WorldWideScience

Sample records for bench-scale slurry catalyst

  1. Continuous bench-scale slurry catalyst testing direct coal liquefaction rawhide sub-bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, R.F.; Coless, L.A.; Davis, S.M. [and others

    1995-12-31

    In 1992, the Department of Energy (DOE) sponsored research to demonstrate a dispersed catalyst system using a combination of molybdenum and iron precursors for direct coal liquefaction. This dispersed catalyst system was successfully demonstrated using Black Thunder sub-bituminous coal at Wilsonville, Alabama by Southern Electric International, Inc. The DOE sponsored research continues at Exxon Research and Development Laboratories (ERDL). A six month continuous bench-scale program using ERDL`s Recycle Coal Liquefaction Unit (RCLU) is planned, three months in 1994 and three months in 1995. The initial conditions in RCLU reflect experience gained from the Wilsonville facility in their Test Run 263. Rawhide sub-bituminous coal which is similar to the Black Thunder coal tested at Wilsonville was used as the feed coal. A slate of five dispersed catalysts for direct coal liquefaction of Rawhide sub-bituminous coal has been tested. Throughout the experiments, the molybdenum addition rate was held constant at 100 wppm while the iron oxide addition rate was varied from 0.25 to 1.0 weight percent (dry coal basis). This report covers the 1994 operations and accomplishments.

  2. Bench Scale Test of Absorption Slurry-ice Maker

    Science.gov (United States)

    Sasao, Hiroyuki; Yoshida, Takashi

    Slurry ice system is desirable as cold heat source for air conditioning, because it requires less conveyance power or less pipe size. On the other hand, recently absorption refrigerator is reevaluated because it can utilize various types of waste heat and it does not use fluorocarbon refrigerant. But it had been regarded to be difficult to make ice by absorption refrigerator because the refrigerant is water. However making slurry ice is possible, of cource, if the slurry ice generated by partial freezing of water is continuously taken away from the evaporator. This method was certified experimentally with a bench scale model. For ice making continuously, ice had not to be frozen stiff at water surface or inside wall of the evaporator. Then refrigerant water in the evaporator was raised swirl flow. And inside wall of the evaporator was finished by water repellent coating, and heated from outside wall. This slurry ice was adaptable to hydraulic transportation, because ice was needle crystal with about 5 mm length and ice temperature was 0°C.

  3. Bench-scale co-processing

    Energy Technology Data Exchange (ETDEWEB)

    Nafis, D.A.; Gatsis, J.G.; Lea, C.; Miller, M.A.

    1990-03-07

    The objective of this current is to extend and optimize UOP's single-stage slurry-catalyzed co-processing scheme, which has developed under previous Contract AC22-84PC70002. Particular emphasis is given to defining and improving catalyst utilization and costs, evaluating alternative and disposable slurry-catalyst systems, and improving catalyst recycle and recovery techniques. The work during this quarter involved a series of bench-scale runs using a new Mo-based slurry catalyst. The results of bench-scale Runs 24 and 25 are discussed in the following report. 7 refs., 4 figs., 3 tabs.

  4. Bench-scale cross flow filtration of Tank S-107 sludge slurries and Tank C-107 supernatant

    International Nuclear Information System (INIS)

    Hanford tank waste filtration experiments were conducted using a bench-scale cross flow filter on 8 wt%, 1.5 wt%, and 0.05 wt% Tank S- 107 sludge slurries and on Tank C-107 supernatant. For comparison, two simulants each with solids loadings of 8 wt% and 0.05 wt% were also tested. The purpose of the tests was to determine the efficacy of cross flow filtration on slurries of various solids loadings. -In addition, filtrate flux dependency on axial velocity and transmembrane pressure was sought so that conditions for future experiments might be better selected. The data gathered are compared to the simulants and three cross flow filtration models. A two- parameter central composite design which tested. transmembrane pressure from 5 to 40 psig and axial Velocity from 3 to 9 ft/s was used for all feeds. The cross flow filter effectively removed solids from the liquid, as 19 of 20 filtrate samples had particle concentrations below the resolution limit of the photon correlation spectrometer used in the Hanford Radiocolloid Laboratory. Radiochemical analysis indicate that all filtrate samples were below Class A waste classification standards for 9OSr and transuranics

  5. Bench-scale co-processing economic assessment. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gala, H.B.; Marker, T.L.; Miller, E.N.

