WorldWideScience

Sample records for benchmark simulation model

  1. Benchmark simulation models, quo vadis?

    Science.gov (United States)

    Jeppsson, U; Alex, J; Batstone, D J; Benedetti, L; Comas, J; Copp, J B; Corominas, L; Flores-Alsina, X; Gernaey, K V; Nopens, I; Pons, M-N; Rodríguez-Roda, I; Rosen, C; Steyer, J-P; Vanrolleghem, P A; Volcke, E I P; Vrecko, D

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, highlighting areas where knowledge may still be deficient and where new opportunities are emerging, and to propose potential avenues for future development and application of the general benchmarking framework and its associated tools. The paper focuses on the topics of temporal and spatial extension, process modifications within the WWTP, the realism of models, control strategy extensions and the potential for new evaluation tools within the existing benchmark system. We find that there are major opportunities for application within all of these areas, either from existing work already being done within the context of the benchmarking simulation models (BSMs) or applicable work in the wider literature. Of key importance is increasing capability, usability and transparency of the BSM package while avoiding unnecessary complexity.

  2. Benchmark simulation models, quo vadis?

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J; Batstone, D. J.

    2013-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for wastewater treatment plants (WWTPs) is coming to an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to p...

  3. Benchmark Simulation Model No 2 in Matlab-Simulink

    DEFF Research Database (Denmark)

    Vrecko, Darko; Gernaey, Krist; Rosen, Christian

    2006-01-01

    In this paper, implementation of the Benchmark Simulation Model No 2 (BSM2) within Matlab-Simulink is presented. The BSM2 is developed for plant-wide WWTP control strategy evaluation on a long-term basis. It consists of a pre-treatment process, an activated sludge process and sludge treatment...

  4. Experimental Benchmarking of Fire Modeling Simulations. Final Report

    International Nuclear Information System (INIS)

    Greiner, Miles; Lopez, Carlos

    2003-01-01

    A series of large-scale fire tests were performed at Sandia National Laboratories to simulate a nuclear waste transport package under severe accident conditions. The test data were used to benchmark and adjust the Container Analysis Fire Environment (CAFE) computer code. CAFE is a computational fluid dynamics fire model that accurately calculates the heat transfer from a large fire to a massive engulfed transport package. CAFE will be used in transport package design studies and risk analyses

  5. Benchmark Simulation Model No 2 – finalisation of plant layout and default control strategy

    DEFF Research Database (Denmark)

    Nopens, I.; Benedetti, L.; Jeppsson, U.

    2010-01-01

    The COST/IWA Benchmark Simulation Model No 1 (BSM1) has been available for almost a decade. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the research work related to the benchmark simulation models has resulted...... in more than 300 publications worldwide demonstrates the interest in and need of such tools within the research community. Recent efforts within the IWA Task Group on “Benchmarking of control strategies for WWTPs” have focused on an extension of the benchmark simulation model. This extension aims...... be evaluated in a realistic fashion in the one week BSM1 evaluation period. In this paper, the finalised plant layout is summarised and, as was done for BSM1, a default control strategy is proposed. A demonstration of how BSM2 can be used to evaluate control strategies is also given....

  6. Towards a benchmark simulation model for plant-wide control strategy performance evaluation of WWTPs

    DEFF Research Database (Denmark)

    Jeppsson, Ulf; Rosen, Christian; Alex, Jens

    2006-01-01

    The COST/IWA benchmark simulation model has been available for seven years. Its primary purpose has been to create a platform for control strategy benchmarking of activated sludge processes. The fact that the benchmark has resulted in more than 100 publications, not only in Europe but also...... worldwide, demonstrates the interest in such a tool within the research community In this paper, an extension of the benchmark simulation model no 1 (BSM1) is proposed. This extension aims at facilitating control strategy development and performance evaluation at a plant-wide level and, consequently...... the changes, the evaluation period has been extended to one year. A prolonged evaluation period allows for long-term control strategies to be assessed and enables the use of control handles that cannot be evaluated in a realistic fashion in the one-week BSM1 evaluation period. In the paper, the extended plant...

  7. Uncertainty and sensitivity analysis of control strategies using the benchmark simulation model No1 (BSM1)

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan

    2009-01-01

    The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predict...

  8. Benchmark of the neutronic model used in Maanshan compact simulator

    International Nuclear Information System (INIS)

    Hu, C.-H.; Gone, J.-K.; Ko, H.-T.

    2004-01-01

    The Maanshan compact simulator has adopted a three dimensional kinetic model CONcERT, which was developed by GP International Inc. (GPI) in 1991 for real-time neutronic analysis. Maanshan Nuclear Power Plant utilizes a Westinghouse nuclear steam supply system with three-loop pressurized water reactor. There are 157 fuel assemblies and 52 full-length Rod Cluster Control Assemblies in the reactor core. The control of excess reactivity and power peaking is provided by soluble boron in moderator and burnable absorber rods in fuel assemblies. The neutronic model of CONcERT is based on solving a modified time-dependent two-group diffusion equations coupled to the equations of six-group delayed neutron precursor concentrations. The validation of CONcERT for the Maanshan plant is separated into two groups. The first group compared (1) boron endpoints for different control bank inserted conditions, (2) control rod differential and integral worths and (3) temperature coefficients with the measurements in the Low Power Physical Test (LPPT). The second group compared critical boron concentration and power distribution in high power condition with the measurements. In addition, xenon and samarium equilibrium worths at different power levels as well as the time dependent changes of their worth after the reactor scram are illustrated. (author)

  9. A model library for simulation and benchmarking of integrated urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, R.; Flores Alsina, Xavier; Kroll, J. S.

    2017-01-01

    This paper presents a freely distributed, open-source toolbox to predict the behaviour of urban wastewater systems (UWS). The proposed library is used to develop a system-wide Benchmark Simulation Model (BSM-UWS) for evaluating (local/global) control strategies in urban wastewater systems (UWS...

  10. Dynamic benchmarking of simulation codes

    International Nuclear Information System (INIS)

    Henry, R.E.; Paik, C.Y.; Hauser, G.M.

    1996-01-01

    Computer simulation of nuclear power plant response can be a full-scope control room simulator, an engineering simulator to represent the general behavior of the plant under normal and abnormal conditions, or the modeling of the plant response to conditions that would eventually lead to core damage. In any of these, the underlying foundation for their use in analysing situations, training of vendor/utility personnel, etc. is how well they represent what has been known from industrial experience, large integral experiments and separate effects tests. Typically, simulation codes are benchmarked with some of these; the level of agreement necessary being dependent upon the ultimate use of the simulation tool. However, these analytical models are computer codes, and as a result, the capabilities are continually enhanced, errors are corrected, new situations are imposed on the code that are outside of the original design basis, etc. Consequently, there is a continual need to assure that the benchmarks with important transients are preserved as the computer code evolves. Retention of this benchmarking capability is essential to develop trust in the computer code. Given the evolving world of computer codes, how is this retention of benchmarking capabilities accomplished? For the MAAP4 codes this capability is accomplished through a 'dynamic benchmarking' feature embedded in the source code. In particular, a set of dynamic benchmarks are included in the source code and these are exercised every time the archive codes are upgraded and distributed to the MAAP users. Three different types of dynamic benchmarks are used: plant transients; large integral experiments; and separate effects tests. Each of these is performed in a different manner. The first is accomplished by developing a parameter file for the plant modeled and an input deck to describe the sequence; i.e. the entire MAAP4 code is exercised. The pertinent plant data is included in the source code and the computer

  11. Catchment & sewer network simulation model to benchmark control strategies within urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, Ramesh; Flores Alsina, Xavier; Fu, Guangtao

    2016-01-01

    This paper aims at developing a benchmark simulation model to evaluate control strategies for the urban catchment and sewer network. Various modules describing wastewater generation in the catchment, its subsequent transport and storage in the sewer system are presented. Global/local overflow based...... evaluation criteria describing the cumulative and acute effects are presented. Simulation results show that the proposed set of models is capable of generating daily, weekly and seasonal variations as well as describing the effect of rain events on wastewater characteristics. Two sets of case studies...

  12. Benchmarking computational fluid dynamics models of lava flow simulation for hazard assessment, forecasting, and risk management

    Science.gov (United States)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi; Richardson, Jacob A.; Cashman, Katharine V.

    2017-01-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, designing flow mitigation measures, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics (CFD) models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, COMSOL, and MOLASSES. We model viscous, cooling, and solidifying flows over horizontal planes, sloping surfaces, and into topographic obstacles. We compare model results to physical observations made during well-controlled analogue and molten basalt experiments, and to analytical theory when available. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and OpenFOAM and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We assess the goodness-of-fit of the simulation results and the computational cost. Our results guide the selection of numerical simulation codes for different applications, including inferring emplacement conditions of past lava flows, modeling the temporal evolution of ongoing flows during eruption, and probabilistic assessment of lava flow hazard prior to eruption. Finally, we outline potential experiments and desired key observational data from future flows that would extend existing benchmarking data sets.

  13. Benchmark of the local drift-kinetic models for neoclassical transport simulation in helical plasmas

    Science.gov (United States)

    Huang, B.; Satake, S.; Kanno, R.; Sugama, H.; Matsuoka, S.

    2017-02-01

    The benchmarks of the neoclassical transport codes based on the several local drift-kinetic models are reported here. Here, the drift-kinetic models are zero orbit width (ZOW), zero magnetic drift, DKES-like, and global, as classified in Matsuoka et al. [Phys. Plasmas 22, 072511 (2015)]. The magnetic geometries of Helically Symmetric Experiment, Large Helical Device (LHD), and Wendelstein 7-X are employed in the benchmarks. It is found that the assumption of E ×B incompressibility causes discrepancy of neoclassical radial flux and parallel flow among the models when E ×B is sufficiently large compared to the magnetic drift velocities. For example, Mp≤0.4 where Mp is the poloidal Mach number. On the other hand, when E ×B and the magnetic drift velocities are comparable, the tangential magnetic drift, which is included in both the global and ZOW models, fills the role of suppressing unphysical peaking of neoclassical radial-fluxes found in the other local models at Er≃0 . In low collisionality plasmas, in particular, the tangential drift effect works well to suppress such unphysical behavior of the radial transport caused in the simulations. It is demonstrated that the ZOW model has the advantage of mitigating the unphysical behavior in the several magnetic geometries, and that it also implements the evaluation of bootstrap current in LHD with the low computation cost compared to the global model.

  14. Benchmarking Model Variants in Development of a Hardware-in-the-Loop Simulation System

    Science.gov (United States)

    Aretskin-Hariton, Eliot D.; Zinnecker, Alicia M.; Kratz, Jonathan L.; Culley, Dennis E.; Thomas, George L.

    2016-01-01

    Distributed engine control architecture presents a significant increase in complexity over traditional implementations when viewed from the perspective of system simulation and hardware design and test. Even if the overall function of the control scheme remains the same, the hardware implementation can have a significant effect on the overall system performance due to differences in the creation and flow of data between control elements. A Hardware-in-the-Loop (HIL) simulation system is under development at NASA Glenn Research Center that enables the exploration of these hardware dependent issues. The system is based on, but not limited to, the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k). This paper describes the step-by-step conversion from the self-contained baseline model to the hardware in the loop model, and the validation of each step. As the control model hardware fidelity was improved during HIL system development, benchmarking simulations were performed to verify that engine system performance characteristics remained the same. The results demonstrate the goal of the effort; the new HIL configurations have similar functionality and performance compared to the baseline C-MAPSS40k system.

  15. BSM-MBR: a benchmark simulation model to compare control and operational strategies for membrane bioreactors.

    Science.gov (United States)

    Maere, Thomas; Verrecht, Bart; Moerenhout, Stefanie; Judd, Simon; Nopens, Ingmar

    2011-03-01

    A benchmark simulation model for membrane bioreactors (BSM-MBR) was developed to evaluate operational and control strategies in terms of effluent quality and operational costs. The configuration of the existing BSM1 for conventional wastewater treatment plants was adapted using reactor volumes, pumped sludge flows and membrane filtration for the water-sludge separation. The BSM1 performance criteria were extended for an MBR taking into account additional pumping requirements for permeate production and aeration requirements for membrane fouling prevention. To incorporate the effects of elevated sludge concentrations on aeration efficiency and costs a dedicated aeration model was adopted. Steady-state and dynamic simulations revealed BSM-MBR, as expected, to out-perform BSM1 for effluent quality, mainly due to complete retention of solids and improved ammonium removal from extensive aeration combined with higher biomass levels. However, this was at the expense of significantly higher operational costs. A comparison with three large-scale MBRs showed BSM-MBR energy costs to be realistic. The membrane aeration costs for the open loop simulations were rather high, attributed to non-optimization of BSM-MBR. As proof of concept two closed loop simulations were run to demonstrate the usefulness of BSM-MBR for identifying control strategies to lower operational costs without compromising effluent quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Uncertainty and sensitivity analysis of control strategies using the benchmark simulation model No1 (BSM1).

    Science.gov (United States)

    Flores-Alsina, Xavier; Rodriguez-Roda, Ignasi; Sin, Gürkan; Gernaey, Krist V

    2009-01-01

    The objective of this paper is to perform an uncertainty and sensitivity analysis of the predictions of the Benchmark Simulation Model (BSM) No. 1, when comparing four activated sludge control strategies. The Monte Carlo simulation technique is used to evaluate the uncertainty in the BSM1 predictions, considering the ASM1 bio-kinetic parameters and influent fractions as input uncertainties while the Effluent Quality Index (EQI) and the Operating Cost Index (OCI) are focused on as model outputs. The resulting Monte Carlo simulations are presented using descriptive statistics indicating the degree of uncertainty in the predicted EQI and OCI. Next, the Standard Regression Coefficients (SRC) method is used for sensitivity analysis to identify which input parameters influence the uncertainty in the EQI predictions the most. The results show that control strategies including an ammonium (S(NH)) controller reduce uncertainty in both overall pollution removal and effluent total Kjeldahl nitrogen. Also, control strategies with an external carbon source reduce the effluent nitrate (S(NO)) uncertainty increasing both their economical cost and variability as a trade-off. Finally, the maximum specific autotrophic growth rate (micro(A)) causes most of the variance in the effluent for all the evaluated control strategies. The influence of denitrification related parameters, e.g. eta(g) (anoxic growth rate correction factor) and eta(h) (anoxic hydrolysis rate correction factor), becomes less important when a S(NO) controller manipulating an external carbon source addition is implemented.

  17. Extending the benchmark simulation model no2 with processes for nitrous oxide production and side-stream nitrogen removal

    DEFF Research Database (Denmark)

    Boiocchi, Riccardo; Sin, Gürkan; Gernaey, Krist V.

    2015-01-01

    In this work the Benchmark Simulation Model No.2 is extended with processes for nitrous oxide production and for side-stream partial nitritation/Anammox (PN/A) treatment. For these extensions the Activated Sludge Model for Greenhouse gases No.1 was used to describe the main waterline, whereas...... the Complete Autotrophic Nitrogen Removal (CANR) model was used to describe the side-stream (PN/A) treatment. Comprehensive simulations were performed to assess the extended model. Steady-state simulation results revealed the following: (i) the implementation of a continuous CANR side-stream reactor has...... increased the total nitrogen removal by 10%; (ii) reduced the aeration demand by 16% compared to the base case, and (iii) the activity of ammonia-oxidizing bacteria is most influencing nitrous oxide emissions. The extended model provides a simulation platform to generate, test and compare novel control...

  18. Towards a plant-wide Benchmark Simulation Model with simultaneous nitrogen and phosphorus removal wastewater treatment processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Ikumi, David; Batstone, Damien

    It is more than 10 years since the publication of the Benchmark Simulation Model No 1 (BSM1) manual (Copp, 2002). The main objective of BSM1 was creating a platform for benchmarking carbon and nitrogen removal strategies in activated sludge systems. The initial platform evolved into BSM1_LT and BSM....... This extension aims at facilitating simultaneous carbon, nitrogen and phosphorus (P) removal process development and performance evaluation at a plant-wide level. The main motivation of the work is that numerous wastewater treatment plants (WWTPs) pursue biological phosphorus removal as an alternative...... to chemical P removal based on precipitation using metal salts, such as Fe or Al. This paper identifies and discusses important issues that need to be addressed to upgrade the BSM2 to BSM2-P, for example: 1) new influent wastewater characteristics; 2) new (bio) chemical processes to account for; 3...

  19. Quo Vadis Benchmark Simulation Models? 8th IWA Symposium on Systems Analysis and Integrated Assessment

    DEFF Research Database (Denmark)

    Jeppsson, U.; Alex, J.; Batstone, D,

    2011-01-01

    As the work of the IWA Task Group on Benchmarking of Control Strategies for WWTPs is coming towards an end, it is essential to disseminate the knowledge gained. For this reason, all authors of the IWA Scientific and Technical Report on benchmarking have come together to provide their insights, hi...

  20. A framework for benchmarking land models

    Directory of Open Access Journals (Sweden)

    Y. Q. Luo

    2012-10-01

    Full Text Available Land models, which have been developed by the modeling community in the past few decades to predict future states of ecosystems and climate, have to be critically evaluated for their performance skills of simulating ecosystem responses and feedback to climate change. Benchmarking is an emerging procedure to measure performance of models against a set of defined standards. This paper proposes a benchmarking framework for evaluation of land model performances and, meanwhile, highlights major challenges at this infant stage of benchmark analysis. The framework includes (1 targeted aspects of model performance to be evaluated, (2 a set of benchmarks as defined references to test model performance, (3 metrics to measure and compare performance skills among models so as to identify model strengths and deficiencies, and (4 model improvement. Land models are required to simulate exchange of water, energy, carbon and sometimes other trace gases between the atmosphere and land surface, and should be evaluated for their simulations of biophysical processes, biogeochemical cycles, and vegetation dynamics in response to climate change across broad temporal and spatial scales. Thus, one major challenge is to select and define a limited number of benchmarks to effectively evaluate land model performance. The second challenge is to develop metrics of measuring mismatches between models and benchmarks. The metrics may include (1 a priori thresholds of acceptable model performance and (2 a scoring system to combine data–model mismatches for various processes at different temporal and spatial scales. The benchmark analyses should identify clues of weak model performance to guide future development, thus enabling improved predictions of future states of ecosystems and climate. The near-future research effort should be on development of a set of widely acceptable benchmarks that can be used to objectively, effectively, and reliably evaluate fundamental properties

  1. Benchmark simulation model no 2: general protocol and exploratory case studies

    DEFF Research Database (Denmark)

    Jeppsson, U.; Pons, M.N.; Nopens, I.

    2007-01-01

    and digester models, the included temperature dependencies and the reject water storage. BSM2-implementations are now available in a wide range of simulation platforms and a ring test has verified their proper implementation, consistent with the BSM2 definition. This guarantees that users can focus...

  2. A benchmark simulation model to describe plant-wide phosphorus transformations in WWTPs

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Ikumi, D.; Kazadi-Mbamba, C.

    It is more than 10 years since the publication of the BSM1 technical report (Copp, 2002). The main objective of BSM1 was to create a platform for benchmarking C and N removal strategies in activated sludge systems. The initial platform evolved into BSM1_LT and BSM2, which allowed for the evaluati...

  3. Benchmark simulations of ICRF antenna coupling

    International Nuclear Information System (INIS)

    Louche, F.; Lamalle, P. U.; Messiaen, A. M.; Compernolle, B. van; Milanesio, D.; Maggiora, R.

    2007-01-01

    The paper reports on ongoing benchmark numerical simulations of antenna input impedance parameters in the ion cyclotron range of frequencies with different coupling codes: CST Microwave Studio, TOPICA and ANTITER 2. In particular we study the validity of the approximation of a magnetized plasma slab by a dielectric medium of suitably chosen permittivity. Different antenna models are considered: a single-strap antenna, a 4-strap antenna and the 24-strap ITER antenna array. Whilst the diagonal impedances are mostly in good agreement, some differences between the mutual terms predicted by Microwave Studio and TOPICA have yet to be resolved

  4. Benchmarking HRA methods against different NPP simulator data

    International Nuclear Information System (INIS)

    Petkov, Gueorgui; Filipov, Kalin; Velev, Vladimir; Grigorov, Alexander; Popov, Dimiter; Lazarov, Lazar; Stoichev, Kosta

    2008-01-01

    The paper presents both international and Bulgarian experience in assessing HRA methods, underlying models approaches for their validation and verification by benchmarking HRA methods against different NPP simulator data. The organization, status, methodology and outlooks of the studies are described

  5. Implementation of Extended Statistical Entropy Analysis to the Effluent Quality Index of the Benchmarking Simulation Model No. 2

    Directory of Open Access Journals (Sweden)

    Alicja P. Sobańtka

    2014-01-01

    Full Text Available Extended statistical entropy analysis (eSEA is used to assess the nitrogen (N removal performance of the wastewater treatment (WWT simulation software, the Benchmarking Simulation Model No. 2 (BSM No. 2 . Six simulations with three different types of wastewater are carried out, which vary in the dissolved oxygen concentration (O2,diss. during the aerobic treatment. N2O emissions generated during denitrification are included in the model. The N-removal performance is expressed as reduction in statistical entropy, ΔH, compared to the hypothetical reference situation of direct discharge of the wastewater into the river. The parameters chemical and biological oxygen demand (COD, BOD and suspended solids (SS are analogously expressed in terms of reduction of COD, BOD, and SS, compared to a direct discharge of the wastewater to the river (ΔEQrest. The cleaning performance is expressed as ΔEQnew, the weighted average of ΔH and ΔEQrest. The results show that ΔEQnew is a more comprehensive indicator of the cleaning performance because, in contrast to the traditional effluent quality index (EQ, it considers the characteristics of the wastewater, includes all N-compounds and their distribution in the effluent, the off-gas, and the sludge. Furthermore, it is demonstrated that realistically expectable N2O emissions have only a moderate impact on ΔEQnew.

  6. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.

    Science.gov (United States)

    Hariharan, Prasanna; Giarra, Matthew; Reddy, Varun; Day, Steven W; Manning, Keefe B; Deutsch, Steven; Stewart, Sandy F C; Myers, Matthew R; Berman, Michael R; Burgreen, Greg W; Paterson, Eric G; Malinauskas, Richard A

    2011-04-01

    at http://fdacfd.nci.nih.gov) will be useful in validating CFD simulations of the benchmark nozzle model and in performing PIV studies on other medical device models.

  7. MCNP simulation of the TRIGA Mark II benchmark experiment

    International Nuclear Information System (INIS)

    Jeraj, R.; Glumac, B.; Maucec, M.

    1996-01-01

    The complete 3D MCNP model of the TRIGA Mark II reactor is presented. It enables precise calculations of some quantities of interest in a steady-state mode of operation. Calculational results are compared to the experimental results gathered during reactor reconstruction in 1992. Since the operating conditions were well defined at that time, the experimental results can be used as a benchmark. It may be noted that this benchmark is one of very few high enrichment benchmarks available. In our simulations experimental conditions were thoroughly simulated: fuel elements and control rods were precisely modeled as well as entire core configuration and the vicinity of the core. ENDF/B-VI and ENDF/B-V libraries were used. Partial results of benchmark calculations are presented. Excellent agreement of core criticality, excess reactivity and control rod worths can be observed. (author)

  8. System-wide Benchmark Simulation Model for integrated analysis of urban wastewater systems

    DEFF Research Database (Denmark)

    Saagi, R.; Flores-Alsina, X.; Gernaey, K. V.

    Interactions between different components (sewer, wastewater treatment plant (WWTP) and river) of an urban wastewater system (UWS) are widely recognized (Benedetti et al., 2013). This has resulted in an increasing interest in the modelling of the UWS. System-wide models take into account the inte...

  9. Simulation with Different Turbulence Models in an Annex 20 Benchmark Test using Star-CCM+

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Nielsen, Peter V.

    The purpose of this investigation is to compare the different flow patterns obtained for the 2D isothermal test case defined in Annex 20 (1990) using different turbulence models. The different results are compared with the existing experimental data. Similar study has already been performed by Rong...

  10. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias; Smith, Neil; Ghanem, Bernard

    2016-01-01

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  11. A Benchmark and Simulator for UAV Tracking

    KAUST Repository

    Mueller, Matthias

    2016-09-16

    In this paper, we propose a new aerial video dataset and benchmark for low altitude UAV target tracking, as well as, a photorealistic UAV simulator that can be coupled with tracking methods. Our benchmark provides the first evaluation of many state-of-the-art and popular trackers on 123 new and fully annotated HD video sequences captured from a low-altitude aerial perspective. Among the compared trackers, we determine which ones are the most suitable for UAV tracking both in terms of tracking accuracy and run-time. The simulator can be used to evaluate tracking algorithms in real-time scenarios before they are deployed on a UAV “in the field”, as well as, generate synthetic but photo-realistic tracking datasets with automatic ground truth annotations to easily extend existing real-world datasets. Both the benchmark and simulator are made publicly available to the vision community on our website to further research in the area of object tracking from UAVs. (https://ivul.kaust.edu.sa/Pages/pub-benchmark-simulator-uav.aspx.). © Springer International Publishing AG 2016.

  12. Benchmark Data Set for Wheat Growth Models: Field Experiments and AgMIP Multi-Model Simulations.

    Science.gov (United States)

    Asseng, S.; Ewert, F.; Martre, P.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P.J.; Rotter, R. P.

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, maximum and minimum temperature, precipitation, surface wind, dew point temperature, relative humidity, and vapor pressure), soil characteristics, frequent growth, nitrogen in crop and soil, crop and soil water and yield components. Simulations include results from 27 wheat models and a sensitivity analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario.

  13. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  14. Summary of ACCSIM and ORBIT Benchmarking Simulations

    CERN Document Server

    AIBA, M

    2009-01-01

    We have performed a benchmarking study of ORBIT and ACCSIM which are accelerator tracking codes having routines to evaluate space charge effects. The study is motivated by the need of predicting/understanding beam behaviour in the CERN Proton Synchrotron Booster (PSB) in which direct space charge is expected to be the dominant performance limitation. Historically at CERN, ACCSIM has been employed for space charge simulation studies. A benchmark study using ORBIT has been started to confirm the results from ACCSIM and to profit from the advantages of ORBIT such as the capability of parallel processing. We observed a fair agreement in emittance evolution in the horizontal plane but not in the vertical one. This may be partly due to the fact that the algorithm to compute the space charge field is different between the two codes.

  15. BENCHMARKING LEARNER EDUCATION USING ONLINE BUSINESS SIMULATION

    Directory of Open Access Journals (Sweden)

    Alfred H. Miller

    2016-06-01

    Full Text Available For programmatic accreditation by the Accreditation Council of Business Schools and Programs (ACBSP, business programs are required to meet STANDARD #4, Measurement and Analysis of Student Learning and Performance. Business units must demonstrate that outcome assessment systems are in place using documented evidence that shows how the results are being used to further develop or improve the academic business program. The Higher Colleges of Technology, a 17 campus federal university in the United Arab Emirates, differentiates its applied degree programs through a ‘learning by doing ethos,’ which permeates the entire curricula. This paper documents benchmarking of education for managing innovation. Using business simulation for Bachelors of Business, Year 3 learners, in a business strategy class; learners explored through a simulated environment the following functional areas; research and development, production, and marketing of a technology product. Student teams were required to use finite resources and compete against other student teams in the same universe. The study employed an instrument developed in a 60-sample pilot study of business simulation learners against which subsequent learners participating in online business simulation could be benchmarked. The results showed incremental improvement in the program due to changes made in assessment strategies, including the oral defense.

  16. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    International Nuclear Information System (INIS)

    Tisseur, D.; Costin, M.; Rattoni, B.; Vienne, C.; Vabre, A.; Cattiaux, G.; Sollier, T.

    2015-01-01

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software

  17. Experiment vs simulation RT WFNDEC 2014 benchmark: CIVA results

    Energy Technology Data Exchange (ETDEWEB)

    Tisseur, D., E-mail: david.tisseur@cea.fr; Costin, M., E-mail: david.tisseur@cea.fr; Rattoni, B., E-mail: david.tisseur@cea.fr; Vienne, C., E-mail: david.tisseur@cea.fr; Vabre, A., E-mail: david.tisseur@cea.fr; Cattiaux, G., E-mail: david.tisseur@cea.fr [CEA LIST, CEA Saclay 91191 Gif sur Yvette Cedex (France); Sollier, T. [Institut de Radioprotection et de Sûreté Nucléaire, B.P.17 92262 Fontenay-Aux-Roses (France)

    2015-03-31

    The French Atomic Energy Commission and Alternative Energies (CEA) has developed for years the CIVA software dedicated to simulation of NDE techniques such as Radiographic Testing (RT). RT modelling is achieved in CIVA using combination of a determinist approach based on ray tracing for transmission beam simulation and a Monte Carlo model for the scattered beam computation. Furthermore, CIVA includes various detectors models, in particular common x-ray films and a photostimulable phosphor plates. This communication presents the results obtained with the configurations proposed in the World Federation of NDEC 2014 RT modelling benchmark with the RT models implemented in the CIVA software.

  18. Benchmarking of SIMULATE-3 on engineering workstations

    International Nuclear Information System (INIS)

    Karlson, C.F.; Reed, M.L.; Webb, J.R.; Elzea, J.D.

    1990-01-01

    The nuclear fuel management department of Arizona Public Service Company (APS) has evaluated various computer platforms for a departmental engineering and business work-station local area network (LAN). Historically, centralized mainframe computer systems have been utilized for engineering calculations. Increasing usage and the resulting longer response times on the company mainframe system and the relative cost differential between a mainframe upgrade and workstation technology justified the examination of current workstations. A primary concern was the time necessary to turn around routine reactor physics reload and analysis calculations. Computers ranging from a Definicon 68020 processing board in an AT compatible personal computer up to an IBM 3090 mainframe were benchmarked. The SIMULATE-3 advanced nodal code was selected for benchmarking based on its extensive use in nuclear fuel management. SIMULATE-3 is used at APS for reload scoping, design verification, core follow, and providing predictions of reactor behavior under nominal conditions and planned reactor maneuvering, such as axial shape control during start-up and shutdown

  19. The Isprs Benchmark on Indoor Modelling

    Science.gov (United States)

    Khoshelham, K.; Díaz Vilariño, L.; Peter, M.; Kang, Z.; Acharya, D.

    2017-09-01

    Automated generation of 3D indoor models from point cloud data has been a topic of intensive research in recent years. While results on various datasets have been reported in literature, a comparison of the performance of different methods has not been possible due to the lack of benchmark datasets and a common evaluation framework. The ISPRS benchmark on indoor modelling aims to address this issue by providing a public benchmark dataset and an evaluation framework for performance comparison of indoor modelling methods. In this paper, we present the benchmark dataset comprising several point clouds of indoor environments captured by different sensors. We also discuss the evaluation and comparison of indoor modelling methods based on manually created reference models and appropriate quality evaluation criteria. The benchmark dataset is available for download at: html"target="_blank">http://www2.isprs.org/commissions/comm4/wg5/benchmark-on-indoor-modelling.html.

  20. Benchmark problems for numerical implementations of phase field models

    International Nuclear Information System (INIS)

    Jokisaari, A. M.; Voorhees, P. W.; Guyer, J. E.; Warren, J.; Heinonen, O. G.

    2016-01-01

    Here, we present the first set of benchmark problems for phase field models that are being developed by the Center for Hierarchical Materials Design (CHiMaD) and the National Institute of Standards and Technology (NIST). While many scientific research areas use a limited set of well-established software, the growing phase field community continues to develop a wide variety of codes and lacks benchmark problems to consistently evaluate the numerical performance of new implementations. Phase field modeling has become significantly more popular as computational power has increased and is now becoming mainstream, driving the need for benchmark problems to validate and verify new implementations. We follow the example set by the micromagnetics community to develop an evolving set of benchmark problems that test the usability, computational resources, numerical capabilities and physical scope of phase field simulation codes. In this paper, we propose two benchmark problems that cover the physics of solute diffusion and growth and coarsening of a second phase via a simple spinodal decomposition model and a more complex Ostwald ripening model. We demonstrate the utility of benchmark problems by comparing the results of simulations performed with two different adaptive time stepping techniques, and we discuss the needs of future benchmark problems. The development of benchmark problems will enable the results of quantitative phase field models to be confidently incorporated into integrated computational materials science and engineering (ICME), an important goal of the Materials Genome Initiative.

  1. Benchmarking Benchmarks

    NARCIS (Netherlands)

    D.C. Blitz (David)

    2011-01-01

    textabstractBenchmarking benchmarks is a bundle of six studies that are inspired by the prevalence of benchmarking in academic finance research as well as in investment practice. Three studies examine if current benchmark asset pricing models adequately describe the cross-section of stock returns.

  2. Lower hybrid current drive: an overview of simulation models, benchmarking with experiment, and predictions for future devices

    International Nuclear Information System (INIS)

    Bonoli, P.T.; Barbato, E.; Imbeaux, F.

    2003-01-01

    This paper reviews the status of lower hybrid current drive (LHCD) simulation and modeling. We first discuss modules used for wave propagation, absorption, and current drive with particular emphasis placed on comparing exact numerical solutions of the Fokker Planck equation in 2-dimension with solution methods that employ 1-dimensional and adjoint approaches. We also survey model predictions for LHCD in past and present experiments showing detailed comparisons between simulated and observed current drive efficiencies and hard X-ray profiles. Finally we discuss several model predictions for lower hybrid current profile control in proposed next step reactor options. (authors)

  3. EPA's Benchmark Dose Modeling Software

    Science.gov (United States)

    The EPA developed the Benchmark Dose Software (BMDS) as a tool to help Agency risk assessors facilitate applying benchmark dose (BMD) method’s to EPA’s human health risk assessment (HHRA) documents. The application of BMD methods overcomes many well know limitations ...

  4. Benchmarking

    OpenAIRE

    Meylianti S., Brigita

    1999-01-01

    Benchmarking has different meaning to different people. There are five types of benchmarking, namely internal benchmarking, competitive benchmarking, industry / functional benchmarking, process / generic benchmarking and collaborative benchmarking. Each type of benchmarking has its own advantages as well as disadvantages. Therefore it is important to know what kind of benchmarking is suitable to a specific application. This paper will discuss those five types of benchmarking in detail, includ...

  5. PEBBLES Simulation of Static Friction and New Static Friction Benchmark

    International Nuclear Information System (INIS)

    Cogliati, Joshua J.; Ougouag, Abderrafi M.

    2010-01-01

    Pebble bed reactors contain large numbers of spherical fuel elements arranged randomly. Determining the motion and location of these fuel elements is required for calculating certain parameters of pebble bed reactor operation. This paper documents the PEBBLES static friction model. This model uses a three dimensional differential static friction approximation extended from the two dimensional Cundall and Strack model. The derivation of determining the rotational transformation of pebble to pebble static friction force is provided. A new implementation for a differential rotation method for pebble to container static friction force has been created. Previous published methods are insufficient for pebble bed reactor geometries. A new analytical static friction benchmark is documented that can be used to verify key static friction simulation parameters. This benchmark is based on determining the exact pebble to pebble and pebble to container static friction coefficients required to maintain a stable five sphere pyramid.

  6. FRIB driver linac vacuum model and benchmarks

    CERN Document Server

    Durickovic, Bojan; Kersevan, Roberto; Machicoane, Guillaume

    2014-01-01

    The Facility for Rare Isotope Beams (FRIB) is a superconducting heavy-ion linear accelerator that is to produce rare isotopes far from stability for low energy nuclear science. In order to achieve this, its driver linac needs to achieve a very high beam current (up to 400 kW beam power), and this requirement makes vacuum levels of critical importance. Vacuum calculations have been carried out to verify that the vacuum system design meets the requirements. The modeling procedure was benchmarked by comparing models of an existing facility against measurements. In this paper, we present an overview of the methods used for FRIB vacuum calculations and simulation results for some interesting sections of the accelerator. (C) 2013 Elsevier Ltd. All rights reserved.

  7. OECD/NEZ Main Steam Line Break Benchmark Problem Exercise I Simulation Using the SPACE Code with the Point Kinetics Model

    International Nuclear Information System (INIS)

    Kim, Yohan; Kim, Seyun; Ha, Sangjun

    2014-01-01

    The Safety and Performance Analysis Code for Nuclear Power Plants (SPACE) has been developed in recent years by the Korea Nuclear Hydro and Nuclear Power Co. (KHNP) through collaborative works with other Korean nuclear industries. The SPACE is a best-estimated two-phase three-field thermal-hydraulic analysis code to analyze the safety and performance of pressurized water reactors (PWRs). The SPACE code has sufficient features to replace outdated vendor supplied codes and to be used for the safety analysis of operating PWRs and the design of advanced reactors. As a result of the second phase of the development, the 2.14 version of the code was released through the successive various V and V works. The topical reports on the code and related safety analysis methodologies have been prepared for license works. In this study, the OECD/NEA Main Steam Line Break (MSLB) Benchmark Problem Exercise I was simulated as a V and V work. The results were compared with those of the participants in the benchmark project. The OECD/NEA MSLB Benchmark Problem Exercise I was simulated using the SPACE code. The results were compared with those of the participants in the benchmark project. Through the simulation, it was concluded that the SPACE code can effectively simulate PWR MSLB accidents

  8. Benchmark validation of statistical models: Application to mediation analysis of imagery and memory.

    Science.gov (United States)

    MacKinnon, David P; Valente, Matthew J; Wurpts, Ingrid C

    2018-03-29

    This article describes benchmark validation, an approach to validating a statistical model. According to benchmark validation, a valid model generates estimates and research conclusions consistent with a known substantive effect. Three types of benchmark validation-(a) benchmark value, (b) benchmark estimate, and (c) benchmark effect-are described and illustrated with examples. Benchmark validation methods are especially useful for statistical models with assumptions that are untestable or very difficult to test. Benchmark effect validation methods were applied to evaluate statistical mediation analysis in eight studies using the established effect that increasing mental imagery improves recall of words. Statistical mediation analysis led to conclusions about mediation that were consistent with established theory that increased imagery leads to increased word recall. Benchmark validation based on established substantive theory is discussed as a general way to investigate characteristics of statistical models and a complement to mathematical proof and statistical simulation. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Towards benchmarking an in-stream water quality model

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available A method of model evaluation is presented which utilises a comparison with a benchmark model. The proposed benchmarking concept is one that can be applied to many hydrological models but, in this instance, is implemented in the context of an in-stream water quality model. The benchmark model is defined in such a way that it is easily implemented within the framework of the test model, i.e. the approach relies on two applications of the same model code rather than the application of two separate model codes. This is illustrated using two case studies from the UK, the Rivers Aire and Ouse, with the objective of simulating a water quality classification, general quality assessment (GQA, which is based on dissolved oxygen, biochemical oxygen demand and ammonium. Comparisons between the benchmark and test models are made based on GQA, as well as a step-wise assessment against the components required in its derivation. The benchmarking process yields a great deal of important information about the performance of the test model and raises issues about a priori definition of the assessment criteria.

  10. Results of the benchmark for blade structural models, part A

    DEFF Research Database (Denmark)

    Lekou, D.J.; Chortis, D.; Belen Fariñas, A.

    2013-01-01

    A benchmark on structural design methods for blades was performed within the InnWind.Eu project under WP2 “Lightweight Rotor” Task 2.2 “Lightweight structural design”. The present document is describes the results of the comparison simulation runs that were performed by the partners involved within...... Task 2.2 of the InnWind.Eu project. The benchmark is based on the reference wind turbine and the reference blade provided by DTU [1]. "Structural Concept developers/modelers" of WP2 were provided with the necessary input for a comparison numerical simulation run, upon definition of the reference blade...

  11. Does Your Terrestrial Model Capture Key Arctic-Boreal Relationships?: Functional Benchmarks in the ABoVE Model Benchmarking System

    Science.gov (United States)

    Stofferahn, E.; Fisher, J. B.; Hayes, D. J.; Schwalm, C. R.; Huntzinger, D. N.; Hantson, W.

    2017-12-01

    The Arctic-Boreal Region (ABR) is a major source of uncertainties for terrestrial biosphere model (TBM) simulations. These uncertainties are precipitated by a lack of observational data from the region, affecting the parameterizations of cold environment processes in the models. Addressing these uncertainties requires a coordinated effort of data collection and integration of the following key indicators of the ABR ecosystem: disturbance, vegetation / ecosystem structure and function, carbon pools and biogeochemistry, permafrost, and hydrology. We are continuing to develop the model-data integration framework for NASA's Arctic Boreal Vulnerability Experiment (ABoVE), wherein data collection is driven by matching observations and model outputs to the ABoVE indicators via the ABoVE Grid and Projection. The data are used as reference datasets for a benchmarking system which evaluates TBM performance with respect to ABR processes. The benchmarking system utilizes two types of performance metrics to identify model strengths and weaknesses: standard metrics, based on the International Land Model Benchmarking (ILaMB) system, which relate a single observed variable to a single model output variable, and functional benchmarks, wherein the relationship of one variable to one or more variables (e.g. the dependence of vegetation structure on snow cover, the dependence of active layer thickness (ALT) on air temperature and snow cover) is ascertained in both observations and model outputs. This in turn provides guidance to model development teams for reducing uncertainties in TBM simulations of the ABR.

  12. Implementing ADM1 for plant-wide benchmark simulations in Matlab/Simulink

    DEFF Research Database (Denmark)

    Rosen, Christian; Vrecko, Darko; Gernaey, Krist

    2006-01-01

    , in particular if the ADM1 is to be included in dynamic simulations of plant-wide or even integrated systems. In this paper, the experiences gained from a Matlab/Simulink implementation of ADM1 into the extended COST/IWA Benchmark Simulation Model (BSM2) are presented. Aspects related to system stiffness, model...

  13. Discussion of OECD LWR Uncertainty Analysis in Modelling Benchmark

    International Nuclear Information System (INIS)

    Ivanov, K.; Avramova, M.; Royer, E.; Gillford, J.

    2013-01-01

    The demand for best estimate calculations in nuclear reactor design and safety evaluations has increased in recent years. Uncertainty quantification has been highlighted as part of the best estimate calculations. The modelling aspects of uncertainty and sensitivity analysis are to be further developed and validated on scientific grounds in support of their performance and application to multi-physics reactor simulations. The Organization for Economic Co-operation and Development (OECD) / Nuclear Energy Agency (NEA) Nuclear Science Committee (NSC) has endorsed the creation of an Expert Group on Uncertainty Analysis in Modelling (EGUAM). Within the framework of activities of EGUAM/NSC the OECD/NEA initiated the Benchmark for Uncertainty Analysis in Modelling for Design, Operation, and Safety Analysis of Light Water Reactor (OECD LWR UAM benchmark). The general objective of the benchmark is to propagate the predictive uncertainties of code results through complex coupled multi-physics and multi-scale simulations. The benchmark is divided into three phases with Phase I highlighting the uncertainty propagation in stand-alone neutronics calculations, while Phase II and III are focused on uncertainty analysis of reactor core and system respectively. This paper discusses the progress made in Phase I calculations, the Specifications for Phase II and the incoming challenges in defining Phase 3 exercises. The challenges of applying uncertainty quantification to complex code systems, in particular the time-dependent coupled physics models are the large computational burden and the utilization of non-linear models (expected due to the physics coupling). (authors)

  14. Shear Strength Measurement Benchmarking Tests for K Basin Sludge Simulants

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Carolyn A.; Daniel, Richard C.; Enderlin, Carl W.; Luna, Maria; Schmidt, Andrew J.

    2009-06-10

    Equipment development and demonstration testing for sludge retrieval is being conducted by the K Basin Sludge Treatment Project (STP) at the MASF (Maintenance and Storage Facility) using sludge simulants. In testing performed at the Pacific Northwest National Laboratory (under contract with the CH2M Hill Plateau Remediation Company), the performance of the Geovane instrument was successfully benchmarked against the M5 Haake rheometer using a series of simulants with shear strengths (τ) ranging from about 700 to 22,000 Pa (shaft corrected). Operating steps for obtaining consistent shear strength measurements with the Geovane instrument during the benchmark testing were refined and documented.

  15. SPOC Benchmark Case: SNRE Model

    Energy Technology Data Exchange (ETDEWEB)

    Vishal Patel; Michael Eades; Claude Russel Joyner II

    2016-02-01

    The Small Nuclear Rocket Engine (SNRE) was modeled in the Center for Space Nuclear Research’s (CSNR) Space Propulsion Optimization Code (SPOC). SPOC aims to create nuclear thermal propulsion (NTP) geometries quickly to perform parametric studies on design spaces of historic and new NTP designs. The SNRE geometry was modeled in SPOC and a critical core with a reasonable amount of criticality margin was found. The fuel, tie-tubes, reflector, and control drum masses were predicted rather well. These are all very important for neutronics calculations so the active reactor geometries created with SPOC can continue to be trusted. Thermal calculations of the average and hot fuel channels agreed very well. The specific impulse calculations used historically and in SPOC disagree so mass flow rates and impulses differed. Modeling peripheral and power balance components that do not affect nuclear characteristics of the core is not a feature of SPOC and as such, these components should continue to be designed using other tools. A full paper detailing the available SNRE data and comparisons with SPOC outputs will be submitted as a follow-up to this abstract.

  16. Results from the IAEA benchmark of spallation models

    International Nuclear Information System (INIS)

    Leray, S.; David, J.C.; Khandaker, M.; Mank, G.; Mengoni, A.; Otsuka, N.; Filges, D.; Gallmeier, F.; Konobeyev, A.; Michel, R.

    2011-01-01

    Spallation reactions play an important role in a wide domain of applications. In the simulation codes used in this field, the nuclear interaction cross-sections and characteristics are computed by spallation models. The International Atomic Energy Agency (IAEA) has recently organised a benchmark of the spallation models used or that could be used in the future into high-energy transport codes. The objectives were, first, to assess the prediction capabilities of the different spallation models for the different mass and energy regions and the different exit channels and, second, to understand the reason for the success or deficiency of the models. Results of the benchmark concerning both the analysis of the prediction capabilities of the models and the first conclusions on the physics of spallation models are presented. (authors)

  17. Simulation of Benchmark Cases with the Terminal Area Simulation System (TASS)

    Science.gov (United States)

    Ahmad, Nash'at; Proctor, Fred

    2011-01-01

    The hydrodynamic core of the Terminal Area Simulation System (TASS) is evaluated against different benchmark cases. In the absence of closed form solutions for the equations governing atmospheric flows, the models are usually evaluated against idealized test cases. Over the years, various authors have suggested a suite of these idealized cases which have become standards for testing and evaluating the dynamics and thermodynamics of atmospheric flow models. In this paper, simulations of three such cases are described. In addition, the TASS model is evaluated against a test case that uses an exact solution of the Navier-Stokes equations. The TASS results are compared against previously reported simulations of these banchmark cases in the literature. It is demonstrated that the TASS model is highly accurate, stable and robust.

  18. SeSBench - An initiative to benchmark reactive transport models for environmental subsurface processes

    Science.gov (United States)

    Jacques, Diederik

    2017-04-01

    As soil functions are governed by a multitude of interacting hydrological, geochemical and biological processes, simulation tools coupling mathematical models for interacting processes are needed. Coupled reactive transport models are a typical example of such coupled tools mainly focusing on hydrological and geochemical coupling (see e.g. Steefel et al., 2015). Mathematical and numerical complexity for both the tool itself or of the specific conceptual model can increase rapidly. Therefore, numerical verification of such type of models is a prerequisite for guaranteeing reliability and confidence and qualifying simulation tools and approaches for any further model application. In 2011, a first SeSBench -Subsurface Environmental Simulation Benchmarking- workshop was held in Berkeley (USA) followed by four other ones. The objective is to benchmark subsurface environmental simulation models and methods with a current focus on reactive transport processes. The final outcome was a special issue in Computational Geosciences (2015, issue 3 - Reactive transport benchmarks for subsurface environmental simulation) with a collection of 11 benchmarks. Benchmarks, proposed by the participants of the workshops, should be relevant for environmental or geo-engineering applications; the latter were mostly related to radioactive waste disposal issues - excluding benchmarks defined for pure mathematical reasons. Another important feature is the tiered approach within a benchmark with the definition of a single principle problem and different sub problems. The latter typically benchmarked individual or simplified processes (e.g. inert solute transport, simplified geochemical conceptual model) or geometries (e.g. batch or one-dimensional, homogeneous). Finally, three codes should be involved into a benchmark. The SeSBench initiative contributes to confidence building for applying reactive transport codes. Furthermore, it illustrates the use of those type of models for different

  19. Holistic simulation of geotechnical installation processes benchmarks and simulations

    CERN Document Server

    2016-01-01

    This book examines in detail the entire process involved in implementing geotechnical projects, from a well-defined initial stress and deformation state, to the completion of the installation process.   The individual chapters provide the fundamental knowledge needed to effectively improve soil-structure interaction models. Further, they present the results of theoretical fundamental research on suitable constitutive models, contact formulations, and efficient numerical implementations and algorithms. Applications of fundamental research on boundary value problems are also considered in order to improve the implementation of the theoretical models developed. Subsequent chapters highlight parametric studies of the respective geotechnical installation process, as well as elementary and large-scale model tests under well-defined conditions, in order to identify the most essential parameters for optimizing the process. The book provides suitable methods for simulating boundary value problems in connection with g...

  20. Benchmark of Space Charge Simulations and Comparison with Experimental Results for High Intensity, Low Energy Accelerators

    CERN Document Server

    Cousineau, Sarah M

    2005-01-01

    Space charge effects are a major contributor to beam halo and emittance growth leading to beam loss in high intensity, low energy accelerators. As future accelerators strive towards unprecedented levels of beam intensity and beam loss control, a more comprehensive understanding of space charge effects is required. A wealth of simulation tools have been developed for modeling beams in linacs and rings, and with the growing availability of high-speed computing systems, computationally expensive problems that were inconceivable a decade ago are now being handled with relative ease. This has opened the field for realistic simulations of space charge effects, including detailed benchmarks with experimental data. A great deal of effort is being focused in this direction, and several recent benchmark studies have produced remarkably successful results. This paper reviews the achievements in space charge benchmarking in the last few years, and discusses the challenges that remain.

  1. Benchmarking

    OpenAIRE

    Beretta Sergio; Dossi Andrea; Grove Hugh

    2000-01-01

    Due to their particular nature, the benchmarking methodologies tend to exceed the boundaries of management techniques, and to enter the territories of managerial culture. A culture that is also destined to break into the accounting area not only strongly supporting the possibility of fixing targets, and measuring and comparing the performance (an aspect that is already innovative and that is worthy of attention), but also questioning one of the principles (or taboos) of the accounting or...

  2. A benchmark on computational simulation of a CT fracture experiment

    International Nuclear Information System (INIS)

    Franco, C.; Brochard, J.; Ignaccolo, S.; Eripret, C.

    1992-01-01

    For a better understanding of the fracture behavior of cracked welds in piping, FRAMATOME, EDF and CEA have launched an important analytical research program. This program is mainly based on the analysis of the effects of the geometrical parameters (the crack size and the welded joint dimensions) and the yield strength ratio on the fracture behavior of several cracked configurations. Two approaches have been selected for the fracture analyses: on one hand, the global approach based on the concept of crack driving force J and on the other hand, a local approach of ductile fracture. In this approach the crack initiation and growth are modelized by the nucleation, growth and coalescence of cavities in front of the crack tip. The model selected in this study estimates only the growth of the cavities using the RICE and TRACEY relationship. The present study deals with a benchmark on computational simulation of CT fracture experiments using three computer codes : ALIBABA developed by EDF the CEA's code CASTEM 2000 and the FRAMATOME's code SYSTUS. The paper is split into three parts. At first, the authors present the experimental procedure for high temperature toughness testing of two CT specimens taken from a welded pipe, characteristic of pressurized water reactor primary piping. Secondly, considerations are outlined about the Finite Element analysis and the application procedure. A detailed description is given on boundary and loading conditions, on the mesh characteristics, on the numerical scheme involved and on the void growth computation. Finally, the comparisons between numerical and experimental results are presented up to the crack initiation, the tearing process being not taken into account in the present study. The variations of J and of the local variables used to estimate the damage around the crack tip (triaxiality and hydrostatic stresses, plastic deformations, void growth ...) are computed as a function of the increasing load

  3. Simulation benchmark based on THAI-experiment on dissolution of a steam stratification by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Freitag, M., E-mail: freitag@becker-technologies.com; Schmidt, E.; Gupta, S.; Poss, G.

    2016-04-01

    Highlights: . • We studied the generation and dissolution of steam stratification in natural convection. • We performed a computer code benchmark including blind and open phases. • The dissolution of stratification predicted only qualitatively by LP and CFD models during the blind simulation phase. - Abstract: Locally enriched hydrogen as in stratification may contribute to early containment failure in the course of severe nuclear reactor accidents. During accident sequences steam might accumulate as well to stratifications which can directly influence the distribution and ignitability of hydrogen mixtures in containments. An international code benchmark including Computational Fluid Dynamics (CFD) and Lumped Parameter (LP) codes was conducted in the frame of the German THAI program. Basis for the benchmark was experiment TH24.3 which investigates the dissolution of a steam layer subject to natural convection in the steam-air atmosphere of the THAI vessel. The test provides validation data for the development of CFD and LP models to simulate the atmosphere in the containment of a nuclear reactor installation. In test TH24.3 saturated steam is injected into the upper third of the vessel forming a stratification layer which is then mixed by a superposed thermal convection. In this paper the simulation benchmark will be evaluated in addition to the general discussion about the experimental transient of test TH24.3. Concerning the steam stratification build-up and dilution of the stratification, the numerical programs showed very different results during the blind evaluation phase, but improved noticeable during open simulation phase.

  4. Benchmark for evaluation and validation of reactor simulations (BEAVRS)

    Energy Technology Data Exchange (ETDEWEB)

    Horelik, N.; Herman, B.; Forget, B.; Smith, K. [Massachusetts Institute of Technology, Department of Nuclear Science and Engineering, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-07-01

    Advances in parallel computing have made possible the development of high-fidelity tools for the design and analysis of nuclear reactor cores, and such tools require extensive verification and validation. This paper introduces BEAVRS, a new multi-cycle full-core Pressurized Water Reactor (PWR) depletion benchmark based on two operational cycles of a commercial nuclear power plant that provides a detailed description of fuel assemblies, burnable absorbers, in-core fission detectors, core loading patterns, and numerous in-vessel components. This benchmark enables analysts to develop extremely detailed reactor core models that can be used for testing and validation of coupled neutron transport, thermal-hydraulics, and fuel isotopic depletion. The benchmark also provides measured reactor data for Hot Zero Power (HZP) physics tests, boron letdown curves, and three-dimensional in-core flux maps from fifty-eight instrumented assemblies. Initial comparisons between calculations performed with MIT's OpenMC Monte Carlo neutron transport code and measured cycle 1 HZP test data are presented, and these results display an average deviation of approximately 100 pcm for the various critical configurations and control rod worth measurements. Computed HZP radial fission detector flux maps also agree reasonably well with the available measured data. All results indicate that this benchmark will be extremely useful in validation of coupled-physics codes and uncertainty quantification of in-core physics computational predictions. The detailed BEAVRS specification and its associated data package is hosted online at the MIT Computational Reactor Physics Group web site (http://crpg.mit.edu/), where future revisions and refinements to the benchmark specification will be made publicly available. (authors)

  5. Simulation of nonlinear benchmarks and sheet metal forming processes using linear and quadratic solid–shell elements combined with advanced anisotropic behavior models

    Directory of Open Access Journals (Sweden)

    Wang Peng

    2016-01-01

    Full Text Available A family of prismatic and hexahedral solid‒shell (SHB elements with their linear and quadratic versions is presented in this paper to model thin 3D structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In this paper, the SHB elements are combined with fully 3D behavior models, including orthotropic elastic behavior for composite materials and anisotropic plastic behavior for metallic materials, which allows describing the strain/stress state in the thickness direction, in contrast to traditional shell elements. All SHB elements are implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. Several benchmark tests have been conducted, in order to first assess the performance of the SHB elements in quasi-static and dynamic analyses. Then, deep drawing of a hemispherical cup is performed to demonstrate the capabilities of the SHB elements in handling various types of nonlinearities (large displacements and rotations, anisotropic plasticity, and contact. Compared to classical ABAQUS solid and shell elements, the results given by the SHB elements show good agreement with the reference solutions.

  6. TU Electric reactor physics model verification: Power reactor benchmark

    International Nuclear Information System (INIS)

    Willingham, C.E.; Killgore, M.R.

    1988-01-01

    Power reactor benchmark calculations using the advanced code package CASMO-3/SIMULATE-3 have been performed for six cycles of Prairie Island Unit 1. The reload fuel designs for the selected cycles included gadolinia as a burnable absorber, natural uranium axial blankets and increased water-to-fuel ratio. The calculated results for both startup reactor physics tests (boron endpoints, control rod worths, and isothermal temperature coefficients) and full power depletion results were compared to measured plant data. These comparisons show that the TU Electric reactor physics models accurately predict important measured parameters for power reactors

  7. Benchmarking novel approaches for modelling species range dynamics.

    Science.gov (United States)

    Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E

    2016-08-01

    Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches

  8. Monte Carlo burnup simulation of the TAKAHAMA-3 benchmark experiment

    International Nuclear Information System (INIS)

    Dalle, Hugo M.

    2009-01-01

    High burnup PWR fuel is currently being studied at CDTN/CNEN-MG. Monte Carlo burnup code system MONTEBURNS is used to characterize the neutronic behavior of the fuel. In order to validate the code system and calculation methodology to be used in this study the Japanese Takahama-3 Benchmark was chosen, as it is the single burnup benchmark experimental data set freely available that partially reproduces the conditions of the fuel under evaluation. The burnup of the three PWR fuel rods of the Takahama-3 burnup benchmark was calculated by MONTEBURNS using the simplest infinite fuel pin cell model and also a more complex representation of an infinite heterogeneous fuel pin cells lattice. Calculations results for the mass of most isotopes of Uranium, Neptunium, Plutonium, Americium, Curium and some fission products, commonly used as burnup monitors, were compared with the Post Irradiation Examinations (PIE) values for all the three fuel rods. Results have shown some sensitivity to the MCNP neutron cross-section data libraries, particularly affected by the temperature in which the evaluated nuclear data files were processed. (author)

  9. a Proposed Benchmark Problem for Scatter Calculations in Radiographic Modelling

    Science.gov (United States)

    Jaenisch, G.-R.; Bellon, C.; Schumm, A.; Tabary, J.; Duvauchelle, Ph.

    2009-03-01

    Code Validation is a permanent concern in computer modelling, and has been addressed repeatedly in eddy current and ultrasonic modeling. A good benchmark problem is sufficiently simple to be taken into account by various codes without strong requirements on geometry representation capabilities, focuses on few or even a single aspect of the problem at hand to facilitate interpretation and to avoid that compound errors compensate themselves, yields a quantitative result and is experimentally accessible. In this paper we attempt to address code validation for one aspect of radiographic modeling, the scattered radiation prediction. Many NDT applications can not neglect scattered radiation, and the scatter calculation thus is important to faithfully simulate the inspection situation. Our benchmark problem covers the wall thickness range of 10 to 50 mm for single wall inspections, with energies ranging from 100 to 500 keV in the first stage, and up to 1 MeV with wall thicknesses up to 70 mm in the extended stage. A simple plate geometry is sufficient for this purpose, and the scatter data is compared on a photon level, without a film model, which allows for comparisons with reference codes like MCNP. We compare results of three Monte Carlo codes (McRay, Sindbad and Moderato) as well as an analytical first order scattering code (VXI), and confront them to results obtained with MCNP. The comparison with an analytical scatter model provides insights into the application domain where this kind of approach can successfully replace Monte-Carlo calculations.

