advanced modulation formats like PAM4. Directly modulated VCSELs enable very power-efficient optical interconnects for up to 40 km distance. Furthermore, with 3 μm SOI waveguides we demonstrate extremely dense and low-loss integration of numerous optical functions, such as multiplexers, filters, switches and delay lines. Also polarization independent and athermal operation is demonstrated. The latter is achieved by using short polymer waveguides to compensate for the thermo-optic effect in silicon. New concepts for isolator integration and polarization rotation are also explained.

  18. A method for building low loss multi-layer wiring for superconducting microwave devices

    Science.gov (United States)

    Dunsworth, A.; Barends, R.; Chen, Yu; Chen, Zijun; Chiaro, B.; Fowler, A.; Foxen, B.; Jeffrey, E.; Kelly, J.; Klimov, P. V.; Lucero, E.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Neven, H.; Martinis, John M.; Megrant, A.

    2018-02-01

    Complex integrated circuits require multiple wiring layers. In complementary metal-oxide-semiconductor processing, these layers are robustly separated by amorphous dielectrics. These dielectrics would dominate energy loss in superconducting integrated circuits. Here, we describe a procedure that capitalizes on the structural benefits of inter-layer dielectrics during fabrication and mitigates the added loss. We use a deposited inter-layer dielectric throughout fabrication and then etch it away post-fabrication. This technique is compatible with foundry level processing and can be generalized to make many different forms of low-loss wiring. We use this technique to create freestanding aluminum vacuum gap crossovers (airbridges). We characterize the added capacitive loss of these airbridges by connecting ground planes over microwave frequency λ/4 coplanar waveguide resonators and measuring resonator loss. We measure a low power resonator loss of ˜3.9 × 10-8 per bridge, which is 100 times lower than that of dielectric supported bridges. We further characterize these airbridges as crossovers, control line jumpers, and as part of a coupling network in gmon and fluxmon qubits. We measure qubit characteristic lifetimes (T1s) in excess of 30 μs in gmon devices.

  19. Utilizing strongly absorbing materials for low-loss surface-wave nonlinear optics

    Science.gov (United States)

    Grosse, Nicolai B.; Franz, Philipp; Heckmann, Jan; Pufahl, Karsten; Woggon, Ulrike

    2018-04-01

    Optical media endowed with large nonlinear susceptibilities are highly prized for their employment in frequency conversion and the generation of nonclassical states of light. Although the presence of an optical resonance can greatly increase the nonlinear response (e.g., in epsilon-near-zero materials), the non-negligible increase in linear absorption often precludes the application of such materials in nonlinear optics. Absorbing materials prepared as thin films, however, can support a low-loss surface wave: the long-range surface exciton polariton (LRSEP). Its propagation lifetime increases with greater intrinsic absorption and reduced film thickness, provided that the film is embedded in a transparent medium (symmetric cladding). We explore LRSEP propagation in a molybdenum film by way of a prism-coupling configuration. Our observations show that excitation of the LRSEP mode leads to a dramatic increase in the yield of second-harmonic generation. This implies that the LRSEP mode is an effective vehicle for utilizing the nonlinear response of absorbing materials.

  20. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices

    Science.gov (United States)

    Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn

    2016-11-01

    The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.

  1. Novel Low Loss Wide-Band Multi-Port Integrated Circuit Technology for RF/Microwave Applications

    Science.gov (United States)

    Simons, Rainee N.; Goverdhanam, Kavita; Katehi, Linda P. B.; Burke, Thomas P. (Technical Monitor)

    2001-01-01

    In this paper, novel low loss, wide-band coplanar stripline technology for radio frequency (RF)/microwave integrated circuits is demonstrated on high resistivity silicon wafer. In particular, the fabrication process for the deposition of spin-on-glass (SOG) as a dielectric layer, the etching of microvias for the vertical interconnects, the design methodology for the multiport circuits and their measured/simulated characteristics are graphically illustrated. The study shows that circuits with very low loss, large bandwidth, and compact size are feasible using this technology. This multilayer planar technology has potential to significantly enhance RF/microwave IC performance when combined with semi-conductor devices and microelectromechanical systems (MEMS).

  2. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Science.gov (United States)

    Martinez, Amos; Al Araimi, Mohammed; Dmitriev, Artemiy; Lutsyk, Petro; Li, Shen; Mou, Chengbo; Rozhin, Alexey; Sumetsky, Misha; Turitsyn, Sergei

    2017-12-01

    The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors) and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50%) and poor saturable to non-saturable absorption ratios (typically above 1:5). In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%), and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  3. Low-loss saturable absorbers based on tapered fibers embedded in carbon nanotube/polymer composites

    Directory of Open Access Journals (Sweden)

    Amos Martinez

    2017-12-01

    Full Text Available The emergence of low-dimensional materials has opened new opportunities in the fabrication of compact nonlinear photonic devices. Single-walled carbon nanotubes were among the first of those materials to attract the attention of the photonics community owing to their high third order susceptibility, broadband operation, and ultrafast response. Saturable absorption, in particular, has become a widespread application for nanotubes in the mode-locking of a fiber laser where they are used as nonlinear passive amplitude modulators to initiate pulsed operation. Numerous approaches have been proposed for the integration of nanotubes in fiber systems; these can be divided into those that rely on direct interaction (where the nanotubes are sandwiched between fiber connectors and those that rely on lateral interaction with the evanescence field of the propagating wave. Tapered fibers, in particular, offer excellent flexibility to adjust the nonlinearity of nanotube-based devices but suffer from high losses (typically exceeding 50% and poor saturable to non-saturable absorption ratios (typically above 1:5. In this paper, we propose a method to fabricate carbon nanotube saturable absorbers with controllable saturation power, low-losses (as low as 15%, and large saturable to non-saturable loss ratios approaching 1:1. This is achieved by optimizing the procedure of embedding tapered fibers in low-refractive index polymers. In addition, this study sheds light in the operation of these devices, highlighting a trade-off between losses and saturation power and providing guidelines for the design of saturable absorbers according to their application.

  4. Pushing the boundaries of high power lasers: low loss, large area CVD diamond

    Science.gov (United States)

    Wickham, Benjamin; Schoofs, Frank; Olsson-Robbie, Stefan; Bennett, Andrew; Balmer, Richard

    2018-02-01

    Synthetic CVD diamond has exceptional properties, including broad spectral transmission, physical and chemical robustness, and the highest thermal conductivity of any known material, making diamond an attractive material for medium to high power optical and laser applications, minimizing the detrimental effects of thermal lensing and radiation damage. Example applications include ATR prisms, Raman laser crystals, extra- and intra-cavity laser cooling. In each case the demands on the fundamental material properties and fabrication routes are slightly different. In recent years, there has been good progress in the development of low-loss, single crystal diamond, suitable for higher power densities, higher pulse rates and more demanding intra- and extra-cavity thermal management. The adoption of single crystal diamond in this area has however, been hindered by the availability of large area, low birefringence plates. To address this, we report a combination of CVD growth and processing methods that have enabled the manufacture of large, low defect substrates. A final homoepitaxial, low absorption synthesis stage has produced plates with large area (up to 16 mm edge length), low absorption (α<0.005 cm-1 at 1064 nm), and low birefringence (Δn <10-5), suitable for double-sided intra-cavity cooling. We demonstrate the practical advances in synthesis, including increasing the size while reducing in-use losses compared to previous generations of single crystal material, and practical developments in processing and implementation of the single crystal diamond parts, optimizing them for use in a state-of-the-art femto-second pulsed Ti:Sa thin disk gain module, all made in collaboration with the wider European FP7 funded Ti:Sa TD consortium.

  5. New approach for high reliability, low loss splicing between silica and ZBLAN fibers

    Science.gov (United States)

    Carbonnier, Robin; Zheng, Wenxin

    2018-02-01

    In the past decade, ZBLAN (ZrF4-BaF2-LaF3-NaF) fibers have drawn increasing interest for laser operations at wavelengths where Fused Silica-based (SiO2) fibers do not perform well. One limitation to the expansion of ZBLAN fiber lasers today is the difficulty to efficiently inject and extract light in/from the guiding medium using SiO2 fibers. Although free space and butt coupling have provided acceptable results, consistent and long lasting physical joints between SiO2 and ZBLAN fibers will allow smaller, cheaper, and more robust component manufacturing. While low loss splices have been reported using a traditional splicing approach, the very low mechanical strength of the joint makes it difficult to scale. Difficulties in achieving a strong bond are mainly due to the large difference of transition temperature between ZBLAN and SiO2 fibers ( 260°C vs 1175°C). This paper presents results obtained by using the high thermal expansion coefficient of the ZBLAN fiber to encapsulate a smaller SiO2 fiber. A CO2 laser glass processing system was used to control the expansion and contraction of the ZBLAN material during the splicing process for optimum reliability. This method produced splices between 125μm ZBLAN to 80μm SiO2 fibers with average transmission loss of 0.225dB (measured at 1550nm) and average ultimate tension strength of 121.4gf. The Resulting splices can be durably packaged without excessive care. Other combinations using 125μm SiO2 fibers tapered to 80μm are also discussed.

  6. Anisotropic anti-resonant elements gives broadband single-mode low-loss hollow-core fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    Hollow-core fibers with node-free anisotropic anti-resonant elements give broadband low-loss fibers that are also single-moded. At 1.06 μm silica-based fiber designs show higher-order-mode extinction-ratio >1000 and losses below 10 dB/km over a broad wavelength range....

  7. Low loss mid-IR transmission bands using silica hollow-core anisotropic anti-resonant fibers

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    In this paper, a node-free anisotropic hollow-core anti-resonant fiber has been proposed to give low transmission loss in the near-IR to mid-IR spectral regime. The proposed silica-based fiber design shows transmission loss below 10 dB/km at 2.94 μm with multiple low loss transmission bands. Tran...

  8. Low-loss transmission band in photonic crystal waveguides with sharp cutoff at a frequency below the bandgap

    NARCIS (Netherlands)

    Krüger, A.C.; Zhang, M.; Groothoff, N.; Malureanu, R.; Kristensen, M.

    2011-01-01

    We present TE transmission measurements of photonic crystal waveguides with high hole radius to period ratio r/¿ = 0.388. This geometry introduces a unique low loss transmission band in addition to the traditional PhC guiding band and very sharp transmission edges for devices with a length of 50 µm

  9. Effect of N4+ and C4+ ion beam bombardment on the optical and structural characteristics of ethylene-norbornene copolymer (TOPAS)

    International Nuclear Information System (INIS)

    Siljegovic, M.; Kacarevic-Popovic, Z.M.; Krkljes, A.N.; Stojanovic, Z.; Jovanovic, Z.M.

    2011-01-01

    Ion bombardment is a suitable tool to modify the optical properties of polymers. In the present study the effect of ion bombardment on the optical absorption of ethylene-norbornene copolymer (TOPAS) was studied using ultraviolet-visible (UV-Vis) and Raman spectroscopy. Polymer samples were bombarded with 60 keV C 4+ and N 4+ ion beams to various fluences ranging from 1.0 x 10 13 to 1.0 x 10 16 cm -2 . The indirect and direct band gaps have been determined. The values of direct band gaps have been found to be greater than the corresponding values of the indirect band gaps. Activation energy has been investigated as the function of ion fluences. The number of carbon atoms per conjugated length is determined according to modified Tauc's equation. The correlation between the optical band gap, activation energy for optical transition and the number of carbon atoms per conjugated length as well as chemical structure changes induced by ion beams irradiation have been discussed in the case of ethylene-norbornene copolymer.

  10. Calculated and experimental low-loss electron energy loss spectra of dislocations in diamond and GaN

    CERN Document Server

    Jones, R; Gutiérrez-Sosa, A; Bangert, U; Heggie, M I; Blumenau, A T; Frauenheim, T; Briddon, P R

    2002-01-01

    First-principles calculations of electron energy loss (EEL) spectra for bulk GaN and diamond are compared with experimental spectra acquired with a scanning tunnelling electron microscope offering ultra-high-energy resolution in low-loss energy spectroscopy. The theoretical bulk low-loss EEL spectra, in the E sub g to 10 eV range, are in good agreement with experimental data. Spatially resolved spectra from dislocated regions in both materials are distinct from bulk spectra. The main effects are, however, confined to energy losses lying above the band edge. The calculated spectra for low-energy dislocations in diamond are consistent with the experimental observations, but difficulties remain in understanding the spectra of threading dislocations in GaN.

  11. Low-loss transmission band in photonic crystal waveguides with sharp cutoff at a frequency below the bandgap

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Zhang, Min; Groothoff, Nathaniel

    2011-01-01

    We present TE transmission measurements of photonic crystal waveguides with high hole radius to period ratio r/Λ=0.388. This geometry introduces a unique low loss transmission band in addition to the traditional PhC guiding band and very sharp transmission edges for devices with a length of 50 μm...... or longer. Finite difference time domain and plane wave expansion simulations confirm the results and show that the sharpness of the cutoffs can be explained by the spectral shape of the guiding mode in the band diagram....

  12. Low-loss high-confinement waveguides and microring resonators in AlGaAs-on-insulator

    DEFF Research Database (Denmark)

    Ottaviano, Luisa; Pu, Minhao; Semenova, Elizaveta

    2016-01-01

    AlGaAs is a promising material for integrated nonlinearphotonics due to its intrinsic high nonlinearity. However,the challenging fabrication of deep etched AlGaAs devices makes it difficult to realize high-performance devices such as low-loss dispersion engineered waveguides and high quality...... microring resonators. Here, we report a process tomake high-quality AlGaAs-on-insulator (AlGaAsOI) waferswhere high confinement waveguides can be realized. Using optimized patterning processes, we fabricated AlGaAsOI waveguides with propagation losses as low as 1 dB/cmand microring resonators with quality...

  13. Fabrication of ultrafast laser written low-loss waveguides in flexible As₂S₃ chalcogenide glass tape.

    Science.gov (United States)

    Lapointe, Jerome; Ledemi, Yannick; Loranger, Sébastien; Iezzi, Victor Lambin; Soares de Lima Filho, Elton; Parent, Francois; Morency, Steeve; Messaddeq, Younes; Kashyap, Raman

    2016-01-15

    As2S3 glass has a unique combination of optical properties, such as wide transparency in the infrared region and a high nonlinear coefficient. Recently, intense research has been conducted to improve photonic devices using thin materials. In this Letter, highly uniform rectangular single-index and 2 dB/m loss step-index optical tapes have been drawn by the crucible technique. Low-loss (writing process in thin glass is also presented to facilitate a repeatable waveguide inscription recipe.

  14. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current......-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce-the inductive...... voltage. The 1 mu V cm(-1) critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6 +/- 0.15 W m(-1). This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far...

  15. Alternating current losses of a 10 metre long low loss superconducting cable conductor determined from phase sensitive measurements

    International Nuclear Information System (INIS)

    Krueger Olsen, S.; Kuehle, A.; Traeholt, C.; C Rasmussen, C.; Toennesen, O.; Daeumling, M.; Rasmussen, C.N.; Willen, D.W.A.

    1999-01-01

    The ac loss of a superconducting cable conductor carrying an ac current is small. Therefore the ratio between the inductive (out-of-phase) and the resistive (in-phase) voltages over the conductor is correspondingly high. In vectorial representations this results in phase angles between the current and the voltage over the cable close to 90 degrees. This has the effect that the loss cannot be derived directly using most commercial lock-in amplifiers due to their limited absolute accuracy. However, by using two lock-in amplifiers and an appropriate correction scheme the high relative accuracy of such lock-in amplifiers can be exploited. In this paper we present the results from ac-loss measurements on a low loss 10 metre long high temperature superconducting cable conductor using such a correction scheme. Measurements were carried out with and without a compensation circuit that could reduce the inductive voltage. The 1 μV cm -1 critical current of the conductor was 3240 A at 77 K. At an rms current of 2 kA (50 Hz) the ac loss was derived to be 0.6±0.15 W m -1 . This is, to the best of our knowledge, the lowest value of ac loss of a high temperature superconducting cable conductor reported so far at these high currents. (author)

  16. Low-loss Z-type hexaferrite (Ba3Co2Fe24O41) for GHz antenna applications

    Science.gov (United States)

    Lee, Woncheol; Hong, Yang-Ki; Park, Jihoon; LaRochelle, Gatlin; Lee, Jaejin

    2016-09-01

    We report a low magnetic loss Ba3Co2Fe24O41 (Co2Z) hexaferrite for use in gigahertz (GHz) antennas. Acid-etching was very effective in removal of unwanted Y-type hexaferrite (Ba2Co2Fe12O22) from calcined Co2Z powder. It is found that the calcined and acid etched (AE) Co2Z hexaferrite shows a low magnetic loss tangent (tan δμ) of 0.012 and 0.037 at 1 and 2 GHz, respectively. These low tan δμ are attributed to removal of Y-type hexaferrite, which possesses a lower anisotropy field (Hk) than W-type hexaferrite (BaCo2Fe16O27). The figure of merit (FOM) of the AE Co2Z hexaferrite is 141.7 and 48.7 at 1 and 2 GHz, respectively. These FOM are much higher than the FOM of previously reported low-loss magnetic materials. Therefore, the AE Co2Z hexaferrite can be a good candidate for GHz antenna application in the ultra-high frequency (UHF) band.

  17. Compact, low-loss and broadband photonic crystal circulator based on a star-type ferrite rod

    Directory of Open Access Journals (Sweden)

    Xiang Xi

    Full Text Available We propose and investigate a compact, low-loss and broadband circulator based on a star-type ferrite rod in two-dimensional square-lattice photonic crystals. Only one ferrite rod is required to be inserted in our structure. Firstly, the performances of circulator based on the star-type, circle, and square ferrite rod are compared, showing that the circulator with the star-type ferrite rod performs better than the other two ones. And then, based on the star-type ferrite rod circulator, four cases of improvement, in which the background rods around the center ferrite rod are replaced respectively by the backward-triangle, forward-triangle, backward-semicircle, and forward-semicircle rods, are investigated to modulate the coupling between the center magneto-optical micro-cavity and the corresponding waveguides. The results show that, with proper parameters, all the four cases can greatly improve the output properties of the circulator, and different cases have its own advantages. The mechanism behind these improvements is also discussed. Finite-element method is used to calculate the characteristics of the circulator and Nelder-Mead optimization method is employed to obtain the optimized parameters. The ideas presented here are useful for designing broadband, low insertion loss, and high-isolation circulators which have potential application in integrated photonic crystal devices. Keywords: Photonic crystals, Circulator, Magneto-optical material, Photonic crystal waveguides

  18. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    Science.gov (United States)

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  19. Low-to-high refractive index contrast transition (RICT) device for low loss polymer-based optical coupling

    Science.gov (United States)

    Calabretta, N.; Cooman, I. A.; Stabile, R.

    2018-04-01

    We propose for the first time a coupling device concept for passive low-loss optical coupling, which is compatible with the ‘generic’ indium phosphide (InP) multi-project-wafer manufacturing. A low-to-high vertical refractive index contrast transition InP waveguide is designed and tapered down to adiabatically couple light into a top polymer waveguide. The on-chip embedded polymer waveguide is engineered at the chip facets for offering refractive-index and spot-size-matching to silica fiber-arrays. Numerical analysis shows that coupling losses lower than 1.5 dB can be achieved for a TE-polarized light between the InP waveguide and the on-chip embedded polymer waveguide at 1550 nm wavelength. The performance is mainly limited by the difficulty to control single-mode operation. However, coupling losses lower than 1.9 dB can be achieved for a bandwidth as large as 200 nm. Moreover, the foreseen fabrication process steps are indicated, which are compatible with the ‘generic’ InP multi-project-wafer manufacturing. A fabrication error tolerance study is performed, indicating that fabrication errors occur only in 0.25 dB worst case excess losses, as long as high precision lithography is used. The obtained results are promising and may open the route to large port counts and cheap packaging of InP-based photonic integrated chips.

  20. Comparison of self-written waveguide techniques and bulk index matching for low-loss polymer waveguide interconnects

    Science.gov (United States)

    Burrell, Derek; Middlebrook, Christopher

    2016-03-01

    Polymer waveguides (PWGs) are used within photonic interconnects as inexpensive and versatile substitutes for traditional optical fibers. The PWGs are typically aligned to silica-based optical fibers for coupling. An epoxide elastomer is then applied and cured at the interface for index matching and rigid attachment. Self-written waveguides (SWWs) are proposed as an alternative to further reduce connection insertion loss (IL) and alleviate marginal misalignment issues. Elastomer material is deposited after the initial alignment, and SWWs are formed by injecting ultraviolet (UV) light into the fiber or waveguide. The coupled UV light cures a channel between the two differing structures. A suitable cladding layer can be applied after development. Such factors as longitudinal gap distance, UV cure time, input power level, polymer material selection and choice of solvent affect the resulting SWWs. Experimental data are compared between purely index-matched samples and those with SWWs at the fiber-PWG interface. It is shown that writing process. Successfully fabricated SWWs reduce overall processing time and enable an effectively continuous low-loss rigid interconnect.

  1. Capillary Deformations of Bendable Films

    KAUST Repository

    Schroll, R. D.; Adda-Bedia, M.; Cerda, E.; Huang, J.; Menon, N.; Russell, T. P.; Toga, K. B.; Vella, D.; Davidovitch, B.

    2013-01-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical

  2. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    Science.gov (United States)

    Lu, J.; Meng, X.; Springthorpe, A. J.; Shepherd, F. R.; Poirier, M.

    2004-05-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated ``T electrodes'' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ~0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 °C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes. .

  3. Eu-doped ZnO-HfO2 hybrid nanocrystal-embedded low-loss glass-ceramic waveguides

    Science.gov (United States)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2016-03-01

    We report on the sol-gel fabrication, using a dip-coating technique, of low-loss Eu-doped 70SiO2 -(30-x) HfO2-xZnO (x = 2, 5, 7 and 10 mol%) ternary glass-ceramic planar waveguides. Transmission electron microscopy and grazing incident x-ray diffraction experiments confirm the controlled growth of hybrid nanocrystals with an average size of 3 nm-25 nm, composed of ZnO encapsulated by a thin layer of nanocrystalline HfO2, with an increase of ZnO concentration from x = 2 mol% to 10 mol% in the SiO2-HfO2 composite matrix. The effect of crystallization on the local environment of Eu ions, doped in the ZnO-HfO2 hybrid nanocrystal-embedded glass-ceramic matrix, is studied using photoluminescence spectra, wherein an intense mixed-valence state (divalent as well as trivalent) emission of Eu ions is observed. The existence of Eu2+ and Eu3+ in the SiO2-HfO2-ZnO ternary matrix is confirmed by x-ray photoelectron spectroscopy. Importantly, the Eu{}2+,3+-doped ternary waveguides exhibit low propagation losses (0.3 ± 0.2 dB cm-1 at 632.8 nm) and optical transparency in the visible region of the electromagnetic spectrum, which makes ZnO-HfO2 nanocrystal-embedded SiO2-HfO2-ZnO waveguides a viable candidate for the development of on-chip, active, integrated optical devices.

  4. Inductively coupled plasma etching of GaAs low loss waveguides for a traveling waveguide polarization converter, using chlorine chemistry

    International Nuclear Information System (INIS)

    Lu, J.; Meng, X.; SpringThorpe, A.J.; Shepherd, F.R.; Poirier, M.

    2004-01-01

    A traveling waveguide polarization converter [M. Poirier et al.] has been developed, which involves long, low loss, weakly confined waveguides etched in GaAs (epitaxially grown by molecular beam epitaxy), with electroplated 'T electrodes' distributed along the etched floor adjacent to the ridge walls, and airbridge interconnect metallization. This article describes the development of the waveguide fabrication, based on inductively coupled plasma (ICP) etching of GaAs using Cl 2 chemistry; the special processes required to fabricate the electrodes and metallization [X. Meng et al.], and the device characteristics [M. Poirier et al.], are described elsewhere. The required waveguide has dimensions nominally 4 μm wide and 2.1 μm deep, with dimensional tolerances ∼0.1 μm across the wafer and wafer to wafer. A vertical etch profile with very smooth sidewalls and floors is required to enable the plated metal electrodes to be fabricated within 0.1 μm of the ridge. The ridges were fabricated using Cl 2 ICP etching and a photoresist mask patterned with an I-line stepper; He backside cooling, combined with an electrostatic chuck, was employed to ensure good heat transfer to prevent resist reticulation. The experimental results showed that the ridge profile is very sensitive to ICP power and platen rf power. High ICP power and low platen power tend to result in more isotropic etching, whereas increasing platen power increases the photoresist etch rate, which causes rougher ridge sidewalls. No strong dependence of GaAs etch rate and ridge profile were observed with small changes in process temperature (chuck temperature). However, when the chuck temperature was decreased from 25 to 0 deg. C, etch uniformity across a 3 in. wafer improved from 6% to 3%. Photoresist and polymer residues present after the ICP etch were removed using a combination of wet and dry processes

  5. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, Sergey [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Misra, Manoj; Shi, Shanling [Unilever Research and Development, Trumbull, CT 06611 (United States); Firlar, Emre [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States); Libera, Matthew, E-mail: mlibera@stevens.edu [Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken, NJ 07030 (United States)

    2010-06-15

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10{sup 5} e/nm{sup 2} despite the fact that observable damage begins at doses as low as 10{sup 3} e/nm{sup 2}. The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  6. Quantitative nanoscale water mapping in frozen-hydrated skin by low-loss electron energy-loss spectroscopy

    International Nuclear Information System (INIS)

    Yakovlev, Sergey; Misra, Manoj; Shi, Shanling; Firlar, Emre; Libera, Matthew

    2010-01-01

    Spatially resolved low-loss electron energy-loss spectroscopy (EELS) is a powerful method to quantitatively determine the water distribution in frozen-hydrated biological materials at high spatial resolution. However, hydrated tissue, particularly its hydrophilic protein-rich component, is very sensitive to electron radiation. This sensitivity has traditionally limited the achievable spatial resolution because of the relatively high noise associated with low-dose data acquisition. We show that the damage caused by high-dose data acquisition affects the accuracy of a multiple-least-squares (MLS) compositional analysis because of inaccuracies in the reference spectrum used to represent the protein. Higher spatial resolution combined with more accurate compositional analysis can be achieved if a reference spectrum is used that better represents the electron-beam-damaged protein component under frozen-hydrated conditions rather than one separately collected from dry protein under low-dose conditions. We thus introduce a method to extract the best-fitting protein reference spectrum from an experimental spectrum dataset. This method can be used when the MLS-fitting problem is sufficiently constrained so that the only unknown is the reference spectrum for the protein component. We apply this approach to map the distribution of water in cryo-sections obtained from frozen-hydrated tissue of porcine skin. The raw spectral data were collected at doses up to 10 5 e/nm 2 despite the fact that observable damage begins at doses as low as 10 3 e/nm 2 . The resulting spatial resolution of 10 nm is 5-10 times better than that in previous studies of frozen-hydrated tissue and is sufficient to resolve sub-cellular water fluctuations as well as the inter-cellular lipid-rich regions of skin where water-mediated processes are believed to play a significant role in the phenotype of keratinocytes in the stratum corneum.

  7. Multi-stage En/decoders integrated in low loss Si3N4-SiO2 for incoherent spectral amplitude OCDMA on PON

    NARCIS (Netherlands)

    Huiszoon, B.; Leinse, Arne; Geuzebroek, D.H.; Augustin, L.M.; Klein, E.J.; de Waardt, H.; Khoe, G.D.; Koonen, A.M.J.; Emplit, Ph.; Delqué, M.; Gorza, S.-P.; Kockaert, P.; Leijtens, X

    2007-01-01

    In this paper, we show and analyze, for the first time, the static performance of integrated multi-stage cascade and tree spectral amplitude OCDMA en/decoders (E/Ds) which are fabricated in the low loss Si3N4–SiO2 material system. Combined with incoherent broad spectral sources these E/Ds enable

  8. Low-loss polarization-maintaining fusion splicing of single-mode fibers and hollow-core photonic crystal fibers, relevant for monolithic fiber laser pulse compression

    DEFF Research Database (Denmark)

    Kristensen, Jesper Toft; Houmann, Andreas; Liu, Xiaomin

    2008-01-01

    of the splicing process. We also demonstrate that the higher splice loss compromises the PM properties of the splice. Our splicing technique was successfully applied to the realization of a low-loss, environmentally stable monolithic PM fiber laser pulse compressor, enabling direct end-of-the-fiber femtosecond......We report on highly reproducible low-loss fusion splicing of polarization-maintaining single-mode fibers (PM-SMFs) and hollow-core photonic crystal fibers (HC-PCFs). The PM-SMF-to-HC-PCF splices are characterized by the loss of 0.62 ± 0.24 dB, and polarization extinction ratio of 19 ± 0.68 d...... pulse delivery...

  9. MO-FG-CAMPUS-TeP3-02: Benchmarks of a Proton Relative Biological Effectiveness (RBE) Model for DNA Double Strand Break (DSB) Induction in the FLUKA, MCNP, TOPAS, and RayStation™ Treatment Planning System

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, R [University of Washington, Seattle, WA (United States); Streitmatter, S [University of Utah Hospitals, Salt Lake City, UT (United States); Traneus, E [RAYSEARCH LABORATORIES AB, Stockholm (Sweden); Moskvin, V [St. Jude Children’s Hospital, Memphis, TN (United States); Schuemann, J [Massachusetts General Hospital, Boston, MA (United States)

    2016-06-15

    Purpose: Validate implementation of a published RBE model for DSB induction (RBEDSB) in several general purpose Monte Carlo (MC) code systems and the RayStation™ treatment planning system (TPS). For protons and other light ions, DSB induction is a critical initiating molecular event that correlates well with the RBE for cell survival. Methods: An efficient algorithm to incorporate information on proton and light ion RBEDSB from the independently tested Monte Carlo Damage Simulation (MCDS) has now been integrated into MCNP (Stewart et al. PMB 60, 8249–8274, 2015), FLUKA, TOPAS and a research build of the RayStation™ TPS. To cross-validate the RBEDSB model implementation LET distributions, depth-dose and lateral (dose and RBEDSB) profiles for monodirectional monoenergetic (100 to 200 MeV) protons incident on a water phantom are compared. The effects of recoil and secondary ion production ({sub 2}H{sub +}, {sub 3}H{sub +}, {sub 3}He{sub 2+}, {sub 4}He{sub 2+}), spot size (3 and 10 mm), and transport physics on beam profiles and RBEDSB are examined. Results: Depth-dose and RBEDSB profiles among all of the MC models are in excellent agreement using a 1 mm distance criterion (width of a voxel). For a 100 MeV proton beam (10 mm spot), RBEDSB = 1.2 ± 0.03 (− 2–3%) at the tip of the Bragg peak and increases to 1.59 ± 0.3 two mm distal to the Bragg peak. RBEDSB tends to decrease as the kinetic energy of the incident proton increases. Conclusion: The model for proton RBEDSB has been accurately implemented into FLUKA, MCNP, TOPAS and the RayStation™TPS. The transport of secondary light ions (Z > 1) has a significant impact on RBEDSB, especially distal to the Bragg peak, although light ions have a small effect on (dosexRBEDSB) profiles. The ability to incorporate spatial variations in proton RBE within a TPS creates new opportunities to individualize treatment plans and increase the therapeutic ratio. Dr. Erik Traneus is employed full-time as a Research Scientist

  10. MPO-type single-mode multi-fiber connector: Low-loss and high-return-loss intermateability of APC-MPO connectors

    Science.gov (United States)

    Satake, Toshiaki; Nagasawa, Shinji; Hughes, Mike; Lutz, Sharon

    2011-01-01

    The electrical communication laboratory of NTT started the research of MT (Mechanically Transferable) connector in early 1980s. The initial goal was to realize a multi-fiber connector which can repeat low loss, stable, reliable and low-cost connections of subscriber optical fiber cable networks for more than 20 years period in the field. We review the multi-fiber alignment design with two guide pins, and following several technical improvements toward the final MT connector used in the commercial telecommunication networks. And then, we review development histories to reach to the low-loss, high-return-loss and reliable APC-MPO (Angled Physical Contact Multi-fiber Push On) connectors introduced in NTT COs and in Verizon's FTTH (Fiber To The Home) networks. In the latter half, we propose the low-loss intermateability design for connectors made by different suppliers in order to enable mass introductions into large scale systems. In addition we also describe an accurate connector loss presumption method for different lots' ferrules based on the MT ferrule dimension data before assembling the connectors. We believe with a wide intermateability of APC-MPO connector will increase its use in the fields. The APC-MPO connector manufactured based on the proposed design had low insertion losses of less than 0.25 dB at the same level of simplex connectors and the higher level of return losses higher than 65 dB.

  11. Efficient wavelength converters with flattop responses based on counterpropagating cascaded SFG and DFG in low-loss QPM LiNbO3 waveguides.

    Science.gov (United States)

    Tehranchi, Amirhossein; Kashyap, Raman

    2009-10-12

    A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.

  12. A Thermally Tunable 1 × 4 Channel Wavelength Demultiplexer Designed on a Low-Loss Si3N4 Waveguide Platform

    Directory of Open Access Journals (Sweden)

    Mohammed Shafiqul Hai

    2015-11-01

    Full Text Available A thermally tunable 1 × 4 channel optical demultiplexer was designed using an ultra low-loss Si3N4 (propagation loss ~3.1 dB/m waveguide. The demultiplexer has three 2 × 2 Mach-Zehnder interferometers (MZI, where each of the MZI contains two 2 × 2 general interference based multimode interference (MMI couplers. The MMI couplers exhibit −3.3 dB to −3.7 dB power division ratios over a 50 nm wavelength range from 1530 nm to 1580 nm. The chrome-based (Cr heaters placed on the delay arms of the MZI filters enable thermal tuning to control the optical phase shift in the MZI delay arms. This facilitates achieving moderately low crosstalk (14.5 dB between the adjacent channels. The optical insertion loss of the demultiplexer per channel is between 1.5 dB to 2.2 dB over the 1550 nm to 1565 nm wavelength range. Error free performance (BER of 10−12 is obtained for all four 40 Gb/s data rate channels. The optical demultiplexer is an important tool towards building photonic integrated circuits with complex optical signal processing functionalities in the low-loss Si3N4 waveguide platform.

  13. Comparative Evaluation of Chitosan Nerve Guides with Regular or Increased Bendability for Acute and Delayed Peripheral Nerve Repair: A Comprehensive Comparison with Autologous Nerve Grafts and Muscle-in-Vein Grafts.

    Science.gov (United States)

    Stößel, Maria; Wildhagen, Vivien M; Helmecke, Olaf; Metzen, Jennifer; Pfund, Charlotte B; Freier, Thomas; Haastert-Talini, Kirsten

    2018-05-08

    Reconstruction of joint-crossing digital nerves requires the application of nerve guides with a much higher flexibility than used for peripheral nerve repair along larger bones. Nevertheless, collapse-resistance should be preserved to avoid secondary damage to the regrowing nerve tissue. In recent years, we presented chitosan nerve guides (CNGs) to be highly supportive for the regeneration of critical gap length peripheral nerve defects in the rat. Now, we evidently increased the bendability of regular CNGs (regCNGs) by developing a wavy wall structure, that is, corrugated CNGs (corrCNGs). In a comprehensive in vivo study, we compared both types of CNGs with clinical gold standard autologous nerve grafts (ANGs) and muscle-in-vein grafts (MVGs) that have recently been highlighted in the literature as a suitable alternative to ANGs. We reconstructed rat sciatic nerves over a critical gap length of 15 mm either immediately upon transection or after a delay period of 45 days. Electrodiagnostic measurements were applied to monitor functional motor recovery at 60, 90, 120, and 150 (only delayed repair) days postreconstruction. Upon explanation, tube properties were analyzed. Furthermore, distal nerve ends were evaluated using histomorphometry, while connective tissue specimens were subjected to immunohistological stainings. After 120 days (acute repair) or 150 days (delayed repair), respectively, compression-stability of regCNGs was slightly increased while it remained stable in corrCNGs. In both substudies, regCNGs and corrCNGs supported functional recovery of distal plantar muscles in a similar way and to a greater extent when compared with MVGs, while ANGs demonstrated the best support of regeneration. Anat Rec, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  14. Direct laser writing of a low-loss waveguide with independent control over the transverse dimension and the refractive index contrast between the core and the cladding.

    Science.gov (United States)

    Masselin, Pascal; Bychkov, Eugène; Coq, David Le

    2016-08-01

    In this Letter, we present the realization of a low-loss waveguide in a chalcogenide glass by direct laser writing technique in a particular configuration that allows the independent control over the diameter of the core and the magnitude of the refractive index contrast with the cladding. The waveguide is of multicore type and composed of 19 channels arranged on a hexagonal lattice. Each channel is obtained by stacking voxels of refractive index variation obtained by static exposure to femtosecond laser pulse burst. The distance between the channels can be used to vary the diameter of the waveguide, while the duration of laser burst controls the magnitude of the effective index and the propagation loss. We demonstrate that it can be reduced down to 0.11 dB/cm.

  15. Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits.

    Science.gov (United States)

    Fujisawa, Takeshi; Makino, Shuntaro; Sato, Takanori; Saitoh, Kunimasa

    2017-04-17

    Ultimately low-loss 90° waveguide bend composed of clothoid and normal curves is proposed for dense optical interconnect photonic integrated circuits. By using clothoid curves at the input and output of 90° waveguide bend, straight and bent waveguides are smoothly connected without increasing the footprint. We found that there is an optimum ratio of clothoid curves in the bend and the bending loss can be significantly reduced compared with normal bend. 90% reduction of the bending loss for the bending radius of 4 μm is experimentally demonstrated with excellent agreement between theory and experiment. The performance is compared with the waveguide bend with offset, and the proposed bend is superior to the waveguide bend with offset in terms of fabrication tolerance.

  16. Fiber up-tapering and down-tapering for low-loss coupling between anti-resonant hollow-core fiber and solid-core fiber

    Science.gov (United States)

    Zhang, Naiqian; Wang, Zefeng; Xi, Xiaoming

    2017-10-01

    In this paper, we demonstrate a novel method for the low-loss coupling between solid-core multi-mode fibers (MMFs) and anti-resonant hollow-core fibers (AR-HCFs). The core/cladding diameter of the MMF is 50/125μm and the mode field diameter of the AR-HCFs are 33.3μm and 71.2μm of the ice-cream type AR-HCFs and the non-node type ARHCFs, respectively. In order to match the mode field diameters of these two specific AR-HCFs, the mode field diameter of the MMFs is increased or decreased by up-tapering or down-tapering the MMFs. Then, according to the principle of coupled fiber mode matching, the optimal diameter of tapered fiber for low-loss coupling is calculated. Based on beam propagation method, the calculated coupling losses without tapering process are 0.31dB and 0.89dB, respectively for a MMF-HCF-MMF structure of the ice-cream type AR-HCFs and the non-node type AR-HCFs. These values can be reduced to 0.096dB and 0.047dB when the outer diameters of the MMF are down-tapered to 116μm and up-tapered to 269μm, respectively. What's more, these results can also be verified by existing experiments.

  17. Low-loss integrated electrical surface plasmon source with ultra-smooth metal film fabricated by polymethyl methacrylate ‘bond and peel’ method

    Science.gov (United States)

    Liu, Wenjie; Hu, Xiaolong; Zou, Qiushun; Wu, Shaoying; Jin, Chongjun

    2018-06-01

    External light sources are mostly employed to functionalize the plasmonic components, resulting in a bulky footprint. Electrically driven integrated plasmonic devices, combining ultra-compact critical feature sizes with extremely high transmission speeds and low power consumption, can link plasmonics with the present-day electronic world. In an effort to achieve this prospect, suppressing the losses in the plasmonic devices becomes a pressing issue. In this work, we developed a novel polymethyl methacrylate ‘bond and peel’ method to fabricate metal films with sub-nanometer smooth surfaces on semiconductor wafers. Based on this method, we further fabricated a compact plasmonic source containing a metal-insulator-metal (MIM) waveguide with an ultra-smooth metal surface on a GaAs-based light-emitting diode wafer. An increase in propagation length of the SPP mode by a factor of 2.95 was achieved as compared with the conventional device containing a relatively rough metal surface. Numerical calculations further confirmed that the propagation length is comparable to the theoretical prediction on the MIM waveguide with perfectly smooth metal surfaces. This method facilitates low-loss and high-integration of electrically driven plasmonic devices, thus provides an immediate opportunity for the practical application of on-chip integrated plasmonic circuits.

  18. Optical Properties of Gallium-Doped Zinc Oxide—A Low-Loss Plasmonic Material: First-Principles Theory and Experiment

    Directory of Open Access Journals (Sweden)

    Jongbum Kim

    2013-12-01

    Full Text Available Searching for better materials for plasmonic and metamaterial applications is an inverse design problem where theoretical studies are necessary. Using basic models of impurity doping in semiconductors, transparent conducting oxides (TCOs are identified as low-loss plasmonic materials in the near-infrared wavelength range. A more sophisticated theoretical study would help not only to improve the properties of TCOs but also to design further lower-loss materials. In this study, optical functions of one such TCO, gallium-doped zinc oxide (GZO, are studied both experimentally and by first-principles density-functional calculations. Pulsed-laser-deposited GZO films are studied by the x-ray diffraction and generalized spectroscopic ellipsometry. Theoretical studies are performed by the total-energy-minimization method for the equilibrium atomic structure of GZO and random phase approximation with the quasiparticle gap correction. Plasma excitation effects are also included for optical functions. This study identifies mechanisms other than doping, such as alloying effects, that significantly influence the optical properties of GZO films. It also indicates that ultraheavy Ga doping of ZnO results in a new alloy material, rather than just degenerately doped ZnO. This work is the first step to achieve a fundamental understanding of the connection between material, structural, and optical properties of highly doped TCOs to tailor those materials for various plasmonic applications.

  19. Low-loss 3D-laser-written mid-infrared LiNbO3 depressed-index cladding waveguides for both TE and TM polarizations.

    Science.gov (United States)

    Nguyen, Huu-Dat; Ródenas, Airán; Vázquez de Aldana, Javier R; Martín, Guillermo; Martínez, Javier; Aguiló, Magdalena; Pujol, Maria Cinta; Díaz, Francesc

    2017-02-20

    We report mid-infrared LiNbO3 depressed-index microstructured cladding waveguides fabricated by three-dimensional laser writing showing low propagation losses (~1.5 dB/cm) at 3.68 µm wavelength for both the transverse electric and magnetic polarized modes, a feature previously unachieved due to the strong anisotropic properties of this type of laser microstructured waveguides and which is of fundamental importance for many photonic applications. Using a heuristic modeling-testing iteration design approach which takes into account cladding induced stress-optic index changes, the fabricated cladding microstructure provides low-loss single mode operation for the mid-IR for both orthogonal polarizations. The dependence of the localized refractive index changes within the cladding microstructure with post-fabrication thermal annealing processes was also investigated, revealing its complex dependence of the laser induced refractive index changes on laser fabrication conditions and thermal post-processing steps. The waveguide modes properties and their dependence on thermal post-processing were numerically modeled and fitted to the experimental values by systematically varying three fundamental parameters of this type of waveguides: depressed refractive index values at sub-micron laser-written tracks, track size changes, and piezo-optic induced refractive index changes.

  20. Low-loss optical waveguides made with molecular beam epitaxial In(0.012)Ga(0.988)As and In(0.2)Ga(0.8)As-GaAs superlattices

    Science.gov (United States)

    Das, U.; Bhattacharya, P. K.; Dhar, S.

    1986-01-01

    Low-loss optical guiding in In-doped GaAs is demonstrated for the first time. Ridge waveguides are made with single In(0.012)Ga(0.988)As ternary layers and In(0.2)Ga(0.8)As-GaAs superlattices. Attenuation constants of about 1.3 dB/cm are measured and the principal loss mechanism is identified to be scattering at the ridge walls. It is expected that improved fabrication techniques will lead to guides with attenuation less than or equal to 0.5 dB/cm.