    1994-11-01

    The UOP Co-Processing scheme is a single-stage slurry catalyzed process in which petroleum vacuum resid and coal are simultaneously upgraded to a high-quality synthetic oil. A highly active dispersed catalyst has been developed which enables the operation of the co-processing unit at relatively moderate and high temperatures and relatively high pressure. Under the current contract, a multi-year research program was undertaken to study the technical and economic feasibility of this technology. All the contractual tasks were completed. Autoclave experiments were carried out to evaluate dispersed vanadium catalysts, molybdenum catalysts, and a less costly UOP-proprietary catalyst preparation technique. Autoclave experiments were also carried out in support of the continuous pilot plant unit operation and to study the effects of the process variables (pressure, temperature, and metal loading on the catalyst). A total of 24 continuous pilot plant runs were made. Research and development efforts during the pilot plant operations were concentrated on addressing the cost effectiveness of the UOP single-stage slurry catalyzed co-processing concept based on UOP experience gained in the previous DOE contract. To this end, effect of catalyst metal concentration was studied and a highly-active Mo-based catalyst was developed. This catalyst enabled successful long-term operation (924 hours) of the continuous bench-scale plant at highly severe operating conditions of 3,000 psig, 465{degree}C temperature, and 2:1 resid-to-MAF (moisture- and ash-free) coal ratio with 0.1 wt % active metal. The metal loading of the catalyst was low enough to consider the catalyst as a disposable slurry catalyst. Also, liquid recycle was incorporated in the pilot plant design to increase the, reactor back mixing and to increase the flow of liquid through the reactor (to introduce turbulence in the reactor) and to represent the design of a commercial-scale reactor.

  6. Direct liquefaction of biomass: Results from operation of continuous bench scale unit in liquefaction of water slurries of Douglas fir wood

    Science.gov (United States)

    Schaleger, L. L.; Figueroa, C.; Davis, H. G.

    1982-05-01

    A continuous liquefaction unit (CLU) is discussed. The operation was single pass, feeding water slurries of prehydrolyzed Douglas fir wood (LBL process). Significant differences from results with the oil slurry, high oil, and water recycle process (PERC process) were found. The LBL process, at practicable temperatures and residence times, makes somewhat less wood oil and considerably more water-soluble product than does PERC. Consumption of carbon monoxide in LBL, other than by water gas shift reaction, is minimal, as opposed to several tenths of a mole per 100 grams of wood in PERC. Replacement of carbon monoxide with hydrogen as reactant gas makes little or no difference in yield distribution or product analysis. Progress in characterizing the oil and water-soluble product, the overall stoichiometry of the LBL and PERC processes, and the role of formate ion are described.

  7. NOVEL SLURRY PHASE DIESEL CATALYSTS FOR COAL-DERIVED SYNGAS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. Ketil Hanssen; Alec Klinghoffer; Dr. Lech Nowicki; Patricia O' Dowd; Dr. Hien Pham; Jian Xu

    2001-01-07

    This report describes research conducted to support the DOE program in novel slurry phase catalysts for converting coal-derived synthesis gas to diesel fuels. The primary objective of this research program is to develop attrition resistant catalysts that exhibit high activities for conversion of coal-derived syngas.

  8. BENCH SCALE SALTSTONE PROCESS DEVELOPMENT MIXING STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Cozzi, A.; Hansen, E.

    2011-08-03

    The Savannah River National Laboratory (SRNL) was requested to develop a bench scale test facility, using a mixer, transfer pump, and transfer line to determine the impact of conveying the grout through the transfer lines to the vault on grout properties. Bench scale testing focused on the effect the transfer line has on the rheological property of the grout as it was processed through the transfer line. Rheological and other physical properties of grout samples were obtained prior to and after pumping through a transfer line. The Bench Scale Mixing Rig (BSMR) consisted of two mixing tanks, grout feed tank, transfer pump and transfer hose. The mixing tanks were used to batch the grout which was then transferred into the grout feed tank. The contents of the feed tank were then pumped through the transfer line (hose) using a progressive cavity pump. The grout flow rate and pump discharge pressure were monitored. Four sampling stations were located along the length of the transfer line at the 5, 105 and 205 feet past the transfer pump and at 305 feet, the discharge of the hose. Scaling between the full scale piping at Saltstone to bench scale testing at SRNL was performed by maintaining the same shear rate and total shear at the wall of the transfer line. The results of scaling down resulted in a shorter transfer line, a lower average velocity, the same transfer time and similar pressure drops. The condition of flow in the bench scale transfer line is laminar. The flow in the full scale pipe is in the transition region, but is more laminar than turbulent. The resulting plug in laminar flow in the bench scale results in a region of no-mixing. Hence mixing, or shearing, at the bench scale should be less than that observed in the full scale, where this plug is non existent due to the turbulent flow. The bench scale tests should be considered to be conservative due to the highly laminar condition of flow that exists. Two BSMR runs were performed. In both cases, wall

  9. Bench-Scale Demonstration of Hot-Gas Desulfurization Technology

    International Nuclear Information System (INIS)

    Prior to the current project, development of the DSRP was done in a laboratory setting, using synthetic gas mixtures to simulate the regeneration off-gas and coal gas feeds. The objective of the current work is to further the development of zinc titanate fluidized-bed desulfurization (ZTFBD) and the DSRP for hot-gas cleanup by testing with actual coal gas. The objectives of this project are to: (1) Develop and test an integrated, skid-mounted, bench-scale ZTFBD/DSRP reactor system with a slipstream of actual coal gas; (2) Test the bench-scale DSRP over an extended period with a slipstream of actual coal gas to quantify the degradation in performance, if any, caused by the trace contaminants present in coal gas (including heavy metals, chlorides, fluorides, and ammonia); (3) Expose the DSRP catalyst to actual coal gas for extended periods and then test its activity in a laboratory reactor to quantify the degradation in performance, if any, caused by static exposure to the trace contaminants in coal gas; (4) Design and fabricate a six-fold larger-scale DSRP reactor system for future slipstream testing; (5) Further develop the fluidized-bed DSRP to handle high concentrations (up to 14 percent) of SO2 that are likely to be encountered when pure air is used for regeneration of desulfurization sorbents; and (6) Conduct extended field testing of the 6X DSRP reactor with actual coal gas and high concentrations of SO2. The accomplishment of the first three objectives--testing the DSRP with actual coal gas, integration with hot-gas desulfurization, and catalyst exposure testing--was described previously (Portzer and Gangwal, 1994, 1995; Portzer et al., 1996). This paper summarizes the results of previous work and describes the current activities and plans to accomplish the remaining objectives