  10. Benchmarking Simulation of Long Term Station Blackout Events

    International Nuclear Information System (INIS)

    Kim, Sung Kyum; Lee, John C.; Fynan, Douglas A.; Lee, John C.

    2013-01-01

    The importance of passive cooling systems has emerged since the SBO events. Turbine-driven auxiliary feedwater (TD-AFW) system is the only passive cooling system for steam generators (SGs) in current PWRs. During SBO events, all alternating current (AC) and direct current (DC) are interrupted and then the water levels of steam generators become high. In this case, turbine blades could be degraded and cannot cool down the SGs anymore. To prevent this kind of degradations, improved TD-AFW system should be installed for current PWRs, especially OPR 1000 plants. A long-term station blackout (LTSBO) scenario based on the improved TD-AFW system has been benchmarked as a reference input file. The following task is a safety analysis in order to find some important parameters causing the peak cladding temperature (PCT) to vary. This task has been initiated with the benchmarked input deck applying to the State-of-the-Art Reactor Consequence Analyses (SOARCA) Report. The point of the improved TD-AFW is to control the water level of the SG by using the auxiliary battery charged by a generator connected with the auxiliary turbine. However, this battery also could be disconnected from the generator. To analyze the uncertainties of the failure of the auxiliary battery, the simulation for the time-dependent failure of the TD-AFW has been performed. In addition to the cases simulated in the paper, some valves (e. g., pressurizer safety valve), available during SBO events in the paper, could be important parameters to assess uncertainties in PCTs estimated. The results for these parameters will be included in a future study in addition to the results for the leakage of the RCP seals. After the simulation of several transient cases, alternating conditional expectation (ACE) algorithm will be used to derive functional relationships between the PCT and several system parameters

  11. Pescara benchmark: overview of modelling, testing and identification

    International Nuclear Information System (INIS)

    Bellino, A; Garibaldi, L; Marchesiello, S; Brancaleoni, F; Gabriele, S; Spina, D; Bregant, L; Carminelli, A; Catania, G; Sorrentino, S; Di Evangelista, A; Valente, C; Zuccarino, L

    2011-01-01

    The 'Pescara benchmark' is part of the national research project 'BriViDi' (BRIdge VIbrations and DIagnosis) supported by the Italian Ministero dell'Universita e Ricerca. The project is aimed at developing an integrated methodology for the structural health evaluation of railway r/c, p/c bridges. The methodology should provide for applicability in operating conditions, easy data acquisition through common industrial instrumentation, robustness and reliability against structural and environmental uncertainties. The Pescara benchmark consisted in lab tests to get a consistent and large experimental data base and subsequent data processing. Special tests were devised to simulate the train transit effects in actual field conditions. Prestressed concrete beams of current industrial production both sound and damaged at various severity corrosion levels were tested. The results were collected either in a deterministic setting and in a form suitable to deal with experimental uncertainties. Damage identification was split in two approaches: with or without a reference model. In the first case f.e. models were used in conjunction with non conventional updating techniques. In the second case, specialized output-only identification techniques capable to deal with time-variant and possibly non linear systems were developed. The lab tests allowed validating the above approaches and the performances of classical modal based damage indicators.

  12. IRIS-2012 OECD/NEA/CSNI benchmark: Numerical simulations of structural impact

    International Nuclear Information System (INIS)

    Orbovic, Nebojsa; Tarallo, Francois; Rambach, Jean-Mathieu; Sagals, Genadijs; Blahoianu, Andrei

    2015-01-01

    A benchmark of numerical simulations related to the missile impact on reinforced concrete (RC) slabs has been launched in the frame of OECD/NEA/CSNI research program “Improving Robustness Assessment Methodologies for Structures Impacted by Missiles”, under the acronym IRIS. The goal of the research program is to simulate RC structural, flexural and punching, behavior under deformable and rigid missile impact. The first phase called IRIS-2010 was a blind prediction of the tests performed at VTT facility in Espoo, Finland. The two simulations were performed related to two series of tests: (1) two tests on the impact of a deformable missile exhibiting damage mainly by flexural (so-called “flexural tests”) or global response and (2) three tests on the impact of a rigid missile exhibiting damage mainly by punching response (so-called “punching tests”) or local response. The simulation results showed significant scatter (coefficient of variation up to 132%) for both flexural and punching cases. The IRIS-2012 is the second, post-test, phase of the benchmark with the goal to improve simulations and reduce the scatter of the results. Based on the IRIS-2010 recommendations and to better calibrate concrete constitutive models, a series of tri-axial tests as well as Brazilian tests were performed as a part of the IRIS-2012 benchmark. 25 teams from 11 countries took part in this exercise. Majority of participants were part of the IRIS-2010 benchmark. Participants showed significant improvement in reducing epistemic uncertainties in impact simulations. Several teams presented both finite element (FE) and simplified analysis as per recommendations of the IRIS-2010. The improvements were at the level of simulation results but also at the level of understanding of impact phenomena and its modeling. Due to the complexity of the physical phenomena and its simulation (high geometric and material non-linear behavior) and inherent epistemic and aleatory uncertainties, the

  13. IRIS-2012 OECD/NEA/CSNI benchmark: Numerical simulations of structural impact

    Energy Technology Data Exchange (ETDEWEB)

    Orbovic, Nebojsa, E-mail: nebojsa.orbovic@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); Tarallo, Francois [IRSN, Fontenay aux Roses (France); Rambach, Jean-Mathieu [Géodynamique et Structures, Bagneux (France); Sagals, Genadijs; Blahoianu, Andrei [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-12-15

    A benchmark of numerical simulations related to the missile impact on reinforced concrete (RC) slabs has been launched in the frame of OECD/NEA/CSNI research program “Improving Robustness Assessment Methodologies for Structures Impacted by Missiles”, under the acronym IRIS. The goal of the research program is to simulate RC structural, flexural and punching, behavior under deformable and rigid missile impact. The first phase called IRIS-2010 was a blind prediction of the tests performed at VTT facility in Espoo, Finland. The two simulations were performed related to two series of tests: (1) two tests on the impact of a deformable missile exhibiting damage mainly by flexural (so-called “flexural tests”) or global response and (2) three tests on the impact of a rigid missile exhibiting damage mainly by punching response (so-called “punching tests”) or local response. The simulation results showed significant scatter (coefficient of variation up to 132%) for both flexural and punching cases. The IRIS-2012 is the second, post-test, phase of the benchmark with the goal to improve simulations and reduce the scatter of the results. Based on the IRIS-2010 recommendations and to better calibrate concrete constitutive models, a series of tri-axial tests as well as Brazilian tests were performed as a part of the IRIS-2012 benchmark. 25 teams from 11 countries took part in this exercise. Majority of participants were part of the IRIS-2010 benchmark. Participants showed significant improvement in reducing epistemic uncertainties in impact simulations. Several teams presented both finite element (FE) and simplified analysis as per recommendations of the IRIS-2010. The improvements were at the level of simulation results but also at the level of understanding of impact phenomena and its modeling. Due to the complexity of the physical phenomena and its simulation (high geometric and material non-linear behavior) and inherent epistemic and aleatory uncertainties, the

  14. Experimental benchmark of kinetic simulations of capacitively coupled plasmas in molecular gases

    Science.gov (United States)

    Donkó, Z.; Derzsi, A.; Korolov, I.; Hartmann, P.; Brandt, S.; Schulze, J.; Berger, B.; Koepke, M.; Bruneau, B.; Johnson, E.; Lafleur, T.; Booth, J.-P.; Gibson, A. R.; O'Connell, D.; Gans, T.

    2018-01-01

    We discuss the origin of uncertainties in the results of numerical simulations of low-temperature plasma sources, focusing on capacitively coupled plasmas. These sources can be operated in various gases/gas mixtures, over a wide domain of excitation frequency, voltage, and gas pressure. At low pressures, the non-equilibrium character of the charged particle transport prevails and particle-based simulations become the primary tools for their numerical description. The particle-in-cell method, complemented with Monte Carlo type description of collision processes, is a well-established approach for this purpose. Codes based on this technique have been developed by several authors/groups, and have been benchmarked with each other in some cases. Such benchmarking demonstrates the correctness of the codes, but the underlying physical model remains unvalidated. This is a key point, as this model should ideally account for all important plasma chemical reactions as well as for the plasma-surface interaction via including specific surface reaction coefficients (electron yields, sticking coefficients, etc). In order to test the models rigorously, comparison with experimental ‘benchmark data’ is necessary. Examples will be given regarding the studies of electron power absorption modes in O2, and CF4-Ar discharges, as well as on the effect of modifications of the parameters of certain elementary processes on the computed discharge characteristics in O2 capacitively coupled plasmas.

  15. Benchmark problems for repository siting models

    International Nuclear Information System (INIS)

    Ross, B.; Mercer, J.W.; Thomas, S.D.; Lester, B.H.

    1982-12-01

    This report describes benchmark problems to test computer codes used in siting nuclear waste repositories. Analytical solutions, field problems, and hypothetical problems are included. Problems are included for the following types of codes: ground-water flow in saturated porous media, heat transport in saturated media, ground-water flow in saturated fractured media, heat and solute transport in saturated porous media, solute transport in saturated porous media, solute transport in saturated fractured media, and solute transport in unsaturated porous media

  16. Analogue experiments as benchmarks for models of lava flow emplacement

    Science.gov (United States)

    Garel, F.; Kaminski, E. C.; Tait, S.; Limare, A.

    2013-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flow advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and on the effusion rate. Fast-computing models have arisen in the past decade in order to predict in near real time lava flow path and rate of advance. This type of model, crucial to mitigate volcanic hazards and organize potential evacuation, has been mainly compared a posteriori to real cases of emplaced lava flows. The input parameters of such simulations applied to natural eruptions, especially effusion rate and topography, are often not known precisely, and are difficult to evaluate after the eruption. It is therefore not straightforward to identify the causes of discrepancies between model outputs and observed lava emplacement, whereas the comparison of models with controlled laboratory experiments appears easier. The challenge for numerical simulations of lava flow emplacement is to model the simultaneous advance and thermal structure of viscous lava flows. To provide original constraints later to be used in benchmark numerical simulations, we have performed lab-scale experiments investigating the cooling of isoviscous gravity currents. The simplest experimental set-up is as follows: silicone oil, whose viscosity, around 5 Pa.s, varies less than a factor of 2 in the temperature range studied, is injected from a point source onto a horizontal plate and spreads axisymmetrically. The oil is injected hot, and progressively cools down to ambient temperature away from the source. Once the flow is developed, it presents a stationary radial thermal structure whose characteristics depend on the input flow rate. In addition to the experimental observations, we have developed in Garel et al., JGR, 2012 a theoretical model confirming the relationship between supply rate, flow advance and stationary surface thermal structure. We also provide

  17. A computer code package for Monte Carlo photon-electron transport simulation Comparisons with experimental benchmarks

    International Nuclear Information System (INIS)

    Popescu, Lucretiu M.

    2000-01-01

    A computer code package (PTSIM) for particle transport Monte Carlo simulation was developed using object oriented techniques of design and programming. A flexible system for simulation of coupled photon, electron transport, facilitating development of efficient simulation applications, was obtained. For photons: Compton and photo-electric effects, pair production and Rayleigh interactions are simulated, while for electrons, a class II condensed history scheme was considered, in which catastrophic interactions (Moeller electron-electron interaction, bremsstrahlung, etc.) are treated in detail and all other interactions with reduced individual effect on electron history are grouped together using continuous slowing down approximation and energy straggling theories. Electron angular straggling is simulated using Moliere theory or a mixed model in which scatters at large angles are treated as distinct events. Comparisons with experimentally benchmarks for electron transmission and bremsstrahlung emissions energy and angular spectra, and for dose calculations are presented

  18. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  19. Numerical simulations of concrete flow: A benchmark comparison

    DEFF Research Database (Denmark)

    Roussel, Nicolas; Gram, Annika; Cremonesi, Massimiliano

    2016-01-01

    First, we define in this paper two benchmark flows readily usable by anyone calibrating a numerical tool for concrete flow prediction. Such benchmark flows shall allow anyone to check the validity of their computational tools no matter the numerical methods and parameters they choose. Second, we ...

  20. Benchmarking of a Markov multizone model of contaminant transport.

    Science.gov (United States)

    Jones, Rachael M; Nicas, Mark

    2014-10-01

    A Markov chain model previously applied to the simulation of advection and diffusion process of gaseous contaminants is extended to three-dimensional transport of particulates in indoor environments. The model framework and assumptions are described. The performance of the Markov model is benchmarked against simple conventional models of contaminant transport. The Markov model is able to replicate elutriation predictions of particle deposition with distance from a point source, and the stirred settling of respirable particles. Comparisons with turbulent eddy diffusion models indicate that the Markov model exhibits numerical diffusion in the first seconds after release, but over time accurately predicts mean lateral dispersion. The Markov model exhibits some instability with grid length aspect when turbulence is incorporated by way of the turbulent diffusion coefficient, and advection is present. However, the magnitude of prediction error may be tolerable for some applications and can be avoided by incorporating turbulence by way of fluctuating velocity (e.g. turbulence intensity). © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  1. List of benchmarks for simulation tools of steam-water two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Mimouni, S. [Electricite de France (EDF), Div. R and D, 78 - Chatou (France); Serre, G. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, DTP, 38 (France)

    2001-07-01

    A physical-numerical benchmarks matrix was drawn up in the context of the ECUME co-development action. Its purpose is to test the different potentialities required for the numerical methods to be used in the codes of the future which will benefit from advanced physics simulations. This benchmarks matrix is to be used for each numerical method in order to answer the following questions: What is the two-phase flow field that the combination of physics model + numerical scheme can process? What is the accuracy of the scheme for each type of physics situation? What is the numerical efficiency (computing time) of the numerical scheme for each type of physics situation? (author)

  2. List of benchmarks for simulation tools of steam-water two-phase flows

    International Nuclear Information System (INIS)

    Mimouni, S.; Serre, G.

    2001-01-01

    A physical-numerical benchmarks matrix was drawn up in the context of the ECUME co-development action. Its purpose is to test the different potentialities required for the numerical methods to be used in the codes of the future which will benefit from advanced physics simulations. This benchmarks matrix is to be used for each numerical method in order to answer the following questions: What is the two-phase flow field that the combination of physics model + numerical scheme can process? What is the accuracy of the scheme for each type of physics situation? What is the numerical efficiency (computing time) of the numerical scheme for each type of physics situation? (author)

  3. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-06-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behaviour. We also suggest some other tests that could be used as bench-marks

  4. Bench-marking beam-beam simulations using coherent quadrupole effects

    International Nuclear Information System (INIS)

    Krishnagopal, S.; Chin, Y.H.

    1992-01-01

    Computer simulations are used extensively in the study of the beam-beam interaction. The proliferation of such codes raises the important question of their reliability, and motivates the development of a dependable set of bench-marks. We argue that rather than detailed quantitative comparisons, the ability of different codes to predict the same qualitative physics should be used as a criterion for such bench-marks. We use the striking phenomenon of coherent quadrupole oscillations as one such bench-mark, and demonstrate that our codes do indeed observe this behavior. We also suggest some other tests that could be used as bench-marks

  5. Conceptual Models, Choices, and Benchmarks for Building Quality Work Cultures.

    Science.gov (United States)

    Acker-Hocevar, Michele

    1996-01-01

    The two models in Florida's Educational Quality Benchmark System represent a new way of thinking about developing schools' work culture. The Quality Performance System Model identifies nine dimensions of work within a quality system. The Change Process Model provides a theoretical framework for changing existing beliefs, attitudes, and behaviors…

  6. International Benchmark on Numerical Simulations for 1D, Nonlinear Site Response (PRENOLIN) : Verification Phase Based on Canonical Cases

    NARCIS (Netherlands)

    Régnier, Julie; Bonilla, Luis-Fabian; Bard, Pierre-Yves; Bertrand, Etienne; Hollender, Fabrice; Kawase, Hiroshi; Sicilia, Deborah; Arduino, Pedro; Amorosi, Angelo; Asimaki, Dominiki; Pisano, F.

    2016-01-01

    PREdiction of NOn‐LINear soil behavior (PRENOLIN) is an international benchmark aiming to test multiple numerical simulation codes that are capable of predicting nonlinear seismic site response with various constitutive models. One of the objectives of this project is the assessment of the

  7. Depletion benchmarks calculation of random media using explicit modeling approach of RMC

    International Nuclear Information System (INIS)

    Liu, Shichang; She, Ding; Liang, Jin-gang; Wang, Kan

    2016-01-01

    Highlights: • Explicit modeling of RMC is applied to depletion benchmark for HTGR fuel element. • Explicit modeling can provide detailed burnup distribution and burnup heterogeneity. • The results would serve as a supplement for the HTGR fuel depletion benchmark. • The method of adjacent burnup regions combination is proposed for full-core problems. • The combination method can reduce memory footprint, keeping the computing accuracy. - Abstract: Monte Carlo method plays an important role in accurate simulation of random media, owing to its advantages of the flexible geometry modeling and the use of continuous-energy nuclear cross sections. Three stochastic geometry modeling methods including Random Lattice Method, Chord Length Sampling and explicit modeling approach with mesh acceleration technique, have been implemented in RMC to simulate the particle transport in the dispersed fuels, in which the explicit modeling method is regarded as the best choice. In this paper, the explicit modeling method is applied to the depletion benchmark for HTGR fuel element, and the method of combination of adjacent burnup regions has been proposed and investigated. The results show that the explicit modeling can provide detailed burnup distribution of individual TRISO particles, and this work would serve as a supplement for the HTGR fuel depletion benchmark calculations. The combination of adjacent burnup regions can effectively reduce the memory footprint while keeping the computational accuracy.

  8. OECD/NRC BWR Turbine Trip Benchmark: Simulation by POLCA-T Code

    International Nuclear Information System (INIS)

    Panayotov, Dobromir

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and three-dimensional (3-D) neutron kinetics core models. Participation in the OECD/NRC BWR Turbine Trip (TT) Benchmark is a part of our efforts toward the code's validation. The paper describes the objectives for TT analyses and gives a brief overview of the developed plant system input deck and 3-D core model.The results of exercise 1, system model without netronics, are presented. Sensitivity studies performed cover the maximal time step, turbine stop valve position and mass flow, feedwater temperature, and steam bypass mass flow. Results of exercise 2, 3-D core neutronic and thermal-hydraulic model with boundary conditions, are also presented. Sensitivity studies include the core inlet temperature, cladding properties, and direct heating to core coolant and bypass.The entire plant model was validated in the framework of the benchmark's phase 3. Sensitivity studies include the effect of SCRAM initialization and carry-under. The results obtained - transient fission power and its initial axial distribution and steam dome, core exit, lower and upper plenum, main steam line, and turbine inlet pressures - showed good agreement with measured data. Thus, the POLCA-T code capabilities for correct simulation of pressurizing transients with very fast power were proved

  9. Computer simulation of Masurca critical and subcritical experiments. Muse-4 benchmark. Final report

    International Nuclear Information System (INIS)

    2006-01-01

    The efficient and safe management of spent fuel produced during the operation of commercial nuclear power plants is an important issue. In this context, partitioning and transmutation (P and T) of minor actinides and long-lived fission products can play an important role, significantly reducing the burden on geological repositories of nuclear waste and allowing their more effective use. Various systems, including existing reactors, fast reactors and advanced systems have been considered to optimise the transmutation scheme. Recently, many countries have shown interest in accelerator-driven systems (ADS) due to their potential for transmutation of minor actinides. Much R and D work is still required in order to demonstrate their desired capability as a whole system, and the current analysis methods and nuclear data for minor actinide burners are not as well established as those for conventionally-fuelled systems. Recognizing a need for code and data validation in this area, the Nuclear Science Committee of the OECD/NEA has organised various theoretical benchmarks on ADS burners. Many improvements and clarifications concerning nuclear data and calculation methods have been achieved. However, some significant discrepancies for important parameters are not fully understood and still require clarification. Therefore, this international benchmark based on MASURCA experiments, which were carried out under the auspices of the EC 5. Framework Programme, was launched in December 2001 in co-operation with the CEA (France) and CIEMAT (Spain). The benchmark model was oriented to compare simulation predictions based on available codes and nuclear data libraries with experimental data related to TRU transmutation, criticality constants and time evolution of the neutronic flux following source variation, within liquid metal fast subcritical systems. A total of 16 different institutions participated in this first experiment based benchmark, providing 34 solutions. The large number

  10. Benchmarking of measurement and simulation of transverse rms-emittance growth

    Directory of Open Access Journals (Sweden)

    L. Groening

    2008-09-01

    Full Text Available Transverse emittance growth along the Alvarez drift tube linac (DTL section is a major concern with respect to the preservation of beam quality of high current beams at the GSI UNILAC. In order to define measures to reduce this growth, appropriate tools to simulate the beam dynamics are indispensable. This paper is about the benchmarking of three beam dynamics simulation codes, i.e. DYNAMION, PARMILA, and PARTRAN against systematic measurements of beam emittances for different transverse phase advances along the DTL. Special emphasis is put on the modeling of the initial distribution for the simulations. The concept of rms equivalence is expanded from full intensity to fractions of less than 100% of the beam. The experimental setup, data reduction, preparation of the simulations, and the evaluation of the simulations are described. In the experiments and in the simulations, a minimum of the rms-emittance growth was observed at zero current phase advances of about 60°. In general, good agreement was found between simulations and experiment for the mean values of horizontal and vertical emittances at the DTL exit.

  11. Mechanical simulations of sandia II tests OECD ISP 48 benchmark

    International Nuclear Information System (INIS)

    Ghavamian, Sh.; Courtois, A.; Valfort, J.-L.; Heinfling, G.

    2005-01-01

    This paper illustrates the work carried out by EDF within the framework of ISP48 post-test analysis of NUPEC/NRCN 1:4-scale model of a prestressed pressure containment vessel of a nuclear power plant. EDF as a participant of the International Standard Problem n degree 8 has performed several simulations to determine the ultimate response of the scale model. To determine the most influent parameter in such an analysis several studies were carried out. The mesh was built using a parametric tool to measure the influence of discretization on results. Different material laws of concrete were also used. The purpose of this paper is to illustrate the ultimate behaviour of SANDIA II model obtained by Code-Asterwith comparison to tests records, and also to share the lessons learned from the parametric computations and precautions that must be taken. (authors)

  12. A unified framework for benchmark dose estimation applied to mixed models and model averaging

    DEFF Research Database (Denmark)

    Ritz, Christian; Gerhard, Daniel; Hothorn, Ludwig A.

    2013-01-01

    for hierarchical data structures, reflecting increasingly common types of assay data. We illustrate the usefulness of the methodology by means of a cytotoxicology example where the sensitivity of two types of assays are evaluated and compared. By means of a simulation study, we show that the proposed framework......This article develops a framework for benchmark dose estimation that allows intrinsically nonlinear dose-response models to be used for continuous data in much the same way as is already possible for quantal data. This means that the same dose-response model equations may be applied to both...

  13. Modelling the benchmark spot curve for the Serbian

    Directory of Open Access Journals (Sweden)

    Drenovak Mikica

    2010-01-01

    Full Text Available The objective of this paper is to estimate Serbian benchmark spot curves using the Svensson parametric model. The main challenges that we tackle are: sparse data, different currency denominations of short and longer term maturities, and infrequent transactions in the short-term market segment vs daily traded medium and long-term market segment. We find that the model is flexible enough to account for most of the data variability. The model parameters are interpreted in economic terms.

  14. Benchmark data set for wheat growth models

    DEFF Research Database (Denmark)

    Asseng, S; Ewert, F.; Martre, P

    2015-01-01

    The data set includes a current representative management treatment from detailed, quality-tested sentinel field experiments with wheat from four contrasting environments including Australia, The Netherlands, India and Argentina. Measurements include local daily climate data (solar radiation, max...... analysis with 26 models and 30 years (1981-2010) for each location, for elevated atmospheric CO2 and temperature changes, a heat stress sensitivity analysis at anthesis, and a sensitivity analysis with soil and crop management variations and a Global Climate Model end-century scenario....

  15. Development of computer code SIMPSEX for simulation of FBR fuel reprocessing flowsheets: II. additional benchmarking results

    International Nuclear Information System (INIS)

    Shekhar Kumar; Koganti, S.B.

    2003-07-01

    Benchmarking and application of a computer code SIMPSEX for high plutonium FBR flowsheets was reported recently in an earlier report (IGC-234). Improvements and recompilation of the code (Version 4.01, March 2003) required re-validation with the existing benchmarks as well as additional benchmark flowsheets. Improvements in the high Pu region (Pu Aq >30 g/L) resulted in better results in the 75% Pu flowsheet benchmark. Below 30 g/L Pu Aq concentration, results were identical to those from the earlier version (SIMPSEX Version 3, code compiled in 1999). In addition, 13 published flowsheets were taken as additional benchmarks. Eleven of these flowsheets have a wide range of feed concentrations and few of them are β-γ active runs with FBR fuels having a wide distribution of burnup and Pu ratios. A published total partitioning flowsheet using externally generated U(IV) was also simulated using SIMPSEX. SIMPSEX predictions were compared with listed predictions from conventional SEPHIS, PUMA, PUNE and PUBG. SIMPSEX results were found to be comparable and better than the result from above listed codes. In addition, recently reported UREX demo results along with AMUSE simulations are also compared with SIMPSEX predictions. Results of the benchmarking SIMPSEX with these 14 benchmark flowsheets are discussed in this report. (author)

  16. Impact of cross-section generation procedures on the simulation of the VVER 1000 pump startup experiment in the OECD/DOE/CEA V1000CT benchmark by coupled 3-D thermal hydraulics/ neutron kinetics models

    International Nuclear Information System (INIS)

    Boyan D Ivanov; Kostadin N Ivanov; Sylvie Aniel; Eric Royer

    2005-01-01

    Full text of publication follows: In the framework of joint effort between the Nuclear Energy Agency (NEA) of OECD, the United States Department of Energy (US DOE), and the Commissariat a l'Energie Atomique (CEA), France a coupled 3-D thermal hydraulics/neutron kinetics benchmark was defined. The overall objective OECD/NEA V1000CT benchmark is to assess computer codes used in analysis of VVER-1000 reactivity transients where mixing phenomena (mass flow and temperature) in the reactor pressure vessel are complex. Original data from the Kozloduy-6 Nuclear Power Plant are available for the validation of computer codes: one experiment of pump start-up (V1000CT-1) and one experiment of steam generator isolation (V1000CT-2). Additional scenarios are defined for code-to-code comparison. As a 3D core model is necessary for a best-estimate computation of all the scenarios of the V1000CT benchmark, all participants were asked to develop their own core coupled 3-D thermal hydraulics/ neutron kinetics models based on the data available in the benchmark specifications. The first code to code comparisons based on the V1000CT-1 Exercise 2 specifications exhibited unacceptable discrepancies between 2 sets of results, one of them being close to experimental results. The present paper focuses first on the analysis of the observed discrepancies. The VVER 1000 3-D thermal hydraulics/neutron kinetics models are based on thermal-hydraulic and neutronic data homogenized at the assembly scale. The neutronic data, provided as part of the benchmark specifications, consist thus in a set of parametrized 2 group cross sections libraries representing the different assemblies and the reflectors. The origin of the high observed discrepancies was found to lie in the use of these neutronic libraries. The concern was then to find a way to provide neutronic data, compatible with all the benchmark participants neutronic models, that enable also comparisons with experimental results. An analysis of the

  17. Benchmarking Deep Learning Models on Large Healthcare Datasets.

    Science.gov (United States)

    Purushotham, Sanjay; Meng, Chuizheng; Che, Zhengping; Liu, Yan

    2018-06-04

    Deep learning models (aka Deep Neural Networks) have revolutionized many fields including computer vision, natural language processing, speech recognition, and is being increasingly used in clinical healthcare applications. However, few works exist which have benchmarked the performance of the deep learning models with respect to the state-of-the-art machine learning models and prognostic scoring systems on publicly available healthcare datasets. In this paper, we present the benchmarking results for several clinical prediction tasks such as mortality prediction, length of stay prediction, and ICD-9 code group prediction using Deep Learning models, ensemble of machine learning models (Super Learner algorithm), SAPS II and SOFA scores. We used the Medical Information Mart for Intensive Care III (MIMIC-III) (v1.4) publicly available dataset, which includes all patients admitted to an ICU at the Beth Israel Deaconess Medical Center from 2001 to 2012, for the benchmarking tasks. Our results show that deep learning models consistently outperform all the other approaches especially when the 'raw' clinical time series data is used as input features to the models. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Power-Energy Simulation for Multi-Core Processors in Bench-marking

    Directory of Open Access Journals (Sweden)

    Mona A. Abou-Of

    2017-01-01

    Full Text Available At Microarchitectural level, multi-core processor, as a complex System on Chip, has sophisticated on-chip components including cores, shared caches, interconnects and system controllers such as memory and ethernet controllers. At technological level, architects should consider the device types forecast in the International Technology Roadmap for Semiconductors (ITRS. Energy simulation enables architects to study two important metrics simultaneously. Timing is a key element of the CPU performance that imposes constraints on the CPU target clock frequency. Power and the resulting heat impose more severe design constraints, such as core clustering, while semiconductor industry is providing more transistors in the die area in pace with Moore’s law. Energy simulators provide a solution for such serious challenge. Energy is modelled either by combining performance benchmarking tool with a power simulator or by an integrated framework of both performance simulator and power profiling system. This article presents and asses trade-offs between different architectures using four cores battery-powered mobile systems by running a custom-made and a standard benchmark tools. The experimental results assure the Energy/ Frequency convexity rule over a range of frequency settings on different number of enabled cores. The reported results show that increasing the number of cores has a great effect on increasing the power consumption. However, a minimum energy dissipation will occur at a lower frequency which reduces the power consumption. Despite that, increasing the number of cores will also increase the effective cores value which will reflect a better processor performance.

  19. Developing and modeling of the 'Laguna Verde' BWR CRDA benchmark

    International Nuclear Information System (INIS)

    Solis-Rodarte, J.; Fu, H.; Ivanov, K.N.; Matsui, Y.; Hotta, A.

    2002-01-01

    Reactivity initiated accidents (RIA) and design basis transients are one of the most important aspects related to nuclear power reactor safety. These events are re-evaluated whenever core alterations (modifications) are made as part of the nuclear safety analysis performed to a new design. These modifications usually include, but are not limited to, power upgrades, longer cycles, new fuel assembly and control rod designs, etc. The results obtained are compared with pre-established bounding analysis values to see if the new core design fulfills the requirements of safety constraints imposed on the design. The control rod drop accident (CRDA) is the design basis transient for the reactivity events of BWR technology. The CRDA is a very localized event depending on the control rod insertion position and the fuel assemblies surrounding the control rod falling from the core. A numerical benchmark was developed based on the CRDA RIA design basis accident to further asses the performance of coupled 3D neutron kinetics/thermal-hydraulics codes. The CRDA in a BWR is a mostly neutronic driven event. This benchmark is based on a real operating nuclear power plant - unit 1 of the Laguna Verde (LV1) nuclear power plant (NPP). The definition of the benchmark is presented briefly together with the benchmark specifications. Some of the cross-sections were modified in order to make the maximum control rod worth greater than one dollar. The transient is initiated at steady-state by dropping the control rod with maximum worth at full speed. The 'Laguna Verde' (LV1) BWR CRDA transient benchmark is calculated using two coupled codes: TRAC-BF1/NEM and TRAC-BF1/ENTREE. Neutron kinetics and thermal hydraulics models were developed for both codes. Comparison of the obtained results is presented along with some discussion of the sensitivity of results to some modeling assumptions

  20. Numerical simulation of air distribution in a room with a sidewall jet under benchmark test conditions

    Science.gov (United States)

    Zasimova, Marina; Ivanov, Nikolay

    2018-05-01

    The goal of the study is to validate Large Eddy Simulation (LES) data on mixing ventilation in an isothermal room at conditions of benchmark experiments by Hurnik et al. (2015). The focus is on the accuracy of the mean and rms velocity fields prediction in the quasi-free jet zone of the room with 3D jet supplied from a sidewall rectangular diffuser. Calculations were carried out using the ANSYS Fluent 16.2 software with an algebraic wall-modeled LES subgrid-scale model. CFD results on the mean velocity vector are compared with the Laser Doppler Anemometry data. The difference between the mean velocity vector and the mean air speed in the jet zone, both LES-computed, is presented and discussed.

  1. Development of parallel benchmark code by sheet metal forming simulator 'ITAS'

    International Nuclear Information System (INIS)

    Watanabe, Hiroshi; Suzuki, Shintaro; Minami, Kazuo

    1999-03-01

    This report describes the development of parallel benchmark code by sheet metal forming simulator 'ITAS'. ITAS is a nonlinear elasto-plastic analysis program by the finite element method for the purpose of the simulation of sheet metal forming. ITAS adopts the dynamic analysis method that computes displacement of sheet metal at every time unit and utilizes the implicit method with the direct linear equation solver. Therefore the simulator is very robust. However, it requires a lot of computational time and memory capacity. In the development of the parallel benchmark code, we designed the code by MPI programming to reduce the computational time. In numerical experiments on the five kinds of parallel super computers at CCSE JAERI, i.e., SP2, SR2201, SX-4, T94 and VPP300, good performances are observed. The result will be shown to the public through WWW so that the benchmark results may become a guideline of research and development of the parallel program. (author)

  2. Experimental verification of boundary conditions for numerical simulation of airflow in a benchmark ventilation channel

    Directory of Open Access Journals (Sweden)

    Lizal Frantisek

    2016-01-01

    Full Text Available Correct definition of boundary conditions is crucial for the appropriate simulation of a flow. It is a common practice that simulation of sufficiently long upstream entrance section is performed instead of experimental investigation of the actual conditions at the boundary of the examined area, in the case that the measurement is either impossible or extremely demanding. We focused on the case of a benchmark channel with ventilation outlet, which models a regular automotive ventilation system. At first, measurements of air velocity and turbulence intensity were performed at the boundary of the examined area, i.e. in the rectangular channel 272.5 mm upstream the ventilation outlet. Then, the experimentally acquired results were compared with results obtained by numerical simulation of further upstream entrance section defined according to generally approved theoretical suggestions. The comparison showed that despite the simple geometry and general agreement of average axial velocity, certain difference was found in the shape of the velocity profile. The difference was attributed to the simplifications of the numerical model and the isotropic turbulence assumption of the used turbulence model. The appropriate recommendations were stated for the future work.

  3. Project W-320 thermal hydraulic model benchmarking and baselining

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1998-01-01

    Project W-320 will be retrieving waste from Tank 241-C-106 and transferring the waste to Tank 241-AY-102. Waste in both tanks must be maintained below applicable thermal limits during and following the waste transfer. Thermal hydraulic process control models will be used for process control of the thermal limits. This report documents the process control models and presents a benchmarking of the models with data from Tanks 241-C-106 and 241-AY-102. Revision 1 of this report will provide a baselining of the models in preparation for the initiation of sluicing

  4. New methods to benchmark simulations of accreting black holes systems against observations

    Science.gov (United States)

    Markoff, Sera; Chatterjee, Koushik; Liska, Matthew; Tchekhovskoy, Alexander; Hesp, Casper; Ceccobello, Chiara; Russell, Thomas

    2017-08-01

    The field of black hole accretion has been significantly advanced by the use of complex ideal general relativistic magnetohydrodynamics (GRMHD) codes, now capable of simulating scales from the event horizon out to ~10^5 gravitational radii at high resolution. The challenge remains how to test these simulations against data, because the self-consistent treatment of radiation is still in its early days, and is complicated by dependence on non-ideal/microphysical processes not yet included in the codes. On the other extreme, a variety of phenomenological models (disk, corona, jet, wind) can well-describe spectra or variability signatures in a particular waveband, although often not both. To bring these two methodologies together, we need robust observational “benchmarks” that can be identified and studied in simulations. I will focus on one example of such a benchmark, from recent observational campaigns on black holes across the mass scale: the jet break. I will describe new work attempting to understand what drives this feature by searching for regions that share similar trends in terms of dependence on accretion power or magnetisation. Such methods can allow early tests of simulation assumptions and help pinpoint which regions will dominate the light production, well before full radiative processes are incorporated, and will help guide the interpretation of, e.g. Event Horizon Telescope data.

  5. Extension of PENELOPE to protons: Simulation of nuclear reactions and benchmark with Geant4

    International Nuclear Information System (INIS)

    Sterpin, E.; Sorriaux, J.; Vynckier, S.

    2013-01-01

    Purpose: Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4.Methods: PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac–Hartree–Fock–Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer–Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for 1 H and ICRU 63 data for 12 C, 14 N, 16 O, 31 P, and 40 Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth–dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth–dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone.Results: For simulations with EM collisions only, integral depth–dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth–dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth–dose distributions). The agreement is much

  6. Extension of PENELOPE to protons: simulation of nuclear reactions and benchmark with Geant4.

    Science.gov (United States)

    Sterpin, E; Sorriaux, J; Vynckier, S

    2013-11-01

    Describing the implementation of nuclear reactions in the extension of the Monte Carlo code (MC) PENELOPE to protons (PENH) and benchmarking with Geant4. PENH is based on mixed-simulation mechanics for both elastic and inelastic electromagnetic collisions (EM). The adopted differential cross sections for EM elastic collisions are calculated using the eikonal approximation with the Dirac-Hartree-Fock-Slater atomic potential. Cross sections for EM inelastic collisions are computed within the relativistic Born approximation, using the Sternheimer-Liljequist model of the generalized oscillator strength. Nuclear elastic and inelastic collisions were simulated using explicitly the scattering analysis interactive dialin database for (1)H and ICRU 63 data for (12)C, (14)N, (16)O, (31)P, and (40)Ca. Secondary protons, alphas, and deuterons were all simulated as protons, with the energy adapted to ensure consistent range. Prompt gamma emission can also be simulated upon user request. Simulations were performed in a water phantom with nuclear interactions switched off or on and integral depth-dose distributions were compared. Binary-cascade and precompound models were used for Geant4. Initial energies of 100 and 250 MeV were considered. For cases with no nuclear interactions simulated, additional simulations in a water phantom with tight resolution (1 mm in all directions) were performed with FLUKA. Finally, integral depth-dose distributions for a 250 MeV energy were computed with Geant4 and PENH in a homogeneous phantom with, first, ICRU striated muscle and, second, ICRU compact bone. For simulations with EM collisions only, integral depth-dose distributions were within 1%/1 mm for doses higher than 10% of the Bragg-peak dose. For central-axis depth-dose and lateral profiles in a phantom with tight resolution, there are significant deviations between Geant4 and PENH (up to 60%/1 cm for depth-dose distributions). The agreement is much better with FLUKA, with deviations within

  7. Comparison of three-dimensional ocean general circulation models on a benchmark problem

    International Nuclear Information System (INIS)

    Chartier, M.

    1990-12-01

    A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method

  8. In-cylinder diesel spray combustion simulations using parallel computation: A performance benchmarking study

    International Nuclear Information System (INIS)

    Pang, Kar Mun; Ng, Hoon Kiat; Gan, Suyin

    2012-01-01

    Highlights: ► A performance benchmarking exercise is conducted for diesel combustion simulations. ► The reduced chemical mechanism shows its advantages over base and skeletal models. ► High efficiency and great reduction of CPU runtime are achieved through 4-node solver. ► Increasing ISAT memory from 0.1 to 2 GB reduces the CPU runtime by almost 35%. ► Combustion and soot processes are predicted well with minimal computational cost. - Abstract: In the present study, in-cylinder diesel combustion simulation was performed with parallel processing on an Intel Xeon Quad-Core platform to allow both fluid dynamics and chemical kinetics of the surrogate diesel fuel model to be solved simultaneously on multiple processors. Here, Cartesian Z-Coordinate was selected as the most appropriate partitioning algorithm since it computationally bisects the domain such that the dynamic load associated with fuel particle tracking was evenly distributed during parallel computations. Other variables examined included number of compute nodes, chemistry sizes and in situ adaptive tabulation (ISAT) parameters. Based on the performance benchmarking test conducted, parallel configuration of 4-compute node was found to reduce the computational runtime most efficiently whereby a parallel efficiency of up to 75.4% was achieved. The simulation results also indicated that accuracy level was insensitive to the number of partitions or the partitioning algorithms. The effect of reducing the number of species on computational runtime was observed to be more significant than reducing the number of reactions. Besides, the study showed that an increase in the ISAT maximum storage of up to 2 GB reduced the computational runtime by 50%. Also, the ISAT error tolerance of 10 −3 was chosen to strike a balance between results accuracy and computational runtime. The optimised parameters in parallel processing and ISAT, as well as the use of the in-house reduced chemistry model allowed accurate

  9. Nutrient cycle benchmarks for earth system land model

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Tang, J.; Zhao, L.

    2017-12-01

    Projecting future biosphere-climate feedbacks using Earth system models (ESMs) relies heavily on robust modeling of land surface carbon dynamics. More importantly, soil nutrient (particularly, nitrogen (N) and phosphorus (P)) dynamics strongly modulate carbon dynamics, such as plant sequestration of atmospheric CO2. Prevailing ESM land models all consider nitrogen as a potentially limiting nutrient, and several consider phosphorus. However, including nutrient cycle processes in ESM land models potentially introduces large uncertainties that could be identified and addressed by improved observational constraints. We describe the development of two nutrient cycle benchmarks for ESM land models: (1) nutrient partitioning between plants and soil microbes inferred from 15N and 33P tracers studies and (2) nutrient limitation effects on carbon cycle informed by long-term fertilization experiments. We used these benchmarks to evaluate critical hypotheses regarding nutrient cycling and their representation in ESMs. We found that a mechanistic representation of plant-microbe nutrient competition based on relevant functional traits best reproduced observed plant-microbe nutrient partitioning. We also found that for multiple-nutrient models (i.e., N and P), application of Liebig's law of the minimum is often inaccurate. Rather, the Multiple Nutrient Limitation (MNL) concept better reproduces observed carbon-nutrient interactions.

  10. Benchmark exercise for fluid flow simulations in a liquid metal fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Merzari, E., E-mail: emerzari@anl.gov [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Fischer, P. [Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, IL 60439 (United States); Yuan, H. [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL (United States); Van Tichelen, K.; Keijers, S. [SCK-CEN, Boeretang 200, Mol (Belgium); De Ridder, J.; Degroote, J.; Vierendeels, J. [Ghent University, Ghent (Belgium); Doolaard, H.; Gopala, V.R.; Roelofs, F. [NRG, Petten (Netherlands)

    2016-03-15

    Highlights: • A EUROTAM-US INERI consortium has performed a benchmark exercise related to fast reactor assembly simulations. • LES calculations for a wire-wrapped rod bundle are compared with RANS calculations. • Results show good agreement for velocity and cross flows. - Abstract: As part of a U.S. Department of Energy International Nuclear Energy Research Initiative (I-NERI), Argonne National Laboratory (Argonne) is collaborating with the Dutch Nuclear Research and consultancy Group (NRG), the Belgian Nuclear Research Centre (SCK·CEN), and Ghent University (UGent) in Belgium to perform and compare a series of fuel-pin-bundle calculations representative of a fast reactor core. A wire-wrapped fuel bundle is a complex configuration for which little data is available for verification and validation of new simulation tools. UGent and NRG performed their simulations with commercially available computational fluid dynamics (CFD) codes. The high-fidelity Argonne large-eddy simulations were performed with Nek5000, used for CFD in the Simulation-based High-efficiency Advanced Reactor Prototyping (SHARP) suite. SHARP is a versatile tool that is being developed to model the core of a wide variety of reactor types under various scenarios. It is intended both to serve as a surrogate for physical experiments and to provide insight into experimental results. Comparison of the results obtained by the different participants with the reference Nek5000 results shows good agreement, especially for the cross-flow data. The comparison also helps highlight issues with current modeling approaches. The results of the study will be valuable in the design and licensing process of MYRRHA, a flexible fast research reactor under design at SCK·CEN that features wire-wrapped fuel bundles cooled by lead-bismuth eutectic.

  11. Verification and validation benchmarks.

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-02-01

    Verification and validation (V&V) are the primary means to assess the accuracy and reliability of computational simulations. V&V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V&V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the level of

  12. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William Louis; Trucano, Timothy Guy

    2007-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  13. Verification and validation benchmarks

    International Nuclear Information System (INIS)

    Oberkampf, William L.; Trucano, Timothy G.

    2008-01-01

    Verification and validation (V and V) are the primary means to assess the accuracy and reliability of computational simulations. V and V methods and procedures have fundamentally improved the credibility of simulations in several high-consequence fields, such as nuclear reactor safety, underground nuclear waste storage, and nuclear weapon safety. Although the terminology is not uniform across engineering disciplines, code verification deals with assessing the reliability of the software coding, and solution verification deals with assessing the numerical accuracy of the solution to a computational model. Validation addresses the physics modeling accuracy of a computational simulation by comparing the computational results with experimental data. Code verification benchmarks and validation benchmarks have been constructed for a number of years in every field of computational simulation. However, no comprehensive guidelines have been proposed for the construction and use of V and V benchmarks. For example, the field of nuclear reactor safety has not focused on code verification benchmarks, but it has placed great emphasis on developing validation benchmarks. Many of these validation benchmarks are closely related to the operations of actual reactors at near-safety-critical conditions, as opposed to being more fundamental-physics benchmarks. This paper presents recommendations for the effective design and use of code verification benchmarks based on manufactured solutions, classical analytical solutions, and highly accurate numerical solutions. In addition, this paper presents recommendations for the design and use of validation benchmarks, highlighting the careful design of building-block experiments, the estimation of experimental measurement uncertainty for both inputs and outputs to the code, validation metrics, and the role of model calibration in validation. It is argued that the understanding of predictive capability of a computational model is built on the

  14. MF-Swift simulation study using benchmark data

    NARCIS (Netherlands)

    Jansen, S.T.H.; Verhoeff, L.; Cremers, R.; Schmeitz, A.J.C.; Besselink, I.J.M.

    2005-01-01

    The accuracy of tyre models depends to a large extent on the measurement data used to assess model parameters. The MF-Swift tyre model parameters can be identified or estimated from various combinations of experimental data. The amount and required accuracy of the measurement data can be selected

  15. Benchmarking analysis of three multimedia models: RESRAD, MMSOILS, and MEPAS

    International Nuclear Information System (INIS)

    Cheng, J.J.; Faillace, E.R.; Gnanapragasam, E.K.

    1995-11-01

    Multimedia modelers from the United States Environmental Protection Agency (EPA) and the United States Department of Energy (DOE) collaborated to conduct a comprehensive and quantitative benchmarking analysis of three multimedia models. The three models-RESRAD (DOE), MMSOILS (EPA), and MEPAS (DOE)-represent analytically based tools that are used by the respective agencies for performing human exposure and health risk assessments. The study is performed by individuals who participate directly in the ongoing design, development, and application of the models. A list of physical/chemical/biological processes related to multimedia-based exposure and risk assessment is first presented as a basis for comparing the overall capabilities of RESRAD, MMSOILS, and MEPAS. Model design, formulation, and function are then examined by applying the models to a series of hypothetical problems. Major components of the models (e.g., atmospheric, surface water, groundwater) are evaluated separately and then studied as part of an integrated system for the assessment of a multimedia release scenario to determine effects due to linking components of the models. Seven modeling scenarios are used in the conduct of this benchmarking study: (1) direct biosphere exposure, (2) direct release to the air, (3) direct release to the vadose zone, (4) direct release to the saturated zone, (5) direct release to surface water, (6) surface water hydrology, and (7) multimedia release. Study results show that the models differ with respect to (1) environmental processes included (i.e., model features) and (2) the mathematical formulation and assumptions related to the implementation of solutions (i.e., parameterization)

  16. Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations

    KAUST Repository

    VERMA, MAHENDRA K

    2013-09-21

    Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.

  17. Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations

    KAUST Repository

    VERMA, MAHENDRA K; CHATTERJEE, ANANDO; REDDY, K SANDEEP; YADAV, RAKESH K; PAUL, SUPRIYO; CHANDRA, MANI; Samtaney, Ravi

    2013-01-01

    Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.

  18. Generalizable open source urban water portfolio simulation framework demonstrated using a multi-objective risk-based planning benchmark problem.

    Science.gov (United States)

    Trindade, B. C.; Reed, P. M.

    2017-12-01

    The growing access and reduced cost for computing power in recent years has promoted rapid development and application of multi-objective water supply portfolio planning. As this trend continues there is a pressing need for flexible risk-based simulation frameworks and improved algorithm benchmarking for emerging classes of water supply planning and management problems. This work contributes the Water Utilities Management and Planning (WUMP) model: a generalizable and open source simulation framework designed to capture how water utilities can minimize operational and financial risks by regionally coordinating planning and management choices, i.e. making more efficient and coordinated use of restrictions, water transfers and financial hedging combined with possible construction of new infrastructure. We introduce the WUMP simulation framework as part of a new multi-objective benchmark problem for planning and management of regionally integrated water utility companies. In this problem, a group of fictitious water utilities seek to balance the use of the mentioned reliability driven actions (e.g., restrictions, water transfers and infrastructure pathways) and their inherent financial risks. Several traits of this problem make it ideal for a benchmark problem, namely the presence of (1) strong non-linearities and discontinuities in the Pareto front caused by the step-wise nature of the decision making formulation and by the abrupt addition of storage through infrastructure construction, (2) noise due to the stochastic nature of the streamflows and water demands, and (3) non-separability resulting from the cooperative formulation of the problem, in which decisions made by stakeholder may substantially impact others. Both the open source WUMP simulation framework and its demonstration in a challenging benchmarking example hold value for promoting broader advances in urban water supply portfolio planning for regions confronting change.

  19. Beam equipment electromagnetic interaction in accelerators: simulation and experimental benchmarking

    CERN Document Server

    Passarelli, Andrea; Vaccaro, Vittorio Giorgio; Massa, Rita; Masullo, Maria Rosaria

    One of the most significant technological problems to achieve the nominal performances in the Large Hadron Collider (LHC) concerns the system of collimation of particle beams. The use of collimators crystals, exploiting the channeling effect on extracted beam, has been experimentally demonstrated. The first part of this thesis is about the optimization of UA9 goniometer at CERN, this device used for beam collimation will replace a part of the vacuum chamber. The optimization process, however, requires the calculation of the coupling impedance between the circulating beam and this structure in order to define the threshold of admissible intensity to do not trigger instability processes. Simulations have been performed with electromagnetic codes to evaluate the coupling impedance and to assess the beam-structure interaction. The results clearly showed that the most concerned resonance frequencies are due solely to the open cavity to the compartment of the motors and position sensors considering the crystal in o...

  20. Monte Carlo simulations and benchmark studies at CERN's accelerator chain

    CERN Document Server

    AUTHOR|(CDS)2083190; Brugger, Markus

    2016-01-01

    Mixed particle and energy radiation fields present at the Large Hadron Collider (LHC) and its accelerator chain are responsible for failures on electronic devices located in the vicinity of the accelerator beam lines. These radiation effects on electronics and, more generally, the overall radiation damage issues have a direct impact on component and system lifetimes, as well as on maintenance requirements and radiation exposure to personnel who have to intervene and fix existing faults. The radiation environments and respective radiation damage issues along the CERN’s accelerator chain were studied in the framework of the CERN Radiation to Electronics (R2E) project and are hereby presented. The important interplay between Monte Carlo simulations and radiation monitoring is also highlighted.

  1. The PAC-MAN model: Benchmark case for linear acoustics in computational physics

    Science.gov (United States)

    Ziegelwanger, Harald; Reiter, Paul

    2017-10-01

    Benchmark cases in the field of computational physics, on the one hand, have to contain a certain complexity to test numerical edge cases and, on the other hand, require the existence of an analytical solution, because an analytical solution allows the exact quantification of the accuracy of a numerical simulation method. This dilemma causes a need for analytical sound field formulations of complex acoustic problems. A well known example for such a benchmark case for harmonic linear acoustics is the ;Cat's Eye model;, which describes the three-dimensional sound field radiated from a sphere with a missing octant analytically. In this paper, a benchmark case for two-dimensional (2D) harmonic linear acoustic problems, viz., the ;PAC-MAN model;, is proposed. The PAC-MAN model describes the radiated and scattered sound field around an infinitely long cylinder with a cut out sector of variable angular width. While the analytical calculation of the 2D sound field allows different angular cut-out widths and arbitrarily positioned line sources, the computational cost associated with the solution of this problem is similar to a 1D problem because of a modal formulation of the sound field in the PAC-MAN model.

  2. Nonlinear model updating applied to the IMAC XXXII Round Robin benchmark system

    Science.gov (United States)

    Kurt, Mehmet; Moore, Keegan J.; Eriten, Melih; McFarland, D. Michael; Bergman, Lawrence A.; Vakakis, Alexander F.

    2017-05-01

    We consider the application of a new nonlinear model updating strategy to a computational benchmark system. The approach relies on analyzing system response time series in the frequency-energy domain by constructing both Hamiltonian and forced and damped frequency-energy plots (FEPs). The system parameters are then characterized and updated by matching the backbone branches of the FEPs with the frequency-energy wavelet transforms of experimental and/or computational time series. The main advantage of this method is that no nonlinearity model is assumed a priori, and the system model is updated solely based on simulation and/or experimental measured time series. By matching the frequency-energy plots of the benchmark system and its reduced-order model, we show that we are able to retrieve the global strongly nonlinear dynamics in the frequency and energy ranges of interest, identify bifurcations, characterize local nonlinearities, and accurately reconstruct time series. We apply the proposed methodology to a benchmark problem, which was posed to the system identification community prior to the IMAC XXXII (2014) and XXXIII (2015) Conferences as a "Round Robin Exercise on Nonlinear System Identification". We show that we are able to identify the parameters of the non-linear element in the problem with a priori knowledge about its position.

  3. A rod-airfoil experiment as a benchmark for broadband noise modeling

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, M.C. [Ecole Centrale de Lyon, Laboratoire de Mecanique des Fluides et d' Acoustique, Ecully Cedex (France); Universite Claude Bernard/Lyon I, Villeurbanne Cedex (France); Boudet, J.; Michard, M. [Ecole Centrale de Lyon, Laboratoire de Mecanique des Fluides et d' Acoustique, Ecully Cedex (France); Casalino, D. [Ecole Centrale de Lyon, Laboratoire de Mecanique des Fluides et d' Acoustique, Ecully Cedex (France); Fluorem SAS, Ecully Cedex (France)

    2005-07-01

    A low Mach number rod-airfoil experiment is shown to be a good benchmark for numerical and theoretical broadband noise modeling. The benchmarking approach is applied to a sound computation from a 2D unsteady-Reynolds-averaged Navier-Stokes (U-RANS) flow field, where 3D effects are partially compensated for by a spanwise statistical model and by a 3D large eddy simulation. The experiment was conducted in the large anechoic wind tunnel of the Ecole Centrale de Lyon. Measurements taken included particle image velocity (PIV) around the airfoil, single hot wire, wall pressure coherence, and far field pressure. These measurements highlight the strong 3D effects responsible for spectral broadening around the rod vortex shedding frequency in the subcritical regime, and the dominance of the noise generated around the airfoil leading edge. The benchmarking approach is illustrated by two examples: the validation of a stochastical noise generation model applied to a 2D U-RANS computation; the assessment of a 3D LES computation using a new subgrid scale (SGS) model coupled to an advanced-time Ffowcs-Williams and Hawkings sound computation. (orig.)

  4. Model-Based Engineering and Manufacturing CAD/CAM Benchmark

    International Nuclear Information System (INIS)

    Domm, T.D.; Underwood, R.S.

    1999-01-01

    The Benehmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus fm Y-12 modmizadon efforts. The companies visited included several large established companies and anew, small, high-tech machining firm. As a result of this effort changes are recommended that will enable Y-12 to become a more responsive cost-effective manufacturing facility capable of suppording the needs of the Nuclear Weapons Complex (NW at sign) and Work Fw Others into the 21' century. The benchmark team identified key areas of interest, both focused and gencml. The focus arm included Human Resources, Information Management, Manufacturing Software Tools, and Standarda/ Policies and Practices. Areas of general interest included Inhstructure, Computer Platforms and Networking, and Organizational Structure. The method for obtaining the desired information in these areas centered on the creation of a benchmark questionnaire. The questionnaire was used throughout each of the visits as the basis for information gathering. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were using both 3-D solid modeling and surfaced Wire-frame models. The manufacturing computer tools were varie4 with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) ftom a common medel. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system

  5. International collaborative fire modeling project (ICFMP). Summary of benchmark

    International Nuclear Information System (INIS)

    Roewekamp, Marina; Klein-Hessling, Walter; Dreisbach, Jason; McGrattan, Kevin; Miles, Stewart; Plys, Martin; Riese, Olaf

    2008-09-01

    This document was developed in the frame of the 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' (ICFMP). The objective of this collaborative project is to share the knowledge and resources of various organizations to evaluate and improve the state of the art of fire models for use in nuclear power plant fire safety, fire hazard analysis and fire risk assessment. The project is divided into two phases. The objective of the first phase is to evaluate the capabilities of current fire models for fire safety analysis in nuclear power plants. The second phase will extend the validation database of those models and implement beneficial improvements to the models that are identified in the first phase of ICFMP. In the first phase, more than 20 expert institutions from six countries were represented in the collaborative project. This Summary Report gives an overview on the results of the first phase of the international collaborative project. The main objective of the project was to evaluate the capability of fire models to analyze a variety of fire scenarios typical for nuclear power plants (NPP). The evaluation of the capability of fire models to analyze these scenarios was conducted through a series of in total five international Benchmark Exercises. Different types of models were used by the participating expert institutions from five countries. The technical information that will be useful for fire model users, developers and further experts is summarized in this document. More detailed information is provided in the corresponding technical reference documents for the ICFMP Benchmark Exercises No. 1 to 5. The objective of these exercises was not to compare the capabilities and strengths of specific models, address issues specific to a model, nor to recommend specific models over others. This document is not intended to provide guidance to users of fire models. Guidance on the use of fire models is currently being

  6. Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem.

    Science.gov (United States)

    Jansson, Johan; Degirmenci, Niyazi Cem; Hoffman, Johan

    2017-09-01

    In this paper, we address a 3D fluid-structure interaction benchmark problem that represents important characteristics of biomedical modeling. We present a goal-oriented adaptive finite element methodology for incompressible fluid-structure interaction based on a streamline diffusion-type stabilization of the balance equations for mass and momentum for the entire continuum in the domain, which is implemented in the Unicorn/FEniCS software framework. A phase marker function and its corresponding transport equation are introduced to select the constitutive law, where the mesh tracks the discontinuous fluid-structure interface. This results in a unified simulation method for fluids and structures. We present detailed results for the benchmark problem compared with experiments, together with a mesh convergence study. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Springback study in aluminum alloys based on the Demeri Benchmark Test : influence of material model

    International Nuclear Information System (INIS)

    Greze, R.; Laurent, H.; Manach, P. Y.

    2007-01-01

    Springback is a serious problem in sheet metal forming. Its origin lies in the elastic recovery of materials after a deep drawing operation. Springback modifies the final shape of the part when removed from the die after forming. This study deals with Springback in an Al5754-O aluminum alloy. An experimental test similar to the Demeri Benchmark Test has been developed. The experimentally measured Springback is compared to predicted Springback simulation using Abaqus software. Several material models are analyzed, all models using isotropic hardening of Voce type and plasticity criteria such as Von Mises and Hill48's yield criterion

  8. Relative importance of secondary settling tank models in WWTP simulations

    DEFF Research Database (Denmark)

    Ramin, Elham; Flores-Alsina, Xavier; Sin, Gürkan

    2012-01-01

    Results obtained in a study using the Benchmark Simulation Model No. 1 (BSM1) show that a one-dimensional secondary settling tank (1-D SST) model structure and its parameters are among the most significant sources of uncertainty in wastewater treatment plant (WWTP) simulations [Ramin et al., 2011......]. The sensitivity results consistently indicate that the prediction of sludge production is most sensitive to the variation of the settling parameters. In the present study, we use the Benchmark Simulation Model No. 2 (BSM2), a plant-wide benchmark, that combines the Activated Sludge Model No. 1 (ASM1...