  1. FY 2000 report on the development of ultra low loss power element technology. Commercialization of next generation power semiconductor device; 2000 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Jisedai power handotai device jitsuyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    For the purpose of contributing to the promotion of development of ultra low loss power element technology, survey was conducted on the present situation, future, etc. of various technologies/systems related to power semiconductor devices. In the industrial equipment field, it is predicted that power semiconductor devices will be increased in the field of application by enlargement of the defense field of IGBT, new MOS structure elements, etc. In the field of home appliances, possibilities are expected of switching loss reduction and electric noise reduction by making SiC high speed diode. As to the space photovoltaic power generation, SiC is expected for various semiconductors such as solar cells, FET for transmitter/amplifier of radio power electric transmission use micro waves, etc. Concerning the radio communication system plan using stratosphere platform, there are technical problems on communication equipment such as antenna and RF circuit, and the role of SiC device is expected to be large. The society where the electrification rate is 80% and fuel cell vehicles are used is a new paradigm, and it is necessary and indispensable to commercialize ultra low loss power elements using SiC. (NEDO)

  2. Influence of welded boundaries in anelastic media on energy flow, and characteristics of P, S-I, and S-II waves: Observational evidence for inhomogeneous body waves in low-loss solids

    Science.gov (United States)

    Borcherdt, Roger D.; Glassmoyer, Gary; Wennerberg, Leif

    1986-10-01

    A general computer code, developed to calculate anelastic reflection-refraction coefficients, energy flow, and the physical characteristics for general P, S-I, and S-II waves, quantitatively describes physical characteristics for wave fields in anelastic media that do not exist in elastic media. Consideration of wave fields incident on boundaries between anelastic media shows that scattered wave fields experience reductions in phase and energy speeds, increases in maximum attenuation and Q-1, and directions of maximum energy flow distinct from phase propagation. Each of these changes in physical characteristics are shown to vary with angle of incidence. Finite relaxation times for anelastic media result in energy flow due to interaction of superimposed radiation fields and contribute to energy flow across anelastic boundaries for all angles of incidence. Agreement of theoretical and numerical results with laboratory measurements argues for the validity of the theoretical and numerical formulations incorporating inhomogeneous wave fields. The agreement attests to the applicability of the model and helps confirm the existence of inhomogeneous body waves and their associated set of distinct physical characteristics in the earth. The existence of such body waves in layered, low-loss anelastic solids implies the need to reformulate some seismological models of the earth. The exact anelastic formulation for a liquid-solid interface with no low-loss approximations predicts the existence of a range of angles of incidence or an anelastic Rayleigh window, through which significant amounts of energy are transmitted across the boundary. The window accounts for the discrepancy apparent between measured reflection data presented in early textbooks and predictions based on classical elasticity theory. Characteristics of the anelastic Rayleigh window are expected to be evident in certain sets of wide-angle, ocean-bottom reflection data and to be useful in estimating Q-1 for some

  3. Low Loss Advanced Metallic Fuel Casting Evaluation

    International Nuclear Information System (INIS)

    Kim, Kihwan; Ko, Youngmo; Kim, Jonghwan; Song, Hoon; Lee Chanbock

    2014-01-01

    The fabrication process for SFR fuel is composed of fuel slug casting, loading and fabrication of the fuel rods, and the fabrication of the final fuel assemblies. Fuel slug casting is the dominant source of fuel losses and recycles streams in the fabrication process. Recycle streams include fuel slug reworks, returned scraps, and fuel casting heels, which are a special concern in the counter gravity injection casting process because of the large masses involved. Large recycle and waste streams result in lowering the productivity and the economic efficiency of fuel production. To increase efficiency the fuel losses in the furnace chamber, crucible, and the mold, after casting a considerable amount of fuel alloy in the casting furnace, will be quantitatively evaluated. After evaluation the losses will be identified and minimized. It is expected that this study will contribute to the minimization of fuel losses and the wastes streams in the fabrication process of the fuel slugs. Also through this study the technical readiness level of the metallic fuel fabrication process will be further enhanced. In this study, U-Zr alloy system fuel slugs were fabricated by a gravity casting method. Metallic fuel slugs were successfully fabricated with 19 slugs/batch with diameter of 5mm and length of 300mm. Fuel losses was quantitatively evaluated in casting process for the fuel slugs. Fuel losses of the fuel slugs were so low, 0.1∼1.0%. Injection casting experiments have been performed to reduce the fuel loss and improve the casting method. U-Zr fuel slug having φ5.4-L250mm was soundly fabricated with 0.1% in fuel loss. The fuel losses could be minimized to 0.1%, which showed that casting technology of fuel slugs can be a feasible approach to reach the goal of the fuel losses of 0.1% or less in commercial scale

  4. Report on results 1998. Technological development to create high quality crystal material for low loss power controlling element; 1998 nendo seika hokokusho. Teisonshitsu denryoku seigyo soshiyo kohinshitsu kessho zairyo sosei gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This paper refers to the development of basic technology for manufacturing crystal materials of a large diameter and uniform properties for the purpose of sophistication and low loss of semiconductor controlling elements for electric power. An experiment was conducted using the drop tower of the underground agravity center. Results in fiscal 1998 were explained. With counter-measures taken in for improving measuring accuracy of an electromagnetic floating furnace, the accumulation and evaluation were performed of the highly reliable data of the surface tension and density of Si. The measurement of the viscosity coefficient of Si under micro-gravity was successful for the first time in the world, as was the measurement of the contact angle between solid/liquid, other than the measurement of specific heat, thermal conductivity and spectral emissivity of Si. The viscosity coefficient, unlike the conventional report, showed Arrhenius' linearity. In the comupter simulation, boundary data were exchanged between element analysis programs, developing a basic general analysis program as scheduled. The result of a micro simulation by molecular dynamics method was in agreement with the observation result by a transmission type electron microscope, bringing the first success in the world. In the Cz furnace model experiment, effect of rotation for example was elucidated on turbulence in the melt by using lasers. (NEDO)

  5. Report on achievement in developing an ultra low loss power element technology. Survey on practical application of the next generation power semiconductor devices; 1998 nendo choteisonshitsu denryoku soshi gijutsu kaihatsu seika hokokusho. Jisedai power handotai device jitsuyoka chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Trends were surveyed for development of an ultra low loss power element. Performance improvement has been progressed on power semiconductor elements by using Si as the raw material, but loss reduction has come close to the physical limit. SiC is expected of possibility to go beyond this limit. SiC is so very excellent that its band gap is two to three times greater, insulation breakdown electric field is 7.5 times higher, temperature to become a true semiconductor is three to four times higher than those of Si. The wide gap can reduce high temperature leaking current in p-n junctions, and the increased authenticity temperature can increase the upper limit for operation temperature. The insulation breakdown strength being higher by one digit can reduce the drift layer thickness, and is expected to dramatically reduce the loss. The problem is that high quality crystals have not been obtained to date. One of the promising application fields is electric vehicle. The device currently using the power element in the largest scale is used in frequency converting stations to link the 50-Hz power network in the eastern part of Japan to the 60-Hz network in the western part of Japan. Surveys were carried out on the Sakuma frequency converting station and the New Shinano substation. (NEDO)

  6. Extreme bendability of DNA double helix due to bending asymmetry

    NARCIS (Netherlands)

    Salari, H.; Eslami-Mossallam, B.; Nederi, S.; Ejtehadi, M.R.

    2015-01-01

    Experimental data of the DNA cyclization (J-factor) at short length scales exceed the theoretical expectation based on the wormlike chain (WLC) model by several orders of magnitude. Here, we propose that asymmetric bending rigidity of the double helix in the groove direction can be responsible for

  7. Bendable Zeolite Membranes: Synthesis and Improved Gas Separation Performance.

    Science.gov (United States)

    Wang, Bo; Ho, W S Winston; Figueroa, Jose D; Dutta, Prabir K

    2015-06-23

    Separation and sequestration of CO2 emitted from fossil energy fueled electric generating units and industrial facilities will help in reducing anthropogenic CO2, thereby mitigating its adverse climate change effects. Membrane-based gas separation has the potential to meet the technical challenges of CO2 separation if high selectivity and permeance with low costs for large-scale manufacture are realized. Inorganic zeolite membranes in principle can have selectivity and permeance considerably higher than polymers. This paper presents a strategy for zeolite growth within the pores of a polymer support, with crystallization time of an hour. With a thin coating of 200-300 nm polydimethylsiloxane (PDMS) on the zeolite-polymer composite, transport data for CO2/N2 separation indicate separation factors of 35-45, with CO2 permeance between 1600 and 2200 GPU (1 GPU = 3.35 × 10(-10) mol/(m(2) s Pa)) using dry synthetic mixtures of CO2 and N2 at 25 °C. The synthesis process results in membranes that are highly reproducible toward transport measurements and exhibit long-term stability (3 days). Most importantly, these membranes because of the zeolite growth within the polymer support, as contrasted to conventional zeolite growth on top of a support, are mechanically flexible.

  8. Microfabricated Low-Loss Microwave Switch Integration Technology, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Nuvotronics has developed and optimized the PolyStrataTM process for the fabrication of intricate microwave and millimeter-wave devices. These devices have primarily...

  9. A new approach to low loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Krüger, Asger Christian; Zhang, Min; Groothoff, Nathaniel

    Photonic crystal waveguides allow ultra-compact realization of integrated optical components because they have high group index. However, they also induce significant losses in effect reducing the scope of their applications. We find that by increasing the photonic crystal hole to pitch ratio r...

  10. 3D Microfabricated Low Loss Reconfigurable Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical communication satellites use traditional waveguide front-end architectures due to the excellent electrical performance and high reliability. While the...

  11. 3D Microfabricated Low Loss Reconfigurable Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Typical communication satellites use traditional waveguide front-end architectures due to excellent electrical performance and high reliability. However, these...

  12. Low loss, high and low index contrast waveguides in semiconductors

    Science.gov (United States)

    Bond, Tiziana [Livermore, CA; Cole, Garrett [Berkeley, CA; Goddard, Lynford [Champaign, IL; Kallman, Jeff [Pleasanton, CA

    2011-08-09

    A system in one general embodiment includes a waveguide structure comprising a core of an alloy of Group III-V materials surrounded by an oxide (which may include one or more Group III-V metals), wherein an interface of the oxide and core is characterized by oxidation of the alloy for defining the core. A method in one general approach includes oxidizing a waveguide structure comprising an alloy of Group III-V materials for forming a core of the alloy surrounded by an oxide.

  13. A low-loss, continuously tunable microwave notch filter

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2016-01-01

    The development in high-end microwave transceiver systems toward the software defined radio has brought about the need for tunable frontend filters. Although the problem is being tackled by the microwave community, there still appears to be an unmet demand for practical tunable filter technologies...

  14. Low-loss intersection of subwavelength plasmonic slot waveguides

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Niels Asger

    2008-01-01

    and resonant-tunnelling effect, we design two types of compact cavity-based structures. Our results show that the crosstalk is eliminated and the throughput reaches the unity on resonance. Simulation results are in agreement with those from coupled-mode theory. Taking material loss into account, the symmetry...

  15. Low loss superconducting titanium nitride coplanar waveguide resonators

    International Nuclear Information System (INIS)

    Vissers, M. R.; Gao, J.; Wisbey, D. S.; Hite, D. A.; Pappas, D. P.; Tsuei, C. C.; Corcoles, A. D.; Steffen, M.

    2010-01-01

    Thin films of TiN were sputter-deposited onto Si and sapphire wafers with and without SiN buffer layers. The films were fabricated into rf coplanar waveguide resonators, and internal quality factor measurements were taken at millikelvin temperatures in both the many photon and single photon limits, i.e., high and low electric field regimes, respectively. At high field, we found the highest internal quality factors (∼10 7 ) were measured for TiN with predominantly a (200)-TiN orientation. The (200)-TiN is favored for growth at high temperature on either bare Si or SiN buffer layers. However, growth on bare sapphire or Si(100) at low temperature resulted in primarily a (111)-TiN orientation. Ellipsometry and Auger measurements indicate that the (200)-TiN growth on the bare Si substrates is correlated with the formation of a thin, ≅2 nm, layer of SiN during the predeposition procedure. On these surfaces we found a significant increase of Q i for both high and low electric field regimes.

  16. Microdroplet-etched highly birefringent low-loss fiber tapers.

    Science.gov (United States)

    Mikkelsen, Jared C; Poon, Joyce K S

    2012-07-01

    We use hydrofluoric acid microdroplets to directly etch highly birefringent biconical fiber tapers from standard single-mode fibers. The fiber tapers have micrometer-sized cross sections, which are controlled by the etching condition. The characteristic teardrop cross section leads to a high group birefringence of B(G)≈0.017 and insertion losses <0.7 dB over waist lengths of about 2.1 mm.

  17. Low-Loss Ferrite Components for NASA Missions, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Ferrite based isolators and circulators have been successfully demonstrated at microwave, millimeter-wave and submillimeter-wave frequencies. These components are...

  18. Dynamical back-action effects in low loss optomechanical oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Pontin, Antonio; Prodi, Giovanni A. [INFN, Trento Institute for Fundamental Physics and Application, Povo (Italy); Dipartimento di Fisica, Universita di Trento, Povo (Italy); Bonaldi, Michele; Borrielli, Antonio [INFN, Trento Institute for Fundamental Physics and Application, Povo (Italy); Institute of Materials for Electronics and Magnetism, Nanoscience-Trento-FBK Division, Povo (Italy); Marino, Francesco [INFN, Sezione di Firenze, Sesto Fiorentino (Italy); CNR-INO, Firenze (Italy); Marconi, Lorenzo [LENS, Sesto Fiorentino (Italy); Bagolini, Alvise [Microtechnology Laboratory FBK-CMM, Povo (Italy); Pandraud, Gregory [DIMES Technology Center-TU Delft (Netherlands); Serra, Enrico [INFN, Trento Institute for Fundamental Physics and Application, Povo (Italy); DIMES Technology Center-TU Delft (Netherlands); Interdisciplinary Laboratory for Computational Science (LISC), FBK-University of Trento, Povo (Italy); Marin, Francesco [INFN, Sezione di Firenze, Sesto Fiorentino (Italy); LENS, Sesto Fiorentino (Italy); Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Italy)

    2015-01-01

    The problem of the stability of a cavity optomechanical system based on an oscillator having at the same time low optical and mechanical losses is addressed. As it is the aim to extend the use of optical squeezing as a tool for improving quantum limited displacement sensing at low frequency, a family of opto-mechanical devices designed to work at frequencies of about 100 kHz was developed. The devices actually meet the initial design goals, but new requirements have emerged from the analysis of their behavior in optical cavities, due to the interaction between the cavity locking system and the low order normal modes of the devices. (copyright 2014 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Ultra Low Loss Optical Fiber Cable Assemblies. Volume 2.

    Science.gov (United States)

    1983-06-07

    AND CABLE ASSEMBLY TEST PLAN I Part 1: CABLE TEST PLAN for U. S. ARMY CORADCOM Fort Monmouth, New Jersey 9~Contract # DA -A B07-78-C-29ZZ * Prepared by...VICES$ 1TEST OArg sMATED UTZx ccwITE I INSERTION LOSS £P40,,T PdA. "AT1 NO. ’we Uva ITS R.H. REQUECZ=ENT: The insertion loss of a mated =ai.r of...16(m separation between the rear of the con- nectar and the first turn on the mandrel. After which the plug and receptacle were mated, the mounting

  20. Temperature compensated, humidity insensitive, high-Tg TOPAS FBGs for accelerometers and microphones

    DEFF Research Database (Denmark)

    Stefani, Alessio; Yuan, W.; Markos, C.

    2012-01-01

    In this paper we present our latest work on Fiber Bragg Gratings (FBGs) in microstructured polymer optical fibers (mPOFs) and their application as strain sensing transducers in devices, such as accelerometers and microphones. We demonstrate how the cross-sensitivity of the FBG to temperature...

  1. Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization

    DEFF Research Database (Denmark)

    Stefani, Alessio; Nielsen, Kristian; Rasmussen, Henrik K.

    2012-01-01

    We fabricated an electronically controlled polymer optical fiber cleaver, which uses a razor-blade guillotine and provides independent control of fiber temperature, blade temperature, and cleaving speed. To determine the optimum cleaving conditions of microstructured polymer optical fibers (m......POFs) with hexagonal hole structures we developed a program for cleaving quality optimization, which reads in a microscope image of the fiber end-facet and determines the core-shift and the statistics of the hole diameter, hole-to-hole pitch, hole ellipticity, and direction of major ellipse axis. For 125μm in diameter...

  2. Induction of embryogenesis in [isolated] microspores and pollen of Brassica napus L. cv. Topas

    NARCIS (Netherlands)

    Hause, B.; Hause, G.

    1996-01-01


    Artificial systems to produce plant embryos are important tools for basic research as well as for plant breeding. It is possible to produce large amounts of embryos by methods like somatic embryogenesis or embryogenic microspore cultures. Such high amounts of embryos, which are easier to

  3. TOPAS 2 - a high-resolution tagging system at the Bonn SAPHIR detector

    International Nuclear Information System (INIS)

    Rappenecker, G.

    1989-02-01

    For the SAPHIR-arrangement in Bonn a high resolving tagging system has been developed achieving an energy resolution of 2 MeV, covering the range of (0.94-0.34) E 0 photon energy (1.0 GeV 0 2 , ArCH 4 and ArC 2 H 6 in concern of performance, clustersize and coincidence width. (orig.)

  4. A compact and bendable, hook-and-loop tape-based membraneless device for energy conversion

    International Nuclear Information System (INIS)

    Ortiz-Ortega, E; Ledesma-García, J; Gurrola, M P; Arriaga, L G; Arjona, N

    2016-01-01

    The new concept of a hook-and-loop tape-based membraneless device constructed on adhesive polyester film, which is fabricated using non-sophisticated and inexpensive fabrication techniques at room temperature, is presented. This concept overcomes the concerns about the reliability, versatility, weight, cost, lifetime and high performance of microfluidic fuel cell devices to satisfy the needs of portable energy applications. Current densities from 150 to 600 mA cm −2 and power densities from 40 to 132 mW cm −2 were achieved by varying the formic acid concentration, flow rates and by using air and dissolved oxygen as an oxidant. (paper)

  5. Bendable transparent conductive meshes based on multi-layer inkjet-printed silver patterns

    International Nuclear Information System (INIS)

    Yu, Po-Chin; Hong, Chien-Chong; Liou, Tong-Miin

    2016-01-01

    Many consumer electronics manufacturers have used transparent conductive films in solar cells, LED devices, and touch panels as a medium for simultaneous electric charge transportation and light transmission. The conductivity and transmittance of transparent conductive films greatly affect the efficiency of these optoelectronic devices. This study presents a transparent and conductive mesh based on inkjet-printed silver and conductive polymer. Also, we propose a mathematical model for calculating the optimized mesh pattern. The proposed model precisely calculates an optimized line-width-to-line-spacing ratio. Furthermore, the results of our experiment verify the relationship between the line-width-to-line-spacing ratio and figure of merit. Compared with the equations of past studies, the equation proposed in this study is valid for a broader range of line-width-to-line-spacing ratios. In addition, the theoretical results of our study correlate more strongly with the experimental data of this study than with that of previous studies. To achieve the highest figure of merit, the values of the filling factor and the line-width-to-line-spacing ratio should be 0.05 and 19, respectively. Finally, we reduced the sheet resistance of the inkjet-printed mesh by 97.9% by applying multilayer printing. However, we were able to reduce only the optical transmittance of the mesh by 3.0%. The developed inkjet-printed silver meshes can survive more than 3500 bending tests simultaneous with application of 300 mA current. (paper)

  6. Ultra low-loss super-resolution with extremely anisotropic semiconductor metamaterials

    Directory of Open Access Journals (Sweden)

    W. S. Hart

    2018-02-01

    Full Text Available We investigate the mechanisms for the reduction of losses in doped semiconductor multilayers used for the construction of uniaxial metamaterials and show that maximizing the mean scattering time of the doped layers is key to spectrally isolating losses and maximizing anisotropy. By adjusting the layer thickness ratio of the multilayer, we show that the spectral regions of extreme anisotropy can be separated from those of high loss. Using these insights and coupled with realistic semiconductor growth parameters, we demonstrate an InAs-based superlens with an excellent loss factor α ≈ 52mm-1 and maximum perpendicular permittivity, ε⊥ > 250. By tuning the doping concentration, we show that such a system can be designed to operate anywhere in the region λ0 ≈ 5 to 25μm. We find that such a structure is capable of deep sub-wavelength imaging (< λ0/15 at superlens thicknesses up to ∼85μm (∼8λ0.

  7. Low-loss tunable 1D ITO-slot photonic crystal nanobeam cavity

    Science.gov (United States)

    Amin, Rubab; Tahersima, Mohammad H.; Ma, Zhizhen; Suer, Can; Liu, Ke; Dalir, Hamed; Sorger, Volker J.

    2018-05-01

    Tunable optical material properties enable novel applications in both versatile metamaterials and photonic components including optical sources and modulators. Transparent conductive oxides (TCOs) are able to highly tune their optical properties with applied bias via altering their free carrier concentration and hence plasma dispersion. The TCO material indium tin oxide (ITO) exhibits unity-strong index change and epsilon-near-zero behavior. However, with such tuning the corresponding high optical losses, originating from the fundamental Kramers–Kronig relations, result in low cavity finesse. However, achieving efficient tuning in ITO-cavities without using light–matter interaction enhancement techniques such as polaritonic modes, which are inherently lossy, is a challenge. Here we discuss a novel one-dimensional photonic crystal nanobeam cavity to deliver a cavity system offering a wide range of resonance tuning range, while preserving physical compact footprints. We show that a vertical silicon-slot waveguide incorporating an actively gated-ITO layer delivers ∼3.4 nm of tuning. By deploying distributed feedback, we are able to keep the Q-factor moderately high with tuning. Combining this with the sub-diffraction limited mode volume (0.1 (λ/2n)3) from the photonic (non-plasmonic) slot waveguide, facilitates a high Purcell factor exceeding 1000. This strong light–matter-interaction shows that reducing the mode volume of a cavity outweighs reducing the losses in diffraction limited modal cavities such as those from bulk Si3N4. These tunable cavities enable future modulators and optical sources such as tunable lasers.

  8. Construction tolerances for low loss, dielectric coated, metallic waveguide for transmission optical radiation

    International Nuclear Information System (INIS)

    Sandweiss, J.

    1984-08-01

    The transmission of radiation, in a specific mode of interest for the IFELA, past a symmetric step in dielectric coating thickness has been calculated. The result shows that the transmission loss depends on the quantity (s/D) 2 and vanishes to first order in the ratio of the step s to the guide aperture D. With the reasonable assumption that this feature holds for all forms of surface imperfections, the attenuation length due to imperfections has been estimated. It is found that rms surface roughness of approx. 0.1 μ m leads to attenuation lengths of 25 km or greater

  9. Near-field characterization of low-loss photonic crystal waveguides

    DEFF Research Database (Denmark)

    Volkov, V. S.; Bozhevolnyi, S. I.; Borel, Peter Ingo

    2005-01-01

    -nm-period lattices with different filling factors (0.76 and 0.82) and connected to access ridge waveguides. Using the near-field optical images we investigate the light propagation along PCWs for TM and TE polarization (the electric field is perpendicular/parallel to the sample surface). Efficient...

  10. Ultra-low loss nano-taper coupler for Silicon-on-Insulator ridge waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Liu, Liu; Ou, Haiyan

    2010-01-01

    A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler.......A nano-taper coupler is optimized specially for the transverse-magnetic mode for interfacing light between a silicon-on-insulator ridge waveguide and a single-mode fiber. An ultra-low coupling loss of ~0.36dB is achieved for the nano-taper coupler....

  11. Low Loss 1×2 Optical Coupler Based on Cosine S-bend with Segmented Waveguides

    Science.gov (United States)

    Yulianti, Ian; Sahmah, Abu; Supa'at, M.; Idrus, Sevia M.; Ridwanto, Muhammad; Al-hetar, Abdulaziz M.

    2011-05-01

    This paper presents an optimization of 1×2 polymer Y-junction optical coupler. The optimized optical coupler comprises straight polymer waveguide as the input waveguide, tapered waveguide, modified cosine S-bend and linear waveguide. At the branching point, N short waveguides with small width are introduced to reduce evanescent field. At operating wavelength of 1550 nm the excess loss of the coupler is ˜0.18 dB. In term of polarization dependence loss (PDL), the proposed coupler also shows a good performance with PDL value of less than 0.015 dB for wavelength range of 1470 nm-1550 nm. The proposed coupler could reduce excess loss more than 25% compared to conventional Y junction optical coupler.

  12. Low Loss Sol-Gel TiO2 Thin Films for Waveguiding Applications

    Directory of Open Access Journals (Sweden)

    Alexis Fischer

    2013-03-01

    Full Text Available TiO2 thin films were synthesized by sol-gel process: titanium tetraisopropoxide (TTIP was dissolved in isopropanol, and then hydrolyzed by adding a water/isopropanol mixture with a controlled hydrolysis ratio. The as prepared sol was deposited by “dip-coating” on a glass substrate with a controlled withdrawal speed. The obtained films were annealed at 350 and 500 °C (2 h. The morphological properties of the prepared films were analyzed by Scanning Electron Microscopy (SEM and Atomic Force Microscopy (AFM. The optical waveguiding properties of TiO2 films were investigated for both annealing temperature using m-lines spectroscopy. The refractive indices and the film thickness were determined from the measured effective indices. The results show that the synthesized planar waveguides are multimodes and demonstrate low propagation losses of 0.5 and 0.8 dB/cm for annealing temperature 350 and 500 °C, respectively.

  13. Bipolar energy-loss measurements on cryostable, low-loss conductors

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.

    1981-01-01

    Losses have been measured on a prototype conductor for the 20 MJ coil for conditions which simulate closely the actual coil field sweep. The data on the prototype II conductor indicates coil losses which exceed the coil specification. The application of certain correction factors reduces the projected losses within the specification for a 2 s reversal but not for a 1 s reversal. Verification of these corrections await measurements on the actual strand and completion of coil construction and testing.

  14. A new soft dielectric silicone elastomer matrix with high mechanical integrity and low losses

    DEFF Research Database (Denmark)

    Madsen, Frederikke Bahrt; Yu, Liyun; Daugaard, Anders Egede

    2015-01-01

    Though dielectric elastomers (DEs) have many favourable properties, the issue of high driving voltages limits the commercial viability of the technology. Driving voltage can be lowered by decreasing the Young's modulus and increasing the dielectric permittivity of silicone elastomers. A decrease...... in Young's modulus, however, is often accompanied by the loss of mechanical stability and thereby the lifetime of the DE. A new soft elastomer matrix, with no loss of mechanical stability and high dielectric permittivity, was prepared through the use of alkyl chloride-functional siloxane copolymers...

  15. New type low loss, strong field, RF coils for commercial nuclear fusion

    International Nuclear Information System (INIS)

    Ikegami, Shigetaka

    1990-01-01

    New RF coils of L-C-R connection loops type are proposed. One of the coils is only a bundle of μ order diameter isolated conductor, facing the both sides of the bundle ends each other for a capacity. The next characters were found by experiments. (1) This type coils show a sharp first resonance mode and few other modes are measured. (2) The complete proportional relation between the number of the conductors and the conductance of the bundle. (3) The ratio of the RF current resistance to the direct current resistance can be 1. Variational principle for eigenvalue problem was considered for it. The loss due to the vortex current in the conductor itself when exposed in the magnetic field was calculated accurately. And it was found that when the diameter of the conductor is 1/3 of the high frequency skin depth δ, the vortex current is very small. The litz wire can be used below 10 kHz. But this coil can be used above 100 MHz(δ≅7μ), because this coil need not to be stranded. For example, the turbulent heating at the axis of a tokamak plasma in μs order is possible, when a large amplitude stationary magnetosonic wave is excited by the magnetic piston of these coils array around the plasma. And the distance between the plasma and the coils can be large. The commercial nuclear fusion is thought to be possible. (author)

  16. Synthesis of a low loss Mn–Zn ferrite for power applications

    Energy Technology Data Exchange (ETDEWEB)

    Tsakaloudi, Vasiliki, E-mail: vikaki@cperi.certh.gr [Laboratory of Inorganic Materials, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thermi-Thessaloniki (Greece); Zaspalis, Vassilios [Laboratory of Inorganic Materials, Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, 57001 Thermi-Thessaloniki (Greece); Laboratory of Materials Technology, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2016-02-15

    Current market trends of the switching power supplies industry require even lower energy losses in power conversion systems with maintenance of satisfactory initial permeability levels. Typical operation conditions refer to a frequency of 100 kHz, an induction level of 200 mT and a steady state temperature of 100° C. In this work the development of a polycrystalline Mn–Zn ferrite material that exhibits initial relative magnetic permeability above 2500 and very low power losses at 100 kHz, 200 mmT and 100° C is presented. The Mn–Zn ferrite samples were prepared by the conventional solid state reaction method. Sintering was performed under controlled atmosphere conditions. The combinatorial role of TiO{sub 2} and CoO together with Zn content, as well as the effects of the process parameters on the magnetic performance of the Mn–Zn ferrite was evaluated. It is shown that the development of the adequate polycrystalline microstructure that is characterized by (a) high sintered density, (b) homogenous grain size that is free of morphological or chemical pinning defects and (c) high resistivity grain boundary structure, can be achieved by means of appropriate compositional and dopant adjustment, anisotropy control and specific resistivity optimization. The newly developed Mn–Zn ferrite is characterized by high sintered density of 4.91 g/cm{sup 3}, initial magnetic permeability of 2512 (at 10 kHz, 0.1 mT, 25 °C), high saturation magnetic flux density of 560 mT (at 10 kHz, 1200 A/m, 25 °C) and very low power losses (Pv) of 224 mW/cm{sup 3} (at 100 kHz, 200 mT, 100 °C) combined with very low power losses of 470 mW/cm{sup 3} even at room temperature, establishing it as ideal for power applications. - Highlights: • Mn–Zn ferrites for power applications are prepared by solid state reaction. • Optimal doping levels of TiO{sub 2} and CoO for low power losses are determined. • A slow cooling rate during sintering improves the resistivity and power losses. • Lowest reported power losses of 224 mW/cm{sup 3} at 100 kHz, 200 mT,100 °C are obtained.

  17. Design and characterization of low-loss 2D grating couplers for silicon photonics integrated circuits

    Science.gov (United States)

    Lacava, C.; Carrol, L.; Bozzola, A.; Marchetti, R.; Minzioni, P.; Cristiani, I.; Fournier, M.; Bernabe, S.; Gerace, D.; Andreani, L. C.

    2016-03-01

    We present the characterization of Silicon-on-insulator (SOI) photonic-crystal based 2D grating-couplers (2D-GCs) fabricated by CEA-Leti in the frame of the FP7 Fabulous project, which is dedicated to the realization of devices and systems for low-cost and high-performance passives-optical-networks. On the analyzed samples different test structures are present, including 2D-GC connected to another 2D-GC by different waveguides (in a Mach-Zehnder like configuration), and 2D-GC connected to two separate 2D-GCs, so as to allow a complete assessment of different parameters. Measurements were carried out using a tunable laser source operating in the extended telecom bandwidth and a fiber-based polarization controlling system at the input of device-under-test. The measured data yielded an overall fiber-to-fiber loss of 7.5 dB for the structure composed by an input 2D-GC connected to two identical 2D-GCs. This value was obtained at the peak wavelength of the grating, and the 3-dB bandwidth of the 2D-GC was assessed to be 43 nm. Assuming that the waveguide losses are negligible, so as to make a worst-case analysis, the coupling efficiency of the single 2D-GC results to be equal to -3.75 dB, constituting, to the best of our knowledge, the lowest value ever reported for a fully CMOS compatible 2D-GC. It is worth noting that both the obtained values are in good agreement with those expected by the numerical simulations performed using full 3D analysis by Lumerical FDTD-solutions.

  18. Ultra Linear Low-loss Varactors & Circuits for Adaptive RF Systems

    NARCIS (Netherlands)

    Huang, C.

    2010-01-01

    With the evolution of wireless communication, varactors can play an important role in enabling adaptive transceivers as well as phase-diversity systems. This thesis presents various varactor diode-based circuit topologies that facilitate RF adaptivity. The proposed varactor configurations can act as

  19. Low-loss microelectrodes fabricated using reverse-side exposure for a tunable ferroelectric capacitor application

    Science.gov (United States)

    Yoon, Yong-Kyu; Stevenson Kenney, J.; Hunt, Andrew T.; Allen, Mark G.

    2006-02-01

    Narrowly spaced thick microelectrodes are fabricated using a self-aligned multiple reverse-side exposure scheme for an improved quality-factor tunable ferroelectric capacitor. The microelectrodes are fabricated on a functional substrate—a thin film ferroelectric (barium strontium titanate, BST; BaxSr1-xTiO3) coated sapphire substrate, which has an electric-field-dependent dielectric property providing tuning functionality, as well as UV transparency permitting an additional degree of freedom in photolithography steps. The microelectrode process has been applied to interdigitated capacitor fabrication, where a critical challenge is maintaining narrow gaps between electrodes for high tunability, while simultaneously forming thick electrodes to minimize conductor loss. A single mask, self-aligned reverse-side exposure through the transparent substrate achieves both these goals. A single-finger test capacitor with an electrode gap of 1.2 µm and an electrode thickness of 2.2 µm is fabricated and characterized. Tunability (T = 100 × (C0 - Cbias)/C0) of 33% at 10 V has been achieved at 100 kHz. The 2.2 µm thick structure shows improvement of Q-factor compared to that of a 0.1 µm thick structure. To demonstrate the scalability of this process, a 102-finger interdigitated capacitor is fabricated and characterized at 100 kHz and 1 GHz. The structure is embedded in a 25 µm thick epoxy resin SU-8 for passivation. A quality factor decrease of 15-25%, tunability decrease of 2-3% and capacitance increase of 6% are observed due to the expoxy resin after passivation. High frequency performance of the capacitor has been measured to be 15.9 pF of capacitance, 28.1% tunability at 10 V and a quality factor of 16 (at a 10 V dc bias) at 1 GHz.

  20. Light-Weight Low-Loss Dielectric Polymer Composites Containing Carbon Nanostructure

    Science.gov (United States)

    2014-10-17

    Huang, J. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyacrylate ...Highly Conductive Graphene Nanoribbons by Longitudinal Splitting of Carbon Nanotubes Using Potassium Vapor. ACS Nano 2011, 5, 968-974. 17. Lu, W.; Ruan...conductive GNRs, prepared using sodium/ potassium unzipping of multiwall carbon nanotubes, can boost the lithium storage performance of SnO2 NPs. The

  1. Off Axis Growth of Strontium Titanate Films with High Dielectric Constant Tuning and Low Loss

    Science.gov (United States)

    Kampangkeaw, Satreerat

    2002-03-01

    Using off-axis pulsed laser deposition, we have grown strontium titanate (STO) films on neodymium gallate (NGO) and lanthanum aluminate (LAO) substrates. We measured the film dielectric constant and loss tangent as a function of temperature in the 10kHz to 1 MHz frequency range. We found that the loss is less than 0.01 We also obtained a figure of merit from the relative variation of the dielectric constant divided by the loss tangent. The obtained figured of merit at 35K and 1MHz is about 1000 comparable to bulk values. The dielectric constant of these films can be changed by a factor of 4-8 in the presence of a DC electric field up to 5V/μm. The films show significant variations of dielectric properties grown on different substrates at different locations respect to the axis of the plume. The STO films on LAO having high dielectric constant and dielectric tuning were grown in region near the center of the plume. On the other hand, STO on NGO shows this effect only on the films grown far from the plume axis.

  2. Coupling Photonics and Coherent Spintronics for Low-Loss Flexible Optical Logic

    Science.gov (United States)

    2015-12-02

    into devices, ranging from macroscopic optical cavities, to arrays of microlens cavities, to quantum dot-impregnated integrated polymer waveguides...spins   in   semiconductor   nanocrystal   quantum   dots   (NCQDs),   with   the   particular   aim   of   enabling   spin... lock -­‐in   based   detection.   The   pump   and   probe   lasers   are   then   used   for   a   Faraday   rotation

  3. Ultra-Low Loss, Chip-Based Hollow-Core Waveguide Using High-Contrast Grating

    Science.gov (United States)

    2011-09-28

    AND ADDRESS(ES) 10. SPONSORIMONITQR’S ACR.ONYM(S> DARPA/CMO Michael Blackstone 3701 N. Fairfax Drive 11. SPONSORING.IM.ONITORING Arlington, VA 22203...Scale-up of basic waveguides and devices into a delay-based processor whose performance is commensurate with a realistic military environment ...fundamental mode scattering into high order modes, which have much higher propagation losses. The noise is due to environmental vibration and defects along

  4. Low-loss optical waveguides in β-BBO crystal fabricated by femtosecond-laser writing

    Science.gov (United States)

    Li, Ziqi; Cheng, Chen; Romero, Carolina; Lu, Qingming; Vázquez de Aldana, Javier Rodríguez; Chen, Feng

    2017-11-01

    We report on the fabrication and characterization of β-BBO depressed cladding waveguides fabricated by femtosecond-laser writing with no significant changes in the waveguide lattice microstructure. The waveguiding properties and the propagation losses of the cladding structures are investigated, showing good transmission properties at wavelengths of 400 and 800 nm along TM polarization. The minimum propagation losses are measured to be as low as 0.19 dB/cm at wavelength of 800 nm. The well-preserved waveguide lattice microstructure and good guiding performances with low propagation losses suggest the potential applications of the cladding waveguides in β-BBO crystal as novel integrated photonic devices.

  5. Modeling and characterization of shielded low loss CPWs on 65 nm node silicon

    Energy Technology Data Exchange (ETDEWEB)

    Wang Hongrui; Yang Dongxu; Zhang Li; Zhang Lei; Yu Zhiping, E-mail: hr-wang06@mails.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China)

    2011-06-15

    Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results. (semiconductor devices)

  6. Modeling and characterization of shielded low loss CPWs on 65 nm node silicon

    Science.gov (United States)

    Hongrui, Wang; Dongxu, Yang; Li, Zhang; Lei, Zhang; Zhiping, Yu

    2011-06-01

    Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results.

  7. Modeling and characterization of shielded low loss CPWs on 65 nm node silicon

    International Nuclear Information System (INIS)

    Wang Hongrui; Yang Dongxu; Zhang Li; Zhang Lei; Yu Zhiping

    2011-01-01

    Coplanar waveguides (CPWs) are promising candidates for high quality passive devices in millimeter-wave frequency bands. In this paper, CPW transmission lines with and without ground shields have been designed and fabricated on 65 nm CMOS technology. A physical-based model is proposed to describe the frequency-dependent per-unit-length L, C, R and G parameters. Starting with a basic CPW structure, the slow-wave effect and ground-shield influence have been analyzed and incorporated into the general model. The accuracy of the model is confirmed by experimental results. (semiconductor devices)

  8. Low-loss and tunable near-zero-epsilon titanium nitride

    Science.gov (United States)

    Popović, M.; Novaković, M.; Schmidt, E.; Schöppe, P.; Bibić, N.; Ronning, C.; Rakočević, Z.

    2017-10-01

    Titanium nitride (TiN) has emerged as alternative plasmonic material in the visible and near-infrared spectral range due to its metallic properties. We studied the influence of silver ion implantation (fluence range from 0.5 × 1016-6 × 1016 ions/cm2) on the structural and optical properties of reactively sputtered 260 nm thick TiN films. The columnar structure was partially destroyed by the irradiation and up to 5 at.% of Ag was incorporated into the films within the projected ion range. The formation of cubic Ag nanoparticles with size of 1-2 nm was observed by high resolution transmission electron microscopy and subsequent fast Fourier transform analysis. This presence of Ag within the TiN matrix drastically changes both the real and imaginary component of the dielectric function and provides low optical losses. A Drude Lorentz dielectric analysis based on free electron and oscillator model are carried out to describe the silver influence on the optical behavior of TiN. With increasing ion fluence, the unscreened plasma frequency decreased and broadening increased. The energy, strength and broadening of the interband transitions were studied with respect to the silver ion fluence and correlated with the microstructural changes induced in TiN films.

  9. Low-Loss Hollow Waveguide Fibers for Mid-Infrared Quantum Cascade Laser Sensing Applications

    Directory of Open Access Journals (Sweden)

    James A. Harrington

    2013-01-01

    Full Text Available We report on single mode optical transmission of hollow core glass waveguides (HWG coupled with an external cavity mid-IR quantum cascade lasers (QCLs. The QCL mode results perfectly matched to the hybrid HE11 waveguide mode and the higher losses TE-like modes have efficiently suppressed by the deposited inner dielectric coating. Optical losses down to 0.44 dB/m and output beam divergence of ~5 mrad were measured. Using a HGW fiber with internal core size of 300 µm we obtained single mode laser transmission at 10.54 µm and successful employed it in a quartz enhanced photoacoustic gas sensor setup.

  10. Bloch-Surface-Polariton-Based Hybrid Nanowire Structure for Subwavelength, Low-Loss Waveguiding

    Directory of Open Access Journals (Sweden)

    Weijing Kong

    2018-03-01

    Full Text Available Surface plasmon polaritons (SPPs have been thoroughly studied in the past decades for not only sensing but also waveguiding applications. Various plasmonic device structures have been explored due to their ability to confine their optical mode to the subwavelength level. However, with the existence of metal, the large ohmic loss limits the propagation distance of the SPP and thus the scalability of such devices. Therefore, different hybrid waveguides have been proposed to overcome this shortcoming. Through fine tuning of the coupling between the SPP and a conventional waveguide mode, a hybrid mode could be excited with decent mode confinement and extended propagation distance. As an effective alternative of SPP, Bloch surface waves have been re-investigated more recently for their unique advantages. As is supported in all-dielectric structures, the optical loss for the Bloch surface wave is much lower, which stands for a much longer propagating distance. Yet, the confinement of the Bloch surface wave due to the reflections and refractions in the multilayer structure is not as tight as that of the SPP. In this work, by integrating a periodic multilayer structure that supports the Bloch surface wave with a metallic nanowire structure, a hybrid Bloch surface wave polariton could be excited. With the proposed hybrid nanowire structure, a hybrid mode is demonstrated with the deep subwavelength mode confinement and a propagation distance of tens of microns.

  11. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths

    Science.gov (United States)

    Emani, Naresh Kumar; Khaidarov, Egor; Paniagua-Domínguez, Ramón; Fu, Yuan Hsing; Valuckas, Vytautas; Lu, Shunpeng; Zhang, Xueliang; Tan, Swee Tiam; Demir, Hilmi Volkan; Kuznetsov, Arseniy I.

    2017-11-01

    The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.

  12. Polarization-dependent plasmonic splitter based on low-loss polymer optical materials

    Science.gov (United States)

    Qian, Guang; Fu, Xing-Chang; Zhang, Li-Jiang; Liu, Yi-Ran; Zhao, Ning; Zhang, Tong

    2018-01-01

    A polarization-dependent optical beam splitter consisting of a straight long-range surface plasmon polariton (LRSPP) waveguide and an S-bend polymer waveguide was designed, fabricated and measured in this paper. At the splitting section, the two different waveguides are vertically coupled. The measurenment results show that the splitter operated in dual-channel mode at TM polarization, and single-channel mode at TE polarization. In addition, the polymer waveguide and LRSPP waveguide in the splitter exhibit low propagation loss of 0.51 dB/cm and 1.7 dB/cm, respectively. The hybrid beam splitter has wide potential applications in three dimensional (3D) multilayer photonic integrated circuits (PICs).

  13. Fully integrated low-loss band-pass filters for wireless applications

    International Nuclear Information System (INIS)

    Rais-Zadeh, M; Kapoor, A; Lavasani, H M; Ayazi, F

    2009-01-01

    Fully integrated low insertion loss micromachined band-pass filters are designed and fabricated on the silicon substrate (ρ = 10–20 Ω cm, ε r = 11.9) for UHF applications. Filters are made of silver, which has the highest conductivity of all metals, to minimize the ohmic loss. A detailed analysis for realizing low insertion loss and high out-of-band rejection filters using elliptic magnitude characteristics is presented, and a comprehensive model to take into account inductive parasitics of the interconnects is developed. Temperature characteristics of the filters are measured and show stable performance. The presented filters are different from the previously reported lumped element filters in that all filters are fully integrated on silicon substrate and occupy a remarkably smaller die area. Two filters are fabricated using the silver micromachining technique with center frequencies at 1.05 and 1.35 GHz. The filters have a constant 3 dB bandwidth of 300 MHz (28.6% and 22.2%) and an insertion loss of 1.4–1.7 dB. The low insertion loss and CMOS compatibility make the presented filters suitable candidates for radio frequency integrated circuits

  14. Highly doped InP as a low loss plasmonic material for mid-IR region.

    Science.gov (United States)

    Panah, M E Aryaee; Takayama, O; Morozov, S V; Kudryavtsev, K E; Semenova, E S; Lavrinenko, A V

    2016-12-12

    We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated by the excitation of surface plasmon-polaritons in a periodically structured epilayer. Characterization shows good agreement between the theory and experimental results and confirms that highly doped InP is an effective plasmonic material aiming it for applications in the mid-IR wavelength range.

  15. Low loss GaN waveguides at the visible spectral wavelengths for integrated photonics applications.

    Science.gov (United States)

    Chen, Hong; Fu, Houqiang; Huang, Xuanqi; Zhang, Xiaodong; Yang, Tsung-Han; Montes, Jossue A; Baranowski, Izak; Zhao, Yuji

    2017-12-11

    We perform comprehensive studies on the fundamental loss mechanisms in III-nitride waveguides in the visible spectral region. Theoretical analysis shows that free carrier loss dominates for GaN under low photon power injection. When optical power increases, the two photon absorption loss becomes important and eventually dominates when photon energy above half-bandgap of GaN. When the dimensions of the waveguides reduce, the sidewall scattering loss will start to dominate. To verify the theoretical results, a high performance GaN-on-sapphire waveguide was fabricated and characterized. Experimental results are consistent with the theoretical findings, showing that under high power injection the optical loss changed significantly for GaN waveguides. A low optical loss ~2 dB/cm was achieved on the GaN waveguide, which is the lowest value ever reported for the visible spectral range. The results and fabrication processes developed in this work pave the way for the development of III-nitride integrated photonics in the visible and potentially ultraviolet spectral range for nonlinear optics and quantum photonics applications.