  9. Benchmarking of LOFT LRTS-COBRA-FRAP safety analysis model

    International Nuclear Information System (INIS)

    Hanson, G.H.; Atkinson, S.A.; Wadkins, R.P.

    1982-05-01

    The purpose of this work was to check out the LOFT LRTS/COBRA-IV/FRAP-T5 safety-analysis models against test data obtained during a LOFT operational transient in which there was a power and fuel-temperature rise. LOFT Experiment L6-3 was an excessive-load-increase anticipated transient test in which the main steam-flow-control valve was driven from its operational position to full-open in seven seconds. The resulting cooldown and reactivity-increase transients provide a good benchmark for the reactivity-and-power-prediction capability of the LRTS calculations, and for the fuel-bundle and fuel-rod temperature-response analysis capability of the LOFT COBRA-IV and FRAP-T5 models

  10. Modelling solute dispersion in periodic heterogeneous porous media: Model benchmarking against intermediate scale experiments

    Science.gov (United States)

    Majdalani, Samer; Guinot, Vincent; Delenne, Carole; Gebran, Hicham

    2018-06-01

    This paper is devoted to theoretical and experimental investigations of solute dispersion in heterogeneous porous media. Dispersion in heterogenous porous media has been reported to be scale-dependent, a likely indication that the proposed dispersion models are incompletely formulated. A high quality experimental data set of breakthrough curves in periodic model heterogeneous porous media is presented. In contrast with most previously published experiments, the present experiments involve numerous replicates. This allows the statistical variability of experimental data to be accounted for. Several models are benchmarked against the data set: the Fickian-based advection-dispersion, mobile-immobile, multirate, multiple region advection dispersion models, and a newly proposed transport model based on pure advection. A salient property of the latter model is that its solutions exhibit a ballistic behaviour for small times, while tending to the Fickian behaviour for large time scales. Model performance is assessed using a novel objective function accounting for the statistical variability of the experimental data set, while putting equal emphasis on both small and large time scale behaviours. Besides being as accurate as the other models, the new purely advective model has the advantages that (i) it does not exhibit the undesirable effects associated with the usual Fickian operator (namely the infinite solute front propagation speed), and (ii) it allows dispersive transport to be simulated on every heterogeneity scale using scale-independent parameters.

  11. Benchmark Simulation of Natural Circulation Cooling System with Salt Working Fluid Using SAM

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, K. K.; Scarlat, R. O.; Hu, R.

    2017-09-03

    Liquid salt-cooled reactors, such as the Fluoride Salt-Cooled High-Temperature Reactor (FHR), offer passive decay heat removal through natural circulation using Direct Reactor Auxiliary Cooling System (DRACS) loops. The behavior of such systems should be well-understood through performance analysis. The advanced system thermal-hydraulics tool System Analysis Module (SAM) from Argonne National Laboratory has been selected for this purpose. The work presented here is part of a larger study in which SAM modeling capabilities are being enhanced for the system analyses of FHR or Molten Salt Reactors (MSR). Liquid salt thermophysical properties have been implemented in SAM, as well as properties of Dowtherm A, which is used as a simulant fluid for scaled experiments, for future code validation studies. Additional physics modules to represent phenomena specific to salt-cooled reactors, such as freezing of coolant, are being implemented in SAM. This study presents a useful first benchmark for the applicability of SAM to liquid salt-cooled reactors: it provides steady-state and transient comparisons for a salt reactor system. A RELAP5-3D model of the Mark-1 Pebble-Bed FHR (Mk1 PB-FHR), and in particular its DRACS loop for emergency heat removal, provides steady state and transient results for flow rates and temperatures in the system that are used here for code-to-code comparison with SAM. The transient studied is a loss of forced circulation with SCRAM event. To the knowledge of the authors, this is the first application of SAM to FHR or any other molten salt reactors. While building these models in SAM, any gaps in the code’s capability to simulate such systems are identified and addressed immediately, or listed as future improvements to the code.

  12. Uncertainty in Earth System Models: Benchmarks for Ocean Model Performance and Validation

    Science.gov (United States)

    Ogunro, O. O.; Elliott, S.; Collier, N.; Wingenter, O. W.; Deal, C.; Fu, W.; Hoffman, F. M.

    2017-12-01

    The mean ocean CO2 sink is a major component of the global carbon budget, with marine reservoirs holding about fifty times more carbon than the atmosphere. Phytoplankton play a significant role in the net carbon sink through photosynthesis and drawdown, such that about a quarter of anthropogenic CO2 emissions end up in the ocean. Biology greatly increases the efficiency of marine environments in CO2 uptake and ultimately reduces the impact of the persistent rise in atmospheric concentrations. However, a number of challenges remain in appropriate representation of marine biogeochemical processes in Earth System Models (ESM). These threaten to undermine the community effort to quantify seasonal to multidecadal variability in ocean uptake of atmospheric CO2. In a bid to improve analyses of marine contributions to climate-carbon cycle feedbacks, we have developed new analysis methods and biogeochemistry metrics as part of the International Ocean Model Benchmarking (IOMB) effort. Our intent is to meet the growing diagnostic and benchmarking needs of ocean biogeochemistry models. The resulting software package has been employed to validate DOE ocean biogeochemistry results by comparison with observational datasets. Several other international ocean models contributing results to the fifth phase of the Coupled Model Intercomparison Project (CMIP5) were analyzed simultaneously. Our comparisons suggest that the biogeochemical processes determining CO2 entry into the global ocean are not well represented in most ESMs. Polar regions continue to show notable biases in many critical biogeochemical and physical oceanographic variables. Some of these disparities could have first order impacts on the conversion of atmospheric CO2 to organic carbon. In addition, single forcing simulations show that the current ocean state can be partly explained by the uptake of anthropogenic emissions. Combined effects of two or more of these forcings on ocean biogeochemical cycles and ecosystems

  13. Benchmarking of MCAM 4.0 with the ITER 3D Model

    International Nuclear Information System (INIS)

    Ying Li; Lei Lu; Aiping Ding; Haimin Hu; Qin Zeng; Shanliang Zheng; Yican Wu

    2006-01-01

    Monte Carlo particle transport simulations are widely employed in fields such as nuclear engineering, radio-therapy and space science. Describing and verifying the 3D geometry of fusion devices, however, are among the most complex tasks of MCNP calculation problems in nuclear analysis. The manual modeling of a complex geometry for MCNP code, though a common practice, is an extensive, time-consuming, and error prone task. An efficient solution is to shift the geometric modeling into Computer Aided Design(CAD) systems and to use an interface for MCNP to convert the CAD model to MCNP file. The advantage of this approach lies in the fact that it allows access to full features of modern CAD systems facilitating the geometric modeling and utilizing the existing CAD models. MCAM(MCNP Automatic Modeling System) is an integrated tool for CAD model preprocessing, accurate bi-directional conversion between CAD/MCNP models, neutronics property processing and geometric modeling developed by FDS team in ASIPP and Hefei University of Technology. MCAM4.0 has been extended and enhanced to support various CAD file formats and the preprocessing of CAD model, such as healing, automatic model reconstruction, overlap detection and correction, automatic void modeling. The ITER international benchmark model is provided by ITER international team to compare the CAD/MCNP programs being developed in the ITER participant teams. It is created in CATIA/V5, which has been chosen as the CAD system for ITER design, including all the important parts and components of the ITER device. The benchmark model contains vast curve surfaces, which can fully test the ability of MCNP/CAD codes. The whole processing procedure of this model will be presented in this paper, which includes the geometric model processing, neutroics property processing, converting to MCNP input file, calculating with MCNP and analysis. The nuclear analysis results of the model will be given in the end. Although these preliminary

  14. Benchmarking nuclear models for Gamow–Teller response

    International Nuclear Information System (INIS)

    Litvinova, E.; Brown, B.A.; Fang, D.-L.; Marketin, T.; Zegers, R.G.T.

    2014-01-01

    A comparative study of the nuclear Gamow–Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended “jj77” model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow–Teller response functions are calculated for 208 Pb, 132 Sn and 78 Ni within both RTBA and QRPA. The strengths obtained for 208 Pb are compared to data that enable a firm model benchmarking. For the nucleus 132 Sn, also SM calculations are performed within the model space truncated at the level of a particle–hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph⊗phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.

  15. Benchmarking nuclear models for Gamow–Teller response

    Energy Technology Data Exchange (ETDEWEB)

    Litvinova, E., E-mail: elena.litvinova@wmich.edu [Department of Physics, Western Michigan University, Kalamazoo, MI 49008-5252 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Brown, B.A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Fang, D.-L. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States); Marketin, T. [Physics Department, Faculty of Science, University of Zagreb (Croatia); Zegers, R.G.T. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824-1321 (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321 (United States); Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824-1321 (United States)

    2014-03-07

    A comparative study of the nuclear Gamow–Teller response (GTR) within conceptually different state-of-the-art approaches is presented. Three nuclear microscopic models are considered: (i) the recently developed charge-exchange relativistic time blocking approximation (RTBA) based on the covariant density functional theory, (ii) the shell model (SM) with an extended “jj77” model space and (iii) the non-relativistic quasiparticle random-phase approximation (QRPA) with a Brueckner G-matrix effective interaction. We study the physics cases where two or all three of these models can be applied. The Gamow–Teller response functions are calculated for {sup 208}Pb, {sup 132}Sn and {sup 78}Ni within both RTBA and QRPA. The strengths obtained for {sup 208}Pb are compared to data that enable a firm model benchmarking. For the nucleus {sup 132}Sn, also SM calculations are performed within the model space truncated at the level of a particle–hole (ph) coupled to vibration configurations. This allows a consistent comparison to the RTBA where ph⊗phonon coupling is responsible for the spreading width and considerable quenching of the GTR. Differences between the models and perspectives of their future developments are discussed.

  16. Benchmarking of the simulation of the ATLAS HaLL background

    International Nuclear Information System (INIS)

    Vincke, H.

    2000-01-01

    The LHC, mainly to be used as a proton-proton collider, providing collisions at energies of 14 TeV, will be operational in the year 2005. ATLAS, one of the LHC experiments, will provide high accuracy measurements concerning these p-p collisions. In these collisions also a high particle background is produced. This background was already calculated with the Monte Carlo simulation program FLUKA. Unfortunately, the prediction concerning this background rate is only understood within an uncertainty level of five. The main contribution of this factor can be seen as limited knowledge concerning the ability of FLUKA to simulate these kinds of scenarios. In order to reduce the uncertainty, benchmarking simulations of experiments similar to the ATLAS background situation were performed. The comparison of the simulations with the experiments proves to which extent FLUKA is able to provide reliable results concerning the ATLAS background situation. In order to perform this benchmark, an iron construction was irradiated by a hadron beam. The primary particles had ATLAS equivalent energies. Behind the iron structure, the remnants of the shower processes are measured and simulated. The simulation procedure and its encouraging results, including the comparison with the measured numbers, are presented and discussed in this work. (author)

  17. A resource for benchmarking the usefulness of protein structure models.

    KAUST Repository

    Carbajo, Daniel

    2012-08-02

    BACKGROUND: Increasingly, biologists and biochemists use computational tools to design experiments to probe the function of proteins and/or to engineer them for a variety of different purposes. The most effective strategies rely on the knowledge of the three-dimensional structure of the protein of interest. However it is often the case that an experimental structure is not available and that models of different quality are used instead. On the other hand, the relationship between the quality of a model and its appropriate use is not easy to derive in general, and so far it has been analyzed in detail only for specific application. RESULTS: This paper describes a database and related software tools that allow testing of a given structure based method on models of a protein representing different levels of accuracy. The comparison of the results of a computational experiment on the experimental structure and on a set of its decoy models will allow developers and users to assess which is the specific threshold of accuracy required to perform the task effectively. CONCLUSIONS: The ModelDB server automatically builds decoy models of different accuracy for a given protein of known structure and provides a set of useful tools for their analysis. Pre-computed data for a non-redundant set of deposited protein structures are available for analysis and download in the ModelDB database. IMPLEMENTATION, AVAILABILITY AND REQUIREMENTS: Project name: A resource for benchmarking the usefulness of protein structure models. Project home page: http://bl210.caspur.it/MODEL-DB/MODEL-DB_web/MODindex.php.Operating system(s): Platform independent. Programming language: Perl-BioPerl (program); mySQL, Perl DBI and DBD modules (database); php, JavaScript, Jmol scripting (web server). Other requirements: Java Runtime Environment v1.4 or later, Perl, BioPerl, CPAN modules, HHsearch, Modeller, LGA, NCBI Blast package, DSSP, Speedfill (Surfnet) and PSAIA. License: Free. Any restrictions to use by

  18. A resource for benchmarking the usefulness of protein structure models.

    Science.gov (United States)

    Carbajo, Daniel; Tramontano, Anna

    2012-08-02

    Increasingly, biologists and biochemists use computational tools to design experiments to probe the function of proteins and/or to engineer them for a variety of different purposes. The most effective strategies rely on the knowledge of the three-dimensional structure of the protein of interest. However it is often the case that an experimental structure is not available and that models of different quality are used instead. On the other hand, the relationship between the quality of a model and its appropriate use is not easy to derive in general, and so far it has been analyzed in detail only for specific application. This paper describes a database and related software tools that allow testing of a given structure based method on models of a protein representing different levels of accuracy. The comparison of the results of a computational experiment on the experimental structure and on a set of its decoy models will allow developers and users to assess which is the specific threshold of accuracy required to perform the task effectively. The ModelDB server automatically builds decoy models of different accuracy for a given protein of known structure and provides a set of useful tools for their analysis. Pre-computed data for a non-redundant set of deposited protein structures are available for analysis and download in the ModelDB database. IMPLEMENTATION, AVAILABILITY AND REQUIREMENTS: Project name: A resource for benchmarking the usefulness of protein structure models. Project home page: http://bl210.caspur.it/MODEL-DB/MODEL-DB_web/MODindex.php.Operating system(s): Platform independent. Programming language: Perl-BioPerl (program); mySQL, Perl DBI and DBD modules (database); php, JavaScript, Jmol scripting (web server). Other requirements: Java Runtime Environment v1.4 or later, Perl, BioPerl, CPAN modules, HHsearch, Modeller, LGA, NCBI Blast package, DSSP, Speedfill (Surfnet) and PSAIA. License: Free. Any restrictions to use by non-academics: No.

  19. A resource for benchmarking the usefulness of protein structure models.

    KAUST Repository

    Carbajo, Daniel; Tramontano, Anna

    2012-01-01

    BACKGROUND: Increasingly, biologists and biochemists use computational tools to design experiments to probe the function of proteins and/or to engineer them for a variety of different purposes. The most effective strategies rely on the knowledge of the three-dimensional structure of the protein of interest. However it is often the case that an experimental structure is not available and that models of different quality are used instead. On the other hand, the relationship between the quality of a model and its appropriate use is not easy to derive in general, and so far it has been analyzed in detail only for specific application. RESULTS: This paper describes a database and related software tools that allow testing of a given structure based method on models of a protein representing different levels of accuracy. The comparison of the results of a computational experiment on the experimental structure and on a set of its decoy models will allow developers and users to assess which is the specific threshold of accuracy required to perform the task effectively. CONCLUSIONS: The ModelDB server automatically builds decoy models of different accuracy for a given protein of known structure and provides a set of useful tools for their analysis. Pre-computed data for a non-redundant set of deposited protein structures are available for analysis and download in the ModelDB database. IMPLEMENTATION, AVAILABILITY AND REQUIREMENTS: Project name: A resource for benchmarking the usefulness of protein structure models. Project home page: http://bl210.caspur.it/MODEL-DB/MODEL-DB_web/MODindex.php.Operating system(s): Platform independent. Programming language: Perl-BioPerl (program); mySQL, Perl DBI and DBD modules (database); php, JavaScript, Jmol scripting (web server). Other requirements: Java Runtime Environment v1.4 or later, Perl, BioPerl, CPAN modules, HHsearch, Modeller, LGA, NCBI Blast package, DSSP, Speedfill (Surfnet) and PSAIA. License: Free. Any restrictions to use by

  20. Development of common user data model for APOLLO3 and MARBLE and application to benchmark problems

    International Nuclear Information System (INIS)

    Yokoyama, Kenji

    2009-07-01

    A Common User Data Model, CUDM, has been developed for the purpose of benchmark calculations between APOLLO3 and MARBLE code systems. The current version of CUDM was designed for core calculation benchmark problems with 3-dimensional Cartesian, 3-D XYZ, geometry. CUDM is able to manage all input/output data such as 3-D XYZ geometry, effective macroscopic cross section, effective multiplication factor and neutron flux. In addition, visualization tools for geometry and neutron flux were included. CUDM was designed by the object-oriented technique and implemented using Python programming language. Based on the CUDM, a prototype system for a benchmark calculation, CUDM-benchmark, was also developed. The CUDM-benchmark supports input/output data conversion for IDT solver in APOLLO3, and TRITAC and SNT solvers in MARBLE. In order to evaluate pertinence of CUDM, the CUDM-benchmark was applied to benchmark problems proposed by T. Takeda, G. Chiba and I. Zmijarevic. It was verified that the CUDM-benchmark successfully reproduced the results calculated with reference input data files, and provided consistent results among all the solvers by using one common input data defined by CUDM. In addition, a detailed benchmark calculation for Chiba benchmark was performed by using the CUDM-benchmark. Chiba benchmark is a neutron transport benchmark problem for fast criticality assembly without homogenization. This benchmark problem consists of 4 core configurations which have different sodium void regions, and each core configuration is defined by more than 5,000 fuel/material cells. In this application, it was found that the results by IDT and SNT solvers agreed well with the reference results by Monte-Carlo code. In addition, model effects such as quadrature set effect, S n order effect and mesh size effect were systematically evaluated and summarized in this report. (author)

  1. Benchmark on residual stress modeling in fracture mechanics assessment

    International Nuclear Information System (INIS)

    Marie, S.; Deschanels, H.; Chapuliot, S.; Le Delliou, P.

    2014-01-01

    In the frame of development in analytical defect assessment methods for the RSE-M and RCC-MRx codes, new work on the consideration of residual stresses is initiated by AREVA, CEA and EDF. The first step of this work is the realization of a database of F.E. reference cases. To validate assumptions and develop a good practice guideline for the consideration of residual stresses in finite element calculations, a benchmark between AREVA, CEA and EDF is going-on. A first application presented in this paper focuses on the analysis of the crack initiation of aged duplex stainless steel pipes submitted to an increasing pressure loading. Residual stresses are related to pipe fabrication process and act as shell bending condition. Two tests were performed: the first with an internal longitudinal semi-elliptical crack and the second with an external crack. The analysis first focuses on the ability to accurately estimate the measured pressure at the crack initiation of the two tests. For that purpose, the comparison of results obtained with different methods of taking into account the residual stresses (i.e. thermal fields or initial strain field). It then validates post-treatment procedures for J or G determination, and finally compares of the results obtained by the different partners. It is then shown that the numerical models can integrate properly the impact of residual stresses on the crack initiation pressure. Then, an excellent agreement is obtained between the different numerical evaluations of G provided by the participants to the benchmark so that best practice and reference F.E. solutions for residual stresses consideration can be provided based on that work. (authors)

  2. Indoor Modelling Benchmark for 3D Geometry Extraction

    Science.gov (United States)

    Thomson, C.; Boehm, J.

    2014-06-01

    A combination of faster, cheaper and more accurate hardware, more sophisticated software, and greater industry acceptance have all laid the foundations for an increased desire for accurate 3D parametric models of buildings. Pointclouds are the data source of choice currently with static terrestrial laser scanning the predominant tool for large, dense volume measurement. The current importance of pointclouds as the primary source of real world representation is endorsed by CAD software vendor acquisitions of pointcloud engines in 2011. Both the capture and modelling of indoor environments require great effort in time by the operator (and therefore cost). Automation is seen as a way to aid this by reducing the workload of the user and some commercial packages have appeared that provide automation to some degree. In the data capture phase, advances in indoor mobile mapping systems are speeding up the process, albeit currently with a reduction in accuracy. As a result this paper presents freely accessible pointcloud datasets of two typical areas of a building each captured with two different capture methods and each with an accurate wholly manually created model. These datasets are provided as a benchmark for the research community to gauge the performance and improvements of various techniques for indoor geometry extraction. With this in mind, non-proprietary, interoperable formats are provided such as E57 for the scans and IFC for the reference model. The datasets can be found at: http://indoor-bench.github.io/indoor-bench.

  3. Benchmark simulation of turbulent flow through a staggered tube bundle to support CFD as a reactor design tool. Part 2. URANS CFD simulation

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira

    2008-01-01

    In Part II, we described the unsteady flow simulation and proposed a modification of a traditional turbulence flow model. Computational fluid dynamics (CFD) simulations of an isothermal, fully periodic flow across a tube bundle using unsteady Reynolds averaged Navier-Stokes (URANS) equations, with turbulence models such as the Reynolds stress model (RSM) were investigated at a Reynolds number of 1.8x10 4 , based on the tube diameter and inlet velocity. As noted in Part I, CFD simulation and experimental results were compared at five positions along (x,y) coordinates. The steady RANS simulation showed that four diverse turbulence models were efficient for predicting the Reynolds stresses, and generally, SRANS results were marginal to poor, using a consistent evaluation terminology. In the URANS simulation, we modeled the turbulent flow field in a manner similar to the approach used for large eddy simulation (LES). The time-dependent URANS results showed that the simulation reproduces the dynamic stability as characterized by transverse oscillatory flow structures in the near-wake region. In particular, the inclusion of terms accounting for the time scales associated with the production range and dissipation rate of turbulence generates unsteady statistics of the mean and fluctuation flow. In spite of this, the model implemented produces better agreement with a benchmark data set and is thus recommended. (author)

  4. Modelling of macrosegregation in steel ingots: benchmark validation and industrial application

    International Nuclear Information System (INIS)

    Li Wensheng; Shen Houfa; Liu Baicheng; Shen Bingzhen

    2012-01-01

    The paper presents the recent progress made by the authors on modelling of macrosegregation in steel ingots. A two-phase macrosegregation model was developed that incorporates descriptions of heat transfer, melt convection, solute transport, and solid movement on the process scale with microscopic relations for grain nucleation and growth. The formation of pipe shrinkage at the ingot top is also taken into account in the model. Firstly, a recently proposed numerical benchmark test of macrosegregation was used to verify the model. Then, the model was applied to predict the macrosegregation in a benchmark industrial-scale steel ingot. The predictions were validated against experimental data from the literature. Furthermore, macrosegregation experiment of an industrial 53-t steel ingot was performed. The simulation results were compared with the measurements. It is indicated that the typical macrosegregation patterns encountered in steel ingots, including a positively segregated zone in the hot top and a negative segregation in the bottom part of the ingot, are well reproduced with the model.

  5. Modeling and simulation of large HVDC systems

    Energy Technology Data Exchange (ETDEWEB)

    Jin, H.; Sood, V.K.

    1993-01-01

    This paper addresses the complexity and the amount of work in preparing simulation data and in implementing various converter control schemes and the excessive simulation time involved in modelling and simulation of large HVDC systems. The Power Electronic Circuit Analysis program (PECAN) is used to address these problems and a large HVDC system with two dc links is simulated using PECAN. A benchmark HVDC system is studied to compare the simulation results with those from other packages. The simulation time and results are provided in the paper.

  6. Studi Model Benchmark Mcnp6 Dalam Perhitungan Reaktivitas Batang Kendali Htr-10

    OpenAIRE

    Jupiter S.Pane, Zuhair, Suwoto, Putranto Ilham Yazid

    2016-01-01

    STUDI MODEL BENCHMARK MCNP6 DALAM PERHITUNGAN REAKTIVITAS BATANG KENDALI HTR-10. Dalam operasi reaktor nuklir, sistem batang kendali memainkan peranan yang sangat penting karena didesain untuk mengendalikan reaktivitas teras dan memadamkan reaktor. Nilai reaktivitas batang kendali harus diprediksi secara akurat melalui eksperimen dan perhitungan. Makalah ini mendiskusikan model Benchmark dalam perhitungan reaktivitas batang kendali reaktor HTR-10. Perhitungan dikerjakan dengan program transpo...

  7. Theory, modeling, and simulation annual report, 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-01

    This report briefly discusses research on the following topics: development of electronic structure methods; modeling molecular processes in clusters; modeling molecular processes in solution; modeling molecular processes in separations chemistry; modeling interfacial molecular processes; modeling molecular processes in the atmosphere; methods for periodic calculations on solids; chemistry and physics of minerals; graphical user interfaces for computational chemistry codes; visualization and analysis of molecular simulations; integrated computational chemistry environment; and benchmark computations.

  8. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta Protocols for Macromolecular Modeling and Design.

    Directory of Open Access Journals (Sweden)

    Shane Ó Conchúir

    Full Text Available The development and validation of computational macromolecular modeling and design methods depend on suitable benchmark datasets and informative metrics for comparing protocols. In addition, if a method is intended to be adopted broadly in diverse biological applications, there needs to be information on appropriate parameters for each protocol, as well as metrics describing the expected accuracy compared to experimental data. In certain disciplines, there exist established benchmarks and public resources where experts in a particular methodology are encouraged to supply their most efficient implementation of each particular benchmark. We aim to provide such a resource for protocols in macromolecular modeling and design. We present a freely accessible web resource (https://kortemmelab.ucsf.edu/benchmarks to guide the development of protocols for protein modeling and design. The site provides benchmark datasets and metrics to compare the performance of a variety of modeling protocols using different computational sampling methods and energy functions, providing a "best practice" set of parameters for each method. Each benchmark has an associated downloadable benchmark capture archive containing the input files, analysis scripts, and tutorials for running the benchmark. The captures may be run with any suitable modeling method; we supply command lines for running the benchmarks using the Rosetta software suite. We have compiled initial benchmarks for the resource spanning three key areas: prediction of energetic effects of mutations, protein design, and protein structure prediction, each with associated state-of-the-art modeling protocols. With the help of the wider macromolecular modeling community, we hope to expand the variety of benchmarks included on the website and continue to evaluate new iterations of current methods as they become available.

  9. Mesoscale Benchmark Demonstration Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-irradiation Thermal Annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Montgomery, Robert; Gao, Fei; Sun, Xin; Tonks, Michael; Biner, Bullent; Millet, Paul; Tikare, Veena; Radhakrishnan, Balasubramaniam; Andersson , David

    2012-04-11

    A study was conducted to evaluate the capabilities of different numerical methods used to represent microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem. The purpose of the mesoscale benchmark problem was to provide a common basis to assess several mesoscale methods with the objective of identifying the strengths and areas of improvement in the predictive modeling of microstructure evolution. In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) developed by PNNL, INL, SNL, and ORNL were used to calculate the evolution kinetics of intra-granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions. The benchmark problem was constructed to include important microstructural evolution mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions was imposed on the benchmark problem to simplify the mechanisms considered. The capability and numerical efficiency of different models are compared against selected experimental and simulation results. These comparisons find that the phase-field methods, by the nature of the free energy formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and kinetic Monte Carlo methods. It is recognized that the mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete particle modeling used in the Potts and kinetic Monte Carlo methods. Future efforts are recommended to construct increasingly more complex mesoscale benchmark problems to further verify and validate the predictive capabilities of the mesoscale modeling

  10. A resource for benchmarking the usefulness of protein structure models

    Directory of Open Access Journals (Sweden)

    Carbajo Daniel

    2012-08-01

    Full Text Available Abstract Background Increasingly, biologists and biochemists use computational tools to design experiments to probe the function of proteins and/or to engineer them for a variety of different purposes. The most effective strategies rely on the knowledge of the three-dimensional structure of the protein of interest. However it is often the case that an experimental structure is not available and that models of different quality are used instead. On the other hand, the relationship between the quality of a model and its appropriate use is not easy to derive in general, and so far it has been analyzed in detail only for specific application. Results This paper describes a database and related software tools that allow testing of a given structure based method on models of a protein representing different levels of accuracy. The comparison of the results of a computational experiment on the experimental structure and on a set of its decoy models will allow developers and users to assess which is the specific threshold of accuracy required to perform the task effectively. Conclusions The ModelDB server automatically builds decoy models of different accuracy for a given protein of known structure and provides a set of useful tools for their analysis. Pre-computed data for a non-redundant set of deposited protein structures are available for analysis and download in the ModelDB database. Implementation, availability and requirements Project name: A resource for benchmarking the usefulness of protein structure models. Project home page: http://bl210.caspur.it/MODEL-DB/MODEL-DB_web/MODindex.php. Operating system(s: Platform independent. Programming language: Perl-BioPerl (program; mySQL, Perl DBI and DBD modules (database; php, JavaScript, Jmol scripting (web server. Other requirements: Java Runtime Environment v1.4 or later, Perl, BioPerl, CPAN modules, HHsearch, Modeller, LGA, NCBI Blast package, DSSP, Speedfill (Surfnet and PSAIA. License: Free. Any

  11. Benchmarking Continuum Solvent Models for Keto-Enol Tautomerizations.

    Science.gov (United States)

    McCann, Billy W; McFarland, Stuart; Acevedo, Orlando

    2015-08-13

    Experimental free energies of tautomerization, ΔGT, were used to benchmark the gas-phase predictions of 17 different quantum mechanical methods and eight basis sets for seven keto-enol tautomer pairs dominated by their enolic form. The G4 method and M06/6-31+G(d,p) yielded the most accurate results, with mean absolute errors (MAE's) of 0.95 and 0.71 kcal/mol, respectively. Using these two theory levels, the solution-phase ΔGT values for 23 unique tautomer pairs composed of aliphatic ketones, β-dicarbonyls, and heterocycles were computed in multiple protic and aprotic solvents. The continuum solvation models, namely, polarizable continuum model (PCM), polarizable conductor calculation model (CPCM), and universal solvation model (SMD), gave relatively similar MAE's of ∼1.6-1.7 kcal/mol for G4 and ∼1.9-2.0 kcal/mol with M06/6-31+G(d,p). Partitioning the tautomer pairs into their respective molecular types, that is, aliphatic ketones, β-dicarbonyls, and heterocycles, and separating out the aqueous versus nonaqueous results finds G4/PCM utilizing the UA0 cavity to be the overall most accurate combination. Free energies of activation, ΔG(‡), for the base-catalyzed keto-enol interconversion of 2-nitrocyclohexanone were also computed using six bases and five solvents. The M06/6-31+G(d,p) reproduced the ΔG(‡) with MAE's of 1.5 and 1.8 kcal/mol using CPCM and SMD, respectively, for all combinations of base and solvent. That specific enolization was previously proposed to proceed via a concerted mechanism in less polar solvents but shift to a stepwise mechanism in more polar solvents. However, the current calculations suggest that the stepwise mechanism operates in all solvents.

  12. Simulation of guided-wave ultrasound propagation in composite laminates: Benchmark comparisons of numerical codes and experiment.

    Science.gov (United States)

    Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A

    2018-03-01

    Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.

  13. What are the assets and weaknesses of HFO detectors? A benchmark framework based on realistic simulations.

    Directory of Open Access Journals (Sweden)

    Nicolas Roehri

    Full Text Available High-frequency oscillations (HFO have been suggested as biomarkers of epileptic tissues. While visual marking of these short and small oscillations is tedious and time-consuming, automatic HFO detectors have not yet met a large consensus. Even though detectors have been shown to perform well when validated against visual marking, the large number of false detections due to their lack of robustness hinder their clinical application. In this study, we developed a validation framework based on realistic and controlled simulations to quantify precisely the assets and weaknesses of current detectors. We constructed a dictionary of synthesized elements-HFOs and epileptic spikes-from different patients and brain areas by extracting these elements from the original data using discrete wavelet transform coefficients. These elements were then added to their corresponding simulated background activity (preserving patient- and region- specific spectra. We tested five existing detectors against this benchmark. Compared to other studies confronting detectors, we did not only ranked them according their performance but we investigated the reasons leading to these results. Our simulations, thanks to their realism and their variability, enabled us to highlight unreported issues of current detectors: (1 the lack of robust estimation of the background activity, (2 the underestimated impact of the 1/f spectrum, and (3 the inadequate criteria defining an HFO. We believe that our benchmark framework could be a valuable tool to translate HFOs into a clinical environment.

  14. Simulation of hydrogen deflagration experiment – Benchmark exercise with lumped-parameter codes

    Energy Technology Data Exchange (ETDEWEB)

    Kljenak, Ivo, E-mail: ivo.kljenak@ijs.si [Jožef Stefan Institute, Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Kuznetsov, Mikhail, E-mail: mike.kuznetsov@kit.edu [Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe (Germany); Kostka, Pal, E-mail: kostka@nubiki.hu [NUBIKI Nuclear Safety Research Institute, Konkoly-Thege Miklós út 29-33, 1121 Budapest (Hungary); Kubišova, Lubica, E-mail: lubica.kubisova@ujd.gov.sk [Nuclear Regulatory Authority of the Slovak Republic, Bajkalská 27, 82007 Bratislava (Slovakia); Maltsev, Mikhail, E-mail: maltsev_MB@aep.ru [JSC Atomenergoproekt, 1, st. Podolskykh Kursantov, Moscow (Russian Federation); Manzini, Giovanni, E-mail: giovanni.manzini@rse-web.it [Ricerca sul Sistema Energetico, Via Rubattino 54, 20134 Milano (Italy); Povilaitis, Mantas, E-mail: mantas.p@mail.lei.lt [Lithuania Energy Institute, Breslaujos g.3, 44403 Kaunas (Lithuania)

    2015-03-15

    Highlights: • Blind and open simulations of hydrogen combustion experiment in large-scale containment-like facility with different lumped-parameter codes. • Simulation of axial as well as radial flame propagation. • Confirmation of adequacy of lumped-parameter codes for safety analyses of actual nuclear power plants. - Abstract: An experiment on hydrogen deflagration (Upward Flame Propagation Experiment – UFPE) was proposed by the Jozef Stefan Institute (Slovenia) and performed in the HYKA A2 facility at the Karlsruhe Institute of Technology (Germany). The experimental results were used to organize a benchmark exercise for lumped-parameter codes. Six organizations (JSI, AEP, LEI, NUBIKI, RSE and UJD SR) participated in the benchmark exercise, using altogether four different computer codes: ANGAR, ASTEC, COCOSYS and ECART. Both blind and open simulations were performed. In general, all the codes provided satisfactory results of the pressure increase, whereas the results of the temperature show a wider dispersal. Concerning the flame axial and radial velocities, the results may be considered satisfactory, given the inherent simplification of the lumped-parameter description compared to the local instantaneous description.

  15. Construct validity and expert benchmarking of the haptic virtual reality dental simulator.

    Science.gov (United States)

    Suebnukarn, Siriwan; Chaisombat, Monthalee; Kongpunwijit, Thanapohn; Rhienmora, Phattanapon

    2014-10-01

    The aim of this study was to demonstrate construct validation of the haptic virtual reality (VR) dental simulator and to define expert benchmarking criteria for skills assessment. Thirty-four self-selected participants (fourteen novices, fourteen intermediates, and six experts in endodontics) at one dental school performed ten repetitions of three mode tasks of endodontic cavity preparation: easy (mandibular premolar with one canal), medium (maxillary premolar with two canals), and hard (mandibular molar with three canals). The virtual instrument's path length was registered by the simulator. The outcomes were assessed by an expert. The error scores in easy and medium modes accurately distinguished the experts from novices and intermediates at the onset of training, when there was a significant difference between groups (ANOVA, p<0.05). The trend was consistent until trial 5. From trial 6 on, the three groups achieved similar scores. No significant difference was found between groups at the end of training. Error score analysis was not able to distinguish any group at the hard level of training. Instrument path length showed a difference in performance according to groups at the onset of training (ANOVA, p<0.05). This study established construct validity for the haptic VR dental simulator by demonstrating its discriminant capabilities between that of experts and non-experts. The experts' error scores and path length were used to define benchmarking criteria for optimal performance.

  16. Simulation of hydrogen deflagration experiment – Benchmark exercise with lumped-parameter codes

    International Nuclear Information System (INIS)

    Kljenak, Ivo; Kuznetsov, Mikhail; Kostka, Pal; Kubišova, Lubica; Maltsev, Mikhail; Manzini, Giovanni; Povilaitis, Mantas

    2015-01-01

    Highlights: • Blind and open simulations of hydrogen combustion experiment in large-scale containment-like facility with different lumped-parameter codes. • Simulation of axial as well as radial flame propagation. • Confirmation of adequacy of lumped-parameter codes for safety analyses of actual nuclear power plants. - Abstract: An experiment on hydrogen deflagration (Upward Flame Propagation Experiment – UFPE) was proposed by the Jozef Stefan Institute (Slovenia) and performed in the HYKA A2 facility at the Karlsruhe Institute of Technology (Germany). The experimental results were used to organize a benchmark exercise for lumped-parameter codes. Six organizations (JSI, AEP, LEI, NUBIKI, RSE and UJD SR) participated in the benchmark exercise, using altogether four different computer codes: ANGAR, ASTEC, COCOSYS and ECART. Both blind and open simulations were performed. In general, all the codes provided satisfactory results of the pressure increase, whereas the results of the temperature show a wider dispersal. Concerning the flame axial and radial velocities, the results may be considered satisfactory, given the inherent simplification of the lumped-parameter description compared to the local instantaneous description

  17. Theory-motivated benchmark models and superpartners at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Kane, G.L.; Nelson, Brent D.; Wang Liantao; Wang, Ting T.; Lykken, J.; Mrenna, Stephen

    2003-01-01

    Recently published benchmark models have contained rather heavy superpartners. To test the robustness of this result, several benchmark models have been constructed based on theoretically well-motivated approaches, particularly string-based ones. These include variations on anomaly- and gauge-mediated models, as well as gravity mediation. The resulting spectra often have light gauginos that are produced in significant quantities at the Fermilab Tevatron collider, or will be at a 500 GeV linear collider. The signatures also provide interesting challenges for the CERN LHC. In addition, these models are capable of accounting for electroweak symmetry breaking with less severe cancellations among soft supersymmetry breaking parameters than previous benchmark models

  18. Benchmark models, planes lines and points for future SUSY searches at the LHC

    International Nuclear Information System (INIS)

    AbdusSalam, S.S.; Allanach, B.C.; Dreiner, H.K.

    2012-03-01

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  19. Benchmark models, planes lines and points for future SUSY searches at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    AbdusSalam, S.S. [The Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Allanach, B.C. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics; Dreiner, H.K. [Bonn Univ. (DE). Bethe Center for Theoretical Physics and Physikalisches Inst.] (and others)

    2012-03-15

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  20. Benchmark Models, Planes, Lines and Points for Future SUSY Searches at the LHC

    CERN Document Server

    AbdusSalam, S S; Dreiner, H K; Ellis, J; Ellwanger, U; Gunion, J; Heinemeyer, S; Krämer, M; Mangano, M L; Olive, K A; Rogerson, S; Roszkowski, L; Schlaffer, M; Weiglein, G

    2011-01-01

    We define benchmark models for SUSY searches at the LHC, including the CMSSM, NUHM, mGMSB, mAMSB, MM-AMSB and p19MSSM, as well as models with R-parity violation and the NMSSM. Within the parameter spaces of these models, we propose benchmark subspaces, including planes, lines and points along them. The planes may be useful for presenting results of the experimental searches in different SUSY scenarios, while the specific benchmark points may serve for more detailed detector performance tests and comparisons. We also describe algorithms for defining suitable benchmark points along the proposed lines in the parameter spaces, and we define a few benchmark points motivated by recent fits to existing experimental data.

  1. Genomic Prediction in Animals and Plants: Simulation of Data, Validation, Reporting, and Benchmarking

    Science.gov (United States)

    Daetwyler, Hans D.; Calus, Mario P. L.; Pong-Wong, Ricardo; de los Campos, Gustavo; Hickey, John M.

    2013-01-01

    The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant results are reported. In addition, some new methods have been compared only in limited genetic architectures, leading to potentially misleading conclusions. In this article we review simulation procedures, discuss validation and reporting of results, and apply benchmark procedures for a variety of genomic prediction methods in simulated and real example data. Plant and animal breeding programs are being transformed by the use of genomic data, which are becoming widely available and cost-effective to predict genetic merit. A large number of genomic prediction studies have been published using both simulated and real data. The relative novelty of this area of research has made the development of scientific conventions difficult with regard to description of the real data, simulation of genomes, validation and reporting of results, and forward in time methods. In this review article we discuss the generation of simulated genotype and phenotype data, using approaches such as the coalescent and forward in time simulation. We outline ways to validate simulated data and genomic prediction results, including cross-validation. The accuracy and bias of genomic prediction are highlighted as performance indicators that should be reported. We suggest that a measure of relatedness between the reference and validation individuals be reported, as its impact on the accuracy of genomic prediction is substantial. A large number of methods were compared in example simulated and real (pine and wheat) data sets, all of which are publicly available. In our limited simulations, most methods performed similarly in traits with a large number of quantitative trait loci (QTL), whereas in traits

  2. Benchmarking the MCNP code for Monte Carlo modelling of an in vivo neutron activation analysis system.

    Science.gov (United States)

    Natto, S A; Lewis, D G; Ryde, S J

    1998-01-01

    The Monte Carlo computer code MCNP (version 4A) has been used to develop a personal computer-based model of the Swansea in vivo neutron activation analysis (IVNAA) system. The model included specification of the neutron source (252Cf), collimators, reflectors and shielding. The MCNP model was 'benchmarked' against fast neutron and thermal neutron fluence data obtained experimentally from the IVNAA system. The Swansea system allows two irradiation geometries using 'short' and 'long' collimators, which provide alternative dose rates for IVNAA. The data presented here relate to the short collimator, although results of similar accuracy were obtained using the long collimator. The fast neutron fluence was measured in air at a series of depths inside the collimator. The measurements agreed with the MCNP simulation within the statistical uncertainty (5-10%) of the calculations. The thermal neutron fluence was measured and calculated inside the cuboidal water phantom. The depth of maximum thermal fluence was 3.2 cm (measured) and 3.0 cm (calculated). The width of the 50% thermal fluence level across the phantom at its mid-depth was found to be the same by both MCNP and experiment. This benchmarking exercise has given us a high degree of confidence in MCNP as a tool for the design of IVNAA systems.

  3. Proficiency performance benchmarks for removal of simulated brain tumors using a virtual reality simulator NeuroTouch.

    Science.gov (United States)

    AlZhrani, Gmaan; Alotaibi, Fahad; Azarnoush, Hamed; Winkler-Schwartz, Alexander; Sabbagh, Abdulrahman; Bajunaid, Khalid; Lajoie, Susanne P; Del Maestro, Rolando F

    2015-01-01

    Assessment of neurosurgical technical skills involved in the resection of cerebral tumors in operative environments is complex. Educators emphasize the need to develop and use objective and meaningful assessment tools that are reliable and valid for assessing trainees' progress in acquiring surgical skills. The purpose of this study was to develop proficiency performance benchmarks for a newly proposed set of objective measures (metrics) of neurosurgical technical skills performance during simulated brain tumor resection using a new virtual reality simulator (NeuroTouch). Each participant performed the resection of 18 simulated brain tumors of different complexity using the NeuroTouch platform. Surgical performance was computed using Tier 1 and Tier 2 metrics derived from NeuroTouch simulator data consisting of (1) safety metrics, including (a) volume of surrounding simulated normal brain tissue removed, (b) sum of forces utilized, and (c) maximum force applied during tumor resection; (2) quality of operation metric, which involved the percentage of tumor removed; and (3) efficiency metrics, including (a) instrument total tip path lengths and (b) frequency of pedal activation. All studies were conducted in the Neurosurgical Simulation Research Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada. A total of 33 participants were recruited, including 17 experts (board-certified neurosurgeons) and 16 novices (7 senior and 9 junior neurosurgery residents). The results demonstrated that "expert" neurosurgeons resected less surrounding simulated normal brain tissue and less tumor tissue than residents. These data are consistent with the concept that "experts" focused more on safety of the surgical procedure compared with novices. By analyzing experts' neurosurgical technical skills performance on these different metrics, we were able to establish benchmarks for goal proficiency performance training of neurosurgery residents. This

  4. Interactive benchmarking

    DEFF Research Database (Denmark)

    Lawson, Lartey; Nielsen, Kurt

    2005-01-01

    We discuss individual learning by interactive benchmarking using stochastic frontier models. The interactions allow the user to tailor the performance evaluation to preferences and explore alternative improvement strategies by selecting and searching the different frontiers using directional...... in the suggested benchmarking tool. The study investigates how different characteristics on dairy farms influences the technical efficiency....

  5. RUNE benchmarks

    DEFF Research Database (Denmark)

    Peña, Alfredo

    This report contains the description of a number of benchmarks with the purpose of evaluating flow models for near-shore wind resource estimation. The benchmarks are designed based on the comprehensive database of observations that the RUNE coastal experiment established from onshore lidar...

  6. A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy

    International Nuclear Information System (INIS)

    Ramos-Méndez, J; Faddegon, B; Perl, J; Schümann, J; Paganetti, H; Shin, J

    2015-01-01

    The aim of this work was to develop a framework for modeling organ effects within TOPAS (TOol for PArticle Simulation), a wrapper of the Geant4 Monte Carlo toolkit that facilitates particle therapy simulation. The DICOM interface for TOPAS was extended to permit contour input, used to assign voxels to organs. The following dose response models were implemented: The Lyman–Kutcher–Burman model, the critical element model, the population based critical volume model, the parallel-serial model, a sigmoid-based model of Niemierko for normal tissue complication probability and tumor control probability (TCP), and a Poisson-based model for TCP. The framework allows easy manipulation of the parameters of these models and the implementation of other models.As part of the verification, results for the parallel-serial and Poisson model for x-ray irradiation of a water phantom were compared to data from the AAPM Task Group 166. When using the task group dose-volume histograms (DVHs), results were found to be sensitive to the number of points in the DVH, with differences up to 2.4%, some of which are attributable to differences between the implemented models. New results are given with the point spacing specified. When using Monte Carlo calculations with TOPAS, despite the relatively good match to the published DVH’s, differences up to 9% were found for the parallel-serial model (for a maximum DVH difference of 2%) and up to 0.5% for the Poisson model (for a maximum DVH difference of 0.5%). However, differences of 74.5% (in Rectangle1), 34.8% (in PTV) and 52.1% (in Triangle) for the critical element, critical volume and the sigmoid-based models were found respectively.We propose a new benchmark for verification of organ effect models in proton therapy. The benchmark consists of customized structures in the spread out Bragg peak plateau, normal tissue, tumor, penumbra and in the distal region. The DVH’s, DVH point spacing, and results of the organ effect models are

  7. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    International Nuclear Information System (INIS)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-01-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies

  8. FLUKA Monte Carlo simulations and benchmark measurements for the LHC beam loss monitors

    Science.gov (United States)

    Sarchiapone, L.; Brugger, M.; Dehning, B.; Kramer, D.; Stockner, M.; Vlachoudis, V.

    2007-10-01

    One of the crucial elements in terms of machine protection for CERN's Large Hadron Collider (LHC) is its beam loss monitoring (BLM) system. On-line loss measurements must prevent the superconducting magnets from quenching and protect the machine components from damages due to unforeseen critical beam losses. In order to ensure the BLM's design quality, in the final design phase of the LHC detailed FLUKA Monte Carlo simulations were performed for the betatron collimation insertion. In addition, benchmark measurements were carried out with LHC type BLMs installed at the CERN-EU high-energy Reference Field facility (CERF). This paper presents results of FLUKA calculations performed for BLMs installed in the collimation region, compares the results of the CERF measurement with FLUKA simulations and evaluates related uncertainties. This, together with the fact that the CERF source spectra at the respective BLM locations are comparable with those at the LHC, allows assessing the sensitivity of the performed LHC design studies.

  9. Benchmarking of the advanced hygrothermal model-hygIRC with mid scale experiments

    Energy Technology Data Exchange (ETDEWEB)

    Maref, W.; Lacasse, M.; Kumaran, K.; Swinton, M.C. [National Research Council of Canada, Ottawa, ON (Canada). Inst. for Research in Construction

    2002-07-01

    An experimental study has been conducted to benchmark an advanced hygrothermal model entitled hygIRC which can be used to estimate the drying response of oriented strand board (OSB) used in timber-frame construction. Three specimens of OSB boards were immersed in water for 5 days and then allowed to stabilise in a sealed tank. A comparison of results from the computer model simulations to those obtained from experimental tests and laboratory measurements showed good agreement in terms of the shape of the drying curve and time taken to reach equilibrium moisture content. In general, it was determined that the drying process is controlled by the vapour permeability of the membrane. The higher the vapour permeability, the faster the rate of drying in a given condition. 11 refs., 1 tab., 9 figs.

  10. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Aurelian F., E-mail: aurelian.badea@kit.edu [Karlsruhe Institute of Technology, Vincenz-Prießnitz-Str. 3, 76131 Karlsruhe (Germany); Cacuci, Dan G. [Center for Nuclear Science and Energy/Dept. of ME, University of South Carolina, 300 Main Street, Columbia, SC 29208 (United States)

    2017-03-15

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  11. Predictive uncertainty reduction in coupled neutron-kinetics/thermal hydraulics modeling of the BWR-TT2 benchmark

    International Nuclear Information System (INIS)

    Badea, Aurelian F.; Cacuci, Dan G.

    2017-01-01

    Highlights: • BWR Turbine Trip 2 (BWR-TT2) benchmark. • Substantial (up to 50%) reduction of uncertainties in the predicted transient power. • 6660 uncertain model parameters were calibrated. - Abstract: By applying a comprehensive predictive modeling methodology, this work demonstrates a substantial (up to 50%) reduction of uncertainties in the predicted total transient power in the BWR Turbine Trip 2 (BWR-TT2) benchmark while calibrating the numerical simulation of this benchmark, comprising 6090 macroscopic cross sections, and 570 thermal-hydraulics parameters involved in modeling the phase-slip correlation, transient outlet pressure, and total mass flow. The BWR-TT2 benchmark is based on an experiment that was carried out in 1977 in the NPP Peach Bottom 2, involving the closure of the turbine stop valve which caused a pressure wave that propagated with attenuation into the reactor core. The condensation of the steam in the reactor core caused by the pressure increase led to a positive reactivity insertion. The subsequent rise of power was limited by the feedback and the insertion of the control rods. The BWR-TT2 benchmark was modeled with the three-dimensional reactor physics code system DYN3D, by coupling neutron kinetics with two-phase thermal-hydraulics. All 6660 DYN3D model parameters were calibrated by applying a predictive modeling methodology that combines experimental and computational information to produce optimally predicted best-estimate results with reduced predicted uncertainties. Simultaneously, the predictive modeling methodology yields optimally predicted values for the BWR total transient power while reducing significantly the accompanying predicted standard deviations.

  12. Benchmarking Multilayer-HySEA model for landslide generated tsunami. HTHMP validation process.

    Science.gov (United States)

    Macias, J.; Escalante, C.; Castro, M. J.

    2017-12-01

    Landslide tsunami hazard may be dominant along significant parts of the coastline around the world, in particular in the USA, as compared to hazards from other tsunamigenic sources. This fact motivated NTHMP about the need of benchmarking models for landslide generated tsunamis, following the same methodology already used for standard tsunami models when the source is seismic. To perform the above-mentioned validation process, a set of candidate benchmarks were proposed. These benchmarks are based on a subset of available laboratory data sets for solid slide experiments and deformable slide experiments, and include both submarine and subaerial slides. A benchmark based on a historic field event (Valdez, AK, 1964) close the list of proposed benchmarks. A total of 7 benchmarks. The Multilayer-HySEA model including non-hydrostatic effects has been used to perform all the benchmarking problems dealing with laboratory experiments proposed in the workshop that was organized at Texas A&M University - Galveston, on January 9-11, 2017 by NTHMP. The aim of this presentation is to show some of the latest numerical results obtained with the Multilayer-HySEA (non-hydrostatic) model in the framework of this validation effort.Acknowledgements. This research has been partially supported by the Spanish Government Research project SIMURISK (MTM2015-70490-C02-01-R) and University of Malaga, Campus de Excelencia Internacional Andalucía Tech. The GPU computations were performed at the Unit of Numerical Methods (University of Malaga).

  13. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    Energy Technology Data Exchange (ETDEWEB)

    Ramakanth Munipalli; P.-Y.Huang; C.Chandler; C.Rowell; M.-J.Ni; N.Morley; S.Smolentsev; M.Abdou

    2008-06-05

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as “canonical”,) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  14. Physical Model Development and Benchmarking for MHD Flows in Blanket Design

    International Nuclear Information System (INIS)

    Munipalli, Ramakanth; Huang, P.-Y.; Chandler, C.; Rowell, C.; Ni, M.-J.; Morley, N.; Smolentsev, S.; Abdou, M.

    2008-01-01

    An advanced simulation environment to model incompressible MHD flows relevant to blanket conditions in fusion reactors has been developed at HyPerComp in research collaboration with TEXCEL. The goals of this phase-II project are two-fold: The first is the incorporation of crucial physical phenomena such as induced magnetic field modeling, and extending the capabilities beyond fluid flow prediction to model heat transfer with natural convection and mass transfer including tritium transport and permeation. The second is the design of a sequence of benchmark tests to establish code competence for several classes of physical phenomena in isolation as well as in select (termed here as 'canonical',) combinations. No previous attempts to develop such a comprehensive MHD modeling capability exist in the literature, and this study represents essentially uncharted territory. During the course of this Phase-II project, a significant breakthrough was achieved in modeling liquid metal flows at high Hartmann numbers. We developed a unique mathematical technique to accurately compute the fluid flow in complex geometries at extremely high Hartmann numbers (10,000 and greater), thus extending the state of the art of liquid metal MHD modeling relevant to fusion reactors at the present time. These developments have been published in noted international journals. A sequence of theoretical and experimental results was used to verify and validate the results obtained. The code was applied to a complete DCLL module simulation study with promising results.

  15. Benchmarking of Computational Models for NDE and SHM of Composites

    Science.gov (United States)

    Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna

    2016-01-01

    Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.

  16. Study on the mechanism and efficiency of simulated annealing using an LP optimization benchmark problem - 113

    International Nuclear Information System (INIS)

    Qianqian, Li; Xiaofeng, Jiang; Shaohong, Zhang

    2010-01-01

    Simulated Annealing Algorithm (SAA) for solving combinatorial optimization problems is a popular method for loading pattern optimization. The main purpose of this paper is to understand the underlying search mechanism of SAA and to study its efficiency. In this study, a general SAA that employs random pair exchange of fuel assemblies to search for the optimum fuel Loading Pattern (LP) is applied to an exhaustively searched LP optimization benchmark problem. All the possible LPs of the benchmark problem have been enumerated and evaluated via the use of the very fast and accurate Hybrid Harmonics and Linear Perturbation (HHLP) method, such that the mechanism of SA for LP optimization can be explicitly analyzed and its search efficiency evaluated. The generic core geometry itself dictates that only a small number LPs can be generated by performing random single pair exchanges and that the LPs are necessarily mostly similar to the initial LP. This phase space effect turns out to be the basic mechanism in SAA that can explain its efficiency and good local search ability. A measure of search efficiency is introduced which shows that the stochastic nature of SAA greatly influences the variability of its search efficiency. It is also found that using fuel assembly k-infinity distribution as a technique to filter the LPs can significantly enhance the SAA search efficiency. (authors)

  17. Comparison benchmark between tokamak simulation code and TokSys for Chinese Fusion Engineering Test Reactor vertical displacement control design

    International Nuclear Information System (INIS)

    Qiu Qing-Lai; Xiao Bing-Jia; Guo Yong; Liu Lei; Wang Yue-Hang

    2017-01-01

    Vertical displacement event (VDE) is a big challenge to the existing tokamak equipment and that being designed. As a Chinese next-step tokamak, the Chinese Fusion Engineering Test Reactor (CFETR) has to pay attention to the VDE study with full-fledged numerical codes during its conceptual design. The tokamak simulation code (TSC) is a free boundary time-dependent axisymmetric tokamak simulation code developed in PPPL, which advances the MHD equations describing the evolution of the plasma in a rectangular domain. The electromagnetic interactions between the surrounding conductor circuits and the plasma are solved self-consistently. The TokSys code is a generic modeling and simulation environment developed in GA. Its RZIP model treats the plasma as a fixed spatial distribution of currents which couple with the surrounding conductors through circuit equations. Both codes have been individually used for the VDE study on many tokamak devices, such as JT-60U, EAST, NSTX, DIII-D, and ITER. Considering the model differences, benchmark work is needed to answer whether they reproduce each other’s results correctly. In this paper, the TSC and TokSys codes are used for analyzing the CFETR vertical instability passive and active controls design simultaneously. It is shown that with the same inputs, the results from these two codes conform with each other. (paper)

  18. Benchmark test of drift-kinetic and gyrokinetic codes through neoclassical transport simulations

    International Nuclear Information System (INIS)

    Satake, S.; Sugama, H.; Watanabe, T.-H.; Idomura, Yasuhiro

    2009-09-01

    Two simulation codes that solve the drift-kinetic or gyrokinetic equation in toroidal plasmas are benchmarked by comparing the simulation results of neoclassical transport. The two codes are the drift-kinetic δf Monte Carlo code (FORTEC-3D) and the gyrokinetic full- f Vlasov code (GT5D), both of which solve radially-global, five-dimensional kinetic equation with including the linear Fokker-Planck collision operator. In a tokamak configuration, neoclassical radial heat flux and the force balance relation, which relates the parallel mean flow with radial electric field and temperature gradient, are compared between these two codes, and their results are also compared with the local neoclassical transport theory. It is found that the simulation results of the two codes coincide very well in a wide rage of plasma collisionality parameter ν * = 0.01 - 10 and also agree with the theoretical estimations. The time evolution of radial electric field and particle flux, and the radial profile of the geodesic acoustic mode frequency also coincide very well. These facts guarantee the capability of GT5D to simulate plasma turbulence transport with including proper neoclassical effects of collisional diffusion and equilibrium radial electric field. (author)

  19. MCNP HPGe detector benchmark with previously validated Cyltran model.

    Science.gov (United States)

    Hau, I D; Russ, W R; Bronson, F

    2009-05-01

    An exact copy of the detector model generated for Cyltran was reproduced as an MCNP input file and the detection efficiency was calculated similarly with the methodology used in previous experimental measurements and simulation of a 280 cm(3) HPGe detector. Below 1000 keV the MCNP data correlated to the Cyltran results within 0.5% while above this energy the difference between MCNP and Cyltran increased to about 6% at 4800 keV, depending on the electron cut-off energy.

  20. Benchmark of the FLUKA model of crystal channeling against the UA9-H8 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schoofs, P.; Cerutti, F.; Ferrari, A. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Smirnov, G. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Joint Institute for Nuclear Research (JINR), Dubna (Russian Federation)

    2015-07-15

    Channeling in bent crystals is increasingly considered as an option for the collimation of high-energy particle beams. The installation of crystals in the LHC has taken place during this past year and aims at demonstrating the feasibility of crystal collimation and a possible cleaning efficiency improvement. The performance of CERN collimation insertions is evaluated with the Monte Carlo code FLUKA, which is capable to simulate energy deposition in collimators as well as beam loss monitor signals. A new model of crystal channeling was developed specifically so that similar simulations can be conducted in the case of crystal-assisted collimation. In this paper, most recent results of this model are brought forward in the framework of a joint activity inside the UA9 collaboration to benchmark the different simulation tools available. The performance of crystal STF 45, produced at INFN Ferrara, was measured at the H8 beamline at CERN in 2010 and serves as the basis to the comparison. Distributions of deflected particles are shown to be in very good agreement with experimental data. Calculated dechanneling lengths and crystal performance in the transition region between amorphous regime and volume reflection are also close to the measured ones.

  1. The ACCENT-protocol: a framework for benchmarking and model evaluation

    Directory of Open Access Journals (Sweden)

    V. Grewe

    2012-05-01

    Full Text Available We summarise results from a workshop on "Model Benchmarking and Quality Assurance" of the EU-Network of Excellence ACCENT, including results from other activities (e.g. COST Action 732 and publications. A formalised evaluation protocol is presented, i.e. a generic formalism describing the procedure of how to perform a model evaluation. This includes eight steps and examples from global model applications which are given for illustration. The first and important step is concerning the purpose of the model application, i.e. the addressed underlying scientific or political question. We give examples to demonstrate that there is no model evaluation per se, i.e. without a focused purpose. Model evaluation is testing, whether a model is fit for its purpose. The following steps are deduced from the purpose and include model requirements, input data, key processes and quantities, benchmark data, quality indicators, sensitivities, as well as benchmarking and grading. We define "benchmarking" as the process of comparing the model output against either observational data or high fidelity model data, i.e. benchmark data. Special focus is given to the uncertainties, e.g. in observational data, which have the potential to lead to wrong conclusions in the model evaluation if not considered carefully.

  2. The ACCENT-protocol: a framework for benchmarking and model evaluation

    Science.gov (United States)

    Grewe, V.; Moussiopoulos, N.; Builtjes, P.; Borrego, C.; Isaksen, I. S. A.; Volz-Thomas, A.

    2012-05-01

    We summarise results from a workshop on "Model Benchmarking and Quality Assurance" of the EU-Network of Excellence ACCENT, including results from other activities (e.g. COST Action 732) and publications. A formalised evaluation protocol is presented, i.e. a generic formalism describing the procedure of how to perform a model evaluation. This includes eight steps and examples from global model applications which are given for illustration. The first and important step is concerning the purpose of the model application, i.e. the addressed underlying scientific or political question. We give examples to demonstrate that there is no model evaluation per se, i.e. without a focused purpose. Model evaluation is testing, whether a model is fit for its purpose. The following steps are deduced from the purpose and include model requirements, input data, key processes and quantities, benchmark data, quality indicators, sensitivities, as well as benchmarking and grading. We define "benchmarking" as the process of comparing the model output against either observational data or high fidelity model data, i.e. benchmark data. Special focus is given to the uncertainties, e.g. in observational data, which have the potential to lead to wrong conclusions in the model evaluation if not considered carefully.

  3. Measurements and FLUKA simulations of bismuth and aluminium activation at the CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.

    2018-03-01

    The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.

  4. Towards a public, standardized, diagnostic benchmarking system for land surface models

    Directory of Open Access Journals (Sweden)

    G. Abramowitz

    2012-06-01

    Full Text Available This work examines different conceptions of land surface model benchmarking and the importance of internationally standardized evaluation experiments that specify data sets, variables, metrics and model resolutions. It additionally demonstrates how essential the definition of a priori expectations of model performance can be, based on the complexity of a model and the amount of information being provided to it, and gives an example of how these expectations might be quantified. Finally, the Protocol for the Analysis of Land Surface models (PALS is introduced – a free, online land surface model benchmarking application that is structured to meet both of these goals.

  5. Current modeling practice may lead to falsely high benchmark dose estimates.

    Science.gov (United States)

    Ringblom, Joakim; Johanson, Gunnar; Öberg, Mattias

    2014-07-01

    Benchmark dose (BMD) modeling is increasingly used as the preferred approach to define the point-of-departure for health risk assessment of chemicals. As data are inherently variable, there is always a risk to select a model that defines a lower confidence bound of the BMD (BMDL) that, contrary to expected, exceeds the true BMD. The aim of this study was to investigate how often and under what circumstances such anomalies occur under current modeling practice. Continuous data were generated from a realistic dose-effect curve by Monte Carlo simulations using four dose groups and a set of five different dose placement scenarios, group sizes between 5 and 50 animals and coefficients of variations of 5-15%. The BMD calculations were conducted using nested exponential models, as most BMD software use nested approaches. "Non-protective" BMDLs (higher than true BMD) were frequently observed, in some scenarios reaching 80%. The phenomenon was mainly related to the selection of the non-sigmoidal exponential model (Effect=a·e(b)(·dose)). In conclusion, non-sigmoid models should be used with caution as it may underestimate the risk, illustrating that awareness of the model selection process and sound identification of the point-of-departure is vital for health risk assessment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Numisheet2005 Benchmark Analysis on Forming of an Automotive Underbody Cross Member: Benchmark 2

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao Jian

    2005-01-01

    This report presents an international cooperation benchmark effort focusing on simulations of a sheet metal stamping process. A forming process of an automotive underbody cross member using steel and aluminum blanks is used as a benchmark. Simulation predictions from each submission are analyzed via comparison with the experimental results. A brief summary of various models submitted for this benchmark study is discussed. Prediction accuracy of each parameter of interest is discussed through the evaluation of cumulative errors from each submission

  7. Numerical Benchmark of 3D Ground Motion Simulation in the Alpine valley of Grenoble, France.

    Science.gov (United States)

    Tsuno, S.; Chaljub, E.; Cornou, C.; Bard, P.

    2006-12-01

    Thank to the use of sophisticated numerical methods and to the access to increasing computational resources, our predictions of strong ground motion become more and more realistic and need to be carefully compared. We report our effort of benchmarking numerical methods of ground motion simulation in the case of the valley of Grenoble in the French Alps. The Grenoble valley is typical of a moderate seismicity area where strong site effects occur. The benchmark consisted in computing the seismic response of the `Y'-shaped Grenoble valley to (i) two local earthquakes (Mlhandle surface topography, the other half comprises predictions based upon 1D (2 contributions), 2D (4 contributions) and empirical Green's function (EGF) (3 contributions) methods. Maximal frequency analysed ranged between 2.5 Hz for 3D calculations and 40 Hz for EGF predictions. We present a detailed comparison of the different predictions using raw indicators (e.g. peak values of ground velocity and acceleration, Fourier spectra, site over reference spectral ratios, ...) as well as sophisticated misfit criteria based upon previous works [2,3]. We further discuss the variability in estimating the importance of particular effects such as non-linear rheology, or surface topography. References: [1] Thouvenot F. et al., The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155 (1), p. 174-192, 2003. [2] Anderson J., Quantitative measure of the goodness-of-fit of synthetic seismograms, proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, paper #243, 2004. [3] Kristekova M. et al., Misfit Criteria for Quantitative Comparison of Seismograms, Bull. Seism. Soc. Am., in press, 2006.

  8. Benchmarking the CEMDATA07 database to model chemical degradation of concrete using GEMS and PHREEQC

    International Nuclear Information System (INIS)

    Jacques, Diederik; Wang, Lian; Martens, Evelien; Mallants, Dirk

    2012-01-01

    Thermodynamic equilibrium modelling of degradation of cement and concrete systems by chemically detrimental reactions as carbonation, sulphate attack and decalcification or leaching processes requires a consistent thermodynamic database with the relevant aqueous species, cement minerals and hydrates. The recent and consistent database CEMDATA07 is used as the basis in the studies of the Belgian near-surface disposal concept being developed by ONDRAF/NIRAS. The database is consistent with the thermodynamic data in the Nagra/PSI-Thermodynamic Database. When used with the GEMS thermodynamic code, thermodynamic modelling can be performed at temperatures different from the standard temperature of 25 C. GEMS calculates thermodynamic equilibrium by minimizing the Gibbs free energy of the system. Alternatively, thermodynamic equilibrium can also be calculated by solving a nonlinear system of mass balance equations and mass action equations, as is done in PHREEQC. A PHREEQC-database for the cement systems at temperatures different from 25 C is derived from the thermodynamic parameters and models from GEMS. A number of benchmark simulations using PHREEQC and GEM-Selektor were done to verify the implementation of the CEMDATA07 database in PHREEQC-databases. Simulations address a series of reactions that are relevant to the assessment of long-term cement and concrete durability. Verification calculations were performed for different systems with increasing complexity: CaO-SiO 2 -CO 2 , CaO-Al 2 O 3 -SO 3 -CO 2 , and CaO-SiO 2 -Al 2 O 3 -Fe 2 O 3 -MgO-SO 3 -CO 2 . Three types of chemical degradation processes were simulated: (1) carbonation by adding CO 2 to the bulk composition, (2) sulphate attack by adding SO 3 to the bulk composition, and (3) decalcification/leaching by putting the cement solid phase sequentially in contact with pure water. An excellent agreement between the simulations with GEMS and PHREEQC was obtained

  9. A New Performance Improvement Model: Adding Benchmarking to the Analysis of Performance Indicator Data.

    Science.gov (United States)

    Al-Kuwaiti, Ahmed; Homa, Karen; Maruthamuthu, Thennarasu

    2016-01-01

    A performance improvement model was developed that focuses on the analysis and interpretation of performance indicator (PI) data using statistical process control and benchmarking. PIs are suitable for comparison with benchmarks only if the data fall within the statistically accepted limit-that is, show only random variation. Specifically, if there is no significant special-cause variation over a period of time, then the data are ready to be benchmarked. The proposed Define, Measure, Control, Internal Threshold, and Benchmark model is adapted from the Define, Measure, Analyze, Improve, Control (DMAIC) model. The model consists of the following five steps: Step 1. Define the process; Step 2. Monitor and measure the variation over the period of time; Step 3. Check the variation of the process; if stable (no significant variation), go to Step 4; otherwise, control variation with the help of an action plan; Step 4. Develop an internal threshold and compare the process with it; Step 5.1. Compare the process with an internal benchmark; and Step 5.2. Compare the process with an external benchmark. The steps are illustrated through the use of health care-associated infection (HAI) data collected for 2013 and 2014 from the Infection Control Unit, King Fahd Hospital, University of Dammam, Saudi Arabia. Monitoring variation is an important strategy in understanding and learning about a process. In the example, HAI was monitored for variation in 2013, and the need to have a more predictable process prompted the need to control variation by an action plan. The action plan was successful, as noted by the shift in the 2014 data, compared to the historical average, and, in addition, the variation was reduced. The model is subject to limitations: For example, it cannot be used without benchmarks, which need to be calculated the same way with similar patient populations, and it focuses only on the "Analyze" part of the DMAIC model.

  10. Simulation of TRIGA Mark II Benchmark Experiment using WIMSD4 and CITATION codes

    International Nuclear Information System (INIS)

    Dalle, Hugo Moura; Pereira, Claubia

    2000-01-01

    This paper presents a simulation of the TRIGA Mark II Benchmark Experiment, Part I: Steady-State Operation and is part of the calculation methodology validation developed to the neutronic calculation of the CDTN's TRIGA IPR - R1 reactor. A version of the WIMSD4, obtained in the Centro de Tecnologia Nuclear, in Cuba, was used in the cells calculation. In the core calculations was adopted the diffusion code CITATION. Was adopted a 3D representation of the core and the calculations were carried out at two energy groups. Many of the experiments were simulated, including, K eff , control rods reactivity worth, fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or on an acceptable range, following the literature, to the K eff and fuel elements reactivity worth distribution and the fuel temperature reactivity coefficient. The comparison of the obtained results, with the experimental. results, shows differences in the range of the accuracy of the measurements, to the control rods worth and fuel temperature reactivity coefficient, or in an acceptable range, following the literature, to the K eff and fuel elements reactivity worth distribution. (author)

  11. Simulation modeling and arena

    CERN Document Server

    Rossetti, Manuel D

    2015-01-01

    Emphasizes a hands-on approach to learning statistical analysis and model building through the use of comprehensive examples, problems sets, and software applications With a unique blend of theory and applications, Simulation Modeling and Arena®, Second Edition integrates coverage of statistical analysis and model building to emphasize the importance of both topics in simulation. Featuring introductory coverage on how simulation works and why it matters, the Second Edition expands coverage on static simulation and the applications of spreadsheets to perform simulation. The new edition als

  12. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  13. Benchmarking sensitivity of biophysical processes to leaf area changes in land surface models

    Science.gov (United States)

    Forzieri, Giovanni; Duveiller, Gregory; Georgievski, Goran; Li, Wei; Robestson, Eddy; Kautz, Markus; Lawrence, Peter; Ciais, Philippe; Pongratz, Julia; Sitch, Stephen; Wiltshire, Andy; Arneth, Almut; Cescatti, Alessandro

    2017-04-01

    Land surface models (LSM) are widely applied as supporting tools for policy-relevant assessment of climate change and its impact on terrestrial ecosystems, yet knowledge of their performance skills in representing the sensitivity of biophysical processes to changes in vegetation density is still limited. This is particularly relevant in light of the substantial impacts on regional climate associated with the changes in leaf area index (LAI) following the observed global greening. Benchmarking LSMs on the sensitivity of the simulated processes to vegetation density is essential to reduce their uncertainty and improve the representation of these effects. Here we present a novel benchmark system to assess model capacity in reproducing land surface-atmosphere energy exchanges modulated by vegetation density. Through a collaborative effort of different modeling groups, a consistent set of land surface energy fluxes and LAI dynamics has been generated from multiple LSMs, including JSBACH, JULES, ORCHIDEE, CLM4.5 and LPJ-GUESS. Relationships of interannual variations of modeled surface fluxes to LAI changes have been analyzed at global scale across different climatological gradients and compared with satellite-based products. A set of scoring metrics has been used to assess the overall model performances and a detailed analysis in the climate space has been provided to diagnose possible model errors associated to background conditions. Results have enabled us to identify model-specific strengths and deficiencies. An overall best performing model does not emerge from the analyses. However, the comparison with other models that work better under certain metrics and conditions indicates that improvements are expected to be potentially achievable. A general amplification of the biophysical processes mediated by vegetation is found across the different land surface schemes. Grasslands are characterized by an underestimated year-to-year variability of LAI in cold climates

  14. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Directory of Open Access Journals (Sweden)

    Lerendegui-Marco J.

    2017-01-01

    Full Text Available Monte Carlo (MC simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1, especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2 of the facility.

  15. Monte carlo simulations of the n_TOF lead spallation target with the Geant4 toolkit: A benchmark study

    Science.gov (United States)

    Lerendegui-Marco, J.; Cortés-Giraldo, M. A.; Guerrero, C.; Quesada, J. M.; Meo, S. Lo; Massimi, C.; Barbagallo, M.; Colonna, N.; Mancussi, D.; Mingrone, F.; Sabaté-Gilarte, M.; Vannini, G.; Vlachoudis, V.; Aberle, O.; Andrzejewski, J.; Audouin, L.; Bacak, M.; Balibrea, J.; Bečvář, F.; Berthoumieux, E.; Billowes, J.; Bosnar, D.; Brown, A.; Caamaño, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Cardella, R.; Casanovas, A.; Cerutti, F.; Chen, Y. H.; Chiaveri, E.; Cortés, G.; Cosentino, L.; Damone, L. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Dupont, E.; Durán, I.; Fernández-Domínguez, B.; Ferrari, A.; Ferreira, P.; Finocchiaro, P.; Göbel, K.; Gómez-Hornillos, M. B.; García, A. R.; Gawlik, A.; Gilardoni, S.; Glodariu, T.; Gonçalves, I. F.; González, E.; Griesmayer, E.; Gunsing, F.; Harada, H.; Heinitz, S.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Kalamara, A.; Kavrigin, P.; Kimura, A.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kurtulgil, D.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Lonsdale, S. J.; Macina, D.; Marganiec, J.; Martínez, T.; Masi, A.; Mastinu, P.; Mastromarco, M.; Maugeri, E. A.; Mazzone, A.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Musumarra, A.; Negret, A.; Nolte, R.; Oprea, A.; Patronis, N.; Pavlik, A.; Perkowski, J.; Porras, I.; Praena, J.; Radeck, D.; Rauscher, T.; Reifarth, R.; Rout, P. C.; Rubbia, C.; Ryan, J. A.; Saxena, A.; Schillebeeckx, P.; Schumann, D.; Smith, A. G.; Sosnin, N. V.; Stamatopoulos, A.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tassan-Got, L.; Valenta, S.; Variale, V.; Vaz, P.; Ventura, A.; Vlastou, R.; Wallner, A.; Warren, S.; Woods, P. J.; Wright, T.; Žugec, P.

    2017-09-01

    Monte Carlo (MC) simulations are an essential tool to determine fundamental features of a neutron beam, such as the neutron flux or the γ-ray background, that sometimes can not be measured or at least not in every position or energy range. Until recently, the most widely used MC codes in this field had been MCNPX and FLUKA. However, the Geant4 toolkit has also become a competitive code for the transport of neutrons after the development of the native Geant4 format for neutron data libraries, G4NDL. In this context, we present the Geant4 simulations of the neutron spallation target of the n_TOF facility at CERN, done with version 10.1.1 of the toolkit. The first goal was the validation of the intra-nuclear cascade models implemented in the code using, as benchmark, the characteristics of the neutron beam measured at the first experimental area (EAR1), especially the neutron flux and energy distribution, and the time distribution of neutrons of equal kinetic energy, the so-called Resolution Function. The second goal was the development of a Monte Carlo tool aimed to provide useful calculations for both the analysis and planning of the upcoming measurements at the new experimental area (EAR2) of the facility.

  16. Aviation Safety Simulation Model

    Science.gov (United States)

    Houser, Scott; Yackovetsky, Robert (Technical Monitor)

    2001-01-01

    The Aviation Safety Simulation Model is a software tool that enables users to configure a terrain, a flight path, and an aircraft and simulate the aircraft's flight along the path. The simulation monitors the aircraft's proximity to terrain obstructions, and reports when the aircraft violates accepted minimum distances from an obstruction. This model design facilitates future enhancements to address other flight safety issues, particularly air and runway traffic scenarios. This report shows the user how to build a simulation scenario and run it. It also explains the model's output.

  17. On the validity of empirical potentials for simulating radiation damage in graphite: a benchmark

    International Nuclear Information System (INIS)

    Latham, C D; McKenna, A J; Trevethan, T P; Heggie, M I; Rayson, M J; Briddon, P R

    2015-01-01

    In this work, the ability of methods based on empirical potentials to simulate the effects of radiation damage in graphite is examined by comparing results for point defects, found using ab initio calculations based on density functional theory (DFT), with those given by two state of the art potentials: the Environment-Dependent Interatomic Potential (EDIP) and the Adaptive Intermolecular Reactive Empirical Bond Order potential (AIREBO). Formation energies for the interstitial, the vacancy and the Stone–Wales (5775) defect are all reasonably close to DFT values. Both EDIP and AIREBO can thus be suitable for the prompt defects in a cascade, for example. Both potentials suffer from arefacts. One is the pinch defect, where two α-atoms adopt a fourfold-coordinated sp 3 configuration, that forms a cross-link between neighbouring graphene sheets. Another, for AIREBO only, is that its ground state vacancy structure is close to the transition state found by DFT for migration. The EDIP fails to reproduce the ground state self-interstitial structure given by DFT, but has nearly the same formation energy. Also, for both potentials, the energy barriers that control diffusion and the evolution of a damage cascade, are not well reproduced. In particular the EDIP gives a barrier to removal of the Stone–Wales defect as 0.9 eV against DFT's 4.5 eV. The suite of defect structures used is provided as supplementary information as a benchmark set for future potentials. (paper)

  18. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  19. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    International Nuclear Information System (INIS)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc

    2008-01-01

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the ''low energy

  20. Benchmarking of Monte Carlo simulation of bremsstrahlung from thick targets at radiotherapy energies

    Energy Technology Data Exchange (ETDEWEB)

    Faddegon, Bruce A.; Asai, Makoto; Perl, Joseph; Ross, Carl; Sempau, Josep; Tinslay, Jane; Salvat, Francesc [Department of Radiation Oncology, University of California at San Francisco, San Francisco, California 94143 (United States); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); National Research Council Canada, Institute for National Measurement Standards, 1200 Montreal Road, Building M-36, Ottawa, Ontario K1A 0R6 (Canada); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya and Centro de Investigacion Biomedica en Red en Bioingenieria, Biomateriales y Nanomedicina (CIBER-BBN), Diagonal 647, 08028 Barcelona (Spain); Stanford Linear Accelerator Center, 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Facultat de Fisica (ECM), Universitat de Barcelona, Societat Catalana de Fisica (IEC), Diagonal 647, 08028 Barcelona (Spain)

    2008-10-15

    Several Monte Carlo systems were benchmarked against published measurements of bremsstrahlung yield from thick targets for 10-30 MV beams. The quantity measured was photon fluence at 1 m per unit energy per incident electron (spectra), and total photon fluence, integrated over energy, per incident electron (photon yield). Results were reported at 10-30 MV on the beam axis for Al and Pb targets and at 15 MV at angles out to 90 degree sign for Be, Al, and Pb targets. Beam energy was revised with improved accuracy of 0.5% using an improved energy calibration of the accelerator. Recently released versions of the Monte Carlo systems EGSNRC, GEANT4, and PENELOPE were benchmarked against the published measurements using the revised beam energies. Monte Carlo simulation was capable of calculation of photon yield in the experimental geometry to 5% out to 30 degree sign , 10% at wider angles, and photon spectra to 10% at intermediate photon energies, 15% at lower energies. Accuracy of measured photon yield from 0 to 30 degree sign was 5%, 1 s.d., increasing to 7% for the larger angles. EGSNRC and PENELOPE results were within 2 s.d. of the measured photon yield at all beam energies and angles, GEANT4 within 3 s.d. Photon yield at nonzero angles for angles covering conventional field sizes used in radiotherapy (out to 10 degree sign ), measured with an accuracy of 3%, was calculated within 1 s.d. of measurement for EGSNRC, 2 s.d. for PENELOPE and GEANT4. Calculated spectra closely matched measurement at photon energies over 5 MeV. Photon spectra near 5 MeV were underestimated by as much as 10% by all three codes. The photon spectra below 2-3 MeV for the Be and Al targets and small angles were overestimated by up to 15% when using EGSNRC and PENELOPE, 20% with GEANT4. EGSNRC results with the NIST option for the bremsstrahlung cross section were preferred over the alternative cross section available in EGSNRC and over EGS4. GEANT4 results calculated with the &apos

  1. PREMIUM - Benchmark on the quantification of the uncertainty of the physical models in the system thermal-hydraulic codes

    International Nuclear Information System (INIS)

    Skorek, Tomasz; Crecy, Agnes de

    2013-01-01

    PREMIUM (Post BEMUSE Reflood Models Input Uncertainty Methods) is an activity launched with the aim to push forward the methods of quantification of physical models uncertainties in thermal-hydraulic codes. It is endorsed by OECD/NEA/CSNI/WGAMA. The benchmark PREMIUM is addressed to all who applies uncertainty evaluation methods based on input uncertainties quantification and propagation. The benchmark is based on a selected case of uncertainty analysis application to the simulation of quench front propagation in an experimental test facility. Application to an experiment enables evaluation and confirmation of the quantified probability distribution functions on the basis of experimental data. The scope of the benchmark comprises a review of the existing methods, selection of potentially important uncertain input parameters, preliminary quantification of the ranges and distributions of the identified parameters, evaluation of the probability density function using experimental results of tests performed on FEBA test facility and confirmation/validation of the performed quantification on the basis of blind calculation of Reflood 2-D PERICLES experiment. (authors)

  2. Pore-scale and Continuum Simulations of Solute Transport Micromodel Benchmark Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Mehmani, Yashar; Romero Gomez, Pedro DJ; Tang, Y.; Liu, H.; Yoon, Hongkyu; Kang, Qinjun; Joekar Niasar, Vahid; Balhoff, Matthew; Dewers, T.; Tartakovsky, Guzel D.; Leist, Emily AE; Hess, Nancy J.; Perkins, William A.; Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Werth, Charles J.; Valocchi, Albert J.; Wietsma, Thomas W.; Zhang, Changyong

    2016-08-01

    Four sets of micromodel nonreactive solute transport experiments were conducted with flow velocity, grain diameter, pore-aspect ratio, and flow focusing heterogeneity as the variables. The data sets were offered to pore-scale modeling groups to test their simulators. Each set consisted of two learning experiments, for which all results was made available, and a challenge experiment, for which only the experimental description and base input parameters were provided. The experimental results showed a nonlinear dependence of the dispersion coefficient on the Peclet number, a negligible effect of the pore-aspect ratio on transverse mixing, and considerably enhanced mixing due to flow focusing. Five pore-scale models and one continuum-scale model were used to simulate the experiments. Of the pore-scale models, two used a pore-network (PN) method, two others are based on a lattice-Boltzmann (LB) approach, and one employed a computational fluid dynamics (CFD) technique. The learning experiments were used by the PN models to modify the standard perfect mixing approach in pore bodies into approaches to simulate the observed incomplete mixing. The LB and CFD models used these experiments to appropriately discretize the grid representations. The continuum model use published non-linear relations between transverse dispersion coefficients and Peclet numbers to compute the required dispersivity input values. Comparisons between experimental and numerical results for the four challenge experiments show that all pore-scale models were all able to satisfactorily simulate the experiments. The continuum model underestimated the required dispersivity values and, resulting in less dispersion. The PN models were able to complete the simulations in a few minutes, whereas the direct models needed up to several days on supercomputers to resolve the more complex problems.

  3. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the

  4. Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures

    DEFF Research Database (Denmark)

    Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn

    2018-01-01

    Five computational methods are benchmarked by computing quality factors and resonance wavelengths inphotonic crystal membrane L5 and L9 line defect cavities. Careful convergence studies reveal that some methods are more suitable than others for analyzing these cavities....

  5. Benchmarking in pathology: development of an activity-based costing model.

    Science.gov (United States)

    Burnett, Leslie; Wilson, Roger; Pfeffer, Sally; Lowry, John

    2012-12-01

    Benchmarking in Pathology (BiP) allows pathology laboratories to determine the unit cost of all laboratory tests and procedures, and also provides organisational productivity indices allowing comparisons of performance with other BiP participants. We describe 14 years of progressive enhancement to a BiP program, including the implementation of 'avoidable costs' as the accounting basis for allocation of costs rather than previous approaches using 'total costs'. A hierarchical tree-structured activity-based costing model distributes 'avoidable costs' attributable to the pathology activities component of a pathology laboratory operation. The hierarchical tree model permits costs to be allocated across multiple laboratory sites and organisational structures. This has enabled benchmarking on a number of levels, including test profiles and non-testing related workload activities. The development of methods for dealing with variable cost inputs, allocation of indirect costs using imputation techniques, panels of tests, and blood-bank record keeping, have been successfully integrated into the costing model. A variety of laboratory management reports are produced, including the 'cost per test' of each pathology 'test' output. Benchmarking comparisons may be undertaken at any and all of the 'cost per test' and 'cost per Benchmarking Complexity Unit' level, 'discipline/department' (sub-specialty) level, or overall laboratory/site and organisational levels. We have completed development of a national BiP program. An activity-based costing methodology based on avoidable costs overcomes many problems of previous benchmarking studies based on total costs. The use of benchmarking complexity adjustment permits correction for varying test-mix and diagnostic complexity between laboratories. Use of iterative communication strategies with program participants can overcome many obstacles and lead to innovations.

  6. Simulation in Complex Modelling

    DEFF Research Database (Denmark)

    Nicholas, Paul; Ramsgaard Thomsen, Mette; Tamke, Martin

    2017-01-01

    This paper will discuss the role of simulation in extended architectural design modelling. As a framing paper, the aim is to present and discuss the role of integrated design simulation and feedback between design and simulation in a series of projects under the Complex Modelling framework. Complex...... performance, engage with high degrees of interdependency and allow the emergence of design agency and feedback between the multiple scales of architectural construction. This paper presents examples for integrated design simulation from a series of projects including Lace Wall, A Bridge Too Far and Inflated...... Restraint developed for the research exhibition Complex Modelling, Meldahls Smedie Gallery, Copenhagen in 2016. Where the direct project aims and outcomes have been reported elsewhere, the aim for this paper is to discuss overarching strategies for working with design integrated simulation....

  7. 2016 International Land Model Benchmarking (ILAMB) Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koven, Charles D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Keppel-Aleks, Gretchen [Univ. of Michigan, Ann Arbor, MI (United States); Lawrence, David M. [National Center for Atmospheric Research, Boulder, CO (United States); Riley, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Randerson, James T. [Univ. of California, Irvine, CA (United States); Ahlström, Anders [Stanford Univ., Stanford, CA (United States); Lund Univ., Lund (Sweden); Abramowitz, Gabriel [Univ. of New South Wales, Sydney, NSW (Australia); Baldocchi, Dennis D. [Univ. of California, Berkeley, CA (United States); Best, Martin J. [UK Met Office, Exeter, EX1 3PB (United Kingdom); Bond-Lamberty, Benjamin [Joint Global Change Research Institute, Pacific Northwest National Lab. (PNNL), College Park, MD (United States); De Kauwe, Martin G. [Macquarie Univ., NSW (Australia); Denning, A. Scott [Colorado State Univ., Fort Collins, CO (United States); Desai, Ankur R. [Univ. of Wisconsin, Madison, WI (United States); Eyring, Veronika [Deutsches Zentrum fuer Luft- und Raumfahrt (DLR), Oberpfaffenhofen (Germany); Fisher, Joshua B. [California Inst. of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab.; Fisher, Rosie A. [National Center for Atmospheric Research, Boulder, CO (United States); Gleckler, Peter J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Huang, Maoyi [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hugelius, Gustaf [Stockholm Univ. (Sweden); Jain, Atul K. [Univ. of Illinois, Urbana, IL (United States); Kiang, Nancy Y. [NASA Goddard Institute for Space Studies, Columbia Univ., New York, NY (United States); Kim, Hyungjum [University of Tokyo, Bunkyo-ku, Tokyo (Japan); Koster, Randal D. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Kumar, Sujay V. [NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States); Li, Hongyi [Tsinghua Univ., Beijing (China). Dept. of Hydraulic Engineering; Luo, Yiqi [Univ. of Oklahoma, Norman, OK (United States); Mao, Jiafu [Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States); McDowell, Nathan G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mishra, Umakant [Argonne National Lab. (ANL), Argonne, IL (United States); Moorcroft, Paul R. [Harvard Univ., Cambridge, MA (United States); Pau, George S.H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ricciuto, Daniel M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schaefer, Kevin [Univ. of Colorado, Boulder, CO (United States). National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences; Schwalm, Christopher R. [Woods Hole Research Center, Falmouth, MA (United States); Serbin, Shawn P. [Brookhaven National Lab. (BNL), Upton, NY (United States); Shevliakova, Elena [Geophysical Fluid Dynamics Laboratory, Princeton Univ., Princeton, NJ (United States); Slater, Andrew G. [Univ. of Colorado, Boulder, CO (United States). National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences; Tang, Jinyun [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Mathew [Univ. of Edinburgh, Scotland (United Kingdom). School of GeoSciences and NERC National Centre for Earth Observation; Xia, Jianyang [Univ. of Oklahoma, Norman, OK (United States); East China Normal Univ. (ECNU), Shanghai (China). Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences; Xu, Chonggang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Joseph, Renu [US Department of Energy, Germantown, MD (United States); Koch, Dorothy [US Department of Energy, Germantown, MD (United States)

    2017-04-01

    As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.

  8. 2016 International Land Model Benchmarking (ILAMB) Workshop Report

    Science.gov (United States)

    Hoffman, Forrest M.; Koven, Charles D.; Keppel-Aleks, Gretchen; Lawrence, David M.; Riley, William J.; Randerson, James T.; Ahlstrom, Anders; Abramowitz, Gabriel; Baldocchi, Dennis D.; Best, Martin J.; hide

    2016-01-01

    As earth system models (ESMs) become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of terrestrial biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistryclimate feedbacks and ecosystem processes in these models are essential for reducing the acknowledged substantial uncertainties in 21st century climate change projections.

  9. POLCA-T simulation of OECD/NRC BWR turbine trip benchmark exercise 3 best estimate scenario TT2 test and four extreme scenarios

    International Nuclear Information System (INIS)

    Panayotov, D.

    2004-01-01

    Westinghouse transient code POLCA-T brings together the system thermal-hydraulics plant models and the 3D neutron kinetics core model. Code validation plan includes the calculations of Peach Bottom end of cycle 2 turbine trip transients and low-flow stability tests. The paper describes the objectives, method, and results of analyses performed in the final phase of OECD/NRC Peach Bottom 2 Boiling Water Reactor Turbine Trip Benchmark. Brief overview of the code features, the method of simulation, the developed 3D core model and system input deck for Peach Bottom 2 are given. The paper presents the results of benchmark exercise 3 best estimate scenario: coupled 3D core neutron kinetics with system thermal-hydraulics analyses. Performed sensitivity studies cover the SCRAM initiation, carry-under, and decay power. Obtained results including total power, steam dome, core exit, lower and upper plenum, main steam line and turbine inlet pressures showed good agreement with measured plant data Thus the POLCA-T code capabilities for correct simulation of turbine trip transients were proved The performed calculations and obtained results for extreme cases demonstrate the POLCA-T code wide range capabilities to simulate transients when scram, steam bypass, and safety and relief valves are not activated. The code is able to handle such transients even when the reactor power and pressure reach values higher than 600 % of rated power, and 10.8 MPa. (authors)

  10. Scientific Modeling and simulations

    CERN Document Server

    Diaz de la Rubia, Tomás

    2009-01-01

    Showcases the conceptual advantages of modeling which, coupled with the unprecedented computing power through simulations, allow scientists to tackle the formibable problems of our society, such as the search for hydrocarbons, understanding the structure of a virus, or the intersection between simulations and real data in extreme environments

  11. Benchmark studies of UV-vis spectra simulation for cinnamates with UV filter profile.

    Science.gov (United States)

    Garcia, Ricardo D'A; Maltarollo, Vinícius G; Honório, Káthia M; Trossini, Gustavo H G

    2015-06-01

    Skin cancer is a serious public health problem worldwide, being incident over all five continents and affecting an increasing number of people. As sunscreens are considered an important preventive measure, studies to develop better and safer sunscreens are crucial. Cinnamates are UVB filters with good efficiency and cost-benefit, therefore, their study could lead to the development of new UV filters. A benchmark to define the most suitable density functional theory (DFT) functional to predict UV-vis spectra for ethylhexyl methoxycinnamate was performed. Time-dependent DFT (TD-DFT) calculations were then carried out [B3LYP/6-311 + G(d,p) and B3P86/6-311 + G(d,p) in methanol environment] for seven cinammete derivatives implemented in the Gaussian 03 package. All DFT/TD-DFT simulations were performed after a conformational search with the Monte-Carlo method and MMFF94 force field. B3LYP and B3P86 functionals were better at reproducing closely the experimental spectra of ethylhexyl methoxycinnamate. Calculations of seven cinnamates showed a λmax of around 310 nm, corroborating literature reports. It was observed that the energy for the main electronic transition was around 3.95 eV and could be explained by electron delocalization on the aromatic ring and ester group, which is important to UV absorption. The methodology employed proved to be suitable for determination of the UV spectra of cinnamates and could be used as a tool for the development of novel UV filters.

  12. Creating a benchmark of vertical axis wind turbines in dynamic stall for validating numerical models

    DEFF Research Database (Denmark)

    Castelein, D.; Ragni, D.; Tescione, G.

    2015-01-01

    An experimental campaign using Particle Image Velocimetry (2C-PIV) technique has been conducted on a H-type Vertical Axis Wind Turbine (VAWT) to create a benchmark for validating and comparing numerical models. The turbine is operated at tip speed ratios (TSR) of 4.5 and 2, at an average chord...

  13. Structural modeling and fuzzy-logic based diagnosis of a ship propulsion benchmark

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, M.; Katebi, S.D.

    2000-01-01

    An analysis of structural model of a ship propulsion benchmark leads to identifying the subsystems with inherent redundant information. For a nonlinear part of the system, a Fuzzy logic based FD algorithm with adaptive threshold is employed. The results illustrate the applicability of structural...

  14. The Accent-protocol: a framework for benchmarking and model evaluation

    NARCIS (Netherlands)

    Builtjes, P.J.H.; Grewe, V.; Moussiopoulos, N.; Borrego, C.; Isaksen, I.S.A.; Volz-Thomas, A.

    2011-01-01

    We summarise results from a workshop on “Model Benchmarking and Quality Assurance” of the EU-Network of Excellence ACCENT, including results from other activities (e.g. COST Action 732) and publications. A formalised evaluation protocol is presented, i.e. a generic formalism describing the procedure

  15. Developing of Indicators of an E-Learning Benchmarking Model for Higher Education Institutions

    Science.gov (United States)

    Sae-Khow, Jirasak

    2014-01-01

    This study was the development of e-learning indicators used as an e-learning benchmarking model for higher education institutes. Specifically, it aimed to: 1) synthesize the e-learning indicators; 2) examine content validity by specialists; and 3) explore appropriateness of the e-learning indicators. Review of related literature included…

  16. An Analysis of Academic Research Libraries Assessment Data: A Look at Professional Models and Benchmarking Data

    Science.gov (United States)

    Lewin, Heather S.; Passonneau, Sarah M.

    2012-01-01

    This research provides the first review of publicly available assessment information found on Association of Research Libraries (ARL) members' websites. After providing an overarching review of benchmarking assessment data, and of professionally recommended assessment models, this paper examines if libraries contextualized their assessment…

  17. Scale resolved simulations of the OECD/NEA–Vattenfall T-junction benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Höhne, Thomas, E-mail: t.hoehne@hzdr.de

    2014-04-01

    Mixing of fluids in T-junction geometries is of significant interest for nuclear safety research. The most prominent example is the thermal striping phenomena in piping T-junctions, where hot and cold streams join and turbulently mix, however not completely or not immediately at the T-junction. This result in significant temperature fluctuations near the piping wall, either at the side of the secondary pipe branch or at the opposite side of the main branch pipe. The wall temperature fluctuation can cause cyclical thermal stresses and subsequently fatigue cracking of the wall. Thermal mixing in a T-junction has been studied for validation of CFD-calculations. A T-junction thermal mixing test was carried out at the Älvkarleby Laboratory of Vattenfall Research and Development (VRD) in Sweden. Data from this test have been reserved specifically for a OECD CFD benchmark exercise. The computational results show that RANS fail to predict a realistic mixing between the fluids. The results were significantly better with scale-resolving methods such as LES, showing fairly good predictions of the velocity field and mean temperatures. The calculation predicts also similar fluctuations and frequencies observed in the model test.

  18. Benchmarking and validation of a Geant4-SHADOW Monte Carlo simulation for dose calculations in microbeam radiation therapy.

    Science.gov (United States)

    Cornelius, Iwan; Guatelli, Susanna; Fournier, Pauline; Crosbie, Jeffrey C; Sanchez Del Rio, Manuel; Bräuer-Krisch, Elke; Rosenfeld, Anatoly; Lerch, Michael

    2014-05-01

    Microbeam radiation therapy (MRT) is a synchrotron-based radiotherapy modality that uses high-intensity beams of spatially fractionated radiation to treat tumours. The rapid evolution of MRT towards clinical trials demands accurate treatment planning systems (TPS), as well as independent tools for the verification of TPS calculated dose distributions in order to ensure patient safety and treatment efficacy. Monte Carlo computer simulation represents the most accurate method of dose calculation in patient geometries and is best suited for the purpose of TPS verification. A Monte Carlo model of the ID17 biomedical beamline at the European Synchrotron Radiation Facility has been developed, including recent modifications, using the Geant4 Monte Carlo toolkit interfaced with the SHADOW X-ray optics and ray-tracing libraries. The code was benchmarked by simulating dose profiles in water-equivalent phantoms subject to irradiation by broad-beam (without spatial fractionation) and microbeam (with spatial fractionation) fields, and comparing against those calculated with a previous model of the beamline developed using the PENELOPE code. Validation against additional experimental dose profiles in water-equivalent phantoms subject to broad-beam irradiation was also performed. Good agreement between codes was observed, with the exception of out-of-field doses and toward the field edge for larger field sizes. Microbeam results showed good agreement between both codes and experimental results within uncertainties. Results of the experimental validation showed agreement for different beamline configurations. The asymmetry in the out-of-field dose profiles due to polarization effects was also investigated, yielding important information for the treatment planning process in MRT. This work represents an important step in the development of a Monte Carlo-based independent verification tool for treatment planning in MRT.

  19. Computer Modeling and Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Pronskikh, V. S. [Fermilab

    2014-05-09

    Verification and validation of computer codes and models used in simulation are two aspects of the scientific practice of high importance and have recently been discussed by philosophers of science. While verification is predominantly associated with the correctness of the way a model is represented by a computer code or algorithm, validation more often refers to model’s relation to the real world and its intended use. It has been argued that because complex simulations are generally not transparent to a practitioner, the Duhem problem can arise for verification and validation due to their entanglement; such an entanglement makes it impossible to distinguish whether a coding error or model’s general inadequacy to its target should be blamed in the case of the model failure. I argue that in order to disentangle verification and validation, a clear distinction between computer modeling (construction of mathematical computer models of elementary processes) and simulation (construction of models of composite objects and processes by means of numerical experimenting with them) needs to be made. Holding on to that distinction, I propose to relate verification (based on theoretical strategies such as inferences) to modeling and validation, which shares the common epistemology with experimentation, to simulation. To explain reasons of their intermittent entanglement I propose a weberian ideal-typical model of modeling and simulation as roles in practice. I suggest an approach to alleviate the Duhem problem for verification and validation generally applicable in practice and based on differences in epistemic strategies and scopes

  20. Automated Simulation Model Generation

    NARCIS (Netherlands)

    Huang, Y.

    2013-01-01

    One of today's challenges in the field of modeling and simulation is to model increasingly larger and more complex systems. Complex models take long to develop and incur high costs. With the advances in data collection technologies and more popular use of computer-aided systems, more data has become

  1. DEVELOPING A MODEL TO ENHANCE LABOR PRODUCTIVITY USING BRIDGE CONSTRUCTION BENCHMARK DATA

    Directory of Open Access Journals (Sweden)

    Seonghoon Kim

    2013-07-01

    Full Text Available The Labor Working Status Monitoring (LWSM Model that incorporates the WRITE and the industry benchmark data was developed through the five steps to enhance labor producitivty in bridge construction operations. The first step of the development process was to conduct a literature review, followed by the second step which was to develop the WRITE. During the development, the authors identified the necessary hardware and software for the WRITE and outlined a schematic to show the connection of major hardware components. The third step was to develop the LWSM Model for monitoring the on-site construction labor working status by comparing data from the WRITE with the industry benchmark data. A survey methodology was used to acquire industry benchmark data from bridge construction experts. The fourth step was to demonstrate the implementation of the LWSM Model at a bridge construction site. During this phase, labor working status data collected using the WRITE was compared with the benchmark data to form the basis for the project managers and engineers to make efficiency improvement decisions. Finally, research findings and recommendations for future research were outlined. The success of this research made several contributions to the advancement of bridge construction. First, it advances the application of wireless technology in construction management. Second, it provides an advanced technology for project managers and engineers to share labor working status information among project participants. Finally, using the developed technology, project managers and engineers can quickly identify labor efficiency problems and take action to address these problems.

  2. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of bench-marking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  3. Regulatory Benchmarking

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    2017-01-01

    Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators. The appli......Benchmarking methods, and in particular Data Envelopment Analysis (DEA), have become well-established and informative tools for economic regulation. DEA is now routinely used by European regulators to set reasonable revenue caps for energy transmission and distribution system operators....... The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  4. An integrated control-oriented modelling for HVAC performance benchmarking

    NARCIS (Netherlands)

    Satyavada, Harish; Baldi, S.

    2016-01-01

    Energy efficiency in building heating, ventilating and air conditioning (HVAC) equipment requires the development of accurate models for testing HVAC control strategies and corresponding energy consumption. In order to make the HVAC control synthesis computationally affordable, such

  5. Example Plant Model for an International Benchmark Study on DI and C PSA

    International Nuclear Information System (INIS)

    Shin, Sung Min; Park, Jinkyun; Jang, Wondea; Kang, Hyun Gook

    2016-01-01

    In this context the risk quantification due to these digitalized safety systems became more important. Although there are many challenges to address about this issue, many countries agreed with the necessity of research on reliability quantification of DI and C system. Based on the agreement of several countries, one of internal research association is planning a benchmark study on this issue by sharing an example digitalized plant model and let each participating member develop its own probabilistic safety assessment (PSA) model of digital I and C systems. Although the DI and C systems are being applied to NPPs, of which modeling method to quantify its reliability still ambiguous. Therefore, an internal research association is planning a benchmark study to address this issue by sharing an example digitalized plant model and let each member develop their own PSA model for DI and C systems

  6. Benchmarking GW against exact diagonalization for semiempirical models

    DEFF Research Database (Denmark)

    Kaasbjerg, Kristen; Thygesen, Kristian Sommer

    2010-01-01

    We calculate ground-state total energies and single-particle excitation energies of seven pi-conjugated molecules described with the semiempirical Pariser-Parr-Pople model using self-consistent many-body perturbation theory at the GW level and exact diagonalization. For the total energies GW capt...... (Hubbard models) where correlation effects dominate over screening/relaxation effects. Finally we illustrate the important role of the derivative discontinuity of the true exchange-correlation functional by computing the exact Kohn-Sham levels of benzene....

  7. AEGIS geologic simulation model

    International Nuclear Information System (INIS)

    Foley, M.G.

    1982-01-01

    The Geologic Simulation Model (GSM) is used by the AEGIS (Assessment of Effectiveness of Geologic Isolation Systems) program at the Pacific Northwest Laboratory to simulate the dynamic geology and hydrology of a geologic nuclear waste repository site over a million-year period following repository closure. The GSM helps to organize geologic/hydrologic data; to focus attention on active natural processes by requiring their simulation; and, through interactive simulation and calibration, to reduce subjective evaluations of the geologic system. During each computer run, the GSM produces a million-year geologic history that is possible for the region and the repository site. In addition, the GSM records in permanent history files everything that occurred during that time span. Statistical analyses of data in the history files of several hundred simulations are used to classify typical evolutionary paths, to establish the probabilities associated with deviations from the typical paths, and to determine which types of perturbations of the geologic/hydrologic system, if any, are most likely to occur. These simulations will be evaluated by geologists familiar with the repository region to determine validity of the results. Perturbed systems that are determined to be the most realistic, within whatever probability limits are established, will be used for the analyses that involve radionuclide transport and dose models. The GSM is designed to be continuously refined and updated. Simulation models are site specific, and, although the submodels may have limited general applicability, the input data equirements necessitate detailed characterization of each site before application

  8. Modeling E-learning quality assurance benchmarking in higher education

    NARCIS (Netherlands)

    Alsaif, Fatimah; Clementking, Arockisamy

    2014-01-01

    Online education programs have been growing rapidly. While it is somehow difficult to specifically quantify quality, many recommendations have been suggested to specify and demonstrate quality of online education touching on common areas of program enhancement and administration. To design a model

  9. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    Science.gov (United States)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  10. Models of asthma: density-equalizing mapping and output benchmarking

    Directory of Open Access Journals (Sweden)

    Fischer Tanja C

    2008-02-01

    Full Text Available Abstract Despite the large amount of experimental studies already conducted on bronchial asthma, further insights into the molecular basics of the disease are required to establish new therapeutic approaches. As a basis for this research different animal models of asthma have been developed in the past years. However, precise bibliometric data on the use of different models do not exist so far. Therefore the present study was conducted to establish a data base of the existing experimental approaches. Density-equalizing algorithms were used and data was retrieved from a Thomson Institute for Scientific Information database. During the period from 1900 to 2006 a number of 3489 filed items were connected to animal models of asthma, the first being published in the year 1968. The studies were published by 52 countries with the US, Japan and the UK being the most productive suppliers, participating in 55.8% of all published items. Analyzing the average citation per item as an indicator for research quality Switzerland ranked first (30.54/item and New Zealand ranked second for countries with more than 10 published studies. The 10 most productive journals included 4 with a main focus allergy and immunology and 4 with a main focus on the respiratory system. Two journals focussed on pharmacology or pharmacy. In all assigned subject categories examined for a relation to animal models of asthma, immunology ranked first. Assessing numbers of published items in relation to animal species it was found that mice were the preferred species followed by guinea pigs. In summary it can be concluded from density-equalizing calculations that the use of animal models of asthma is restricted to a relatively small number of countries. There are also differences in the use of species. These differences are based on variations in the research focus as assessed by subject category analysis.

  11. Development and Experimental Benchmark of Simulations to Predict Used Nuclear Fuel Cladding Temperatures during Drying and Transfer Operations

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Miles [Univ. of Nevada, Reno, NV (United States)

    2017-03-31

    Radial hydride formation in high-burnup used fuel cladding has the potential to radically reduce its ductility and suitability for long-term storage and eventual transport. To avoid this formation, the maximum post-reactor temperature must remain sufficiently low to limit the cladding hoop stress, and so that hydrogen from the existing circumferential hydrides will not dissolve and become available to re-precipitate into radial hydrides under the slow cooling conditions during drying, transfer and early dry-cask storage. The objective of this research is to develop and experimentallybenchmark computational fluid dynamics simulations of heat transfer in post-pool-storage drying operations, when high-burnup fuel cladding is likely to experience its highest temperature. These benchmarked tools can play a key role in evaluating dry cask storage systems for extended storage of high-burnup fuels and post-storage transportation, including fuel retrievability. The benchmarked tools will be used to aid the design of efficient drying processes, as well as estimate variations of surface temperatures as a means of inferring helium integrity inside the canister or cask. This work will be conducted effectively because the principal investigator has experience developing these types of simulations, and has constructed a test facility that can be used to benchmark them.

  12. Testing of the PELSHIE shielding code using Benchmark problems and other special shielding models

    International Nuclear Information System (INIS)

    Language, A.E.; Sartori, D.E.; De Beer, G.P.

    1981-08-01

    The PELSHIE shielding code for gamma rays from point and extended sources was written in 1971 and a revised version was published in October 1979. At Pelindaba the program is used extensively due to its flexibility and ease of use for a wide range of problems. The testing of PELSHIE results with the results of a range of models and so-called Benchmark problems is desirable to determine possible weaknesses in PELSHIE. Benchmark problems, experimental data, and shielding models, some of which were resolved by the discrete-ordinates method with the ANISN and DOT 3.5 codes, were used for the efficiency test. The description of the models followed the pattern of a classical shielding problem. After the intercomparison with six different models, the usefulness of the PELSHIE code was quantitatively determined [af

  13. Validation of simulation models

    DEFF Research Database (Denmark)

    Rehman, Muniza; Pedersen, Stig Andur

    2012-01-01

    In philosophy of science, the interest for computational models and simulations has increased heavily during the past decades. Different positions regarding the validity of models have emerged but the views have not succeeded in capturing the diversity of validation methods. The wide variety...

  14. DECOVALEX I - Bench-Mark Test 3: Thermo-hydro-mechanical modelling

    International Nuclear Information System (INIS)

    Israelsson, J.

    1995-12-01

    The bench-mark test concerns the excavation of a tunnel, located 500 m below the ground surface, and the establishment of mechanical equilibrium and steady-state fluid flow. Following this, a thermal heating due to the nuclear waste, stored in a borehole below the tunnel, was simulated. The results are reported at (1) 30 days after tunnel excavation, (2) steady state, (3) one year after thermal loading, and (4) at the time of maximum temperature. The problem specification included the excavation and waste geometry, materials properties for intact rock and joints, location of more than 6500 joints observed in the 50 by 50 m area, and calculated hydraulic conductivities. However, due to the large number of joints and the lack of dominating orientations, it was decided to treat the problem as a continuum using the computer code FLAC. The problem was modeled using a vertical symmetry plane through the tunnel and the borehole. Flow equilibrium was obtained approx. 40 days after the opening of the tunnel. Since the hydraulic conductivity was set to be stress dependent, a noticeable difference in the horizontal and vertical conductivity and flow was observed. After 40 days, an oedometer-type consolidation of the model was observed. Approx. 4 years after the initiation of the heat source, a maximum temperature of 171 C was obtained. The stress-dependent hydraulic conductivity and the temperature-dependent dynamic viscosity caused minor changes to the flow pattern. The specified mechanical boundary conditions imply that the tunnel is part of a system of parallel tunnels. However, the fixed temperature at the top boundary maintains the temperature below the temperature anticipated for an equivalent repository. The combination of mechanical and hydraulic boundary conditions cause the model to behave like an oedometer test in which the consolidation rate goes asymptotically to zero. 17 refs, 55 figs, 22 tabs

  15. Simulation of the OECD Main-Steam-Line-Break Benchmark Exercise 3 Using the Coupled RELAP5/PANTHER Codes

    International Nuclear Information System (INIS)

    Schneidesch, Christophe R.; Zhang Jinzhao

    2004-01-01

    The RELAP5 best-estimate thermal-hydraulic system code has been coupled with the PANTHER three-dimensional neutron kinetics code via the TALINK dynamic data exchange control and processing tool. The coupled RELAP5/PANTHER code package has been qualified and will be used at Tractebel Engineering (TE) for analyzing asymmetric pressurized water reactor (PWR) accidents with strong core-system interactions. The Organization for Economic Cooperation and Development/U.S. Nuclear Regulatory Commission PWR main-steam-line-break benchmark problem was analyzed as part of the qualification efforts to demonstrate the capability of the coupled code package of simulating such transients. This paper reports the main results of TE's contribution to the benchmark Exercise 3

  16. Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) Benchmark Phase II: Identification of Influential Parameters

    International Nuclear Information System (INIS)

    Kovtonyuk, A.; Petruzzi, A.; D'Auria, F.

    2015-01-01

    The objective of the Post-BEMUSE Reflood Model Input Uncertainty Methods (PREMIUM) benchmark is to progress on the issue of the quantification of the uncertainty of the physical models in system thermal-hydraulic codes by considering a concrete case: the physical models involved in the prediction of core reflooding. The PREMIUM benchmark consists of five phases. This report presents the results of Phase II dedicated to the identification of the uncertain code parameters associated with physical models used in the simulation of reflooding conditions. This identification is made on the basis of the Test 216 of the FEBA/SEFLEX programme according to the following steps: - identification of influential phenomena; - identification of the associated physical models and parameters, depending on the used code; - quantification of the variation range of identified input parameters through a series of sensitivity calculations. A procedure for the identification of potentially influential code input parameters has been set up in the Specifications of Phase II of PREMIUM benchmark. A set of quantitative criteria has been as well proposed for the identification of influential IP and their respective variation range. Thirteen participating organisations, using 8 different codes (7 system thermal-hydraulic codes and 1 sub-channel module of a system thermal-hydraulic code) submitted Phase II results. The base case calculations show spread in predicted cladding temperatures and quench front propagation that has been characterized. All the participants, except one, predict a too fast quench front progression. Besides, the cladding temperature time trends obtained by almost all the participants show oscillatory behaviour which may have numeric origins. Adopted criteria for identification of influential input parameters differ between the participants: some organisations used the set of criteria proposed in Specifications 'as is', some modified the quantitative thresholds

  17. Benchmarking Measures of Network Controllability on Canonical Graph Models

    Science.gov (United States)

    Wu-Yan, Elena; Betzel, Richard F.; Tang, Evelyn; Gu, Shi; Pasqualetti, Fabio; Bassett, Danielle S.

    2018-03-01

    The control of networked dynamical systems opens the possibility for new discoveries and therapies in systems biology and neuroscience. Recent theoretical advances provide candidate mechanisms by which a system can be driven from one pre-specified state to another, and computational approaches provide tools to test those mechanisms in real-world systems. Despite already having been applied to study network systems in biology and neuroscience, the practical performance of these tools and associated measures on simple networks with pre-specified structure has yet to be assessed. Here, we study the behavior of four control metrics (global, average, modal, and boundary controllability) on eight canonical graphs (including Erdős-Rényi, regular, small-world, random geometric, Barábasi-Albert preferential attachment, and several modular networks) with different edge weighting schemes (Gaussian, power-law, and two nonparametric distributions from brain networks, as examples of real-world systems). We observe that differences in global controllability across graph models are more salient when edge weight distributions are heavy-tailed as opposed to normal. In contrast, differences in average, modal, and boundary controllability across graph models (as well as across nodes in the graph) are more salient when edge weight distributions are less heavy-tailed. Across graph models and edge weighting schemes, average and modal controllability are negatively correlated with one another across nodes; yet, across graph instances, the relation between average and modal controllability can be positive, negative, or nonsignificant. Collectively, these findings demonstrate that controllability statistics (and their relations) differ across graphs with different topologies and that these differences can be muted or accentuated by differences in the edge weight distributions. More generally, our numerical studies motivate future analytical efforts to better understand the mathematical

  18. GEANT4 simulations of the n{sub T}OF spallation source and their benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Lo Meo, S. [Research Centre ' ' Ezio Clementel' ' , ENEA, Bologna (Italy); Section of Bologna, INFN, Bologna (Italy); Cortes-Giraldo, M.A.; Lerendegui-Marco, J.; Guerrero, C.; Quesada, J.M. [Universidad de Sevilla, Facultad de Fisica, Sevilla (Spain); Massimi, C.; Vannini, G. [Section of Bologna, INFN, Bologna (Italy); University of Bologna, Physics and Astronomy Dept. ' ' Alma Mater Studiorum' ' , Bologna (Italy); Barbagallo, M.; Colonna, N. [INFN, Section of Bari, Bari (Italy); Mancusi, D. [CEA-Saclay, DEN, DM2S, SERMA, LTSD, Gif-sur-Yvette CEDEX (France); Mingrone, F. [Section of Bologna, INFN, Bologna (Italy); Sabate-Gilarte, M. [Universidad de Sevilla, Facultad de Fisica, Sevilla (Spain); European Organization for Nuclear Research (CERN), Geneva (Switzerland); Vlachoudis, V. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Collaboration: The n_TOF Collaboration

    2015-12-15

    Neutron production and transport in the spallation target of the n{sub T}OF facility at CERN has been simulated with GEANT4. The results obtained with different models of high-energy nucleon-nucleus interaction have been compared with the measured characteristics of the neutron beam, in particular the flux and its dependence on neutron energy, measured in the first experimental area. The best agreement at present, within 20% for the absolute value of the flux, and within few percent for the energy dependence in the whole energy range from thermal to 1 GeV, is obtained with the INCL++ model coupled with the GEANT4 native de-excitation model. All other available models overestimate by a larger factor, of up to 70%, the n{sub T}OF neutron flux. The simulations are also able to accurately reproduce the neutron beam energy resolution function, which is essentially determined by the moderation time inside the target/moderator assembly. The results here reported provide confidence on the use of GEANT4 for simulations of spallation neutron sources. (orig.)

  19. Benchmarking of computer codes and approaches for modeling exposure scenarios

    International Nuclear Information System (INIS)

    Seitz, R.R.; Rittmann, P.D.; Wood, M.I.; Cook, J.R.