  16. New waveguide shape for low loss and high uniformity y-branch optical splitter

    Science.gov (United States)

    Burtscher, Catalina; Seyringer, Dana; Lucki, Michal; Kohler, Linda

    2017-02-01

    The most common application of optical Y-splitters is their use in FTTx networks. It allows several customers to share the same physical medium, bringing high-speed networking, digital television and telephone services to residences using fiber-optic cables. The task of the optical splitters in such FTTH networks is to split one optical signal in many identical signals bringing for example the same TV signal in different households. Of course, the more buildings can be served by one optical splitter the lower are the installation costs. Therefore, the special attention is paid mainly to the design of high channel optical splitters presenting the serious challenge for the professional designers. In this paper a new Y-branch shape is proposed for 1×32 Y-branch splitter ensuring better splitting properties compared to the one recommended by ITU, in terms of their performance in transmission systems using wavelength division multiplexing.

  17. Low loss and flat dispersion Kagome photonic crystal fiber in the terahertz regime

    Science.gov (United States)

    Rana, Sohel; Rakin, Adnan Siraj; Hasan, Md. Rabiul; Reza, Md. Salim; Leonhardt, Rainer; Abbott, Derek; Subbaraman, Harish

    2018-03-01

    A novel fiber design based on hexagonal shaped holes incorporated within the core of a Kagome lattice photonic crystal fiber (PCF) is presented. The modal properties of the proposed fiber are evaluated by using a finite element method (FEM) with a perfectly matched layer as boundary condition. Simulation results exhibit an ultra-low effective material loss (EML) of 0.029 cm-1 at an operating frequency of 1.3 THz with an optimized core diameter of 300 μm. A positive, low, and flat dispersion of 0.49 ± 0.06 ps/THz/cm is obtained within a broad frequency range from 1.00 to 1.76 THz. Other essential guiding features of the designed fiber such as power fraction and confinement loss are studied. The fabrication possibilities are also investigated to demonstrate feasibility for a wide range of terahertz applications.

  18. Low-Loss Photonic Reservoir Computing with Multimode Photonic Integrated Circuits.

    Science.gov (United States)

    Katumba, Andrew; Heyvaert, Jelle; Schneider, Bendix; Uvin, Sarah; Dambre, Joni; Bienstman, Peter

    2018-02-08

    We present a numerical study of a passive integrated photonics reservoir computing platform based on multimodal Y-junctions. We propose a novel design of this junction where the level of adiabaticity is carefully tailored to capture the radiation loss in higher-order modes, while at the same time providing additional mode mixing that increases the richness of the reservoir dynamics. With this design, we report an overall average combination efficiency of 61% compared to the standard 50% for the single-mode case. We demonstrate that with this design, much more power is able to reach the distant nodes of the reservoir, leading to increased scaling prospects. We use the example of a header recognition task to confirm that such a reservoir can be used for bit-level processing tasks. The design itself is CMOS-compatible and can be fabricated through the known standard fabrication procedures.

  19. Realization of low loss and polarization maintaining hollow core photonic crystal fibers

    DEFF Research Database (Denmark)

    Mangan, Brian Joseph; Lyngsøe, Jens Kristian; Roberts, John

    2008-01-01

    Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm......Antiresonant core wals in 7-cell hollow core fibers are used to reduce the attenuation to 9.3dB/km and create an intentionally hightly birefringent fiber with a beatlength as low as 0.2mm...

  20. Low loss hollow optical-waveguide connection from atmospheric pressure to ultra-high vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Ermolov, A.; Mak, K. F.; Tani, F.; Hölzer, P.; Travers, J. C. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Russell, P. St. J. [Max Planck Institute for the Science of Light, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany); Department of Physics, University of Erlangen-Nuremberg, Günther-Scharowsky-Str. 1, 91058 Erlangen (Germany)

    2013-12-23

    A technique for optically accessing ultra-high vacuum environments, via a photonic-crystal fiber with a long small hollow core, is described. The small core and the long bore enable a pressure ratio of over 10{sup 8} to be maintained between two environments, while permitting efficient and unimpeded delivery of light, including ultrashort optical pulses. This delivery can be either passive or can encompass nonlinear optical processes such as optical pulse compression, deep UV generation, supercontinuum generation, or other useful phenomena.

  1. Low Loss Tapered Fiber Waveguide Modulator for Crew Cognitive State Monitoring (CSM)

    Data.gov (United States)

    National Aeronautics and Space Administration — Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew...

  2. Wavelength conversion of QAM signals in a low loss CMOS compatible spiral waveguide

    DEFF Research Database (Denmark)

    Da Ros, Francesco; Porto da Silva, Edson; Zibar, Darko

    2017-01-01

    We demonstrate wavelength conversion of quadrature amplitude modulation (QAM) signals, including 32-GBd quadrature phase-shift keying and 10-GBd 16-QAM, in a 50-cm long high index doped glass spiral waveguide. The quality of the generated idlers for up to 20 nm of wavelength shift is sufficient...... to achieve a BER performance below the hard decision forward error correction threshold BER performance (...

  3. A low loss Faraday isolator for squeezed vacuum injection in Advanced LIGO

    Science.gov (United States)

    Goetz, Ryan; Tanner, David; Mueller, Guido

    2016-03-01

    Using conventional interferometry, the strain sensitivity of Advanced LIGO is limited by a quantum noise floor known as the standard quantum limit (SQL). Injecting squeezed vacuum states into the output port of the interferometer allows for detector sensitivities below the SQL at frequencies within a band of observational interest. The effectiveness of squeezing in reducing quantum noise is strongly dependent upon the optical loss in the squeezed path. Thus, to combine the squeezed vacuum state with the interferometer output we require a Faraday isolator with both high power-throughput efficiency and high isolation ratio. A prototype isolator is currently being developed, and we will discuss the design goals and current status.

  4. Low-loss curved subwavelength grating waveguide based on index engineering

    Science.gov (United States)

    Wang, Zheng; Xu, Xiaochuan; Fan, D. L.; Wang, Yaoguo; Chen, Ray T.

    2016-03-01

    Subwavelength grating (SWG) waveguide is an intriguing alternative to conventional optical waveguides due to its freedom to tune a few important waveguide properties such as dispersion and refractive index. Devices based on SWG waveguide have demonstrated impressive performances compared to those of conventional waveguides. However, the large loss of SWG waveguide bends jeopardizes their applications in integrated photonics circuits. In this work, we propose that a predistorted refractive index distribution in SWG waveguide bends can effectively decrease the mode mismatch noise and radiation loss simultaneously, and thus significantly reduce the bend loss. Here, we achieved the pre-distortion refractive index distribution by using trapezoidal silicon pillars. This geometry tuning approach is numerically optimized and experimentally demonstrated. The average insertion loss of a 5 μm SWG waveguide bend can be reduced drastically from 5.58 dB to 1.37 dB per 90° bend for quasi-TE polarization. In the future, the proposed approach can be readily adopted to enhance performance of an array of SWG waveguide-based photonics devices.

  5. Toward a new generation of low-loss mirrors for the advanced gravitational waves interferometers.

    Science.gov (United States)

    Pinard, L; Sassolas, B; Flaminio, R; Forest, D; Lacoudre, A; Michel, C; Montorio, J L; Morgado, N

    2011-04-15

    The new generation of advanced interferometer needs fused silica mirrors having better optical and mechanical properties. This Letter describes the way to reduce the ion beam sputtering coating absorption at 1064 nm and to improve the layer thickness uniformity in order to coat two large mirrors (diameter 35 cm) at the same time.

  6. Highly doped InP as a low loss plasmonic material for mid-IR region

    DEFF Research Database (Denmark)

    Panah, Mohammad Esmail Aryaee; Takayama, Osamu; Morozov, S. V.

    2016-01-01

    by fitting the calculated infrared reflectance spectra to the measured ones. The retrieved permittivity was then used to simulate surface plasmon polaritons (SPPs) propagation on flat and structured surfaces, and the simulation results were verified in direct experiments. SPPs at the top and bottom......We study plasmonic properties of highly doped InP in the mid-infrared (IR) range. InP was grown by metal-organic vapor phase epitaxy (MOVPE) with the growth conditions optimized to achieve high free electron concentrations by doping with silicon. The permittivity of the grown material was found...... interfaces of the grown epilayer were excited by the prism coupling. A high-index Ge hemispherical prism provides efficient coupling conditions of SPPs on flat surfaces and facilitates acquiring their dispersion diagrams. We observed diffraction into symmetry-prohibited diffraction orders stimulated...

  7. A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G. K. M.

    2016-01-01

    We report on the numerical design optimization of a new kind of relatively simple porous-core photonic crystal fiber (PCF) for terahertz (THz) waveguiding. A novel twist is introduced in the regular hexagonal PCF by including a diamond-shaped porous-core inside the hexagonal cladding. The numeric...

  8. Extremely low-loss single-mode photonic crystal fiber in the terahertz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G. K M; Sadath, Md Anwar

    2015-01-01

    This paper presents an updated design and numerical characterization of a rotated porous-core hexagonal photonic crystal fiber (PCF) for single-mode terahertz (THz) wave guidance. The simulation results are found using an efficient finite element method (FEM) which show a better and ultra-low eff...

  9. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2015-01-01

    We report on numerical design optimization of hollow-core antiresonant fibers with the aim of reducing transmission losses. We show that re-arranging the nested anti-resonant tubes in the cladding to be adjacent has the effect of significantly reducing leakage as well as bending losses, and for r...

  10. Low-loss rotated porous core hexagonal single-mode fiber in THz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G.K.M.; Habib, Selim

    2015-01-01

    A kind of porous core photonic crystal fiber (PCF) for terahertz (THz) wave propagation is proposed in thispaper. By intentionally rotating the porous core lattice structure, a dispersion of 1.06 ± 0.12 ps/THz/cm ina frequency range of 0.5–1.08 THz is observed. Also, a very low material absorptio...

  11. Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance

    DEFF Research Database (Denmark)

    Hasanuzzaman, G. K. M.; Habib, Selim; Abdur Razzak, S. M.

    2015-01-01

    A novel porous-core kagome lattice photonic crystal fiber (PCF) is designed and analyzed in this paper for terahertz (THz) wave guidance. Using finite element method (FEM), properties of the proposed kagome lattice PCF are simulated in details including the effective material loss (EML), confinem...

  12. Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2004-01-01

    Topology optimization is a promising method for systematic design of optical devices. As an example, we demonstrate how the method can be used to design a 90degrees bend in a two-dimensional photonic crystal waveguide with a transmission loss of less than 0.3% in almost the entire frequency range...... of the guided mode. The method can directly be applied to the design of other optical devices, e.g., multiplexers and wave splitters, with optimized performance. (C) 2004 American Institute of Physics....

  13. Bismuth ferrite as low-loss switchable material for plasmonic waveguide modulator

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2014-01-01

    We propose new designs of plasmonic modulators, which can beused for dynamic signal switching in photonic integrated circuits. We studyperformance of a plasmonic waveguide modulator with bismuth ferrite as atunable material. The bismuth ferrite core is sandwiched between metalplates (metal...

  14. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Novak, Spencer; Richardson, Kathleen [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Materials Science and Engineering, COMSET, Clemson University, Clemson, South Carolina 29634 (United States); Fathpour, Sasan, E-mail: fathpour@creol.ucf.edu [CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida 32816 (United States); Department of Electrical Engineering and Computer Science, University of Central Florida, Orlando, Florida 32816 (United States)

    2015-03-16

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  15. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    International Nuclear Information System (INIS)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh; Novak, Spencer; Richardson, Kathleen; Fathpour, Sasan

    2015-01-01

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes

  16. Dispersion-tailored, low-loss photonic crystal fibers for the THz range

    DEFF Research Database (Denmark)

    Nielsen, Kristian; Rasmussen, Henrik K.; Adam, Aurèle J.L.

    2009-01-01

    We have fabricated a new type of photonic crystal fibers based on a cyclic olefin copolymer, transparent in the THz range. We characterize the propagation loss, dispersion, and spatial beam profile in fibers designed for low and high dispersion.......We have fabricated a new type of photonic crystal fibers based on a cyclic olefin copolymer, transparent in the THz range. We characterize the propagation loss, dispersion, and spatial beam profile in fibers designed for low and high dispersion....

  17. An alternative low-loss stack topology for vanadium redox flow battery: Comparative assessment

    Science.gov (United States)

    Moro, Federico; Trovò, Andrea; Bortolin, Stefano; Del, Davide, , Col; Guarnieri, Massimo

    2017-02-01

    Two vanadium redox flow battery topologies have been compared. In the conventional series stack, bipolar plates connect cells electrically in series and hydraulically in parallel. The alternative topology consists of cells connected in parallel inside stacks by means of monopolar plates in order to reduce shunt currents along channels and manifolds. Channelled and flat current collectors interposed between cells were considered in both topologies. In order to compute the stack losses, an equivalent circuit model of a VRFB cell was built from a 2D FEM multiphysics numerical model based on Comsol®, accounting for coupled electrical, electrochemical, and charge and mass transport phenomena. Shunt currents were computed inside the cells with 3D FEM models and in the piping and manifolds by means of equivalent circuits solved with Matlab®. Hydraulic losses were computed with analytical models in piping and manifolds and with 3D numerical analyses based on ANSYS Fluent® in the cell porous electrodes. Total losses in the alternative topology resulted one order of magnitude lower than in an equivalent conventional battery. The alternative topology with channelled current collectors exhibits the lowest shunt currents and hydraulic losses, with round-trip efficiency higher by about 10%, as compared to the conventional topology.

  18. Using low-loss phase-change materials for mid-infrared antenna resonance tuning.

    Science.gov (United States)

    Michel, Ann-Katrin U; Chigrin, Dmitry N; Maß, Tobias W W; Schönauer, Kathrin; Salinga, Martin; Wuttig, Matthias; Taubner, Thomas

    2013-08-14

    We show tuning of the resonance frequency of aluminum nanoantennas via variation of the refractive index n of a layer of phase-change material. Three configurations have been considered, namely, with the antennas on top of, inside, and below the layer. Phase-change materials offer a huge index change upon the structural transition from the amorphous to the crystalline state, both stable at room temperature. Since the imaginary part of their permittivity is negligibly small in the mid-infrared spectral range, resonance damping is avoided. We present resonance shifting to lower as well as to higher wavenumbers with a maximum shift of 19.3% and a tuning figure of merit, defined as the resonance shift divided by the full-width at half-maximum (FWHM) of the resonance peak, of 1.03.

  19. Low-loss CMOS copper plasmonic waveguides at the nanoscale (Conference Presentation)

    Science.gov (United States)

    Fedyanin, Dmitry Y.; Yakubovsky, Dmitry I.; Kirtaev, Roman V.; Volkov, Valentyn S.

    2016-05-01

    Implementation of optical components in microprocessors can increase their performance by orders of magnitude. However, the size of optical elements is fundamentally limited by diffraction, while miniaturization is one of the essential concepts in the development of high-speed and energy-efficient electronic chips. Surface plasmon polaritons (SPPs) are widely considered to be promising candidates for the next generation of chip-scale technology thanks to the ability to break down the fundamental diffraction limit and manipulate optical signals at the truly nometer scale. In the past years, a variety of deep-subwavelength plasmonic structures have been proposed and investigated, including dielectric-loaded SPP waveguides, V-groove waveguides, hybrid plasmonic waveguides and metal nanowires. At the same time, for practical application, such waveguide structures must be integrated on a silicon chip and be fabricated using CMOS fabrication process. However, to date, acceptable characteristics have been demonstrated only with noble metals (gold and silver), which are not compatible with industry-standard manufacturing technologies. On the other hand, alternative materials introduce enormous propagation losses due absorption in the metal. This prevents plasmonic components from implementation in on-chip nanophotonic circuits. In this work, we experimentally demonstrate for the first time that copper plasmonic waveguides fabricated in a CMOS compatible process can outperform gold waveguides showing the same level of mode confinement and lower propagation losses. At telecommunication wavelengths, the fabricated ultralow-loss deep-subwavelength hybrid plasmonic waveguides ensure a relatively long propagation length of more than 50 um along with strong mode confinement with the mode size down to lambda^2/70, which is confirmed by direct scanning near-field optical microscopy (SNOM) measurements. These results create the backbone for design and development of high-density nanophotonic circuits and their integration with electronic logic on a silicon chip.

  20. Nanophotonic Modulator with Bismuth Ferrite as Low-loss Switchable Material

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2015-01-01

    We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved.......We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved....

  1. Cascaded-focus laser writing of low-loss waveguides in polymers.

    Science.gov (United States)

    Pätzold, Welm M; Reinhardt, Carsten; Demircan, Ayhan; Morgner, Uwe

    2016-03-15

    Waveguide writing in poly (methyl methacrylate) (PMMA) with femtosecond laser radiation is presented. An adequate refractive index change is induced in the border area below the irradiated focal volume. It supports an almost symmetric fundamental mode with propagation losses down to 0.5  dB/cm, the lowest losses observed so far in this class of materials. The writing process with a cascaded focus is demonstrated to be highly reliable over a large parameter range.

  2. Thermodesorbable passive collectors and thermodesorption injector for assessing the exposure of room occupants to organic pollutants - TOPAS; Thermodesorbierbare Passivsammler und zugehoeriger Thermodesorptionsinjektor fuer die Bestimmung der personenbezogenen Belastung mit organischen Luftschadstoffen - TOPAS

    Energy Technology Data Exchange (ETDEWEB)

    Cammann, K

    1999-07-01

    A sampling system for identification and quantification of room occupant exposure to organic airborne pollutants was to be developed. This comprised the development of a new sampling system involving high-resolution gas chromatography. [German] Im Rahmen des geplanten Forschungsprojektes sollte ein neuartiges, leistungsstarkes und dennoch kostenguenstiges Probennahmesystem zur Identifizierung und mengenmaessigen Erfassung der personenbezogenen Belastung mit organischen Luftschadstoffen entwickelt werden. Mit diesem System sollte es moeglich sein, die individuelle Einwirkung von Luftverschmutzungen mit organischen Schadstoffen auf weite Bevoelkerungsgruppen zu ermitteln. Erreicht werden sollte dieses Ziel durch eine neugestaltete Kombination der Passivsammlung als aeusserst einfach zu handhabendes Probennahmesystem in der Luftanalytik mit der Thermodesorption als nachweisstarkes Probenaufgabesystem fuer die hochaufloesende Gaschromatographie. (orig.)

  3. Perspectives from the Top--A Collection of Thoughts on Employee Learning and Development from Five CEOs. CAEL Forum & News

    Science.gov (United States)

    Hoeppel, Kate

    2007-01-01

    As part of its mission to remove the barriers to lifelong learning, CAEL (Council for Adult and Experiential Learning) launched WorkforceChicago2.0 in 2001 to help influence the culture and policies of the private sector regarding employee learning and development. One of the key goals of this initiative is creating a "voice" for the private…

  4. TOPAS 1 - construction and test of a scintillation counter hodoscope for the tagging of bremsstrahlung photons for the SAPHIR detector

    International Nuclear Information System (INIS)

    Merkel, R.

    1989-09-01

    The development of a tagging-hodoscope for the SAPHIR-detector at the stretcher ring ELSA in Bonn is described. The hodoscope covers the energy range 2.175 GeV γ 0 =3.500 GeV. 24 scintillation counters are used for the determination of the photon energy, giving a resolution of ΔE γ =25 MeV. The tagging method requires a good coincidence timing resoluting τ between the tagging hodoscope and the detector for the photon-induced reactions in order to keep the accidental coincidences low. The timing information is given by 8 fast timing counters (40 mm thick), covering 5 up to 7 energy channels each. Fluctuations of the timing signal which result from different impact-locations on the timing counter, due to different light travelling distances, are corrected by the energy defining counters. The timing-component (8 timing counters) is commpleted and tested. The results of first mesurements show an upper limit of σ=250 psec for the resolution of 7 coincidences out of 45 possible channels in the tagging hodscope. These results are obtained with a preliminary adjustment of the SAPHIR beam-line and with a not yet optimized signal to noize ratio in the extracted beam. We hope to obtain a σ<200 psec under optimized conditions. (orig.)

  5. Caging Nb2 O5 Nanowires in PECVD-Derived Graphene Capsules toward Bendable Sodium-Ion Hybrid Supercapacitors.

    Science.gov (United States)

    Wang, Xiangguo; Li, Qiucheng; Zhang, Li; Hu, Zhongli; Yu, Lianghao; Jiang, Tao; Lu, Chen; Yan, Chenglin; Sun, Jingyu; Liu, Zhongfan

    2018-05-14

    Sodium-ion hybrid supercapacitors (Na-HSCs) by virtue of synergizing the merits of batteries and supercapacitors have attracted considerable attention for high-energy and high-power energy-storage applications. Orthorhombic Nb 2 O 5 (T-Nb 2 O 5 ) has recently been recognized as a promising anode material for Na-HSCs due to its typical pseudocapacitive feature, but it suffers from intrinsically low electrical conductivity. Reasonably high electrochemical performance of T-Nb 2 O 5 -based electrodes could merely be gained to date when sufficient carbon content was introduced. In addition, flexible Na-HSC devices have scarcely been demonstrated by far. Herein, an in situ encapsulation strategy is devised to directly grow ultrathin graphene shells over T-Nb 2 O 5 nanowires (denoted as Gr-Nb 2 O 5 composites) by plasma-enhanced chemical vapor deposition, targeting a highly conductive anode material for Na-HSCs. The few-layered graphene capsules with ample topological defects would enable facile electron and Na + ion transport, guaranteeing rapid pseudocapacitive processes at the Nb 2 O 5 /electrolyte interface. The Na-HSC full-cell comprising a Gr-Nb 2 O 5 anode and an activated carbon cathode delivers high energy/power densities (112.9 Wh kg -1 /80.1 W kg -1 and 62.2 Wh kg -1 /5330 W kg -1 ), outperforming those of recently reported Na-HSC counterparts. Proof-of-concept Na-HSC devices with favorable mechanical robustness manifest stable electrochemical performances under different bending conditions and after various bending-release cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Low-voltage bendable pentacene thin-film transistor with stainless steel substrate and polystyrene-coated hafnium silicate dielectric.

    Science.gov (United States)

    Yun, Dong-Jin; Lee, Seunghyup; Yong, Kijung; Rhee, Shi-Woo

    2012-04-01

    The hafnium silicate and aluminum oxide high-k dielectrics were deposited on stainless steel substrate using atomic layer deposition process and octadecyltrichlorosilane (OTS) and polystyrene (PS) were treated improve crystallinity of pentacene grown on them. Besides, the effects of the pentacene deposition condition on the morphologies, crystallinities and electrical properties of pentacene were characterized. Therefore, the surface treatment condition on dielectric and pentacene deposition conditions were optimized. The pentacene grown on polystyrene coated high-k dielectric at low deposition rate and temperature (0.2-0.3 Å/s and R.T.) showed the largest grain size (0.8-1.0 μm) and highest crystallinity among pentacenes deposited various deposition conditions, and the pentacene TFT with polystyrene coated high-k dielectric showed excellent device-performance. To decrease threshold voltage of pentacene TFT, the polystyrene-thickness on high-k dielectric was controlled using different concentration of polystyrene solution. As the polystyrene-thickness on hafnium silicate decreases, the dielectric constant of polystyrene/hafnium silicate increases, while the crystallinity of pentacene grown on polystyrene/hafnium silicate did not change. Using low-thickness polystyrene coated hafnium silicate dielectric, the high-performance and low voltage operating (pentacene thin film transistor (μ: ~2 cm(2)/(V s), on/off ratio, >1 × 10(4)) and complementary inverter (DC gains, ~20) could be fabricated.

  7. Radiation-Hardened Silicon Integrated Low-Loss Nano-Photonic Switches for Array LIDARs, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Manned planetary exploration has become re-invigorated, thanks to President Bush's recent call for a lunar base to be established within two decades and manned...

  8. A High-Power Low-Loss Continuously Tunable Bandpass Filter With Transversely Biased Ferrite-Loaded Coaxial Resonators

    DEFF Research Database (Denmark)

    Acar, Öncel; Johansen, Tom Keinicke; Zhurbenko, Vitaliy

    2015-01-01

    This paper presents a technology for high-power lowlosscontinuously tunable RF filters demonstrated by the exampleof a two-pole coupled-resonator filter. The resonators are shortenedcoaxial cavities loaded with ferrite inserts, where an externallyapplied transverse dc magnetic bias controls the c...... is observed to be 53.1 dBm at aninput fundamental tone level of 2 43 dBm....

  9. Polymethyl methacrylate (PMMA)-bismuth ferrite (BFO) nanocomposite: low loss and high dielectric constant materials with perceptible magnetic properties.

    Science.gov (United States)

    Tamboli, Mohaseen S; Palei, Prakash K; Patil, Santosh S; Kulkarni, Milind V; Maldar, Noormahmad N; Kale, Bharat B

    2014-09-21

    Herein, poly(methyl methacrylate)-bismuth ferrite (PMMA-BFO) nanocomposites were successfully prepared by an in situ polymerization method for the first time. Initially, the as prepared bismuth ferrite (BFO) nanoparticles were dispersed in the monomer, (methyl methacrylate) by sonication. Benzoyl peroxide was used to initiate the polymerization reaction in ethyl acetate medium. The nanocomposite films were subjected to X-ray diffraction analysis (XRD), (1)H NMR, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), infrared spectroscopy (IR), dielectric and magnetic characterizations. The dielectric measurement of the nanocomposites was investigated at a frequency range of 10 Hz to 1 MHz. It was found that the nanocomposites not only showed a significantly increased value of the dielectric constant with an increase in the loading percentage of BFO as compared to pure PMMA, but also exhibited low dielectric loss values over a wide range of frequencies. The values of the dielectric constant and dielectric loss of the PMMA-BFO5 (5% BFO loading) sample at 1 kHz frequency was found be ~14 and 0.037. The variation of the ferromagnetic response of the nanocomposite was consistent with the varying volume percentage of the nanoparticles. The remnant magnetization (Mr) and saturation magnetization (Ms) values of the composites were found to be enhanced by increasing the loading percentage of BFO. The value of Ms for PMMA-BFO5 was found to be ~6 emu g(-1). The prima facie observations suggest that the nanocomposite is a potential candidate for application in high dielectric constant capacitors. Significantly, based on its magnetic properties the composite will also be useful for use in hard disk components.

  10. Dielectric characterization of low-loss calcium strontium titanate fibers produced by laser floating zone technique for wireless communication

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, F. [Department of Physics and I3N, University of Aveiro, 3810-193, Aveiro (Portugal); Polytechnic Institute of Coimbra, 3000-271, Coimbra (Portugal); Valente, M.A.; Costa, L.C.; Costa, F.M. [Department of Physics and I3N, University of Aveiro, 3810-193, Aveiro (Portugal)

    2014-09-15

    Wireless communication technology assisted to a huge development during the last two decades, responding to the growing demand for small size and low weight devices such as cell phones and global positioning systems. The need for miniaturization and higher autonomy resulted in the development of new dielectric oxide ceramics with very specific properties, to be applied as dielectric resonators in filters, oscillators, and antennas. Some crucial properties as a high quality factor, high dielectric constant, and near zero temperature coefficient of resonant frequency must be considered during the selection of the appropriate materials. The present work deals with the preparation of calcium titanate (CaTiO{sub 3}), strontium titanate (SrTiO{sub 3}), and calcium strontium titanate (Ca{sub x}Sr{sub 1-x}TiO{sub 3}) fibers produced by laser floating zone (LFZ) technique. Our results show that fibers grown at lower pulling rates exhibit higher ε', for all the studied frequency range, including the microwave region. Moreover, the quality factor is always high envisaging the possibility to include these materials in future wireless device applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard; Sigmund, Ole

    2005-01-01

    in a large frequency range, we use an active-set strategy by using a number of target frequencies that are updated repeatedly in the optimization procedure. We apply a continuation method based on artificial damping to avoid undesired local maxima and also introduce artificial damping in a penalization...

  12. Synthesis of low loss, thermally stable CexY1-xTiTaO6 microwave ceramics

    International Nuclear Information System (INIS)

    Padma Kumar, H.; John, Annamma; Vijayakumar, C.; Thomas, J.K.; Varma, Manoj Raama; Solomon, Sam

    2009-01-01

    Ce x Y 1-x TiTaO 6 ceramics were prepared through the solid-state ceramic route. The materials were sintered in the range 1520-1580 deg. C. The structure of the system was analyzed by X-ray diffraction and Raman spectroscopic methods. The cell parameters of solid solutions were calculated using the least square method. The microstructure was analyzed using scanning electron microscopy. The dielectric constant (ε r ), temperature coefficient of resonant frequency (τ f ) and the unloaded quality factor (Q u ) are measured in the microwave frequency region using cavity resonator method. The dielectric constant increases with higher concentrations of Ce in the solid solutions. Nearly zero temperature coefficient of resonant frequency (τ f ) was obtained for Ce 0.24 Y 0.76 TiTaO 6 . The samples are of high quality factor and are useful electronic materials for microwave applications

  13. Low-Loss, Low-Noise, Crystalline Silicon Dielectric for Superconducting Microstrip and Kinetic Inductance Detector Capacitors

    Data.gov (United States)

    National Aeronautics and Space Administration — Development of technology to use crystalline dielectrics in superconducting spectroscopic sensors operating in the infrared/sub-millimeter wavelength range. The...

  14. Low-temperature, low-loss zero level packaging techniques for RF applications by using a photopatternable dry film

    International Nuclear Information System (INIS)

    Kim, J; Seok, S; Rolland, N; Rolland, P-A

    2012-01-01

    This paper presents a low-temperature zero-level packaging technique using a dry film type of PerMX polymer for RF devices. Silicon cap packaging with PerMX sealing ring and PerMX cap packaging through multilayer lamination have been implemented. All of the fabrication process has been performed at temperature less than 150 °C. The influence of each packaging cap on the packaged coplanar waveguide was first investigated using the HFSS electromagnetic simulation. The RF measurement results showed that both packaging caps did not have significant influence on the performance of transmission lines. The insertion loss changes before and after packaging were almost negligible up to 30 GHz, and the return losses were better than 20 dB. Also, the deformation of PerMX structures concerning the packaging processes has been studied. For silicon capping, the volumetric compression of PerMX sealing ring by the bonding process has been observed. For PerMX cap packaging, the deflection of the polymer cap has been investigated as a function of sealing ring width for the different cap size. Measured results had good agreement with the ANSYS simulated ones. (paper)

  15. Design of a Polymer-Based Hollow-Core Bandgap Fiber for Low-Loss Terahertz Transmission

    DEFF Research Database (Denmark)

    Barh, Ajanta; Varshney, Ravi K.; Pal, Bishnu P.

    2016-01-01

    wavelength-scale circular air holes in a hexagonal pattern, embedded in a uniform Teflon matrix. The THz guidance in this fiber is achieved by exploiting the photonic bandgap (PBG) effect. In our low index contrast Teflon-air (1.44:1) hexagonal periodic lattice, the PBG appears only for a certain range...

  16. Wafer-level packaging technology for RF applications based on a rigid low-loss spacer substrate

    NARCIS (Netherlands)

    Polyakov, A.

    2006-01-01

    As mobile portable devices such as cellular system/phones, smart handheld devices and laptop computers acquire wireless connectivity there is a growing demand for greater levels of RF integration. The holy grail of integration is to have a whole set of different components integrated into one chip.

  17. Dielectric characterization of low-loss calcium strontium titanate fibers produced by laser floating zone technique for wireless communication

    International Nuclear Information System (INIS)

    Amaral, F.; Valente, M.A.; Costa, L.C.; Costa, F.M.

    2014-01-01

    Wireless communication technology assisted to a huge development during the last two decades, responding to the growing demand for small size and low weight devices such as cell phones and global positioning systems. The need for miniaturization and higher autonomy resulted in the development of new dielectric oxide ceramics with very specific properties, to be applied as dielectric resonators in filters, oscillators, and antennas. Some crucial properties as a high quality factor, high dielectric constant, and near zero temperature coefficient of resonant frequency must be considered during the selection of the appropriate materials. The present work deals with the preparation of calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), and calcium strontium titanate (Ca x Sr 1-x TiO 3 ) fibers produced by laser floating zone (LFZ) technique. Our results show that fibers grown at lower pulling rates exhibit higher ε', for all the studied frequency range, including the microwave region. Moreover, the quality factor is always high envisaging the possibility to include these materials in future wireless device applications. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. 7-cell core hollow-core photonic crystal fibers with low loss in the spectral region around 2 mu m

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, B.J.; Jakobsen, C.

    2009-01-01

    Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 μm to 2.3 μm have been fabricated. The transmission loss follows the ≈ λ−3 dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 μm. One fiber with a transmission loss...... of 26 dB/km at 2.3 μm is reported, which is significantly lower than the transmission loss of solid silica fibers at this wavelength....

  19. CO2 laser-induced directional recrystallization to produce single crystal silicon-core optical fibers with low loss

    OpenAIRE

    Healy, Noel; Fokine, Michael; Franz, Yohann; Hawkins, Thomas; Jones, Maxwell; Ballato, John; Peacock, Anna C.; Gibson, Ursula J.

    2016-01-01

    Reduced losses in silicon-core fibers are obtained using CO2 laser directional recrystallization of the core. Single crystals with aspect ratios up to 1500:1 are reported, limited by the scan range of the equipment. This processing technique holds promise for bringing crystalline silicon-core fibers to a central role in nonlinear optics and signal processing applications.

  20. Low-loss Kagome hollow-core fibers operating from the near- to the mid-IR.

    Science.gov (United States)

    Wheeler, N V; Bradley, T D; Hayes, J R; Gouveia, M A; Liang, S; Chen, Y; Sandoghchi, S R; Abokhamis Mousavi, S M; Poletti, F; Petrovich, M N; Richardson, D J

    2017-07-01

    We report the fabrication and characterization of Kagome hollow-core antiresonant fibers, which combine low attenuation (as measured at ∼30  cm bend diameter) with a wide operating bandwidth and high modal purity. Record low attenuation values are reported: 12.3 dB/km, 13.9 dB/km, and 9.6 dB/km in three different fibers optimized for operation at 1 μm, 1.55 μm, and 2.5 μm, respectively. These fibers are excellent candidates for ultra-high power delivery at key laser wavelengths including 1.064 μm and 2.94 μm, as well as for applications in gas-based sensing and nonlinear optics.

  1. Stable dielectric response of low-loss aromatic polythiourea thin films on Pt/SiO2 substrate

    Directory of Open Access Journals (Sweden)

    A. Eršte

    2016-03-01

    Full Text Available We have investigated dielectric properties of aromatic polythiourea (ArPTU, a polar polymer containing high dipolar moments with very low defect levels thin films that were developed on Pt/SiO2 substrate. The detected response is compared to the response of commercially available polymers, such as high density polyethylene (HDPE and polypropylene (PP, which are at present used in foil capacitors. Stable values of the dielectric constant ε′≈5 (being twice higher than in HDPE and PP over broad temperature and frequency ranges and dielectric losses as low as in commercial systems suggest ArPTU as a promising candidate for future use in a variety of applications.

  2. Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G.K.M.

    2016-01-01

    In this Letter, we suggest a novel kind of porous-core photonic crystal fiber (PCF) (to the best of our knowledge) for efficient transportation of polarization maintaining (PM) terahertz (THz) waves. We introduce an asymmetry in both the porous-core and the porous-cladding of the structure to ach...

  3. Tunable permittivity and permeability of low loss Z + Y-type ferrite composites for ultra-high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Su, Zhijuan; Hu, Bolin; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); Li, Qifan; Feng, Zekun [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xian [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-05-07

    A series of Z-type and Y-type ferrite composites with various phase fractions were studied for their RF properties including the measurement of permittivity to permeability spectra over a frequency range of 0.1–10 GHz. Phase identification of the ferrite composites' constituents was determined by X-ray diffraction. An effective medium approximation was used to predict the magnetic and dielectric behavior of the composites. The experiments indicated that the composite having 75 vol. % of Z-type ferrite demonstrated a permeability of ∼12 with a nearly equivalent permittivity, yielding a ratio (μ′/ε′) of 0.91 at a frequency range from 0.55 to 0.75 GHz. The dielectric loss (i.e., tan δ{sub ε}) and magnetic loss (i.e., tan δ{sub μ}) were measured to be lower than 0.08 at f = 0.1–1 GHz and 0.29 at f = 0.1–0.7 GHz, respectively. Furthermore, the loss factors, as tan δ{sub ε}/ε′ and tan δ{sub μ}/μ′, were calculated to be 0.003 and 0.02 at 0.65 GHz, respectively.

  4. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    Science.gov (United States)

    Balakrishnan, M.; Diemeer, M. B. J.; Driessen, A.; Faccini, M.; Verboom, W.; Reinhoudt, D. N.; Leinse, A.

    2006-02-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (T g) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which was reported to have a high photochemical stability 1 has been employed in the current work. Tert-butyl-TCVDPA, having bulky side groups, was synthesized and a doubling of the electro-optic coefficient (r33) compared to the unmodified TCVDPA was shown. A microring resonator design was made based on the PS-TCVDPA system. SU8 (passive) and TCVDPA (active) channel waveguides were fabricated by the photodefinition technique and the passive waveguide losses were measured to be 5 dB/cm at 1550 nm.

  5. Highly stable and low loss electro-optic polymer waveguides for high speed microring modulators using photodefinition

    NARCIS (Netherlands)

    Balakrishnan, M.; Diemeer, Mart; Driessen, A.; Faccini, M.; Verboom, Willem; Reinhoudt, David; Leinse, Arne; Sidorin, Y.; Waechter, C.A.

    2006-01-01

    Different electro-optic polymer systems are analyzed with respect to their electro-optic activity, glass transition temperature (Tg) and photodefinable properties. The polymers tested are polysulfone (PS) and SU8. The electro-optic chromophore, tricyanovinylidenediphenylaminobenzene (TCVDPA), which

  6. Radiation-Hardened Silicon Integrated Low-Loss Nano-Photonic Switches for Array LIDARs, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — LIDAR is an innovative technology for the next round of manned exploration of space. The LIDAR instrument transmits light out to a target. The transmitted light...

  7. New method for evaluation of bendability based on three-point-bending and the evolution of the cross-section moment

    Science.gov (United States)

    Troive, L.

    2017-09-01

    Friction-free 3-point bending has become a common test-method since the VDA 238-100 plate-bending test [1] was introduced. According to this test the criterion for failure is when the force suddenly drops. It was found by the author that the evolution of the cross-section moment is a more preferable measure regarding the real material response instead of the force. Beneficially, the cross-section moment gets more or less a constant maximum steady-state level when the cross-section becomes fully plastified. An expression for the moment M is presented that fulfils the criteria for energy of conservation at bending. Also an expression calculating the unit-free moment, M/Me, i.e. current moment to elastic-moment ratio, is demonstrated specifically proposed for detection of failures. The mathematical expressions are simple making it easy to transpose measured force F and stroke position S to the corresponding cross-section moment M. From that point of view it’s even possible to implement, e.g. into a conventional measurement system software, studying the cross-section moment in real-time during a test. It’s even possible to calculate other parameters such as flow-stress and shape of curvature at every stage. It has been tested on different thicknesses and grades within the range from 1.0 to 10 mm with very good results. In this paper the present model is applied on a 6.1 mm hot-rolled high strength steel from the same batch at three different conditions, i.e. directly quenched, quenched and tempered, and a third variant quench and tempered with levelling. It will be shown that very small differences in material-response can be predicted by this method.

  8. Ultra-short pulse delivery at high average power with low-loss hollow core fibers coupled to TRUMPF's TruMicro laser platforms for industrial applications

    Science.gov (United States)

    Baumbach, S.; Pricking, S.; Overbuschmann, J.; Nutsch, S.; Kleinbauer, J.; Gebs, R.; Tan, C.; Scelle, R.; Kahmann, M.; Budnicki, A.; Sutter, D. H.; Killi, A.

    2017-02-01

    Multi-megawatt ultrafast laser systems at micrometer wavelength are commonly used for material processing applications, including ablation, cutting and drilling of various materials or cleaving of display glass with excellent quality. There is a need for flexible and efficient beam guidance, avoiding free space propagation of light between the laser head and the processing unit. Solid core step index fibers are only feasible for delivering laser pulses with peak powers in the kW-regime due to the optical damage threshold in bulk silica. In contrast, hollow core fibers are capable of guiding ultra-short laser pulses with orders of magnitude higher peak powers. This is possible since a micro-structured cladding confines the light within the hollow core and therefore minimizes the spatial overlap between silica and the electro-magnetic field. We report on recent results of single-mode ultra-short pulse delivery over several meters in a lowloss hollow core fiber packaged with industrial connectors. TRUMPF's ultrafast TruMicro laser platforms equipped with advanced temperature control and precisely engineered opto-mechanical components provide excellent position and pointing stability. They are thus perfectly suited for passive coupling of ultra-short laser pulses into hollow core fibers. Neither active beam launching components nor beam trackers are necessary for a reliable beam delivery in a space and cost saving packaging. Long term tests with weeks of stable operation, excellent beam quality and an overall transmission efficiency of above 85 percent even at high average power confirm the reliability for industrial applications.

  9. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    Science.gov (United States)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  10. New architectures for integrated optics: low-loss tight bends and on-chip high-index-contrast potassium double Tungstate waveguides

    NARCIS (Netherlands)

    Sefünç, Mustafa

    2016-01-01

    This thesis concentrates on improving the performance of low-index-contrast waveguides in terms of reducing the bend losses and increasing the index contrast of waveguides by heterogeneous adhesive bonding and thinning. In the first part of this thesis, we have demonstrated that introducing a thin

  11. Research on power equalization using a low-loss DC-DC chopper for lithium-ion batteries in electric vehicle

    Science.gov (United States)

    Wei, Y. W.; Liu, G. T.; Xiong, S. N.; Cheng, J. Z.; Huang, Y. H.

    2017-01-01

    In the near future, electric vehicle is entirely possible to replace traditional cars due to its zero pollution, small power consumption and low noise. Lithium-ion battery, which owns lots of advantages such as lighter and larger capacity and longer life, has been widely equipped in different electric cars all over the world. One disadvantage of this energy storage device is state of charge (SOC) difference among these cells in each series branch. If equalization circuit is not allocated for series-connected batteries, its safety and lifetime are declined due to over-charge or over-discharge happened, unavoidably. In this paper, a novel modularized equalization circuit, based on DC-DC chopper, is proposed to supply zero loss in theory. The proposed circuit works as an equalizer when Lithium-ion battery pack is charging or discharging or standing idle. Theoretical analysis and control method have been finished, respectively. Simulation and small scale experiments are applied to verify its real effect.

  12. Theoretical proposal of a low-loss wide-bandwidth silicon photonic crystal fiber for supporting 30 orbital angular momentum modes.

    Directory of Open Access Journals (Sweden)

    Xun Xu

    Full Text Available We propose a novel four-ring hollow-core silicon photonic crystal fiber (PCF, and we systematically and theoretically investigate the properties of their vector modes. Our PCF can stably support 30 OAM states from the wavelength of 1.5 μm to 2.4 μm, with a large effective refractive index separation of above 1×10-4. The confinement loss is less than 1×10-9 dB/m at the wavelength of 1.55 μm, and the average confinement loss is less than 1×10-8 dB/m from the wavelength of 1.2 μm to 2.4 μm. Moreover, the curve of the dispersion tends to flatten as the wavelength increases. In addition, we comparably investigate PCFs with different hole spacing. This kind of fiber structure will be a potential candidate for high-capacity optical fiber communications and OAM sensing applications using fibers.

  13. Wide-area remote-sensing system of pollution and gas dispersal by near-infrared absorption based on low-loss optical fiber network

    Science.gov (United States)

    Inaba, H.

    1986-01-01

    An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.

  14. Low-loss Z-type barium hexaferrite composites from nanoscale ZnAl2O4 addition for high-frequency applications

    Science.gov (United States)

    Zheng, Zongliang; Feng, Quanyuan; Harris, Vincent G.

    2018-05-01

    In this study, nanocrystalline ZnAl2O4 (ZA) were introduced to Z-type barium hexaferrite (Co2Z) and the effects of ZA addition upon the crystal-phase composition, microstructure, permeability and permittivity as well as losses characteristics over a wide frequency range of 10 MHz-1 GHz have been systematically investigated. With increasing ZA content (x) from 0 to 15 wt%, the permeability μ' at low frequencies decreased from 12.0 to 4.3, while the permittivity ɛ' was decreased from 27.4 to 10.7. Correspondingly, the frequency stability of permeability and permittivity were improved and the losses were effectively reduced. When x is in the range of 5-10 wt%, the magnetic loss tan δμ is in the order of 10-2 and the dielectric loss tan δɛ is in the order of 10-3 at 300 MHz, which is lower by one order of magnitude compared with that of undoped Co2Z. The modified magnetic and dielectric properties are closely related to the changing phase composition and microstructure.

  15. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing.