    1994-08-01

    The US Department of Energy Headquarters established a performance assessment task team (PATT) to integrate the activities of DOE sites that are preparing performance assessments for the disposal of newly generated low-level waste. The PATT chartered a subteam with the task of comparing computer codes and exposure scenarios used for dose calculations in performance assessments. This report documents the efforts of the subteam. Computer codes considered in the comparison include GENII, PATHRAE-EPA, MICROSHIELD, and ISOSHLD. Calculations were also conducted using spreadsheets to provide a comparison at the most fundamental level. Calculations and modeling approaches are compared for unit radionuclide concentrations in water and soil for the ingestion, inhalation, and external dose pathways. Over 30 tables comparing inputs and results are provided

  20. Interactions of model biomolecules. Benchmark CC calculations within MOLCAS

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Miroslav [Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, Institute of Materials Science, Bottova 25, SK-917 24 Trnava, Slovakia and Department of Physical and Theoretical Chemistry, Faculty of Natural Scie (Slovakia); Pitoňák, Michal; Neogrády, Pavel; Dedíková, Pavlína [Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University, Mlynská dolina, SK-842 15 Bratislava (Slovakia); Hobza, Pavel [Institute of Organic Chemistry and Biochemistry and Center for Complex Molecular Systems and biomolecules, Academy of Sciences of the Czech Republic, Prague (Czech Republic)

    2015-01-22

    We present results using the OVOS approach (Optimized Virtual Orbitals Space) aimed at enhancing the effectiveness of the Coupled Cluster calculations. This approach allows to reduce the total computer time required for large-scale CCSD(T) calculations about ten times when the original full virtual space is reduced to about 50% of its original size without affecting the accuracy. The method is implemented in the MOLCAS computer program. When combined with the Cholesky decomposition of the two-electron integrals and suitable parallelization it allows calculations which were formerly prohibitively too demanding. We focused ourselves to accurate calculations of the hydrogen bonded and the stacking interactions of the model biomolecules. Interaction energies of the formaldehyde, formamide, benzene, and uracil dimers and the three-body contributions in the cytosine – guanine tetramer are presented. Other applications, as the electron affinity of the uracil affected by solvation are also shortly mentioned.

  1. Creation of a simplified benchmark model for the neptunium sphere experiment

    International Nuclear Information System (INIS)

    Mosteller, Russell D.; Loaiza, David J.; Sanchez, Rene G.

    2004-01-01

    Although neptunium is produced in significant amounts by nuclear power reactors, its critical mass is not well known. In addition, sizeable uncertainties exist for its cross sections. As an important step toward resolution of these issues, a critical experiment was conducted in 2002 at the Los Alamos Critical Experiments Facility. In the experiment, a 6-kg sphere of 237 Np was surrounded by nested hemispherical shells of highly enriched uranium. The shells were required in order to reach a critical condition. Subsequently, a detailed model of the experiment was developed. This model faithfully reproduces the components of the experiment, but it is geometrically complex. Furthermore, the isotopics analysis upon which that model is based omits nearly 1 % of the mass of the sphere. A simplified benchmark model has been constructed that retains all of the neutronically important aspects of the detailed model and substantially reduces the computer resources required for the calculation. The reactivity impact, of each of the simplifications is quantified, including the effect of the missing mass. A complete set of specifications for the benchmark is included in the full paper. Both the detailed and simplified benchmark models underpredict k eff by more than 1% Δk. This discrepancy supports the suspicion that better cross sections are needed for 237 Np.

  2. A Review of Flood Loss Models as Basis for Harmonization and Benchmarking.

    Directory of Open Access Journals (Sweden)

    Tina Gerl

    Full Text Available Risk-based approaches have been increasingly accepted and operationalized in flood risk management during recent decades. For instance, commercial flood risk models are used by the insurance industry to assess potential losses, establish the pricing of policies and determine reinsurance needs. Despite considerable progress in the development of loss estimation tools since the 1980s, loss estimates still reflect high uncertainties and disparities that often lead to questioning their quality. This requires an assessment of the validity and robustness of loss models as it affects prioritization and investment decision in flood risk management as well as regulatory requirements and business decisions in the insurance industry. Hence, more effort is needed to quantify uncertainties and undertake validations. Due to a lack of detailed and reliable flood loss data, first order validations are difficult to accomplish, so that model comparisons in terms of benchmarking are essential. It is checked if the models are informed by existing data and knowledge and if the assumptions made in the models are aligned with the existing knowledge. When this alignment is confirmed through validation or benchmarking exercises, the user gains confidence in the models. Before these benchmarking exercises are feasible, however, a cohesive survey of existing knowledge needs to be undertaken. With that aim, this work presents a review of flood loss-or flood vulnerability-relationships collected from the public domain and some professional sources. Our survey analyses 61 sources consisting of publications or software packages, of which 47 are reviewed in detail. This exercise results in probably the most complete review of flood loss models to date containing nearly a thousand vulnerability functions. These functions are highly heterogeneous and only about half of the loss models are found to be accompanied by explicit validation at the time of their proposal. This paper

  3. A Review of Flood Loss Models as Basis for Harmonization and Benchmarking.

    Science.gov (United States)

    Gerl, Tina; Kreibich, Heidi; Franco, Guillermo; Marechal, David; Schröter, Kai

    2016-01-01

    Risk-based approaches have been increasingly accepted and operationalized in flood risk management during recent decades. For instance, commercial flood risk models are used by the insurance industry to assess potential losses, establish the pricing of policies and determine reinsurance needs. Despite considerable progress in the development of loss estimation tools since the 1980s, loss estimates still reflect high uncertainties and disparities that often lead to questioning their quality. This requires an assessment of the validity and robustness of loss models as it affects prioritization and investment decision in flood risk management as well as regulatory requirements and business decisions in the insurance industry. Hence, more effort is needed to quantify uncertainties and undertake validations. Due to a lack of detailed and reliable flood loss data, first order validations are difficult to accomplish, so that model comparisons in terms of benchmarking are essential. It is checked if the models are informed by existing data and knowledge and if the assumptions made in the models are aligned with the existing knowledge. When this alignment is confirmed through validation or benchmarking exercises, the user gains confidence in the models. Before these benchmarking exercises are feasible, however, a cohesive survey of existing knowledge needs to be undertaken. With that aim, this work presents a review of flood loss-or flood vulnerability-relationships collected from the public domain and some professional sources. Our survey analyses 61 sources consisting of publications or software packages, of which 47 are reviewed in detail. This exercise results in probably the most complete review of flood loss models to date containing nearly a thousand vulnerability functions. These functions are highly heterogeneous and only about half of the loss models are found to be accompanied by explicit validation at the time of their proposal. This paper exemplarily presents

  4. A Review of Flood Loss Models as Basis for Harmonization and Benchmarking

    Science.gov (United States)

    Kreibich, Heidi; Franco, Guillermo; Marechal, David

    2016-01-01

    Risk-based approaches have been increasingly accepted and operationalized in flood risk management during recent decades. For instance, commercial flood risk models are used by the insurance industry to assess potential losses, establish the pricing of policies and determine reinsurance needs. Despite considerable progress in the development of loss estimation tools since the 1980s, loss estimates still reflect high uncertainties and disparities that often lead to questioning their quality. This requires an assessment of the validity and robustness of loss models as it affects prioritization and investment decision in flood risk management as well as regulatory requirements and business decisions in the insurance industry. Hence, more effort is needed to quantify uncertainties and undertake validations. Due to a lack of detailed and reliable flood loss data, first order validations are difficult to accomplish, so that model comparisons in terms of benchmarking are essential. It is checked if the models are informed by existing data and knowledge and if the assumptions made in the models are aligned with the existing knowledge. When this alignment is confirmed through validation or benchmarking exercises, the user gains confidence in the models. Before these benchmarking exercises are feasible, however, a cohesive survey of existing knowledge needs to be undertaken. With that aim, this work presents a review of flood loss–or flood vulnerability–relationships collected from the public domain and some professional sources. Our survey analyses 61 sources consisting of publications or software packages, of which 47 are reviewed in detail. This exercise results in probably the most complete review of flood loss models to date containing nearly a thousand vulnerability functions. These functions are highly heterogeneous and only about half of the loss models are found to be accompanied by explicit validation at the time of their proposal. This paper exemplarily

  5. Algorithm comparison and benchmarking using a parallel spectra transform shallow water model

    Energy Technology Data Exchange (ETDEWEB)

    Worley, P.H. [Oak Ridge National Lab., TN (United States); Foster, I.T.; Toonen, B. [Argonne National Lab., IL (United States)

    1995-04-01

    In recent years, a number of computer vendors have produced supercomputers based on a massively parallel processing (MPP) architecture. These computers have been shown to be competitive in performance with conventional vector supercomputers for some applications. As spectral weather and climate models are heavy users of vector supercomputers, it is interesting to determine how these models perform on MPPS, and which MPPs are best suited to the execution of spectral models. The benchmarking of MPPs is complicated by the fact that different algorithms may be more efficient on different architectures. Hence, a comprehensive benchmarking effort must answer two related questions: which algorithm is most efficient on each computer and how do the most efficient algorithms compare on different computers. In general, these are difficult questions to answer because of the high cost associated with implementing and evaluating a range of different parallel algorithms on each MPP platform.

  6. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    International Nuclear Information System (INIS)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q.

    2015-01-01

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  7. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q. [Department of Radiation Oncology, Duke University Medical Center Durham, North Carolina 27710 (United States)

    2015-01-15

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery

  8. Quality assurance for online adapted treatment plans: benchmarking and delivery monitoring simulation.

    Science.gov (United States)

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q

    2015-01-01

    An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were

  9. Visual Attention Modeling for Stereoscopic Video: A Benchmark and Computational Model.

    Science.gov (United States)

    Fang, Yuming; Zhang, Chi; Li, Jing; Lei, Jianjun; Perreira Da Silva, Matthieu; Le Callet, Patrick

    2017-10-01

    In this paper, we investigate the visual attention modeling for stereoscopic video from the following two aspects. First, we build one large-scale eye tracking database as the benchmark of visual attention modeling for stereoscopic video. The database includes 47 video sequences and their corresponding eye fixation data. Second, we propose a novel computational model of visual attention for stereoscopic video based on Gestalt theory. In the proposed model, we extract the low-level features, including luminance, color, texture, and depth, from discrete cosine transform coefficients, which are used to calculate feature contrast for the spatial saliency computation. The temporal saliency is calculated by the motion contrast from the planar and depth motion features in the stereoscopic video sequences. The final saliency is estimated by fusing the spatial and temporal saliency with uncertainty weighting, which is estimated by the laws of proximity, continuity, and common fate in Gestalt theory. Experimental results show that the proposed method outperforms the state-of-the-art stereoscopic video saliency detection models on our built large-scale eye tracking database and one other database (DML-ITRACK-3D).

  10. Model-Based Engineering and Manufacturing CAD/CAM Benchmark.; FINAL

    International Nuclear Information System (INIS)

    Domm, T.C.; Underwood, R.S.

    1999-01-01

    The Benchmark Project was created from a desire to identify best practices and improve the overall efficiency and performance of the Y-12 Plant's systems and personnel supporting the manufacturing mission. The mission of the benchmark team was to search out industry leaders in manufacturing and evaluate their engineering practices and processes to determine direction and focus for Y-12 modernization efforts. The companies visited included several large established companies and a new, small, high-tech machining firm. As a result of this effort, changes are recommended that will enable Y-12 to become a more modern, responsive, cost-effective manufacturing facility capable of supporting the needs of the Nuclear Weapons Complex (NWC) into the 21st century. The benchmark team identified key areas of interest, both focused and general. The focus areas included Human Resources, Information Management, Manufacturing Software Tools, and Standards/Policies and Practices. Areas of general interest included Infrastructure, Computer Platforms and Networking, and Organizational Structure. The results of this benchmark showed that all companies are moving in the direction of model-based engineering and manufacturing. There was evidence that many companies are trying to grasp how to manage current and legacy data. In terms of engineering design software tools, the companies contacted were somewhere between 3-D solid modeling and surfaced wire-frame models. The manufacturing computer tools were varied, with most companies using more than one software product to generate machining data and none currently performing model-based manufacturing (MBM) from a common model. The majority of companies were closer to identifying or using a single computer-aided design (CAD) system than a single computer-aided manufacturing (CAM) system. The Internet was a technology that all companies were looking to either transport information more easily throughout the corporation or as a conduit for

  11. Assessing reactor physics codes capabilities to simulate fast reactors on the example of the BN-600 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Vladimir [Scientific and Engineering Centre for Nuclear and Radiation Safety (SES NRS), Moscow (Russian Federation); Bousquet, Jeremy [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany)

    2016-11-15

    This work aims to assess the capabilities of reactor physics codes (initially validated for thermal reactors) to simulate fast sodium cooled reactors. The BFS-62-3A critical experiment from the BN-600 Hybrid Core Benchmark Analyses was chosen for the investigation. Monte-Carlo codes (KENO from SCALE and SERPENT 2.1.23) and the deterministic diffusion code DYN3D-MG are applied to calculate the neutronic parameters. It was found that the multiplication factor and reactivity effects calculated by KENO and SERPENT using the ENDF/B-VII.0 continuous energy library are in a good agreement with each other and with the measured benchmark values. Few-groups macroscopic cross sections, required for DYN3D-MG, were prepared in applying different methods implemented in SCALE and SERPENT. The DYN3D-MG results of a simplified benchmark show reasonable agreement with results from Monte-Carlo calculations and measured values. The former results are used to justify DYN3D-MG implementation for sodium cooled fast reactors coupled deterministic analysis.

  12. Benchmarking in a differentially heated rotating annulus experiment: Multiple equilibria in the light of laboratory experiments and simulations

    Science.gov (United States)

    Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian

    2014-05-01

    In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave

  13. Looking Past Primary Productivity: Benchmarking System Processes that Drive Ecosystem Level Responses in Models

    Science.gov (United States)

    Cowdery, E.; Dietze, M.

    2017-12-01

    As atmospheric levels of carbon dioxide levels continue to increase, it is critical that terrestrial ecosystem models can accurately predict ecological responses to the changing environment. Current predictions of net primary productivity (NPP) in response to elevated atmospheric CO2 concentration are highly variable and contain a considerable amount of uncertainty. Benchmarking model predictions against data are necessary to assess their ability to replicate observed patterns, but also to identify and evaluate the assumptions causing inter-model differences. We have implemented a novel benchmarking workflow as part of the Predictive Ecosystem Analyzer (PEcAn) that is automated, repeatable, and generalized to incorporate different sites and ecological models. Building on the recent Free-Air CO2 Enrichment Model Data Synthesis (FACE-MDS) project, we used observational data from the FACE experiments to test this flexible, extensible benchmarking approach aimed at providing repeatable tests of model process representation that can be performed quickly and frequently. Model performance assessments are often limited to traditional residual error analysis; however, this can result in a loss of critical information. Models that fail tests of relative measures of fit may still perform well under measures of absolute fit and mathematical similarity. This implies that models that are discounted as poor predictors of ecological productivity may still be capturing important patterns. Conversely, models that have been found to be good predictors of productivity may be hiding error in their sub-process that result in the right answers for the wrong reasons. Our suite of tests have not only highlighted process based sources of uncertainty in model productivity calculations, they have also quantified the patterns and scale of this error. Combining these findings with PEcAn's model sensitivity analysis and variance decomposition strengthen our ability to identify which processes

  14. Models and simulations

    International Nuclear Information System (INIS)

    Lee, M.J.; Sheppard, J.C.; Sullenberger, M.; Woodley, M.D.

    1983-09-01

    On-line mathematical models have been used successfully for computer controlled operation of SPEAR and PEP. The same model control concept is being implemented for the operation of the LINAC and for the Damping Ring, which will be part of the Stanford Linear Collider (SLC). The purpose of this paper is to describe the general relationships between models, simulations and the control system for any machine at SLAC. The work we have done on the development of the empirical model for the Damping Ring will be presented as an example

  15. PSH Transient Simulation Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-12-21

    PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.

  16. Peculiarity by Modeling of the Control Rod Movement by the Kalinin-3 Benchmark

    International Nuclear Information System (INIS)

    Nikonov, S. P.; Velkov, K.; Pautz, A.

    2010-01-01

    The paper presents an important part of the results of the OECD/NEA benchmark transient 'Switching off one main circulation pump at nominal power' analyzed as a boundary condition problem by the coupled system code ATHLET-BIPR-VVER. Some observations and comparisons with measured data for integral reactor parameters are discussed. Special attention is paid on the modeling and comparisons performed for the control rod movement and the reactor power history. (Authors)

  17. Wake modeling and simulation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Madsen Aagaard, Helge; Larsen, Torben J.

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, howev...... methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjæreborg wind farm, have been performed showing satisfactory agreement between predictions and measurements...

  18. LHC benchmark scenarios for the real Higgs singlet extension of the standard model

    International Nuclear Information System (INIS)

    Robens, Tania; Stefaniak, Tim

    2016-01-01

    We present benchmark scenarios for searches for an additional Higgs state in the real Higgs singlet extension of the Standard Model in Run 2 of the LHC. The scenarios are selected such that they fulfill all relevant current theoretical and experimental constraints, but can potentially be discovered at the current LHC run. We take into account the results presented in earlier work and update the experimental constraints from relevant LHC Higgs searches and signal rate measurements. The benchmark scenarios are given separately for the low-mass and high-mass region, i.e. the mass range where the additional Higgs state is lighter or heavier than the discovered Higgs state at around 125 GeV. They have also been presented in the framework of the LHC Higgs Cross Section Working Group. (orig.)

  19. Benchmark measurements and simulations of dose perturbations due to metallic spheres in proton beams

    International Nuclear Information System (INIS)

    Newhauser, Wayne D.; Rechner, Laura; Mirkovic, Dragan; Yepes, Pablo; Koch, Nicholas C.; Titt, Uwe; Fontenot, Jonas D.; Zhang, Rui

    2013-01-01

    Monte Carlo simulations are increasingly used for dose calculations in proton therapy due to its inherent accuracy. However, dosimetric deviations have been found using Monte Carlo code when high density materials are present in the proton beamline. The purpose of this work was to quantify the magnitude of dose perturbation caused by metal objects. We did this by comparing measurements and Monte Carlo predictions of dose perturbations caused by the presence of small metal spheres in several clinical proton therapy beams as functions of proton beam range and drift space. Monte Carlo codes MCNPX, GEANT4 and Fast Dose Calculator (FDC) were used. Generally good agreement was found between measurements and Monte Carlo predictions, with the average difference within 5% and maximum difference within 17%. The modification of multiple Coulomb scattering model in MCNPX code yielded improvement in accuracy and provided the best overall agreement with measurements. Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy beams when short drift spaces are involved. - Highlights: • We compared measurements and Monte Carlo predictions of dose perturbations caused by the metal objects in proton beams. • Different Monte Carlo codes were used, including MCNPX, GEANT4 and Fast Dose Calculator. • Good agreement was found between measurements and Monte Carlo simulations. • The modification of multiple Coulomb scattering model in MCNPX code yielded improved accuracy. • Our results confirmed that Monte Carlo codes are well suited for predicting multiple Coulomb scattering in proton therapy

  20. Benchmark Modeling of the Near-Field and Far-Field Wave Effects of Wave Energy Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rhinefrank, Kenneth E; Haller, Merrick C; Ozkan-Haller, H Tuba

    2013-01-26

    This project is an industry-led partnership between Columbia Power Technologies and Oregon State University that will perform benchmark laboratory experiments and numerical modeling of the near-field and far-field impacts of wave scattering from an array of wave energy devices. These benchmark experimental observations will help to fill a gaping hole in our present knowledge of the near-field effects of multiple, floating wave energy converters and are a critical requirement for estimating the potential far-field environmental effects of wave energy arrays. The experiments will be performed at the Hinsdale Wave Research Laboratory (Oregon State University) and will utilize an array of newly developed Buoys' that are realistic, lab-scale floating power converters. The array of Buoys will be subjected to realistic, directional wave forcing (1:33 scale) that will approximate the expected conditions (waves and water depths) to be found off the Central Oregon Coast. Experimental observations will include comprehensive in-situ wave and current measurements as well as a suite of novel optical measurements. These new optical capabilities will include imaging of the 3D wave scattering using a binocular stereo camera system, as well as 3D device motion tracking using a newly acquired LED system. These observing systems will capture the 3D motion history of individual Buoys as well as resolve the 3D scattered wave field; thus resolving the constructive and destructive wave interference patterns produced by the array at high resolution. These data combined with the device motion tracking will provide necessary information for array design in order to balance array performance with the mitigation of far-field impacts. As a benchmark data set, these data will be an important resource for testing of models for wave/buoy interactions, buoy performance, and far-field effects on wave and current patterns due to the presence of arrays. Under the proposed project we will initiate

  1. Nernst-Planck Based Description of Transport, Coulombic Interactions and Geochemical Reactions in Porous Media: Modeling Approach and Benchmark Experiments

    DEFF Research Database (Denmark)

    Rolle, Massimo; Sprocati, Riccardo; Masi, Matteo

    2018-01-01

    ‐ but also under advection‐dominated flow regimes. To accurately describe charge effects in flow‐through systems, we propose a multidimensional modeling approach based on the Nernst‐Planck formulation of diffusive/dispersive fluxes. The approach is implemented with a COMSOL‐PhreeqcRM coupling allowing us......, and high‐resolution experimental datasets. The latter include flow‐through experiments that have been carried out in this study to explore the effects of electrostatic interactions in fully three‐dimensional setups. The results of the simulations show excellent agreement for all the benchmarks problems...... the quantification and visualization of the specific contributions to the diffusive/dispersive Nernst‐Planck fluxes, including the Fickian component, the term arising from the activity coefficient gradients, and the contribution due to electromigration....

  2. Comparison of the results of the fifth dynamic AER benchmark-a benchmark for coupled thermohydraulic system/three-dimensional hexagonal kinetic core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1998-01-01

    The fifth dynamic benchmark was defined at seventh AER-Symposium, held in Hoernitz, Germany in 1997. It is the first benchmark for coupled thermohydraulic system/three-dimensional hexagonal neutron kinetic core models. In this benchmark the interaction between the components of a WWER-440 NPP with the reactor core has been investigated. The initiating event is a symmetrical break of the main steam header at the end of the first fuel cycle and hot shutdown conditions with one control rod group stucking. This break causes an overcooling of the primary circuit. During this overcooling the scram reactivity is compensated and the scrammed reactor becomes re critical. The calculation was continued until the highly-borated water from the high pressure injection system terminated the power excursion. Each participant used own best-estimate nuclear cross section data. Only the initial subcriticality at the beginning of the transient was given. Solutions were received from Kurchatov Institute Russia with the code BIPR8/ATHLET, VTT Energy Finland with HEXTRAN/SMABRE, NRI Rez Czech Republic with DYN3/ATHLET, KFKI Budapest Hungary with KIKO3D/ATHLET and from FZR Germany with the code DYN3D/ATHLET.In this paper the results are compared. Beside the comparison of global results, the behaviour of several thermohydraulic and neutron kinetic parameters is presented to discuss the revealed differences between the solutions.(Authors)

  3. Benchmarking of wind farm scale wake models in the EERA - DTOC project

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Hansen, Kurt Schaldemose; Barthelmie, R.J.

    2013-01-01

    -flow to combine wind farm (micro) and cluster (meso) scale wake models. For this purpose, a benchmark campaign is organized on the existing wind farm wake models available within the project, in order to identify which model would be the most appropriate for this coupling. A number of standardized wake cases......Designing offshore wind farms next to existing or planned wind farm clusters has recently become a common practice in the North Sea. These types of projects face unprecedented challenges in term of wind energy siting. The currently ongoing European project FP7 EERA - DTOC (Design Tool for Offshore...... wind farm Clusters) is aiming at providing a new type of model work-flow to address this issue. The wake modeling part of the EERA - DTOC project is to improve the fundamental understanding of wind turbine wakes and modeling. One of these challenges is to create a new kind of wake modeling work...

  4. Tokamak Simulation Code modeling of NSTX

    International Nuclear Information System (INIS)

    Jardin, S.C.; Kaye, S.; Menard, J.; Kessel, C.; Glasser, A.H.

    2000-01-01

    The Tokamak Simulation Code [TSC] is widely used for the design of new axisymmetric toroidal experiments. In particular, TSC was used extensively in the design of the National Spherical Torus eXperiment [NSTX]. The authors have now benchmarked TSC with initial NSTX results and find excellent agreement for plasma and vessel currents and magnetic flux loops when the experimental coil currents are used in the simulations. TSC has also been coupled with a ballooning stability code and with DCON to provide stability predictions for NSTX operation. TSC has also been used to model initial CHI experiments where a large poloidal voltage is applied to the NSTX vacuum vessel, causing a force-free current to appear in the plasma. This is a phenomenon that is similar to the plasma halo current that sometimes develops during a plasma disruption

  5. Simulation - modeling - experiment

    International Nuclear Information System (INIS)

    2004-01-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  6. Uncertainty and sensitivity analysis in reactivity-initiated accident fuel modeling: synthesis of organisation for economic co-operation and development (OECD/nuclear energy agency (NEA benchmark on reactivity-initiated accident codes phase-II

    Directory of Open Access Journals (Sweden)

    Olivier Marchand

    2018-03-01

    Full Text Available In the framework of OECD/NEA Working Group on Fuel Safety, a RIA fuel-rod-code Benchmark Phase I was organized in 2010–2013. It consisted of four experiments on highly irradiated fuel rodlets tested under different experimental conditions. This benchmark revealed the need to better understand the basic models incorporated in each code for realistic simulation of the complicated integral RIA tests with high burnup fuel rods. A second phase of the benchmark (Phase II was thus launched early in 2014, which has been organized in two complementary activities: (1 comparison of the results of different simulations on simplified cases in order to provide additional bases for understanding the differences in modelling of the concerned phenomena; (2 assessment of the uncertainty of the results. The present paper provides a summary and conclusions of the second activity of the Benchmark Phase II, which is based on the input uncertainty propagation methodology. The main conclusion is that uncertainties cannot fully explain the difference between the code predictions. Finally, based on the RIA benchmark Phase-I and Phase-II conclusions, some recommendations are made. Keywords: RIA, Codes Benchmarking, Fuel Modelling, OECD

  7. Benchmarking density functional tight binding models for barrier heights and reaction energetics of organic molecules.

    Science.gov (United States)

    Gruden, Maja; Andjeklović, Ljubica; Jissy, Akkarapattiakal Kuriappan; Stepanović, Stepan; Zlatar, Matija; Cui, Qiang; Elstner, Marcus

    2017-09-30

    Density Functional Tight Binding (DFTB) models are two to three orders of magnitude faster than ab initio and Density Functional Theory (DFT) methods and therefore are particularly attractive in applications to large molecules and condensed phase systems. To establish the applicability of DFTB models to general chemical reactions, we conduct benchmark calculations for barrier heights and reaction energetics of organic molecules using existing databases and several new ones compiled in this study. Structures for the transition states and stable species have been fully optimized at the DFTB level, making it possible to characterize the reliability of DFTB models in a more thorough fashion compared to conducting single point energy calculations as done in previous benchmark studies. The encouraging results for the diverse sets of reactions studied here suggest that DFTB models, especially the most recent third-order version (DFTB3/3OB augmented with dispersion correction), in most cases provide satisfactory description of organic chemical reactions with accuracy almost comparable to popular DFT methods with large basis sets, although larger errors are also seen for certain cases. Therefore, DFTB models can be effective for mechanistic analysis (e.g., transition state search) of large (bio)molecules, especially when coupled with single point energy calculations at higher levels of theory. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Reviews and syntheses: Field data to benchmark the carbon cycle models for tropical forests

    Science.gov (United States)

    Clark, Deborah A.; Asao, Shinichi; Fisher, Rosie; Reed, Sasha; Reich, Peter B.; Ryan, Michael G.; Wood, Tana E.; Yang, Xiaojuan

    2017-10-01

    For more accurate projections of both the global carbon (C) cycle and the changing climate, a critical current need is to improve the representation of tropical forests in Earth system models. Tropical forests exchange more C, energy, and water with the atmosphere than any other class of land ecosystems. Further, tropical-forest C cycling is likely responding to the rapid global warming, intensifying water stress, and increasing atmospheric CO2 levels. Projections of the future C balance of the tropics vary widely among global models. A current effort of the modeling community, the ILAMB (International Land Model Benchmarking) project, is to compile robust observations that can be used to improve the accuracy and realism of the land models for all major biomes. Our goal with this paper is to identify field observations of tropical-forest ecosystem C stocks and fluxes, and of their long-term trends and climatic and CO2 sensitivities, that can serve this effort. We propose criteria for reference-level field data from this biome and present a set of documented examples from old-growth lowland tropical forests. We offer these as a starting point towards the goal of a regularly updated consensus set of benchmark field observations of C cycling in tropical forests.

  9. Refinement, Validation and Benchmarking of a Model for E-Government Service Quality

    Science.gov (United States)

    Magoutas, Babis; Mentzas, Gregoris

    This paper presents the refinement and validation of a model for Quality of e-Government Services (QeGS). We built upon our previous work where a conceptualized model was identified and put focus on the confirmatory phase of the model development process, in order to come up with a valid and reliable QeGS model. The validated model, which was benchmarked with very positive results with similar models found in the literature, can be used for measuring the QeGS in a reliable and valid manner. This will form the basis for a continuous quality improvement process, unleashing the full potential of e-government services for both citizens and public administrations.

  10. Wake modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Aagaard Madsen, H.; Larsen, T.J.; Troldborg, N.

    2008-07-15

    We present a consistent, physically based theory for the wake meandering phenomenon, which we consider of crucial importance for the overall description of wind turbine loadings in wind farms. In its present version the model is confined to single wake situations. The model philosophy does, however, have the potential to include also mutual wake interaction phenomenons. The basic conjecture behind the dynamic wake meandering (DWM) model is that wake transportation in the atmospheric boundary layer is driven by the large scale lateral- and vertical turbulence components. Based on this conjecture a stochastic model of the downstream wake meandering is formulated. In addition to the kinematic formulation of the dynamics of the 'meandering frame of reference', models characterizing the mean wake deficit as well as the added wake turbulence, described in the meandering frame of reference, are an integrated part the DWM model complex. For design applications, the computational efficiency of wake deficit prediction is a key issue. A computationally low cost model is developed for this purpose. Likewise, the character of the added wake turbulence, generated by the up-stream turbine in the form of shed and trailed vorticity, has been approached by a simple semi-empirical model essentially based on an eddy viscosity philosophy. Contrary to previous attempts to model wake loading, the DWM approach opens for a unifying description in the sense that turbine power- and load aspects can be treated simultaneously. This capability is a direct and attractive consequence of the model being based on the underlying physical process, and it potentially opens for optimization of wind farm topology, of wind farm operation as well as of control strategies for the individual turbine. To establish an integrated modeling tool, the DWM methodology has been implemented in the aeroelastic code HAWC2, and example simulations of wake situations, from the small Tjaereborg wind farm, have

  11. Comprehensive Benchmark Suite for Simulation of Particle Laden Flows Using the Discrete Element Method with Performance Profiles from the Multiphase Flow with Interface eXchanges (MFiX) Code

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Peiyuan [Univ. of Colorado, Boulder, CO (United States); Brown, Timothy [Univ. of Colorado, Boulder, CO (United States); Fullmer, William D. [Univ. of Colorado, Boulder, CO (United States); Hauser, Thomas [Univ. of Colorado, Boulder, CO (United States); Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States); Grout, Ray [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sitaraman, Hariswaran [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-29

    Five benchmark problems are developed and simulated with the computational fluid dynamics and discrete element model code MFiX. The benchmark problems span dilute and dense regimes, consider statistically homogeneous and inhomogeneous (both clusters and bubbles) particle concentrations and a range of particle and fluid dynamic computational loads. Several variations of the benchmark problems are also discussed to extend the computational phase space to cover granular (particles only), bidisperse and heat transfer cases. A weak scaling analysis is performed for each benchmark problem and, in most cases, the scalability of the code appears reasonable up to approx. 103 cores. Profiling of the benchmark problems indicate that the most substantial computational time is being spent on particle-particle force calculations, drag force calculations and interpolating between discrete particle and continuum fields. Hardware performance analysis was also carried out showing significant Level 2 cache miss ratios and a rather low degree of vectorization. These results are intended to serve as a baseline for future developments to the code as well as a preliminary indicator of where to best focus performance optimizations.

  12. Biomolecular modelling and simulations

    CERN Document Server

    Karabencheva-Christova, Tatyana

    2014-01-01

    Published continuously since 1944, the Advances in Protein Chemistry and Structural Biology series is the essential resource for protein chemists. Each volume brings forth new information about protocols and analysis of proteins. Each thematically organized volume is guest edited by leading experts in a broad range of protein-related topics. Describes advances in biomolecular modelling and simulations Chapters are written by authorities in their field Targeted to a wide audience of researchers, specialists, and students The information provided in the volume is well supported by a number of high quality illustrations, figures, and tables.

  13. An improved benchmark model for the Big Ten critical assembly - 021

    International Nuclear Information System (INIS)

    Mosteller, R.D.

    2010-01-01

    A new benchmark specification is developed for the BIG TEN uranium critical assembly. The assembly has a fast spectrum, and its core contains approximately 10 wt.% enriched uranium. Detailed specifications for the benchmark are provided, and results from the MCNP5 Monte Carlo code using a variety of nuclear-data libraries are given for this benchmark and two others. (authors)

  14. Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking

    NARCIS (Netherlands)

    Daetwyler, H.D.; Calus, M.P.L.; Pong-Wong, R.; Los Campos, De G.; Hickey, J.M.

    2013-01-01

    The genomic prediction of phenotypes and breeding values in animals and plants has developed rapidly into its own research field. Results of genomic prediction studies are often difficult to compare because data simulation varies, real or simulated data are not fully described, and not all relevant

  15. Local approach of cleavage fracture applied to a vessel with subclad flaw. A benchmark on computational simulation

    International Nuclear Information System (INIS)

    Moinereau, D.; Brochard, J.; Guichard, D.; Bhandari, S.; Sherry, A.; France, C.

    1996-10-01

    A benchmark on the computational simulation of a cladded vessel with a 6.2 mm sub-clad flaw submitted to a thermal transient has been conducted. Two-dimensional elastic and elastic-plastic finite element computations of the vessel have been performed by the different partners with respective finite element codes ASTER (EDF), CASTEM 2000 (CEA), SYSTUS (Framatome) and ABAQUS (AEA Technology). Main results have been compared: temperature field in the vessel, crack opening, opening stress at crack tips, stress intensity factor in cladding and base metal, Weibull stress σ w and probability of failure in base metal, void growth rate R/R 0 in cladding. This comparison shows an excellent agreement on main results, in particular on results obtained with local approach. (K.A.)

  16. Measurements and FLUKA Simulations of Bismuth, Aluminium and Indium Activation at the upgraded CERN Shielding Benchmark Facility (CSBF)

    Science.gov (United States)

    Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.; Yashima, H.

    2018-06-01

    The CERN High energy AcceleRator Mixed field (CHARM) facility is situated in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5·1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7·1010 protons per second. The extracted proton beam impacts on a cylindrical copper target. The shielding of the CHARM facility includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target that allows deep shielding penetration benchmark studies of various shielding materials. This facility has been significantly upgraded during the extended technical stop at the beginning of 2016. It consists now of 40 cm of cast iron shielding, a 200 cm long removable sample holder concrete block with 3 inserts for activation samples, a material test location that is used for the measurement of the attenuation length for different shielding materials as well as for sample activation at different thicknesses of the shielding materials. Activation samples of bismuth, aluminium and indium were placed in the CSBF in September 2016 to characterize the upgraded version of the CSBF. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields of bismuth isotopes (206 Bi, 205 Bi, 204 Bi, 203 Bi, 202 Bi, 201 Bi) from 209 Bi, 24 Na from 27 Al and 115 m I from 115 I for these samples. The production yields estimated by FLUKA Monte Carlo simulations are compared to the production yields obtained from γ-spectroscopy measurements of the samples taking the beam intensity profile into account. The agreement between FLUKA predictions and γ-spectroscopy measurements for the production yields is at a level of a factor of 2.

  17. Gamma irradiator dose mapping simulation using the MCNP code and benchmarking with dosimetry

    International Nuclear Information System (INIS)

    Sohrabpour, M.; Hassanzadeh, M.; Shahriari, M.; Sharifzadeh, M.

    2002-01-01

    The Monte Carlo transport code, MCNP, has been applied in simulating dose rate distribution in the IR-136 gamma irradiator system. Isodose curves, cumulative dose values, and system design data such as throughputs, over-dose-ratios, and efficiencies have been simulated as functions of product density. Simulated isodose curves, and cumulative dose values were compared with dosimetry values obtained using polymethyle-methacrylate, Fricke, ethanol-chlorobenzene, and potassium dichromate dosimeters. The produced system design data were also found to agree quite favorably with those of the system manufacturer's data. MCNP has thus been found to be an effective transport code for handling of various dose mapping excercises for gamma irradiators

  18. Development of Multivariable Models to Predict and Benchmark Transfusion in Elective Surgery Supporting Patient Blood Management.

    Science.gov (United States)

    Hayn, Dieter; Kreiner, Karl; Ebner, Hubert; Kastner, Peter; Breznik, Nada; Rzepka, Angelika; Hofmann, Axel; Gombotz, Hans; Schreier, Günter

    2017-06-14

    Blood transfusion is a highly prevalent procedure in hospitalized patients and in some clinical scenarios it has lifesaving potential. However, in most cases transfusion is administered to hemodynamically stable patients with no benefit, but increased odds of adverse patient outcomes and substantial direct and indirect cost. Therefore, the concept of Patient Blood Management has increasingly gained importance to pre-empt and reduce transfusion and to identify the optimal transfusion volume for an individual patient when transfusion is indicated. It was our aim to describe, how predictive modeling and machine learning tools applied on pre-operative data can be used to predict the amount of red blood cells to be transfused during surgery and to prospectively optimize blood ordering schedules. In addition, the data derived from the predictive models should be used to benchmark different hospitals concerning their blood transfusion patterns. 6,530 case records obtained for elective surgeries from 16 centers taking part in two studies conducted in 2004-2005 and 2009-2010 were analyzed. Transfused red blood cell volume was predicted using random forests. Separate models were trained for overall data, for each center and for each of the two studies. Important characteristics of different models were compared with one another. Our results indicate that predictive modeling applied prior surgery can predict the transfused volume of red blood cells more accurately (correlation coefficient cc = 0.61) than state of the art algorithms (cc = 0.39). We found significantly different patterns of feature importance a) in different hospitals and b) between study 1 and study 2. We conclude that predictive modeling can be used to benchmark the importance of different features on the models derived with data from different hospitals. This might help to optimize crucial processes in a specific hospital, even in other scenarios beyond Patient Blood Management.

  19. How to Use Benchmark and Cross-section Studies to Improve Data Libraries and Models

    Science.gov (United States)

    Wagner, V.; Suchopár, M.; Vrzalová, J.; Chudoba, P.; Svoboda, O.; Tichý, P.; Krása, A.; Majerle, M.; Kugler, A.; Adam, J.; Baldin, A.; Furman, W.; Kadykov, M.; Solnyshkin, A.; Tsoupko-Sitnikov, S.; Tyutyunikov, S.; Vladimirovna, N.; Závorka, L.

    2016-06-01

    Improvements of the Monte Carlo transport codes and cross-section libraries are very important steps towards usage of the accelerator-driven transmutation systems. We have conducted a lot of benchmark experiments with different set-ups consisting of lead, natural uranium and moderator irradiated by relativistic protons and deuterons within framework of the collaboration “Energy and Transmutation of Radioactive Waste”. Unfortunately, the knowledge of the total or partial cross-sections of important reactions is insufficient. Due to this reason we have started extensive studies of different reaction cross-sections. We measure cross-sections of important neutron reactions by means of the quasi-monoenergetic neutron sources based on the cyclotrons at Nuclear Physics Institute in Řež and at The Svedberg Laboratory in Uppsala. Measurements of partial cross-sections of relativistic deuteron reactions were the second direction of our studies. The new results obtained during last years will be shown. Possible use of these data for improvement of libraries, models and benchmark studies will be discussed.

  20. Benchmarking shielding simulations for an accelerator-driven spallation neutron source

    Directory of Open Access Journals (Sweden)

    Nataliia Cherkashyna

    2015-08-01

    Full Text Available The shielding at an accelerator-driven spallation neutron facility plays a critical role in the performance of the neutron scattering instruments, the overall safety, and the total cost of the facility. Accurate simulation of shielding components is thus key for the design of upcoming facilities, such as the European Spallation Source (ESS, currently in construction in Lund, Sweden. In this paper, we present a comparative study between the measured and the simulated neutron background at the Swiss Spallation Neutron Source (SINQ, at the Paul Scherrer Institute (PSI, Villigen, Switzerland. The measurements were carried out at several positions along the SINQ monolith wall with the neutron dosimeter WENDI-2, which has a well-characterized response up to 5 GeV. The simulations were performed using the Monte-Carlo radiation transport code geant4, and include a complete transport from the proton beam to the measurement locations in a single calculation. An agreement between measurements and simulations is about a factor of 2 for the points where the measured radiation dose is above the background level, which is a satisfactory result for such simulations spanning many energy regimes, different physics processes and transport through several meters of shielding materials. The neutrons contributing to the radiation field emanating from the monolith were confirmed to originate from neutrons with energies above 1 MeV in the target region. The current work validates geant4 as being well suited for deep-shielding calculations at accelerator-based spallation sources. We also extrapolate what the simulated flux levels might imply for short (several tens of meters instruments at ESS.

  1. An integer programming model and benchmark suite for liner shipping network design

    DEFF Research Database (Denmark)

    Løfstedt, Berit; Alvarez, Jose Fernando; Plum, Christian Edinger Munk

    effective and energy efficient liner shipping networks using operations research is huge and neglected. The implementation of logistic planning tools based upon operations research has enhanced performance of both airlines, railways and general transportation companies, but within the field of liner......Maritime transportation is accountable for 2.7% of the worlds CO2 emissions and the liner shipping industry is committed to a slow steaming policy to provide low cost and environmentally conscious global transport of goods without compromising the level of service. The potential for making cost...... along with a rich integer programming model based on the services, that constitute the fixed schedule of a liner shipping company. The model may be relaxed as well as decomposed. The design of a benchmark suite of data instances to reflect the business structure of a global liner shipping network...

  2. A benchmark for coupled thermohydraulics system/three-dimensional neutron kinetics core models

    International Nuclear Information System (INIS)

    Kliem, S.

    1999-01-01

    During the last years 3D neutron kinetics core models have been coupled to advanced thermohydraulics system codes. These coupled codes can be used for the analysis of the whole reactor system. Although the stand-alone versions of the 3D neutron kinetics core models and of the thermohydraulics system codes generally have a good verification and validation basis, there is a need for additional validation work. This especially concerns the interaction between the reactor core and the other components of a nuclear power plant (NPP). In the framework of the international 'Atomic Energy Research' (AER) association on VVER Reactor Physics and Reactor Safety, a benchmark for these code systems was defined. (orig.)

  3. MCNP neutron benchmarks

    International Nuclear Information System (INIS)

    Hendricks, J.S.; Whalen, D.J.; Cardon, D.A.; Uhle, J.L.

    1991-01-01

    Over 50 neutron benchmark calculations have recently been completed as part of an ongoing program to validate the MCNP Monte Carlo radiation transport code. The new and significant aspects of this work are as follows: These calculations are the first attempt at a validation program for MCNP and the first official benchmarking of version 4 of the code. We believe the chosen set of benchmarks is a comprehensive set that may be useful for benchmarking other radiation transport codes and data libraries. These calculations provide insight into how well neutron transport calculations can be expected to model a wide variety of problems

  4. Benchmarking the cad-based attila discrete ordinates code with experimental data of fusion experiments and to the results of MCNP code in simulating ITER

    International Nuclear Information System (INIS)

    Youssef, M. Z.

    2007-01-01

    Attila is a newly developed finite element code based on Sn neutron, gamma, and charged particle transport in 3-D geometry in which unstructured tetrahedral meshes are generated to describe complex geometry that is based on CAD input (Solid Works, Pro/Engineer, etc). In the present work we benchmark its calculation accuracy by comparing its prediction to the measured data inside two experimental mock-ups bombarded with 14 MeV neutrons. The results are also compared to those based on MCNP calculations. The experimental mock-ups simulate parts of the International Thermonuclear Experimental Reactor (ITER) in-vessel components, namely: (1) the Tungsten mockup configuration (54.3 cm x 46.8 cm x 45 cm), and (2) the ITER shielding blanket followed by the SCM region (simulated by alternating layers of SS316 and copper). In the latter configuration, a high aspect ratio rectangular streaming channel was introduced (to simulate steaming paths between ITER blanket modules) which ends with a rectangular cavity. The experiments on these two fusion-oriented integral experiments were performed at the Fusion Neutron Generator (FNG) facility, Frascati, Italy. In addition, the nuclear performance of the ITER MCNP 'Benchmark' CAD model has been performed with Attila to compare its results to those obtained with CAD-based MCNP approach developed by several ITER participants. The objective of this paper is to compare results based on two distinctive 3-D calculation tools using the same nuclear data, FENDL2.1, and the same response functions of several reaction rates measured in ITER mock-ups and to enhance confidence from the international neutronics community in the Attila code and how it can precisely quantify the nuclear field in large and complex systems, such as ITER. Attila has the advantage of providing a full flux mapping visualization everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. In addition, the

  5. Advancing Material Models for Automotive Forming Simulations

    International Nuclear Information System (INIS)

    Vegter, H.; An, Y.; Horn, C.H.L.J. ten; Atzema, E.H.; Roelofsen, M.E.

    2005-01-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path.The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary.Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials.Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations prior

  6. Simulation as a new tool to establish benchmark outcome measures in obstetrics.

    Directory of Open Access Journals (Sweden)

    Matt M Kurrek

    Full Text Available There are not enough clinical data from rare critical events to calculate statistics to decide if the management of actual events might be below what could reasonably be expected (i.e. was an outlier.In this project we used simulation to describe the distribution of management times as an approach to decide if the management of a simulated obstetrical crisis scenario could be considered an outlier.Twelve obstetrical teams managed 4 scenarios that were previously developed. Relevant outcome variables were defined by expert consensus. The distribution of the response times from the teams who performed the respective intervention was graphically displayed and median and quartiles calculated using rank order statistics.Only 7 of the 12 teams performed chest compressions during the arrest following the 'cannot intubate/cannot ventilate' scenario. All other outcome measures were performed by at least 11 of the 12 teams. Calculation of medians and quartiles with 95% CI was possible for all outcomes. Confidence intervals, given the small sample size, were large.We demonstrated the use of simulation to calculate quantiles for management times of critical event. This approach could assist in deciding if a given performance could be considered normal and also point to aspects of care that seem to pose particular challenges as evidenced by a large number of teams not performing the expected maneuver. However sufficiently large sample sizes (i.e. from a national data base will be required to calculate acceptable confidence intervals and to establish actual tolerance limits.

  7. Final results of the 'Benchmark on computer simulation of radioactive nuclides production rate and heat generation rate in a spallation target'

    International Nuclear Information System (INIS)

    Janczyszyn, J.; Pohorecki, W.; Domanska, G.; Maiorino, R.J.; David, J.C.; Velarde, F.A.

    2011-01-01

    A benchmark has been organized to assess the computer simulation of nuclide production and heat generation in a spallation lead target. The physical models applied for the calculation of thick lead target activation do not produce satisfactory results for the majority of analysed nuclides, however one can observe better or worse quantitative compliance with the experimental results. Analysis of the quality of calculated results show the best performance for heavy nuclides (A: 170 - 190). For intermediate nuclides (A: 60 - 130) almost all are underestimated while for A: 130 - 170 mainly overestimated. The shape of the activity distribution in the target is well reproduced in calculations by all models but the numerical comparison shows similar performance as for the whole target. The Isabel model yields best results. As for the whole target heating rate, the results from all participants are consistent. Only small differences are observed between results from physical models. As for the heating distribution in the target it looks not quite similar. The quantitative comparison of the distributions yielded by different spallation reaction models shows for the major part of the target no serious differences - generally below 10%. However, in the most outside parts of the target front layers and the part of the target at its end behind the primary protons range, a spread higher than 40 % is obtained

  8. Notes on modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Antonio [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-10

    These notes present a high-level overview of how modeling and simulation are carried out by practitioners. The discussion is of a general nature; no specific techniques are examined but the activities associated with all modeling and simulation approaches are briefly addressed. There is also a discussion of validation and verification and, at the end, a section on why modeling and simulation are useful.

  9. Internet based benchmarking

    DEFF Research Database (Denmark)

    Bogetoft, Peter; Nielsen, Kurt

    2005-01-01

    We discuss the design of interactive, internet based benchmarking using parametric (statistical) as well as nonparametric (DEA) models. The user receives benchmarks and improvement potentials. The user is also given the possibility to search different efficiency frontiers and hereby to explore...

  10. A comprehensive set of benchmark tests for a land surface model of simultaneous fluxes of water and carbon at both the global and seasonal scale

    Directory of Open Access Journals (Sweden)

    E. Blyth

    2011-04-01

    Full Text Available Evaluating the models we use in prediction is important as it allows us to identify uncertainties in prediction as well as guiding the priorities for model development. This paper describes a set of benchmark tests that is designed to quantify the performance of the land surface model that is used in the UK Hadley Centre General Circulation Model (JULES: Joint UK Land Environment Simulator. The tests are designed to assess the ability of the model to reproduce the observed fluxes of water and carbon at the global and regional spatial scale, and on a seasonal basis. Five datasets are used to test the model: water and carbon dioxide fluxes from ten FLUXNET sites covering the major global biomes, atmospheric carbon dioxide concentrations at four representative stations from the global network, river flow from seven catchments, the seasonal mean NDVI over the seven catchments and the potential land cover of the globe (after the estimated anthropogenic changes have been removed. The model is run in various configurations and results are compared with the data.

    A few examples are chosen to demonstrate the importance of using combined use of observations of carbon and water fluxes in essential in order to understand the causes of model errors. The benchmarking approach is suitable for application to other global models.

  11. Library Benchmarking

    Directory of Open Access Journals (Sweden)

    Wiji Suwarno

    2017-02-01

    Full Text Available The term benchmarking has been encountered in the implementation of total quality (TQM or in Indonesian termed holistic quality management because benchmarking is a tool to look for ideas or learn from the library. Benchmarking is a processof measuring and comparing for continuous business process of systematic and continuous measurement, the process of measuring and comparing for continuous business process of an organization to get information that can help these organization improve their performance efforts.

  12. Benchmarking of protein descriptor sets in proteochemometric modeling (part 2): modeling performance of 13 amino acid descriptor sets

    Science.gov (United States)

    2013-01-01

    Background While a large body of work exists on comparing and benchmarking descriptors of molecular structures, a similar comparison of protein descriptor sets is lacking. Hence, in the current work a total of 13 amino acid descriptor sets have been benchmarked with respect to their ability of establishing bioactivity models. The descriptor sets included in the study are Z-scales (3 variants), VHSE, T-scales, ST-scales, MS-WHIM, FASGAI, BLOSUM, a novel protein descriptor set (termed ProtFP (4 variants)), and in addition we created and benchmarked three pairs of descriptor combinations. Prediction performance was evaluated in seven structure-activity benchmarks which comprise Angiotensin Converting Enzyme (ACE) dipeptidic inhibitor data, and three proteochemometric data sets, namely (1) GPCR ligands modeled against a GPCR panel, (2) enzyme inhibitors (NNRTIs) with associated bioactivities against a set of HIV enzyme mutants, and (3) enzyme inhibitors (PIs) with associated bioactivities on a large set of HIV enzyme mutants. Results The amino acid descriptor sets compared here show similar performance (set differences ( > 0.3 log units RMSE difference and >0.7 difference in MCC). Combining different descriptor sets generally leads to better modeling performance than utilizing individual sets. The best performers were Z-scales (3) combined with ProtFP (Feature), or Z-Scales (3) combined with an average Z-Scale value for each target, while ProtFP (PCA8), ST-Scales, and ProtFP (Feature) rank last. Conclusions While amino acid descriptor sets capture different aspects of amino acids their ability to be used for bioactivity modeling is still – on average – surprisingly similar. Still, combining sets describing complementary information consistently leads to small but consistent improvement in modeling performance (average MCC 0.01 better, average RMSE 0.01 log units lower). Finally, performance differences exist between the targets compared thereby underlining that

  13. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    DEFF Research Database (Denmark)

    Collet, R.; Nordlund, Ã.; Asplund, M.

    2018-01-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D...... simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local...... molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen...

  14. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    Energy Technology Data Exchange (ETDEWEB)

    Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Maday, Yvon, E-mail: maday@ann.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions and Institut Universitaire de France, F-75005, Paris (France); Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); Brown Univ, Division of Applied Maths, Providence, RI (United States); Riahi, Mohamed Kamel, E-mail: riahi@cmap.polytechnique.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CMAP, Inria-Saclay and X-Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Salomon, Julien, E-mail: salomon@ceremade.dauphine.fr [CEREMADE, Univ Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, F-75016, Paris (France)

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

  15. Benchmark Simulation for the Development of the Regulatory Audit Subchannel Analysis Code

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. H.; Song, C.; Woo, S. W. [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-05-15

    For the safe and reliable operation of a reactor, it is important to predict accurately the flow and temperature distributions in the thermal-hydraulic design of a reactor core. A subchannel approach can give the reasonable flow and temperature distributions with the short computing time. Korea Institute of Nuclear Safety (KINS) is presently reviewing new subchannel code, THALES, which will substitute for both THINC-IV and TORC code. To assess the prediction performance of THALES, KINS is developing the subchannel analysis code for the independent audit calculation. The code is based on workstation version of COBRA-IV-I. The main objective of the present study is to assess the performance of COBRA-IV-I code by comparing the simulation results with experimental ones for the sample problems

  16. MFTF TOTAL benchmark

    International Nuclear Information System (INIS)

    Choy, J.H.

    1979-06-01

    A benchmark of the TOTAL data base management system as applied to the Mirror Fusion Test Facility (MFTF) data base was implemented and run in February and March of 1979. The benchmark was run on an Interdata 8/32 and involved the following tasks: (1) data base design, (2) data base generation, (3) data base load, and (4) develop and implement programs to simulate MFTF usage of the data base

  17. Simulation Model of a Transient

    DEFF Research Database (Denmark)

    Jauch, Clemens; Sørensen, Poul; Bak-Jensen, Birgitte

    2005-01-01

    This paper describes the simulation model of a controller that enables an active-stall wind turbine to ride through transient faults. The simulated wind turbine is connected to a simple model of a power system. Certain fault scenarios are specified and the turbine shall be able to sustain operati...

  18. Cognitive models embedded in system simulation models

    International Nuclear Information System (INIS)

    Siegel, A.I.; Wolf, J.J.

    1982-01-01

    If we are to discuss and consider cognitive models, we must first come to grips with two questions: (1) What is cognition; (2) What is a model. Presumably, the answers to these questions can provide a basis for defining a cognitive model. Accordingly, this paper first places these two questions into perspective. Then, cognitive models are set within the context of computer simulation models and a number of computer simulations of cognitive processes are described. Finally, pervasive issues are discussed vis-a-vis cognitive modeling in the computer simulation context

  19. OpenMP-accelerated SWAT simulation using Intel C and FORTRAN compilers: Development and benchmark

    Science.gov (United States)

    Ki, Seo Jin; Sugimura, Tak; Kim, Albert S.

    2015-02-01

    We developed a practical method to accelerate execution of Soil and Water Assessment Tool (SWAT) using open (free) computational resources. The SWAT source code (rev 622) was recompiled using a non-commercial Intel FORTRAN compiler in Ubuntu 12.04 LTS Linux platform, and newly named iOMP-SWAT in this study. GNU utilities of make, gprof, and diff were used to develop the iOMP-SWAT package, profile memory usage, and check identicalness of parallel and serial simulations. Among 302 SWAT subroutines, the slowest routines were identified using GNU gprof, and later modified using Open Multiple Processing (OpenMP) library in an 8-core shared memory system. In addition, a C wrapping function was used to rapidly set large arrays to zero by cross compiling with the original SWAT FORTRAN package. A universal speedup ratio of 2.3 was achieved using input data sets of a large number of hydrological response units. As we specifically focus on acceleration of a single SWAT run, the use of iOMP-SWAT for parameter calibrations will significantly improve the performance of SWAT optimization.

  20. Benchmarking monthly homogenization algorithms

    Science.gov (United States)

    Venema, V. K. C.; Mestre, O.; Aguilar, E.; Auer, I.; Guijarro, J. A.; Domonkos, P.; Vertacnik, G.; Szentimrey, T.; Stepanek, P.; Zahradnicek, P.; Viarre, J.; Müller-Westermeier, G.; Lakatos, M.; Williams, C. N.; Menne, M.; Lindau, R.; Rasol, D.; Rustemeier, E.; Kolokythas, K.; Marinova, T.; Andresen, L.; Acquaotta, F.; Fratianni, S.; Cheval, S.; Klancar, M.; Brunetti, M.; Gruber, C.; Prohom Duran, M.; Likso, T.; Esteban, P.; Brandsma, T.

    2011-08-01

    The COST (European Cooperation in Science and Technology) Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME) has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative). The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide) trend was added. Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i) the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii) the error in linear trend estimates and (iii) traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve precipitation data

  1. General introduction to simulation models

    DEFF Research Database (Denmark)

    Hisham Beshara Halasa, Tariq; Boklund, Anette

    2012-01-01

    trials. However, if simulation models would be used, good quality input data must be available. To model FMD, several disease spread models are available. For this project, we chose three simulation model; Davis Animal Disease Spread (DADS), that has been upgraded to DTU-DADS, InterSpread Plus (ISP......Monte Carlo simulation can be defined as a representation of real life systems to gain insight into their functions and to investigate the effects of alternative conditions or actions on the modeled system. Models are a simplification of a system. Most often, it is best to use experiments and field...... trials to investigate the effect of alternative conditions or actions on a specific system. Nonetheless, field trials are expensive and sometimes not possible to conduct, as in case of foot-and-mouth disease (FMD). Instead, simulation models can be a good and cheap substitute for experiments and field...

  2. Simulation - modeling - experiment; Simulation - modelisation - experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    After two workshops held in 2001 on the same topics, and in order to make a status of the advances in the domain of simulation and measurements, the main goals proposed for this workshop are: the presentation of the state-of-the-art of tools, methods and experiments in the domains of interest of the Gedepeon research group, the exchange of information about the possibilities of use of computer codes and facilities, about the understanding of physical and chemical phenomena, and about development and experiment needs. This document gathers 18 presentations (slides) among the 19 given at this workshop and dealing with: the deterministic and stochastic codes in reactor physics (Rimpault G.); MURE: an evolution code coupled with MCNP (Meplan O.); neutronic calculation of future reactors at EdF (Lecarpentier D.); advance status of the MCNP/TRIO-U neutronic/thermal-hydraulics coupling (Nuttin A.); the FLICA4/TRIPOLI4 thermal-hydraulics/neutronics coupling (Aniel S.); methods of disturbances and sensitivity analysis of nuclear data in reactor physics, application to VENUS-2 experimental reactor (Bidaud A.); modeling for the reliability improvement of an ADS accelerator (Biarotte J.L.); residual gas compensation of the space charge of intense beams (Ben Ismail A.); experimental determination and numerical modeling of phase equilibrium diagrams of interest in nuclear applications (Gachon J.C.); modeling of irradiation effects (Barbu A.); elastic limit and irradiation damage in Fe-Cr alloys: simulation and experiment (Pontikis V.); experimental measurements of spallation residues, comparison with Monte-Carlo simulation codes (Fallot M.); the spallation target-reactor coupling (Rimpault G.); tools and data (Grouiller J.P.); models in high energy transport codes: status and perspective (Leray S.); other ways of investigation for spallation (Audoin L.); neutrons and light particles production at intermediate energies (20-200 MeV) with iron, lead and uranium targets (Le Colley F

  3. Developed hydraulic simulation model for water pipeline networks

    Directory of Open Access Journals (Sweden)

    A. Ayad

    2013-03-01

    Full Text Available A numerical method that uses linear graph theory is presented for both steady state, and extended period simulation in a pipe network including its hydraulic components (pumps, valves, junctions, etc.. The developed model is based on the Extended Linear Graph Theory (ELGT technique. This technique is modified to include new network components such as flow control valves and tanks. The technique also expanded for extended period simulation (EPS. A newly modified method for the calculation of updated flows improving the convergence rate is being introduced. Both benchmarks, ad Actual networks are analyzed to check the reliability of the proposed method. The results reveal the finer performance of the proposed method.

  4. Benchmark selection

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Tvede, Mich

    2002-01-01

    Within a production theoretic framework, this paper considers an axiomatic approach to benchmark selection. It is shown that two simple and weak axioms; efficiency and comprehensive monotonicity characterize a natural family of benchmarks which typically becomes unique. Further axioms are added...... in order to obtain a unique selection...

  5. An analytical model for the study of a small LFR core dynamics: development and benchmark

    International Nuclear Information System (INIS)

    Bortot, S.; Cammi, A.; Lorenzi, S.; Moisseytsev, A.

    2011-01-01

    An analytical model for the study of a small Lead-cooled Fast Reactor (LFR) control-oriented dynamics has been developed aimed at providing a useful, very flexible and straightforward, though accurate, tool allowing relatively quick transient design-basis and stability analyses. A simplified lumped-parameter approach has been adopted to couple neutronics and thermal-hydraulics: the point-kinetics approximation has been employed and an average-temperature heat-exchange model has been implemented. The reactor transient responses following postulated accident initiators such as Unprotected Control Rod Withdrawal (UTOP), Loss of Heat Sink (ULOHS) and Loss of Flow (ULOF) have been studied for a MOX and a metal-fuelled core at the Beginning of Cycle (BoC) and End of Cycle (EoC) configurations. A benchmark analysis has been then performed by means of the SAS4A/SASSYS-1 Liquid Metal Reactor Code System, in which a core model based on three representative channels has been built with the purpose of providing verification for the analytical outcomes and indicating how the latter relate to more realistic one-dimensional calculations. As a general result, responses concerning the main core characteristics (namely, power, reactivity, etc.) have turned out to be mutually consistent in terms of both steady-state absolute figures and transient developments, showing discrepancies of the order of only some percents, thus confirming a very satisfactory agreement. (author)

  6. Antibiotic reimbursement in a model delinked from sales: a benchmark-based worldwide approach.

    Science.gov (United States)

    Rex, John H; Outterson, Kevin

    2016-04-01

    Despite the life-saving ability of antibiotics and their importance as a key enabler of all of modern health care, their effectiveness is now threatened by a rising tide of resistance. Unfortunately, the antibiotic pipeline does not match health needs because of challenges in discovery and development, as well as the poor economics of antibiotics. Discovery and development are being addressed by a range of public-private partnerships; however, correcting the poor economics of antibiotics will need an overhaul of the present business model on a worldwide scale. Discussions are now converging on delinking reward from antibiotic sales through prizes, milestone payments, or insurance-like models in which innovation is rewarded with a fixed series of payments of a predictable size. Rewarding all drugs with the same payments could create perverse incentives to produce drugs that provide the least possible innovation. Thus, we propose a payment model using a graded array of benchmarked rewards designed to encourage the development of antibiotics with the greatest societal value, together with appropriate worldwide access to antibiotics to maximise human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Dose mapping simulation using the MCNP code for the Syrian gamma irradiation facility and benchmarking

    International Nuclear Information System (INIS)

    Khattab, K.; Boush, M.; Alkassiri, H.

    2013-01-01

    Highlights: • The MCNP4C was used to calculate the gamma ray dose rate spatial distribution in for the SGIF. • Measurement of the gamma ray dose rate spatial distribution using the Chlorobenzene dosimeter was conducted as well. • Good agreements were noticed between the calculated and measured results. • The maximum relative differences were less than 7%, 4% and 4% in the x, y and z directions respectively. - Abstract: A three dimensional model for the Syrian gamma irradiation facility (SGIF) is developed in this paper to calculate the gamma ray dose rate spatial distribution in the irradiation room at the 60 Co source board using the MCNP-4C code. Measurement of the gamma ray dose rate spatial distribution using the Chlorobenzene dosimeter is conducted as well to compare the calculated and measured results. Good agreements are noticed between the calculated and measured results with maximum relative differences less than 7%, 4% and 4% in the x, y and z directions respectively. This agreement indicates that the established model is an accurate representation of the SGIF and can be used in the future to make the calculation design for a new irradiation facility

  8. The development of code benchmarks

    International Nuclear Information System (INIS)

    Glass, R.E.

    1986-01-01

    Sandia National Laboratories has undertaken a code benchmarking effort to define a series of cask-like problems having both numerical solutions and experimental data. The development of the benchmarks includes: (1) model problem definition, (2) code intercomparison, and (3) experimental verification. The first two steps are complete and a series of experiments are planned. The experiments will examine the elastic/plastic behavior of cylinders for both the end and side impacts resulting from a nine meter drop. The cylinders will be made from stainless steel and aluminum to give a range of plastic deformations. This paper presents the results of analyses simulating the model's behavior using materials properties for stainless steel and aluminum

  9. Electromagnetic simulations of simple models of ferrite loaded kickers

    CERN Document Server

    Zannini, Carlo; Salvant, B; Metral, E; Rumolo, G

    2010-01-01

    The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of simplified models of ferrite loaded kickers. The simulation results have been successfully compared with some existing analytical expressions. In the transverse plane, the dipolar and quadrupolar contributions to the wake potentials have been estimated from the results of these simulations. For some cases, simulations have also been benchmarked against measurements on PS kickers. It turns out that the large simulated quadrupolar contributions of these kickers could explain both the negative total (dipolar+quadrupolar) horizontal impedance observed in bench measurements and the positive horizontal tune shift measured with the SPS beam.

  10. 3-D core modelling of RIA transient: the TMI-1 benchmark

    International Nuclear Information System (INIS)

    Ferraresi, P.; Studer, E.; Avvakumov, A.; Malofeev, V.; Diamond, D.; Bromley, B.

    2001-01-01

    The increase of fuel burn up in core management poses actually the problem of the evaluation of the deposited energy during Reactivity Insertion Accidents (RIA). In order to precisely evaluate this energy, 3-D approaches are used more and more frequently in core calculations. This 'best-estimate' approach requires the evaluation of code uncertainties. To contribute to this evaluation, a code benchmark has been launched. A 3-D modelling for the TMI-1 central Ejected Rod Accident with zero and intermediate initial powers was carried out with three different methods of calculation for an inserted reactivity respectively fixed at 1.2 $ and 1.26 $. The studies implemented by the neutronics codes PARCS (BNL) and CRONOS (IPSN/CEA) describe an homogeneous assembly, whereas the BARS (KI) code allows a pin-by-pin representation (CRONOS has both possibilities). All the calculations are consistent, the variation in figures resulting mainly from the method used to build cross sections and reflectors constants. The maximum rise in enthalpy for the intermediate initial power (33 % P N ) calculation is, for this academic calculation, about 30 cal/g. This work will be completed in a next step by an evaluation of the uncertainty induced by the uncertainty on model parameters, and a sensitivity study of the key parameters for a peripheral Rod Ejection Accident. (authors)

  11. Electron-helium S-wave model benchmark calculations. I. Single ionization and single excitation

    Science.gov (United States)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    A full four-body implementation of the propagating exterior complex scaling (PECS) method [J. Phys. B 37, L69 (2004)] is developed and applied to the electron-impact of helium in an S-wave model. Time-independent solutions to the Schrödinger equation are found numerically in coordinate space over a wide range of energies and used to evaluate total and differential cross sections for a complete set of three- and four-body processes with benchmark precision. With this model we demonstrate the suitability of the PECS method for the complete solution of the full electron-helium system. Here we detail the theoretical and computational development of the four-body PECS method and present results for three-body channels: single excitation and single ionization. Four-body cross sections are presented in the sequel to this article [Phys. Rev. A 81, 022716 (2010)]. The calculations reveal structure in the total and energy-differential single-ionization cross sections for excited-state targets that is due to interference from autoionization channels and is evident over a wide range of incident electron energies.

  12. 3-D core modelling of RIA transient: the TMI-1 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Ferraresi, P. [CEA Cadarache, Institut de Protection et de Surete Nucleaire, Dept. de Recherches en Securite, 13 - Saint Paul Lez Durance (France); Studer, E. [CEA Saclay, Dept. Modelisation de Systemes et Structures, 91 - Gif sur Yvette (France); Avvakumov, A.; Malofeev, V. [Nuclear Safety Institute of Russian Research Center, Kurchatov Institute, Moscow (Russian Federation); Diamond, D.; Bromley, B. [Nuclear Energy and Infrastructure Systems Div., Brookhaven National Lab., BNL, Upton, NY (United States)

    2001-07-01

    The increase of fuel burn up in core management poses actually the problem of the evaluation of the deposited energy during Reactivity Insertion Accidents (RIA). In order to precisely evaluate this energy, 3-D approaches are used more and more frequently in core calculations. This 'best-estimate' approach requires the evaluation of code uncertainties. To contribute to this evaluation, a code benchmark has been launched. A 3-D modelling for the TMI-1 central Ejected Rod Accident with zero and intermediate initial powers was carried out with three different methods of calculation for an inserted reactivity respectively fixed at 1.2 $ and 1.26 $. The studies implemented by the neutronics codes PARCS (BNL) and CRONOS (IPSN/CEA) describe an homogeneous assembly, whereas the BARS (KI) code allows a pin-by-pin representation (CRONOS has both possibilities). All the calculations are consistent, the variation in figures resulting mainly from the method used to build cross sections and reflectors constants. The maximum rise in enthalpy for the intermediate initial power (33 % P{sub N}) calculation is, for this academic calculation, about 30 cal/g. This work will be completed in a next step by an evaluation of the uncertainty induced by the uncertainty on model parameters, and a sensitivity study of the key parameters for a peripheral Rod Ejection Accident. (authors)

  13. Parameter Sensitivity and Laboratory Benchmarking of a Biogeochemical Process Model for Enhanced Anaerobic Dechlorination

    Science.gov (United States)

    Kouznetsova, I.; Gerhard, J. I.; Mao, X.; Barry, D. A.; Robinson, C.; Brovelli, A.; Harkness, M.; Fisher, A.; Mack, E. E.; Payne, J. A.; Dworatzek, S.; Roberts, J.

    2008-12-01

    A detailed model to simulate trichloroethene (TCE) dechlorination in anaerobic groundwater systems has been developed and implemented through PHAST, a robust and flexible geochemical modeling platform. The approach is comprehensive but retains flexibility such that models of varying complexity can be used to simulate TCE biodegradation in the vicinity of nonaqueous phase liquid (NAPL) source zones. The complete model considers a full suite of biological (e.g., dechlorination, fermentation, sulfate and iron reduction, electron donor competition, toxic inhibition, pH inhibition), physical (e.g., flow and mass transfer) and geochemical processes (e.g., pH modulation, gas formation, mineral interactions). Example simulations with the model demonstrated that the feedback between biological, physical, and geochemical processes is critical. Successful simulation of a thirty-two-month column experiment with site soil, complex groundwater chemistry, and exhibiting both anaerobic dechlorination and endogenous respiration, provided confidence in the modeling approach. A comprehensive suite of batch simulations was then conducted to estimate the sensitivity of predicted TCE degradation to the 36 model input parameters. A local sensitivity analysis was first employed to rank the importance of parameters, revealing that 5 parameters consistently dominated model predictions across a range of performance metrics. A global sensitivity analysis was then performed to evaluate the influence of a variety of full parameter data sets available in the literature. The modeling study was performed as part of the SABRE (Source Area BioREmediation) project, a public/private consortium whose charter is to determine if enhanced anaerobic bioremediation can result in effective and quantifiable treatment of chlorinated solvent DNAPL source areas. The modelling conducted has provided valuable insight into the complex interactions between processes in the evolving biogeochemical systems

  14. Accident tolerant clad material modeling by MELCOR: Benchmark for SURRY Short Term Station Black Out

    International Nuclear Information System (INIS)

    Wang, Jun; Mccabe, Mckinleigh; Wu, Lei; Dong, Xiaomeng; Wang, Xianmao; Haskin, Troy Christopher; Corradini, Michael L.

    2017-01-01

    Highlights: • Thermo-physical and oxidation kinetics properties calculation and analysis of FeCrAl. • Properties modelling of FeCrAl in MELCOR. • Benchmark calculation of Surry nuclear power plant. - Abstract: Accident tolerant fuel and cladding materials are being investigated to provide a greater resistance to fuel degradation, oxidation and melting if long-term cooling is lost in a Light Water Reactor (LWR) following an accident such as a Station Blackout (SBO) or Loss of Coolant Accident (LOCA). Researchers at UW-Madison are analyzing an SBO sequence and examining the effect of a loss of auxiliary feedwater (AFW) with the MELCOR systems code. Our research work considers accident tolerant cladding materials (e.g., FeCrAl alloy) and their effect on the accident behavior. We first gathered the physical properties of this alternative cladding material via literature review and compared it to the usual zirconium alloys used in LWRs. We then developed a model for the Surry reactor for a Short-term SBO sequence and examined the effect of replacing FeCrAl for Zircaloy cladding. The analysis uses MELCOR, Version 1.8.6 YR, which is developed by Idaho National Laboratory in collaboration with MELCOR developers at Sandia National Laboratories. This version allows the user to alter the cladding material considered, and our study examines the behavior of the FeCrAl alloy as a substitute for Zircaloy. Our benchmark comparisons with the Sandia National Laboratory’s analysis of Surry using MELCOR 1.8.6 and the more recent MELCOR 2.1 indicate good overall agreement through the early phases of the accident progression. When FeCrAl is substituted for Zircaloy to examine its performance, we confirmed that FeCrAl slows the accident progression and reduce the amount of hydrogen generated. Our analyses also show that this special version of MELCOR can be used to evaluate other potential ATF cladding materials, e.g., SiC as well as innovative coatings on zirconium cladding

  15. Accident tolerant clad material modeling by MELCOR: Benchmark for SURRY Short Term Station Black Out

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun, E-mail: jwang564@wisc.edu [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Mccabe, Mckinleigh [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Wu, Lei [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Dong, Xiaomeng [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Wang, Xianmao [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Haskin, Troy Christopher [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States); Corradini, Michael L., E-mail: corradini@engr.wisc.edu [College of Engineering, The University of Wisconsin-Madison, Madison 53706 (United States)

    2017-03-15

    Highlights: • Thermo-physical and oxidation kinetics properties calculation and analysis of FeCrAl. • Properties modelling of FeCrAl in MELCOR. • Benchmark calculation of Surry nuclear power plant. - Abstract: Accident tolerant fuel and cladding materials are being investigated to provide a greater resistance to fuel degradation, oxidation and melting if long-term cooling is lost in a Light Water Reactor (LWR) following an accident such as a Station Blackout (SBO) or Loss of Coolant Accident (LOCA). Researchers at UW-Madison are analyzing an SBO sequence and examining the effect of a loss of auxiliary feedwater (AFW) with the MELCOR systems code. Our research work considers accident tolerant cladding materials (e.g., FeCrAl alloy) and their effect on the accident behavior. We first gathered the physical properties of this alternative cladding material via literature review and compared it to the usual zirconium alloys used in LWRs. We then developed a model for the Surry reactor for a Short-term SBO sequence and examined the effect of replacing FeCrAl for Zircaloy cladding. The analysis uses MELCOR, Version 1.8.6 YR, which is developed by Idaho National Laboratory in collaboration with MELCOR developers at Sandia National Laboratories. This version allows the user to alter the cladding material considered, and our study examines the behavior of the FeCrAl alloy as a substitute for Zircaloy. Our benchmark comparisons with the Sandia National Laboratory’s analysis of Surry using MELCOR 1.8.6 and the more recent MELCOR 2.1 indicate good overall agreement through the early phases of the accident progression. When FeCrAl is substituted for Zircaloy to examine its performance, we confirmed that FeCrAl slows the accident progression and reduce the amount of hydrogen generated. Our analyses also show that this special version of MELCOR can be used to evaluate other potential ATF cladding materials, e.g., SiC as well as innovative coatings on zirconium cladding

  16. Benchmarking and Regulation

    DEFF Research Database (Denmark)

    Agrell, Per J.; Bogetoft, Peter

    . The application of benchmarking in regulation, however, requires specific steps in terms of data validation, model specification and outlier detection that are not systematically documented in open publications, leading to discussions about regulatory stability and economic feasibility of these techniques...

  17. Strong-coupling expansion for the momentum distribution of the Bose-Hubbard model with benchmarking against exact numerical results

    International Nuclear Information System (INIS)

    Freericks, J. K.; Krishnamurthy, H. R.; Kato, Yasuyuki; Kawashima, Naoki; Trivedi, Nandini

    2009-01-01

    A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator-to-superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.

  18. A benchmark study of 2D and 3D finite element calculations simulating dynamic pulse buckling tests of cylindrical shells under axial impact

    International Nuclear Information System (INIS)

    Hoffman, E.L.; Ammerman, D.J.

    1993-01-01

    A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry

  19. Benchmarks for Uncertainty Analysis in Modelling (UAM) for the Design, Operation and Safety Analysis of LWRs - Volume I: Specification and Support Data for Neutronics Cases (Phase I)

    International Nuclear Information System (INIS)

    Ivanov, K.; Avramova, M.; Kamerow, S.; Kodeli, I.; Sartori, E.; Ivanov, E.; Cabellos, O.

    2013-01-01

    released. This report presents benchmark specifications for Phase I (Neutronics Phase) of the OECD LWR UAM benchmark in a format similar to the previous OECD/NRC benchmark specifications. Phase I consists of the following exercises: - Exercise 1 (I-1): 'Cell Physics' focused on the derivation of the multi-group microscopic cross-section libraries and their uncertainties. - Exercise 2 (I-2): 'Lattice Physics' focused on the derivation of the few-group macroscopic cross-section libraries and their uncertainties. - Exercise 3 (I-3): 'Core Physics' focused on the core steady-state stand-alone neutronics calculations and their uncertainties. These exercises follow those established in the industry and regulation routine calculation scheme for LWR design and safety analysis. This phase is focused on understanding uncertainties in the prediction of key reactor core parameters associated with LWR stand-alone neutronics core simulation. Such uncertainties occur due to input data uncertainties, modelling errors, and numerical approximations. The chosen approach in Phase I is to select/propagate the most important contributors for each exercise which can be treated in a practical manner. The cross-section uncertainty information is considered as the most important source of input uncertainty for Phase I. The cross-section related uncertainties are propagated through the 3 Exercises of Phase I. In Exercise I-1 these are the variance and covariance data associated with continuous energy cross-sections in evaluated nuclear data files. In Exercise I-2 these are the variance and covariance data associated with multi-group cross-sections used as input in the lattice physics codes. In Exercise I-3 these are the variance and covariance data associated with few-group cross-sections used as input in the core simulators. Depending on the availability of different methods in the computer code of choice for a given exercise, the related methodological uncertainties can play a smaller or larger

  20. ECONOMIC MODELING STOCKS CONTROL SYSTEM: SIMULATION MODEL

    OpenAIRE

    Климак, М.С.; Войтко, С.В.

    2016-01-01

    Considered theoretical and applied aspects of the development of simulation models to predictthe optimal development and production systems that create tangible products andservices. It isproved that theprocessof inventory control needs of economicandmathematical modeling in viewof thecomplexity of theoretical studies. A simulation model of stocks control that allows make managementdecisions with production logistics

  1. Progress in modeling and simulation.

    Science.gov (United States)

    Kindler, E

    1998-01-01

    For the modeling of systems, the computers are more and more used while the other "media" (including the human intellect) carrying the models are abandoned. For the modeling of knowledges, i.e. of more or less general concepts (possibly used to model systems composed of instances of such concepts), the object-oriented programming is nowadays widely used. For the modeling of processes existing and developing in the time, computer simulation is used, the results of which are often presented by means of animation (graphical pictures moving and changing in time). Unfortunately, the object-oriented programming tools are commonly not designed to be of a great use for simulation while the programming tools for simulation do not enable their users to apply the advantages of the object-oriented programming. Nevertheless, there are exclusions enabling to use general concepts represented at a computer, for constructing simulation models and for their easy modification. They are described in the present paper, together with true definitions of modeling, simulation and object-oriented programming (including cases that do not satisfy the definitions but are dangerous to introduce misunderstanding), an outline of their applications and of their further development. In relation to the fact that computing systems are being introduced to be control components into a large spectrum of (technological, social and biological) systems, the attention is oriented to models of systems containing modeling components.

  2. Proton Exchange Membrane Fuel Cell Engineering Model Powerplant. Test Report: Benchmark Tests in Three Spatial Orientations

    Science.gov (United States)

    Loyselle, Patricia; Prokopius, Kevin

    2011-01-01

    Proton exchange membrane (PEM) fuel cell technology is the leading candidate to replace the aging alkaline fuel cell technology, currently used on the Shuttle, for future space missions. This test effort marks the final phase of a 5-yr development program that began under the Second Generation Reusable Launch Vehicle (RLV) Program, transitioned into the Next Generation Launch Technologies (NGLT) Program, and continued under Constellation Systems in the Exploration Technology Development Program. Initially, the engineering model (EM) powerplant was evaluated with respect to its performance as compared to acceptance tests carried out at the manufacturer. This was to determine the sensitivity of the powerplant performance to changes in test environment. In addition, a series of tests were performed with the powerplant in the original standard orientation. This report details the continuing EM benchmark test results in three spatial orientations as well as extended duration testing in the mission profile test. The results from these tests verify the applicability of PEM fuel cells for future NASA missions. The specifics of these different tests are described in the following sections.

  3. WLUP benchmarks

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2002-01-01

    The IAEA-WIMS Library Update Project (WLUP) is on the end stage. The final library will be released on 2002. It is a result of research and development made by more than ten investigators during 10 years. The organization of benchmarks for testing and choosing the best set of data has been coordinated by the author of this paper. It is presented the organization, name conventions, contents and documentation of WLUP benchmarks, and an updated list of the main parameters for all cases. First, the benchmarks objectives and types are given. Then, comparisons of results from different WIMSD libraries are included. Finally it is described the program QVALUE for analysis and plot of results. Some examples are given. The set of benchmarks implemented on this work is a fundamental tool for testing new multigroup libraries. (author)

  4. Stochastic modeling analysis and simulation

    CERN Document Server

    Nelson, Barry L

    1995-01-01

    A coherent introduction to the techniques for modeling dynamic stochastic systems, this volume also offers a guide to the mathematical, numerical, and simulation tools of systems analysis. Suitable for advanced undergraduates and graduate-level industrial engineers and management science majors, it proposes modeling systems in terms of their simulation, regardless of whether simulation is employed for analysis. Beginning with a view of the conditions that permit a mathematical-numerical analysis, the text explores Poisson and renewal processes, Markov chains in discrete and continuous time, se

  5. FASTBUS simulation models in VHDL

    International Nuclear Information System (INIS)

    Appelquist, G.

    1992-11-01

    Four hardware simulation models implementing the FASTBUS protocol are described. The models are written in the VHDL hardware description language to obtain portability, i.e. without relations to any specific simulator. They include two complete FASTBUS devices, a full-duplex segment interconnect and ancillary logic for the segment. In addition, master and slave models using a high level interface to describe FASTBUS operations, are presented. With these models different configurations of FASTBUS systems can be evaluated and the FASTBUS transactions of new devices can be verified. (au)

  6. Model reduction for circuit simulation

    CERN Document Server

    Hinze, Michael; Maten, E Jan W Ter

    2011-01-01

    Simulation based on mathematical models plays a major role in computer aided design of integrated circuits (ICs). Decreasing structure sizes, increasing packing densities and driving frequencies require the use of refined mathematical models, and to take into account secondary, parasitic effects. This leads to very high dimensional problems which nowadays require simulation times too large for the short time-to-market demands in industry. Modern Model Order Reduction (MOR) techniques present a way out of this dilemma in providing surrogate models which keep the main characteristics of the devi

  7. Numisheet2005 Benchmark Analysis on Forming of an Automotive Deck Lid Inner Panel: Benchmark 1

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao Jian

    2005-01-01

    Numerical simulations in sheet metal forming processes have been a very challenging topic in industry. There are many computer codes and modeling techniques existing today. However, there are many unknowns affecting the prediction accuracy. Systematic benchmark tests are needed to accelerate the future implementations and to provide as a reference. This report presents an international cooperative benchmark effort for an automotive deck lid inner panel. Predictions from simulations are analyzed and discussed against the corresponding experimental results. The correlations between accuracy of each parameter of interest are discussed in this report

  8. Greenhouse simulation models.

    NARCIS (Netherlands)

    Bot, G.P.A.

    1989-01-01

    A model is a representation of a real system to describe some properties i.e. internal factors of that system (out-puts) as function of some external factors (inputs). It is impossible to describe the relation between all internal factors (if even all internal factors could be defined) and all

  9. Code assessment and modelling for Design Basis Accident Analysis of the European sodium fast reactor design. Part I: System description, modelling and benchmarking

    International Nuclear Information System (INIS)

    Lázaro, A.; Ammirabile, L.; Bandini, G.; Darmet, G.; Massara, S.; Dufour, Ph.; Tosello, A.; Gallego, E.; Jimenez, G.; Mikityuk, K.; Schikorr, M.; Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Stempniewicz, M.

    2014-01-01

    Highlights: • Ten system-code models of the ESFR were developed in the frame of the CP-ESFR project. • Eight different thermohydraulic system codes adapted to sodium fast reactor's technology. • Benchmarking exercise settled to check the consistency of the calculations. • Upgraded system codes able to simulate the reactivity feedback and key safety parameters. -- Abstract: The new reactor concepts proposed in the Generation IV International Forum (GIF) are conceived to improve the use of natural resources, reduce the amount of high-level radioactive waste and excel in their reliability and safe operation. Among these novel designs sodium fast reactors (SFRs) stand out due to their technological feasibility as demonstrated in several countries during the last decades. As part of the contribution of EURATOM to GIF the CP-ESFR is a collaborative project with the objective, among others, to perform extensive analysis on safety issues involving renewed SFR demonstrator designs. The verification of computational tools able to simulate the plant behaviour under postulated accidental conditions by code-to-code comparison was identified as a key point to ensure reactor safety. In this line, several organizations employed coupled neutronic and thermal-hydraulic system codes able to simulate complex and specific phenomena involving multi-physics studies adapted to this particular fast reactor technology. In the “Introduction” of this paper the framework of this study is discussed, the second section describes the envisaged plant design and the commonly agreed upon modelling guidelines. The third section presents a comparative analysis of the calculations performed by each organisation applying their models and codes to a common agreed transient with the objective to harmonize the models as well as validating the implementation of all relevant physical phenomena in the different system codes

  10. Code assessment and modelling for Design Basis Accident Analysis of the European sodium fast reactor design. Part I: System description, modelling and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Lázaro, A., E-mail: aurelio.lazaro-chueca@ec.europa.eu [JRC-IET European Commission—Westerduinweg 3, PO Box-2, 1755 ZG Petten (Netherlands); UPV—Universidad Politecnica de Valencia, Cami de vera s/n-46002, Valencia (Spain); Ammirabile, L. [JRC-IET European Commission—Westerduinweg 3, PO Box-2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Massara, S. [EDF, 1 avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2-28006 Madrid (Spain); Mikityuk, K. [PSI—Paul Scherrer Institut, 5232 Villigen Switzerland (Switzerland); Schikorr, M.; Bubelis, E.; Ponomarev, A.; Kruessmann, R. [KIT—Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen Germany (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, PO Box 9034 6800 ES, Arnhem (Netherlands)

    2014-01-15

    Highlights: • Ten system-code models of the ESFR were developed in the frame of the CP-ESFR project. • Eight different thermohydraulic system codes adapted to sodium fast reactor's technology. • Benchmarking exercise settled to check the consistency of the calculations. • Upgraded system codes able to simulate the reactivity feedback and key safety parameters. -- Abstract: The new reactor concepts proposed in the Generation IV International Forum (GIF) are conceived to improve the use of natural resources, reduce the amount of high-level radioactive waste and excel in their reliability and safe operation. Among these novel designs sodium fast reactors (SFRs) stand out due to their technological feasibility as demonstrated in several countries during the last decades. As part of the contribution of EURATOM to GIF the CP-ESFR is a collaborative project with the objective, among others, to perform extensive analysis on safety issues involving renewed SFR demonstrator designs. The verification of computational tools able to simulate the plant behaviour under postulated accidental conditions by code-to-code comparison was identified as a key point to ensure reactor safety. In this line, several organizations employed coupled neutronic and thermal-hydraulic system codes able to simulate complex and specific phenomena involving multi-physics studies adapted to this particular fast reactor technology. In the “Introduction” of this paper the framework of this study is discussed, the second section describes the envisaged plant design and the commonly agreed upon modelling guidelines. The third section presents a comparative analysis of the calculations performed by each organisation applying their models and codes to a common agreed transient with the objective to harmonize the models as well as validating the implementation of all relevant physical phenomena in the different system codes.

  11. The benchmark halo giant HD 122563: CNO abundances revisited with three-dimensional hydrodynamic model stellar atmospheres

    Science.gov (United States)

    Collet, R.; Nordlund, Å.; Asplund, M.; Hayek, W.; Trampedach, R.

    2018-04-01

    We present an abundance analysis of the low-metallicity benchmark red giant star HD 122563 based on realistic, state-of-the-art, high-resolution, three-dimensional (3D) model stellar atmospheres including non-grey radiative transfer through opacity binning with 4, 12, and 48 bins. The 48-bin 3D simulation reaches temperatures lower by ˜300-500 K than the corresponding 1D model in the upper atmosphere. Small variations in the opacity binning, adopted line opacities, or chemical mixture can cool the photospheric layers by a further ˜100-300 K and alter the effective temperature by ˜100 K. A 3D local thermodynamic equilibrium (LTE) spectroscopic analysis of Fe I and Fe II lines gives discrepant results in terms of derived Fe abundance, which we ascribe to non-LTE effects and systematic errors on the stellar parameters. We also determine C, N, and O abundances by simultaneously fitting CH, OH, NH, and CN molecular bands and lines in the ultraviolet, visible, and infrared. We find a small positive 3D-1D abundance correction for carbon (+0.03 dex) and negative ones for nitrogen (-0.07 dex) and oxygen (-0.34 dex). From the analysis of the [O I] line at 6300.3 Å, we derive a significantly higher oxygen abundance than from molecular lines (+0.46 dex in 3D and +0.15 dex in 1D). We rule out important OH photodissociation effects as possible explanation for the discrepancy and note that lowering the surface gravity would reduce the oxygen abundance difference between molecular and atomic indicators.

  12. Benchmarking Brown Dwarf Models With a Non-irradiated Transiting Brown Dwarf in Praesepe

    Science.gov (United States)

    Beatty, Thomas; Marley, Mark; Line, Michael; Gizis, John

    2018-05-01

    We wish to use 9.4 hours of Spitzer time to observe two eclipses, one each at 3.6um and 4.5um, of the transiting brown dwarf AD 3116b. AD 3116b is a 54.2+/-4.3 MJ, 1.08+/-0.07 RJ object on a 1.98 day orbit about a 3200K M-dwarf. Uniquely, AD 3116 and its host star are both members of Praesepe, a 690+/-60 Myr old open cluster. AD 3116b is thus one of two transiting brown dwarfs for which we have a robust isochronal age that is not dependent upon brown dwarf evolutionary models, and the youngest brown dwarf for which this is the case. Importantly, the flux AD 3116b receives from its host star is only 0.7% of its predicted internal luminosity (Saumon & Marley 2008). This makes AD 3116b the first known transiting brown dwarf that simultaneously has a well-defined age, and that receives a negligible amount of external irradiation, and a unique laboratory to test radius and luminosity predictions from brown dwarf evolutionary models. Our goal is to measure the emission from the brown dwarf. AD 3116b should have large, 25 mmag, eclipse depths in the Spitzer bandpasses, and we expect to measure them with a precision of +/-0.50 mmag at 3.6um and +/-0.54 mmag at 4.5um. This will allow us to make measure AD 3116b?s internal effective temperature to +/-40K. We will also use the upcoming Gaia DR2 parallaxes to measure AD 3116b's absolute IRAC magnitudes and color, and hence determine the cloud properties of the atmosphere. As the only known brown dwarf with an independently measured mass, radius, and age, Spitzer measurements of AD 3116b's luminosity and clouds will provide a critical benchmark for brown dwarf observation and theory.

  13. A VRLA battery simulation model

    International Nuclear Information System (INIS)

    Pascoe, Phillip E.; Anbuky, Adnan H.

    2004-01-01

    A valve regulated lead acid (VRLA) battery simulation model is an invaluable tool for the standby power system engineer. The obvious use for such a model is to allow the assessment of battery performance. This may involve determining the influence of cells suffering from state of health (SOH) degradation on the performance of the entire string, or the running of test scenarios to ascertain the most suitable battery size for the application. In addition, it enables the engineer to assess the performance of the overall power system. This includes, for example, running test scenarios to determine the benefits of various load shedding schemes. It also allows the assessment of other power system components, either for determining their requirements and/or vulnerabilities. Finally, a VRLA battery simulation model is vital as a stand alone tool for educational purposes. Despite the fundamentals of the VRLA battery having been established for over 100 years, its operating behaviour is often poorly understood. An accurate simulation model enables the engineer to gain a better understanding of VRLA battery behaviour. A system level multipurpose VRLA battery simulation model is presented. It allows an arbitrary battery (capacity, SOH, number of cells and number of strings) to be simulated under arbitrary operating conditions (discharge rate, ambient temperature, end voltage, charge rate and initial state of charge). The model accurately reflects the VRLA battery discharge and recharge behaviour. This includes the complex start of discharge region known as the coup de fouet

  14. Sensitivity Analysis of Simulation Models

    NARCIS (Netherlands)

    Kleijnen, J.P.C.

    2009-01-01

    This contribution presents an overview of sensitivity analysis of simulation models, including the estimation of gradients. It covers classic designs and their corresponding (meta)models; namely, resolution-III designs including fractional-factorial two-level designs for first-order polynomial

  15. Computer Based Modelling and Simulation

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 3. Computer Based Modelling and Simulation - Modelling Deterministic Systems. N K Srinivasan. General Article Volume 6 Issue 3 March 2001 pp 46-54. Fulltext. Click here to view fulltext PDF. Permanent link:

  16. Preliminary assessment of Geant4 HP models and cross section libraries by reactor criticality benchmark calculations

    DEFF Research Database (Denmark)

    Cai, Xiao-Xiao; Llamas-Jansa, Isabel; Mullet, Steven

    2013-01-01

    Geant4 is an open source general purpose simulation toolkit for particle transportation in matter. Since the extension of the thermal scattering model in Geant4.9.5 and the availability of the IAEA HP model cross section libraries, it is now possible to extend the application area of Geant4......, U and O in uranium dioxide, Al metal, Be metal, and Fe metal. The native HP cross section library G4NDL does not include data for elements with atomic number larger than 92. Therefore, transuranic elements, which have impacts for a realistic reactor, can not be simulated by the combination of the HP...... models and the G4NDL library. However, cross sections of those missing isotopes were made available recently through the IAEA project “new evaluated neutron cross section libraries for Geant4”....

  17. EPRI depletion benchmark calculations using PARAGON

    International Nuclear Information System (INIS)

    Kucukboyaci, Vefa N.

    2015-01-01

    Highlights: • PARAGON depletion calculations are benchmarked against the EPRI reactivity decrement experiments. • Benchmarks cover a wide range of enrichments, burnups, cooling times, and burnable absorbers, and different depletion and storage conditions. • Results from PARAGON-SCALE scheme are more conservative relative to the benchmark data. • ENDF/B-VII based data reduces the excess conservatism and brings the predictions closer to benchmark reactivity decrement values. - Abstract: In order to conservatively apply burnup credit in spent fuel pool criticality analyses, code validation for both fresh and used fuel is required. Fresh fuel validation is typically done by modeling experiments from the “International Handbook.” A depletion validation can determine a bias and bias uncertainty for the worth of the isotopes not found in the fresh fuel critical experiments. Westinghouse’s burnup credit methodology uses PARAGON™ (Westinghouse 2-D lattice physics code) and its 70-group cross-section library, which have been benchmarked, qualified, and licensed both as a standalone transport code and as a nuclear data source for core design simulations. A bias and bias uncertainty for the worth of depletion isotopes, however, are not available for PARAGON. Instead, the 5% decrement approach for depletion uncertainty is used, as set forth in the Kopp memo. Recently, EPRI developed a set of benchmarks based on a large set of power distribution measurements to ascertain reactivity biases. The depletion reactivity has been used to create 11 benchmark cases for 10, 20, 30, 40, 50, and 60 GWd/MTU and 3 cooling times 100 h, 5 years, and 15 years. These benchmark cases are analyzed with PARAGON and the SCALE package and sensitivity studies are performed using different cross-section libraries based on ENDF/B-VI.3 and ENDF/B-VII data to assess that the 5% decrement approach is conservative for determining depletion uncertainty

  18. An Evaluation of Fault Tolerant Wind Turbine Control Schemes applied to a Benchmark Model

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2014-01-01

    Reliability and availability of modern wind turbines increases in importance as the ratio in the world's power supply increases. This is important in order to increase the energy generated per unit and their lowering cost of energy and as well to ensure availability of generated power, which helps...... on this benchmark and is especially good accommodating sensors faults. The two other evaluated solutions do also well accommodating sensors faults, but have some issues which should be worked on, before they can be considered as a full solution to the benchmark problem....

  19. CEC thermal-hydraulic benchmark exercise on Fiploc verification experiment F2 in Battelle model containment. Experimental phases 2, 3 and 4. Results of comparisons

    International Nuclear Information System (INIS)

    Fischer, K.; Schall, M.; Wolf, L.

    1993-01-01

    The present final report comprises the major results of Phase II of the CEC thermal-hydraulic benchmark exercise on Fiploc verification experiment F2 in the Battelle model containment, experimental phases 2, 3 and 4, which was organized and sponsored by the Commission of the European Communities for the purpose of furthering the understanding and analysis of long-term thermal-hydraulic phenomena inside containments during and after severe core accidents. This benchmark exercise received high European attention with eight organizations from six countries participating with eight computer codes during phase 2. Altogether 18 results from computer code runs were supplied by the participants and constitute the basis for comparisons with the experimental data contained in this publication. This reflects both the high technical interest in, as well as the complexity of, this CEC exercise. Major comparison results between computations and data are reported on all important quantities relevant for containment analyses during long-term transients. These comparisons comprise pressure, steam and air content, velocities and their directions, heat transfer coefficients and saturation ratios. Agreements and disagreements are discussed for each participating code/institution, conclusions drawn and recommendations provided. The phase 2 CEC benchmark exercise provided an up-to-date state-of-the-art status review of the thermal-hydraulic capabilities of present computer codes for containment analyses. This exercise has shown that all of the participating codes can simulate the important global features of the experiment correctly, like: temperature stratification, pressure and leakage, heat transfer to structures, relative humidity, collection of sump water. Several weaknesses of individual codes were identified, and this may help to promote their development. As a general conclusion it may be said that while there is still a wide area of necessary extensions and improvements, the

  20. Benchmark Comparison of Dual- and Quad-Core Processor Linux Clusters with Two Global Climate Modeling Workloads

    Science.gov (United States)

    McGalliard, James

    2008-01-01

    This viewgraph presentation details the science and systems environments that NASA High End computing program serves. Included is a discussion of the workload that is involved in the processing for the Global Climate Modeling. The Goddard Earth Observing System Model, Version 5 (GEOS-5) is a system of models integrated using the Earth System Modeling Framework (ESMF). The GEOS-5 system was used for the Benchmark tests, and the results of the tests are shown and discussed. Tests were also run for the Cubed Sphere system, results for these test are also shown.

  1. Vehicle dynamics modeling and simulation

    CERN Document Server

    Schramm, Dieter; Bardini, Roberto

    2014-01-01

    The authors examine in detail the fundamentals and mathematical descriptions of the dynamics of automobiles. In this context different levels of complexity will be presented, starting with basic single-track models up to complex three-dimensional multi-body models. A particular focus is on the process of establishing mathematical models on the basis of real cars and the validation of simulation results. The methods presented are explained in detail by means of selected application scenarios.

  2. Neutronics analysis of the International Thermonuclear Experimental Reactor (ITER) MCNP ''Benchmark CAD Model'' with the ATTILA discrete ordinance code

    International Nuclear Information System (INIS)

    Youssef, M.Z.; Feder, R.; Davis, I.

    2007-01-01

    The ITER IT has adopted the newly developed FEM, 3-D, and CAD-based Discrete Ordinates code, ATTILA for the neutronics studies contingent on its success in predicting key neutronics parameters and nuclear field according to the stringent QA requirements set forth by the Management and Quality Program (MQP). ATTILA has the advantage of providing a full flux and response functions mapping everywhere in one run where components subjected to excessive radiation level and strong streaming paths can be identified. The ITER neutronics community had agreed to use a standard CAD model of ITER (40 degree sector, denoted ''Benchmark CAD Model'') to compare results for several responses selected for calculation benchmarking purposes to test the efficiency and accuracy of the CAD-MCNP approach developed by each party. Since ATTILA seems to lend itself as a powerful design tool with minimal turnaround time, it was decided to benchmark this model with ATTILA as well and compare the results to those obtained with the CAD MCNP calculations. In this paper we report such comparison for five responses, namely: (1) Neutron wall load on the surface of the 18 shield blanket module (SBM), (2) Neutron flux and nuclear heating rate in the divertor cassette, (3) nuclear heating rate in the winding pack of the inner leg of the TF coil, (4) Radial flux profile across dummy port plug and shield plug placed in the equatorial port, and (5) Flux at seven point locations situated behind the equatorial port plug. (orig.)

  3. Benchmarking of thermalhydraulic loop models for lead-alloy-cooled advanced nuclear energy systems. Phase I: Isothermal forced convection case

    International Nuclear Information System (INIS)

    2012-06-01

    Under the auspices of the NEA Nuclear Science Committee (NSC), the Working Party on Scientific Issues of the Fuel Cycle (WPFC) has been established to co-ordinate scientific activities regarding various existing and advanced nuclear fuel cycles, including advanced reactor systems, associated chemistry and flowsheets, development and performance of fuel and materials and accelerators and spallation targets. The WPFC has different expert groups to cover a wide range of scientific issues in the field of nuclear fuel cycle. The Task Force on Lead-Alloy-Cooled Advanced Nuclear Energy Systems (LACANES) was created in 2006 to study thermal-hydraulic characteristics of heavy liquid metal coolant loop. The objectives of the task force are to (1) validate thermal-hydraulic loop models for application to LACANES design analysis in participating organisations, by benchmarking with a set of well-characterised lead-alloy coolant loop test data, (2) establish guidelines for quantifying thermal-hydraulic modelling parameters related to friction and heat transfer by lead-alloy coolant and (3) identify specific issues, either in modelling and/or in loop testing, which need to be addressed via possible future work. Nine participants from seven different institutes participated in the first phase of the benchmark. This report provides details of the benchmark specifications, method and code characteristics and results of the preliminary study: pressure loss coefficient and Phase-I. A comparison and analysis of the results will be performed together with Phase-II

  4. Numerical simulation of Higgs models

    International Nuclear Information System (INIS)

    Jaster, A.

    1995-10-01

    The SU(2) Higgs and the Schwinger model on the lattice were analysed. Numerical simulations of the SU(2) Higgs model were performed to study the finite temperature electroweak phase transition. With the help of the multicanonical method the distribution of an order parameter at the phase transition point was measured. This was used to obtain the order of the phase transition and the value of the interface tension with the histogram method. Numerical simulations were also performed at zero temperature to perform renormalization. The measured values for the Wilson loops were used to determine the static potential and from this the renormalized gauge coupling. The Schwinger model was simulated at different gauge couplings to analyse the properties of the Kaplan-Shamir fermions. The prediction that the mass parameter gets only multiplicative renormalization was tested and verified. (orig.)

  5. Stochastic models: theory and simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Field, Richard V., Jr.

    2008-03-01

    Many problems in applied science and engineering involve physical phenomena that behave randomly in time and/or space. Examples are diverse and include turbulent flow over an aircraft wing, Earth climatology, material microstructure, and the financial markets. Mathematical models for these random phenomena are referred to as stochastic processes and/or random fields, and Monte Carlo simulation is the only general-purpose tool for solving problems of this type. The use of Monte Carlo simulation requires methods and algorithms to generate samples of the appropriate stochastic model; these samples then become inputs and/or boundary conditions to established deterministic simulation codes. While numerous algorithms and tools currently exist to generate samples of simple random variables and vectors, no cohesive simulation tool yet exists for generating samples of stochastic processes and/or random fields. There are two objectives of this report. First, we provide some theoretical background on stochastic processes and random fields that can be used to model phenomena that are random in space and/or time. Second, we provide simple algorithms that can be used to generate independent samples of general stochastic models. The theory and simulation of random variables and vectors is also reviewed for completeness.

  6. Comparative Modeling and Benchmarking Data Sets for Human Histone Deacetylases and Sirtuin Families

    Science.gov (United States)

    Xia, Jie; Tilahun, Ermias Lemma; Kebede, Eyob Hailu; Reid, Terry-Elinor; Zhang, Liangren; Wang, Xiang Simon

    2015-01-01

    Histone Deacetylases (HDACs) are an important class of drug targets for the treatment of cancers, neurodegenerative diseases and other types of diseases. Virtual screening (VS) has become fairly effective approaches for drug discovery of novel and highly selective Histone Deacetylases Inhibitors (HDACIs). To facilitate the process, we constructed the Maximal Unbiased Benchmarking Data Sets for HDACs (MUBD-HDACs) using our recently published methods that were originally developed for building unbiased benchmarking sets for ligand-based virtual screening (LBVS). The MUBD-HDACs covers all 4 Classes including Class III (Sirtuins family) and 14 HDACs isoforms, composed of 631 inhibitors and 24,609 unbiased decoys. Its ligand sets have been validated extensively as chemically diverse, while the decoy sets were shown to be property-matching with ligands and maximal unbiased in terms of “artificial enrichment” and “analogue bias”. We also conducted comparative studies with DUD-E and DEKOIS 2.0 sets against HDAC2 and HDAC8 targets, and demonstrate that our MUBD-HDACs is unique in that it can be applied unbiasedly to both LBVS and SBVS approaches. In addition, we defined a novel metric, i.e. NLBScore, to detect the “2D bias” and “LBVS favorable” effect within the benchmarking sets. In summary, MUBD-HDACs is the only comprehensive and maximal-unbiased benchmark data sets for HDACs (including Sirtuins) that is available so far. MUBD-HDACs is freely available at http://www.xswlab.org/. PMID:25633490

  7. Benchmarking in European Higher Education: A Step beyond Current Quality Models

    Science.gov (United States)

    Burquel, Nadine; van Vught, Frans

    2010-01-01

    This paper presents the findings of a two-year EU-funded project (DG Education and Culture) "Benchmarking in European Higher Education", carried out from 2006 to 2008 by a consortium led by the European Centre for Strategic Management of Universities (ESMU), with the Centre for Higher Education Development, UNESCO-CEPES, and the…

  8. Introduction of new road pavement response modelling software by means of benchmarking

    CSIR Research Space (South Africa)

    Maina, JW

    2008-07-01

    Full Text Available . Newly developed Finite Element Method for Pavement Analysis (FEMPA) software, which is currently only available for use in a research environment, is also benchmarked against these other packages. The results show that both the GAMES and FEMPA packages...

  9. Comparative modeling and benchmarking data sets for human histone deacetylases and sirtuin families.

    Science.gov (United States)

    Xia, Jie; Tilahun, Ermias Lemma; Kebede, Eyob Hailu; Reid, Terry-Elinor; Zhang, Liangren; Wang, Xiang Simon

    2015-02-23

    Histone deacetylases (HDACs) are an important class of drug targets for the treatment of cancers, neurodegenerative diseases, and other types of diseases. Virtual screening (VS) has become fairly effective approaches for drug discovery of novel and highly selective histone deacetylase inhibitors (HDACIs). To facilitate the process, we constructed maximal unbiased benchmarking data sets for HDACs (MUBD-HDACs) using our recently published methods that were originally developed for building unbiased benchmarking sets for ligand-based virtual screening (LBVS). The MUBD-HDACs cover all four classes including Class III (Sirtuins family) and 14 HDAC isoforms, composed of 631 inhibitors and 24609 unbiased decoys. Its ligand sets have been validated extensively as chemically diverse, while the decoy sets were shown to be property-matching with ligands and maximal unbiased in terms of "artificial enrichment" and "analogue bias". We also conducted comparative studies with DUD-E and DEKOIS 2.0 sets against HDAC2 and HDAC8 targets and demonstrate that our MUBD-HDACs are unique in that they can be applied unbiasedly to both LBVS and SBVS approaches. In addition, we defined a novel metric, i.e. NLBScore, to detect the "2D bias" and "LBVS favorable" effect within the benchmarking sets. In summary, MUBD-HDACs are the only comprehensive and maximal-unbiased benchmark data sets for HDACs (including Sirtuins) that are available so far. MUBD-HDACs are freely available at http://www.xswlab.org/ .

  10. Plasma modelling and numerical simulation

    International Nuclear Information System (INIS)

    Van Dijk, J; Kroesen, G M W; Bogaerts, A

    2009-01-01

    Plasma modelling is an exciting subject in which virtually all physical disciplines are represented. Plasma models combine the electromagnetic, statistical and fluid dynamical theories that have their roots in the 19th century with the modern insights concerning the structure of matter that were developed throughout the 20th century. The present cluster issue consists of 20 invited contributions, which are representative of the state of the art in plasma modelling and numerical simulation. These contributions provide an in-depth discussion of the major theories and modelling and simulation strategies, and their applications to contemporary plasma-based technologies. In this editorial review, we introduce and complement those papers by providing a bird's eye perspective on plasma modelling and discussing the historical context in which it has surfaced. (editorial review)

  11. Benchmarking Using Basic DBMS Operations

    Science.gov (United States)

    Crolotte, Alain; Ghazal, Ahmad

    The TPC-H benchmark proved to be successful in the decision support area. Many commercial database vendors and their related hardware vendors used these benchmarks to show the superiority and competitive edge of their products. However, over time, the TPC-H became less representative of industry trends as vendors keep tuning their database to this benchmark-specific workload. In this paper, we present XMarq, a simple benchmark framework that can be used to compare various software/hardware combinations. Our benchmark model is currently composed of 25 queries that measure the performance of basic operations such as scans, aggregations, joins and index access. This benchmark model is based on the TPC-H data model due to its maturity and well-understood data generation capability. We also propose metrics to evaluate single-system performance and compare two systems. Finally we illustrate the effectiveness of this model by showing experimental results comparing two systems under different conditions.

  12. Performance modeling & simulation of complex systems (A systems engineering design & analysis approach)

    Science.gov (United States)

    Hall, Laverne

    1995-01-01

    Modeling of the Multi-mission Image Processing System (MIPS) will be described as an example of the use of a modeling tool to design a distributed system that supports multiple application scenarios. This paper examines: (a) modeling tool selection, capabilities, and operation (namely NETWORK 2.5 by CACl), (b) pointers for building or constructing a model and how the MIPS model was developed, (c) the importance of benchmarking or testing the performance of equipment/subsystems being considered for incorporation the design/architecture, (d) the essential step of model validation and/or calibration using the benchmark results, (e) sample simulation results from the MIPS model, and (f) how modeling and simulation analysis affected the MIPS design process by having a supportive and informative impact.

  13. VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS

    Directory of Open Access Journals (Sweden)

    Tagor Malem Sembiring

    2015-10-01

    Full Text Available ABSTRACT VALIDATION OF FULL CORE GEOMETRY MODEL OF THE NODAL3 CODE IN THE PWR TRANSIENT BENCHMARK PROBLEMS. The coupled neutronic and thermal-hydraulic (T/H code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR ejection at peripheral core using a full core geometry model, the C1 and C2 cases.  By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM and the improved quasistatic method (IQS. All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16% occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4% for C2 case.  All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. Keywords: nodal method, coupled neutronic and thermal-hydraulic code, PWR, transient case, control rod ejection.   ABSTRAK VALIDASI MODEL GEOMETRI TERAS PENUH PAKET PROGRAM NODAL3 DALAM PROBLEM BENCHMARK GAYUT WAKTU PWR. Paket program kopel neutronik dan termohidraulika (T/H, NODAL3, telah divalidasi dengan beberapa kasus benchmark statis PWR dan kasus benchmark gayut waktu PWR NEACRP.  Akan tetapi, paket program NODAL3 belum divalidasi dalam kasus benchmark gayut waktu akibat penarikan sebuah perangkat batang kendali (CR di tepi teras menggunakan model geometri teras penuh, yaitu kasus C1 dan C2. Dengan penelitian ini, akurasi paket program

  14. Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum

    CERN Document Server

    Abercrombie, Daniel; Akilli, Ece; Alcaraz Maestre, Juan; Allen, Brandon; Alvarez Gonzalez, Barbara; Andrea, Jeremy; Arbey, Alexandre; Azuelos, Georges; Azzi, Patrizia; Backovic, Mihailo; Bai, Yang; Banerjee, Swagato; Beacham, James; Belyaev, Alexander; Boveia, Antonio; Brennan, Amelia Jean; Buchmueller, Oliver; Buckley, Matthew R.; Busoni, Giorgio; Buttignol, Michael; Cacciapaglia, Giacomo; Caputo, Regina; Carpenter, Linda; Filipe Castro, Nuno; Gomez Ceballos, Guillelmo; Cheng, Yangyang; Chou, John Paul; Cortes Gonzalez, Arely; Cowden, Chris; D'Eramo, Francesco; De Cosa, Annapaola; De Gruttola, Michele; De Roeck, Albert; De Simone, Andrea; Deandrea, Aldo; Demiragli, Zeynep; DiFranzo, Anthony; Doglioni, Caterina; du Pree, Tristan; Erbacher, Robin; Erdmann, Johannes; Fischer, Cora; Flaecher, Henning; Fox, Patrick J.; Fuks, Benjamin; Genest, Marie-Helene; Gomber, Bhawna; Goudelis, Andreas; Gramling, Johanna; Gunion, John; Hahn, Kristian; Haisch, Ulrich; Harnik, Roni; Harris, Philip C.; Hoepfner, Kerstin; Hoh, Siew Yan; Hsu, Dylan George; Hsu, Shih-Chieh; Iiyama, Yutaro; Ippolito, Valerio; Jacques, Thomas; Ju, Xiangyang; Kahlhoefer, Felix; Kalogeropoulos, Alexis; Kaplan, Laser Seymour; Kashif, Lashkar; Khoze, Valentin V.; Khurana, Raman; Kotov, Khristian; Kovalskyi, Dmytro; Kulkarni, Suchita; Kunori, Shuichi; Kutzner, Viktor; Lee, Hyun Min; Lee, Sung-Won; Liew, Seng Pei; Lin, Tongyan; Lowette, Steven; Madar, Romain; Malik, Sarah; Maltoni, Fabio; Martinez Perez, Mario; Mattelaer, Olivier; Mawatari, Kentarou; McCabe, Christopher; Megy, Theo; Morgante, Enrico; Mrenna, Stephen; Narayanan, Siddharth M.; Nelson, Andy; Novaes, Sergio F.; Padeken, Klaas Ole; Pani, Priscilla; Papucci, Michele; Paulini, Manfred; Paus, Christoph; Pazzini, Jacopo; Penning, Bjorn; Peskin, Michael E.; Pinna, Deborah; Procura, Massimiliano; Qazi, Shamona F.; Racco, Davide; Re, Emanuele; Riotto, Antonio; Rizzo, Thomas G.; Roehrig, Rainer; Salek, David; Sanchez Pineda, Arturo; Sarkar, Subir; Schmidt, Alexander; Schramm, Steven Randolph; Shepherd, William; Singh, Gurpreet; Soffi, Livia; Srimanobhas, Norraphat; Sung, Kevin; Tait, Tim M.P.; Theveneaux-Pelzer, Timothee; Thomas, Marc; Tosi, Mia; Trocino, Daniele; Undleeb, Sonaina; Vichi, Alessandro; Wang, Fuquan; Wang, Lian-Tao; Wang, Ren-Jie; Whallon, Nikola; Worm, Steven; Wu, Mengqing; Wu, Sau Lan; Yang, Hongtao; Yang, Yong; Yu, Shin-Shan; Zaldivar, Bryan; Zanetti, Marco; Zhang, Zhiqing; Zucchetta, Alberto

    2015-01-01

    This document is the final report of the ATLAS-CMS Dark Matter Forum, a forum organized by the ATLAS and CMS collaborations with the participation of experts on theories of Dark Matter, to select a minimal basis set of dark matter simplified models that should support the design of the early LHC Run-2 searches. A prioritized, compact set of benchmark models is proposed, accompanied by studies of the parameter space of these models and a repository of generator implementations. This report also addresses how to apply the Effective Field Theory formalism for collider searches and present the results of such interpretations.

  15. Should the IDC-9 Trauma Mortality Prediction Model become the new paradigm for benchmarking trauma outcomes?

    Science.gov (United States)

    Haider, Adil H; Villegas, Cassandra V; Saleem, Taimur; Efron, David T; Stevens, Kent A; Oyetunji, Tolulope A; Cornwell, Edward E; Bowman, Stephen; Haack, Sara; Baker, Susan P; Schneider, Eric B

    2012-06-01

    Optimum quantification of injury severity remains an imprecise science with a need for improvement. The accuracy of the criterion standard Injury Severity Score (ISS) worsens as a patient's injury severity increases, especially among patients with penetrating trauma. The objective of this study was to comprehensively compare the mortality prediction ability of three anatomic injury severity indices: the ISS, the New ISS (NISS), and the DRG International Classification of Diseases-9th Rev.-Trauma Mortality Prediction Model (TMPM-ICD-9), a recently developed contemporary injury assessment model. Retrospective analysis of patients in the National Trauma Data Bank from 2007 to 2008. The TMPM-ICD-9 values were computed and compared with the ISS and NISS for each patient using in-hospital mortality after trauma as the outcome measure. Discrimination and calibration were compared using the area under the receiver operator characteristic curve. Subgroup analysis was performed to compare each score across varying ranges of injury severity and across different types of injury. A total of 533,898 patients were identified with a crude mortality rate of 4.7%. The ISS and NISS performed equally in the groups with minor (ISS, 1-8) and moderate (ISS, 9-15) injuries, regardless of the injury type. However, in the populations with severe (ISS, 16-24) and very severe (ISS, ≥ 25) injuries for all injury types, the NISS predicted mortality better than the ISS did. The TMPM-ICD-9 outperformed both the NISS and ISS almost consistently. The NISS and TMPM-ICD-9 are both superior predictors of mortality as compared with the ISS. The immediate adoption of NISS for evaluating trauma outcomes using trauma registry data is recommended. The TMPM-ICD-9 may be an even better measure of human injury, and its use in administrative or nonregistry data is suggested. Further research on its attributes is recommended because it has the potential to become the basis for benchmarking trauma outcomes

  16. Model for Simulation Atmospheric Turbulence

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    1976-01-01

    A method that produces realistic simulations of atmospheric turbulence is developed and analyzed. The procedure makes use of a generalized spectral analysis, often called a proper orthogonal decomposition or the Karhunen-Loève expansion. A set of criteria, emphasizing a realistic appearance...... eigenfunctions and estimates of the distributions of the corresponding expansion coefficients. The simulation method utilizes the eigenfunction expansion procedure to produce preliminary time histories of the three velocity components simultaneously. As a final step, a spectral shaping procedure is then applied....... The method is unique in modeling the three velocity components simultaneously, and it is found that important cross-statistical features are reasonably well-behaved. It is concluded that the model provides a practical, operational simulator of atmospheric turbulence....