    Science.gov (United States)

    Horst, Folkert; Green, William M J; Assefa, Solomon; Shank, Steven M; Vlasov, Yurii A; Offrein, Bert Jan

    2013-05-20

    We present 1-to-8 wavelength (de-)multiplexer devices based on a binary tree of cascaded Mach-Zehnder-like lattice filters, and manufactured using a 90 nm CMOS-integrated silicon photonics technology. We demonstrate that these devices combine a flat pass-band over more than 50% of the channel spacing with low insertion loss of less than 1.6 dB, and have a small device size of approximately 500 × 400 µm. This makes this type of filters well suited for application as WDM (de-)multiplexer in silicon photonics transceivers for optical data communication in large scale computer systems.

  16. Development of a low loss magnetic composite utilizing amorphous metal flake. Third semi-annual progress report, 19 September 1979-18 March 1980

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.

    1980-04-01

    The objective of this project is to determine the feasibility of casting amorphous metal ribbon in the shape of a helix with properties suitable for motor applications. The tasks include (1) determination of the casting parameters required to produce a helical ribbon, (2) evaluation of magnetic properties and methods for bonding, and (3) developing methods for patterning a wheel for producing motor slots in as-cast ribbon.

  17. Low-loss, low-confinement GaAs-AlGaAs DQW laser diode with optical trap layer for high-power operation

    NARCIS (Netherlands)

    Buda, M.; Vleuten, van der W.C.; Iordache, G.; Acket, G.A.; Roer, van de T.G.; Es, van C.M.; Roy, van B.H.; Smalbrugge, E.

    1999-01-01

    A low-confinement asymmetric GaAs-AlGaAs double-quantum-well molecular-beam-epitaxy grown laser diode structure with optical trap layer is characterized, The value of the internal absorption coefficient is as low as 1.4 cm-1, while keeping the series resistance at values comparable cm with

  18. GENERAL P, TYPE-I S, AND TYPE-II S WAVES IN ANELASTIC SOLIDS; INHOMOGENEOUS WAVE FIELDS IN LOW-LOSS SOLIDS.

    Science.gov (United States)

    Borcherdt, Roger D.; Wennerberg, Leif

    1985-01-01

    The physical characteristics for general plane-wave radiation fields in an arbitrary linear viscoelastic solid are derived. Expressions for the characteristics of inhomogeneous wave fields, derived in terms of those for homogeneous fields, are utilized to specify the characteristics and a set of reference curves for general P and S wave fields in arbitrary viscoelastic solids as a function of wave inhomogeneity and intrinsic material absorption. The expressions show that an increase in inhomogeneity of the wave fields cause the velocity to decrease, the fractional-energy loss (Q** minus **1) to increase, the deviation of maximum energy flow with respect to phase propagation to increase, and the elliptical particle motions for P and type-I S waves to approach circularity. Q** minus **1 for inhomogeneous type-I S waves is shown to be greater than that for type-II S waves, with the deviation first increasing then decreasing with inhomogeneity. The mean energy densities (kinetic, potential, and total), the mean rate of energy dissipation, the mean energy flux, and Q** minus **1 for inhomogeneous waves are shown to be greater than corresponding characteristics for homogeneous waves, with the deviations increasing as the inhomogeneity is increased for waves of fixed maximum displacement amplitude.

  19. Deacetylation of topoisomerase I is an important physiological function of E. coli CobB

    Science.gov (United States)

    Zhou, Qingxuan; Zhou, Yan Ning; Jin, Ding Jun

    2017-01-01

    Abstract Escherichia coli topoisomerase I (TopA), a regulator of global and local DNA supercoiling, is modified by Nε-Lysine acetylation. The NAD+-dependent protein deacetylase CobB can reverse both enzymatic and non-enzymatic lysine acetylation modification in E. coli. Here, we show that the absence of CobB in a ΔcobB mutant reduces intracellular TopA catalytic activity and increases negative DNA supercoiling. TopA expression level is elevated as topA transcription responds to the increased negative supercoiling. The slow growth phenotype of the ΔcobB mutant can be partially compensated by further increase of intracellular TopA level via overexpression of recombinant TopA. The relaxation activity of purified TopA is decreased by in vitro non-enzymatic acetyl phosphate mediated lysine acetylation, and the presence of purified CobB protects TopA from inactivation by such non-enzymatic acetylation. The specific activity of TopA expressed from His-tagged fusion construct in the chromosome is inversely proportional to the degree of in vivo lysine acetylation during growth transition and growth arrest. These findings demonstrate that E. coli TopA catalytic activity can be modulated by lysine acetylation–deacetylation, and prevention of TopA inactivation from excess lysine acetylation and consequent increase in negative DNA supercoiling is an important physiological function of the CobB protein deacetylase. PMID:28398568

  20. Fiscal 1999 achievement report. Development of technologies for creating high-quality crystalline materials for low-loss power control devices; 1999 nendo teisonshitsu denryoku seigyo soshiyo kohinshitsu kessho zairyo sosei gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Researches are conducted for the advancement of, and loss reduction for, semiconductor devices for controlling electric power. Physical properties of molten semiconductors etc. are accurately measured in a microgravity environment and computer simulations are performed, which are for the production of larger-diameter, higher-quality semiconductor crystal materials. In the measurement of physical properties of molten semiconductors etc. carried out at JAMIC (Japan Microgravity Center) free-fall facilities where a high-quality microgravity environment is available, measurements are made of the surface tension, density, viscosity index, heat conductivity, and vertical spectral factor of the molten silicon. Solubility is measured of silica, silicon nitride, and silicon carbide, and, in equilibrium with these, the oxygen, nitrogen, and carbon in molten silicon, and highly reliable data are obtained. As for the comprehensive analysis code developed under this subject, the X-ray image data of the surface of a solid solution, collected from a crystal growing in a small Cz furnace at the NEC Fundamental Research Laboratories, and data of oxygen concentration in the silicon crystal agree excellently with the result of calculation, which suggests that the code is reliable. (NEDO)

  1. FY 1995 annual report on development of techniques for creating high-quality crystalline materials for low-loss power controlling components; 1995 nendo teisonshitsu denryoku seigyo soshiyo kohinshitsu kessho zairyo sosei gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-09-01

    The R and D project is implemented for manufacturing high-quality semiconductor crystalline materials of large size and uniform characteristics, in order to improve semiconductors as components for controlling power systems, and reduce power loss. The semiconductor melts, in particular silicon melt, is highly reactive, readily reacting with the atmosphere and crucible holding the melt, and it is difficult to collect their thermal properties. Therefore, an electro-magnetic levitation furnace working under a microgravity is used, to dispense with a crucible for measurement of their properties in the absence of thermal convection. The preliminary tests using the furnace produce surface tensions of the melts, because Ge is less reactive than silicon, stable in the form of a GeSbTe compound, and not wettable with Al{sub 2}O{sub 3}, MgO, SiO{sub 2} or Si{sub 3}N{sub 4}. The measurement of electric resistance of InSb indicates that InSb has characteristics of a semiconductor when it is solid and a metal when it is liquid, as is the case with Si. The program codes are developed by each researcher, and combined with each other to establish the comprehensive thermal flow analysis program, which includes all of the aspects of the internal CZ furnace structure for growing the crystals. (NEDO)

  2. Realization of 7-cell hollow-core photonic crystal fibers with low loss in the region between 1.4 μm and 2.3 μm

    DEFF Research Database (Denmark)

    Lyngsøe, Jens Kristian; Mangan, Brian Joseph; Jakobsen, C.

    2009-01-01

    Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm.......Five 7-cell core hollow-core fibers with photonic bandgap spectral positions between 1.4 μm and 2.3 μm were fabricated. The loss follows the ≈ λ-3 dependency previously reported [1] with a minimum measured loss of 9.5 dB/km at 1992 nm....

  3. Core-shell structured polystyrene/BaTiO3 hybrid nanodielectrics prepared by in situ RAFT polymerization: a route to high dielectric constant and low loss materials with weak frequency dependence.

    Science.gov (United States)

    Yang, Ke; Huang, Xingyi; Xie, Liyuan; Wu, Chao; Jiang, Pingkai; Tanaka, Toshikatsu

    2012-11-23

    A novel route to prepare core-shell structured nanocomposites with excellent dielectric performance is reported. This approach involves the grafting of polystyrene (PS) from the surface of BaTiO(3) by an in situ RAFT polymerization. The core-shell structured PS/BaTiO(3) nanocomposites not only show significantly increased dielectric constant and very low dielectric loss, but also have a weak frequency dependence of dielectric properties over a wide range of frequencies. In addition, the dielectric constant of the nanocomposites can also be easily tuned by varying the thickness of the PS shell. Our method is very promising for preparing high-performance nanocomposites used in energy-storage devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fiscal 1999 research and development of quick-acting/innovative energy environment technology. Achievement report on development of materials for pole-mounted low-loss transformer; 1999 nendo choteisonshitsu chujo toransuyo zairyo no kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Development is under way of technologies for reducing pole-mounted transformer iron loss to 1/10 by developing materials which are low in loss, high in saturation magnetic flux density, and high in machinability, and for forming such materials. Development activities were conducted in three fields of (1) development of materials, (2) development of material manufacturing technology, and (3) fabrication of pole-mounted transformers and their evaluation. Under item (1), composition optimization studies were conducted for Fe-Zr-Nb-B based alloys, and materials to achieve target values were obtained. For improvement on formability, machinability, and soft magnetism characteristics in the atmosphere, alloys were tested, some free of Zr, others containing Mo, and still others with rare earth elements added thereto. Under item (2), improvement was achieved, for example, by giving high pressure capability to the dissolver of a vacuum compatible gas flow thin belt manufacturing device. An Fe-Zr-Nb-B based alloy 5kg in weight was formed into a 50mm thin belt, and data for large forming machine designing were collected. Under item (3), a toroidal core model was fabricated and its iron loss was measured after heat treatment, and a good result was obtained. (NEDO)

  5. Reactive ion etching of polymer materials for an energy harvesting device

    DEFF Research Database (Denmark)

    Wang, Fei; Bertelsen, Christian Vinther; Skands, Gustav

    2012-01-01

    In this paper, we have demonstrated deep reactive ion etching (RIE) of two MEMS compatible polymer materials CYTOP and TOPAS, which may be useful for energy harvesting devices. The CYTOP polymer was patterned and used as the electret for the following corona charging while the TOPAS polymer...

  6. WE-H-BRA-04: Biological Geometries for the Monte Carlo Simulation Toolkit TOPASNBio

    International Nuclear Information System (INIS)

    McNamara, A; Held, K; Paganetti, H; Schuemann, J; Perl, J; Piersimoni, P; Ramos-Mendez, J; Faddegon, B

    2016-01-01

    Purpose: New advances in radiation therapy are most likely to come from the complex interface of physics, chemistry and biology. Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can thus help bridge the gap between physics and biology. The aim of TOPAS-nBio is to provide a comprehensive tool to generate advanced radiobiology simulations. Methods: TOPAS wraps and extends the Geant4 Monte Carlo (MC) simulation toolkit. TOPAS-nBio is an extension to TOPAS which utilizes the physics processes in Geant4-DNA to model biological damage from very low energy secondary electrons. Specialized cell, organelle and molecular geometries were designed for the toolkit. Results: TOPAS-nBio gives the user the capability of simulating biological geometries, ranging from the micron-scale (e.g. cells and organelles) to complex nano-scale geometries (e.g. DNA and proteins). The user interacts with TOPAS-nBio through easy-to-use input parameter files. For example, in a simple cell simulation the user can specify the cell type and size as well as the type, number and size of included organelles. For more detailed nuclear simulations, the user can specify chromosome territories containing chromatin fiber loops, the later comprised of nucleosomes on a double helix. The chromatin fibers can be arranged in simple rigid geometries or within factual globules, mimicking realistic chromosome territories. TOPAS-nBio also provides users with the capability of reading protein data bank 3D structural files to simulate radiation damage to proteins or nucleic acids e.g. histones or RNA. TOPAS-nBio has been validated by comparing results to other track structure simulation software and published experimental measurements. Conclusion: TOPAS-nBio provides users with a comprehensive MC simulation tool for radiobiological simulations, giving users without advanced programming skills the ability to design and run complex

  7. WE-H-BRA-04: Biological Geometries for the Monte Carlo Simulation Toolkit TOPASNBio

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, A; Held, K; Paganetti, H; Schuemann, J [Massachusetts General Hospital & Harvard Med. School, Boston, MA (United States); Perl, J [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Piersimoni, P; Ramos-Mendez, J; Faddegon, B [University of California, San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: New advances in radiation therapy are most likely to come from the complex interface of physics, chemistry and biology. Computational simulations offer a powerful tool for quantitatively investigating radiation interactions with biological tissue and can thus help bridge the gap between physics and biology. The aim of TOPAS-nBio is to provide a comprehensive tool to generate advanced radiobiology simulations. Methods: TOPAS wraps and extends the Geant4 Monte Carlo (MC) simulation toolkit. TOPAS-nBio is an extension to TOPAS which utilizes the physics processes in Geant4-DNA to model biological damage from very low energy secondary electrons. Specialized cell, organelle and molecular geometries were designed for the toolkit. Results: TOPAS-nBio gives the user the capability of simulating biological geometries, ranging from the micron-scale (e.g. cells and organelles) to complex nano-scale geometries (e.g. DNA and proteins). The user interacts with TOPAS-nBio through easy-to-use input parameter files. For example, in a simple cell simulation the user can specify the cell type and size as well as the type, number and size of included organelles. For more detailed nuclear simulations, the user can specify chromosome territories containing chromatin fiber loops, the later comprised of nucleosomes on a double helix. The chromatin fibers can be arranged in simple rigid geometries or within factual globules, mimicking realistic chromosome territories. TOPAS-nBio also provides users with the capability of reading protein data bank 3D structural files to simulate radiation damage to proteins or nucleic acids e.g. histones or RNA. TOPAS-nBio has been validated by comparing results to other track structure simulation software and published experimental measurements. Conclusion: TOPAS-nBio provides users with a comprehensive MC simulation tool for radiobiological simulations, giving users without advanced programming skills the ability to design and run complex

  8. Identification and localization of a gene that specifies production of Escherichia coli DNA topoisomerase I

    International Nuclear Information System (INIS)

    Trucksis, M.; Depew, R.E.

    1981-01-01

    A gene that specifies production of Escherichia coli DNA topoisomerase I (ω protein) was identified with the aid of a radioimmunoassay for this protein. E. coli DNA topoisomerase I was produced by Salmonella typhimurium merodiploids that harbored E. coli plasmid F' 123, but not by strains that lost this plasmid. Analysis of strains with spontaneous deletions of F' 123 showed that the gene, topA, required for production of the E. coli ω protein was between the trp operon and the cysB gene. Deletions that eliminated topA also eliminated the supX gene. We suggest that topA is the structural gene of E. coli DNA topoisomerase I and that topA is identical to supX

  9. Sequence Classification: 390305 [

    Lifescience Database Archive (English)

    Full Text Available SOMERASE I TOPA (OMEGA-PROTEIN) (RELAXING ENZYME) (UNTWISTING ENZYME) (SWIVELASE) (TYPE I DNA TOPOISOMERASE) (NICKING-CLOSING ENZYME) || http://www.ncbi.nlm.nih.gov/protein/31794816 ...

  10. Double π production on the deuteron with the energy-tagged photon beam of the spectrometer facility for photon-induced reactions

    International Nuclear Information System (INIS)

    Merkel, R.

    1992-11-01

    Within the framework of this thesis it has been achieved to complete the tagging system TOPAS 1 including all aspects of hardware, software and calibration procedures. In addition, TOPAS 1, has been integrated into SAPHIR successfully, thus adding an indispensable tool for making physical measurements. Initial data analysis of the double Pion production at the Deuteron proved the basic function and usability of the tagging system in measuring total cross sections, also comprising their dependence on photon energy. (orig.) [de

  11. Axial distortion as a sensor of supercoil changes: a molecular model ...

    Indian Academy of Sciences (India)

    Unknown

    2001-12-14

    Dec 14, 2001 ... nucleosome positioning-based bendability parameters, in the discussion that follows ... value = 0.0014) between the extent of curvature and the level of RST shown by ... recruitment of the polymerase. Figure 2. Curvature in ...

  12. Preparation of a bent crystal and its use in neutron scattering

    International Nuclear Information System (INIS)

    Kraxenberger, H.

    1980-01-01

    The aim of this thesis was the construction of a horizontally bendable neutron monochromator e.g. analyzator, the application to different measuring problem in neutron scattering, and the development of an exact theory. (HSI) [de

  13. Bending-Tolerant Anodes for Lithium-Metal Batteries.

    Science.gov (United States)

    Wang, Aoxuan; Tang, Shan; Kong, Debin; Liu, Shan; Chiou, Kevin; Zhi, Linjie; Huang, Jiaxing; Xia, Yong-Yao; Luo, Jiayan

    2018-01-01

    Bendable energy-storage systems with high energy density are demanded for conformal electronics. Lithium-metal batteries including lithium-sulfur and lithium-oxygen cells have much higher theoretical energy density than lithium-ion batteries. Reckoned as the ideal anode, however, Li has many challenges when directly used, especially its tendency to form dendrite. Under bending conditions, the Li-dendrite growth can be further aggravated due to bending-induced local plastic deformation and Li-filaments pulverization. Here, the Li-metal anodes are made bending tolerant by integrating Li into bendable scaffolds such as reduced graphene oxide (r-GO) films. In the composites, the bending stress is largely dissipated by the scaffolds. The scaffolds have increased available surface for homogeneous Li plating and minimize volume fluctuation of Li electrodes during cycling. Significantly improved cycling performance under bending conditions is achieved. With the bending-tolerant r-GO/Li-metal anode, bendable lithium-sulfur and lithium-oxygen batteries with long cycling stability are realized. A bendable integrated solar cell-battery system charged by light with stable output and a series connected bendable battery pack with higher voltage is also demonstrated. It is anticipated that this bending-tolerant anode can be combined with further electrolytes and cathodes to develop new bendable energy systems. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Report on the results of efforts for fiscal 1997. Development of technologies for creating high-quality crystal materials for low-loss power control devices; 1997 nendo seika hokokusho. Teisonshitsu denryoku seigyo soshiyo kohinshitsu kessho zairyo sosei gijutsu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Basic technologies are developed for the manufacture of high-quality crystal materials large in diameter and homogeneous in property which will allow power control semiconductor devices to grow more sophisticated in function and to be lower in the loss they suffer. Physical properties of molten semiconductor and the like are measured accurately, which include surface tension, density, viscosity, electric conductivity, thermal conductivity, emissivity, diffusion coefficient, vapor pressure, heat capacity, contact angle, and solid solution equilibrium distribution coefficient. In computer-aided simulation, as in the previous year, simulation codes are developed for the analysis of flow, temperature distribution, and diffusion behavior in the gas phase; simulation codes are developed for the analysis of 3D unsteady thermal flows in the melt; and a main program is developed which governs experimental calculations. As for experiments in model Czochralski crucibles, small crucible are used in which experiments are conducted in the temperature range of normal to 200degC for the acquisition of experimental data for verification. Measured by use of the model crucibles are the temperature distribution in the bath, the surface flow speeds, and the flows inside the melt. 140 refs., 153 figs., 10 tabs.

  15. Rheological (visco-elastic behaviour) analysis of cyclic olefin copolymers with application to hot embossing for microfabrication

    International Nuclear Information System (INIS)

    Jena, R K; Chen, X; Yue, C Y; Lam, Y C

    2011-01-01

    Transparent, amorphous cyclic olefin copolymers (COCs) have been frequently used for the fabrication of microfluidic devices using a hot embossing technique for numerous applications. In hot embossing, the polymer is deformed near its glass transition temperature (Tg), i.e. between Tg and Tg + 60 °C where the viscoelastic properties of the material are dominant. The proper characterization of the viscoelastic properties is of interest as this can lead to a better understanding of polymer flow behaviour during microfabrication. Furthermore, the ability to model its rheological behaviour will enable the prediction of the optimal hot embossing processing parameters. We performed small amplitude oscillatory shear experiments on four grades of COCs, TOPAS-8007, TOPAS-5013, TOPAS-6015 and TOPAS-6017, in order to characterize their flow behaviour. The experiments were conducted within the frequency range from 0.01 to 500 Hz at between Tg + 20 and Tg + 60 °C. The flow properties could be represented using a generalized Maxwell viscoelastic constitutive model with Williams–Landel–Ferry-type temperature dependence. Good fit of the experimental data was obtained over a wide range of temperatures. The model could be coupled with ABAQUS finite element software to predict the optimal conditions for fabricating a capillary electrophoresis micro-chip on a TOPAS-5013 substrate by hot embossing

  16. Inducible pathway is required for mutagenesis in Salmonella typhimurium LT2

    International Nuclear Information System (INIS)

    Orrego, C.; Eisenstadt, E.

    1987-01-01

    UV mutability of Salmonella typhimurium LT2 was eliminated in the presence of a multicopy plasmid carrying the Escherichia coli lexA + gene. This result suggests that inducible, SOS-like functions are required for UV mutagenesis in S. typhimurium. S. typhimurium strains carrying either point or deletion mutations in topA had previously been shown to lose their mutability by UV or methyl methanesulfonate. Mitomycin C induction of the Phi(mucB'-lacZ') fusion (a DNA damage-inducible locus carried on plasmid pSE205) in S. typhimurium topA was normal, suggesting that RecA is activated in topA mutants. These observations lead the authors deduce that S. typhimurium has at least one DNA damage-inducible locus in addition to recA that is required for UV mutability

  17. Dynamic mechanical characterization with respect to temperature, humidity, frequency and strain in mPOFs made of different materials

    DEFF Research Database (Denmark)

    Leal-Junior, A.; Frizera, A.; Pontes, M. J.

    2018-01-01

    This paper presents a dynamic mechanical analysis (DMA) of polymer optical fibers (POFs) to obtain their Young modulus with respect to the variation of strain, temperature, humidity and frequency. The POFs tested are made of polymethyl methacrylate (PMMA), Topas grade 5013, Zeonex 480R...... and Polycarbonate (PC). In addition, a step index POF with a core composed of Topas 5013 and cladding of Zeonex 480R is also analyzed. Results show a tradeoffbetween the different fibers for different applications, where the Zeonex fiber shows the lowest Young modulus among the ones tested, which makes it suitable...... for high-sensitivity strain sensing applications. In addition, the fibers with Topas in their composition presented low temperature and humidity sensitivity, whereas PMMA fibers presented the highest Young modulus variation with different frequencies. The results presented here provide guidelines...

  18. Extending the reach of powder diffraction modelling by user defined macros

    CERN Document Server

    Scardi, Paolo

    2010-01-01

    The main focus of this special topic volume is the development and possibilities of the MACRO language within TOPAS, with a specific session dedicated to WPPM. The collection is presented here in the form of a ""macro tutorial"" for the benefit of the entire powder diffraction community. More than a collection of standard scientific papers, the contributions to this special issue provide methods, tutorials and practical suggestions and solutions for the proper use of TOPAS and WPPM in a number of applications; ranging from the most common to the most refined and specific cases.Readers will fin

  19. DNA structure in human RNA polymerase II promoters

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1998-01-01

    with a very low level of sequence similarity. The sequences, which include both TATA-containing and TATA-less promoters, are aligned by hidden Markov models. Using three different models of sequence-derived DNA bendability, the aligned promoters display a common structural profile with bendability being low...... protein in a manner reminiscent of DNA in a nucleosome. This notion is further supported by the finding that the periodic bendability is caused mainly by the complementary triplet pairs CAG/CTG and GGC/GCC, which previously have been found to correlate with nucleosome positioning. We present models where......The fact that DNA three-dimensional structure is important for transcriptional regulation begs the question of whether eukaryotic promoters contain general structural features independently of what genes they control. We present an analysis of a large set of human RNA polymerase II promoters...

  20. Integration of Polymer Micro-Electrodes for Bio-Sensing

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Larsen, Simon Tylsgaard; Tanzi, Simone

    We present the fabrication of PEDOT and pyrolyzed micro-electrodes for the detection of neurotransmitter exocytosis from single cells. The patterns of the electrodes are defined with photolithography. The micro-electro-fluidic-chips were fabricated by bonding two injection molded TOPAS parts. Pol...

  1. Designing microstructured polymer optical fibers for cascaded quadratic soliton compression of femtosecond pulses

    DEFF Research Database (Denmark)

    Bache, Morten

    2009-01-01

    The dispersion of index-guiding microstructured polymer optical fibers is calculated for second-harmonic generation. The quadratic nonlinearity is assumed to come from poling of the polymer, which in this study is chosen to be the cyclic olefin copolymer Topas. We found a very large phase mismatc...

  2. Study of doping non-PMMA polymer fibre canes with UV photosensitive compounds

    DEFF Research Database (Denmark)

    Hassan, Hafeez Ul; Fasano, Andrea; Janting, Jakob

    2016-01-01

    and hollow-core TOPAS canes were doped with a solution of dopants in acetone/methanol and hexane/methanol, respectively. Doping time, solvent mixture concentration and doping temperature were optimised. A long and stepwise drying process was applied to the doped canes to ensure complete solvent removal...

  3. Correction of the lack of commutability between plasmid DNA and genomic DNA for quantification of genetically modified organisms using pBSTopas as a model.

    Science.gov (United States)

    Zhang, Li; Wu, Yuhua; Wu, Gang; Cao, Yinglong; Lu, Changming

    2014-10-01

    Plasmid calibrators are increasingly applied for polymerase chain reaction (PCR) analysis of genetically modified organisms (GMOs). To evaluate the commutability between plasmid DNA (pDNA) and genomic DNA (gDNA) as calibrators, a plasmid molecule, pBSTopas, was constructed, harboring a Topas 19/2 event-specific sequence and a partial sequence of the rapeseed reference gene CruA. Assays of the pDNA showed similar limits of detection (five copies for Topas 19/2 and CruA) and quantification (40 copies for Topas 19/2 and 20 for CruA) as those for the gDNA. Comparisons of plasmid and genomic standard curves indicated that the slopes, intercepts, and PCR efficiency for pBSTopas were significantly different from CRM Topas 19/2 gDNA for quantitative analysis of GMOs. Three correction methods were used to calibrate the quantitative analysis of control samples using pDNA as calibrators: model a, or coefficient value a (Cva); model b, or coefficient value b (Cvb); and the novel model c or coefficient formula (Cf). Cva and Cvb gave similar estimated values for the control samples, and the quantitative bias of the low concentration sample exceeded the acceptable range within ±25% in two of the four repeats. Using Cfs to normalize the Ct values of test samples, the estimated values were very close to the reference values (bias -13.27 to 13.05%). In the validation of control samples, model c was more appropriate than Cva or Cvb. The application of Cf allowed pBSTopas to substitute for Topas 19/2 gDNA as a calibrator to accurately quantify the GMO.

  4. The Sustainable Highway for Environmentally Constrained Urbanized Areas

    NARCIS (Netherlands)

    Vakar, L.I.; Snijder, H.H.

    2010-01-01

    The ‘Sustainable Highway’ concept offers an integrated solution to motorway emission and noise problems. It consists of a motorway canopy made of cold-bendable laminated glass. Key factors here are durability, safety, cost and revenue. The design yields a significant reduction in noise, fine

  5. Journal of Biosciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In current study we analysed the stability and bendability of various classes of promoter regions (based on the recent identification of different classes of transcription start sites) of Helicobacter pylori 26695 strain. It is found that primary TSS and operon-associated TSS promoters show significantly strong features in their ...

  6. Stretchable transistors with buckled carbon nanotube films as conducting channels

    Science.gov (United States)

    Arnold, Michael S; Xu, Feng

    2015-03-24

    Thin-film transistors comprising buckled films comprising carbon nanotubes as the conductive channel are provided. Also provided are methods of fabricating the transistors. The transistors, which are highly stretchable and bendable, exhibit stable performance even when operated under high tensile strains.

  7. Identification and annotation of promoter regions in microbial

    Indian Academy of Sciences (India)

    2007-06-15

    Jun 15, 2007 ... Analysis of various predicted structural properties of promoter regions in prokaryotic as well as eukaryotic genomes had earlier indicated that they have several common features, such as lower stability, higher curvature and less bendability, when compared with their neighboring regions. Based on the ...

  8. Mutations reducing replication from R-loops suppress the defects of growth, chromosome segregation and DNA supercoiling in cells lacking topoisomerase I and RNase HI activity.

    Science.gov (United States)

    Usongo, Valentine; Martel, Makisha; Balleydier, Aurélien; Drolet, Marc

    2016-04-01

    R-loop formation occurs when the nascent RNA hybridizes with the template DNA strand behind the RNA polymerase. R-loops affect a wide range of cellular processes and their use as origins of replication was the first function attributed to them. In Escherichia coli, R-loop formation is promoted by the ATP-dependent negative supercoiling activity of gyrase (gyrA and gyrB) and is inhibited by topoisomerase (topo) I (topA) relaxing transcription-induced negative supercoiling. RNase HI (rnhA) degrades the RNA moiety of R-loops. The depletion of RNase HI activity in topA null mutants was previously shown to lead to extensive DNA relaxation, due to DNA gyrase inhibition, and to severe growth and chromosome segregation defects that were partially corrected by overproducing topo III (topB). Here, DNA gyrase assays in crude cell extracts showed that the ATP-dependent activity (supercoiling) of gyrase but not its ATP-independent activity (relaxation) was inhibited in topA null cells lacking RNase HI. To characterize the cellular event(s) triggered by the absence of RNase HI, we performed a genetic screen for suppressors of the growth defect of topA rnhA null cells. Suppressors affecting genes in replication (holC2::aph and dnaT18::aph) nucleotide metabolism (dcd49::aph), RNA degradation (rne59::aph) and fimbriae synthesis (fimD22::aph) were found to reduce replication from R-loops and to restore supercoiling, thus pointing to a correlation between R-loop-dependent replication in topA rnhA mutants and the inhibition of gyrase activity and growth. Interestingly, the position of fimD on the E. coli chromosome corresponds to the site of one of the five main putative origins of replication from R-loops in rnhA null cells recently identified by next-generation sequencing, thus suggesting that the fimD22::aph mutation inactivated one of these origins. Furthermore, we show that topo III overproduction is unable to complement the growth defect of topA rnhA null mutants at low

  9. SU-F-T-152: Experimental Validation and Calculation Benchmark for a Commercial Monte Carlo Pencil BeamScanning Proton Therapy Treatment Planning System in Heterogeneous Media

    Energy Technology Data Exchange (ETDEWEB)

    Lin, L; Huang, S; Kang, M; Ainsley, C; Simone, C; McDonough, J; Solberg, T [University of Pennsylvania, Philadelphia, PA (United States)

    2016-06-15

    Purpose: Eclipse AcurosPT 13.7, the first commercial Monte Carlo pencil beam scanning (PBS) proton therapy treatment planning system (TPS), was experimentally validated for an IBA dedicated PBS nozzle in the CIRS 002LFC thoracic phantom. Methods: A two-stage procedure involving the use of TOPAS 1.3 simulations was performed. First, Geant4-based TOPAS simulations in this phantom were experimentally validated for single and multi-spot profiles at several depths for 100, 115, 150, 180, 210 and 225 MeV proton beams, using the combination of a Lynx scintillation detector and a MatriXXPT ionization chamber array. Second, benchmark calculations were performed with both AcurosPT and TOPAS in a phantom identical to the CIRS 002LFC, with the exception that the CIRS bone/mediastinum/lung tissues were replaced with similar tissues that are predefined in AcurosPT (a limitation of this system which necessitates the two stage procedure). Results: Spot sigmas measured in tissue were in agreement within 0.2 mm of TOPAS simulation for all six energies, while AcurosPT was consistently found to have larger spot sigma (<0.7 mm) than TOPAS. Using absolute dose calibration by MatriXXPT, the agreements between profiles measurements and TOPAS simulation, and calculation benchmarks are over 97% except near the end of range using 2 mm/2% gamma criteria. Overdosing and underdosing were observed at the low and high density side of tissue interfaces, respectively, and these increased with increasing depth and decreasing energy. Near the mediastinum/lung interface, the magnitude can exceed 5 mm/10%. Furthermore, we observed >5% quenching effect in the conversion of Lynx measurements to dose. Conclusion: We recommend the use of an ionization chamber array in combination with the scintillation detector to measure absolute dose and relative PBS spot characteristics. We also recommend the use of an independent Monte Carlo calculation benchmark for the commissioning of a commercial TPS. Partially

  10. Nanostructures for all-polymer microfluidic systems

    DEFF Research Database (Denmark)

    Matschuk, Maria; Bruus, Henrik; Larsen, Niels Bent

    2010-01-01

    antistiction coating was found to improve the replication fidelity (shape and depth) of nanoscale features substantially. Arrays of holes of 50 nm diameter/35 nm depth and 100 nm/100 nm diameter, respectively, were mass-produced in cyclic olefin copolymer (Topas 5013) by injection molding. Polymer microfluidic...... channel chip parts resulted from a separate injection molding process. The microfluidic chip part and the nanostructured chip part were successfully bonded to form a sealed microfluidic system using air plasma assisted thermal bonding....

  11. Sensitive Mid-Infrared Detection in Wide-Bandgap Semiconductors Using Extreme Non-Degenerate Two-Photon Absorption

    Science.gov (United States)

    2011-08-07

    is 20 pJ, whereas for MCT the minimum detectable energy is 200 pJ (for details of detector par- ameters, such as pre- amplifier and transimpedance ...contributions (Fig. 1). This is analogous to having a ‘noisy’ detector electronic amplifier ; however, this ‘noise’ is measurable and could in principle be...portion of the 780 nm light was used to pump an optical parametric generator/ amplifier (OPG/A, TOPAS-800, Light Conversion) to generate MIR pulses

  12. High prevalence of psoriatic arthritis in patients with severe psoriasis with suboptimal performance of screening questionnaires.

    LENUS (Irish Health Repository)

    Haroon, Muhammad

    2013-05-01

    The objectives of this study were to: (1) assess the prevalence of psoriatic arthritis (PsA) among Psoriasis (Ps) patients attending dermatology clinics; (2) identify clinical predictors of the development of PsA; and (3) compare the performance of three PsA screening questionnaires: Psoriatic Arthritis Screening and Evaluation (PASE), Psoriasis Epidemiology Screening Tool (PEST) and Toronto Psoriatic Arthritis Screening (ToPAS).

  13. Nanoparticle-based capillary electroseparation of proteins in polymer capillaries under physiological conditions

    DEFF Research Database (Denmark)

    Nilsson, C.; Harwigsson, I.; Becker, K.

    2010-01-01

    Totally porous lipid-based liquid crystalline nanoparticles were used as pseudostationary phase for capillary electroseparation with LIF detection of proteins at physiological conditions using unmodified cyclic olefin copolymer capillaries (Topas (R), 6.7 cm effective length). In the absence of n...... at protein friendly conditions. The developed capillary-based method facilitates future electrochromatography of proteins on polymer-based microchips under physiological conditions and enables the initial optimization of separation conditions in parallel to the chip development....

  14. Flexible high-κ/Metal gate metal/insulator/metal capacitors on silicon (100) fabric

    KAUST Repository

    Rojas, Jhonathan Prieto

    2013-10-01

    Implementation of memory on bendable substrates is an important step toward a complete and fully developed notion of mechanically flexible computational systems. In this paper, we have demonstrated a simple fabrication flow to build metal-insulator-metal capacitors, key components of dynamic random access memory, on a mechanically flexible silicon (100) fabric. We rely on standard microfabrication processes to release a thin sheet of bendable silicon (area: 18 {\\ m cm}2 and thickness: 25 \\\\mu{\\ m m}) in an inexpensive and reliable way. On such platform, we fabricated and characterized the devices showing mechanical robustness (minimum bending radius of 10 mm at an applied strain of 83.33% and nominal strain of 0.125%) and consistent electrical behavior regardless of the applied mechanical stress. Furthermore, and for the first time, we performed a reliability study suggesting no significant difference in performance and showing an improvement in lifetime projections. © 1963-2012 IEEE.

  15. High-performance flexible microwave passives on plastic

    Science.gov (United States)

    Ma, Zhenqiang; Seo, Jung-Hun; Cho, Sang June; Zhou, Weidong

    2014-06-01

    We report the demonstration of bendable inductors, capacitors and switches fabricated on a polyethylene terephthalate (PET) substrate that can operate at high microwave frequencies. By employing bendable dielectric and single crystalline semiconductor materials, spiral inductors and metal-insulator-metal (MIM) capacitors with high quality factors and high resonance frequencies and single-pole, single-throw (SPST) switches were archived. The effects of mechanical bending on the performance of inductors, capacitors and switches were also measured and analyzed. We further investigated the highest possible resonance frequencies and quality factors of inductors and capacitors and, high frequency responses and insertion loss. These demonstrations will lead to flexible radio-frequency and microwave systems in the future.

  16. Painting with Clay: A Study of the Masters

    Science.gov (United States)

    Skophammer, Karen

    2010-01-01

    Plasticine clay is a bendable material that is easily manipulated by students of all ages. It is a great material to work with because it does not dry out from day to day, so high-school students can work on an extended project. They do not have to worry about the clay drying and cracking, and the entire work of art does not have to be completed…

  17. A Flexible, Stretchable and Shape-Adaptive Approach for Versatile Energy Conversion and Self-Powered Biomedical Monitoring

    KAUST Repository

    Yang, Po Kang

    2015-05-15

    A flexible triboelectric nanogenerator (FTENG) based on wavy-structured Kapton film and a serpentine electrode on stretchable substrates is presented. The as-fabricated FTENG is capable of harvesting ambient mechanical energy via both compressive and stretching modes. Moreover, the FTENG can be a bendable power source to work on curved surfaces; it can also be adaptively attached onto human skin for monitoring gentle body motions. © 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    International Nuclear Information System (INIS)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun

    2010-01-01

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of ∼ 2 cm 2 V -1 s -1 , On/Off ratio of ∼ 10 2 , transmittance of ∼ 81% and excellent mechanical bendability.

  19. Flexible, transparent single-walled carbon nanotube transistors with graphene electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Sukjae; Jang, Houk; Lee, Youngbin; Suh, Daewoo; Baik, Seunghyun; Hong, Byung Hee; Ahn, Jong-Hyun, E-mail: ahnj@skku.edu, E-mail: byunghee@skku.edu [SKKU Advanced Institute of Nanotechnology (SAINT) and Center for Human Interface Nano Technology (HINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2010-10-22

    This paper reports a mechanically flexible, transparent thin film transistor that uses graphene as a conducting electrode and single-walled carbon nanotubes (SWNTs) as a semiconducting channel. These SWNTs and graphene films were printed on flexible plastic substrates using a printing method. The resulting devices exhibited a mobility of {approx} 2 cm{sup 2} V{sup -1} s{sup -1}, On/Off ratio of {approx} 10{sup 2}, transmittance of {approx} 81% and excellent mechanical bendability.

  20. A variable radius mirror for imaging the exit slit of an SGM undulator beamline at the ALS

    International Nuclear Information System (INIS)

    Warwick, T.; Howells, M.

    1994-01-01

    Bendable metal mirrors have been implemented in two SGM undulator beamlines at the ALS. A piezo-electric actuator is employed to deform the mirror to image the SGM exit slit which moves longitudinally in the beamline as the grating rotates. The design and performance of these mirrors is discussed. Computed deformations and slope errors are compared to those found during optical metrology. The soft x-ray spot size produced at the experiment is shown

  1. A variable radius mirror for imaging the exit slit of an SGM undulator beamline at the ALS

    International Nuclear Information System (INIS)

    Warwick, T.; Howells, M.

    1994-07-01

    Bendable metal mirrors have been implemented in two SGM undulator beamlines at the ALS. A piezo-electric actuator is employed to deform the mirror to image the SGM exit slit which moves longitudinally in the beamline as the grating rotates. The design and performance of these mirrors is discussed. Computed deformations and slope errors are compared to those found during optical metrology. The soft x-ray spot size produced at the experiment is shown

  2. Development and applications of transparent conductive nanocellulose paper

    OpenAIRE

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanoc...

  3. 2.5D direct laser engraving of silicone microfluidic channels for stretchable electronics

    OpenAIRE

    Nagels, Steven; Deferme, Wim

    2017-01-01

    Stretchable and bendable sensors have become increasingly relevant as the technology behind them matures rapidly from lab based to industrially applicable production principles. In a broader sense, stretchable electronics promises to increase the way we are surrounded by and interact with our devices. Electronic circuits will be deployed in environments where we require them to dynamically flex, bend, stretch, compress, twist and - quite possibly - even fold; where they have to demonstrate a ...

  4. Roles of Type 1A Topoisomerases in Genome Maintenance in Escherichia coli

    Science.gov (United States)

    Usongo, Valentine; Drolet, Marc

    2014-01-01

    In eukaryotes, type 1A topoisomerases (topos) act with RecQ-like helicases to maintain the stability of the genome. Despite having been the first type 1A enzymes to be discovered, much less is known about the involvement of the E. coli topo I (topA) and III (topB) enzymes in genome maintenance. These enzymes are thought to have distinct cellular functions: topo I regulates supercoiling and R-loop formation, and topo III is involved in chromosome segregation. To better characterize their roles in genome maintenance, we have used genetic approaches including suppressor screens, combined with microscopy for the examination of cell morphology and nucleoid shape. We show that topA mutants can suffer from growth-inhibitory and supercoiling-dependent chromosome segregation defects. These problems are corrected by deleting recA or recQ but not by deleting recJ or recO, indicating that the RecF pathway is not involved. Rather, our data suggest that RecQ acts with a type 1A topo on RecA-generated recombination intermediates because: 1-topo III overproduction corrects the defects and 2-recQ deletion and topo IIII overproduction are epistatic to recA deletion. The segregation defects are also linked to over-replication, as they are significantly alleviated by an oriC::aph suppressor mutation which is oriC-competent in topA null but not in isogenic topA+ cells. When both topo I and topo III are missing, excess supercoiling triggers growth inhibition that correlates with the formation of extremely long filaments fully packed with unsegregated and diffuse DNA. These phenotypes are likely related to replication from R-loops as they are corrected by overproducing RNase HI or by genetic suppressors of double topA rnhA mutants affecting constitutive stable DNA replication, dnaT::aph and rne::aph, which initiates from R-loops. Thus, bacterial type 1A topos maintain the stability of the genome (i) by preventing over-replication originating from oriC (topo I alone) and R-loops and (ii

  5. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    International Nuclear Information System (INIS)

    Schuemann, J; Grassberger, C; Paganetti, H; Dowdell, S

    2014-01-01

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  6. TH-A-19A-06: Site-Specific Comparison of Analytical and Monte Carlo Based Dose Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Schuemann, J; Grassberger, C; Paganetti, H [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); Dowdell, S [Illawarra Shoalhaven Local Health District, Wollongong (Australia)

    2014-06-15

    Purpose: To investigate the impact of complex patient geometries on the capability of analytical dose calculation algorithms to accurately predict dose distributions and to verify currently used uncertainty margins in proton therapy. Methods: Dose distributions predicted by an analytical pencilbeam algorithm were compared with Monte Carlo simulations (MCS) using TOPAS. 79 complete patient treatment plans were investigated for 7 disease sites (liver, prostate, breast, medulloblastoma spine and whole brain, lung and head and neck). A total of 508 individual passively scattered treatment fields were analyzed for field specific properties. Comparisons based on target coverage indices (EUD, D95, D90 and D50) were performed. Range differences were estimated for the distal position of the 90% dose level (R90) and the 50% dose level (R50). Two-dimensional distal dose surfaces were calculated and the root mean square differences (RMSD), average range difference (ARD) and average distal dose degradation (ADD), the distance between the distal position of the 80% and 20% dose levels (R80- R20), were analyzed. Results: We found target coverage indices calculated by TOPAS to generally be around 1–2% lower than predicted by the analytical algorithm. Differences in R90 predicted by TOPAS and the planning system can be larger than currently applied range margins in proton therapy for small regions distal to the target volume. We estimate new site-specific range margins (R90) for analytical dose calculations considering total range uncertainties and uncertainties from dose calculation alone based on the RMSD. Our results demonstrate that a reduction of currently used uncertainty margins is feasible for liver, prostate and whole brain fields even without introducing MC dose calculations. Conclusion: Analytical dose calculation algorithms predict dose distributions within clinical limits for more homogeneous patients sites (liver, prostate, whole brain). However, we recommend

  7. Tectonics and Volcanism During the Cretaceous Normal Superchron Seafloor in the Western Pacific Ocean

    Science.gov (United States)

    O'Brien, E.