  17. Code-To-Code Benchmarking Of The Porflow And GoldSim Contaminant Transport Models Using A Simple 1-D Domain - 11191

    International Nuclear Information System (INIS)

    Hiergesell, R.; Taylor, G.

    2010-01-01

    An investigation was conducted to compare and evaluate contaminant transport results of two model codes, GoldSim and Porflow, using a simple 1-D string of elements in each code. Model domains were constructed to be identical with respect to cell numbers and dimensions, matrix material, flow boundary and saturation conditions. One of the codes, GoldSim, does not simulate advective movement of water; therefore the water flux term was specified as a boundary condition. In the other code, Porflow, a steady-state flow field was computed and contaminant transport was simulated within that flow-field. The comparisons were made solely in terms of the ability of each code to perform contaminant transport. The purpose of the investigation was to establish a basis for, and to validate follow-on work that was conducted in which a 1-D GoldSim model developed by abstracting information from Porflow 2-D and 3-D unsaturated and saturated zone models and then benchmarked to produce equivalent contaminant transport results. A handful of contaminants were selected for the code-to-code comparison simulations, including a non-sorbing tracer and several long- and short-lived radionuclides exhibiting both non-sorbing to strongly-sorbing characteristics with respect to the matrix material, including several requiring the simulation of in-growth of daughter radionuclides. The same diffusion and partitioning coefficients associated with each contaminant and the half-lives associated with each radionuclide were incorporated into each model. A string of 10-elements, having identical spatial dimensions and properties, were constructed within each code. GoldSim's basic contaminant transport elements, Mixing cells, were utilized in this construction. Sand was established as the matrix material and was assigned identical properties (e.g. bulk density, porosity, saturated hydraulic conductivity) in both codes. Boundary conditions applied included an influx of water at the rate of 40 cm/yr at one

  18. Benchmarking validations for dust mobilization models of GASFLOW code. EFDA reference: TW5-TSS-SEA 3.5 D4

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Z.; Breitung, W. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. fuer Kern- und Energietechnik; Travis, J.R. [Ingenieur Buero DuBois-Pitzer-Travis, Offenbach (Germany). Programm Kernfusion

    2008-08-15

    The governing equations of particle transport are defined and solved in the computational fluid dynamics code of GASFLOW. The particle motion model is based on the discrete Lagrangian approach being applicable to model the dust mobilization in the dilute dust / gas mixture, which is being expected to exist in the vacuum vessel of the ITER. A particle turbulent dispersion model and models of particle / boundary interactions, like rebound / deposition and entrainment, are defined as well. The deterministic particle trajectories obtained by GASFLOW simulations are verified against analytical solutions in both Cartesian and cylindrical systems. The stochastic particle dispersions caused by the turbulence in gas flow are compared between light and heavy particles in straight and curved ducts. Green's function method is applied to develop a bunch of theoretical solutions about particle concentration distributions in advective flows with different source / boundary conditions. The analytical solutions supply benchmarking verifications of the particle model of GASFLOW. Finally a graphite dust dispersion experiment is simulated by using GASFLOW. The comparison between the computed dust cloud developing process and the experimental one manifests that the particle model can produce the dust mobilization both qualitatively and quantitatively (orig.)

  19. Benchmarking of the saturated-zone module associated with three risk assessment models: RESRAD, MMSOILS, and MEPAS

    International Nuclear Information System (INIS)

    Whelan, Gene; Mcdonald, J P.; Gnanapragasam, Emmanuel K.; Laniak, Gerard F.; Lew, Christine S.; Mills, William B.; Yu, C

    1998-01-01

    A comprehensive benchmarking is being performed between three multimedia risk assessment models: RESRAD, MMSOILS, and MEPAS. Each multimedia model is comprised of a suite of modules (e.g., groundwater, air, surface water, exposure, and risk/hazard), all of which can impact the estimation of human-health risk. As a component of the comprehensive benchmarking exercise, the saturated-zone modules of each model were applied to an environmental release scenario, where uranium-234 was released from the waste site to a saturated zone. Uranium-234 time-varying emission rates exiting from the source and concentrations at three downgradient locations (0 m, 150 m, and 1500 m) are compared for each multimedia model. Time-Varying concentrations for uranium-234 decay products (i.e., thorium-230, radium-226, and lead-210) at the 1500-m location are also presented. Different results are reported for RESRAD, MMSOILS, and MEPAS, which are solely due to the assumptions and mathematical constructs inherently built into each model, thereby impacting the potential risks predicted by each model. Although many differences were identified between the models, differences that impacted these benchmarking results the most are as follows: (1) RESRAD transports its contaminants by pure translation, and MMSOILS and MEPAS solve the one-dimensional advective, three-dimensional dispersive equation. (2) Due to the manner in which the retardation factor is defined, RESRAD contaminant velocities will always be faster than MMSOILS or MEPAS. (3) RESRAD uses a dilution factor to account for a withdrawal well; MMSOILS and MEPAS were designed to calculate in-situ concentrations at a receptor location. (4) RESRAD allows for decay products to travel at different velocities, while MEPAS assumes the decay products travel at the same speed as their parents. MMSOILS does not account for decay products and assumes degradation/decay only in the aqueous phase

  20. Benchmarking electricity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Watts, K. [Department of Justice and Attorney-General, QLD (Australia)

    1995-12-31

    Benchmarking has been described as a method of continuous improvement that involves an ongoing and systematic evaluation and incorporation of external products, services and processes recognised as representing best practice. It is a management tool similar to total quality management (TQM) and business process re-engineering (BPR), and is best used as part of a total package. This paper discusses benchmarking models and approaches and suggests a few key performance indicators that could be applied to benchmarking electricity distribution utilities. Some recent benchmarking studies are used as examples and briefly discussed. It is concluded that benchmarking is a strong tool to be added to the range of techniques that can be used by electricity distribution utilities and other organizations in search of continuous improvement, and that there is now a high level of interest in Australia. Benchmarking represents an opportunity for organizations to approach learning from others in a disciplined and highly productive way, which will complement the other micro-economic reforms being implemented in Australia. (author). 26 refs.

  1. Benchmark simulation of turbulent flow through a staggered tube bundle to support CFD as a reactor design tool. Part 1. SRANS CFD simulation

    International Nuclear Information System (INIS)

    Ridluan, Artit; Tokuhiro, Akira

    2008-01-01

    Time-invariant and time-variant numerical simulations of flow through a staggered tube bundle array, idealizing the lower plenum (LP) subsystem configuration of a very high temperature reactor (VHTR), were performed. In Part 1, the CFD prediction of fully periodic isothermal tube-bundle flow using steady Reynolds-averaged Navier-Stokes (SRANS) equations with common turbulence models was investigated at a Reynolds number (Re) of 1.8x10 4 , based on the tube diameter and inlet velocity. Three first-order turbulence models, standard k-ε turbulence, renormalized group (RNG) k-ε, and shear stress transport (SST) k-ω models, and a second-order turbulence model, Reynolds stress model (RSM), were considered. A comparison of CFD simulations and experiment results was made at five locations along (x,y) coordinates. The SRANS simulation showed that no universal model predicted the turbulent Reynolds stresses, and generally, the results were marginal to poor. This is because these models cannot accurately model the periodic, spatiotemporal nature of the complex wake flow structure. (author)

  2. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark

    DEFF Research Database (Denmark)

    Hansen, David Christoffer; Seco, Joao; Sørensen, Thomas Sangild

    2015-01-01

    Background. Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in...... development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. Material and methods. A CT calibration phantom and an abdomen cross section...... phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling...

  3. Shielding Benchmark Computational Analysis

    International Nuclear Information System (INIS)

    Hunter, H.T.; Slater, C.O.; Holland, L.B.; Tracz, G.; Marshall, W.J.; Parsons, J.L.

    2000-01-01

    Over the past several decades, nuclear science has relied on experimental research to verify and validate information about shielding nuclear radiation for a variety of applications. These benchmarks are compared with results from computer code models and are useful for the development of more accurate cross-section libraries, computer code development of radiation transport modeling, and building accurate tests for miniature shielding mockups of new nuclear facilities. When documenting measurements, one must describe many parts of the experimental results to allow a complete computational analysis. Both old and new benchmark experiments, by any definition, must provide a sound basis for modeling more complex geometries required for quality assurance and cost savings in nuclear project development. Benchmarks may involve one or many materials and thicknesses, types of sources, and measurement techniques. In this paper the benchmark experiments of varying complexity are chosen to study the transport properties of some popular materials and thicknesses. These were analyzed using three-dimensional (3-D) models and continuous energy libraries of MCNP4B2, a Monte Carlo code developed at Los Alamos National Laboratory, New Mexico. A shielding benchmark library provided the experimental data and allowed a wide range of choices for source, geometry, and measurement data. The experimental data had often been used in previous analyses by reputable groups such as the Cross Section Evaluation Working Group (CSEWG) and the Organization for Economic Cooperation and Development/Nuclear Energy Agency Nuclear Science Committee (OECD/NEANSC)

  4. Benchmark Evaluation of HTR-PROTEUS Pebble Bed Experimental Program

    International Nuclear Information System (INIS)

    Bess, John D.; Montierth, Leland; Köberl, Oliver

    2014-01-01

    Benchmark models were developed to evaluate 11 critical core configurations of the HTR-PROTEUS pebble bed experimental program. Various additional reactor physics measurements were performed as part of this program; currently only a total of 37 absorber rod worth measurements have been evaluated as acceptable benchmark experiments for Cores 4, 9, and 10. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the 235 U enrichment of the fuel, impurities in the moderator pebbles, and the density and impurity content of the radial reflector. Calculations of k eff with MCNP5 and ENDF/B-VII.0 neutron nuclear data are greater than the benchmark values but within 1% and also within the 3σ uncertainty, except for Core 4, which is the only randomly packed pebble configuration. Repeated calculations of k eff with MCNP6.1 and ENDF/B-VII.1 are lower than the benchmark values and within 1% (~3σ) except for Cores 5 and 9, which calculate lower than the benchmark eigenvalues within 4σ. The primary difference between the two nuclear data libraries is the adjustment of the absorption cross section of graphite. Simulations of the absorber rod worth measurements are within 3σ of the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  5. Evaluation of fire models for nuclear power plant applications. Benchmark exercise no. 4: Fuel pool fire inside a compartment - International panel report

    International Nuclear Information System (INIS)

    Klein-Hessling, W.; Roewekamp, M.; Riese, O.

    2006-11-01

    Fire simulations as well as their analytical validation procedures have gained more and more significance, particularly in the context of the fire safety analysis for operating nuclear power plants. Meanwhile, fire simulation models have been adapted as analytical tools for a risk oriented fire safety assessment. Calculated predictions can be used, on the one hand, for the improvements and upgrades of fire protection in nuclear power plants by the licensees and, on the other hand, as a tool for reproducible and clearly understandable estimations in assessing the available and/or foreseen fire protection measures by the authorities and their experts. For consideration of such aspects in the context of implementing new nuclear fire protection standards or of updating existing ones, an 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' also known as the 'International Collaborative Fire Model Project' (ICFMP) was started in 1999. It has made use of the experience and knowledge of a variety of worldwide expert institutions in this field to assess and improve, if necessary, the state-of-the-art with respect to modeling fires in nuclear power plants and other nuclear installations. This document contains the results of the ICFMP Benchmark Exercise No. 4, where two fuel pool fire experiments in an enclosure with two different natural vent sizes have been considered. Analyzing the results of different fire simulation codes and code types provides some indications with respect to the uncertainty of the results. This information is especially important in setting uncertainty parameters in probabilistic risk studies and to provide general insights concerning the applicability and limitations in the application of different types of fire simulation codes for this type of fire scenario and boundary conditions. During the benchmark procedure the participants performed different types of calculations. These included totally blind

  6. Validation of full core geometry model of the NODAL3 code in the PWR transient Benchmark problems

    International Nuclear Information System (INIS)

    T-M Sembiring; S-Pinem; P-H Liem

    2015-01-01

    The coupled neutronic and thermal-hydraulic (T/H) code, NODAL3 code, has been validated in some PWR static benchmark and the NEACRP PWR transient benchmark cases. However, the NODAL3 code have not yet validated in the transient benchmark cases of a control rod assembly (CR) ejection at peripheral core using a full core geometry model, the C1 and C2 cases. By this research work, the accuracy of the NODAL3 code for one CR ejection or the unsymmetrical group of CRs ejection case can be validated. The calculations by the NODAL3 code have been carried out by the adiabatic method (AM) and the improved quasistatic method (IQS). All calculated transient parameters by the NODAL3 code were compared with the reference results by the PANTHER code. The maximum relative difference of 16 % occurs in the calculated time of power maximum parameter by using the IQS method, while the relative difference of the AM method is 4 % for C2 case. All calculation results by the NODAL3 code shows there is no systematic difference, it means the neutronic and T/H modules are adopted in the code are considered correct. Therefore, all calculation results by using the NODAL3 code are very good agreement with the reference results. (author)

  7. Validation process of simulation model

    International Nuclear Information System (INIS)

    San Isidro, M. J.

    1998-01-01

    It is presented a methodology on empirical validation about any detailed simulation model. This king of validation it is always related with an experimental case. The empirical validation has a residual sense, because the conclusions are based on comparisons between simulated outputs and experimental measurements. This methodology will guide us to detect the fails of the simulation model. Furthermore, it can be used a guide in the design of posterior experiments. Three steps can be well differentiated: Sensitivity analysis. It can be made with a DSA, differential sensitivity analysis, and with a MCSA, Monte-Carlo sensitivity analysis. Looking the optimal domains of the input parameters. It has been developed a procedure based on the Monte-Carlo methods and Cluster techniques, to find the optimal domains of these parameters. Residual analysis. This analysis has been made on the time domain and on the frequency domain, it has been used the correlation analysis and spectral analysis. As application of this methodology, it is presented the validation carried out on a thermal simulation model on buildings, Esp., studying the behavior of building components on a Test Cell of LECE of CIEMAT. (Author) 17 refs

  8. Modeling and Simulation for Safeguards

    International Nuclear Information System (INIS)

    Swinhoe, Martyn T.

    2012-01-01

    The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R and D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

  9. Modeling and Simulation of Nanoindentation

    Science.gov (United States)

    Huang, Sixie; Zhou, Caizhi

    2017-11-01

    Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

  10. Assessment of Molecular Modeling & Simulation

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materials modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.

  11. NRTA simulation by modeling PFPF

    International Nuclear Information System (INIS)

    Asano, Takashi; Fujiwara, Shigeo; Takahashi, Saburo; Shibata, Junichi; Totsu, Noriko

    2003-01-01

    In PFPF, NRTA system has been applied since 1991. It has been confirmed by evaluating facility material accountancy data provided from operator in each IIV that a significant MUF was not generated. In case of throughput of PFPF scale, MUF can be evaluated with a sufficient detection probability by the present NRTA evaluation manner. However, by increasing of throughput, the uncertainty of material accountancy will increase, and the detection probability will decline. The relationship between increasing of throughput and declining of detection probability and the maximum throughput upon application of following measures with a sufficient detection probability were evaluated by simulation of NRTA system. This simulation was performed by modeling of PFPF. Measures for increasing detection probability are shown as follows. Shortening of the evaluation interval. Segmentation of evaluation area. This report shows the results of these simulations. (author)

  12. Surrogate model approach for improving the performance of reactive transport simulations

    Science.gov (United States)

    Jatnieks, Janis; De Lucia, Marco; Sips, Mike; Dransch, Doris

    2016-04-01

    Reactive transport models can serve a large number of important geoscientific applications involving underground resources in industry and scientific research. It is common for simulation of reactive transport to consist of at least two coupled simulation models. First is a hydrodynamics simulator that is responsible for simulating the flow of groundwaters and transport of solutes. Hydrodynamics simulators are well established technology and can be very efficient. When hydrodynamics simulations are performed without coupled geochemistry, their spatial geometries can span millions of elements even when running on desktop workstations. Second is a geochemical simulation model that is coupled to the hydrodynamics simulator. Geochemical simulation models are much more computationally costly. This is a problem that makes reactive transport simulations spanning millions of spatial elements very difficult to achieve. To address this problem we propose to replace the coupled geochemical simulation model with a surrogate model. A surrogate is a statistical model created to include only the necessary subset of simulator complexity for a particular scenario. To demonstrate the viability of such an approach we tested it on a popular reactive transport benchmark problem that involves 1D Calcite transport. This is a published benchmark problem (Kolditz, 2012) for simulation models and for this reason we use it to test the surrogate model approach. To do this we tried a number of statistical models available through the caret and DiceEval packages for R, to be used as surrogate models. These were trained on randomly sampled subset of the input-output data from the geochemical simulation model used in the original reactive transport simulation. For validation we use the surrogate model to predict the simulator output using the part of sampled input data that was not used for training the statistical model. For this scenario we find that the multivariate adaptive regression splines

  13. Comparison of the PHISICS/RELAP5-3D Ring and Block Model Results for Phase I of the OECD MHTGR-350 Benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Gerhard Strydom

    2014-04-01

    The INL PHISICS code system consists of three modules providing improved core simulation capability: INSTANT (performing 3D nodal transport core calculations), MRTAU (depletion and decay heat generation) and a perturbation/mixer module. Coupling of the PHISICS code suite to the thermal hydraulics system code RELAP5-3D has recently been finalized, and as part of the code verification and validation program the exercises defined for Phase I of the OECD/NEA MHTGR 350 MW Benchmark were completed. This paper provides an overview of the MHTGR Benchmark, and presents selected results of the three steady state exercises 1-3 defined for Phase I. For Exercise 1, a stand-alone steady-state neutronics solution for an End of Equilibrium Cycle Modular High Temperature Reactor (MHTGR) was calculated with INSTANT, using the provided geometry, material descriptions, and detailed cross-section libraries. Exercise 2 required the modeling of a stand-alone thermal fluids solution. The RELAP5-3D results of four sub-cases are discussed, consisting of various combinations of coolant bypass flows and material thermophysical properties. Exercise 3 combined the first two exercises in a coupled neutronics and thermal fluids solution, and the coupled code suite PHISICS/RELAP5-3D was used to calculate the results of two sub-cases. The main focus of the paper is a comparison of the traditional RELAP5-3D “ring” model approach vs. a much more detailed model that include kinetics feedback on individual block level and thermal feedbacks on a triangular sub-mesh. The higher fidelity of the block model is illustrated with comparison results on the temperature, power density and flux distributions, and the typical under-predictions produced by the ring model approach are highlighted.

  14. A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres

    International Nuclear Information System (INIS)

    Capozzoli, Alfonso; Piscitelli, Marco Savino; Neri, Francesco; Grassi, Daniele; Serale, Gianluca

    2016-01-01

    Highlights: • 100 Healthcare Centres were analyzed to assess energy consumption reference values. • A novel robust methodology for energy benchmarking process was proposed. • A Linear Mixed Effect estimation Model was used to treat heterogeneous datasets. • A nondeterministic approach was adopted to consider the uncertainty in the process. • The methodology was developed to be upgradable and generalizable to other datasets. - Abstract: The current EU energy efficiency directive 2012/27/EU defines the existing building stocks as one of the most promising potential sector for achieving energy saving. Robust methodologies aimed to quantify the potential reduction of energy consumption for large building stocks need to be developed. To this purpose, a benchmarking analysis is necessary in order to support public planners in determining how well a building is performing, in setting credible targets for improving performance or in detecting abnormal energy consumption. In the present work, a novel methodology is proposed to perform a benchmarking analysis particularly suitable for heterogeneous samples of buildings. The methodology is based on the estimation of a statistical model for energy consumption – the Linear Mixed Effects Model –, so as to account for both the fixed effects shared by all individuals within a dataset and the random effects related to particular groups/classes of individuals in the population. The groups of individuals within the population have been classified by resorting to a supervised learning technique. Under this backdrop, a Monte Carlo simulation is worked out to compute the frequency distribution of annual energy consumption and identify a reference value for each group/class of buildings. The benchmarking analysis was tested for a case study of 100 out-patient Healthcare Centres in Northern Italy, finally resulting in 12 different frequency distributions for space and Domestic Hot Water heating energy consumption, one for

  15. Repository simulation model: Final report

    International Nuclear Information System (INIS)

    1988-03-01

    This report documents the application of computer simulation for the design analysis of the nuclear waste repository's waste handling and packaging operations. The Salt Repository Simulation Model was used to evaluate design alternatives during the conceptual design phase of the Salt Repository Project. Code development and verification was performed by the Office of Nuclear Waste Isolation (ONWL). The focus of this report is to relate the experience gained during the development and application of the Salt Repository Simulation Model to future repository design phases. Design of the repository's waste handling and packaging systems will require sophisticated analysis tools to evaluate complex operational and logistical design alternatives. Selection of these design alternatives in the Advanced Conceptual Design (ACD) and License Application Design (LAD) phases must be supported by analysis to demonstrate that the repository design will cost effectively meet DOE's mandated emplacement schedule and that uncertainties in the performance of the repository's systems have been objectively evaluated. Computer simulation of repository operations will provide future repository designers with data and insights that no other analytical form of analysis can provide. 6 refs., 10 figs

  16. Benchmarking nuclear models of FLUKA and GEANT4 for carbon ion therapy

    CERN Document Server

    Bohlen, TT; Quesada, J M; Bohlen, T T; Cerutti, F; Gudowska, I; Ferrari, A; Mairani, A

    2010-01-01

    As carbon ions, at therapeutic energies, penetrate tissue, they undergo inelastic nuclear reactions and give rise to significant yields of secondary fragment fluences. Therefore, an accurate prediction of these fluences resulting from the primary carbon interactions is necessary in the patient's body in order to precisely simulate the spatial dose distribution and the resulting biological effect. In this paper, the performance of nuclear fragmentation models of the Monte Carlo transport codes, FLUKA and GEANT4, in tissue-like media and for an energy regime relevant for therapeutic carbon ions is investigated. The ability of these Monte Carlo codes to reproduce experimental data of charge-changing cross sections and integral and differential yields of secondary charged fragments is evaluated. For the fragment yields, the main focus is on the consideration of experimental approximations and uncertainties such as the energy measurement by time-of-flight. For GEANT4, the hadronic models G4BinaryLightIonReaction a...

  17. Simulating spin models on GPU

    Science.gov (United States)

    Weigel, Martin

    2011-09-01

    Over the last couple of years it has been realized that the vast computational power of graphics processing units (GPUs) could be harvested for purposes other than the video game industry. This power, which at least nominally exceeds that of current CPUs by large factors, results from the relative simplicity of the GPU architectures as compared to CPUs, combined with a large number of parallel processing units on a single chip. To benefit from this setup for general computing purposes, the problems at hand need to be prepared in a way to profit from the inherent parallelism and hierarchical structure of memory accesses. In this contribution I discuss the performance potential for simulating spin models, such as the Ising model, on GPU as compared to conventional simulations on CPU.

  18. Standard for Models and Simulations

    Science.gov (United States)

    Steele, Martin J.

    2016-01-01

    This NASA Technical Standard establishes uniform practices in modeling and simulation to ensure essential requirements are applied to the design, development, and use of models and simulations (MS), while ensuring acceptance criteria are defined by the program project and approved by the responsible Technical Authority. It also provides an approved set of requirements, recommendations, and criteria with which MS may be developed, accepted, and used in support of NASA activities. As the MS disciplines employed and application areas involved are broad, the common aspects of MS across all NASA activities are addressed. The discipline-specific details of a given MS should be obtained from relevant recommended practices. The primary purpose is to reduce the risks associated with MS-influenced decisions by ensuring the complete communication of the credibility of MS results.

  19. Benchmarking Exercises To Validate The Updated ELLWF GoldSim Slit Trench Model

    International Nuclear Information System (INIS)

    Taylor, G. A.; Hiergesell, R. A.

    2013-01-01

    The Savannah River National Laboratory (SRNL) results of the 2008 Performance Assessment (PA) (WSRC, 2008) sensitivity/uncertainty analyses conducted for the trenches located in the EArea LowLevel Waste Facility (ELLWF) were subject to review by the United States Department of Energy (U.S. DOE) Low-Level Waste Disposal Facility Federal Review Group (LFRG) (LFRG, 2008). LFRG comments were generally approving of the use of probabilistic modeling in GoldSim to support the quantitative sensitivity analysis. A recommendation was made, however, that the probabilistic models be revised and updated to bolster their defensibility. SRS committed to addressing those comments and, in response, contracted with Neptune and Company to rewrite the three GoldSim models. The initial portion of this work, development of Slit Trench (ST), Engineered Trench (ET) and Components-in-Grout (CIG) trench GoldSim models, has been completed. The work described in this report utilizes these revised models to test and evaluate the results against the 2008 PORFLOW model results. This was accomplished by first performing a rigorous code-to-code comparison of the PORFLOW and GoldSim codes and then performing a deterministic comparison of the two-dimensional (2D) unsaturated zone and three-dimensional (3D) saturated zone PORFLOW Slit Trench models against results from the one-dimensional (1D) GoldSim Slit Trench model. The results of the code-to-code comparison indicate that when the mechanisms of radioactive decay, partitioning of contaminants between solid and fluid, implementation of specific boundary conditions and the imposition of solubility controls were all tested using identical flow fields, that GoldSim and PORFLOW produce nearly identical results. It is also noted that GoldSim has an advantage over PORFLOW in that it simulates all radionuclides simultaneously - thus avoiding a potential problem as demonstrated in the Case Study (see Section 2.6). Hence, it was concluded that the follow

  20. Benchmarking Exercises To Validate The Updated ELLWF GoldSim Slit Trench Model

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G. A.; Hiergesell, R. A.

    2013-11-12

    The Savannah River National Laboratory (SRNL) results of the 2008 Performance Assessment (PA) (WSRC, 2008) sensitivity/uncertainty analyses conducted for the trenches located in the EArea LowLevel Waste Facility (ELLWF) were subject to review by the United States Department of Energy (U.S. DOE) Low-Level Waste Disposal Facility Federal Review Group (LFRG) (LFRG, 2008). LFRG comments were generally approving of the use of probabilistic modeling in GoldSim to support the quantitative sensitivity analysis. A recommendation was made, however, that the probabilistic models be revised and updated to bolster their defensibility. SRS committed to addressing those comments and, in response, contracted with Neptune and Company to rewrite the three GoldSim models. The initial portion of this work, development of Slit Trench (ST), Engineered Trench (ET) and Components-in-Grout (CIG) trench GoldSim models, has been completed. The work described in this report utilizes these revised models to test and evaluate the results against the 2008 PORFLOW model results. This was accomplished by first performing a rigorous code-to-code comparison of the PORFLOW and GoldSim codes and then performing a deterministic comparison of the two-dimensional (2D) unsaturated zone and three-dimensional (3D) saturated zone PORFLOW Slit Trench models against results from the one-dimensional (1D) GoldSim Slit Trench model. The results of the code-to-code comparison indicate that when the mechanisms of radioactive decay, partitioning of contaminants between solid and fluid, implementation of specific boundary conditions and the imposition of solubility controls were all tested using identical flow fields, that GoldSim and PORFLOW produce nearly identical results. It is also noted that GoldSim has an advantage over PORFLOW in that it simulates all radionuclides simultaneously - thus avoiding a potential problem as demonstrated in the Case Study (see Section 2.6). Hence, it was concluded that the follow

  1. Effects of Secondary Circuit Modeling on Results of Pressurized Water Reactor Main Steam Line Break Benchmark Calculations with New Coupled Code TRAB-3D/SMABRE

    International Nuclear Information System (INIS)

    Daavittila, Antti; Haemaelaeinen, Anitta; Kyrki-Rajamaeki, Riitta

    2003-01-01

    All of the three exercises of the Organization for Economic Cooperation and Development/Nuclear Regulatory Commission pressurized water reactor main steam line break (PWR MSLB) benchmark were calculated at VTT, the Technical Research Centre of Finland. For the first exercise, the plant simulation with point-kinetic neutronics, the thermal-hydraulics code SMABRE was used. The second exercise was calculated with the three-dimensional reactor dynamics code TRAB-3D, and the third exercise with the combination TRAB-3D/SMABRE. VTT has over ten years' experience of coupling neutronic and thermal-hydraulic codes, but this benchmark was the first time these two codes, both developed at VTT, were coupled together. The coupled code system is fast and efficient; the total computation time of the 100-s transient in the third exercise was 16 min on a modern UNIX workstation. The results of all the exercises are similar to those of the other participants. In order to demonstrate the effect of secondary circuit modeling on the results, three different cases were calculated. In case 1 there is no phase separation in the steam lines and no flow reversal in the aspirator. In case 2 the flow reversal in the aspirator is allowed, but there is no phase separation in the steam lines. Finally, in case 3 the drift-flux model is used for the phase separation in the steam lines, but the aspirator flow reversal is not allowed. With these two modeling variations, it is possible to cover a remarkably broad range of results. The maximum power level reached after the reactor trip varies from 534 to 904 MW, the range of the time of the power maximum being close to 30 s. Compared to the total calculated transient time of 100 s, the effect of the secondary side modeling is extremely important

  2. Assessment of model chemistries for hydrofluoropolyethers: A DFT/M08-HX benchmark study

    DEFF Research Database (Denmark)

    da Franca E S C Viegas, Luis Pedro

    2017-01-01

    a good accuracy and considerable reduction in computational cost with respect to the benchmark, being more than three times faster than M08-HX/aug-pcseg-2//M08-HX/aug-pcseg-1. This cost-effective approach will be essential in future work when studying larger hydrofluoropolyethers, where the computational......n this work, we report the first detailed theoretical comparative conformational investigation between two different classes of hydrofluoropolyethers: dihydro- and dimethoxyfluoropolyethers. The main objective was to determine a cost-effective computational methodology that could accurately...

  3. An integrated model of tritium transport and corrosion in Fluoride Salt-Cooled High-Temperature Reactors (FHRs) – Part I: Theory and benchmarking

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John D., E-mail: john.stempien@inl.gov; Ballinger, Ronald G., E-mail: hvymet@mit.edu; Forsberg, Charles W., E-mail: cforsber@mit.edu

    2016-12-15

    Highlights: • A model was developed for use with FHRs and benchmarked with experimental data. • Model results match results of tritium diffusion experiments. • Corrosion simulations show reasonable agreement with molten salt loop experiments. • This is the only existing model of tritium transport and corrosion in FHRs. • Model enables proposing and evaluating tritium control options in FHRs. - Abstract: The Fluoride Salt-Cooled High-Temperature Reactor (FHR) is a pebble bed nuclear reactor concept cooled by a liquid fluoride salt known as “flibe” ({sup 7}LiF-BeF{sub 2}). A model of TRITium Diffusion EvolutioN and Transport (TRIDENT) was developed for use with FHRs and benchmarked with experimental data. TRIDENT is the first model to integrate the effects of tritium production in the salt via neutron transmutation, with the effects of the chemical redox potential, tritium mass transfer, tritium diffusion through pipe walls, tritium uptake by graphite, selective chromium attack by tritium fluoride, and corrosion product mass transfer. While data from a forced-convection polythermal loop of molten salt containing tritium did not exist for comparison, TRIDENT calculations were compared to data from static salt diffusion tests in flibe and flinak (0.465LiF-0.115NaF-0.42KF) salts. In each case, TRIDENT matched the transient and steady-state behavior of these tritium diffusion experiments. The corrosion model in TRIDENT was compared against the natural convection flow-loop experiments at the Oak Ridge National Laboratory (ORNL) from the 1960s and early 1970s which used Molten Salt Reactor Experiment (MSRE) fuel-salt containing UF{sub 4}. Despite the lack of data required by TRIDENT for modeling the loops, some reasonable results were obtained. The TRIDENT corrosion rates follow the experimentally observed dependence on the square root of the product of the chromium solid-state diffusion coefficient with time. Additionally the TRIDENT model predicts mass

  4. Including the effects of filamentous bulking sludge during the simulation of wastewater treatment plants using a risk assessment model

    DEFF Research Database (Denmark)

    Flores Alsina, Xavier; Comas, J.; Rodriquez-Roda, I.

    2009-01-01

    The main objective of this paper is to demonstrate how including the occurrence of filamentous bulking sludge in a secondary clarifier model will affect the predicted process performance during the simulation of WWTPs. The IWA Benchmark Simulation Model No. 2 (BSM2) is hereby used as a simulation...... are automatically changed during the simulation by modifying the settling model parameters to mimic the effect of growth of filamentous bacteria. The simulation results demonstrate that including effects of filamentous bulking in the secondary clarifier model results in a more realistic plant performance...

  5. International benchmark for coupled codes and uncertainty analysis in modelling: switching-Off of one of the four operating main circulation pumps at nominal reactor power at NPP Kalinin unit 3

    International Nuclear Information System (INIS)

    Tereshonok, V. A.; Nikonov, S. P.; Lizorkin, M. P.; Velkov, K; Pautz, A.; Ivanov, V.

    2008-01-01

    The paper briefly describes the Specification of an international NEA/OECD benchmark based on measured plant data. During the commissioning tests for nominal power at NPP Kalinin Unit 3 a lot of measurements of neutron and thermo-hydraulic parameters have been carried out in the reactor pressure vessel, primary and the secondary circuits. One of the measured data sets for the transient 'Switching-off of one Main Circulation Pump (MCP) at nominal power' has been chosen to be applied for validation of coupled thermal-hydraulic and neutron-kinetic system codes and additionally for performing of uncertainty analyses as a part of the NEA/OECD Uncertainty Analysis in Modeling Benchmark. The benchmark is opened for all countries and institutions. The experimental data and the final specification with the cross section libraries will be provided to the participants from NEA/OECD only after official declaration of real participation in the benchmark and delivery of the simulated results of the transient for comparison. (Author)

  6. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    Energy Technology Data Exchange (ETDEWEB)

    Brics, Martins

    2016-12-09

    -called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.

  7. Benchmarking time-dependent renormalized natural orbital theory with exact solutions for a laser-driven model helium atom

    International Nuclear Information System (INIS)

    Brics, Martins

    2016-01-01

    -called renormalized natural orbitals (RNOs), TDRNOT is benchmarked with the help of a numerically exactly solvable model helium atom in laser fields. In the special case of time-dependent two-electron systems the two-particle density matrix in terms of ONs and NOs is known exactly. Hence, in this case TDRNOT is exact, apart from the unavoidable truncation of the number of RNOs per particle taken into account in the simulation. It is shown that, unlike TDDFT, TDRNOT is able to describe doubly-excited states, Fano profiles in electron and absorption spectra, auto-ionization, Rabi oscillations, high harmonic generation, non-sequential ionization, and single-photon double ionization in excellent agreement with the corresponding TDSE results.

  8. Verifying and Validating Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    This presentation is a high-level discussion of the Verification and Validation (V&V) of computational models. Definitions of V&V are given to emphasize that “validation” is never performed in a vacuum; it accounts, instead, for the current state-of-knowledge in the discipline considered. In particular comparisons between physical measurements and numerical predictions should account for their respective sources of uncertainty. The differences between error (bias), aleatoric uncertainty (randomness) and epistemic uncertainty (ignorance, lack-of- knowledge) are briefly discussed. Four types of uncertainty in physics and engineering are discussed: 1) experimental variability, 2) variability and randomness, 3) numerical uncertainty and 4) model-form uncertainty. Statistical sampling methods are available to propagate, and analyze, variability and randomness. Numerical uncertainty originates from the truncation error introduced by the discretization of partial differential equations in time and space. Model-form uncertainty is introduced by assumptions often formulated to render a complex problem more tractable and amenable to modeling and simulation. The discussion concludes with high-level guidance to assess the “credibility” of numerical simulations, which stems from the level of rigor with which these various sources of uncertainty are assessed and quantified.

  9. Advances in Intelligent Modelling and Simulation Simulation Tools and Applications

    CERN Document Server

    Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek

    2012-01-01

    The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...

  10. MODELLING, SIMULATING AND OPTIMIZING BOILERS

    DEFF Research Database (Denmark)

    Sørensen, Kim; Condra, Thomas Joseph; Houbak, Niels

    2004-01-01

    In the present work a framework for optimizing the design of boilers for dynamic operation has been developed. A cost function to be minimized during the optimization has been formulated and for the present design variables related to the Boiler Volume and the Boiler load Gradient (i.e. ring rate...... on the boiler) have been dened. Furthermore a number of constraints related to: minimum and maximum boiler load gradient, minimum boiler size, Shrinking and Swelling and Steam Space Load have been dened. For dening the constraints related to the required boiler volume a dynamic model for simulating the boiler...... performance has been developed. Outputs from the simulations are shrinking and swelling of water level in the drum during for example a start-up of the boiler, these gures combined with the requirements with respect to allowable water level uctuations in the drum denes the requirements with respect to drum...

  11. SEMI Modeling and Simulation Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Hermina, W.L.

    2000-10-02

    With the exponential growth in the power of computing hardware and software, modeling and simulation is becoming a key enabler for the rapid design of reliable Microsystems. One vision of the future microsystem design process would include the following primary software capabilities: (1) The development of 3D part design, through standard CAD packages, with automatic design rule checks that guarantee the manufacturability and performance of the microsystem. (2) Automatic mesh generation, for 3D parts as manufactured, that permits computational simulation of the process steps, and the performance and reliability analysis for the final microsystem. (3) Computer generated 2D layouts for process steps that utilize detailed process models to generate the layout and process parameter recipe required to achieve the desired 3D part. (4) Science-based computational tools that can simulate the process physics, and the coupled thermal, fluid, structural, solid mechanics, electromagnetic and material response governing the performance and reliability of the microsystem. (5) Visualization software that permits the rapid visualization of 3D parts including cross-sectional maps, performance and reliability analysis results, and process simulation results. In addition to these desired software capabilities, a desired computing infrastructure would include massively parallel computers that enable rapid high-fidelity analysis, coupled with networked compute servers that permit computing at a distance. We now discuss the individual computational components that are required to achieve this vision. There are three primary areas of focus: design capabilities, science-based capabilities and computing infrastructure. Within each of these areas, there are several key capability requirements.

  12. Benchmarking Danish Industries

    DEFF Research Database (Denmark)

    Gammelgaard, Britta; Bentzen, Eric; Aagaard Andreassen, Mette

    2003-01-01

    compatible survey. The International Manufacturing Strategy Survey (IMSS) doesbring up the question of supply chain management, but unfortunately, we did not have access to thedatabase. Data from the members of the SCOR-model, in the form of benchmarked performance data,may exist, but are nonetheless...... not public. The survey is a cooperative project "Benchmarking DanishIndustries" with CIP/Aalborg University, the Danish Technological University, the DanishTechnological Institute and Copenhagen Business School as consortia partners. The project has beenfunded by the Danish Agency for Trade and Industry...

  13. Deviating From the Benchmarks

    DEFF Research Database (Denmark)

    Rocha, Vera; Van Praag, Mirjam; Carneiro, Anabela

    This paper studies three related questions: To what extent otherwise similar startups employ different quantities and qualities of human capital at the moment of entry? How persistent are initial human capital choices over time? And how does deviating from human capital benchmarks influence firm......, founders human capital, and the ownership structure of startups (solo entrepreneurs versus entrepreneurial teams). We then study the survival implications of exogenous deviations from these benchmarks, based on spline models for survival data. Our results indicate that (especially negative) deviations from...... the benchmark can be substantial, are persistent over time, and hinder the survival of firms. The implications may, however, vary according to the sector and the ownership structure at entry. Given the stickiness of initial choices, wrong human capital decisions at entry turn out to be a close to irreversible...

  14. Photovoltaic array performance simulation models

    Energy Technology Data Exchange (ETDEWEB)

    Menicucci, D. F.

    1986-09-15

    The experience of the solar industry confirms that, despite recent cost reductions, the profitability of photovoltaic (PV) systems is often marginal and the configuration and sizing of a system is a critical problem for the design engineer. Construction and evaluation of experimental systems are expensive and seldom justifiable. A mathematical model or computer-simulation program is a desirable alternative, provided reliable results can be obtained. Sandia National Laboratories, Albuquerque (SNLA), has been studying PV-system modeling techniques in an effort to develop an effective tool to be used by engineers and architects in the design of cost-effective PV systems. This paper reviews two of the sources of error found in previous PV modeling programs, presents the remedies developed to correct these errors, and describes a new program that incorporates these improvements.

  15. Sparticle mass hierarchies, simplified models from SUGRA unification, and benchmarks for LHC Run-II SUSY searches

    International Nuclear Information System (INIS)

    Francescone, David; Akula, Sujeet; Altunkaynak, Baris; Nath, Pran

    2015-01-01

    Sparticle mass hierarchies contain significant information regarding the origin and nature of supersymmetry breaking. The hierarchical patterns are severely constrained by electroweak symmetry breaking as well as by the astrophysical and particle physics data. They are further constrained by the Higgs boson mass measurement. The sparticle mass hierarchies can be used to generate simplified models consistent with the high scale models. In this work we consider supergravity models with universal boundary conditions for soft parameters at the unification scale as well as supergravity models with nonuniversalities and delineate the list of sparticle mass hierarchies for the five lightest sparticles. Simplified models can be obtained by a truncation of these, retaining a smaller set of lightest particles. The mass hierarchies and their truncated versions enlarge significantly the list of simplified models currently being used in the literature. Benchmarks for a variety of supergravity unified models appropriate for SUSY searches at future colliders are also presented. The signature analysis of two benchmark models has been carried out and a discussion of the searches needed for their discovery at LHC Run-II is given. An analysis of the spin-independent neutralino-proton cross section exhibiting the Higgs boson mass dependence and the hierarchical patterns is also carried out. It is seen that a knowledge of the spin-independent neutralino-proton cross section and the neutralino mass will narrow down the list of the allowed sparticle mass hierarchies. Thus dark matter experiments along with analyses for the LHC Run-II will provide strong clues to the nature of symmetry breaking at the unification scale.

  16. Benchmarking the Sandbox: Quantitative Comparisons of Numerical and Analogue Models of Brittle Wedge Dynamics (Invited)

    Science.gov (United States)

    Buiter, S.; Schreurs, G.; Geomod2008 Team

    2010-12-01

    , we find differences in shear zone dip angle and surface slope between numerical and analogue models and, in 3D experiments, along-strike variations of structures in map view. Our experiments point out that we need careful treatment of material properties, discontinuities in boundary conditions, model building techniques, and boundary friction for sandbox-like setups. We show that to first order we successfully simulate sandbox-style brittle behavior using different numerical modeling techniques and that we can obtain similar styles of deformation behavior in numerical and laboratory experiments at similar levels of variability. * The GeoMod2008 Team: M. Albertz, C. Beaumont, C. Burberry, J.-P. Callot, C. Cavozzi, M. Cerca, J.-H. Chen, E. Cristallini, A. Cruden, L. Cruz, M. Cooke, T. Crook, J.-M. Daniel, D. Egholm, S. Ellis, T. Gerya, L. Hodkinson, F. Hofmann, V Garcia, C. Gomes, C. Grall, Y. Guillot, C. Guzmán, T. Nur Hidayah, G. Hilley, B. Kaus, M. Klinkmüller, H. Koyi, W. Landry, C.-Y. Lu, J. Macauley, B. Maillot, C. Meriaux, Y. Mishin, F. Nilfouroushan, C.-C. Pan, C. Pascal, D. Pillot, R. Portillo, M.Rosenau, W. Schellart, R. Schlische, P. Souloumiac, A. Take, B. Vendeville, M. Vettori, M. Vergnaud, S.-H. Wang, M. Withjack, D. Yagupsky, Y. Yamada

  17. Simulated annealing model of acupuncture

    Science.gov (United States)

    Shang, Charles; Szu, Harold

    2015-05-01

    The growth control singularity model suggests that acupuncture points (acupoints) originate from organizers in embryogenesis. Organizers are singular points in growth control. Acupuncture can cause perturbation of a system with effects similar to simulated annealing. In clinical trial, the goal of a treatment is to relieve certain disorder which corresponds to reaching certain local optimum in simulated annealing. The self-organizing effect of the system is limited and related to the person's general health and age. Perturbation at acupoints can lead a stronger local excitation (analogous to higher annealing temperature) compared to perturbation at non-singular points (placebo control points). Such difference diminishes as the number of perturbed points increases due to the wider distribution of the limited self-organizing activity. This model explains the following facts from systematic reviews of acupuncture trials: 1. Properly chosen single acupoint treatment for certain disorder can lead to highly repeatable efficacy above placebo 2. When multiple acupoints are used, the result can be highly repeatable if the patients are relatively healthy and young but are usually mixed if the patients are old, frail and have multiple disorders at the same time as the number of local optima or comorbidities increases. 3. As number of acupoints used increases, the efficacy difference between sham and real acupuncture often diminishes. It predicted that the efficacy of acupuncture is negatively correlated to the disease chronicity, severity and patient's age. This is the first biological - physical model of acupuncture which can predict and guide clinical acupuncture research.

  18. Operations planning simulation: Model study

    Science.gov (United States)

    1974-01-01

    The use of simulation modeling for the identification of system sensitivities to internal and external forces and variables is discussed. The technique provides a means of exploring alternate system procedures and processes, so that these alternatives may be considered on a mutually comparative basis permitting the selection of a mode or modes of operation which have potential advantages to the system user and the operator. These advantages are measurements is system efficiency are: (1) the ability to meet specific schedules for operations, mission or mission readiness requirements or performance standards and (2) to accomplish the objectives within cost effective limits.

  19. A simulation study on proton computed tomography (CT) stopping power accuracy using dual energy CT scans as benchmark.

    Science.gov (United States)

    Hansen, David C; Seco, Joao; Sørensen, Thomas Sangild; Petersen, Jørgen Breede Baltzer; Wildberger, Joachim E; Verhaegen, Frank; Landry, Guillaume

    2015-01-01

    Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.

  20. Electron-helium S-wave model benchmark calculations. II. Double ionization, single ionization with excitation, and double excitation

    Science.gov (United States)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.

  1. Issues in benchmarking human reliability analysis methods: A literature review

    International Nuclear Information System (INIS)

    Boring, Ronald L.; Hendrickson, Stacey M.L.; Forester, John A.; Tran, Tuan Q.; Lois, Erasmia

    2010-01-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessments (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study comparing and evaluating HRA methods in assessing operator performance in simulator experiments is currently underway. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies is presented in order to aid in the design of future HRA benchmarking endeavors.

  2. Issues in benchmarking human reliability analysis methods : a literature review.

    Energy Technology Data Exchange (ETDEWEB)

    Lois, Erasmia (US Nuclear Regulatory Commission); Forester, John Alan; Tran, Tuan Q. (Idaho National Laboratory, Idaho Falls, ID); Hendrickson, Stacey M. Langfitt; Boring, Ronald L. (Idaho National Laboratory, Idaho Falls, ID)

    2008-04-01

    There is a diversity of human reliability analysis (HRA) methods available for use in assessing human performance within probabilistic risk assessment (PRA). Due to the significant differences in the methods, including the scope, approach, and underlying models, there is a need for an empirical comparison investigating the validity and reliability of the methods. To accomplish this empirical comparison, a benchmarking study is currently underway that compares HRA methods with each other and against operator performance in simulator studies. In order to account for as many effects as possible in the construction of this benchmarking study, a literature review was conducted, reviewing past benchmarking studies in the areas of psychology and risk assessment. A number of lessons learned through these studies are presented in order to aid in the design of future HRA benchmarking endeavors.

  3. Impulse pumping modelling and simulation

    International Nuclear Information System (INIS)

    Pierre, B; Gudmundsson, J S

    2010-01-01

    Impulse pumping is a new pumping method based on propagation of pressure waves. Of particular interest is the application of impulse pumping to artificial lift situations, where fluid is transported from wellbore to wellhead using pressure waves generated at wellhead. The motor driven element of an impulse pumping apparatus is therefore located at wellhead and can be separated from the flowline. Thus operation and maintenance of an impulse pump are facilitated. The paper describes the different elements of an impulse pumping apparatus, reviews the physical principles and details the modelling of the novel pumping method. Results from numerical simulations of propagation of pressure waves in water-filled pipelines are then presented for illustrating impulse pumping physical principles, and validating the described modelling with experimental data.

  4. Simulation model of a PWR power plant

    International Nuclear Information System (INIS)

    Larsen, N.

    1987-03-01

    A simulation model of a hypothetical PWR power plant is described. A large number of disturbances and failures in plant function can be simulated. The model is written as seven modules to the modular simulation system for continuous processes DYSIM and serves also as a user example of this system. The model runs in Fortran 77 on the IBM-PC-AT. (author)

  5. Benchmarking: applications to transfusion medicine.

    Science.gov (United States)

    Apelseth, Torunn Oveland; Molnar, Laura; Arnold, Emmy; Heddle, Nancy M

    2012-10-01

    Benchmarking is as a structured continuous collaborative process in which comparisons for selected indicators are used to identify factors that, when implemented, will improve transfusion practices. This study aimed to identify transfusion medicine studies reporting on benchmarking, summarize the benchmarking approaches used, and identify important considerations to move the concept of benchmarking forward in the field of transfusion medicine. A systematic review of published literature was performed to identify transfusion medicine-related studies that compared at least 2 separate institutions or regions with the intention of benchmarking focusing on 4 areas: blood utilization, safety, operational aspects, and blood donation. Forty-five studies were included: blood utilization (n = 35), safety (n = 5), operational aspects of transfusion medicine (n = 5), and blood donation (n = 0). Based on predefined criteria, 7 publications were classified as benchmarking, 2 as trending, and 36 as single-event studies. Three models of benchmarking are described: (1) a regional benchmarking program that collects and links relevant data from existing electronic sources, (2) a sentinel site model where data from a limited number of sites are collected, and (3) an institutional-initiated model where a site identifies indicators of interest and approaches other institutions. Benchmarking approaches are needed in the field of transfusion medicine. Major challenges include defining best practices and developing cost-effective methods of data collection. For those interested in initiating a benchmarking program, the sentinel site model may be most effective and sustainable as a starting point, although the regional model would be the ideal goal. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Climate simulations for 1880-2003 with GISS modelE

    International Nuclear Information System (INIS)

    Hansen, J.; Lacis, A.; Miller, R.; Schmidt, G.A.; Russell, G.; Canuto, V.; Del Genio, A.; Hall, T.; Hansen, J.; Sato, M.; Kharecha, P.; Nazarenko, L.; Aleinov, I.; Bauer, S.; Chandler, M.; Faluvegi, G.; Jonas, J.; Ruedy, R.; Lo, K.; Cheng, Y.; Lacis, A.; Schmidt, G.A.; Del Genio, A.; Miller, R.; Cairns, B.; Hall, T.; Baum, E.; Cohen, A.; Fleming, E.; Jackman, C.; Friend, A.; Kelley, M.

    2007-01-01

    We carry out climate simulations for 1880-2003 with GISS modelE driven by ten measured or estimated climate forcing. An ensemble of climate model runs is carried out for each forcing acting individually and for all forcing mechanisms acting together. We compare side-by-side simulated climate change for each forcing, all forcing, observations, unforced variability among model ensemble members, and, if available, observed variability. Discrepancies between observations and simulations with all forcing are due to model deficiencies, inaccurate or incomplete forcing, and imperfect observations. Although there are notable discrepancies between model and observations, the fidelity is sufficient to encourage use of the model for simulations of future climate change. By using a fixed well-documented model and accurately defining the 1880-2003 forcing, we aim to provide a benchmark against which the effect of improvements in the model, climate forcing, and observations can be tested. Principal model deficiencies include unrealistic weak tropical El Nino-like variability and a poor distribution of sea ice, with too much sea ice in the Northern Hemisphere and too little in the Southern Hemisphere. Greatest uncertainties in the forcing are the temporal and spatial variations of anthropogenic aerosols and their indirect effects on clouds. (authors)

  7. Robust fuzzy output feedback controller for affine nonlinear systems via T-S fuzzy bilinear model: CSTR benchmark.

    Science.gov (United States)

    Hamdy, M; Hamdan, I

    2015-07-01

    In this paper, a robust H∞ fuzzy output feedback controller is designed for a class of affine nonlinear systems with disturbance via Takagi-Sugeno (T-S) fuzzy bilinear model. The parallel distributed compensation (PDC) technique is utilized to design a fuzzy controller. The stability conditions of the overall closed loop T-S fuzzy bilinear model are formulated in terms of Lyapunov function via linear matrix inequality (LMI). The control law is robustified by H∞ sense to attenuate external disturbance. Moreover, the desired controller gains can be obtained by solving a set of LMI. A continuous stirred tank reactor (CSTR), which is a benchmark problem in nonlinear process control, is discussed in detail to verify the effectiveness of the proposed approach with a comparative study. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  8. A comparative evaluation of risk-adjustment models for benchmarking amputation-free survival after lower extremity bypass.

    Science.gov (United States)

    Simons, Jessica P; Goodney, Philip P; Flahive, Julie; Hoel, Andrew W; Hallett, John W; Kraiss, Larry W; Schanzer, Andres

    2016-04-01

    Providing patients and payers with publicly reported risk-adjusted quality metrics for the purpose of benchmarking physicians and institutions has become a national priority. Several prediction models have been developed to estimate outcomes after lower extremity revascularization for critical limb ischemia, but the optimal model to use in contemporary practice has not been defined. We sought to identify the highest-performing risk-adjustment model for amputation-free survival (AFS) at 1 year after lower extremity bypass (LEB). We used the national Society for Vascular Surgery Vascular Quality Initiative (VQI) database (2003-2012) to assess the performance of three previously validated risk-adjustment models for AFS. The Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL), Finland National Vascular (FINNVASC) registry, and the modified Project of Ex-vivo vein graft Engineering via Transfection III (PREVENT III [mPIII]) risk scores were applied to the VQI cohort. A novel model for 1-year AFS was also derived using the VQI data set and externally validated using the PIII data set. The relative discrimination (Harrell c-index) and calibration (Hosmer-May goodness-of-fit test) of each model were compared. Among 7754 patients in the VQI who underwent LEB for critical limb ischemia, the AFS was 74% at 1 year. Each of the previously published models for AFS demonstrated similar discriminative performance: c-indices for BASIL, FINNVASC, mPIII were 0.66, 0.60, and 0.64, respectively. The novel VQI-derived model had improved discriminative ability with a c-index of 0.71 and appropriate generalizability on external validation with a c-index of 0.68. The model was well calibrated in both the VQI and PIII data sets (goodness of fit P = not significant). Currently available prediction models for AFS after LEB perform modestly when applied to national contemporary VQI data. Moreover, the performance of each model was inferior to that of the novel VQI-derived model

  9. Experimental benchmarks and simulation of GAMMA-T for overcooling and undercooling transients in HTGRs coupled with MED desalination plants

    International Nuclear Information System (INIS)

    Kim, Ho Sik; Kim, In Hun; NO, Hee Cheon; Jin, Hyung Gon

    2013-01-01

    Highlights: ► The GAMMA-T code was well validated through benchmark experiments. ► Based on the KAIST coupling scheme, the GTHTR300 + MED systems were made. ► Safety analysis was performed for overcooling and undercooling accidents. ► In all accidents, maximum peak fuel temperatures were well below than 1600 °C. ► In all accidents, the HTGR + MED system could be operated continuously. -- Abstracts: The nuclear desalination based on the high temperature gas-cooled reactor (HTGR) with gas turbomachinery and multi-effect distillation (MED) is attracting attention because the coupling system can utilize the waste heat of the nuclear power system for the MED desalination system. In previous work, KAIST proposed the new HTGR + MED coupling scheme, evaluated desalination performance, and performed cost analysis for the system. In this paper, in order to confirm the safety and the performance of the coupling system, we performed the transient analysis with GAMMA-T (GAs Multidimensional Multicomponent mixture Analysis–Turbomachinery) code for the KAIST HTGR + MED systems. The experimental benchmarks of GAMMA-T code were set up before the transient analysis for several accident scenarios. The GAMMA-T code was well validated against steady state and transient scenarios of the He–Water test loop such as changes in water mass flow rate and water inlet temperatures. Then, for transient analysis, the GTHTR300 was chosen as a reference plant. The GTHTR300 + MED systems were made, based on the KAIST HTGR + MED coupling scheme. Transient analysis was performed for three kinds of accidents scenarios: (1) loss of heat rejection through MED plant, (2) loss of heat rejection through heat sink, and (3) overcooling due to abnormal cold temperature of seawater. In all kinds of accident scenarios, maximum peak fuel temperatures were well below than the fuel failure criterion, 1600 °C and the GTHTR300 + MED system could be operated continuously and safely. Specially, in the

  10. Galaxy Alignments: Theory, Modelling & Simulations

    Science.gov (United States)

    Kiessling, Alina; Cacciato, Marcello; Joachimi, Benjamin; Kirk, Donnacha; Kitching, Thomas D.; Leonard, Adrienne; Mandelbaum, Rachel; Schäfer, Björn Malte; Sifón, Cristóbal; Brown, Michael L.; Rassat, Anais

    2015-11-01

    The shapes of galaxies are not randomly oriented on the sky. During the galaxy formation and evolution process, environment has a strong influence, as tidal gravitational fields in the large-scale structure tend to align nearby galaxies. Additionally, events such as galaxy mergers affect the relative alignments of both the shapes and angular momenta of galaxies throughout their history. These "intrinsic galaxy alignments" are known to exist, but are still poorly understood. This review will offer a pedagogical introduction to the current theories that describe intrinsic galaxy alignments, including the apparent difference in intrinsic alignment between early- and late-type galaxies and the latest efforts to model them analytically. It will then describe the ongoing efforts to simulate intrinsic alignments using both N-body and hydrodynamic simulations. Due to the relative youth of this field, there is still much to be done to understand intrinsic galaxy alignments and this review summarises the current state of the field, providing a solid basis for future work.

  11. Benchmark Evaluation of Start-Up and Zero-Power Measurements at the High-Temperature Engineering Test Reactor

    International Nuclear Information System (INIS)

    Bess, John D.; Fujimoto, Nozomu

    2014-01-01

    Benchmark models were developed to evaluate six cold-critical and two warm-critical, zero-power measurements of the HTTR. Additional measurements of a fully-loaded subcritical configuration, core excess reactivity, shutdown margins, six isothermal temperature coefficients, and axial reaction-rate distributions were also evaluated as acceptable benchmark experiments. Insufficient information is publicly available to develop finely-detailed models of the HTTR as much of the design information is still proprietary. However, the uncertainties in the benchmark models are judged to be of sufficient magnitude to encompass any biases and bias uncertainties incurred through the simplification process used to develop the benchmark models. Dominant uncertainties in the experimental keff for all core configurations come from uncertainties in the impurity content of the various graphite blocks that comprise the HTTR. Monte Carlo calculations of keff are between approximately 0.9 % and 2.7 % greater than the benchmark values. Reevaluation of the HTTR models as additional information becomes available could improve the quality of this benchmark and possibly reduce the computational biases. High-quality characterization of graphite impurities would significantly improve the quality of the HTTR benchmark assessment. Simulation of the other reactor physics measurements are in good agreement with the benchmark experiment values. The complete benchmark evaluation details are available in the 2014 edition of the International Handbook of Evaluated Reactor Physics Benchmark Experiments

  12. References and benchmarks for pore-scale flow simulated using micro-CT images of porous media and digital rocks

    Science.gov (United States)

    Saxena, Nishank; Hofmann, Ronny; Alpak, Faruk O.; Berg, Steffen; Dietderich, Jesse; Agarwal, Umang; Tandon, Kunj; Hunter, Sander; Freeman, Justin; Wilson, Ove Bjorn

    2017-11-01

    We generate a novel reference dataset to quantify the impact of numerical solvers, boundary conditions, and simulation platforms. We consider a variety of microstructures ranging from idealized pipes to digital rocks. Pore throats of the digital rocks considered are large enough to be well resolved with state-of-the-art micro-computerized tomography technology. Permeability is computed using multiple numerical engines, 12 in total, including, Lattice-Boltzmann, computational fluid dynamics, voxel based, fast semi-analytical, and known empirical models. Thus, we provide a measure of uncertainty associated with flow computations of digital media. Moreover, the reference and standards dataset generated is the first of its kind and can be used to test and improve new fluid flow algorithms. We find that there is an overall good agreement between solvers for idealized cross-section shape pipes. As expected, the disagreement increases with increase in complexity of the pore space. Numerical solutions for pipes with sinusoidal variation of cross section show larger variability compared to pipes of constant cross-section shapes. We notice relatively larger variability in computed permeability of digital rocks with coefficient of variation (of up to 25%) in computed values between various solvers. Still, these differences are small given other subsurface uncertainties. The observed differences between solvers can be attributed to several causes including, differences in boundary conditions, numerical convergence criteria, and parameterization of fundamental physics equations. Solvers that perform additional meshing of irregular pore shapes require an additional step in practical workflows which involves skill and can introduce further uncertainty. Computation times for digital rocks vary from minutes to several days depending on the algorithm and available computational resources. We find that more stringent convergence criteria can improve solver accuracy but at the expense

  13. CFD Modeling of Thermal Manikin Heat Loss in a Comfort Evaluation Benchmark Test

    DEFF Research Database (Denmark)

    Nilsson, Håkan O.; Brohus, Henrik; Nielsen, Peter V.