    2017-12-01

    We have conducted an integration study on the origin and evolution of the tectonics and volcanism of seafloor in the Western Pacific Ocean that took place during the Cretaceous Normal Superchron (CNS) where sparse data has so far precluded detailed investigation. We have compiled the latest satellite-based gravity, gravity gradient, and magnetic grids (EMAG2 v.3) for this region. These crustal-scale high-resolution grids suggest that the CNS seafloor contains fossilized lithospheric morphology possibly attributed to the interaction between Cretaceous supervolcanism activity and Mid-Cretaceous Pacific mid ocean ridge systems that have continuously expanded the Pacific Plate. We recognize previously identified fossilized microplates west of the Magellan Rise, short-lived abandoned propagating rifts and fracture zones, all of which show significant rotation of seafloor fabric. In addition to these large scale observations, we have also compiled marine geological information from previously drilled cores and new data from a Kongsberg Topas PS18 Parametric Sub-Bottom Profiler collected on a transect from Honolulu, Hawaii to Apra, Guam acquired during research cruise SKQ2014S2. In particular, the narrow beam and high bandwidth signal of the Topas PS18 sub-bottom profiler provides sonar data of the seabed with a resolution and depth penetration that is unprecedented compared with previously available surveys in the region. A preliminary assessment of this high resolution Topas data allows us to better characterize sub-seafloor sediment properties and identify features, including the Upper Transparent Layer with identifiable pelagic clay and porcelanite-chert reflectors as well as tectonic features such as the westernmost tip of the Waghenaer Fracture Zone.

  8. Photon-induced formation of CdS nanocrystals in selected areas of polymer matrices

    International Nuclear Information System (INIS)

    Athanassiou, Athanassia; Cingolani, Roberto; Tsiranidou, Elsa; Fotakis, Costas; Laera, Anna Maria; Piscopiello, Emanuela; Tapfer, Leander

    2007-01-01

    We demonstrate light-induced formation of semiconductor quantum dots in TOPAS registered polymer matrix with very high control of their size and their spatial localization. Irradiation with UV laser pulses of polymer films embedding Cd thiolate precursors results in the formation of cadmium sulfide nanocrystals well confined in the irradiation area, through a macroscopically nondestructive procedure for the host matrix. With increasing number of laser pulses, we accomplish the formation of nanoparticles with gradually increasing dimensions, resulting in the dynamic change of the spectra emitted by the formed nanocomposite areas. The findings are supported by x-ray diffraction and transmission electron microscopy measurements

  9. Marxist-Leninist Doctrine and Humanitarianism - Communist China

    Science.gov (United States)

    1960-11-20

    wrote in his " Diary " - III56, f!convyciot.Iraesc iz tho"ý grc.-. ten’t ev’l, a.:’ it ca)n be mAid to be theý gRe-test evil a&ttainOaý’lc; by man." Latl...34dialecticralliy enters each, othezr." I n a word, acc,,ordin--g toPa Jen., on’ly by revealina’ the so-c.al’led "comrn-on basýý-Ic nn~tnre of mankind" aya

  10. The crystal structure of barikaite

    DEFF Research Database (Denmark)

    Makovicky, Emil; Topa, Dan

    2013-01-01

    Electron microprobe analysis of barikaite (Topa et al., 2013) indicates the chemical formula Ag2.90Tl0.04Pb9.31As11.26Sb8.12S40.37. Barikaite is monoclinic, with a 8.533(1) Å, b 8.075(1) Å, c 24.828(2) Å, and β 99.077(1)°; unit-cell volume 1689.2 Å3 and the space-group setting is P21/n. This comp......-occupied and Sb-occupied sites are distributed in a chess-board-like scheme...

  11. ¿Más allá de la democracia representativa procedimental?

    OpenAIRE

    Torre Espinosa, Carlos de la

    2010-01-01

    En los procesos políticos de Venezuela, Ecuador y Bolivia se evidencian tensiones entre los procedimientos de la democracia representativa y las instituciones de la democracia participativa. Si se evalúa la democracia desde los parámetros del liberalismo se estaría asistiendo a su deterioro y a la emergencia de tendencias autoritarias. En los tres países la participación popular se topa con los límites establecidos por liderazgos carismáticos.

  12. SU-E-T-673: Recent Developments and Comprehensive Validations of a GPU-Based Proton Monte Carlo Simulation Package, GPMC

    International Nuclear Information System (INIS)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X; Giantsoudi, D; Schuemann, J; Paganetti, H

    2015-01-01

    Purpose: A GPU-based Monte Carlo (MC) simulation package gPMC has been previously developed and high computational efficiency was achieved. This abstract reports our recent improvements on this package in terms of accuracy, functionality, and code portability. Methods: In the latest version of gPMC, nuclear interaction cross section database was updated to include data from TOPAS/Geant4. Inelastic interaction model, particularly the proton scattering angle distribution, was updated to improve overall simulation accuracy. Calculation of dose averaged LET (LETd) was implemented. gPMC was ported onto an OpenCL environment to enable portability across different computing devices (GPUs from different vendors and CPUs). We also performed comprehensive tests of the code accuracy. Dose from electro-magnetic (EM) interaction channel, primary and secondary proton doses and fluences were scored and compared with those computed by TOPAS. Results: In a homogeneous water phantom with 100 and 200 MeV beams, mean dose differences in EM channel computed by gPMC and by TOPAS were 0.28% and 0.65% of the corresponding maximum dose, respectively. With the Geant4 nuclear interaction cross section data, mean difference of primary proton dose was 0.84% for the 200 MeV case and 0.78% for the 100 MeV case. After updating inelastic interaction model, maximum difference of secondary proton fluence and dose were 0.08% and 0.5% for the 200 MeV beam, and 0.04% and 0.2% for the 100 MeV beam. In a test case with a 150MeV proton beam, the mean difference between LETd computed by gPMC and TOPAS was 0.96% within the proton range. With the OpenCL implementation, gPMC is executable on AMD and Nvidia GPUs, as well as on Intel CPU in single or multiple threads. Results on different platforms agreed within statistical uncertainty. Conclusion: Several improvements have been implemented in the latest version of gPMC, which enhanced its accuracy, functionality, and code portability

  13. Comunicación corporal en los medios

    Directory of Open Access Journals (Sweden)

    Angel Rodríguez Kauth

    2015-01-01

    Full Text Available Sobre la comunicación corporal, pocas veces se ha reflexionado en los medios de comunicación. Ahora los medios solo facilitan que los cambios que antes demoraban décadas o siglos hoy se produzcan en meses o semanas. El artículo topa temas como: la manipulación del cuerpo; la intermediación de los medios; la oferta de modelos de vida; las contradicciones de la publicidad; la competencia con uno mismo; la bioética contemporánea; el cuerpo espacio para el castigo.

  14. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L.) cultivars

    OpenAIRE

    Amin Mohamed, Amal; El-Din Saad El-Beltagi, Hossam

    2010-01-01

    Rapeseed (Brassica napus L.) is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1) ranged from 56.31% to 58.67%, linoleic acid (C1...

  15. SU-E-T-673: Recent Developments and Comprehensive Validations of a GPU-Based Proton Monte Carlo Simulation Package, GPMC

    Energy Technology Data Exchange (ETDEWEB)

    Qin, N; Tian, Z; Pompos, A; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Giantsoudi, D; Schuemann, J; Paganetti, H [Massachusetts General Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: A GPU-based Monte Carlo (MC) simulation package gPMC has been previously developed and high computational efficiency was achieved. This abstract reports our recent improvements on this package in terms of accuracy, functionality, and code portability. Methods: In the latest version of gPMC, nuclear interaction cross section database was updated to include data from TOPAS/Geant4. Inelastic interaction model, particularly the proton scattering angle distribution, was updated to improve overall simulation accuracy. Calculation of dose averaged LET (LETd) was implemented. gPMC was ported onto an OpenCL environment to enable portability across different computing devices (GPUs from different vendors and CPUs). We also performed comprehensive tests of the code accuracy. Dose from electro-magnetic (EM) interaction channel, primary and secondary proton doses and fluences were scored and compared with those computed by TOPAS. Results: In a homogeneous water phantom with 100 and 200 MeV beams, mean dose differences in EM channel computed by gPMC and by TOPAS were 0.28% and 0.65% of the corresponding maximum dose, respectively. With the Geant4 nuclear interaction cross section data, mean difference of primary proton dose was 0.84% for the 200 MeV case and 0.78% for the 100 MeV case. After updating inelastic interaction model, maximum difference of secondary proton fluence and dose were 0.08% and 0.5% for the 200 MeV beam, and 0.04% and 0.2% for the 100 MeV beam. In a test case with a 150MeV proton beam, the mean difference between LETd computed by gPMC and TOPAS was 0.96% within the proton range. With the OpenCL implementation, gPMC is executable on AMD and Nvidia GPUs, as well as on Intel CPU in single or multiple threads. Results on different platforms agreed within statistical uncertainty. Conclusion: Several improvements have been implemented in the latest version of gPMC, which enhanced its accuracy, functionality, and code portability.

  16. TH-CD-201-07: Experimentally Investigating Proton Energy Deposition On the Microscopic Scale Using Fluorescence Nuclear Track Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, T [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States); University College London, London (United Kingdom); McFadden, C; Sawakuchi, G [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); Trenholm, D [Massachusetts General Hospital, Boston, MA (United States); Verburg, J; Paganetti, H; Schuemann, J [Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: In order to further understand the interplay between proton physics and radiobiology it is necessary to consider proton energy deposition on the microscopic scale. In this work we used Fluorescent Nuclear Track Detectors (FNTDs) to experimentally investigate proton energy deposition, track-by-track. Methods: We irradiated 8×4×0.5mm{sup 3} FNTD chips (Landauer Inc) at seven water depths along a pristine proton Bragg peak with range=12cm. After irradiation, the FNTDs were scanned using a confocal microscope (FV1200, Olympus) with a high-power red laser and an oil-immersion objective lens (UPLSAPO60XO, NA=1.35). 10 slice image stacks were acquired with a slice-thickness of 2µm at multiple positions across each FNTD. Image-based analyses of track radius and track “mass” (integrated signal intensity) were performed using trackpy. For comparison, Monte Carlo simulated data were obtained using TOPAS and TOPAS-nBio. Results: Excellent correlation was observed between median track mass and TOPAS dose-averaged linear energy transfer. The resolution of the imaging system was determined insufficient to detect a relationship between track radius and exposure depth. Histograms of track mass (i) displayed strong repeatability across positions within an FNTD and (ii) varied in peak position and shape as a function of depth. TOPAS-nBio simulations implemented on the nanometer scale using physics lists from GEANT4-DNA yielded energy deposition distributions for individual protons and electrons scored within a virtual FNTD. Good agreement was found between these simulated datasets and the FNTD track mass distributions. Conclusion: Robust experimental measurements of the integral energy deposited by individual proton tracks can be performed using FNTDs. Monte Carlo simulations offer an exceedingly powerful approach to the quantification of proton energy deposition on the microscopic scale, but whilst they have been well validated at the macroscopic level, their

  17. Bragg Grating Based Sensors in Microstructured Polymer Optical Fibers: Accelerometers and Microphones

    DEFF Research Database (Denmark)

    Stefani, Alessio

    With the growing interest towards fiber Bragg grating sensors and the growing ability in manufacturing polymer optical fibers, the development of polymer fiber Bragg sensors has catched the attention of industries with the goal of developing high performance sensors. This thesis presents...... and in microstructured fibers made of PMMA and TOPAS is reported. The gratings have been written at both 1550 nm, to take advantage of components made for telecommunications, and 850 nm, to exploit the lower loss of polymers and the fast acquisition electronics at this wavelength. A technique for writing multiplexed...

  18. Precision manufacturing of polymer micro-nano fluidic systems

    DEFF Research Database (Denmark)

    Garnæs, Jørgen; Calaon, Matteo; Tosello, Guido

    2015-01-01

    Lab-on-a-Chip (LoC) technologies require the possibility of fabricating devices which include micro down to sub-micrometre features with high production rate and low cost. In the present study precision injection moulding is performed using a COC Topas 5013 L10 polymer to produce LoC devices...... in the sample. Design of experiment (DOE) was adopted to characterize the replication fidelity of produced polymer features. Results have shown the possibility of performing quality control of micro- and sub-μm features, taking into account the polymer shrinkage, depending on process conditions at both micro...

  19. Computational applications of DNA physical scales

    DEFF Research Database (Denmark)

    Baldi, Pierre; Chauvin, Yves; Brunak, Søren

    1998-01-01

    that these scales provide an alternative or complementary compact representation of DNA sequences. As an example we construct a strand invariant representation of DNA sequences. The scales can also be used to analyze and discover new DNA structural patterns, especially in combinations with hidden Markov models......The authors study from a computational standpoint several different physical scales associated with structural features of DNA sequences, including dinucleotide scales such as base stacking energy and propellor twist, and trinucleotide scales such as bendability and nucleosome positioning. We show...

  20. Computational applications of DNA structural scales

    DEFF Research Database (Denmark)

    Baldi, P.; Chauvin, Y.; Brunak, Søren

    1998-01-01

    that these scales provide an alternative or complementary compact representation of DNA sequences. As an example, we construct a strand-invariant representation of DNA sequences. The scales can also be used to analyze and discover new DNA structural patterns, especially in combination with hidden Markov models......Studies several different physical scales associated with the structural features of DNA sequences from a computational standpoint, including dinucleotide scales, such as base stacking energy and propeller twist, and trinucleotide scales, such as bendability and nucleosome positioning. We show...

  1. The Steerable Microcatheter: A New Device for Selective Catheterisation

    Energy Technology Data Exchange (ETDEWEB)

    Soyama, Takeshi [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology (Japan); Yoshida, Daisuke [Sapporo Yamanoue Hospital, Department of Radiology (Japan); Sakuhara, Yusuke, E-mail: yusaku@med.hokudai.ac.jp; Morita, Ryo; Abo, Daisuke; Kudo, Kohsuke [Hokkaido University Hospital, Department of Diagnostic and Interventional Radiology (Japan)

    2017-06-15

    The steerable microcatheter (SwiftNINJA, Sumitomo Bakelite, Tokyo, Japan), which has a remote-controlled flexible tip manipulated using a dial in the handgrip, was recently developed and delivered to the market. This device enables the user to change the angle of the microcatheter tip manually, and potentially makes selective catheterisation easier. We evaluated its unique characteristics and utility in selective catheterisation and coil embolization. This article describes: (1) the advantages of this device in catheterisations involving acute angle branches, and (2) a new technique of compact coil packing with the use of intentional folding by the bendable tip of the catheter.

  2. The Steerable Microcatheter: A New Device for Selective Catheterisation

    International Nuclear Information System (INIS)

    Soyama, Takeshi; Yoshida, Daisuke; Sakuhara, Yusuke; Morita, Ryo; Abo, Daisuke; Kudo, Kohsuke

    2017-01-01

    The steerable microcatheter (SwiftNINJA, Sumitomo Bakelite, Tokyo, Japan), which has a remote-controlled flexible tip manipulated using a dial in the handgrip, was recently developed and delivered to the market. This device enables the user to change the angle of the microcatheter tip manually, and potentially makes selective catheterisation easier. We evaluated its unique characteristics and utility in selective catheterisation and coil embolization. This article describes: (1) the advantages of this device in catheterisations involving acute angle branches, and (2) a new technique of compact coil packing with the use of intentional folding by the bendable tip of the catheter.

  3. The Flexible Fabric of Space

    Science.gov (United States)

    VanNorsdall, Erin Leigh

    2015-08-01

    This poster will clearly illustrate my understanding of how the fabric of space behaves. The poster will be on a large trampoline with a heavy bowling ball in the center. The observer will be able to clearly understand the much more complicated property of how an object in space, such as a star, literally bends the fabric of the space around as a result of its density. This will also help to explain, in very simple terms, how space-time is bendable, and therefore, travel in space can be as well.

  4. Refrigerant lines in split-type air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Rettenberger, P

    1979-01-01

    Condensator and evaporating units of split-type air conditioners are evaluated and filled with the refrigerant by the producer. The line systems are hermetically closed and prevent the loss of refrigerant and the penetration of moisture or dirt. The best installation method is the 'bendable lines'. They combine flexibility and easy installation with the advantages of the copper pipe. Several ducting systems and their connecting elements like couplings and valves are described, their installation is explained. These flexible systems are especially suitable for small air-condition plants of the split-type the evaporating unit of which is portable and can put where it is desired.

  5. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab; Oh, Seung Kyu; Park, Hyun Jung; Lee, Keon Hwa; Asadirad, Mojtaba; Kim, Seung Hwan; Kim, Jeomoh; Pouladi, Sara; Lee, Sung-Nam; Li, Xiaohang; Kwak, Joon-Seop; Ryou, Jae-Hyun

    2018-01-01

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  6. Flexible deep-ultraviolet light-emitting diodes for significant improvement of quantum efficiencies by external bending

    KAUST Repository

    Shervin, Shahab

    2018-01-26

    Deep ultraviolet (DUV) light at the wavelength range of 250‒280 nm (UVC spectrum) is essential for numerous applications such as sterilization, purification, sensing, and communication. III-nitride-based DUV light-emitting diodes (DUV LEDs), like other solid-state lighting sources, offer a great potential to replace the conventional gas-discharged lamps with short lifetimes and toxic-element-bearing nature. However, unlike visible LEDs, the DUV LEDs are still suffering from low quantum efficiencies (QEs) and low optical output powers. In this work, reported is a new route to improve QEs of AlGaN-based DUV LEDs using mechanical flexibility of recently developed bendable thin-film structures. Numerical studies show that electronic band structures of AlGaN heterostructures and resulting optical and electrical characteristics of the devices can be significantly modified by external bending through active control of piezoelectric polarization. Internal quantum efficiency (IQE) is enhanced higher than three times, when the DUV LEDs are moderately bent to induce in-plane compressive strain in the heterostructure. Furthermore, efficiency droop at high injection currents is mitigated and turn-on voltage of diodes decreases with the same bending condition. The concept of bendable DUV LEDs with a controlled external strain can provide a new path for high-output-power and high-efficiency devices.

  7. Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures

    Science.gov (United States)

    Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli

    2018-03-01

    In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

  8. Beamline 9.3.2 - a high-resolution, bend-magnet beamline with circular polarization capability

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Hussain, Z.; Howells, M.R. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    Beamline 9.3.2 is a high resolution, SGM beamline on an ALS bending magnet with access to photon energies from 30-1500 eV. Features include circular polarization capability, a rotating chamber platform that allows switching between experiments without breaking vacuum, an active feedback system that keeps the beam centered on the entrance slit of the monochromator, and a bendable refocusing mirror. The beamline optics consist of horizontally and vertically focussing mirrors, a Spherical Grating Monochromator (SGM) with movable entrance and exit slits, and a bendable refocussing mirror. In addition, a movable aperature has been installed just upstream of the vertically focussing mirror which can select the x-rays above or below the plane of the synchrotron storage ring, allowing the user to select circularly or linearly polarized light. Circularly polarized x-rays are used to study the magnetic properties of materials. Beamline 9.3.2 can supply left and right circularly polarized x-rays by a computer controlled aperture which may be placed above or below the plane of the synchrotron storage ring. The degree of linear and circular polarization has been measured and calibrated.

  9. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    Science.gov (United States)

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  10. The instabilities of a polymer sheet floating at a fluid interface

    Science.gov (United States)

    Menon, Narayanan

    2014-03-01

    The beautiful patterns seen on thin floating polymer sheets have led to a new and broadened understanding of the instabilities of an elastic sheet under tension. I will briefly review this progress, which includes identification of a dimensionless number - the bendability - that demarcates regimes in which the wrinkling instability of the sheet may either be successfully described by conventional post-buckling theory or requires an entirely different scheme of calculation in which the bending energy is negligible. This new understanding throws into relief new puzzles associated with the dynamics of the pattern growth, and with the transition from the wrinkled state to a crumpled state. I will also describe the new opportunities opened up by phenomena at high bendability. These include measurements of surface energies and contact angles on a deformable substrate, a new method for studying the modulus and extensional rheology of a thin polymer film, and techniques for modification of surface properties of a fluid interface. I thank NSF DMR 12-0778 and the NSFon Polymers at UMass Amherst DMR 08-20506 My thanks to J. Huang, H. King, K.B. Toga, T.P. Russell for collaborations on the experiments and to B. Davidovitch, E. Cerda and R. Schroll for theoretical collaborations.

  11. Experimental Demonstration of 7 Tb/s Switching Using Novel Silicon Photonic Integrated Circuit

    DEFF Research Database (Denmark)

    Ding, Yunhong; Kamchevska, Valerija; Dalgaard, Kjeld

    2016-01-01

    We demonstrate BER performance <10^-9 for a 1 Tb/s/core transmission over 7-core fiber and SDM switching using a novel silicon photonic integrated circuit composed of a 7x7 fiber switch and low loss SDM couplers.......We demonstrate BER performance integrated circuit composed of a 7x7 fiber switch and low loss SDM couplers....

  12. Comparative transcriptomic analysis of virulence factors in Leptosphaeria maculans during compatible and incompatible interactions with canola

    Directory of Open Access Journals (Sweden)

    Humira Sonah

    2016-12-01

    Full Text Available Leptosphaeria maculans is a hemibiotrophic fungus that causes blackleg of canola (Brassica napus, one of the most devastating diseases of this crop. In the present study, transcriptome profiling of L. maculans was performed in an effort to understand and define the pathogenicity genes that govern both the biotrophic and the necrotrophic phase of the fungus, as well as those that separate a compatible from an incompatible interaction. For this purpose, comparative RNA-seq analyses were performed on L. maculans isolate D5 at four different time points following inoculation on susceptible cultivar Topas-wild or resistant near isogenic line Topas-Rlm2. Analysis of 1.6 billion Illumina reads readily identified differentially expressed genes that were over represented by candidate secretory effector proteins, CAZymes, and other pathogenicity genes. Comparisons between the compatible and incompatible interactions led to the identification of 28 effector proteins whose chronology and level of expression suggested a role in the establishment and maintenance of biotrophy with the plant. These included all known Avr genes of isolate D5 along with eight newly characterized effectors. In addition, another 15 effector proteins were found to be exclusively expressed during the necrotrophic phase of the fungus, which supports the concept that L. maculans has a separate and distinct arsenal contributing to each phase. As for CAZymes, they were often highly expressed at 3 dpi but with no difference in expression between the compatible and incompatible interactions, indicating that other factors were necessary to determine the outcome of the interaction. However, their significantly higher expression at 11 dpi in the compatible interaction confirmed that they contributed to the necrotrophic phase of the fungus. A notable exception was LysM genes whose high expression was singularly observed on the susceptible host at 7 dpi. In the case of TFs, their higher

  13. Síntesis hidrotérmica del Estanato de Cinc (Zn2SnO4)

    OpenAIRE

    Solís, José; Naupa, Alexander

    2011-01-01

    Se sintetizó el estanato de cinc, Zn2SnO4 (ZTO), por el método hidrotérmico empleando una temperatura de 200 °C durante 16 h. El material obtenido fue caracterizado por difracción de rayos X (DRX) y microscopia electrónica de transmisión (MET). El tamaño de grano calculado empleando el software Topas Academic fue de 30 nm. La actividad fotocatalítica del ZTO fue evaluada estudiando la degradación del colorante anaranjado de metilo en solución acuosa bajo iluminación de luz ultravioleta. Los r...

  14. Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors

    DEFF Research Database (Denmark)

    Woyessa, Getinet; Fasano, Andrea; Stefani, Alessio

    2016-01-01

    We have fabricated the first single-mode step-index and humidity insensitive polymer optical fiber operating in the 850 nm wavelength ranges. The step-index preform is fabricated using injection molding, which is an efficient method for cost effective, flexible and fast preparation of the fiber...... preform. The fabricated single-mode step-index (SI) polymer optical fiber (POF) has a 4.8µm core made from TOPAS grade 5013S-04 with a glass transition temperature of 134°C and a 150 µm cladding made from ZEONEX grade 480R with a glass transition temperature of 138°C. The key advantages of the proposed...... SIPOF are low water absorption, high operating temperature and chemical inertness to acids and bases and many polar solvents as compared to the conventional poly-methyl-methacrylate (PMMA) and polystyrene based POFs. In addition, the fiber Bragg grating writing time is short compared to microstructured...

  15. Quantitative Evaluation of Range Degradation According to the Gradient of the Compensator in Passive Scattering Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Wook Geun; Min, Chul Hee [Radiation Convergence Engineering, Yonsei University, Seoul (Korea, Republic of); Kim, Chan Kyu; Kim, Hak Soo; Jeong, Jong Hwi; Lee, Se Byeong [Proton Therapy Center, National Center Center, Seoul (Korea, Republic of)

    2017-04-15

    The Bragg peak enables proton therapy to deliver a high conformal target dose without exit dose. The passive scattering proton therapy employees patient-specific aperture and range compensator to shape the lateral and distal beam, and to deliver conformal dose to the target volume. The inaccurate dose calculation could cause underdose in the target volume and overdose in the normal tissues. The purpose of this study is to quantitatively evaluate the range degradation due to the slope of the range compensator using TOPAS Monte Carlo (MC) tool. The current study quantitatively evaluates the scattering effect due to the compensator slope with MC method. Our results show that not only patient geometry but also range compensator significantly contributes to the dose degradation. The current study quantitatively evaluates the scattering effect due to the compensator slope with MC method. Our results show that not only patient geometry but also range compensator significantly contributes to the dose degradation.

  16. Televisión: Muerte y resurrección de la televisión venezolana

    Directory of Open Access Journals (Sweden)

    Jenny Bustamante Newball

    2015-01-01

    Full Text Available El desarrollo acelerado de la autopista de la información y la tecnología digital se suman a la polémica para anunciar la muerte de la televisión analógica venezolana. "Vamos hacia una e-volución que incluye la transformación del concepto de televisión y de los estilos de los programas, el paso de una caja tonta a un interfaz inteligente, la reivindicación de los contenidos, la pacificación espontánea entre la televisión y la educación se está perfilando en el sentido de una "conciliación necesaria". Topa también el tema de las franquicias.

  17. SU-D-304-04: Pre-Clinical Feasibility Study for Intensity Modulated Grid Proton Therapy (IMgPT) Using a Newly Developed Delivery System

    International Nuclear Information System (INIS)

    Tsiamas, P; Moskvin, V; Shin, J; Axente, M; Pirlepesov, F; Krasin, M; Merchant, T; Farr, J

    2015-01-01

    Purpose: The purpose of the current study was to characterize and evaluate intensity-modulated proton grid therapy (IMgPT) using a clinical proton beam. Methods: A TOPAS MC model of a new developmental mode (pre-clinical) of the Hitachi proton therapy system (PROBEAT) was used for simulation and characterization of proton grid therapy. TOPAS simulations of different energy ranges, depths and spot separation distances were performed. LET spectra for various energies and depths were produced with FLUKA MC code for evaluation potential interplay between planning parameters and their effect on the characterization of areas (valley) between spots. IMgPT planning aspects (spot spacing, skin dose, peak-to-valley ratios, beam selection, etc.) were evaluated for different phantom and patient cases. Raysearch software (v4.51) was used to perform the evaluation. Results: Calculated beam peak-to-valley ratios scenarios showed strong energy and depth dependence with ratios to be larger for higher energies and shallower depths. Peak-to-valley ratios for R90 range and for spot spacing of 1cm varied from 30% (E = 221.3 MeV, depth 30.6 cm) to 80% (E = 70.3 MeV, depth 4 cm). LET spectra calculations showed spectral hardening with depth, which might potential increase, spot separation distance and improve peak-to-valley ratios. IMgPT optimization, using constant spot spacing, showed skin dose reduction between peak regions of dose due to the irradiation of less skin. Single beam for bulky shallower tumors might be a potential candidate for proton grid therapy. Conclusions: Proton grid therapy using a clinical beam is a promising technique that reduces skin dose between peak regions of dose and may be suitable for the treatment of shallow tumors. IMgPT may be considered for use when bystander effects in off peak regions would be appropriate

  18. SU-D-304-04: Pre-Clinical Feasibility Study for Intensity Modulated Grid Proton Therapy (IMgPT) Using a Newly Developed Delivery System

    Energy Technology Data Exchange (ETDEWEB)

    Tsiamas, P; Moskvin, V; Shin, J; Axente, M; Pirlepesov, F; Krasin, M; Merchant, T; Farr, J [St. Jude Children’s Research Hospital, Memphis, TN (United States)

    2015-06-15

    Purpose: The purpose of the current study was to characterize and evaluate intensity-modulated proton grid therapy (IMgPT) using a clinical proton beam. Methods: A TOPAS MC model of a new developmental mode (pre-clinical) of the Hitachi proton therapy system (PROBEAT) was used for simulation and characterization of proton grid therapy. TOPAS simulations of different energy ranges, depths and spot separation distances were performed. LET spectra for various energies and depths were produced with FLUKA MC code for evaluation potential interplay between planning parameters and their effect on the characterization of areas (valley) between spots. IMgPT planning aspects (spot spacing, skin dose, peak-to-valley ratios, beam selection, etc.) were evaluated for different phantom and patient cases. Raysearch software (v4.51) was used to perform the evaluation. Results: Calculated beam peak-to-valley ratios scenarios showed strong energy and depth dependence with ratios to be larger for higher energies and shallower depths. Peak-to-valley ratios for R90 range and for spot spacing of 1cm varied from 30% (E = 221.3 MeV, depth 30.6 cm) to 80% (E = 70.3 MeV, depth 4 cm). LET spectra calculations showed spectral hardening with depth, which might potential increase, spot separation distance and improve peak-to-valley ratios. IMgPT optimization, using constant spot spacing, showed skin dose reduction between peak regions of dose due to the irradiation of less skin. Single beam for bulky shallower tumors might be a potential candidate for proton grid therapy. Conclusions: Proton grid therapy using a clinical beam is a promising technique that reduces skin dose between peak regions of dose and may be suitable for the treatment of shallow tumors. IMgPT may be considered for use when bystander effects in off peak regions would be appropriate.

  19. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    International Nuclear Information System (INIS)

    Wan, H; Tseung, Chan; Beltran, C

    2016-01-01

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10"8 proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  20. TU-AB-BRC-09: Fast Dose-Averaged LET and Biological Dose Calculations for Proton Therapy Using Graphics Cards

    Energy Technology Data Exchange (ETDEWEB)

    Wan, H; Tseung, Chan; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2016-06-15

    Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verified by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.

  1. SU-F-T-146: Comparing Monte Carlo Simulations with Commissioning Beam Data for Mevion S250 Proton Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Prusator, M; Jin, H; Ahmad, S; Chen, Y [University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)

    2016-06-15

    Purpose: To evaluate the Monte Carlo simulated beam data with the measured commissioning data for the Mevion S250 proton therapy system. Method: The Mevion S250 proton therapy system utilizes a passive double scattering technique with a unique gantry mounted superconducting accelerator and offers effective proton therapy in a compact design concept. The field shaping system (FSS) includes first scattering foil, range modulator wheel (RMW), second scattering foil and post absorber and offers two field sizes and a total of 24 treatment options from proton range of 5 cm to 32 cm. The treatment nozzle was modeled in detail using TOPAS (TOolkit for PArticle Simulation) Monte Carlo code. The timing feathers of the moving modulator wheels were also implemented to generate the Spread Out Bragg Peak (SOBP). The simulation results including pristine Bragg Peak, SOBP and dose profiles were compared with the data measured during beam commissioning. Results: The comparison between the measured data and the simulation data show excellent agreement. For pristine proton Bragg Peaks, the simulated proton range (depth of distal 90%) values agreed well with the measured range values within 1 mm accuracy. The differences of the distal falloffs (depth from distal 80% to 20%) were also found to be less than 1 mm between the simulations and measurements. For the SOBP, the widths of modulation (depth of proximal 95% to distal 90%) were also found to agree with the measurement within 1 mm. The flatness of the simulated and measured lateral profiles was found to be 0.6 % and 1.1 %, respectively. Conclusion: The agreement between simulations and measurements demonstrate that TOPAS could be used as a viable platform to proton therapy applications. The matched simulation results offer a great tool and open opportunity for variety of applications.

  2. Comparative analysis of the survival and gene expression of pathogenic strains Vibrio harveyi after starvation.

    Science.gov (United States)

    Sun, Jingjing; Gao, Xiaojian; Qun, Jiang; Du, Xuedi; Bi, Keran; Zhang, Xiaojun; Lin, Li

    2016-11-01

    This study aimed to evaluate the survival and gene expression of Vibrio harveyi under starvation conditions. The microcosms V. harveyi were incubated in sterilized seawater for 4 weeks at room temperature. Overall, the cell numeration declined rapidly about 10 3 CFU/ml during starvation, with a tiny rebound at day 21. Scanning electron microscopy revealed that rod-shaped cells became sphere with a rippled cell surface. By polymerase chain reaction (PCR) assay, nine genes, named luxR, toxR, vhhB, flaA, topA, fur, rpoS, mreB and ftsZ, were detected in the non-starved cells. In the starved cells, the expression levels of the detected genes declined substantially ranging from 0.005-fold to 0.028-fold compared to the non-starved cells performed by reverse transcription quantitative real-time PCR with 16S rRNA as the internal control. In the recovering cells, the expression levels of the detected genes, except luxR and mreB, were upregulated dramatically compared to the wild, especially topA (23.720-fold), fur (39.400-fold) and toxR (9.837-fold), validating that the expressions of both the metabolism and virulence genes were important for growth and survival of V. harveyi. The results may shed a new light on understanding of stress adaptation in bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Variations in fatty acid composition, glucosinolate profile and some phyto chemical contents in selected oil seed rape (Brassica napus L.) cultivars

    Energy Technology Data Exchange (ETDEWEB)

    El-Din Saad El-Beltag, H.; Mohamed, A. A.

    2010-07-01

    Rapeseed (Brassica napus L.) is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1) ranged from 56.31% to 58.67%, linoleic acid (C18:2) from 10.52% to 13.74%, {alpha}-linolenic acid (C18:3) from 8.83% to 10.32% and erucic acid (22:1) from 0.15% to 0.91%. The glucosinolate profile of rapeseed was also separated and identified using high-performance liquid chromatography. Small variations in the glucosinolate profile were observed among all tested cultivars; however, progoitrin and gluconapin were the major glucosinolate found. Additionally, silvo cultivar showed the highest total glucosinolate contents (5.97 {mu}mol/g dw). Generally, the contents of aspartic, glutamic, arginine and leucine were high, while the contents of tyrosine and isoleucine were low among all cultivars. For total tocopherols, the results indicated that both serw 6 and pactol cultivars had the highest total tocopherol contents (138.3 and 102.8 mg/100 g oil, respectively). Total phenolic contents varied from 28.0 to 35.4 mg/g dw. The highest total phenolic content was found in topas while the lowest value was detected in serw 6. These parameters; fatty acid contents, glucosinolate profile and amino acids together with total tocopherols and phenolic contents, could be taken into consideration by oilseed rape breeders as selection criteria for developing genotypes with modified seed quality traits in Brassica napus L. (Author)

  4. Accurate quantitative XRD phase analysis of cement clinkers

    International Nuclear Information System (INIS)

    Kern, A.

    2002-01-01

    Full text: Knowledge about the absolute phase abundance in cement clinkers is a requirement for both, research and quality control. Traditionally, quantitative analysis of cement clinkers has been carried out by theoretical normative calculation from chemical analysis using the so-called Bogue method or by optical microscopy. Therefore chemical analysis, mostly performed by X-ray fluorescence (XRF), forms the basis of cement plan control by providing information for proportioning raw materials, adjusting kiln and burning conditions, as well as cement mill feed proportioning. In addition, XRF is of highest importance with respect to the environmentally relevant control of waste recovery raw materials and alternative fuels, as well as filters, plants and sewage. However, the performance of clinkers and cements is governed by the mineralogy and not the elemental composition, and the deficiencies and inherent errors of Bogue as well as microscopic point counting are well known. With XRD and Rietveld analysis a full quantitative analysis of cement clinkers can be performed providing detailed mineralogical information about the product. Until recently several disadvantages prevented the frequent application of the Rietveld method in the cement industry. As the measurement of a full pattern is required, extended measurement times made an integration of this method into existing automation environments difficult. In addition, several drawbacks of existing Rietveld software such as complexity, low performance and severe numerical instability were prohibitive for automated use. The latest developments of on-line instrumentation, as well as dedicated Rietveld software for quantitative phase analysis (TOPAS), now make a decisive breakthrough possible. TOPAS not only allows the analysis of extremely complex phase mixtures in the shortest time possible, but also a fully automated online phase analysis for production control and quality management, free of any human interaction

  5. Routing of individual polymers in designed patterns

    DEFF Research Database (Denmark)

    Knudsen, Jakob Bach; Liu, Lei; Kodal, Anne Louise Bank

    2015-01-01

    Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been...... demonstrated, we currently lack the tools to handle other types of synthetic polymers individually and thus the ability to utilize and study their single-molecule properties. Here we show that synthetic polymer wires containing short oligonucleotides that extend from each repeat can be made to assemble...... into arbitrary routings. The wires, which can be more than 200 nm in length, are soft and bendable, and the DNA strands allow individual polymers to self-assemble into predesigned routings on both two- and three-dimensional DNA origami templates. The polymers are conjugated and potentially conducting, and could...

  6. Printed batteries and conductive patterns in technical textiles

    Science.gov (United States)

    Willert, Andreas; Meuser, Carmen; Baumann, Reinhard R.

    2018-05-01

    Various applications of functional devices need a tailored and reliable supply of electrical energy. Batteries are electrochemical systems that deliver energy for functional devices and applications. Due to the common use, several rigid types of batteries have been standardized. To fully integrate the battery into a product that is bendable, free in geometry and less than 1 mm thick, printing of power adaptable batteries is a challenging area of research. Therefore, the well-known zinc-manganese system, which is very promising due to its environmental sustainability and its simplicity, has been used to manufacture battery solutions on a new kind of substrate: technical textiles. Another challenge is the deposition of conductive patterns. At present, embroidery with metallic yarn is the only possibility to provide conducting paths on technical textiles, a time-consuming and elaborate process. Screen printed conductive pathways will generate a new momentum in the manufacturing of conductivity on textiles.

  7. Development and applications of transparent conductive nanocellulose paper

    Science.gov (United States)

    Li, Shaohui; Lee, Pooi See

    2017-12-01

    Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.

  8. Electroactive polymers for sensing

    Science.gov (United States)

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  9. Study on performance of waterborne anticorrosive coatings on steel rebars

    Science.gov (United States)

    Ramaswamy, S. N.; Varalakshmi, R.; Selvaraj, R.

    2017-12-01

    Durability of reinforced cement concrete structures is mainly affected by corrosion of steel reinforcements. In order to protect the reinforcing bars from corrosion and to enhance the lifetime of reinforced cement concrete structural members, anticorrosive treatment to steel is of prime importance. Conventional coatings are solvent based. In this study, water based Latex was used to formulate anticorrosive coating. Latex is applied to steel specimen substrates such as plates and rods and their mechanical properties such as flexibility, abrasion, bendability, adhesive strength, impact resistance, etc. were studied. It was inferred that coating containing latex, micro silica, zinc phosphate, ferric oxide, aluminum oxide, titanium oxide and silica fume was found to possess more corrosion resistance under marine exposure conditions.

  10. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica

    2017-03-30

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  11. Compact vacuum insulation embodiments

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1992-04-28

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point' or line' contacts with the metal wall sheets. In the case of monolithic spacers that form line' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included. 26 figs.

  12. Compact vacuum insulation

    Science.gov (United States)

    Benson, D.K.; Potter, T.F.

    1993-01-05

    An ultra-thin compact vacuum insulation panel is comprised of two hard, but bendable metal wall sheets closely spaced apart from each other and welded around the edges to enclose a vacuum chamber. Glass or ceramic spacers hold the wall sheets apart. The spacers can be discrete spherical beads or monolithic sheets of glass or ceramic webs with nodules protruding therefrom to form essentially point'' or line'' contacts with the metal wall sheets. In the case of monolithic spacers that form line'' contacts, two such spacers with the line contacts running perpendicular to each other form effectively point'' contacts at the intersections. Corrugations accommodate bending and expansion, tubular insulated pipes and conduits, and preferred applications are also included.

  13. Transfer-less flexible and transparent high-κ/metal gate germanium devices on bulk silicon (100)

    KAUST Repository

    Nassar, Joanna M.; Hussain, Aftab M.; Rojas, Jhonathan Prieto; Hussain, Muhammad Mustafa

    2014-01-01

    Flexible wearable electronics have been of great interest lately for the development of innovative future technology for various interactive applications in the field of consumer electronics and advanced healthcare, offering the promise of low-cost, lightweight, and multifunctionality. In the pursuit of this trend, high mobility channel materials need to be investigated on a flexible platform, for the development of flexible high performance devices. Germanium (Ge) is one of the most attractive alternatives for silicon (Si) for high-speed computational applications, due its higher hole and electron mobility. Thus, in this work we show a cost effective CMOS compatible process for transforming conventional rigid Ge metal oxide semiconductor capacitors (MOSCAPS) into a mechanically flexible and semi-transparent platform. Devices exhibit outstanding bendability with a bending radius of 0.24 cm, and semi-transparency up to 30 %, varying with respect to the diameter size of the release holes array.

  14. Routing of individual polymers in designed patterns

    Science.gov (United States)

    Knudsen, Jakob Bach; Liu, Lei; Bank Kodal, Anne Louise; Madsen, Mikael; Li, Qiang; Song, Jie; Woehrstein, Johannes B.; Wickham, Shelley F. J.; Strauss, Maximilian T.; Schueder, Florian; Vinther, Jesper; Krissanaprasit, Abhichart; Gudnason, Daniel; Smith, Anton Allen Abbotsford; Ogaki, Ryosuke; Zelikin, Alexander N.; Besenbacher, Flemming; Birkedal, Victoria; Yin, Peng; Shih, William M.; Jungmann, Ralf; Dong, Mingdong; Gothelf, Kurt V.

    2015-10-01

    Synthetic polymers are ubiquitous in the modern world, but our ability to exert control over the molecular conformation of individual polymers is very limited. In particular, although the programmable self-assembly of oligonucleotides and proteins into artificial nanostructures has been demonstrated, we currently lack the tools to handle other types of synthetic polymers individually and thus the ability to utilize and study their single-molecule properties. Here we show that synthetic polymer wires containing short oligonucleotides that extend from each repeat can be made to assemble into arbitrary routings. The wires, which can be more than 200 nm in length, are soft and bendable, and the DNA strands allow individual polymers to self-assemble into predesigned routings on both two- and three-dimensional DNA origami templates. The polymers are conjugated and potentially conducting, and could therefore be used to create molecular-scale electronic or optical wires in arbitrary geometries.

  15. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    International Nuclear Information System (INIS)

    Wu, Chaoxing; Li, Fushan; Wu, Wei; Chen, Wei; Guo, Tailiang

    2014-01-01

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (∼8 Ω/□), high transmittance (∼81% at 550 nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated

  16. Single layered flexible photo-detector based on perylene/graphene composite through printed technology

    Science.gov (United States)

    Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2015-07-01

    In this paper, a single layered passive photo sensor based on perylene/graphene composite is proposed, which is deposited in comb type silver electrodes separated as 50 μm spacing. To increase an electrical conductivity of the proposed sensor, perylene and graphene are blended. Photo sensing layer (120nm thick) and Silver electrodes (50 μm width, 350 nm thick) are deposited on poly(ethylene terephthalate) (PET) substrate through electro-hydrodynamic (EHD) system. The proposed photo sensor detects a terminal resistance inversely varied by an incident light in the range between 78 GΩ in dark and 25 GΩ at light intensity of 400lux. The device response is maximum at 465 nm ~ 535 nm wavelength range at blue light. The device exhibited bendability up to 4mm diameter for 1000 endurance cycles. The surface morphology analysis is carried out with FE-SEM and microscope.

  17. Simulating Stresses Associated with the Bending of Wood Using a Finite Element Method

    Directory of Open Access Journals (Sweden)

    Milan Gaff

    2015-02-01

    Full Text Available This article examines the stress-strain curves of various thicknesses of soft and hard wood when bent during three-point loading. The finite element method was used to simulate the course of stresses that occurred during the bending of these materials. Reference curves obtained by bending real specimens offered a basis for simulation. The results showed that with increasing material thickness, deflection values decreased and the proportionality limit increased; eventually, the bendability coefficient value decreased and the loading force necessary for bending increased. Moreover, it was apparent when bending hard materials that higher loading forces were necessary for different materials of the same thickness. It is possible to determine the stress-strain curves without having to perform experiments (except for indispensable reference ones under real conditions.

  18. Long-trace profiler for neutron focusing mirrors

    International Nuclear Information System (INIS)

    Puzyrev, Yevgeniy S.; Ice, Gene E.; Takacs, Peter Z.

    2009-01-01

    A long-trace profiler (LTP) optimized for measuring the shape of large neutron supermirrors has been designed and built. This LTP can measure 1.6 m long mirrors in both vertically and horizontally deflecting geometries, which is essential to achieve best performance from bendable mirrors. The LTP suppresses the influence of angular deviations of the linear-stage carriage during translation with a pentaprism and a cylindrical lens. The stationary optical head and the carriage-mounted pentaprism are precisely aligned to rotate about the optical axis between the two components. This feature allows measurements to be made on mirrors mounted vertically, horizontally or at any angle in between. The LTP software allows for rapid optimization of parameters for dynamically bent elliptical mirrors. Here we describe the motivation for the LTP, the design, and a first application of the LTP to study the effect of gravity on a bent microfocusing neutron supermirror.

  19. Shapeable short circuit resistant capacitor

    Science.gov (United States)

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2015-10-06

    A ceramic short circuit resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The capacitor that exhibits a benign failure mode in which a multitude of discrete failure events result in a gradual loss of capacitance. Each event is a localized event in which localized heating causes an adjacent portion of one or both of the electrodes to vaporize, physically cleaning away electrode material from the failure site. A first metal electrode, a second metal electrode, and a ceramic dielectric layer between the electrodes are thin enough to be formed in a serpentine-arrangement with gaps between the first electrode and the second electrode that allow venting of vaporized electrode material in the event of a benign failure.

  20. Can hook-bending be let off the hook? Bending/unbending of pliant tools by cockatoos.

    Science.gov (United States)

    Laumer, I B; Bugnyar, T; Reber, S A; Auersperg, A M I

    2017-09-13

    The spontaneous crafting of hook-tools from bendable material to lift a basket out of a vertical tube in corvids has widely been used as one of the prime examples of animal tool innovation. However, it was recently suggested that the animals' solution was hardly innovative but strongly influenced by predispositions from habitual tool use and nest building. We tested Goffin's cockatoo, which is neither a specialized tool user nor a nest builder, on a similar task set-up. Three birds individually learned to bend hook tools from straight wire to retrieve food from vertical tubes and four subjects unbent wire to retrieve food from horizontal tubes. Pre-experience with ready-made hooks had some effect but was not necessary for success. Our results indicate that the ability to represent and manufacture tools according to a current need does not require genetically hardwired behavioural routines, but can indeed arise innovatively from domain general cognitive processing. © 2017 The Authors.

  1. New temperable solar coatings: Tempsol

    Science.gov (United States)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  2. Transfer-less flexible and transparent high-κ/metal gate germanium devices on bulk silicon (100)

    KAUST Repository

    Nassar, Joanna M.

    2014-08-01

    Flexible wearable electronics have been of great interest lately for the development of innovative future technology for various interactive applications in the field of consumer electronics and advanced healthcare, offering the promise of low-cost, lightweight, and multifunctionality. In the pursuit of this trend, high mobility channel materials need to be investigated on a flexible platform, for the development of flexible high performance devices. Germanium (Ge) is one of the most attractive alternatives for silicon (Si) for high-speed computational applications, due its higher hole and electron mobility. Thus, in this work we show a cost effective CMOS compatible process for transforming conventional rigid Ge metal oxide semiconductor capacitors (MOSCAPS) into a mechanically flexible and semi-transparent platform. Devices exhibit outstanding bendability with a bending radius of 0.24 cm, and semi-transparency up to 30 %, varying with respect to the diameter size of the release holes array.

  3. Method of manufacturing a shapeable short-resistant capacitor

    Science.gov (United States)

    Taylor, Ralph S.; Myers, John D.; Baney, William J.

    2013-04-02

    A method that employs a novel combination of conventional fabrication techniques provides a ceramic short-resistant capacitor that is bendable and/or shapeable to provide a multiple layer capacitor that is extremely compact and amenable to desirable geometries. The method allows thinner and more flexible ceramic capacitors to be made. The method includes forming a first thin metal layer on a substrate; depositing a thin, ceramic dielectric layer over the metal layer; depositing a second thin metal layer over the dielectric layer to form a capacitor exhibiting a benign failure mode; and separating the capacitor from the substrate. The method may also include bending the resulting capacitor into a serpentine arrangement with gaps between the layers that allow venting of evaporated electrode material in the event of a benign failure.

  4. Self-Assembled Nanorod Structures on Nanofibers for Textile Electrochemical Capacitor Electrodes with Intrinsic Tactile Sensing Capabilities.

    Science.gov (United States)

    Shi, HaoTian H; Khalili, Nazanin; Morrison, Taylor; Naguib, Hani E

    2018-05-21

    A novel polyaniline nanorod (PAniNR) three-dimensional structure was successfully grown on flexible polyacrylonitrile (PAN) nanofiber substrate as the electrode material for electrochemical capacitors (ECs), constructed via self-stabilized dispersion polymerization process. The electrode offered desired mechanical properties such as flexibility and bendability, whereas it maintained optimal electrochemical characteristics. The electrode and the assembled EC cell also achieved intrinsic piezoresistive sensing properties, leading to real-time monitoring of excess mechanical pressure and bending during cell operations. The PAniNR@PAN electrodes show an average diameter of 173.6 nm, with the PAniNR growth of 50.7 nm in length. Compared to the electrodes made from pristine PAni, the gravimetric capacitance increased by 39.8% to 629.6 F/g with aqueous acidic electrolyte. The electrode and the assembled EC cell with gel electrolyte were responsive to tensile, compressive, and bending stresses with a sensitivity of 0.95 MPa -1 .

  5. Recent advances in flexible and wearable organic optoelectronic devices

    Science.gov (United States)

    Zhu, Hong; Shen, Yang; Li, Yanqing; Tang, Jianxin

    2018-01-01

    Flexible and wearable optoelectronic devices have been developing to a new stage due to their unique capacity for the possibility of a variety of wearable intelligent electronics, including bendable smartphones, foldable touch screens and antennas, paper-like displays, and curved and flexible solid-state lighting devices. Before extensive commercial applications, some issues still have to be solved for flexible and wearable optoelectronic devices. In this regard, this review concludes the newly emerging flexible substrate materials, transparent conductive electrodes, device architectures and light manipulation methods. Examples of these components applied for various kinds of devices are also summarized. Finally, perspectives about the bright future of flexible and wearable electronic devices are proposed. Project supported by the Ministry of Science and Technology of China (No. 2016YFB0400700).

  6. Development and applications of transparent conductive nanocellulose paper.

    Science.gov (United States)

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Increasing attention has been paid to the next generation of 'green' electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential.

  7. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    Science.gov (United States)

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  8. Development and applications of transparent conductive nanocellulose paper

    Science.gov (United States)

    Li, Shaohui; Lee, Pooi See

    2017-01-01

    Abstract Increasing attention has been paid to the next generation of ‘green’ electronic devices based on renewable nanocellulose, owing to its low roughness, good thermal stability and excellent optical properties. Various proof-of-concept transparent nanopaper-based electronic devices have been fabricated; these devices exhibit excellent flexibility, bendability and even foldability. In this review, we summarize the recent progress of transparent nanopaper that uses different types of nanocellulose, including pure nanocellulose paper and composite nanocellulose paper. The latest development of transparent and flexible nanopaper electronic devices are illustrated, such as electrochromic devices, touch sensors, solar cells and transistors. Finally, we discuss the advantages of transparent nanopaper compared to conventional flexible plastic substrate and the existing challenges to be tackled in order to realize this promising potential. PMID:28970870

  9. Advantages of using Ti-mesh type electrodes for flexible dye-sensitized solar cells

    International Nuclear Information System (INIS)

    He Weizhen; Kim, Hyung-Kook; Hwang, Yoon-Hwae; Qiu Jijun; Zhuge Fuwei; Li Xiaomin; Lee, Jae-Ho; Kim, Yang-Do

    2012-01-01

    We used Ti meshes for both the photoanodes and counter electrodes of dye-sensitized solar cells (DSSCs) to improve the flexibility and conductivity of the electrodes. These mesh type electrodes showed good transparency and high bendability when subjected to an external force. We demonstrated the advantages of cells using such electrodes compared to traditional transparent conducting oxide based electrodes and back side illuminated DSSCs, such as low sheet resistance, elevated photo-induced current and enhanced sunlight utilization. Nanotube layers of different thicknesses were investigated to determine their effect on the photovoltaic parameters of the cell. The overall efficiency of the best cells was approximately 5.3% under standard air mass 1.5 global (AM 1.5 G) solar conditions. Furthermore, the DSSCs showed an efficiency of approximately 3.15% due to the all Ti-mesh type electrodes even after illumination from the back side. (paper)

  10. Transparent Electrodes for Efficient Optoelectronics

    KAUST Repository

    Morales-Masis, Monica; De Wolf, Stefaan; Woods-Robinson, Rachel; Ager, Joel W.; Ballif, Christophe

    2017-01-01

    With the development of new generations of optoelectronic devices that combine high performance and novel functionalities (e.g., flexibility/bendability, adaptability, semi or full transparency), several classes of transparent electrodes have been developed in recent years. These range from optimized transparent conductive oxides (TCOs), which are historically the most commonly used transparent electrodes, to new electrodes made from nano- and 2D materials (e.g., metal nanowire networks and graphene), and to hybrid electrodes that integrate TCOs or dielectrics with nanowires, metal grids, or ultrathin metal films. Here, the most relevant transparent electrodes developed to date are introduced, their fundamental properties are described, and their materials are classified according to specific application requirements in high efficiency solar cells and flexible organic light-emitting diodes (OLEDs). This information serves as a guideline for selecting and developing appropriate transparent electrodes according to intended application requirements and functionality.

  11. Electromechanical properties of amorphous In-Zn-Sn-O transparent conducting film deposited at various substrate temperatures on polyimide substrate

    Science.gov (United States)

    Kim, Young Sung; Lee, Eun Kyung; Eun, Kyoungtae; Choa, Sung-Hoon

    2015-09-01

    The electromechanical properties of the amorphous In-Zn-Sn-O (IZTO) film deposited at various substrate temperatures were investigated by bending, stretching, twisting, and cyclic bending fatigue tests. Amorphous IZTO films were grown on a transparent polyimide substrate using a pulsed DC magnetron sputtering system at different substrate temperatures ranging from room temperature to 200 °C. A single oxide alloyed ceramic target (In2O3: 80 wt %, ZnO: 10 wt %, SnO2: 10 wt % composition) was used. The amorphous IZTO film deposited at 150 °C exhibited an optimized electrical resistivity of 5.8 × 10-4 Ω cm, optical transmittance of 87%, and figure of merit of 8.3 × 10-3 Ω-1. The outer bending tests showed that the critical bending radius decreased as substrate temperature increased. On the other hand, in the inner bending tests, the critical bending radius increased with an increase in substrate temperature. The differences in the bendability of IZTO films for the outer and inner bending tests could be attributed to the internal residual stress of the films. The uniaxial stretching tests also showed the effects of the internal stress on the mechanical flexibility of the film. The bending and stretching test results demonstrated that the IZTO film had higher bendability and stretchability than the conventional ITO film. The IZTO film could withstand 10,000 bending cycles at a bending radius of 10 mm. The effect of the surface roughness on the mechanical durability of all IZTO films was very small due to their very smooth surfaces.

  12. Mechanical Properties of a Bainitic Steel Producible by Hot Rolling

    Directory of Open Access Journals (Sweden)

    Rana R.

    2017-12-01

    Full Text Available A carbide-free bainitic microstructure is suitable for achieving a combination of ultra high strength and high ductility. In this work, a steel containing nominally 0.34C-2Mn-1.5Si-1Cr (wt.% was produced via industrial hot rolling and laboratory heat treatments. The austenitization (900°C, 30 min. and austempering (300-400°C, 3 h treatments were done in salt bath furnaces. The austempering treatments were designed to approximately simulate the coiling step, following hot rolling and run-out-table cooling, when the bainitic transformation would take place and certain amount of austenite would be stabilized due to suppression of carbide precipitation. The microstructures and various mechanical properties (tensile properties, bendability, flangeability, and room and subzero temperature impact toughness relevant for applications were characterized. It was found that the mechanical properties were highly dependent on the stability of the retained austenite, presence of martensite in the microstructure and the size of the microstructural constituents. The highest amount of retained austenite (~ 27 wt.% was obtained in the sample austempered at 375°C but due to lower austenite stability and coarser overall microstructure, the sample exhibited lower tensile ductility, bendability, flangeability and impact toughness. The sample austempered at 400°C also showed poor properties due to the presence of initial martensite and coarse microstructure. The best combination of mechanical properties was achieved for the samples austempered at 325-350°C with a lower amount of retained austenite but with the highest mechanical stability.

  13. Use of flexible engineered cementitious composite in buildings

    International Nuclear Information System (INIS)

    Khitab, A.; Nadeem, M.; Hussain, S.

    2011-01-01

    This article describes the applications and benefits of a recently developed smart building material namely Engineered cementitious composite (ECC), also known as flexible or bendable concrete. Conventional concretes have a strain capacity of only 0.1 percent and are highly brittle and rigid. This lack of bend ability is a major cause of failure under strain and has been a pushing factor in the development of an elegant material which is capable to exhibit an enhanced flexibility. An ECC has a strain capacity of more than 3 percent and thus acts more like a ductile metal rather than like a brittle glass. The aim of this paper is to highlight a probable success of ECC in terms of industrial and commercial use in Pakistan. With the introduction of flexible concrete in building technology, it is likely to have safer and more durable construction. The material is expected to display reduced detrimental impacts on the natural environment. A bendable concrete is composed of all the ingredients of a traditional concrete minus coarse aggregates or crushed stones and is reinforced with micro mechanically designed polymer fibers. The mechanism of action of the micro-polymeric fibers in concrete has also been emphasized. The principles of mix designs of the mortar incorporating fibers to make an ECC have also been explained. It has also been mentioned in detail as how this technology can be used to enhance the flexibility of some modern concrete types like flowing concrete, self-compacting concrete, and lightweight concrete. ECC is a green construction material. The possible benefits like environment friendliness, cost effectiveness, and durability have been also been elucidated in the paper. (author)

  14. Nitrogen-doped graphene forests as electrodes for high-performance wearable supercapacitors

    International Nuclear Information System (INIS)

    Wang, Mei; Ma, Yifei

    2017-01-01

    Highlights: •N-doped graphene forest (GF) is successfully synthesized by in-situ PECVD process. •Morphology of N-doped GF electrode realizes a better in-plane electron transfer. •Areal and volumetric capacitances increase 26% and 89% by the N-doping of GF. •Energy and power densities increase 87% and 50% by the N-doping of GF. •The N-doped GF-based EDLC shows excellent bendability and reliable durability. -- Abstract: Recently, a graphene forest (GF) is synthesized by a plasma enhanced chemical vapor deposition (PECVD) process, which subverts the stereotyped morphology of vertical graphene. The GF is demonstrated to possess excellent performance in flexible and bendable electrical double-layer capacitors (EDLCs). In this work, synthesis process of the GF has been optimized and N-doped GF is successfully achieved by introducing NH 3 as the nitrogen precursor during the PECVD process. The N-doping obviously affects the morphology of the GF and the in-plane conductivity of GF is desirably enhanced. The specific area capacitances and volumetric capacitances of N-doped GF-based EDLC increases 26% and 89% in average, respectively, at different current densities compared with the non-doped GF-based EDLC. In addition, both the energy and power densities are improved, and impressively, the energy densities improve 87% by the N-doping of GF electrodes. The GF-based EDLC also provides the desirable stability that no degradation can be observed within 10,000 cycles. Finally, the flexible N-doped GF-based EDLC is also tested as a wearable supercapacitor, exhibiting no capacitance decrease under the dynamic bending situation. Our approach to synthesize the N-doped GF electrodes can achieve the fine-scale nano-structured GF electrodes and provide a new way forward for improved energy storage devices.

  15. Earth, soil and environmental science research facility at sector 13 of the Advanced Photon Source. I. Sector layout and optical design

    Energy Technology Data Exchange (ETDEWEB)

    Eng, P.; Jaski, Y.R.; Lazarz, N.; Murray, P.; Pluth, J.; Rarback, H.; Rivers, M.; Sutton, S. [CARS, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL (United States)

    1996-09-01

    The earth, soil and environmental science component (GSECARS) of the Consortium of Advanced Radiation Sources (CARS), is designing a national research facility to be built at sector 13 of the Advanced Photon Source. The bending magnet beam will be split to allow simultaneous operation of two stations, a monochromatic (8{endash}15 keV) side station and a multipurpose, white beam/monochromatic end station. The undulator beamline will have two white beam stations, which may operate simultaneously using a double-crystal monochromator (cryogenic Si) with a thin first crystal. In this mode, the upstream station will accept the monochromatized (4.5{endash}22 keV) beam deflected horizontally by a third (bendable) Ge crystal, while the end station accepts the high energy component (blue beam) transmitted by the first crystal. The need for small x-ray beams and broad spectral range have led us to base the focusing aspects of the optic design on grazing incidence mirrors. Both our bending magnet and insertion device beamlines will have long ({approximately}1 m), bendable mirrors (demagnification {lt}11, E(cut-off) {approx_gt}70 keV; beam sizes {approx_gt}tens of micrometers). For smaller focal spots, we will use small, dynamically bent Kirpatrick-Baez mirrors (demagnification 100{endash}400; E(cut-off) {lt}70 keV; beam sizes {approximately}1 micrometer). A unique aspect of our insertion device beamline is the ability to deliver focused white beam to the sample, through the incorporation of a power management pinhole in the first optics enclosure. {copyright} {ital 1996 American Institute of Physics.}

  16. High Temperature Electrostrictive Ceramics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes to develop high temperature electrostrictors from bismuth-based ferroelectrics. These materials will exhibit high strain and low loss in...

  17. Evanescent field phase shifting in a silicon nitride waveguide using a coupled silicon slab

    DEFF Research Database (Denmark)

    Jensen, Asger Sellerup; Oxenløwe, Leif Katsuo; Green, William M. J.

    2015-01-01

    An approach for electrical modulation of low-loss silicon nitride waveguides is proposed, using a silicon nitride waveguide evanescently loaded with a thin silicon slab. The thermooptic phase-shift characteristics are investigated in a racetrack resonator configuration....

  18. High Power Mid-IR Semiconductor Lasers for LADAR

    National Research Council Canada - National Science Library

    Lester, Luke

    2003-01-01

    The growing need for antimonide-based, room temperature, 2-5 micrometers, semiconductor lasers for trace gas spectroscopy, ultra-low loss communication, infrared countermeasures, and ladar motivated this work...

  19. Radiation Hard Multi-Layer Optical Coatings, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Next generation space telescopes require advanced optical coatings to provide low loss transmission of light in a variety of spectral ranges and protect optical...

  20. Costly cables; Lange Leitung

    Energy Technology Data Exchange (ETDEWEB)

    Hautmann, Daniel

    2012-08-15

    Connection of offshore wind turbines to the onshore power supply grid requires costly cables for HV DC power transmission. The technology is mature enough to enable low-loss power transmission, but construction times may last several years.

  1. A three-dimensional model for calculating the micro disk laser resonant-modes

    International Nuclear Information System (INIS)

    Sabetjoo, H.; Bahrampor, A.; Farrahi-Moghaddam, R.

    2006-01-01

    In this article, a semi-analytical model for theoretical analysis of micro disk lasers is presented. Using this model, the necessary conditions for the existence of loss less and low-loss modes of micro-resonators are obtained. The resonance frequency of the resonant modes and also the attenuation of low-loss modes are calculated. By comparing the results with results of finite difference method, their validity is certified.

  2. Topology Optimized Photonic Wire Splitters

    DEFF Research Database (Denmark)

    Frandsen, Lars Hagedorn; Borel, Peter Ingo; Jensen, Jakob Søndergaard

    2006-01-01

    Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm.......Photonic wire splitters have been designed using topology optimization. The splitters have been fabricated in silicon-on-insulator material and display broadband low-loss 3dB splitting in a bandwidth larger than 100 nm....

  3. Evidence from acoustic imaging for submarine volcanic activity in 2012 off the west coast of El Hierro (Canary Islands, Spain)

    Science.gov (United States)

    Pérez, Nemesio M.; Somoza, Luis; Hernández, Pedro A.; de Vallejo, Luis González; León, Ricardo; Sagiya, Takeshi; Biain, Ander; González, Francisco J.; Medialdea, Teresa; Barrancos, José; Ibáñez, Jesús; Sumino, Hirochika; Nogami, Kenji; Romero, Carmen

    2014-12-01

    We report precursory geophysical, geodetic, and geochemical signatures of a new submarine volcanic activity observed off the western coast of El Hierro, Canary Islands. Submarine manifestation of this activity has been revealed through acoustic imaging of submarine plumes detected on the 20-kHz chirp parasound subbottom profiler (TOPAS PS18) mounted aboard the Spanish RV Hespérides on June 28, 2012. Five distinct "filament-shaped" acoustic plumes emanating from the flanks of mounds have been recognized at water depth between 64 and 88 m on a submarine platform located NW El Hierro. These plumes were well imaged on TOPAS profiles as "flares" of high acoustic contrast of impedance within the water column. Moreover, visible plumes composed of white rafts floating on the sea surface and sourcing from the location of the submarine plumes were reported by aerial photographs on July 3, 2012, 5 days after acoustic plumes were recorded. In addition, several geophysical and geochemical data support the fact that these submarine vents were preceded by several precursory signatures: (i) a sharp increase of the seismic energy release and the number of daily earthquakes of magnitude ≥2.5 on June 25, 2012, (ii) significant vertical and horizontal displacements observed at the Canary Islands GPS network (Nagoya University-ITER-GRAFCAN) with uplifts up to 3 cm from June 25 to 26, 2012, (iii) an anomalous increase of the soil gas radon activity, from the end of April until the beginning of June reaching peak values of 2.7 kBq/m3 on June 3, 2012, and (iv) observed positive peak in the air-corrected value of 3He/4He ratio monitored in ground waters (8.5 atmospheric 3He/4He ratio ( R A)) at the northwestern El Hierro on June 16, 2012. Combining these submarine and subaerial information, we suggest these plumes are the consequence of submarine vents exhaling volcanic gas mixed with fine ash as consequence of an event of rapid rise of volatile-rich magma beneath the NW submarine ridge

  4. MO-A-BRD-10: A Fast and Accurate GPU-Based Proton Transport Monte Carlo Simulation for Validating Proton Therapy Treatment Plans

    Energy Technology Data Exchange (ETDEWEB)

    Wan Chan Tseung, H; Ma, J; Beltran, C [Mayo Clinic, Rochester, MN (United States)

    2014-06-15

    Purpose: To build a GPU-based Monte Carlo (MC) simulation of proton transport with detailed modeling of elastic and non-elastic (NE) protonnucleus interactions, for use in a very fast and cost-effective proton therapy treatment plan verification system. Methods: Using the CUDA framework, we implemented kernels for the following tasks: (1) Simulation of beam spots from our possible scanning nozzle configurations, (2) Proton propagation through CT geometry, taking into account nuclear elastic and multiple scattering, as well as energy straggling, (3) Bertini-style modeling of the intranuclear cascade stage of NE interactions, and (4) Simulation of nuclear evaporation. To validate our MC, we performed: (1) Secondary particle yield calculations in NE collisions with therapeutically-relevant nuclei, (2) Pencil-beam dose calculations in homogeneous phantoms, (3) A large number of treatment plan dose recalculations, and compared with Geant4.9.6p2/TOPAS. A workflow was devised for calculating plans from a commercially available treatment planning system, with scripts for reading DICOM files and generating inputs for our MC. Results: Yields, energy and angular distributions of secondaries from NE collisions on various nuclei are in good agreement with the Geant4.9.6p2 Bertini and Binary cascade models. The 3D-gamma pass rate at 2%–2mm for 70–230 MeV pencil-beam dose distributions in water, soft tissue, bone and Ti phantoms is 100%. The pass rate at 2%–2mm for treatment plan calculations is typically above 98%. The net computational time on a NVIDIA GTX680 card, including all CPU-GPU data transfers, is around 20s for 1×10{sup 7} proton histories. Conclusion: Our GPU-based proton transport MC is the first of its kind to include a detailed nuclear model to handle NE interactions on any nucleus. Dosimetric calculations demonstrate very good agreement with Geant4.9.6p2/TOPAS. Our MC is being integrated into a framework to perform fast routine clinical QA of pencil

  5. Clinical evaluation of XaraColl®, a bupivacaine-collagen implant, for postoperative analgesia in two multicenter, randomized, double-blind, placebo-controlled pilot studies

    Directory of Open Access Journals (Sweden)

    Cusack SL

    2012-06-01

    Full Text Available Susan L Cusack,1 Mark Jaros,2 Michael Kuss,3 Harold S Minkowitz,4 Peter Winkle,5 Lisa Hemsen61Cusack Pharmaceutical Consulting, Burlington, NJ, 2Summit Analytical, Denver, CO, USA; 3Premier Research Group, Austin, TX, USA; 4Memorial Hermann Memorial City Medical Center, Houston, TX, USA; 5Advanced Clinical Research Institute, Anaheim, CA, USA; 6Innocoll Technologies, Athlone, IrelandBackground: XaraColl®, a collagen-based implant that delivers bupivacaine to the site of surgical trauma, is under development for postoperative analgesia. Because of differing patient attitudes to postoperative pain control and the inability to assess baseline pain, standard clinical methods for evaluating analgesic efficacy are compromised and justify application of novel integrated approaches.Methods: We conducted two independent, multicenter, double-blind, placebo-controlled studies in men undergoing unilateral inguinal hernioplasty by open laparotomy to evaluate the safety and efficacy of XaraColl at different doses (100 mg and 200 mg of bupivacaine hydrochloride; study 1 and 2, respectively. Enrolled patients (50 in study 1 and 53 in study 2 were randomized to receive active or placebo implants in a 1:1 ratio. Postoperative pain intensity and use of supplementary opioid medication were recorded through 72 hours. Safety was assessed through 30 days. The principal efficacy variables were the summed pain intensity (SPI, total use of opioid analgesia (TOpA, and an integrated endpoint (I-SPI-TOpA. Each variable was analyzed at 24, 48, and 72 hours after implantation. A pooled analysis of both studies was also performed retrospectively.Results: Through 24 and 48 hours, XaraColl-treated patients experienced significantly less pain in study 1 (P < 0.001 and P = 0.012, respectively whereas they took significantly less opioid analgesia in study 2 (P = 0.004 and P = 0.042, respectively. Over the same time intervals in the pooled analysis, treated patients experienced

  6. Simple method for measuring reflectance of optical coatings

    International Nuclear Information System (INIS)

    Wen Gui Wang; Yi Sheng Chen

    1995-01-01

    The quality of optical coatings has an important effect on the performance of optical instrument. The last few years, the requirements for super low loss dielectric mirror coatings used in low gain laser systems such as free electron laser and the ring laser etc., have given an impetus to the development of the technology of precise reflectance measurement of optical coatings. A reliable and workable technique is to measure the light intensity decay time of optical resonant cavity. This paper describes a measuring method which is dependent on direct measurement of the light intensity decay time of a resonant cavity comprised of low loss optical components. According to the evolution of a luminous flux stored inside the cavity, this method guarantees not only a quick and precise reflectance measurements of low loss highly reflecting mirror coatings but also transmittance measurements of low loss antireflection coatings and is especially effective with super los loss highly reflecting mirror. From the round-trip path length of the cavity and the speed of light, the light intensity exponential decay time of an optical cavity is easy to obtain and the cavity losses can be deduced. An optical reflectance of low loss highly mirror coatings and antireflection coatings is precisely measured as well. This is highly significant for the discrimination of the coating surface characteristics, the improvement of the performance of optical instrument and the development of high technology

  7. Metal oxide semiconductor thin-film transistors for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Petti, Luisa; Vogt, Christian; Büthe, Lars; Cantarella, Giuseppe; Tröster, Gerhard [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Münzenrieder, Niko [Electronics Laboratory, Swiss Federal Institute of Technology, Zürich (Switzerland); Sensor Technology Research Centre, University of Sussex, Falmer (United Kingdom); Faber, Hendrik; Bottacchi, Francesca; Anthopoulos, Thomas D. [Department of Physics and Centre for Plastic Electronics, Imperial College London, London (United Kingdom)

    2016-06-15

    The field of flexible electronics has rapidly expanded over the last decades, pioneering novel applications, such as wearable and textile integrated devices, seamless and embedded patch-like systems, soft electronic skins, as well as imperceptible and transient implants. The possibility to revolutionize our daily life with such disruptive appliances has fueled the quest for electronic devices which yield good electrical and mechanical performance and are at the same time light-weight, transparent, conformable, stretchable, and even biodegradable. Flexible metal oxide semiconductor thin-film transistors (TFTs) can fulfill all these requirements and are therefore considered the most promising technology for tomorrow's electronics. This review reflects the establishment of flexible metal oxide semiconductor TFTs, from the development of single devices, large-area circuits, up to entirely integrated systems. First, an introduction on metal oxide semiconductor TFTs is given, where the history of the field is revisited, the TFT configurations and operating principles are presented, and the main issues and technological challenges faced in the area are analyzed. Then, the recent advances achieved for flexible n-type metal oxide semiconductor TFTs manufactured by physical vapor deposition methods and solution-processing techniques are summarized. In particular, the ability of flexible metal oxide semiconductor TFTs to combine low temperature fabrication, high carrier mobility, large frequency operation, extreme mechanical bendability, together with transparency, conformability, stretchability, and water dissolubility is shown. Afterward, a detailed analysis of the most promising metal oxide semiconducting materials developed to realize the state-of-the-art flexible p-type TFTs is given. Next, the recent progresses obtained for flexible metal oxide semiconductor-based electronic circuits, realized with both unipolar and complementary technology, are reported. In

  8. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    International Nuclear Information System (INIS)

    Liu, Lu; Shao, Jinyou; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-01-01

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H"+) and hydroxide (OH"−) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H"+ and OH"− ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results shows that the

  9. High performance flexible pH sensor based on carboxyl-functionalized and DEP aligned SWNTs

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Lu; Shao, Jinyou, E-mail: jyshao@mail.xjtu.edu.cn; Li, Xiangming; Zhao, Qiang; Nie, Bangbang; Xu, Chuan; Ding, Haitao

    2016-11-15

    Highlights: • The flexible chemiresistive pH sensor based on two-terminal microsensors eliminating the need for a reference electrode, is simple in structure and can be fabricated on a variety of substrates such as PET, PI and PVC. • SWNTs as an ideal one dimensional material are carboxyl-functionalized to make the pH sensor show high sensitivity and outstanding flexibility for practical applications. • DEP technique is used to manipulate and position SWNTs into appropriate locations and desired formations to improve the metal-nanotube interface and highly rapid detection of pH value, resulting in better overall device performance. • Mechanical bendability of the pH sensor, which arises from the combination of flexible PET substrates and SWNTs, offer a significant improvement for applications that are difficult or impossible to achieve with traditional sensors on rigid substrates. - Abstract: The detection and control of the pH is very important in many biomedical and chemical reaction processes. A miniaturized flexible pH sensor that is light weight, robust, and conformable is very important in many applications, such as multifunctional lab-on-a-chip systems or wearable biomedical devices. In this work, we demonstrate a flexible chemiresistive pH sensor based on dielectrophoresis (DEP) aligned carboxyl-functionalized single-walled carbon nanotubes (SWNTs). Decorated carboxyl groups can react with hydrogen (H{sup +}) and hydroxide (OH{sup −}) ions, enabling the sensor to be capable of sensing the pH. DEP is used to deposit well-organized and highly aligned SWNTs in desired locations, which improves the metal-nanotube interface and highly rapid detection of the pH, resulting in better overall device performance. When pH buffer solutions are dropped onto such SWNTs, the H{sup +} and OH{sup −} ions caninteract with the carboxyl groups and affect the generation of holes and electrons in the SWNTs, leading to resistance variations in the SWNTs. The results

  10. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    International Nuclear Information System (INIS)

    Fragouli, D; Pompa, P P; Caputo, G; Cingolani, R; Athanassiou, A; Resta, V; Laera, A M; Tapfer, L

    2009-01-01

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  11. Recent on-beam tests of wide angle neutron polarization analysis with a 3He spin filter: Magic PASTIS on V20 at HZB

    Science.gov (United States)

    Babcock, E.; Salhi, Z.; Gainov, R.; Woracek, R.; Soltner, H.; Pistel, P.; Beule, F.; Bussmann, K.; Heynen, A.; Kämmerling, H.; Suxdorf, F.; Strobl, M.; Russina, M.; Voigt, J.; Ioffe, A.

    2017-06-01

    A complete XYZ polarization analysis solution is under development for the new thermal time of flight spectrometer TOPAS [1], to be operated in the coming east neutron guide hall at the MLZ. Polarization Analysis Studies on a Thermal Inelastic Spectrometer, commonly called PASTIS [2], is based on polarized 3He neutron spin filters and an XYZ field configuration for the sample environment and a polarization-preserving neutron guide field. The complete system was designed to provide adiabatic transport of the neutron polarization to the sample position while maintaining the homogeneity of the XYZ field. This system has now been tested on the polarized time-of-flight ESS test beam line V20 at HZB [3]. Down to the minimum wavelength of 1.6 Å on the instrument, the magnetic configuration worked ideally for neutron spin transport while giving full experimental freedom to change between the X, Y or Z field configuration. The 3He cell used was polarized at the 3He lab of the JCNS at the MLZ in Garching and transported to HZB in Berlin via car showing that such a transport is indeed feasible for such experiments. We present results of this test and the next steps forward.

  12. Isolation of an X-ray-responsive element in the promoter region of tissue-type plasminogen activator: Potential uses of X-ray-responsive elements for gene therapy

    International Nuclear Information System (INIS)

    Boothman, D.A.; Lee, I.W.; Sahijdak, W.M.

    1994-01-01

    Tissue-type plasminogen activator (t-PA) was induced over 50-fold after X irradiation in radioresistant human melanoma cells. Activities of t-PA were induced 14-fold in ataxia telangiectasia, 9-fold in Bloom's syndrome and 6-fold in Fanconi's anemia cells, compared to normal human fibroblasts. X-ray-inducible synthesis of the protease, t-PA, may play a role(s) in damage-inducible repair processes in mammalian cells, similar to the SOS repair systems in lower eukaryotes and prokaryotes. DNA band shift and DNase I footprinting assays were used to determine binding if transcription factors to a previously unknown X-ray-responsive element (XRE) in the t-PA promoter. The major goals of our research with XREs are to understand (a) which transcription factor(s) regulates to-PA induction after X-rays, and (b) the role(s) of t-PA in DNA repair, apoptosis or other responses to X rays. The purpose of this paper is to discuss the potential use of an XRE, such as the one in the t-PA promoter, for gene radiotherapy. Several gene therapy strategies are proposed. 22 refs., 3 figs

  13. DprA from Neisseria meningitidis: properties and role in natural competence for transformation.

    Science.gov (United States)

    Hovland, Eirik; Beyene, Getachew Tesfaye; Frye, Stephan A; Homberset, Håvard; Balasingham, Seetha V; Gómez-Muñoz, Marta; Derrick, Jeremy P; Tønjum, Tone; Ambur, Ole H

    2017-07-01

    DNA processing chain A (DprA) is a DNA-binding protein that is ubiquitous in bacteria and expressed in some archaea. DprA is active in many bacterial species that are competent for transformation of DNA, but its role in Neisseriameningitidis (Nm) is not well characterized. An Nm mutant lacking DprA was constructed, and the phenotypes of the wild-type and ΔdprA mutant were compared. The salient feature of the phenotype of dprA null cells is the total lack of competence for genetic transformation shown by all of the donor DNA substrates tested in this study. Here, Nm wild-type and dprA null cells appeared to be equally resistant to genotoxic stress. The gene encoding DprANm was cloned and overexpressed, and the biological activities of DprANm were further investigated. DprANm binds ssDNA more strongly than dsDNA, but lacks DNA uptake sequence-specific DNA binding. DprANm dimerization and interaction with the C-terminal part of the single-stranded binding protein SSBNmwere demonstrated. dprA is co-expressed with smg, a downstream gene of unknown function, and the gene encoding topoisomerase 1, topA.

  14. CRYOGENIC AND STRESS RELIEF THERMAL TREATMENTS IN AN AISI D2 STEEL

    Directory of Open Access Journals (Sweden)

    Paula Fernanda da Silva Farina

    2012-06-01

    Full Text Available The effects of cryogenic treatments on an AISI D2 cold work tool steel using X-ray diffraction from syncronton radiation are studied. The aim of this work is to verify the effects of: i time at cryogenic temperatures (3, 10 and 30 hours; ii cryogenic temperatures (–80°C and –196°C; iii stress relief heat treatment (130°C before cryogenic treatments; iv effect of double tempering at 520°C for 2 hours each time, after cryogenic treatment at –196°C for 30 hours, with and without previous stress relief. X-ray diffraction experiments were conducted at the line D10B-XPD of the Laboratório Nacional de Luz Síncrotron and the experimental results were treated using Rietveld refining, with TOPAS Academic in conjunction with cards from the ICCD-PDF 2006 database for austenite, martensite and carbides M7C3and M2C. Tempered samples were characterized using SEM and SEM-FEG. Volume fraction of retained austenite and carbides, as well as changes in the crystal lattices of martensite and austenite are obtained from the X-ray experiments.

  15. An In-situ method for the study of strain broadening usingsynchrotronx-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Chiu C.; Lynch, Peter A.; Cheary, Robert W.; Clark, Simon M.

    2006-12-15

    A tensonometer for stretching metal foils has beenconstructed for the study of strain broadening in x-ray diffraction lineprofiles. This device, which is designed for use on the powderdiffractometer in Station 2.3 at Daresbury Laboratory, allows in-situmeasurements to be performed on samples under stress. It can be used fordata collection in either transmission or reflection modes using eithersymmetric or asymmetric diffraction geometries. As a test case,measurements were carried out on a 18mum thick copper foil experiencingstrain levels of up to 5 percent using both symmetric reflection andsymmetric transmission diffraction. All the diffraction profilesdisplayed peak broadening and asymmetry which increased with strain. Themeasured profiles were analysed by the fundamental parameters approachusing the TOPAS peak fitting software. All the observed broadenedprofiles were modelled by convoluting a refineable diffraction profile,representing the dislocation and crystallite size broadening, with afixed instrumental profile pre-determined usinghigh quality LaB6reference powder. The de-convolution process yielded "pure" sampleintegral breadths and asymmetry results which displayed a strongdependence on applied strain and increased almost linearly with appliedstrain. Assuming crystallite size broadening in combination withdislocation broadening arising from fcc a/2<110>111 dislocations,we have extracted the variation of mechanic al property with strain. Theobservation of both peak asymmetry and broadening has been interpreted asa manifestation of a cellular structure with cell walls and cellinteriors possessing high and low dislocation densities.

  16. Variations in fatty acid composition, glucosinolate profile and some phytochemical contents in selected oil seed rape (Brassica napus L. cultivars

    Directory of Open Access Journals (Sweden)

    Amin Mohamed, Amal

    2010-06-01

    Full Text Available Rapeseed (Brassica napus L. is now the third most important source of edible oil in the world after soybean and palm oil. In this study seeds of five different rapeseed cultivars namely; pactol, silvo, topas, serw 4 and serw 6 were evaluated for their fatty acid composition, glucosinolate profile, amino acids, total tocopherols and phenolic content. Among all cultivars significant variability in fatty acids were observed. The oleic acid (C18:1 ranged from 56.31% to 58.67%, linoleic acid (C18:2 from 10.52% to 13.74%, α-linolenic acid (C18:3 from 8.83% to 10.32% and erucic acid (22:1 from 0.15% to 0.91%. The glucosinolate profile of rapeseed was also separated and identified using high-performance liquid chromatography. Small variations in the glucosinolate profile were observed among all tested cultivars; however, progoitrin and gluconapin were the major glucosinolate found. Additionally, silvo cultivar showed the highest total glucosinolate c ontents (5.97 μmol/g dw. Generally, the contents of aspartic, glutamic, arginine and leucine were high, while the contents of tyrosine and isoleucine were low among all cultivars. For total tocopherols, the results indicated that both serw 6 and pactol cultivars had the highest total tocopherol contents (138.3 and 102.8 mg/100 g oil, respectively. Total phenolic contents varied from 28.0 to 35.4 mg/g dw. The highest total phenolic content was found in topas while the lowest value was detected in serw 6. These parameters; fatty acid contents, glucosinolate profile and amino acids together with total tocopherols and phenolic contents, could be taken into consideration by oilseed rape breeders as selection criteria for developing genotypes with modified seed quality traits in Brassica napus L.La colza (Brassica napus L. es hoy en día el tercer cultivo más importante de aceites comestibles en el mundo tras el aceite de soja y de palma. En este estudio semillas de cinco cultivos diferentes de colza

  17. Structure of Subsurface Sediments in the Scan Basin (Scotia Sea)

    Science.gov (United States)

    Schreider, Al. A.; Schreider, A. A.; Sazhneva, A. E.; Galindo-Zaldivar, J.; Ruano, P.; Maldonado, A.; Martos-Martin, Y.; Lobo, F.

    2018-01-01

    The structure of sediments in the Scotia Sea is used as a basis for reconstructing the geological history of its bottom in the Late Quaternary. The Scan Basin is one of the main elements of the topography of the southern Scotia Sea. Its formation played a considerable role in the fragmentation of the continent, which included the Bruce and Discovery banks. The main parameters of the sediment layer in the Scan Basin have been reconstructed by the present time, but its top part has not been studied. In this work, we analyze the first data obtained on the R/V Gesperidas with the use of a TOPAS PS 18/40 high-resolution seismic profilograph in 2012. Three layers in the subsurface sediments on the bottom of the Scan Basin were specified for the first time. The mean periods of their deposition in the Late Quaternary were determined as 115000 years for the first, 76000 years for the second, and 59 000 years for the third layer from the surface of the bottom. The duration of the total accumulation period of the three layers is about 250000 years.

  18. Photoconductive ZnO Films Printed on Flexible Substrates by Inkjet and Aerosol Jet Techniques

    Science.gov (United States)

    Winarski, D. J.; Kreit, E.; Heckman, E. M.; Flesburg, E.; Haseman, M.; Aga, R. S.; Selim, F. A.

    2018-02-01

    Zinc oxide (ZnO) thin films have remarkable versatility in sensor applications. Here, we report simple ink synthesis and printing methods to deposit ZnO photodetectors on a variety of flexible and transparent substrates, including polyimide (Kapton), polyethylene terephthalate, cyclic olefin copolymer (TOPAS), and quartz. X-ray diffraction analysis revealed the dependence of the film orientation on the substrate type and sintering method, and ultraviolet-visible (UV-Vis) absorption measurements revealed a band edge near 380 nm. van der Pauw technique was used to measure the resistivity of undoped ZnO and indium/gallium-codoped ZnO (IGZO) films. IGZO films showed lower resistivity and larger average grain size compared with undoped ZnO films due to addition of In3+ and Ga3+, which act as donors. A 365-nm light-emitting diode was used to photoirradiate the films to study their photoconductive response as a function of light intensity at 300 K. The results revealed that ZnO films printed by aerosol jet and inkjet techniques exhibited five orders of magnitude photoconductivity, indicating that such films are viable options for use in flexible photodetectors.

  19. Fabrication and characterization of porous-core honeycomb bandgap THz fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Nielsen, Kristian; Rasmussen, Henrik K.

    We have fabricated a porous-core honeycomb fiber in the cyclic olefin copolymer (COC) Topas® by drill-draw technology [1]. A cross-sectional image of the fabricated fiber is shown in the left Panel of Fig. 1. Simulation of the electromagnetic properties of the fiber shows two wide bandgaps within......-TDS system (Picometrix T-Ray 4000). The reference pulse before coupling into the fiber is shown in Fig. 1(a) and the time trace of the THz pulse after propagation through a 5-cm long segment of fiber is shown in Fig. 1(b) (blue curve). After adding some water on the outside of the fiber surface......, the transmitted pulse experiences less pronounced oscillations at times later than 20 ps ( red curve in Fig. 1(b)). Figs. 1(c) and (d) show the short-time Fourier transforms of the two time-domain traces in Fig. 1(b), overlaid with the calculated group delay in the two bandgaps (black squares). The frequencies...

  20. Synthesis of CdS nanocrystals in polymeric films studied by in-situ GID and GISAXS

    KAUST Repository

    Di Luccio, Tiziana; Carbone, Dina; Masala, Silvia; Ramachandran, Karthik; Kornfield, Julie

    2015-01-01

    In this work, we describe the synthesis of CdS nanocrystals in thin polymeric films by in-situ Grazing Incidence Diffraction (GID) and Grazing Incidence Small Angle Scattering (GISAXS). The 2D GISAXS patterns indicate how the precursor structure is altered as the temperature is varied from 25°C to 300°C. At 150°C, the CdS nanocrystals start to arrange themselves in a hexagonal lattice with a lattice parameter of 27 A. The diffraction intensity from the hexagonal lattice reaches a maximum at 170"C and decreases steadily upon further heating above 220°C indicating loss of symmetry. Correspondingly, the GID scans at 170°C show strong crystalline peaks from cubic CdS nanocrystals that are about 2 nm size. The results indicate that a temperature of 170°C is sufficient to synthesize CdS nanocrystals without degradation of the polymer matrix (Topas) in thin films (about 30nm). © 2015 Materials Research Society.