    2007-01-01

    for comfort evaluation. The main idea is to focus on people. It is the comfort requirements of occupants that decide what thermal climate that will prevail. It is therefore important to use comfort simulation methods that originate from people, not just temperatures on surfaces and air.......Computer simulated persons (CSPs) today are different in many ways, reflecting various software possibilities and limitations as well as different research interest. Unfortunately, too few of the theories behind thermal manikin simulations are available in the public domain. Many researchers...

  14. A particle based simulation model for glacier dynamics

    Directory of Open Access Journals (Sweden)

    J. A. Åström

    2013-10-01

    Full Text Available A particle-based computer simulation model was developed for investigating the dynamics of glaciers. In the model, large ice bodies are made of discrete elastic particles which are bound together by massless elastic beams. These beams can break, which induces brittle behaviour. At loads below fracture, beams may also break and reform with small probabilities to incorporate slowly deforming viscous behaviour in the model. This model has the advantage that it can simulate important physical processes such as ice calving and fracturing in a more realistic way than traditional continuum models. For benchmarking purposes the deformation of an ice block on a slip-free surface was compared to that of a similar block simulated with a Finite Element full-Stokes continuum model. Two simulations were performed: (1 calving of an ice block partially supported in water, similar to a grounded marine glacier terminus, and (2 fracturing of an ice block on an inclined plane of varying basal friction, which could represent transition to fast flow or surging. Despite several approximations, including restriction to two-dimensions and simplified water-ice interaction, the model was able to reproduce the size distributions of the debris observed in calving, which may be approximated by universal scaling laws. On a moderate slope, a large ice block was stable and quiescent as long as there was enough of friction against the substrate. For a critical length of frictional contact, global sliding began, and the model block disintegrated in a manner suggestive of a surging glacier. In this case the fragment size distribution produced was typical of a grinding process.

  15. Benchmarking and Performance Management

    Directory of Open Access Journals (Sweden)

    Adrian TANTAU

    2010-12-01

    Full Text Available The relevance of the chosen topic is explained by the meaning of the firm efficiency concept - the firm efficiency means the revealed performance (how well the firm performs in the actual market environment given the basic characteristics of the firms and their markets that are expected to drive their profitability (firm size, market power etc.. This complex and relative performance could be due to such things as product innovation, management quality, work organization, some other factors can be a cause even if they are not directly observed by the researcher. The critical need for the management individuals/group to continuously improve their firm/company’s efficiency and effectiveness, the need for the managers to know which are the success factors and the competitiveness determinants determine consequently, what performance measures are most critical in determining their firm’s overall success. Benchmarking, when done properly, can accurately identify both successful companies and the underlying reasons for their success. Innovation and benchmarking firm level performance are critical interdependent activities. Firm level variables, used to infer performance, are often interdependent due to operational reasons. Hence, the managers need to take the dependencies among these variables into account when forecasting and benchmarking performance. This paper studies firm level performance using financial ratio and other type of profitability measures. It uses econometric models to describe and then propose a method to forecast and benchmark performance.

  16. THE MARK I BUSINESS SYSTEM SIMULATION MODEL

    Science.gov (United States)

    of a large-scale business simulation model as a vehicle for doing research in management controls. The major results of the program were the...development of the Mark I business simulation model and the Simulation Package (SIMPAC). SIMPAC is a method and set of programs facilitating the construction...of large simulation models. The object of this document is to describe the Mark I Corporation model, state why parts of the business were modeled as they were, and indicate the research applications of the model. (Author)

  17. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    Science.gov (United States)

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  18. Distributed simulation a model driven engineering approach

    CERN Document Server

    Topçu, Okan; Oğuztüzün, Halit; Yilmaz, Levent

    2016-01-01

    Backed by substantive case studies, the novel approach to software engineering for distributed simulation outlined in this text demonstrates the potent synergies between model-driven techniques, simulation, intelligent agents, and computer systems development.

  19. Simulation modelling of fynbos ecosystems: Systems analysis and conceptual models

    CSIR Research Space (South Africa)

    Kruger, FJ

    1985-03-01

    Full Text Available -animal interactions. An additional two models, which expand aspects of the FYNBOS model, are described: a model for simulating canopy processes; and a Fire Recovery Simulator. The canopy process model will simulate ecophysiological processes in more detail than FYNBOS...

  20. SU-E-T-53: Benchmarking a Monte Carlo Model for Patient Plane Leakage Calculations of Low Energy 6MV Unique Linacs

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, M; Sawkey, D; Johnsen, S; Hsu, H [Varian Medical Systems, Palo Alto, CA (United States)

    2014-06-01

    Purpose: To validate the physics parameters of a Monte Carlo model for patient plane leakage calculations on the 6MV Unique linac by comparing the simulations against IEC patient plane leakage measurements. The benchmarked model can further be used for shielding design optimization, to predict leakage in the proximity of intended treatment fields, reduce the system weight and cost, and improve components reliability. Methods: The treatment head geometry of the Unique linac was simulated in Geant4 (v9.4.p02 with “Opt3” standard electromagnetic physics list) based on CAD drawings of all collimation and shielding components projected from the target to the area within 2m from isocenter. A 4×4m2 scorer was inserted 1m from the target in the patient plane and multiple phase space files were recorded by performing a 40-node computing cluster simulation on the EC2 cloud. The photon energy fluence was calculated relative to the value at isocenter for a 10×10cm2 field using 10×10mm2 bins. Tungsten blocks were parked accordingly to represent MLC120. The secondary particle contamination to patient plane was eliminated by “killing” those particles prior to the primary collimator entrance using a “kill-plane”, which represented the upper head shielding components not being modeled. Both IEC patient-plane leakage and X/Y-jaws transmission were simulated. Results: The contribution of photons to energy fluence was 0.064% on average, in excellent agreement with the experimental data available at 0.5, 1.0, and 1.5m from isocenter, characterized by an average leakage of 0.045% and a maximum leakage of 0.085%. X- and Y-jaws transmissions of 0.43% and 0.44% were found in good agreement with measurements of 0.48% and 0.43%, respectively. Conclusion: A Geant4 model based on energy fluence calculations for the 6MV Unique linac was created and validated using IEC patient plane leakage measurements. The “kill-plane” has effectively eliminated electron contamination to

  1. Validation of advanced NSSS simulator model for loss-of-coolant accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kao, S.P.; Chang, S.K.; Huang, H.C. [Nuclear Training Branch, Northeast Utilities, Waterford, CT (United States)

    1995-09-01

    The replacement of the NSSS (Nuclear Steam Supply System) model on the Millstone 2 full-scope simulator has significantly increased its fidelity to simulate adverse conditions in the RCS. The new simulator NSSS model is a real-time derivative of the Nuclear Plant Analyzer by ABB. The thermal-hydraulic model is a five-equation, non-homogeneous model for water, steam, and non-condensible gases. The neutronic model is a three-dimensional nodal diffusion model. In order to certify the new NSSS model for operator training, an extensive validation effort has been performed by benchmarking the model performance against RELAP5/MOD2. This paper presents the validation results for the cases of small-and large-break loss-of-coolant accidents (LOCA). Detailed comparisons in the phenomena of reflux-condensation, phase separation, and two-phase natural circulation are discussed.

  2. Benchmarking in Foodservice Operations

    National Research Council Canada - National Science Library

    Johnson, Bonnie

    1998-01-01

    The objective of this study was to identify usage of foodservice performance measures, important activities in foodservice benchmarking, and benchmarking attitudes, beliefs, and practices by foodservice directors...

  3. An introduction to enterprise modeling and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ostic, J.K.; Cannon, C.E. [Los Alamos National Lab., NM (United States). Technology Modeling and Analysis Group

    1996-09-01

    As part of an ongoing effort to continuously improve productivity, quality, and efficiency of both industry and Department of Energy enterprises, Los Alamos National Laboratory is investigating various manufacturing and business enterprise simulation methods. A number of enterprise simulation software models are being developed to enable engineering analysis of enterprise activities. In this document the authors define the scope of enterprise modeling and simulation efforts, and review recent work in enterprise simulation at Los Alamos National Laboratory as well as at other industrial, academic, and research institutions. References of enterprise modeling and simulation methods and a glossary of enterprise-related terms are provided.

  4. Simulation and Modeling Methodologies, Technologies and Applications

    CERN Document Server

    Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno

    2014-01-01

    This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).

  5. Structured building model reduction toward parallel simulation

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Justin R. [Cornell University; Hencey, Brondon M. [Cornell University

    2013-08-26

    Building energy model reduction exchanges accuracy for improved simulation speed by reducing the number of dynamical equations. Parallel computing aims to improve simulation times without loss of accuracy but is poorly utilized by contemporary simulators and is inherently limited by inter-processor communication. This paper bridges these disparate techniques to implement efficient parallel building thermal simulation. We begin with a survey of three structured reduction approaches that compares their performance to a leading unstructured method. We then use structured model reduction to find thermal clusters in the building energy model and allocate processing resources. Experimental results demonstrate faster simulation and low error without any interprocessor communication.

  6. Harmonic oscillator in heat bath: Exact simulation of time-lapse-recorded data and exact analytical benchmark statistics

    DEFF Research Database (Denmark)

    Nørrelykke, Simon F; Flyvbjerg, Henrik

    2011-01-01

    The stochastic dynamics of the damped harmonic oscillator in a heat bath is simulated with an algorithm that is exact for time steps of arbitrary size. Exact analytical results are given for correlation functions and power spectra in the form they acquire when computed from experimental time...

  7. Simulation of sound waves using the Lattice Boltzmann Method for fluid flow: Benchmark cases for outdoor sound propagation

    NARCIS (Netherlands)

    Salomons, E.M.; Lohman, W.J.A.; Zhou, H.

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases:

  8. A physiological production model for cacao : results of model simulations

    NARCIS (Netherlands)

    Zuidema, P.A.; Leffelaar, P.A.

    2002-01-01

    CASE2 is a physiological model for cocoa (Theobroma cacao L.) growth and yield. This report introduces the CAcao Simulation Engine for water-limited production in a non-technical way and presents simulation results obtained with the model.

  9. Simulation modeling and analysis with Arena

    CERN Document Server

    Altiok, Tayfur

    2007-01-01

    Simulation Modeling and Analysis with Arena is a highly readable textbook which treats the essentials of the Monte Carlo discrete-event simulation methodology, and does so in the context of a popular Arena simulation environment.” It treats simulation modeling as an in-vitro laboratory that facilitates the understanding of complex systems and experimentation with what-if scenarios in order to estimate their performance metrics. The book contains chapters on the simulation modeling methodology and the underpinnings of discrete-event systems, as well as the relevant underlying probability, statistics, stochastic processes, input analysis, model validation and output analysis. All simulation-related concepts are illustrated in numerous Arena examples, encompassing production lines, manufacturing and inventory systems, transportation systems, and computer information systems in networked settings.· Introduces the concept of discrete event Monte Carlo simulation, the most commonly used methodology for modeli...

  10. Calculations of the IAEA-CRP-6 Benchmark Cases by Using the ABAQUS FE Model for a Comparison with the COPA Results

    International Nuclear Information System (INIS)

    Cho, Moon-Sung; Kim, Y. M.; Lee, Y. W.; Jeong, K. C.; Kim, Y. K.; Oh, S. C.

    2006-01-01

    The fundamental design for a gas-cooled reactor relies on an understanding of the behavior of a coated particle fuel. KAERI, which has been carrying out the Korean VHTR (Very High Temperature modular gas cooled Reactor) Project since 2004, is developing a fuel performance analysis code for a VHTR named COPA (COated Particle fuel Analysis). COPA predicts temperatures, stresses, a fission gas release and failure probabilities of a coated particle fuel in normal operating conditions. Validation of COPA in the process of its development is realized partly by participating in the benchmark section of the international CRP-6 program led by IAEA which provides comprehensive benchmark problems and analysis results obtained from the CRP-6 member countries. Apart from the validation effort through the CRP-6, a validation of COPA was attempted by comparing its benchmark results with the visco-elastic solutions obtained from the ABAQUS code calculations for the same CRP-6 TRISO coated particle benchmark problems involving creep, swelling, and pressure. The study shows the calculation results of the IAEA-CRP-6 benchmark cases 5 through 7 by using the ABAQUS FE model for a comparison with the COPA results

  11. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets.

    Science.gov (United States)

    Marchese Robinson, Richard L; Palczewska, Anna; Palczewski, Jan; Kidley, Nathan

    2017-08-28

    The ability to interpret the predictions made by quantitative structure-activity relationships (QSARs) offers a number of advantages. While QSARs built using nonlinear modeling approaches, such as the popular Random Forest algorithm, might sometimes be more predictive than those built using linear modeling approaches, their predictions have been perceived as difficult to interpret. However, a growing number of approaches have been proposed for interpreting nonlinear QSAR models in general and Random Forest in particular. In the current work, we compare the performance of Random Forest to those of two widely used linear modeling approaches: linear Support Vector Machines (SVMs) (or Support Vector Regression (SVR)) and partial least-squares (PLS). We compare their performance in terms of their predictivity as well as the chemical interpretability of the predictions using novel scoring schemes for assessing heat map images of substructural contributions. We critically assess different approaches for interpreting Random Forest models as well as for obtaining predictions from the forest. We assess the models on a large number of widely employed public-domain benchmark data sets corresponding to regression and binary classification problems of relevance to hit identification and toxicology. We conclude that Random Forest typically yields comparable or possibly better predictive performance than the linear modeling approaches and that its predictions may also be interpreted in a chemically and biologically meaningful way. In contrast to earlier work looking at interpretation of nonlinear QSAR models, we directly compare two methodologically distinct approaches for interpreting Random Forest models. The approaches for interpreting Random Forest assessed in our article were implemented using open-source programs that we have made available to the community. These programs are the rfFC package ( https://r-forge.r-project.org/R/?group_id=1725 ) for the R statistical

  12. Network Modeling and Simulation A Practical Perspective

    CERN Document Server

    Guizani, Mohsen; Khan, Bilal

    2010-01-01

    Network Modeling and Simulation is a practical guide to using modeling and simulation to solve real-life problems. The authors give a comprehensive exposition of the core concepts in modeling and simulation, and then systematically address the many practical considerations faced by developers in modeling complex large-scale systems. The authors provide examples from computer and telecommunication networks and use these to illustrate the process of mapping generic simulation concepts to domain-specific problems in different industries and disciplines. Key features: Provides the tools and strate

  13. Terrestrial Microgravity Model and Threshold Gravity Simulation using Magnetic Levitation

    Science.gov (United States)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successfully simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars. The paper will discuss experiments md modeling work to date in support of this project.

  14. The CEC benchmark interclay on rheological models for clays results of pilot phase (January-June 1989) about the boom clay at Mol (B)

    International Nuclear Information System (INIS)

    Come, B.

    1990-01-01

    A pilot phase of a benchmark exercise for rheological models for boom clay, called interclay, was launched by the CEC in January 1989. The purpose of the benchmark is to compare predictions of calculations made about well-defined rock-mechanical problems, similar to real cases at the Mol facilities, using existing data from laboratory tests on samples. Basically, two approaches were to be compared: one considering clay as an elasto-visco-plastic medium (rock-mechanics approach), and one isolating the role of pore-pressure dissipation (soil-mechanics approach)

  15. International Land Model Benchmarking (ILAMB) Workshop Report, Technical Report DOE/SC-0186

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Koven, Charles D.; Kappel-Aleks, Gretchen [Univ. of Michigan, Ann Arbor, MI (United States); Lawrence, David M. [National Center for Atmospheric Research, Boulder, CO (United States); Riley, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Randerson, James T. [Univ. of California, Irvine, CA (United States); Ahlstrom, Anders; Abramowitz, G.; Baldocchi, Dennis; Bond-Lamberty, Benjamin; De Kauwe, Martin G.; Denning, Scott; Desai, Ankur R.; Eyring, Veronika; Fisher, Joshua B.; Fisher, R.; Gleckler, Peter J.; Huang, Maoyi; Hugelius, Gustaf; Jain, Atul K.; Kiang, Nancy Y.; Kim, Hyungjun; Koster, Randy; Kumar, Sujay V.; Li, Hongyi; Luo, Yiqi; Mao, Jiafu; McDowell, Nate G.; Mishra, Umakant; Moorcroft, Paul; Pau, George; Ricciuto, Daniel M.; Schaefer, Kevin; Schwalm, C.; Serbin, Shawn; Shevliakova, Elena; Slater, Andrew G.; Tang, Jinyun; Williams, Mathew; Xia, Jianyang; Xu, Chonggang; Joseph, Renu; Koch, Dorothy

    2016-11-01

    As Earth system models become increasingly complex, there is a growing need for comprehensive and multi-faceted evaluation of model projections. To advance understanding of biogeochemical processes and their interactions with hydrology and climate under conditions of increasing atmospheric carbon dioxide, new analysis methods are required that use observations to constrain model predictions, inform model development, and identify needed measurements and field experiments. Better representations of biogeochemistry–climate feedbacks and ecosystem processes in these models are essential for reducing uncertainties associated with projections of climate change during the remainder of the 21st century.

  16. WIPP Benchmark calculations with the large strain SPECTROM codes

    International Nuclear Information System (INIS)

    Callahan, G.D.; DeVries, K.L.

    1995-08-01

    This report provides calculational results from the updated Lagrangian structural finite-element programs SPECTROM-32 and SPECTROM-333 for the purpose of qualifying these codes to perform analyses of structural situations in the Waste Isolation Pilot Plant (WIPP). Results are presented for the Second WIPP Benchmark (Benchmark II) Problems and for a simplified heated room problem used in a parallel design calculation study. The Benchmark II problems consist of an isothermal room problem and a heated room problem. The stratigraphy involves 27 distinct geologic layers including ten clay seams of which four are modeled as frictionless sliding interfaces. The analyses of the Benchmark II problems consider a 10-year simulation period. The evaluation of nine structural codes used in the Benchmark II problems shows that inclusion of finite-strain effects is not as significant as observed for the simplified heated room problem, and a variety of finite-strain and small-strain formulations produced similar results. The simplified heated room problem provides stratigraphic complexity equivalent to the Benchmark II problems but neglects sliding along the clay seams. The simplified heated problem does, however, provide a calculational check case where the small strain-formulation produced room closures about 20 percent greater than those obtained using finite-strain formulations. A discussion is given of each of the solved problems, and the computational results are compared with available published results. In general, the results of the two SPECTROM large strain codes compare favorably with results from other codes used to solve the problems

  17. MoMaS reactive transport benchmark using PFLOTRAN

    Science.gov (United States)

    Park, H.

    2017-12-01

    MoMaS benchmark was developed to enhance numerical simulation capability for reactive transport modeling in porous media. The benchmark was published in late September of 2009; it is not taken from a real chemical system, but realistic and numerically challenging tests. PFLOTRAN is a state-of-art massively parallel subsurface flow and reactive transport code that is being used in multiple nuclear waste repository projects at Sandia National Laboratories including Waste Isolation Pilot Plant and Used Fuel Disposition. MoMaS benchmark has three independent tests with easy, medium, and hard chemical complexity. This paper demonstrates how PFLOTRAN is applied to this benchmark exercise and shows results of the easy benchmark test case which includes mixing of aqueous components and surface complexation. Surface complexations consist of monodentate and bidentate reactions which introduces difficulty in defining selectivity coefficient if the reaction applies to a bulk reference volume. The selectivity coefficient becomes porosity dependent for bidentate reaction in heterogeneous porous media. The benchmark is solved by PFLOTRAN with minimal modification to address the issue and unit conversions were made properly to suit PFLOTRAN.

  18. Modelling and simulation of a heat exchanger

    Science.gov (United States)

    Xia, Lei; Deabreu-Garcia, J. Alex; Hartley, Tom T.

    1991-01-01

    Two models for two different control systems are developed for a parallel heat exchanger. First by spatially lumping a heat exchanger model, a good approximate model which has a high system order is produced. Model reduction techniques are applied to these to obtain low order models that are suitable for dynamic analysis and control design. The simulation method is discussed to ensure a valid simulation result.

  19. Industrial and ecological cumulative exergy consumption of the United States via the 1997 input-output benchmark model

    International Nuclear Information System (INIS)

    Ukidwe, Nandan U.; Bakshi, Bhavik R.

    2007-01-01

    This paper develops a thermodynamic input-output (TIO) model of the 1997 United States economy that accounts for the flow of cumulative exergy in the 488-sector benchmark economic input-output model in two different ways. Industrial cumulative exergy consumption (ICEC) captures the exergy of all natural resources consumed directly and indirectly by each economic sector, while ecological cumulative exergy consumption (ECEC) also accounts for the exergy consumed in ecological systems for producing each natural resource. Information about exergy consumed in nature is obtained from the thermodynamics of biogeochemical cycles. As used in this work, ECEC is analogous to the concept of emergy, but does not rely on any of its controversial claims. The TIO model can also account for emissions from each sector and their impact and the role of labor. The use of consistent exergetic units permits the combination of various streams to define aggregate metrics that may provide insight into aspects related to the impact of economic sectors on the environment. Accounting for the contribution of natural capital by ECEC has been claimed to permit better representation of the quality of ecosystem goods and services than ICEC. The results of this work are expected to permit evaluation of these claims. If validated, this work is expected to lay the foundation for thermodynamic life cycle assessment, particularly of emerging technologies and with limited information

  20. Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example

    International Nuclear Information System (INIS)

    Chung, Pil Seung; So, Dae Sup; Biegler, Lorenz T.; Jhon, Myung S.

    2012-01-01

    Developments in nanotechnology have led to innovative progress and converging technologies in engineering and science. These demand novel methodologies that enable efficient communications from the nanoscale all the way to decision-making criteria for actual production systems. In this paper, we discuss the convergence of nanotechnology and novel multi-scale modeling paradigms by using the fuel cell system as a benchmark example. This approach includes complex multi-phenomena at different time and length scales along with the introduction of an optimization framework for application-driven nanotechnology research trends. The modeling paradigm introduced here covers the novel holistic integration from atomistic/molecular phenomena to meso/continuum scales. System optimization is also discussed with respect to the reduced order parameters for a coarse-graining procedure in multi-scale model integration as well as system design. The development of a hierarchical multi-scale paradigm consolidates the theoretical analysis and enables large-scale decision-making of process level design, based on first-principles, and therefore promotes the convergence of nanotechnology to sustainable energy technologies.

  1. Nanotechnology convergence and modeling paradigm of sustainable energy system using polymer electrolyte membrane fuel cell as a benchmark example

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Pil Seung; So, Dae Sup; Biegler, Lorenz T.; Jhon, Myung S., E-mail: mj3a@andrew.cmu.edu [Carnegie Mellon University, Department of Chemical Engineering (United States)

    2012-08-15

    Developments in nanotechnology have led to innovative progress and converging technologies in engineering and science. These demand novel methodologies that enable efficient communications from the nanoscale all the way to decision-making criteria for actual production systems. In this paper, we discuss the convergence of nanotechnology and novel multi-scale modeling paradigms by using the fuel cell system as a benchmark example. This approach includes complex multi-phenomena at different time and length scales along with the introduction of an optimization framework for application-driven nanotechnology research trends. The modeling paradigm introduced here covers the novel holistic integration from atomistic/molecular phenomena to meso/continuum scales. System optimization is also discussed with respect to the reduced order parameters for a coarse-graining procedure in multi-scale model integration as well as system design. The development of a hierarchical multi-scale paradigm consolidates the theoretical analysis and enables large-scale decision-making of process level design, based on first-principles, and therefore promotes the convergence of nanotechnology to sustainable energy technologies.

  2. Thin and thick target benchmark investigations to validate spallation physics models

    International Nuclear Information System (INIS)

    Filges, D.; Neef, R.D.; Goldenbaum, F.; Nuenighoff, K.; Galin, J.; Letourneau, A.; Lott, B.; Patois, Y.; Schroeder, W.N.

    1999-01-01

    In the ESS (European Spallation Source) study report several areas have been identified where further spallation physics research and code validation is urgently needed: Neutron and charged particle production and multiplicities above one GeV incident protons, energy deposition and heating, material damage parameters, radioactivity and after heat, and high energy source shielding. All simulation calculations will be done using the Juelich HERMES code system. For this purpose various collaborations were organised. One of the collaborations is NESSI (Neutron Scintillator Silicon Detector), which concerns fundamental data as cross-section measurements on neutron multiplicities and charged particles for different ESS relevant materials. (author)

  3. Benchmarking in Czech Higher Education

    Directory of Open Access Journals (Sweden)

    Plaček Michal

    2015-12-01

    Full Text Available The first part of this article surveys the current experience with the use of benchmarking at Czech universities specializing in economics and management. The results indicate that collaborative benchmarking is not used on this level today, but most actors show some interest in its introduction. The expression of the need for it and the importance of benchmarking as a very suitable performance-management tool in less developed countries are the impetus for the second part of our article. Based on an analysis of the current situation and existing needs in the Czech Republic, as well as on a comparison with international experience, recommendations for public policy are made, which lie in the design of a model of a collaborative benchmarking for Czech economics and management in higher-education programs. Because the fully complex model cannot be implemented immediately – which is also confirmed by structured interviews with academics who have practical experience with benchmarking –, the final model is designed as a multi-stage model. This approach helps eliminate major barriers to the implementation of benchmarking.

  4. Benchmarking and Performance Measurement.

    Science.gov (United States)

    Town, J. Stephen

    This paper defines benchmarking and its relationship to quality management, describes a project which applied the technique in a library context, and explores the relationship between performance measurement and benchmarking. Numerous benchmarking methods contain similar elements: deciding what to benchmark; identifying partners; gathering…

  5. Terrestrial Microgravity Model and Threshold Gravity Simulation sing Magnetic Levitation

    Science.gov (United States)

    Ramachandran, N.

    2005-01-01

    What is the threshold gravity (minimum gravity level) required for the nominal functioning of the human system? What dosage is required? Do human cell lines behave differently in microgravity in response to an external stimulus? The critical need for such a gravity simulator is emphasized by recent experiments on human epithelial cells and lymphocytes on the Space Shuttle clearly showing that cell growth and function are markedly different from those observed terrestrially. Those differences are also dramatic between cells grown in space and those in Rotating Wall Vessels (RWV), or NASA bioreactor often used to simulate microgravity, indicating that although morphological growth patterns (three dimensional growth) can be successiblly simulated using RWVs, cell function performance is not reproduced - a critical difference. If cell function is dramatically affected by gravity off-loading, then cell response to stimuli such as radiation, stress, etc. can be very different from terrestrial cell lines. Yet, we have no good gravity simulator for use in study of these phenomena. This represents a profound shortcoming for countermeasures research. We postulate that we can use magnetic levitation of cells and tissue, through the use of strong magnetic fields and field gradients, as a terrestrial microgravity model to study human cells. Specific objectives of the research are: 1. To develop a tried, tested and benchmarked terrestrial microgravity model for cell culture studies; 2. Gravity threshold determination; 3. Dosage (magnitude and duration) of g-level required for nominal functioning of cells; 4. Comparisons of magnetic levitation model to other models such as RWV, hind limb suspension, etc. and 5. Cellular response to reduced gravity levels of Moon and Mars.

  6. Simulation of Sound Waves Using the Lattice Boltzmann Method for Fluid Flow: Benchmark Cases for Outdoor Sound Propagation.

    Science.gov (United States)

    Salomons, Erik M; Lohman, Walter J A; Zhou, Han

    2016-01-01

    Propagation of sound waves in air can be considered as a special case of fluid dynamics. Consequently, the lattice Boltzmann method (LBM) for fluid flow can be used for simulating sound propagation. In this article application of the LBM to sound propagation is illustrated for various cases: free-field propagation, propagation over porous and non-porous ground, propagation over a noise barrier, and propagation in an atmosphere with wind. LBM results are compared with solutions of the equations of acoustics. It is found that the LBM works well for sound waves, but dissipation of sound waves with the LBM is generally much larger than real dissipation of sound waves in air. To circumvent this problem it is proposed here to use the LBM for assessing the excess sound level, i.e. the difference between the sound level and the free-field sound level. The effect of dissipation on the excess sound level is much smaller than the effect on the sound level, so the LBM can be used to estimate the excess sound level for a non-dissipative atmosphere, which is a useful quantity in atmospheric acoustics. To reduce dissipation in an LBM simulation two approaches are considered: i) reduction of the kinematic viscosity and ii) reduction of the lattice spacing.

  7. Analysis of Benchmark 2 results

    International Nuclear Information System (INIS)

    Bacha, F.; Lefievre, B.; Maillard, J.; Silva, J.

    1994-01-01

    The code GEANT315 has been compared to different codes in two benchmarks. We analyze its performances through our results, especially in the thick target case. In spite of gaps in nucleus-nucleus interaction theories at intermediate energies, benchmarks allow possible improvements of physical models used in our codes. Thereafter, a scheme of radioactive waste burning system is studied. (authors). 4 refs., 7 figs., 1 tab

  8. A simplified approach to WWER-440 fuel assembly head benchmark

    International Nuclear Information System (INIS)

    Muehlbauer, P.

    2010-01-01

    The WWER-440 fuel assembly head benchmark was simulated with FLUENT 12 code as a first step of validation of the code for nuclear reactor safety analyses. Results of the benchmark together with comparison of results provided by other participants and results of measurement will be presented in another paper by benchmark organisers. This presentation is therefore focused on our approach to this simulation as illustrated on the case 323-34, which represents a peripheral assembly with five neighbours. All steps of the simulation and some lessons learned are described. Geometry of the computational region supplied as STEP file by organizers of the benchmark was first separated into two parts (inlet part with spacer grid, and the rest of assembly head) in order to keep the size of the computational mesh manageable with regard to the hardware available (HP Z800 workstation with Intel Zeon four-core CPU 3.2 GHz, 32 GB of RAM) and then further modified at places where shape of the geometry would probably lead to highly distorted cells. Both parts of the geometry were connected via boundary profile file generated at cross section, where effect of grid spacers is still felt but the effect of out flow boundary condition used in the computations of the inlet part of geometry is negligible. Computation proceeded in several steps: start with basic mesh, standard k-ε model of turbulence with standard wall functions and first order upwind numerical schemes; after convergence (scaled residuals lower than 10-3) and near-wall meshes local adaptation when needed, realizable k-ε of turbulence was used with second order upwind numerical schemes for momentum and energy equations. During iterations, area-average temperature of thermocouples and area-averaged outlet temperature which are the main figures of merit of the benchmark were also monitored. In this 'blind' phase of the benchmark, effect of spacers was neglected. After results of measurements are available, standard validation

  9. A dust spectral energy distribution model with hierarchical Bayesian inference - I. Formalism and benchmarking

    Science.gov (United States)

    Galliano, Frédéric

    2018-05-01

    This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.

  10. Benchmarking of Generation and Distribution Units in Nepal Using Modified DEA Models

    Science.gov (United States)

    Jha, Deependra Kumar; Yorino, Naoto; Zoka, Yoshifumi

    This paper analyzes the performance of Nepalese Electricity Supply Industry (ESI) by investigating the relative operational efficiencies of the generating stations as well as the Distribution Centers (DCs) of the Integrated Nepal Power System (INPS). Nepal Electricity Authority (NEA), a state owned utility, owns and operates the INPS. Performance evaluation of both generation and distribution systems is carried out by formulating suitable weight restriction type Data Envelopment Analysis (DEA) models. The models include a wide range of inputs and outputs representing essence of the respective processes. Decision maker's preferences as well as available quantitative information associated with the operation of the Decision Making Units (DMUs) are judiciously incorporated in the DEA models. The proposed models are realized through execution of computer programs written in General Algebraic Modeling Systems (GAMS) and the results obtained are thus compared against those from the conventional DEA models. Sensitivity analysis is performed in order to check the robustness of the results as well as to identify the improvement directions for DMUs. Ranking of the DMUs has been presented based on their average overall efficiency scores.

  11. Modeling and Simulation of Low Voltage Arcs

    NARCIS (Netherlands)

    Ghezzi, L.; Balestrero, A.

    2010-01-01

    Modeling and Simulation of Low Voltage Arcs is an attempt to improve the physical understanding, mathematical modeling and numerical simulation of the electric arcs that are found during current interruptions in low voltage circuit breakers. An empirical description is gained by refined electrical

  12. Benchmarking in the Netherlands

    International Nuclear Information System (INIS)

    1999-01-01

    In two articles an overview is given of the activities in the Dutch industry and energy sector with respect to benchmarking. In benchmarking operational processes of different competitive businesses are compared to improve your own performance. Benchmark covenants for energy efficiency between the Dutch government and industrial sectors contribute to a growth of the number of benchmark surveys in the energy intensive industry in the Netherlands. However, some doubt the effectiveness of the benchmark studies

  13. Chrystal and Proudman resonances simulated with three numerical models

    Science.gov (United States)

    Bubalo, Maja; Janeković, Ivica; Orlić, Mirko

    2018-05-01

    The aim of this work was to study Chrystal and Proudman resonances in a simple closed basin and to explore and compare how well the two resonant mechanisms are reproduced with different, nowadays widely used, numerical ocean models. The test case was based on air pressure disturbances of two commonly used shapes (a sinusoidal and a boxcar), having various wave lengths, and propagating at different speeds. Our test domain was a closed rectangular basin, 300 km long with a uniform depth of 50 m, with the theoretical analytical solution available for benchmark. In total, 2250 simulations were performed for each of the three different numerical models: ADCIRC, SCHISM and ROMS. During each of the simulations, we recorded water level anomalies and computed the integral of the energy density spectrum for a number of points distributed along the basin. We have successfully documented the transition from Proudman to Chrystal resonance that occurs for a sinusoidal air pressure disturbance having a wavelength between one and two basin lengths. An inter-model comparison of the results shows that different models represent the two resonant phenomena in a slightly different way. For Chrystal resonance, all the models showed similar behavior; however, ADCIRC model providing slightly higher values of the mean resonant period than the other two models. In the case of Proudman resonance, the most consistent results, closest to the analytical solution, were obtained using ROMS model, which reproduced the mean resonant speed equal to 22.00 m/s— i.e., close to the theoretical value of 22.15 m/s. ADCIRC and SCHISM models showed small deviations from that value, with the mean speed being slightly lower—21.97 m/s (ADCIRC) and 21.93 m/s (SCHISM). The findings may seem small but could play an important role when resonance is a crucial process producing enhancing effects by two orders of magnitude (i.e., meteotsunamis).

  14. Benchmarks for GADRAS performance validation

    International Nuclear Information System (INIS)

    Mattingly, John K.; Mitchell, Dean James; Rhykerd, Charles L. Jr.

    2009-01-01

    The performance of the Gamma Detector Response and Analysis Software (GADRAS) was validated by comparing GADRAS model results to experimental measurements for a series of benchmark sources. Sources for the benchmark include a plutonium metal sphere, bare and shielded in polyethylene, plutonium oxide in cans, a highly enriched uranium sphere, bare and shielded in polyethylene, a depleted uranium shell and spheres, and a natural uranium sphere. The benchmark experimental data were previously acquired and consist of careful collection of background and calibration source spectra along with the source spectra. The calibration data were fit with GADRAS to determine response functions for the detector in each experiment. A one-dimensional model (pie chart) was constructed for each source based on the dimensions of the benchmark source. The GADRAS code made a forward calculation from each model to predict the radiation spectrum for the detector used in the benchmark experiment. The comparisons between the GADRAS calculation and the experimental measurements are excellent, validating that GADRAS can correctly predict the radiation spectra for these well-defined benchmark sources.

  15. Model improvements to simulate charging in SEM

    Science.gov (United States)

    Arat, K. T.; Klimpel, T.; Hagen, C. W.

    2018-03-01

    Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.

  16. Modelling phosphorus (P), sulphur (S) and iron (Fe) interactions during the simulation of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Solon, Kimberly; Kazadi-Mbamba, Christian

    2015-01-01

    This paper examines the effects of different model formulations when describing sludge stabilization processes in wastewater treatment plants by the Anaerobic Digestion Model No. 1 (ADM1). The proposed model extensions describe the interactions amongst phosphorus (P), sulfur (S), iron (Fe......) and their potential effect on total biogas production (CO2, CH4, H2 and H2S). The ADM1 version, implemented in the plant-wide context provided by the Benchmark Simulation Model No. 2 (BSM2), is used as the basic platform (A0). Four (A1 – A4) different model extensions are implemented, simulated and evaluated......2) as the electron donor. Finally, the last evaluated approach (A4) is based on accounting for Multiple Mineral Precipitation. The ADM1 thereby switches from a 2-phase (aqueous-gas) to a 3-phase (aqueous-gas-solid) system. Simulation results show that the implementations of A1 and A2 lead...

  17. Benchmarking of numerical models describing the dispersion of radionuclides in the Arctic Seas

    DEFF Research Database (Denmark)

    Scott, E.M.; Gurbutt, P.; Harms, I.

    1997-01-01

    As part of the International Arctic Seas Assessment Project (IASAP) of the International Atomic Energy Agency (IAEA), a working group was created to model the dispersal and transfer of radionuclides released from radioactive waste disposed of in the Kara Sea. The objectives of this group are: (1......) development of realistic and reliable assessment models for the dispersal of radioactive contaminants both within, and from, the Arctic ocean; and (2) evaluation of the contributions of different transfer mechanisms to contaminant dispersal and hence, ultimately, to the risks to human health and environment...

  18. Shale gas technology innovation rate impact on economic Base Case – Scenario model benchmarks

    International Nuclear Information System (INIS)

    Weijermars, Ruud

    2015-01-01

    Highlights: • Cash flow models control which technology is affordable in emerging shale gas plays. • Impact of technology innovation on IRR can be as important as wellhead price hikes. • Cash flow models are useful for technology decisions that make shale gas plays economic. • The economic gap can be closed by appropriate technology innovation. - Abstract: Low gas wellhead prices in North America have put its shale gas industry under high competitive pressure. Rapid technology innovation can help companies to improve the economic performance of shale gas fields. Cash flow models are paramount for setting effective production and technology innovation targets to achieve positive returns on investment in all global shale gas plays. Future cash flow of a well (or cluster of wells) may either improve further or deteriorate, depending on: (1) the regional volatility in gas prices at the wellhead – which must pay for the gas resource extraction, and (2) the cost and effectiveness of the well technology used. Gas price is an externality and cannot be controlled by individual companies, but well technology cost can be reduced while improving production output. We assume two plausible scenarios for well technology innovation and model the return on investment while checking against sensitivity to gas price volatility. It appears well technology innovation – if paced fast enough – can fully redeem the negative impact of gas price decline on shale well profits, and the required rates are quantified in our sensitivity analysis

  19. Effects of model resolution and parameterizations on the simulations of clouds, precipitation, and their interactions with aerosols

    Science.gov (United States)

    Lee, Seoung Soo; Li, Zhanqing; Zhang, Yuwei; Yoo, Hyelim; Kim, Seungbum; Kim, Byung-Gon; Choi, Yong-Sang; Mok, Jungbin; Um, Junshik; Ock Choi, Kyoung; Dong, Danhong

    2018-01-01

    This study investigates the roles played by model resolution and microphysics parameterizations in the well-known uncertainties or errors in simulations of clouds, precipitation, and their interactions with aerosols by the numerical weather prediction (NWP) models. For this investigation, we used cloud-system-resolving model (CSRM) simulations as benchmark simulations that adopt high-resolution and full-fledged microphysical processes. These simulations were evaluated against observations, and this evaluation demonstrated that the CSRM simulations can function as benchmark simulations. Comparisons between the CSRM simulations and the simulations at the coarse resolutions that are generally adopted by current NWP models indicate that the use of coarse resolutions as in the NWP models can lower not only updrafts and other cloud variables (e.g., cloud mass, condensation, deposition, and evaporation) but also their sensitivity to increasing aerosol concentration. The parameterization of the saturation process plays an important role in the sensitivity of cloud variables to aerosol concentrations. while the parameterization of the sedimentation process has a substantial impact on how cloud variables are distributed vertically. The variation in cloud variables with resolution is much greater than what happens with varying microphysics parameterizations, which suggests that the uncertainties in the NWP simulations are associated with resolution much more than microphysics parameterizations.

  20. Whole-building Hygrothermal Simulation Model

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2003-01-01

    An existing integrated simulation tool for dynamic thermal simulation of building was extended with a transient model for moisture release and uptake in building materials. Validation of the new model was begun with comparison against measurements in an outdoor test cell furnished with single...... materials. Almost quasi-steady, cyclic experiments were used to compare the indoor humidity variation and the numerical results of the integrated simulation tool with the new moisture model. Except for the case with chipboard as furnishing, the predictions of indoor humidity with the detailed model were...

  1. Evaluation of cloud resolving model simulations of midlatitude cirrus with ARM and A-Train observations

    Science.gov (United States)

    Muehlbauer, A. D.; Ackerman, T. P.; Lawson, P.; Xie, S.; Zhang, Y.

    2015-12-01

    This paper evaluates cloud resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration (NASA) A-train satellites. Vertical profiles of temperature, relative humidity and wind speeds are reasonably well simulated by the CSRM and CRM but there are remaining biases in the temperature, wind speeds and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in GCMs and in CSRM simulations with horizontal grid spacings on the order of 1km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable

  2. Business Models and Sharing Economy: Benchmarking Best Practices in Finland and Russia

    OpenAIRE

    Martynova, Tatiana

    2017-01-01

    The thesis studies the best practices in sharing economy across various industries in Russia and Finland, based on case studies of business models. It researches current legal status of the phenomenon as well as legislative changes that are to be expected in the field of sharing economy. The thesis project was commissioned in November 2015 by Association of Finnish Travel Agents (AFTA), an organization formed by travel agents, tour operators and incoming agents to promote the mutual inter...

  3. Simulation modeling for the health care manager.

    Science.gov (United States)

    Kennedy, Michael H

    2009-01-01

    This article addresses the use of simulation software to solve administrative problems faced by health care managers. Spreadsheet add-ins, process simulation software, and discrete event simulation software are available at a range of costs and complexity. All use the Monte Carlo method to realistically integrate probability distributions into models of the health care environment. Problems typically addressed by health care simulation modeling are facility planning, resource allocation, staffing, patient flow and wait time, routing and transportation, supply chain management, and process improvement.

  4. Protein Simulation Data in the Relational Model.

    Science.gov (United States)

    Simms, Andrew M; Daggett, Valerie

    2012-10-01

    High performance computing is leading to unprecedented volumes of data. Relational databases offer a robust and scalable model for storing and analyzing scientific data. However, these features do not come without a cost-significant design effort is required to build a functional and efficient repository. Modeling protein simulation data in a relational database presents several challenges: the data captured from individual simulations are large, multi-dimensional, and must integrate with both simulation software and external data sites. Here we present the dimensional design and relational implementation of a comprehensive data warehouse for storing and analyzing molecular dynamics simulations using SQL Server.

  5. Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: one-dimensional soil thaw with conduction and advection

    Science.gov (United States)

    Kurylyk, Barret L.; McKenzie, Jeffrey M; MacQuarrie, Kerry T. B.; Voss, Clifford I.

    2014-01-01

    Numerous cold regions water flow and energy transport models have emerged in recent years. Dissimilarities often exist in their mathematical formulations and/or numerical solution techniques, but few analytical solutions exist for benchmarking flow and energy transport models that include pore water phase change. This paper presents a detailed derivation of the Lunardini solution, an approximate analytical solution for predicting soil thawing subject to conduction, advection, and phase change. Fifteen thawing scenarios are examined by considering differences in porosity, surface temperature, Darcy velocity, and initial temperature. The accuracy of the Lunardini solution is shown to be proportional to the Stefan number. The analytical solution results obtained for soil thawing scenarios with water flow and advection are compared to those obtained from the finite element model SUTRA. Three problems, two involving the Lunardini solution and one involving the classic Neumann solution, are recommended as standard benchmarks for future model development and testing.

  6. Modeling and simulation of blood collection systems.

    Science.gov (United States)

    Alfonso, Edgar; Xie, Xiaolan; Augusto, Vincent; Garraud, Olivier

    2012-03-01

    This paper addresses the modeling and simulation of blood collection systems in France for both fixed site and mobile blood collection with walk in whole blood donors and scheduled plasma and platelet donors. Petri net models are first proposed to precisely describe different blood collection processes, donor behaviors, their material/human resource requirements and relevant regulations. Petri net models are then enriched with quantitative modeling of donor arrivals, donor behaviors, activity times and resource capacity. Relevant performance indicators are defined. The resulting simulation models can be straightforwardly implemented with any simulation language. Numerical experiments are performed to show how the simulation models can be used to select, for different walk in donor arrival patterns, appropriate human resource planning and donor appointment strategies.

  7. Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms

    Directory of Open Access Journals (Sweden)

    2015-12-01

    Full Text Available Numerical results for ground-state and excited-state properties (energies, double occupancies, and Matsubara-axis self-energies of the single-orbital Hubbard model on a two-dimensional square lattice are presented, in order to provide an assessment of our ability to compute accurate results in the thermodynamic limit. Many methods are employed, including auxiliary-field quantum Monte Carlo, bare and bold-line diagrammatic Monte Carlo, method of dual fermions, density matrix embedding theory, density matrix renormalization group, dynamical cluster approximation, diffusion Monte Carlo within a fixed-node approximation, unrestricted coupled cluster theory, and multireference projected Hartree-Fock methods. Comparison of results obtained by different methods allows for the identification of uncertainties and systematic errors. The importance of extrapolation to converged thermodynamic-limit values is emphasized. Cases where agreement between different methods is obtained establish benchmark results that may be useful in the validation of new approaches and the improvement of existing methods.

  8. Modeling and Simulation of Matrix Converter

    DEFF Research Database (Denmark)

    Liu, Fu-rong; Klumpner, Christian; Blaabjerg, Frede

    2005-01-01

    This paper discusses the modeling and simulation of matrix converter. Two models of matrix converter are presented: one is based on indirect space vector modulation and the other is based on power balance equation. The basis of these two models is• given and the process on modeling is introduced...

  9. Benchmarking the invariant embedding method against analytical solutions in model transport problems

    International Nuclear Information System (INIS)

    Malin, Wahlberg; Imre, Pazsit

    2005-01-01

    The purpose of this paper is to demonstrate the use of the invariant embedding method in a series of model transport problems, for which it is also possible to obtain an analytical solution. Due to the non-linear character of the embedding equations, their solution can only be obtained numerically. However, this can be done via a robust and effective iteration scheme. In return, the domain of applicability is far wider than the model problems investigated in this paper. The use of the invariant embedding method is demonstrated in three different areas. The first is the calculation of the energy spectrum of reflected (sputtered) particles from a multiplying medium, where the multiplication arises from recoil production. Both constant and energy dependent cross sections with a power law dependence were used in the calculations. The second application concerns the calculation of the path length distribution of reflected particles from a medium without multiplication. This is a relatively novel and unexpected application, since the embedding equations do not resolve the depth variable. The third application concerns the demonstration that solutions in an infinite medium and a half-space are interrelated through embedding-like integral equations, by the solution of which the reflected flux from a half-space can be reconstructed from solutions in an infinite medium or vice versa. In all cases the invariant embedding method proved to be robust, fast and monotonically converging to the exact solutions. (authors)

  10. Magnetic Design and Code Benchmarking of the SMC (Short Model Coil) Dipole Magnet

    CERN Document Server

    Manil, P; Rochford, J; Fessia, P; Canfer, S; Baynham, E; Nunio, F; de Rijk, G; Védrine, P

    2010-01-01

    The Short Model Coil (SMC) working group was set in February 2007 to complement the Next European Dipole (NED) program, in order to develop a short-scale model of a Nb$_{3}$Sn dipole magnet. In 2009, the EuCARD/HFM (High Field Magnets) program took over these programs. The SMC group comprises four laboratories: CERN/TE-MSC group (CH), CEA/IRFU (FR), RAL (UK) and LBNL (US). The SMC magnet is designed to reach a peak field of about 13 Tesla (T) on conductor, using a 2500 A/mm2 Powder-In-Tube (PIT) strand. The aim of this magnet device is to study the degradation of the magnetic properties of the Nb$_{3}$Sn cable, by applying different levels of pre-stress. To fully satisfy this purpose, a versatile and easy-to-assemble structure has been realized. The design of the SMC magnet has been developed from an existing dipole magnet, the SD01, designed, built and tested at LBNL with support from CEA. The goal of the magnetic design presented in this paper is to match the high field region with the high stress region, l...

  11. The Process-Oriented Simulation (POS) model for common cause failures: recent progress

    International Nuclear Information System (INIS)

    Berg, H.P.; Goertz, R.; Schimetschka, E.; Kesten, J.

    2006-01-01

    A common-cause failure (CCF) model based on stochastic simulation has been developed to complement the established approaches and to overcome some of their shortcomings. Reflecting the models proximity to the CCF process it was called Process Oriented Simulation (POS) Model. In recent years, some progress has been made to render the POS model fit for practical applications comprising the development of parameter estimates and a number of test applications in areas where results were already available - especially from CCF benchmarks - and comparison can provide insights in strong and weak points of the different approaches. In this paper, a detailed description of the POS model is provided together with the approach to parameter estimation and representative test applications. It is concluded, that the POS model has a number of strengths - especially the feature to provide reasonable extrapolation to CCF groups with high degrees of redundancy - and thus a considerable potential to complement the insights obtained from existing modeling. (orig.)

  12. Simulation models for tokamak plasmas

    International Nuclear Information System (INIS)

    Dimits, A.M.; Cohen, B.I.

    1992-01-01

    Two developments in the nonlinear simulation of tokamak plasmas are described: (A) Simulation algorithms that use quasiballooning coordinates have been implemented in a 3D fluid code and a 3D partially linearized (Δf) particle code. In quasiballooning coordinates, one of the coordinate directions is closely aligned with that of the magnetic field, allowing both optimal use of the grid resolution for structures highly elongated along the magnetic field as well as implementation of the correct periodicity conditions with no discontinuities in the toroidal direction. (B) Progress on the implementation of a likeparticle collision operator suitable for use in partially linearized particle codes is reported. The binary collision approach is shown to be unusable for this purpose. The algorithm under development is a complete version of the test-particle plus source-field approach that was suggested and partially implemented by Xu and Rosenbluth

  13. A Base Integer Programming Model and Benchmark Suite for Liner-Shipping Network Design

    DEFF Research Database (Denmark)

    Brouer, Berit Dangaard; Alvarez, Fernando; Plum, Christian Edinger Munk

    2014-01-01

    . The potential for making cost-effective and energy-efficient liner-shipping networks using operations research (OR) is huge and neglected. The implementation of logistic planning tools based upon OR has enhanced performance of airlines, railways, and general transportation companies, but within the field......The liner-shipping network design problem is to create a set of nonsimple cyclic sailing routes for a designated fleet of container vessels that jointly transports multiple commodities. The objective is to maximize the revenue of cargo transport while minimizing the costs of operation...... sources of liner shipping for OR researchers in general. We describe and analyze the liner-shipping domain applied to network design and present a rich integer programming model based on services that constitute the fixed schedule of a liner shipping company. We prove the liner-shipping network design...

  14. Nonparametric estimation of benchmark doses in environmental risk assessment

    Science.gov (United States)

    Piegorsch, Walter W.; Xiong, Hui; Bhattacharya, Rabi N.; Lin, Lizhen

    2013-01-01

    Summary An important statistical objective in environmental risk analysis is estimation of minimum exposure levels, called benchmark doses (BMDs), that induce a pre-specified benchmark response in a dose-response experiment. In such settings, representations of the risk are traditionally based on a parametric dose-response model. It is a well-known concern, however, that if the chosen parametric form is misspecified, inaccurate and possibly unsafe low-dose inferences can result. We apply a nonparametric approach for calculating benchmark doses, based on an isotonic regression method for dose-response estimation with quantal-response data (Bhattacharya and Kong, 2007). We determine the large-sample properties of the estimator, develop bootstrap-based confidence limits on the BMDs, and explore the confidence limits’ small-sample properties via a short simulation study. An example from cancer risk assessment illustrates the calculations. PMID:23914133

  15. A model management system for combat simulation

    OpenAIRE

    Dolk, Daniel R.

    1986-01-01

    The design and implementation of a model management system to support combat modeling is discussed. Structured modeling is introduced as a formalism for representing mathematical models. A relational information resource dictionary system is developed which can accommodate structured models. An implementation is described. Structured modeling is then compared to Jackson System Development (JSD) as a methodology for facilitating discrete event simulation. JSD is currently better at representin...

  16. HVDC System Characteristics and Simulation Models

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S.I.; Han, B.M.; Jang, G.S. [Electric Enginnering and Science Research Institute, Seoul (Korea)

    2001-07-01

    This report deals with the AC-DC power system simulation method by PSS/E and EUROSTAG for the development of a strategy for the reliable operation of the Cheju-Haenam interconnected system. The simulation using both programs is performed to analyze HVDC simulation models. In addition, the control characteristics of the Cheju-Haenam HVDC system as well as Cheju AC system characteristics are described in this work. (author). 104 figs., 8 tabs.

  17. Physically realistic modeling of maritime training simulation

    OpenAIRE

    Cieutat , Jean-Marc

    2003-01-01

    Maritime training simulation is an important matter of maritime teaching, which requires a lot of scientific and technical skills.In this framework, where the real time constraint has to be maintained, all physical phenomena cannot be studied; the most visual physical phenomena relating to the natural elements and the ship behaviour are reproduced only. Our swell model, based on a surface wave simulation approach, permits to simulate the shape and the propagation of a regular train of waves f...

  18. Software-Engineering Process Simulation (SEPS) model

    Science.gov (United States)

    Lin, C. Y.; Abdel-Hamid, T.; Sherif, J. S.

    1992-01-01

    The Software Engineering Process Simulation (SEPS) model is described which was developed at JPL. SEPS is a dynamic simulation model of the software project development process. It uses the feedback principles of system dynamics to simulate the dynamic interactions among various software life cycle development activities and management decision making processes. The model is designed to be a planning tool to examine tradeoffs of cost, schedule, and functionality, and to test the implications of different managerial policies on a project's outcome. Furthermore, SEPS will enable software managers to gain a better understanding of the dynamics of software project development and perform postmodern assessments.

  19. Systematic modelling and simulation of refrigeration systems

    DEFF Research Database (Denmark)

    Rasmussen, Bjarne D.; Jakobsen, Arne

    1998-01-01

    The task of developing a simulation model of a refrigeration system can be very difficult and time consuming. In order for this process to be effective, a systematic method for developing the system model is required. This method should aim at guiding the developer to clarify the purpose...... of the simulation, to select appropriate component models and to set up the equations in a well-arranged way. In this paper the outline of such a method is proposed and examples showing the use of this method for simulation of refrigeration systems are given....

  20. Modern multicore and manycore architectures: Modelling, optimisation and benchmarking a multiblock CFD code

    Science.gov (United States)

    Hadade, Ioan; di Mare, Luca

    2016-08-01

    Modern multicore and manycore processors exhibit multiple levels of parallelism through a wide range of architectural features such as SIMD for data parallel execution or threads for core parallelism. The exploitation of multi-level parallelism is therefore crucial for achieving superior performance on current and future processors. This paper presents the performance tuning of a multiblock CFD solver on Intel SandyBridge and Haswell multicore CPUs and the Intel Xeon Phi Knights Corner coprocessor. Code optimisations have been applied on two computational kernels exhibiting different computational patterns: the update of flow variables and the evaluation of the Roe numerical fluxes. We discuss at great length the code transformations required for achieving efficient SIMD computations for both kernels across the selected devices including SIMD shuffles and transpositions for flux stencil computations and global memory transformations. Core parallelism is expressed through threading based on a number of domain decomposition techniques together with optimisations pertaining to alleviating NUMA effects found in multi-socket compute nodes. Results are correlated with the Roofline performance model in order to assert their efficiency for each distinct architecture. We report significant speedups for single thread execution across both kernels: 2-5X on the multicore CPUs and 14-23X on the Xeon Phi coprocessor. Computations at full node and chip concurrency deliver a factor of three speedup on the multicore processors and up to 24X on the Xeon Phi manycore coprocessor.

  1. Weight restrictions on geography variables in the DEA benchmarking model for Norwegian electricity distribution companies

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerndal, Endre; Bjoerndal, Mette; Camanho, Ana

    2008-07-01

    The DEA model for the distribution networks is designed to take into account the diverse operating conditions of the companies through so-called 'geography' variables. Our analyses show that companies with difficult operating conditions tend to be rewarded with relatively high efficiency scores, and this is the reason for introducing weight restrictions. We discuss the relative price restrictions suggested for geography and high voltage variables by NVE (2008), and we compare these to an alternative approach by which the total (virtual) weight of the geography variables is restricted. The main difference between the two approaches is that the former tends to affect more companies, but to a lesser extent, than the latter. We also discuss how to set the restriction limits. Since the virtual restrictions are at a more aggregated level than the relative ones, it may be easier to establish the limits with this approach. Finally, we discuss implementation issues, and give a short overview of available software. (Author). 18 refs., figs

  2. Analysis of the Numerical Diffusion in Anisotropic Mediums: Benchmarks for Magnetic Field Aligned Meshes in Space Propulsion Simulations

    Directory of Open Access Journals (Sweden)

    Daniel Pérez-Grande

    2016-11-01

    Full Text Available This manuscript explores numerical errors in highly anisotropic diffusion problems. First, the paper addresses the use of regular structured meshes in numerical solutions versus meshes aligned with the preferential directions of the problem. Numerical diffusion in structured meshes is quantified by solving the classical anisotropic diffusion problem; the analysis is exemplified with the application to a numerical model of conducting fluids under magnetic confinement, where rates of transport in directions parallel and perpendicular to a magnetic field are quite different. Numerical diffusion errors in this problem promote the use of magnetic field aligned meshes (MFAM. The generation of this type of meshes presents some challenges; several meshing strategies are implemented and analyzed in order to provide insight into achieving acceptable mesh regularity. Second, Gradient Reconstruction methods for magnetically aligned meshes are addressed and numerical errors are compared for the structured and magnetically aligned meshes. It is concluded that using the latter provides a more correct and straightforward approach to solving problems where anisotropicity is present, especially, if the anisotropicity level is high or difficult to quantify. The conclusions of the study may be extrapolated to the study of anisotropic flows different from conducting fluids.

  3. Benchmarking and Modeling of a Conventional Mid-Size Car Using ALPHA (SAE Paper 2015-01-1140)

    Science.gov (United States)

    The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...

  4. Enabling benchmarking and improving operational efficiency at