  1. Transferred metal electrode films for large-area electronic devices

    International Nuclear Information System (INIS)

    Yang, Jin-Guo; Kam, Fong-Yu; Chua, Lay-Lay

    2014-01-01

    The evaporation of metal-film gate electrodes for top-gate organic field-effect transistors (OFETs) limits the minimum thickness of the polymer gate dielectric to typically more than 300 nm due to deep hot metal atom penetration and damage of the dielectric. We show here that the self-release layer transfer method recently developed for high-quality graphene transfer is also capable of giving high-quality metal thin-film transfers to produce high-performance capacitors and OFETs with superior dielectric breakdown strength even for ultrathin polymer dielectric films. Dielectric breakdown strengths up to 5–6 MV cm −1 have been obtained for 50-nm thin films of polystyrene and a cyclic olefin copolymer TOPAS ® (Zeon). High-quality OFETs with sub-10 V operational voltages have been obtained this way using conventional polymer dielectrics and a high-mobility polymer semiconductor poly[2,5-bis(3-tetradecylthiophene-2-yl)thieno[3,2-b]thiophene-2,5-diyl]. The transferred metal films can make reliable contacts without damaging ultrathin polymer films, self-assembled monolayers and graphene, which is not otherwise possible from evaporated or sputtered metal films

  2. Genetic Relationships Among Olive (Olea europaea L.) Cultivars Native to Turkey.

    Science.gov (United States)

    Sakar, Ebru; Unver, Hulya; Bakir, Melike; Ulas, Mehmet; Sakar, Zeynep Mujde

    2016-08-01

    Olive is a widely cultivated, mainly in the Mediterranean region, and economically important fruit species used as both olive oil and table olive consumption. In Turkey, more than 50 olive cultivars have been authorized for commercial plantations, representing the developmental base for the olive industry. The aim of the present study was to identify genetic relationships among the most widely grown 27 olive cultivars in Turkey, using microsatellite or simple sequence repeat markers. Nine well-known foreign olive cultivars from different countries are also included in the study to compare the Turkish cultivars. To determine genetic relationship and diversity, 10 SSR loci (DCA3, DCA9, DCA15, DCA18, UDO4, UDO9, UDO11, UDO12, UDO24, UDO28) were used. Jaccard's similarity coefficient and the UPGMA method for cluster analysis were performed using the software NTSYSpc. The results showed that the number of alleles per locus ranging from 4 (UDO4, UDO9, UDO11, UDO12, DCA15) to 12 (DCA9) presenting high polymorphism. There were no identical cultivars. High similarity was shown by cultivars Maviand Adana topağı (0.754). The most genetically divergent cultivars, Domat-Meski (0.240) and Domat-NizipYağlık (0.245), were also identified.

  3. Ciencia y Tecnología de Materiales: de las sombras a las luces

    Directory of Open Access Journals (Sweden)

    Ruiz Valero, Caridad

    2002-08-01

    Full Text Available Not available

    En este artículo se analiza la presencia de la mujer en las escalas del Consejo Superior de Investigaciones Científicas (CSIC centrándonos en el Área de Ciencia y Tecnología de Materiales. Los datos indican que algo se ha hecho mal desde el principio para que un área tan joven presente cifiras tan alarmantes de desigualdad de género, con sólo un 3% de Profesoras de Investigación cuando las mujeres representan el 31% del personal científico del área. Es una realidad la existencia de un techo de cristal que impide que las mujeres alcancen los puestos de máxima responsabilidad. Tanto las mujeres jóvenes como los hombres no son aún muy conscientes de su existencia, no se ve, es transparente, sólo te topas con él cuando tratas de atravesarlo. No se manifiesta de igual manera en todos los Centros, en algunos es más frágil, en otros es cristal blindado.

  4. Synthesis of CdS nanocrystals in polymeric films studied by in-situ GID and GISAXS

    KAUST Repository

    Di Luccio, Tiziana

    2015-07-07

    In this work, we describe the synthesis of CdS nanocrystals in thin polymeric films by in-situ Grazing Incidence Diffraction (GID) and Grazing Incidence Small Angle Scattering (GISAXS). The 2D GISAXS patterns indicate how the precursor structure is altered as the temperature is varied from 25°C to 300°C. At 150°C, the CdS nanocrystals start to arrange themselves in a hexagonal lattice with a lattice parameter of 27 A. The diffraction intensity from the hexagonal lattice reaches a maximum at 170"C and decreases steadily upon further heating above 220°C indicating loss of symmetry. Correspondingly, the GID scans at 170°C show strong crystalline peaks from cubic CdS nanocrystals that are about 2 nm size. The results indicate that a temperature of 170°C is sufficient to synthesize CdS nanocrystals without degradation of the polymer matrix (Topas) in thin films (about 30nm). © 2015 Materials Research Society.

  5. Patterned structures of in situ size controlled CdS nanocrystals in a polymer matrix under UV irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Fragouli, D; Pompa, P P; Caputo, G; Cingolani, R; Athanassiou, A [NNL-National Nanotechnology Laboratory, INFM, CNR, Via Arnesano, 73100 Lecce (Italy); Resta, V; Laera, A M; Tapfer, L [ENEA, Centro Ricerche Brindisi, SS7 Appia Km 706, I-72100 Brindisi (Italy)], E-mail: despina.fragouli@unile.it

    2009-04-15

    A method of in situ formation of patterns of size controlled CdS nanocrystals in a polymer matrix by pulsed UV irradiation is presented. The films consist of Cd thiolate precursors with different carbon chain lengths embedded in TOPAS polymer matrices. Under UV irradiation the precursors are photolyzed, driving to the formation of CdS nanocrystals in the quantum size regime, with size and concentration defined by the number of incident UV pulses, while the host polymer remains macroscopically/microscopically unaffected. The emission of the formed nanocomposite materials strongly depends on the dimensions of the CdS nanocrystals, thus, their growth at the different phases of the irradiation is monitored using spatially resolved photoluminescence by means of a confocal microscope. X-ray diffraction measurements verified the existence of the CdS nanocrystals, and defined their crystal structure for all the studied cases. The results are reinforced by transmission electron microscopy. It is proved that the selection of the precursor determines the efficiency of the procedure, and the quality of the formed nanocrystals. Moreover it is demonstrated that there is the possibility of laser induced formation of well-defined patterns of CdS nanocrystals, opening up new perspectives in the development of nanodevices.

  6. Status report on the HFR conversion and re-licensing project

    International Nuclear Information System (INIS)

    Wijtsma, F.G.

    2003-01-01

    In 1999 the HFR license holder (JRC, Petten, the Netherlands) initiated a project to study the conversion of the HFR from HEU to LEU. The first phase of this project consisted of a parametric study to determine the optimum fuel element and control rod design within given boundary conditions such as geometry, density, performance and cycle length. Results of this study are a 22 plates fuel element (550 g 235 U) at a density of 4.8 g.cm -3 and a 17 plates control rod (440 g 235 U). The second phase contains all aspects related to the conversion including a full-scale test irradiation of a prototype LEU element. The actual conversion of the HFR requires a new license. For this reason the re-licensing project has started in 2001. In this context many studies have been performed e.g. Risk Scoping Study, Safety Analyses, TOPA (Technical, Operational, Personnel and Administrative) evaluation. The license application will be based on a new Safety Report and an Environmental Impact Statement and will be submitted to the competent Authorities at the end of October 2003. (author)

  7. Evaluation of the functional activity of activated sludge from local waste water treatment plant in the Arctic region

    Directory of Open Access Journals (Sweden)

    Il'inskiy V. V.

    2017-03-01

    Full Text Available The paper considers characteristics of the activated sludge in the local wastewater treatment plant (LWTP and its ability to purify fully domestic sewage water in the Far North. Biochemical process of destruction of organic pollutants is influenced by a microbial complex functioning in aeration tanks. Taking into account climatic conditions of the region where the organic matter degradation processes are slowed, and lack of control over the operation, efficiency and occupational safety of LWTPs, it seems to be important to study the physiological characteristics of the bacteria used in bioremediation, and their ability to maximize the purifying domestic sewage in the Arctic region. Undue intervention in the biosphere systems leads to disruption of the balance of internal and external ecosystems communications. The goal of research is studying structural determination and functioning of activated sludge bacteriocenosis of LWTP TOPAS-5 (GK "Topol-ECO" in certain physical and chemical conditions of the habitat, and establishing completeness of cleaning process in this treatment plant. The paper considers the structure (quantitative and qualitative composition and function of LWTP activated sludge bacteriocenosis functioning in the Arctic region. The estimation of the activated sludge of full waste water treatment process of the LWTP has been given. The research's results have allowed to identify and determine the bacterial count of physiological groups of microorganisms purified domestic sewage; to isolate from activated sludge the bioflocculant-producing microorganisms' on the experimental medium; to evaluate efficiency of LWTP work in the Arctic region

  8. Evaluation of some fungicides on mycorrhizal symbiosis between two Glomus species from commercial inocula and Allium porrum L. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Dorrego, A.; Mestre Pares, J.

    2010-07-01

    This paper reports the effect of twenty-five commonly used fungicides in agriculture on two arbuscular mycorrhizal fungi (AMF) present in commercial products of ATENS, S.L.: Glomus intra radices (Schenck and Smith) and Glomus mosseae [(Nicol. and Gerd.) Gerdemann and Trappe], forming the symbiosis with leek plants. Systemic fungicides (Aliette, Beltanol, Caddy 10, Forum, Moncut, Ortiva, Previcur, Ridomil Gold MZ, Ridomil Gold SL, Rubigan, Sinthane, Stroby, Swich, Tachigarem, Teldor, Topas 10 EC, Frupica) and non systemic fungicides (Daconil 75%, Ditiver, Euparem, INACOP, Octagon, Parmex, Terrazole and Metaram), started to be applied to soil and leaves at recommended concentrations and frequencies 4 weeks after transplant and AMF inoculation. The effect of the fungicides was assessed by comparing treated and untreated plants that were inoculated with the AMF through quantification of root mycorrhizal colonization. Among the fungicides applied to the soil, Octagon, Ditiver, Parmex and Metaram virtually eliminated the mycorrhizal symbiosis in treated plants, while the mycorrhizal colonization was not affected by the soil treatment with Beltanol, INACOP and Previcur. Three fungicides of foliar recommended application: Rubigan, Frupica, and Sinthane, strongly inhibited mycorrhizal colonization, but Aliette, Forum, Teldor, Swich and Ortiva, did not seem to reduce it substantially. In addition, the work describes the individual effect of each fungicide applied on both, foliage and soil. (Author) 29 refs.

  9. Heterogeneous integration of lithium niobate and silicon nitride waveguides for wafer-scale photonic integrated circuits on silicon.

    Science.gov (United States)

    Chang, Lin; Pfeiffer, Martin H P; Volet, Nicolas; Zervas, Michael; Peters, Jon D; Manganelli, Costanza L; Stanton, Eric J; Li, Yifei; Kippenberg, Tobias J; Bowers, John E

    2017-02-15

    An ideal photonic integrated circuit for nonlinear photonic applications requires high optical nonlinearities and low loss. This work demonstrates a heterogeneous platform by bonding lithium niobate (LN) thin films onto a silicon nitride (Si3N4) waveguide layer on silicon. It not only provides large second- and third-order nonlinear coefficients, but also shows low propagation loss in both the Si3N4 and the LN-Si3N4 waveguides. The tapers enable low-loss-mode transitions between these two waveguides. This platform is essential for various on-chip applications, e.g., modulators, frequency conversions, and quantum communications.

  10. Polymeric matrix materials for infrared metamaterials

    Science.gov (United States)

    Dirk, Shawn M; Rasberry, Roger D; Rahimian, Kamyar

    2014-04-22

    A polymeric matrix material exhibits low loss at optical frequencies and facilitates the fabrication of all-dielectric metamaterials. The low-loss polymeric matrix material can be synthesized by providing an unsaturated polymer, comprising double or triple bonds; partially hydrogenating the unsaturated polymer; depositing a film of the partially hydrogenated polymer and a crosslinker on a substrate; and photopatterning the film by exposing the film to ultraviolet light through a patterning mask, thereby cross-linking at least some of the remaining unsaturated groups of the partially hydrogenated polymer in the exposed portions.

  11. Coupling to photonic crystal fibers

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Bjarklev, Anders Overgaard; Knudsen, Erik

    2002-01-01

    In this work we have analyzed the correspondence between the fundamental mode of PCFs and Gaussian modes as a function of frequency, pitch, and air hole size. Such analysis provides insight into design space regions of PCFs, where low-loss coupling to standard fibers may be obtained.......In this work we have analyzed the correspondence between the fundamental mode of PCFs and Gaussian modes as a function of frequency, pitch, and air hole size. Such analysis provides insight into design space regions of PCFs, where low-loss coupling to standard fibers may be obtained....

  12. Low jitter and high power all-active mode-locked lasers

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2003-01-01

    A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW.......A novel epitaxial design leading to low loss and low gain saturation improves the properties of 40 GHz mode-locked lasers. We obtain 2.8 ps nearly chirp free pulses with 228 fs jitter and fiber-coupled power of 7 mW....

  13. Toward single-mode UV to near-IR guidance using hollow-core anti-resonant silica fiber

    DEFF Research Database (Denmark)

    Habib, Md Selim; Antonio-Lopez, Jose Enrique; Van Newkirk, Amy

    2017-01-01

    Hollow-core anti-resonant (HC-AR) fibers with a “negative-curvature” of the core-cladding boundary have been extensively studied over the past few years owing to their low loss and wide transmission bandwidths. The key unique feature of the HC-AR fiber is that the coupling between the core and cl...... a silica HC-AR fiber having a single ring of 7 non-touching capillaries, designed to have effectively single-mode operation and low loss from UV to near-IR....

  14. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled PZT ribbons.

    Science.gov (United States)

    Qi, Yi; Kim, Jihoon; Nguyen, Thanh D; Lisko, Bozhena; Purohit, Prashant K; McAlpine, Michael C

    2011-03-09

    The development of a method for integrating highly efficient energy conversion materials onto soft, biocompatible substrates could yield breakthroughs in implantable or wearable energy harvesting systems. Of particular interest are devices which can conform to irregular, curved surfaces, and operate in vital environments that may involve both flexing and stretching modes. Previous studies have shown significant advances in the integration of highly efficient piezoelectric nanocrystals on flexible and bendable substrates. Yet, such inorganic nanomaterials are mechanically incompatible with the extreme elasticity of elastomeric substrates. Here, we present a novel strategy for overcoming these limitations, by generating wavy piezoelectric ribbons on silicone rubber. Our results show that the amplitudes in the waves accommodate order-of-magnitude increases in maximum tensile strain without fracture. Further, local probing of the buckled ribbons reveals an enhancement in the piezoelectric effect of up to 70%, thus representing the highest reported piezoelectric response on a stretchable medium. These results allow for the integration of energy conversion devices which operate in stretching mode via reversible deformations in the wavy/buckled ribbons.

  15. Photochemical charges separation and photoelectric properties of flexible solar cells with two types of heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiangyang, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn; Wang, Shun; Zheng, Haiwu; Cheng, Xiuying; Gu, Yuzong, E-mail: lxy081276@126.com, E-mail: yzgu@henu.edu.cn [Institute of Microsystems Physics and School of Physics and Electronics, Henan University, Kaifeng 475004 (China)

    2015-12-14

    Photochemical charges generation, separation, and transport at nanocrystal interfaces are central to energy conversion for solar cells. Here, Zn{sub 2}SnO{sub 4} nanowires/Cu{sub 4}Bi{sub 4}S{sub 9} (ZTO/CBS), ZTO nanowires/CBS-reduced graphene oxide (ZTO/CBS-RGO), and bulk heterojunction (BHJ) solar cells were measured. The signals of steady state and electric field-induced surface photovoltage indicate that RGO with high electron mobility can evidently improve the photovoltaic response. Besides, ZTO/CBS and ZTO/CBS-RGO cells exhibit the excellent performance and the highest efficiencies of 1.2% and 2.8%, respectively. The internal relations of photoelectric properties to some factors, such as film thickness, direct paths, RGO conductive network, energy level matching, etc., were discussed in detail. Qualitative and quantitative analyses further verified the comprehensive effect of RGO and other factors. Importantly, the fine bendable characteristic of BHJ solar cells with excellent efficiency and facile, scalable production gives the as-made flexible solar cells device potential for practical application in future.

  16. A Geometry Deformation Model for Braided Continuum Manipulators

    Directory of Open Access Journals (Sweden)

    S. M. Hadi Sadati

    2017-06-01

    Full Text Available Continuum manipulators have gained significant attention in the robotic community due to their high dexterity, deformability, and reachability. Modeling of such manipulators has been shown to be very complex and challenging. Despite many research attempts, a general and comprehensive modeling method is yet to be established. In this paper, for the first time, we introduce the bending effect in the model of a braided extensile pneumatic actuator with both stiff and bendable threads. Then, the effect of the manipulator cross-section deformation on the constant curvature and variable curvature models is investigated using simple analytical results from a novel geometry deformation method and is compared to experimental results. We achieve 38% mean reference error simulation accuracy using our constant curvature model for a braided continuum manipulator in presence of body load and 10% using our variable curvature model in presence of extensive external loads. With proper model assumptions and taking to account the cross-section deformation, a 7–13% increase in the simulation mean error accuracy is achieved compared to a fixed cross-section model. The presented models can be used for the exact modeling and design optimization of compound continuum manipulators by providing an analytical tool for the sensitivity analysis of the manipulator performance. Our main aim is the application in minimal invasive manipulation with limited workspaces and manipulators with regional tunable stiffness in their cross section.

  17. Transparent conductive-polymer strain sensors for touch input sheets of flexible displays

    International Nuclear Information System (INIS)

    Takamatsu, Seiichi; Takahata, Tomoyuki; Muraki, Masato; Iwase, Eiji; Matsumoto, Kiyoshi; Shimoyama, Isao

    2010-01-01

    A transparent conductive polymer-based strain-sensor array, designed especially for touch input sheets of flexible displays, was developed. A transparent conductive polymer, namely poly(3, 4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS), was utilized owing to its strength under repeated mechanical bending. PEDOT:PSS strain sensors with a thickness of 130 nm exhibited light transmittance of 92%, which is the same as the transmittance of ITO electrodes widely used in flat panel displays. We demonstrated that the sensor array on a flexible sheet was able to sustain mechanical bending 300 times at a bending radius of 5 mm. The strain sensor shows a gauge factor of 5.2. The touch point on a flexible sheet could be detected from histograms of the outputs of the strain sensors when the sheet was pushed with an input force of 5 N. The touch input could be detected on the flexible sheet with a curved surface (radius of curvature of 20 mm). These results show that the developed transparent conductive polymer-based strain-sensor array is applicable to touch input sheets of mechanically bendable displays.

  18. Mechanical Properties of Welded Deformed Reinforcing Steel Bars

    Directory of Open Access Journals (Sweden)

    Ghafur H. Ahmed

    2015-05-01

    Full Text Available Reinforcement strength, ductility and bendability properties are important components in design of reinforced concrete members, as the strength of any member comes mainly from reinforcement. Strain compatibility and plastic behaviors are mainly depending on reinforcement ductility. In construction practice, often welding of the bars is required. Welding of reinforcement is an instant solution in many cases, whereas welding is not a routine connection process. Welding will cause deficiencies in reinforcement bars, metallurgical changes and re-crystallization of microstructure of particles. Weld metal toughness is extremely sensitive to the welding heat input that decreases both of its strength and ductility. For determining the effects of welding in reinforcement properties, 48 specimens were tested with 5 different bar diameters, divided into six groups. Investigated parameters were: properties of un-welded bars; strength, ductility and density of weld metal; strength and ductility reduction due to heat input for bundled bars and transverse bars; welding effect on bars’ bending properties; behavior of different joint types; properties of three weld groove shapes also the locations and types of failures sections. Results show that, strength and elongation of the welded bars decreased by (10-40% and (30-60% respectively. Cold bending of welded bars and groove welds shall be prevented.

  19. Effect of Morphological Differences on the Cold Formability of an Isothermally Heat-Treated Advanced High-Strength Steel

    Science.gov (United States)

    Weißensteiner, Irmgard; Suppan, Clemens; Hebesberger, Thomas; Winkelhofer, Florian; Clemens, Helmut; Maier-Kiener, Verena

    2018-04-01

    Steel sheets of Fe-0.2C-2Mn-0.2Si-0.03Ti-0.003B (m%) for the automotive industry were isothermally heat-treated, comprising austenitizing and subsequent isothermal annealing at temperatures between 300°C and 500°C. As a consequence, microstructures ranging from granular bainite over lower bainite to auto-tempered and untempered martensite were obtained. In tensile, hole expansion and bending tests, the performances in different forming conditions were compared and the changes of microstructure and texture were studied by complementary electron backscatter diffraction (EBSD) analyses. Samples with granular bainitic microstructures exhibited high total elongations but lower hole expansion ratios; in subsequent EBSD and texture analyses, evidence for inhomogeneous deformation was found. In contrast, the lath-like bainitic/martensitic microstructure showed higher strength and lower elongation to fracture. This results in a reduced bendability, but also in a high tolerance against damage induced by the shearing of edges, and, thus, allows homogeneous deformation to higher strains in the hole expansion test.

  20. Flexible free-standing porous graphene/Ni film electrode with enhanced rate capability for lithium-ion batteries

    International Nuclear Information System (INIS)

    Cao, Hailiang; Zhou, Xufeng; Shi, Junli; Liu, Zhaoping

    2016-01-01

    Flexible, lightweight and reliable lithium-ion batteries have attracted tremendous attention and research interest to meet the requirements of portable and bendable devices. Here, flexible, free-standing and porous graphene/Ni film with vertical nano-channels inside is prepared by metal etching of graphene film. Compared with dense graphene film, the porous graphene/Ni film employed as a binder-free anode in lithium-ion batteries exhibits higher capacity and much better rate capability, due to its unique interior channel architecture which is favorable for fast ion transport. At a high current density of 2 A g"−"1, it can reach a specific capacity of 117 mAh g"−"1. The porous film also shows low charge transfer resistance and good cycling stability. After 300 cycles at 1 A g"−"1, its specific capacity still remains at 147 mAh g"−"1, with high Coulombic efficiency of nearly 100%. Furthermore, the strategy developed here is very simple and of great importance to rational design of porous graphene film or graphene-based hybrids with various applications.

  1. Structure in defocused beams of x-ray mirrors: causes and possible solutions

    Science.gov (United States)

    Sutter, John P.; Alcock, Simon G.; Rust, Fiona; Wang, Hongchang; Sawhney, Kawal

    2014-09-01

    Grazing incidence mirrors are now a standard optic for focusing X-ray beams. Both bimorph and mechanically bendable mirrors are widely used at Diamond Light Source because they permit a wide choice of focal lengths. They can also be deliberately set out of focus to enlarge the X-ray beam, and indeed many beamline teams now wish to generate uniform beam spots of variable size. However, progress has been slowed by the appearance of fine structure in these defocused beams. Measurements showing the relationship between the medium-frequency polishing error and this structure over a variety of beam sizes will be presented. A theoretical model for the simulations of defocused beams from general mirrors will then be developed. Not only the figure error and its first derivative the slope error, but also the second derivative, the curvature error, must be considered. In conclusion, possible ways to reduce the defocused beam structure by varying the actuators' configuration and settings will be discussed.

  2. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy.

    Science.gov (United States)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-05-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or "tophat" beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  3. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal, E-mail: kawal.sawhney@diamond.ac.uk [Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom)

    2016-05-15

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  4. A stretchable polymer-carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hojun; Yoo, Jung-Keun; Jung, Yeon Sik [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Park, Jong-Hyun [Material R and D Department, LG Display Co., Ltd., Paju-si, Gyeonggi-do (Korea, Republic of); Kim, Jin Ho [Icheon Branch, Korea Institute of Ceramic Engineering and Technology, Icheon-si, Gyeonggi-do (Korea, Republic of); Kang, Kisuk [Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of)

    2012-08-15

    Flexible energy-storage devices have attracted growing attention with the fast development of bendable electronic systems. However, it still remains a challenge to find reliable electrode materials with both high mechanical flexibility/toughness and excellent electron and lithium-ion conductivity. This paper reports the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. The systematic optimization of the porous morphology is performed by controllably inducing the phase separation of polymethylmethacrylate (PMMA) in polydimethylsiloxane (PDMS) and removing PMMA, in order to generate well-controlled pore networks. It is demonstrated that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. The optimization of the pore size and the volume fraction provides higher capacity by nearly seven-fold compared to a nonporous nanocomposite. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Light-Responsive Ion-Redistribution-Induced Resistive Switching in Hybrid Perovskite Schottky Junctions

    KAUST Repository

    Guan, Xinwei

    2017-11-23

    Hybrid Perovskites have emerged as a class of highly versatile functional materials with applications in solar cells, photodetectors, transistors, and lasers. Recently, there have also been reports on perovskite-based resistive switching (RS) memories, but there remain open questions regarding device stability and switching mechanism. Here, an RS memory based on a high-quality capacitor structure made of an MAPbBr3 (CH3NH3PbBr3) perovskite layer sandwiched between Au and indium tin oxide (ITO) electrodes is reported. Such perovskite devices exhibit reliable RS with an ON/OFF ratio greater than 103, endurance over 103 cycles, and a retention time of 104 s. The analysis suggests that the RS operation hinges on the migration of charged ions, most likely MA vacancies, which reversibly modifies the perovskite bulk transport and the Schottky barrier at the MAPbBr3/ITO interface. Such perovskite memory devices can also be fabricated on flexible polyethylene terephthalate substrates with high bendability and reliability. Furthermore, it is found that reference devices made of another hybrid perovskite MAPbI3 consistently exhibit filament-type switching behavior. This work elucidates the important role of processing-dependent defects in the charge transport of hybrid perovskites and provides insights on the ion-redistribution-based RS in perovskite memory devices.

  6. A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration

    Science.gov (United States)

    Scalia, Alberto; Bella, Federico; Lamberti, Andrea; Bianco, Stefano; Gerbaldi, Claudio; Tresso, Elena; Pirri, Candido Fabrizio

    2017-08-01

    The recent need to benefit from electricity in every moment of daily life, particularly when the access to the electric grid is limited, is forcing the scientific and industrial community to an intensive effort towards the production of integrated energy harvesting and storage devices able to drive low power electronics. In this framework, flexibility represents a mandatory requirement to cover non-planar or bendable surfaces, more and more common in nowadays-electronic devices. To this purpose, here we present an innovative device consisting of a TiO2 nanotube-based dye sensitized solar cell and a graphene-based electrical double layer capacitor integrated in a flexible architecture. Both the units are obtained by easily scalable fabrication processes exploiting photopolymer membranes as electrolytes and metal grids as current collectors. The performance of the two units and of the integrated system are thoroughly investigated by electrochemical measurements also under different irradiation conditions. To the best of our knowledge, this work shows the highest energy conversion and storage efficiency (1.02%) ever attained under 1 Sun irradiation condition for a flexible dye-sensitized-based non-wired photocapacitor. Noteworthy, this value dramatically increases while lowering the illumination condition to 0.3 Sun, achieving a remarkable value of 1.46%, thus showing optimal performances in real operation conditions.

  7. Flexible free-standing porous graphene/Ni film electrode with enhanced rate capability for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Hailiang; Zhou, Xufeng, E-mail: zhouxf@nimte.ac.cn; Shi, Junli; Liu, Zhaoping, E-mail: liuzp@nimte.ac.cn

    2016-11-15

    Flexible, lightweight and reliable lithium-ion batteries have attracted tremendous attention and research interest to meet the requirements of portable and bendable devices. Here, flexible, free-standing and porous graphene/Ni film with vertical nano-channels inside is prepared by metal etching of graphene film. Compared with dense graphene film, the porous graphene/Ni film employed as a binder-free anode in lithium-ion batteries exhibits higher capacity and much better rate capability, due to its unique interior channel architecture which is favorable for fast ion transport. At a high current density of 2 A g{sup −1}, it can reach a specific capacity of 117 mAh g{sup −1}. The porous film also shows low charge transfer resistance and good cycling stability. After 300 cycles at 1 A g{sup −1}, its specific capacity still remains at 147 mAh g{sup −1}, with high Coulombic efficiency of nearly 100%. Furthermore, the strategy developed here is very simple and of great importance to rational design of porous graphene film or graphene-based hybrids with various applications.

  8. Transport properties of different BSCCO wires

    International Nuclear Information System (INIS)

    Metra, P.; Gherardi, L.; Vellego, G.; Masini, R.; Zannella, S.

    1990-01-01

    This paper reports on two classes of solver sheathed BSCCO wires and laminates were prepared from 2223 (Pb substituted) and 2212 powders, respectively, by the powder in tube method. By suitable heat treatments (sintering and annealing below the melting temperature for 2223, melting + annealing for 2212), we obtained sample wires with Tc of ∼110 and ∼85 K respectively, comparable Jc at 77 K (∼10 3 A/cm 2 ), and dramatically different transport behavior. Measurements of critical current at different temperatures and as a function of applied magnetic field were carried out, to characterize the two classes of samples, together with other electrical testing (e.g. d.c. susceptibility) and structural analyses. The granular nature of the higher Tc BSCCO, qualitatively similar to the one of YBCO, was well documented. The melt-processed material showed no apparent granularity, but very strong field dependence of Jc at high temperature. The effect of mechanical deformation on Jc was also investigated by bending samples on different diameters before and after heat treatment. Wires and tapes with 2212 were found to be bendable on very small diameters before treatment, but also the 2223 filled samples were shown to accept significant deformation before sintering

  9. All printed antenna based on silver nanoparticles for 1.8 GHz applications

    Science.gov (United States)

    Hassan, Arshad; Ali, Shawkat; Bae, Jinho; Lee, Chong Hyun

    2016-08-01

    In this paper, we propose a novel printed antenna for 1.8 GHz band applications. The proposed antenna is made of silver nanoparticle-based radiating element and 0.04-mm thin, transparent and flexible polyethylene terephthalate (PET) substrate. The proposed antenna is designed and simulated by finite-element-method-based high-frequency structure simulator (HFSS). We obtain reflection coefficient of -23 dB, gain of 2.72 dBi and efficiency of 93.33 %. The resonance frequency of the antenna is also verified through national instrument (NI) Multisim simulation on the proposed equivalent circuit. We realize the antenna in a single process by commercial Dimatix material inkjet printer (DMP-3000) at ambient condition and characterize it by using vector network analyzer and spectrum analyzer. The measured reflection coefficient and -10 dB bandwidth are -32.2 dB and 190.5 MHz, respectively, which shows good agreement with HFSS and NI Multisim results. The proposed compact and optimum antenna printed on thin, transparent and fully bendable PET substrate becomes very attractive since it can overcome the limits of cost and size. These results suggest that the proposed antenna is well suitable for electronic devices operating over 1.8 GHz band such as Telos-B and other wearable printed devices.

  10. Ice blasting device for washing pump

    International Nuclear Information System (INIS)

    Hirose, Yasuo.

    1992-01-01

    In a nuclear power plant, when the inside of a pump casing such as a recycling pump is scrubbed, since operator's safety should be ensured, it requires a large-scaled operation. Then, a cover is attached to a flange of the pump casing, in which a driving portion is disposed passing through the cover vertically movably and rotatably, an arm is disposed bendably to the top end of the arm, and a blast nozzle is disposed to the top end of the arm for jetting ice particles, with a camera being disposed to the blast nozzle. The inside of the casing can be scrubbed safely and rapidly by an ice blast method by remote operation while monitoring the state of scrubbing for the inside of the casing by a camera. Further, since the flange of the pump casing for installing the ice blast device is covered by the cover, mists are not scattered to the outside. In addition, mists may be sucked and removed by an exhaustion duct. (N.H.)

  11. Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric

    Science.gov (United States)

    Xu, Meili; Xiang, Lanyi; Xu, Ting; Wang, Wei; Xie, Wenfa; Zhou, Dayu

    2017-10-01

    Future flexible electronic systems require memory devices combining low-power operation and mechanical bendability. However, high programming/erasing voltages, which are universally needed to switch the storage states in previously reported ferroelectric organic field-effect transistor (Fe-OFET) nonvolatile memories (NVMs), severely prevent their practical applications. In this work, we develop a route to achieve a low-voltage operating flexible Fe-OFET NVM. Utilizing vertical phase separation, an ultrathin self-organized poly(styrene) (PS) buffering layer covers the surface of the ferroelectric polymer layer by one-step spin-coating from their blending solution. The ferroelectric polymer with a low coercive field contributes to low-voltage operation in the Fe-OFET NVM. The polymer PS contributes to the improvement of mobility, attributing to screening the charge scattering and decreasing the surface roughness. As a result, a high performance flexible Fe-OFET NVM is achieved at the low P/E voltages of ±10 V, with a mobility larger than 0.2 cm2 V-1 s-1, a reliable P/E endurance over 150 cycles, stable data storage retention capability over 104 s, and excellent mechanical bending durability with a slight performance degradation after 1000 repetitive tensile bending cycles at a curvature radius of 5.5 mm.

  12. An experimental apparatus for diffraction-limites soft x-ray nanofocusing

    Energy Technology Data Exchange (ETDEWEB)

    Merthe, Daniel; Goldberg, Kenneth; Yashchuk, Valeriy; Yuan, Sheng; McKinney, Wayne; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory; Rakawa, Senajith; Anderson, Erik; Smith, Brian; Domning, Edward; Warwick, Tony; Padmore, Howard

    2011-10-21

    Realizing the experimental potential of high-brightness, next generation synchrotron and free-electron laser light sources requires the development of reflecting x-ray optics capable of wavefront preservation and high-resolution nano-focusing. At the Advanced Light Source (ALS) beamline 5.3.1, we are developing broadly applicable, high-accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad slope measurement accuracy for diffraction-limited Kirkpatrick-Baez (KB) mirrors. The at-wavelength methodology we are developing relies on a series of wavefront-sensing tests with increasing accuracy and sensitivity, including scanning-slit Hartmann tests, grating-based lateral shearing interferometry, and quantitative knife-edge testing. We describe the original experimental techniques and alignment methodology that have enabled us to optimally set a bendable KB mirror to achieve a focused, FWHM spot size of 150 nm, with 1 nm (1.24 keV) photons at 3.7 mrad numerical aperture. The predictions of wavefront measurement are confirmed by the knife-edge testing.The side-profiled elliptically bent mirror used in these one-dimensional focusing experiments was originally designed for a much different glancing angle and conjugate distances. This work demonstrates that high-accuracy, at-wavelength wavefront-slope feedback can be used to optimize the pitch, roll, and mirror-bending forces in situ, using procedures that are deterministic and repeatable.

  13. Speckle-based at-wavelength metrology of X-ray mirrors with super accuracy

    International Nuclear Information System (INIS)

    Kashyap, Yogesh; Wang, Hongchang; Sawhney, Kawal

    2016-01-01

    X-ray active mirrors, such as bimorph and mechanically bendable mirrors, are increasingly being used on beamlines at modern synchrotron source facilities to generate either focused or “tophat” beams. As well as optical tests in the metrology lab, it is becoming increasingly important to optimise and characterise active optics under actual beamline operating conditions. Recently developed X-ray speckle-based at-wavelength metrology technique has shown great potential. The technique has been established and further developed at the Diamond Light Source and is increasingly being used to optimise active mirrors. Details of the X-ray speckle-based at-wavelength metrology technique and an example of its applicability in characterising and optimising a micro-focusing bimorph X-ray mirror are presented. Importantly, an unprecedented angular sensitivity in the range of two nanoradians for measuring the slope error of an optical surface has been demonstrated. Such a super precision metrology technique will be beneficial to the manufacturers of polished mirrors and also in optimization of beam shaping during experiments.

  14. Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates

    International Nuclear Information System (INIS)

    Molina-Lopez, F.; Briand, D.; Rooij, N. F. de; Kinkeldei, T.; Tröster, G.

    2013-01-01

    Interdigitated electrodes are common structures in the fields of microelectronics and MEMS. Recent developments in flexible electronics compel an understanding of such structures under bending constraints. In this work, the behavior of interdigitated micro-electrodes when subjected to circular bending has been theoretically and experimentally studied through changes in capacitance. An analytical model has been developed to calculate the expected variation in capacitance of such structures while undergoing outward and inward bending along the direction perpendicular to the electrodes. The model combines conformal mapping techniques to account for the electric field redistribution and fundamental aspects of solid mechanics in order to define the geometrical deformation of the electrodes while bending. To experimentally verify our theoretical predictions, several interdigitated electrode structures with different geometries were fabricated on polymeric substrates by means of photolithography. The samples, placed in a customized bending setup, were bent to controlled radii of curvature while measuring their capacitance. A maximum variation in capacitance of less than 3% was observed at a minimum radius of curvature of 2.5 mm for all the devices tested with very thin electrodes whereas changes of up to 7% were found on stiffer, plated electrodes. Larger or smaller variations would be possible, in theory, by adjusting the geometry of the device. This work establishes a useful predictive tool for the design and evaluation of truly flexible/bendable electronics consisting of interdigitated structures, allowing one to tune the bending influence on the capacitance value through geometrical design

  15. Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers

    Science.gov (United States)

    Khan, S.; Yogeswaran, N.; Taube, W.; Lorenzelli, L.; Dahiya, R.

    2015-12-01

    This work presents a novel manufacturing route for obtaining high performance bendable field effect transistors (FET) by embedding silicon (Si) microwires (2.5 μm thick) in layers of solution-processed dielectric and metallic layers. The objective of this study is to explore heterogeneous integration of Si with polymers and to exploit the benefits of both microelectronics and printing technologies. Arrays of Si microwires are developed on silicon on insulator (SOI) wafers and transfer printed to polyimide (PI) substrate through a polydimethylsiloxane (PDMS) carrier stamp. Following the transfer printing of Si microwires, two different processing steps were developed to obtain top gate top contact and back gate top contact FETs. Electrical characterizations indicate devices having mobility as high as 117.5 cm2 V-1 s-1. The fabricated devices were also modeled using SILVACO Atlas. Simulation results show a trend in the electrical response similar to that of experimental results. In addition, a cyclic test was performed to demonstrate the reliability and mechanical robustness of the Si μ-wires on flexible substrates.

  16. Structural, evolutionary and genetic analysis of the histidine biosynthetic "core" in the genus Burkholderia.

    Science.gov (United States)

    Papaleo, Maria Cristiana; Russo, Edda; Fondi, Marco; Emiliani, Giovanni; Frandi, Antonio; Brilli, Matteo; Pastorelli, Roberta; Fani, Renato

    2009-12-01

    In this work a detailed analysis of the structure, the expression and the organization of his genes belonging to the core of histidine biosynthesis (hisBHAF) in 40 newly determined and 13 available sequences of Burkholderia strains was carried out. Data obtained revealed a strong conservation of the structure and organization of these genes through the entire genus. The phylogenetic analysis showed the monophyletic origin of this gene cluster and indicated that it did not undergo horizontal gene transfer events. The analysis of the intergenic regions, based on the substitution rate, entropy plot and bendability suggested the existence of a putative transcription promoter upstream of hisB, that was supported by the genetic analysis that showed that this cluster was able to complement Escherichia colihisA, hisB, and hisF mutations. Moreover, a preliminary transcriptional analysis and the analysis of microarray data revealed that the expression of the his core was constitutive. These findings are in agreement with the fact that the entire Burkholderiahis operon is heterogeneous, in that it contains "alien" genes apparently not involved in histidine biosynthesis. Besides, they also support the idea that the proteobacterial his operon was piece-wisely assembled, i.e. through accretion of smaller units containing only some of the genes (eventually together with their own promoters) involved in this biosynthetic route. The correlation existing between the structure, organization and regulation of his "core" genes and the function(s) they perform in cellular metabolism is discussed.

  17. Nanowire surface fastener fabrication on flexible substrate

    Science.gov (United States)

    Toku, Yuhki; Uchida, Keita; Morita, Yasuyuki; Ju, Yang

    2018-07-01

    The market for wearable devices has increased considerably in recent years. In response to this demand, flexible electronic circuit technology has become more important. The conventional bonding technology in electronic assembly depends on high-temperature processes such as reflow soldering, which result in undesired thermal damages and residual stress at a bonding interface. In addition, it exhibits poor compatibility with bendable or stretchable device applications. Therefore, there is an urgent requirement to attach electronic parts on printed circuit boards with good mechanical and electrical properties at room temperature. Nanowire surface fasteners (NSFs) are candidates for resolving these problems. This paper describes the fabrication of an NSF on a flexible substrate, which can be used for room temperature conductive bonding. The template method is used for preparing high-density nanowire arrays. A Cu thin film is layered on the template as the flexible substrate. After etching the template, a Cu NSF is obtained on the Cu film substrate. In addition, the electrical and mechanical properties of the Cu NSF are studied under various fabrication conditions. The Cu NSF exhibits high shear adhesion strength (∼234 N cm‑2) and low contact resistivity (2.2 × 10‑4 Ω cm2).

  18. Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array.

    Science.gov (United States)

    Sarwar, Mirza Saquib; Dobashi, Yuta; Preston, Claire; Wyss, Justin K M; Mirabbasi, Shahriar; Madden, John David Wyndham

    2017-03-01

    The development of bendable, stretchable, and transparent touch sensors is an emerging technological goal in a variety of fields, including electronic skin, wearables, and flexible handheld devices. Although transparent tactile sensors based on metal mesh, carbon nanotubes, and silver nanowires demonstrate operation in bent configurations, we present a technology that extends the operation modes to the sensing of finger proximity including light touch during active bending and even stretching. This is accomplished using stretchable and ionically conductive hydrogel electrodes, which project electric field above the sensor to couple with and sense a finger. The polyacrylamide electrodes are embedded in silicone. These two widely available, low-cost, transparent materials are combined in a three-step manufacturing technique that is amenable to large-area fabrication. The approach is demonstrated using a proof-of-concept 4 × 4 cross-grid sensor array with a 5-mm pitch. The approach of a finger hovering a few centimeters above the array is readily detectable. Light touch produces a localized decrease in capacitance of 15%. The movement of a finger can be followed across the array, and the location of multiple fingers can be detected. Touch is detectable during bending and stretch, an important feature of any wearable device. The capacitive sensor design can be made more or less sensitive to bending by shifting it relative to the neutral axis. Ultimately, the approach is adaptable to the detection of proximity, touch, pressure, and even the conformation of the sensor surface.

  19. Flexible FETs using ultrathin Si microwires embedded in solution processed dielectric and metal layers

    International Nuclear Information System (INIS)

    Khan, S; Yogeswaran, N; Lorenzelli, L; Taube, W; Dahiya, R

    2015-01-01

    This work presents a novel manufacturing route for obtaining high performance bendable field effect transistors (FET) by embedding silicon (Si) microwires (2.5 μm thick) in layers of solution-processed dielectric and metallic layers. The objective of this study is to explore heterogeneous integration of Si with polymers and to exploit the benefits of both microelectronics and printing technologies. Arrays of Si microwires are developed on silicon on insulator (SOI) wafers and transfer printed to polyimide (PI) substrate through a polydimethylsiloxane (PDMS) carrier stamp. Following the transfer printing of Si microwires, two different processing steps were developed to obtain top gate top contact and back gate top contact FETs. Electrical characterizations indicate devices having mobility as high as 117.5 cm 2 V −1 s −1 . The fabricated devices were also modeled using SILVACO Atlas. Simulation results show a trend in the electrical response similar to that of experimental results. In addition, a cyclic test was performed to demonstrate the reliability and mechanical robustness of the Si μ-wires on flexible substrates. (paper)

  20. Flexible graphene bio-nanosensor for lactate.

    Science.gov (United States)

    Labroo, Pratima; Cui, Yue

    2013-03-15

    The development of a flexible nanosensor for detecting lactate could expand opportunities for using graphene, both in fundamental studies for a variety of device platforms and in practical applications. Graphene is a delicate single-layer, two-dimensional network of carbon atoms with ultrasensitive sensing capabilities. Lactic acid is important for clinical analysis, sports medicine, and the food industry. Recently, wearable and flexible bioelectronics on plastics have attracted great interest for healthcare, sports and defense applications due to their advantages of being light-weight, bendable, or stretchable. Here, we demonstrate for the first time the development of a flexible graphene-based bio-nanosensor to detect lactate. Our results show that flexible lactate biosensors can be fabricated on a variety of plastic substrates. The sensor can detect lactate sensitively from 0.08 μM to 20 μM with a fast steady-state measuring time of 2s. The sensor can also detect lactate under different mechanical bending conditions, the sensor response decreased as the bending angle and number of bending repetitions increased. We anticipate that these results could open exciting opportunities for fundamental studies of flexible graphene bioelectronics by using other bioreceptors, as well as a variety of wearable, implantable, real-time, or on-site applications in fields ranging from clinical analysis to defense. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Bending Characteristics of Foldable Touch Display Panel with a Protection Structure Design

    Directory of Open Access Journals (Sweden)

    Hsien-Chie Cheng

    2015-01-01

    Full Text Available The study proposes and demonstrates an enhancement of a touch display panel (TDP through a polymer-based protection structure to achieve higher bendability and reliability. The bending performance of the TDP without or with the protection structure designs is addressed using three-dimensional geometry-nonlinear finite element analysis and mechanical testing. The elastic properties of the components in the TDP structure are derived from nanoindentation and uniaxial tensile/compressive testing. The calculated results are compared with each other and also against the experimental bending fatigue test data. At last, a design guideline and optimal factor setting for enhanced bending performance are sought through parametric FE analysis and Taguchi experimental design, respectively. The optimal design is compared with the original in terms of bending stress. The simulation results show that bending would create significant tensile and compressive bending stresses on the indium tin oxide/dielectric layers, which are the main cause of several commonly observed failures, such as thin film cracking and delamination, in a thin rigid film coating on a thick compliant substrate. It also turns out that a substrate with a lower stiffness has a better mechanical stability against bending stress.

  2. Free-standing nanocomposites with high conductivity and extensibility

    International Nuclear Information System (INIS)

    Chun, Kyoung-Yong; Kim, Shi Hyeong; Shin, Min Kyoon; Kim, Seon Jeong; Kim, Youn Tae; Spinks, Geoffrey M; Aliev, Ali E; Baughman, Ray H

    2013-01-01

    The prospect of electronic circuits that are stretchable and bendable promises tantalizing applications such as skin-like electronics, roll-up displays, conformable sensors and actuators, and lightweight solar cells. The preparation of highly conductive and highly extensible materials remains a challenge for mass production applications, such as free-standing films or printable composite inks. Here we present a nanocomposite material consisting of carbon nanotubes, ionic liquid, silver nanoparticles, and polystyrene–polyisoprene–polystyrene having a high electrical conductivity of 3700 S cm −1 that can be stretched to 288% without permanent damage. The material is prepared as a concentrated dispersion suitable for simple processing into free-standing films. For the unstrained state, the measured thermal conductivity for the electronically conducting elastomeric nanoparticle film is relatively high and shows a non-metallic temperature dependence consistent with phonon transport, while the temperature dependence of electrical resistivity is metallic. We connect an electric fan to a DC power supply using the films to demonstrate their utility as an elastomeric electronic interconnect. The huge strain sensitivity and the very low temperature coefficient of resistivity suggest their applicability as strain sensors, including those that operate directly to control motors and other devices. (paper)

  3. Adhesion and failure analysis of metal-polymer interface in flexible printed circuits boards

    Science.gov (United States)

    Park, Sanghee; Kim, Ye Chan; Choi, Kisuk; Chae, Heeyop; Suhr, Jonghwan; Nam, Jae-Do

    2017-12-01

    As device miniaturization in microelectronics is currently requested in the development of high performance device, which usually include highly-integrated metal-polyimide multilayer structures. A redistribution layer (RDL) process is currently emerging as one of the most advance fabrication techniques for on-chip interconnect and packaging. One of the major issues in this process is the poor adhesion of the metal-polyimide interfaces particularly in flexible circuit boards due to the flexibility and bendability of devices. In this study, low pressure O2 plasma treatment was investigated to improve the adhesion of metal-polyimide interfaces, using inductively coupled plasma (ICP) treatment. We identified that the adhesion of metal-polyimide interfaces was greatly improved by the surface roughness control providing 46.1 MPa of shear force in the ball shear test after O2 plasma treatment, compared 14.2 MPa without O2 plasma treatment. It was seemingly due to the fact that the adhesion in metal-polyimide interfaces was improved by a chemical conversion of C=O to C-O bonds and by a ring opening reaction of imide groups, which was confirmed with FT-IR analysis. In the finite element numerical analysis of metal-polyimide interfaces, the O2 plasma treated interface showed that the in-plane stress distribution and the vertical directional deformation agreed well with real failure modes in flexible circuits manufacturing.

  4. Indentation of a floating elastic sheet: geometry versus applied tension.

    Science.gov (United States)

    Box, Finn; Vella, Dominic; Style, Robert W; Neufeld, Jerome A

    2017-10-01

    The localized loading of an elastic sheet floating on a liquid bath occurs at scales from a frog sitting on a lily pad to a volcano supported by the Earth's tectonic plates. The load is supported by a combination of the stresses within the sheet (which may include applied tensions from, for example, surface tension) and the hydrostatic pressure in the liquid. At the same time, the sheet deforms, and may wrinkle, because of the load. We study this problem in terms of the (relatively weak) applied tension and the indentation depth. For small indentation depths, we find that the force-indentation curve is linear with a stiffness that we characterize in terms of the applied tension and bending stiffness of the sheet. At larger indentations, the force-indentation curve becomes nonlinear and the sheet is subject to a wrinkling instability. We study this wrinkling instability close to the buckling threshold and calculate both the number of wrinkles at onset and the indentation depth at onset, comparing our theoretical results with experiments. Finally, we contrast our results with those previously reported for very thin, highly bendable membranes.

  5. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.

    Science.gov (United States)

    Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian

    2016-08-01

    Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.

  6. Development of electronic tattoo for pulse rate monitoring: Materials perspective

    Science.gov (United States)

    Shinde, Shilpa Vikas; Sonavane, S. S.

    2018-05-01

    In India, there is a growing concern of the heart diseases and deaths due to heart failure. The severity of the problem can be minimised by efficient heart rate monitoring which can be used to provide before time caution to cater heart attack. Wearable sensor can be designed to sense the pulse. The sensor can be either placed near to heart or on the wrist to sense pulses and send pulse signals to the doctors. Such sensor should adhere to the skin for sufficiently long period without causing etching to the patient. It should also be bendable and stretchable like skin. This paper is a part of the research work carried out to develop patch type sensor, which is termed as Electronic Tattoo (ET). In pursuit for development of ET, we came across various designs and candidate materials which can be used for the ET. Thus, in this paper, we describe the process of selecting best suited method and material for the ET. It may also be noted that the sensor development is governed by the prevailing IEEE 802.15.6 standard.

  7. Hollow fibers made from a poly(3-hydroxybutyrate/poly-ε-caprolactone blend

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available Since poly(3-hydroxybutyrate (PHB is inherently brittle and possesses poor elastic properties, hollow fibers produced by melt spinning from pure PHB, as described in our earlier study [Macromolecular Materials and Engineering, 2010, 295/6, 585–594], do not meet the required needs regarding the mechanical performance. Besides hardly available PHB copolymers, also blend systems are known to enhance material properties and have thus been considered to be eligible to fabricate flexible or rather pliable hollow fibers based on PHB. Blends of PHB and poly-!-caprolactone (PCL are promising for the application in tissue engineering due to the inherent biocompatibility and biodegradability. A wide range of PHB/PCL compositions have been prepared by melt extrusion. Thermal and mechanical properties of the obtained specimens were analyzed in order to identify miscibility and degree of dispersion as well as to determine the influence on the overall mechanical performance. Even though these constituents are known to be immiscible, PHB/PCL 70/30 was proven to be an adequate composition. This blend showed a highly increased elongation and was found to be easily processable by melt spinning compared to pure PHB. From this blend well defined dimensionally stable bendable hollow fibers were fabricated.

  8. Transparent capacitors with hybrid ZnO:Al and Ag nanowires as electrodes

    International Nuclear Information System (INIS)

    Zhang, Guozhen; Wu, Hao; Wang, Xiao; Wang, Ti; Liu, Chang

    2016-01-01

    Transparent conducting films with a composite structure of AlZnO–Ag nanowires (AgNWs) have been prepared by atomic layer deposition. The sheet resistance was reduced from 120 to 9 Ω when the AgNW networks were involved. Transparent capacitors with Al_2O_3–TiO_2–Al_2O_3 dielectrics were fabricated on the composite electrodes and demonstrated a capacitance density of 10.1 fF μm"−"2, which was significantly higher than that of capacitors with AlZnO electrodes (8.8 fF μm"−"1). The capacitance density remained almost unchanged in a broad frequency range from 3 kHz to 1 MHz. Moreover, a low leakage current density of 2.4 × 10"−"7 A cm"−"2 at 1 V was achieved. Transparent and flexible capacitors were also fabricated using the composite electrodes, and demonstrated an improved bendability. The transparent capacitors showed an average optical transmittance over 70% in the visible range, and thus open the door to practical applications in transparent integrated circuits. (paper)

  9. Effects of Niobium Microalloying on Microstructure and Properties of Hot-Dip Galvanized Sheet

    Energy Technology Data Exchange (ETDEWEB)

    Mohrbacher, Hardy [NiobelCon bvba, Brussels (Belgium)

    2010-04-15

    Niobium microalloying is effective in hot-rolled and cold-rolled steels by providing a fine-grained microstructure resulting in increased strength. To optimize the strengthening effect, alloy design and hot-rolling conditions have to be adapted. As a key issue the dissolution and precipitation characteristics of Nb are discussed in particular with regard to the run-out table conditions. It is then considered how the hot-rolled microstructure and the solute state of Nb interact with the hot-dip galvanizing cycle. The adjusted conditions allow controlling the morphology and distribution of phases in the cold-rolled annealed material. Additional precipitation hardening can be achieved as well. The derived options can be readily applied to produce conventional HSLA and IF high strength steels as well as to modem multiphase steels. It will be explained how important application properties such as strength, elongation, bendability, weldability and delayed cracking resistance can be influenced in a controlled and favorable way. Examples of practical relevance and experience are given.

  10. Metamaterial Absorber for Electromagnetic Waves in Periodic Water Droplets.

    Science.gov (United States)

    Yoo, Young Joon; Ju, Sanghyun; Park, Sang Yoon; Ju Kim, Young; Bong, Jihye; Lim, Taekyung; Kim, Ki Won; Rhee, Joo Yull; Lee, YoungPak

    2015-09-10

    Perfect metamaterial absorber (PMA) can intercept electromagnetic wave harmful for body in Wi-Fi, cell phones and home appliances that we are daily using and provide stealth function that military fighter, tank and warship can avoid radar detection. We reported new concept of water droplet-based PMA absorbing perfectly electromagnetic wave with water, an eco-friendly material which is very plentiful on the earth. If arranging water droplets with particular height and diameter on material surface through the wettability of material surface, meta-properties absorbing electromagnetic wave perfectly in GHz wide-band were shown. It was possible to control absorption ratio and absorption wavelength band of electromagnetic wave according to the shape of water droplet-height and diameter- and apply to various flexible and/or transparent substrates such as plastic, glass and paper. In addition, this research examined how electromagnetic wave can be well absorbed in water droplets with low electrical conductivity unlike metal-based metamaterials inquiring highly electrical conductivity. Those results are judged to lead broad applications to variously civilian and military products in the future by providing perfect absorber of broadband in all products including transparent and bendable materials.

  11. Recent Advancements in Liquid Metal Flexible Printed Electronics: Properties, Technologies, and Applications

    Directory of Open Access Journals (Sweden)

    Xuelin Wang

    2016-11-01

    Full Text Available This article presents an overview on typical properties, technologies, and applications of liquid metal based flexible printed electronics. The core manufacturing material—room-temperature liquid metal, currently mainly represented by gallium and its alloys with the properties of excellent resistivity, enormous bendability, low adhesion, and large surface tension, was focused on in particular. In addition, a series of recently developed printing technologies spanning from personal electronic circuit printing (direct painting or writing, mechanical system printing, mask layer based printing, high-resolution nanoimprinting, etc. to 3D room temperature liquid metal printing is comprehensively reviewed. Applications of these planar or three-dimensional printing technologies and the related liquid metal alloy inks in making flexible electronics, such as electronical components, health care sensors, and other functional devices were discussed. The significantly different adhesions of liquid metal inks on various substrates under different oxidation degrees, weakness of circuits, difficulty of fabricating high-accuracy devices, and low rate of good product—all of which are challenges faced by current liquid metal flexible printed electronics—are discussed. Prospects for liquid metal flexible printed electronics to develop ending user electronics and more extensive applications in the future are given.

  12. ITO-free flexible organic photovoltaics with multilayer MoO3/LiF/MoO3/Ag/MoO3 as the transparent electrode

    International Nuclear Information System (INIS)

    Chen, Shilin; Dai, Yunjie; Zhang, Hongmei; Zhao, Dewei

    2016-01-01

    We present efficient flexible organic photovoltaics (OPVs) with multiple layers of molybdenum oxide (MoO 3 )/LiF/MoO 3 /Ag/MoO 3 as the transparent electrode, where the thin Ag layer yields high conductivity and the dielectric layer MoO 3 /LiF/MoO 3 has high transparency due to optical interference, leading to improved power conversion efficiency compared with indium tin oxide (ITO) based devices. The MoO 3 contacting organic active layer is used as a buffer layer for good hole extraction. Thus, the multilayer MoO 3 /LiF/MoO 3 /Ag/MoO 3 can improve light transmittance and also facilitate charge carrier extraction. Such an electrode shows excellent mechanical bendability with a 9% reduction of efficiency after 1000 cycles of bending due to the ductile nature of the thin metal layer and dielectric layer used. Our results suggest that the MoO 3 /LiF/MoO 3 /Ag/MoO 3 multilayer electrode is a promising alternative to ITO as an electrode in OPVs. (paper)

  13. Graphene-based integrated electrodes for flexible lithium ion batteries

    International Nuclear Information System (INIS)

    Shi, Ying; Wen, Lei; Zhou, Guangmin; Chen, Jing; Pei, Songfeng; Huang, Kun; Cheng, Hui-Ming; Li, Feng

    2015-01-01

    We have prepared flexible free-standing electrodes with anode and cathode active materials deposited on a highly conductive graphene membrane by a two-step filtration method. Compared with conventional electrodes using metal as current collectors, these electrodes have displayed stronger adhesion, superior electrochemical performance, higher energy density, and better flexibility. A full lithium ion battery assembled by adopting these graphene-based electrodes has showed high rate capability and long cyclic life. We have also assembled a thin, lightweight, and flexible lithium ion battery with poly-(dimethyl siloxane) sheets as packaging material to light a red light-emitting diode. This flexible battery can be easily bent without structural failure or performance loss and operated well under a bent state. The fabrication process of these graphene-based integrated electrodes only has two filtration steps; thus it is easy to scale up. These results suggest great potential for these graphene-based flexible batteries in lightweight, bendable, and wearable electronic devices. (paper)

  14. Voltage-Controlled Spray Deposition of Multiwalled Carbon Nanotubes on Semiconducting and Insulating Substrates

    Science.gov (United States)

    Maulik, Subhodip; Sarkar, Anirban; Basu, Srismrita; Daniels-Race, Theda

    2018-05-01

    A facile, cost-effective, voltage-controlled, "single-step" method for spray deposition of surfactant-assisted dispersed carbon nanotube (CNT) thin films on semiconducting and insulating substrates has been developed. The fabrication strategy enables direct deposition and adhesion of CNT films on target samples, eliminating the need for substrate surface functionalization with organosilane binder agents or metal layer coatings. Spray coating experiments on four types of sample [bare silicon (Si), microscopy-grade glass samples, silicon dioxide (SiO2), and polymethyl methacrylate (PMMA)] under optimized control parameters produced films with thickness ranging from 40 nm to 6 μm with substantial surface coverage and packing density. These unique deposition results on both semiconducting and insulator target samples suggest potential applications of this technique in CNT thin-film transistors with different gate dielectrics, bendable electronics, and novel CNT-based sensing devices, and bodes well for further investigation into thin-film coatings of various inorganic, organic, and hybrid nanomaterials on different types of substrate.

  15. Si Wire-Array Solar Cells

    Science.gov (United States)

    Boettcher, Shannon

    2010-03-01

    Micron-scale Si wire arrays are three-dimensional photovoltaic absorbers that enable orthogonalization of light absorption and carrier collection and hence allow for the utilization of relatively impure Si in efficient solar cell designs. The wire arrays are grown by a vapor-liquid-solid-catalyzed process on a crystalline (111) Si wafer lithographically patterned with an array of metal catalyst particles. Following growth, such arrays can be embedded in polymethyldisiloxane (PDMS) and then peeled from the template growth substrate. The result is an unusual photovoltaic material: a flexible, bendable, wafer-thickness crystalline Si absorber. In this paper I will describe: 1. the growth of high-quality Si wires with controllable doping and the evaluation of their photovoltaic energy-conversion performance using a test electrolyte that forms a rectifying conformal semiconductor-liquid contact 2. the observation of enhanced absorption in wire arrays exceeding the conventional light trapping limits for planar Si cells of equivalent material thickness and 3. single-wire and large-area solid-state Si wire-array solar cell results obtained to date with directions for future cell designs based on optical and device physics. In collaboration with Michael Kelzenberg, Morgan Putnam, Joshua Spurgeon, Daniel Turner-Evans, Emily Warren, Nathan Lewis, and Harry Atwater, California Institute of Technology.

  16. Efficient and bright organic light-emitting diodes on single-layer graphene electrodes

    Science.gov (United States)

    Li, Ning; Oida, Satoshi; Tulevski, George S.; Han, Shu-Jen; Hannon, James B.; Sadana, Devendra K.; Chen, Tze-Chiang

    2013-08-01

    Organic light-emitting diodes are emerging as leading technologies for both high quality display and lighting. However, the transparent conductive electrode used in the current organic light-emitting diode technologies increases the overall cost and has limited bendability for future flexible applications. Here we use single-layer graphene as an alternative flexible transparent conductor, yielding white organic light-emitting diodes with brightness and efficiency sufficient for general lighting. The performance improvement is attributed to the device structure, which allows direct hole injection from the single-layer graphene anode into the light-emitting layers, reducing carrier trapping induced efficiency roll-off. By employing a light out-coupling structure, phosphorescent green organic light-emitting diodes exhibit external quantum efficiency >60%, while phosphorescent white organic light-emitting diodes exhibit external quantum efficiency >45% at 10,000 cd m-2 with colour rendering index of 85. The power efficiency of white organic light-emitting diodes reaches 80 lm W-1 at 3,000 cd m-2, comparable to the most efficient lighting technologies.

  17. Wearable Wireless Tyrosinase Bandage and Microneedle Sensors: Toward Melanoma Screening.

    Science.gov (United States)

    Ciui, Bianca; Martin, Aida; Mishra, Rupesh K; Brunetti, Barbara; Nakagawa, Tatsuo; Dawkins, Thomas J; Lyu, Mengjia; Cristea, Cecilia; Sandulescu, Robert; Wang, Joseph

    2018-04-01

    Wearable bendable bandage-based sensor and a minimally invasive microneedle biosensor are described toward rapid screening of skin melanoma. These wearable electrochemical sensors are capable of detecting the presence of the tyrosinase (TYR) enzyme cancer biomarker in the presence of its catechol substrate, immobilized on the transducer surface. In the presence of the surface TYR biomarker, the immobilized catechol is rapidly converted to benzoquinone that is detected amperometrically, with a current signal proportional to the TYR level. The flexible epidermal bandage sensor relies on printing stress-enduring inks which display good resiliency against mechanical deformations, whereas the hollow microneedle device is filled with catechol-coated carbon paste for assessing tissue TYR levels. The bandage sensor can thus be used directly on the skin whereas microneedle device can reach melanoma tissues under the skin. Both wearable sensors are interfaced to an ultralight flexible electronic board, which transmits data wirelessly to a mobile device. The analytical performance of the resulting bandage and microneedle sensing systems are evaluated using TYR-containing agarose phantom gel and porcine skin. The new integrated conformal portable sensing platforms hold considerable promise for decentralized melanoma screening, and can be extended to the screening of other key biomarkers in skin moles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors.

    Science.gov (United States)

    McAlpine, Michael C; Ahmad, Habib; Wang, Dunwei; Heath, James R

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a 'nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  19. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  20. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.

    Science.gov (United States)

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-11-09

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.

  1. Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes.

    Science.gov (United States)

    Lee, Jaeho; Han, Tae-Hee; Park, Min-Ho; Jung, Dae Yool; Seo, Jeongmin; Seo, Hong-Kyu; Cho, Hyunsu; Kim, Eunhye; Chung, Jin; Choi, Sung-Yool; Kim, Taek-Soo; Lee, Tae-Woo; Yoo, Seunghyup

    2016-06-02

    Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

  2. On norms and bodies: findings from field research on cosmetic surgery in Rio de Janeiro, Brazil.

    Science.gov (United States)

    Dorneles de Andrade, Daniela

    2010-05-01

    Brazil has the second highest rate of cosmetic surgery worldwide, provided in a large number of public and private clinics and hospitals, especially in the southeast. This qualitative field research in Rio de Janeiro included participant observation and in-depth interviews with 18 women cosmetic surgery patients, 10 key informants (e.g. psychologists and sociologists) and 12 plastic surgeons. Fifteen of the women were either pre- or post-operative; three had not decided whether to have surgery. When asked about their motivations and expectations of the surgery, the majority of the women said they wanted to be "normal". Most of the surgeons said they acted as empathic companions from decision-making through surgery and beyond. Many of the key informants were critical of what was happening to medical ethics in relation to cosmetic surgery. With the growth in a consumer culture, they saw ethics in medicine becoming more bendable and subject to the "law" of the market. The cult of the body has become a mass phenomenon and taken on an important social dimension in a society where norms and images are broadcast widely by the media. The trend towards body-modification by cosmetic surgery at an early age is increasing dramatically. What demands critical thinking and further investigation are the consequences of cosmetic surgery for physical and mental health. Copyright 2010 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.

  3. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations.

    Science.gov (United States)

    Kim, Dae-Hyeong; Song, Jizhou; Choi, Won Mook; Kim, Hoon-Sik; Kim, Rak-Hwan; Liu, Zhuangjian; Huang, Yonggang Y; Hwang, Keh-Chih; Zhang, Yong-wei; Rogers, John A

    2008-12-02

    Electronic systems that offer elastic mechanical responses to high-strain deformations are of growing interest because of their ability to enable new biomedical devices and other applications whose requirements are impossible to satisfy with conventional wafer-based technologies or even with those that offer simple bendability. This article introduces materials and mechanical design strategies for classes of electronic circuits that offer extremely high stretchability, enabling them to accommodate even demanding configurations such as corkscrew twists with tight pitch (e.g., 90 degrees in approximately 1 cm) and linear stretching to "rubber-band" levels of strain (e.g., up to approximately 140%). The use of single crystalline silicon nanomaterials for the semiconductor provides performance in stretchable complementary metal-oxide-semiconductor (CMOS) integrated circuits approaching that of conventional devices with comparable feature sizes formed on silicon wafers. Comprehensive theoretical studies of the mechanics reveal the way in which the structural designs enable these extreme mechanical properties without fracturing the intrinsically brittle active materials or even inducing significant changes in their electrical properties. The results, as demonstrated through electrical measurements of arrays of transistors, CMOS inverters, ring oscillators, and differential amplifiers, suggest a valuable route to high-performance stretchable electronics.

  4. Analysis of Structural Flexibility of Damaged DNA Using Thiol-Tethered Oligonucleotide Duplexes.

    Directory of Open Access Journals (Sweden)

    Masashi Fujita

    Full Text Available Bent structures are formed in DNA by the binding of small molecules or proteins. We developed a chemical method to detect bent DNA structures. Oligonucleotide duplexes in which two mercaptoalkyl groups were attached to the positions facing each other across the major groove were prepared. When the duplex contained the cisplatin adduct, which was proved to induce static helix bending, interstrand disulfide bond formation under an oxygen atmosphere was detected by HPLC analyses, but not in the non-adducted duplex, when the two thiol-tethered nucleosides were separated by six base pairs. When the insert was five and seven base pairs, the disulfide bond was formed and was not formed, respectively, regardless of the cisplatin adduct formation. The same reaction was observed in the duplexes containing an abasic site analog and the (6–4 photoproduct. Compared with the cisplatin case, the disulfide bond formation was slower in these duplexes, but the reaction rate was nearly independent of the linker length. These results indicate that dynamic structural changes of the abasic site- and (6–4 photoproduct-containing duplexes could be detected by our method. It is strongly suggested that the UV-damaged DNA-binding protein, which specifically binds these duplexes and functions at the first step of global-genome nucleotide excision repair, recognizes the easily bendable nature of damaged DNA.

  5. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors

    Science.gov (United States)

    McAlpine, Michael C.; Ahmad, Habib; Wang, Dunwei; Heath, James R.

    2007-05-01

    The development of a robust method for integrating high-performance semiconductors on flexible plastics could enable exciting avenues in fundamental research and novel applications. One area of vital relevance is chemical and biological sensing, which if implemented on biocompatible substrates, could yield breakthroughs in implantable or wearable monitoring systems. Semiconducting nanowires (and nanotubes) are particularly sensitive chemical sensors because of their high surface-to-volume ratios. Here, we present a scalable and parallel process for transferring hundreds of pre-aligned silicon nanowires onto plastic to yield highly ordered films for low-power sensor chips. The nanowires are excellent field-effect transistors, and, as sensors, exhibit parts-per-billion sensitivity to NO2, a hazardous pollutant. We also use SiO2 surface chemistries to construct a `nano-electronic nose' library, which can distinguish acetone and hexane vapours via distributed responses. The excellent sensing performance coupled with bendable plastic could open up opportunities in portable, wearable or even implantable sensors.

  6. A Non-linear Model for Predicting Tip Position of a Pliable Robot Arm Segment Using Bending Sensor Data

    Directory of Open Access Journals (Sweden)

    Elizabeth I. SKLAR

    2016-04-01

    Full Text Available Using pliable materials for the construction of robot bodies presents new and interesting challenges for the robotics community. Within the EU project entitled STIFFness controllable Flexible & Learnable manipulator for surgical Operations (STIFF-FLOP, a bendable, segmented robot arm has been developed. The exterior of the arm is composed of a soft material (silicone, encasing an internal structure that contains air-chamber actuators and a variety of sensors for monitoring applied force, position and shape of the arm as it bends. Due to the physical characteristics of the arm, a proper model of robot kinematics and dynamics is difficult to infer from the sensor data. Here we propose a non-linear approach to predicting the robot arm posture, by training a feed-forward neural network with a structured series of pressures values applied to the arm's actuators. The model is developed across a set of seven different experiments. Because the STIFF-FLOP arm is intended for use in surgical procedures, traditional methods for position estimation (based on visual information or electromagnetic tracking will not be possible to implement. Thus the ability to estimate pose based on data from a custom fiber-optic bending sensor and accompanying model is a valuable contribution. Results are presented which demonstrate the utility of our non-linear modelling approach across a range of data collection procedures.

  7. At-wavelength Optical Metrology Development at the ALS

    International Nuclear Information System (INIS)

    Yuan, Sheng Sam; Goldberg, Kenneth A.; Yashchuk, Valeriy V.; Celestre, Richard; Mochi, Iacopo; Macdougall, James; Morrison, Gregory Y.; Smith, Brian V.; Domning, Edward E.; McKinney, Wayne R.; Warwick, Tony

    2010-01-01

    Nano-focusing and brightness preservation for ever brighter synchrotron radiation and free electron laser beamlines require surface slope tolerances of x-ray optics on the order of 100 nrad. While the accuracy of fabrication and ex situ metrology of x-ray mirrors has improved over time, beamline in situ performance of the optics is often limited by application specific factors such as x-ray beam heat loading, temperature drift, alignment, vibration, etc. In the present work, we discuss the recent results from the Advanced Light Source developing high accuracy, in situ, at-wavelength wavefront measurement techniques to surpass 100-nrad accuracy surface slope measurements with reflecting x-ray optics. The techniques will ultimately allow closed-loop feedback systems to be implemented for x-ray nano-focusing. In addition, we present a dedicated metrology beamline endstation, applicable to a wide range of in situ metrology and test experiments. The design and performance of a bendable Kirkpatrick-Baez (KB) mirror with active temperature stabilization will also be presented. The mirror is currently used to study, refine, and optimize in situ mirror alignment, bending and metrology methods essential for nano-focusing application.

  8. Lighting system with a device for reducing system wattage

    NARCIS (Netherlands)

    1996-01-01

    A lighting system having a high pressure gas discharge lamp intended to be operated on a stabilization ballast further includes a low loss device to reduce the current through the ballast and lamp, thereby reducing system wattage for energy savings. For a lead-type ballast, the current reducing

  9. High power CW output from low confinement asymmetric structure diode laser

    NARCIS (Netherlands)

    Iordache, G.; Buda, M.; Acket, G.A.; Roer, van de T.G.; Kaufmann, L.M.F.; Karouta, F.; Jagadish, C.; Tan, H.H.

    1999-01-01

    High power continuous wave output from diode lasers using low loss, low confinement, asymmetric structures is demonstrated. An asymmetric structure with an optical trap layer was grown by metal organic vapour phase epitaxy. Gain guided 50 µm wide stripe 1-3 mm long diode lasers were studied. 1.8 W

  10. Resonant acoustic transducer system for a well drilling string

    Science.gov (United States)

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  11. Photonic Biosensor Chips for Label-Free Detection

    DEFF Research Database (Denmark)

    Kristensen, Martin

    Optical fibers are ideal for transmission of light due to their low loss. This is less important for optical sensors where chemical compatibility, size and price are more important. These parameters can be optimized by using planar integrated optics and fabrication methods from the semiconductor...... industry with adaptations to satisfy the requirements of biosensors....

  12. Towards rare-earth-ion-doped Al2O3 active integrated optical devices

    OpenAIRE

    Ay, F.; Bradley, J.; Worhoff, Kerstin; Pollnau, Markus

    2007-01-01

    Aluminum oxide planar waveguides with low loss (0.11 dB/cm at 1523 nm) are fabricated. Channel waveguides are obtained by reactive ion etching. Erbium-doped layers show no upconversion luminescence, a hint that ion clustering is small.

  13. Monolithic Ytterbium All-single-mode Fiber Laser with Direct Fiber-end Delivery of nJ-level Femtosecond Pulses

    DEFF Research Database (Denmark)

    Turchinovich, Dmitry

    2008-01-01

    We demonstrate a monolithic, i.e. without any free-space coupling, all-single-mode passively modelocked Yb-fiber laser, with direct fiber-end delivery of 364−405 fs pulses of 4 nJ pulse energy using a low-loss hollow-core photonic crystal fiber compression....

  14. Monolithic Yb-fiber femtosecond laser using photonic crystal fiber

    DEFF Research Database (Denmark)

    Liu, Xiaomin; Lægsgaard, Jesper; Turchinovich, Dmitry

    2008-01-01

    We demonstrate, both experimentally and theoretically, an environmentally stable monolithic all-PM modelocked femtosecond Yb-fiber laser, with laser output pulse compressed in a spliced-on low-loss hollow-core photonic crystal fiber. Our laser provides direct fiber-end delivery of 4 nJ pulses...

  15. Quantum-dot based microdisk lasers and semiconductor optical amplifiers operating at 1.55 μm

    NARCIS (Netherlands)

    Solis Trapala, K.

    2011-01-01

    Optical data transmission allows for high-speed and low-loss transmission over longer distances than the electronic counterpart. Yet, the advantage of using fiber-optic communications has been restrained by power hungry opto-electronic conversions at the nodes. These are required for switching

  16. Suzuki coupling reactions catalyzed by poly(N-ethyl-4-vinylpyridinium bromide stabilized palladium nanoparticles in aqueous solution

    Directory of Open Access Journals (Sweden)

    2008-04-01

    Full Text Available InIn this work, it was investigated to use of poly(N-ethyl-4-vinylpyridinium bromide stabilized palladium nanoparticles in the Suzuki reaction between phenylboronic acid and aryl halides in aqueous solution. The nanoparticles were isolated and re-used several times with low loss of activity.

  17. Fiber optic lasers with emission to the region 2-3 μm of IR medium

    International Nuclear Information System (INIS)

    Anzuelo Sanchez, G.; Osuna Galan, I.; Camas Anzueto, J.; Martinez Rios, A.; Selvas Aguilar, R.

    2009-01-01

    We present recent advances in laser emission in the 2-2-5 μm mid-IR, using a chalcogenide fiber with low loss and a high Raman gain in the region 2-10 μm. We present a review of fiber lasers operating in 2-3 μm of the mid IR. (Author)

  18. Bright nanoscale source of deterministic entangled photon pairs violating Bell's inequality

    NARCIS (Netherlands)

    Jöns, K.D.; Schweickert, L.S.; Versteegh, M.A.M.; Dalacu, Dan; Poole, Philip J.; Gulinatti, Angelo; Giudice, Andrea; Zwiller, V.G.; Reimer, M.E.

    2017-01-01

    Global, secure quantum channels will require efficient distribution of entangled photons. Long distance, low-loss interconnects can only be realized using photons as quantum information carriers. However, a quantum light source combining both high qubit fidelity and on-demand bright emission has

  19. Design and evaluation of modelocked semiconductor lasers for low noise and high stability

    DEFF Research Database (Denmark)

    Yvind, Kresten; Larsson, David; Christiansen, Lotte Jin

    2005-01-01

    We present work on design of monolithic mode-locked semiconductor lasers with focus on the gain medium. The use of highly inverted quantum wells in a low-loss waveguide enables both low quantum noise, low-chirped pulses and a large stability region. Broadband noise measurements are performed...

  20. Compact titanium dioxide waveguides with high nonlinearity at telecommunication wavelengths

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Hu, Hao; Oxenløwe, Leif Katsuo

    2018-01-01

    .43 mu m(2)) and a low loss (5.4 +/- 1 dB/cm) at telecommunication wavelengths around 1550 nm have been fabricated and measured. A microring resonator having a 50 mu m radius has been measured to have a loaded quality factor of 53500. Four-wave mixing experiments reveal a nonlinear parameter...

  1. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  2. Structural, optical spectroscopy, optical conductivity, dielectric ...

    Indian Academy of Sciences (India)

    13

    different methods of preparation [36-41]. The electrical insulator materials with low refractive index and low absorption are needed for various optical devices, such as low loss waveguides, resonators, photonic crystals, distributed Bragg reflectors, light-emitting diodes, passive splitters, biosensors, attenuators and filters ...

  3. Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction

    Directory of Open Access Journals (Sweden)

    Daoxin Dai

    2012-03-01

    Full Text Available Silicon-based large-scale photonic integrated circuits are becoming important, due to the need for higher complexity and lower cost for optical transmitters, receivers and optical buffers. In this paper, passive technologies for large-scale photonic integrated circuits are described, including polarization handling, light non-reciprocity and loss reduction. The design rule for polarization beam splitters based on asymmetrical directional couplers is summarized and several novel designs for ultra-short polarization beam splitters are reviewed. A novel concept for realizing a polarization splitter–rotator is presented with a very simple fabrication process. Realization of silicon-based light non-reciprocity devices (e.g., optical isolator, which is very important for transmitters to avoid sensitivity to reflections, is also demonstrated with the help of magneto-optical material by the bonding technology. Low-loss waveguides are another important technology for large-scale photonic integrated circuits. Ultra-low loss optical waveguides are achieved by designing a Si3N4 core with a very high aspect ratio. The loss is reduced further to <0.1 dB m−1 with an improved fabrication process incorporating a high-quality thermal oxide upper cladding by means of wafer bonding. With the developed ultra-low loss Si3N4 optical waveguides, some devices are also demonstrated, including ultra-high-Q ring resonators, low-loss arrayed-waveguide grating (demultiplexers, and high-extinction-ratio polarizers.

  4. Two-octave mid-infrared supercontinuum generation in As-Se suspended core fibers

    DEFF Research Database (Denmark)

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    2015-01-01

    A more than two-octave mid-infrared supercontinuum with an average output power of 15.6 mW covering 1.7-7.5 μm (1,333-5,900 cm-1) is generated in a low-loss As38Se62 suspended core fiber with core diameter of 4.5 μm....

  5. Fundamental limitations in spontaneous emission rate of single-photon sources

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Khurgin, Jacob B.

    2016-01-01

    The rate of single-photon generation by quantum emitters (QEs) can be enhanced by placing a QE inside a resonant structure. This structure can represent an all-dielectric micro-resonator or waveguide and thus be characterized by ultra-low loss and dimensions on the order of wavelength. Or it can ...

  6. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory ...

  7. Grain-size effects on thermal properties of BaTiO3 ceramics

    Indian Academy of Sciences (India)

    Administrator

    decreasing grain size. Furthermore, the Curie temperature shifts to lower temperature with decreasing grain size. Keywords. Nanocrystalline ceramics; thermal properties; size effect. 1. Introduction. BaTiO3 has been widely used in the electronic industry for its high dielectric constant and low losses above room temperature ...

  8. Sustainable intensification and extensification of cropping system for biorefinery in Denmark-what does the nitrogen balance say?

    DEFF Research Database (Denmark)

    Manevski, Kiril; Lærke, Poul Erik; Jørgensen, Uffe

    Establishing an environment-friendly industrial biorefinery production requires resource efficient agroecosystems with low losses to the environment, especially of nitrogen (N). This work reports the first field-based N losses and balances for agro-ecosystems optimised for biomass production...

  9. Vacuum Gap Microstrip Microwave Resonators for 2.5-D Integration in Quantum Computing

    International Nuclear Information System (INIS)

    Lewis, Rupert M.; Henry, Michael David; Schroeder, Katlin

    2017-01-01

    We demonstrate vacuum gap λ/2 microwave resonators as a route toward higher integration in superconducting qubit circuits. The resonators are fabricated from pieces on two silicon chips bonded together with an In-Sb bond. Measurements of the devices yield resonant frequencies in good agreement with simulations. Furthermore, we discuss creating low loss circuits in this geometry.

  10. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek

    2016-01-01

    of the fibers. The experimental findings are complemented via finite-difference time-domain (FDTD) modeling. The presented results lead to a better understanding and control of hybrid-mode systems, which are crucial elements in future low-loss energy transfer devices. © (2016) COPYRIGHT Society of Photo...

  11. Flywheel system using wire-wound rotor

    Science.gov (United States)

    Chiao, Edward Young; Bender, Donald Arthur; Means, Andrew E.; Snyder, Philip K.

    2016-06-07

    A flywheel is described having a rotor constructed of wire wound onto a central form. The wire is prestressed, thus mitigating stresses that occur during operation. In another aspect, the flywheel incorporates a low-loss motor using electrically non-conducting permanent magnets.

  12. Integration of semiconductor and ceramic superconductor devices for microwave applications

    NARCIS (Netherlands)

    Klopman, B.B.G.; Klopman, B.B.G.; Wijers, H.W.; Gao, J.; Gao, J.; Gerritsma, G.J.; Rogalla, Horst

    1991-01-01

    Due to the very-low-loss properties of ceramic superconductors, high-performance microwave resonators and filters can be realized. The fact that these devices may be operated at liquid nitrogen temperature facilitates integration with semiconductor devices. Examples are bandpass amplifiers,

  13. Towards the perfect three-way junction: plasma etching and planar optical waveguides

    International Nuclear Information System (INIS)

    Boswell, R.W.; Love, J.D.

    1989-01-01

    A research program is presented in which plasma etching techniques on a microscopic scale will be used to manufacture multiple low-loss wavelength independent Y-junctions, so the optical signals they carry are efficiently coupled, meaning that signals losses should be minimal

  14. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    Unknown

    conductivity of the target solid is far too low to dissipate energy in the short .... with 7% Ag film grown on sapphire gave high performance in terms of low loss and ..... much attention because of their rich physics and proposed applications.

  15. Microstructured Fibers: Design and Applications

    DEFF Research Database (Denmark)

    Bjarklev, Anders Overgaard; Broeng, Jes

    2006-01-01

    Holey fibers, in which airholes are introduced in the cladding region and extended in the axial direction of the fiber, have been known since the early days of silica waveguide research. Early work demonstrated the first low-loss fibers, which featured very small silica cores held in air by thin...

  16. Time-resolved terahertz spectroscopy in a parallel-plate waveguide

    DEFF Research Database (Denmark)

    Cooke, David; Jepsen, Peter Uhd

    2009-01-01

    The parallel plate waveguide (PPWG), formed by two conducting parallel plates separated by a distance on the order of the wavelength of the propagating light, has shown itself to be a near ideal terahertz interconnect exhibiting low loss and dispersionless propagation.[1] It is also a useful tool...

  17. The LEP injection monitors: Design and first results with beam

    International Nuclear Information System (INIS)

    Burtin, G.; Colchester, R.; Fischer, C.; Halvarsson, B.; Hemery, J.Y.; Jung, R.; Levitt, S.; Vouillot, J.M.

    1989-01-01

    The LEP injection monitors comprise of split foil monitors, luminescent screens and beam stoppers. The monitors are described with particular emphasis on their special features. These include: their low loss factors, their protection against synchrotron radiation and the screen read-out with a CCD chip. The results obtained during the positron injection tests in LEP in July 1988 are reported. 8 figs

  18. The DNA relaxation activity and covalent complex accumulation of Mycobacterium tuberculosis topoisomerase I can be assayed in Escherichia coli: application for identification of potential FRET-dye labeling sites

    Directory of Open Access Journals (Sweden)

    Abrenica Maria V

    2010-09-01

    Full Text Available Abstract Background Mycobacterium tuberculosis topoisomerase I (MtTOP1 and Escherichia coli topoisomerase I have highly homologous transesterification domains, but the two enzymes have distinctly different C-terminal domains. To investigate the structure-function of MtTOP1 and to target its activity for development of new TB therapy, it is desirable to have a rapid genetic assay for its catalytic activity, and potential bactericidal consequence from accumulation of its covalent complex. Results We show that plasmid-encoded recombinant MtTOP1 can complement the temperature sensitive topA function of E. coli strain AS17. Moreover, expression of MtTOP1-G116 S enzyme with the TOPRIM mutation that inhibits DNA religation results in SOS induction and loss of viability in E. coli. The absence of cysteine residues in the MtTOP1 enzyme makes it an attractive system for introduction of potentially informative chemical or spectroscopic probes at specific positions via cysteine mutagenesis. Such probes could be useful for development of high throughput screening (HTS assays. We employed the AS17 complementation system to screen for sites in MtTOP1 that can tolerate cysteine substitution without loss of complementation function. These cysteine substitution mutants were confirmed to have retained the relaxation activity. One such mutant of MtTOP1 was utilized for fluorescence probe incorporation and fluorescence resonance energy transfer measurement with fluorophore-labeled oligonucleotide substrate. Conclusions The DNA relaxation and cleavage complex accumulation of M. tuberculosis topoisomerase I can be measured with genetic assays in E. coli, facilitating rapid analysis of its activities, and discovery of new TB therapy targeting this essential enzyme.

  19. Time-resolved diode dosimetry calibration through Monte Carlo modeling for in vivo passive scattered proton therapy range verification.

    Science.gov (United States)

    Toltz, Allison; Hoesl, Michaela; Schuemann, Jan; Seuntjens, Jan; Lu, Hsiao-Ming; Paganetti, Harald

    2017-11-01

    Our group previously introduced an in vivo proton range verification methodology in which a silicon diode array system is used to correlate the dose rate profile per range modulation wheel cycle of the detector signal to the water-equivalent path length (WEPL) for passively scattered proton beam delivery. The implementation of this system requires a set of calibration data to establish a beam-specific response to WEPL fit for the selected 'scout' beam (a 1 cm overshoot of the predicted detector depth with a dose of 4 cGy) in water-equivalent plastic. This necessitates a separate set of measurements for every 'scout' beam that may be appropriate to the clinical case. The current study demonstrates the use of Monte Carlo simulations for calibration of the time-resolved diode dosimetry technique. Measurements for three 'scout' beams were compared against simulated detector response with Monte Carlo methods using the Tool for Particle Simulation (TOPAS). The 'scout' beams were then applied in the simulation environment to simulated water-equivalent plastic, a CT of water-equivalent plastic, and a patient CT data set to assess uncertainty. Simulated detector response in water-equivalent plastic was validated against measurements for 'scout' spread out Bragg peaks of range 10 cm, 15 cm, and 21 cm (168 MeV, 177 MeV, and 210 MeV) to within 3.4 mm for all beams, and to within 1 mm in the region where the detector is expected to lie. Feasibility has been shown for performing the calibration of the detector response for three 'scout' beams through simulation for the time-resolved diode dosimetry technique in passive scattered proton delivery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  20. SU-F-T-132: Variable RBE Models Predict Possible Underestimation of Vaginal Dose for Anal Cancer Patients Treated Using Single-Field Proton Treatments

    Energy Technology Data Exchange (ETDEWEB)

    McNamara, A; Underwood, T; Wo, J; Paganetti, H [Massachusetts General Hospital & Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: Anal cancer patients treated using a posterior proton beam may be at risk of vaginal wall injury due to the increased linear energy transfer (LET) and relative biological effectiveness (RBE) at the beam distal edge. We investigate the vaginal dose received. Methods: Five patients treated for anal cancer with proton pencil beam scanning were considered, all treated to a prescription dose of 54 Gy(RBE) over 28–30 fractions. Dose and LET distributions were calculated using the Monte Carlo simulation toolkit TOPAS. In addition to the standard assumption of a fixed RBE of 1.1, variable RBE was considered via the application of published models. Dose volume histograms (DVHs) were extracted for the planning treatment volume (PTV) and vagina, the latter being used to calculate the vaginal normal tissue complication probability (NTCP). Results: Compared to the assumption of a fixed RBE of 1.1, the variable RBE model predicts a dose increase of approximately 3.3 ± 1.7 Gy at the end of beam range. NTCP parameters for the vagina are incomplete in the current literature, however, inferring value ranges from the existing data we use D{sub 50} = 50 Gy and LKB model parameters a=1–2 and m=0.2–0.4. We estimate the NTCP for the vagina to be 37–48% and 42–47% for the fixed and variable RBE cases, respectively. Additionally, a difference in the dose distribution was observed between the analytical calculation and Monte Carlo methods. We find that the target dose is overestimated on average by approximately 1–2%. Conclusion: For patients treated with posterior beams, the vaginal wall may coincide with the distal end of the proton beam and may receive a substantial increase in dose if variable RBE models are applied compared to using the current clinical standard of RBE equal to 1.1. This could potentially lead to underestimating toxicities when treating with protons.