  10. Investigation on Dispersed Catalyst for Slurry Bed Hydroprocessing of Heavy Oil

    Institute of Scientific and Technical Information of China (English)

    Liu Dong; Guo Aijun; Ma Kuiju; Que Guohe

    2006-01-01

    The slurry-bed hydrocracking of Karamay VGO with water-soluble dispersed catalyst was studied and the catalyst after being separated from the reaction products was analyzed by using LRS, XRD and XPS to identify the crystal structure of the catalyst. In this paper, the catalytic functions of molybdenum, nickel and iron were studied respectively during the slurry-phase hydrocracking while using diphenylmethane as the model compound and VGO from Karamay crude as the feedstock. The test results showed that, during the slurry-phase hydrocracking of heavy oil, the metal sulfides entered into chemical reactions with the free radical intermediate H· formed on the catalyst surface. The free-radical intermediate H· formed on the catalyst surface could react with the free-radicals of big molecules and could suppress coke deposition.

  11. Design of a Compact and Versatile Bench Scale Tubular Reactor

    Directory of Open Access Journals (Sweden)

    R. Prasad

    2009-06-01

    Full Text Available A compact and versatile laboratory tubular reactor has been designed and fabricated keeping in view of reducing capital cost and minimising energy consumption for gas/vapor-phase heterogeneous catalytic reactions. The reactor is consisted of two coaxial corning glass tubes with a helical coil of glass tube in between the coaxial tubes serving as vaporiser and pre-heater, the catalyst bed is in the inner tube. A schematic diagram of the reactor with detailed dimensions and working principles are described. The attractive feature of the reactor is that the vaporiser, pre-heater and fixed bed reactor are merged in a single compact unit. Thus, the unit minimises separate vaporiser and pre-heater, also avoids separate furnaces used for them and eliminate auxiliary instrumentation such as temperature controller etc. To demonstrate the system operation and illustrate the key features, catalyst screening data and the efficient collection of complete, and accurate intrinsic kinetic data are provided for oxidation of CO over copper chromite catalyst. CO oxidation is an important reaction for auto-exhaust pollution control. The suitability of the versatile nature of the reactor has been ascertained for catalytic reactions where either volatile or vaporizable feeds can be introduced to the reaction zone, e.g. oxidation of iso-octane, reduction of nitric oxide, dehydrogenation of methanol, ethanol and iso-propanol, hydrogenation of nitrobenzene to aniline, etc. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 February 2009, Accepted: 9 May 2009][How to Cite: R. Prasad, G. Rattan. (2009. Design of a Compact and Versatile Bench Scale Tubular Reactor. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 5-9.  doi:10.9767/bcrec.4.1.1250.5-9][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.1250.5-9

  12. Coating of catalyst supports - links between slurry characteristics, coating process and final coating quality

    OpenAIRE

    Adegbite, SA

    2010-01-01

    Tightening legislation for vehicles across the world has caused the use of monolith catalysts in automotive emission control to become ubiquitous. Control of the adherence and homogeneity of the platinum group metal (PGM) coating onto the monolith block, to maximise catalytic performance for a minimum PGM loading, is therefore paramount. In this study, an automatic film application is used for coating γ–alumina slurries onto Fecralloy®, an integral component of metallic monolith catalysts, to...

  13. Efficient filtration system for paraffin-catalyst slurry separation

    Directory of Open Access Journals (Sweden)

    Khodagholi Mohammad Ali

    2013-01-01

    Full Text Available The filtration efficiency for separating liquid paraffin (or water from a slurry consisting of 25 weight% spherical alumina in a Slurry Bubble Column Reactor (SBCR comprised of a cylindrical tube of 10 cm diameter and 150 cm length was studied. Various differential pressures (ΔP were applied to two separate tubular sintered metal stainless steel filter elements with nominal pore size of 4 and 16μm. The experimental results disclosed that the rate of filtrations increased on applying higher differential pressure to the filter element. Albeit this phenomenon is limited to moderate ΔPs and for ΔP more than 1 bar is neither harmful nor helpful. The highest filtration rates at ΔPs higher than 1 bar were 170 and 248 ml/minute for 4 and 16μm respectively. Using water as the liquid in slurry the rate of filtration enhanced to 4 folds, and this issue reveals impact of viscosity on filtration efficiency clearly. In all situations, the total amount of particles present in the filtrate part never exceeded a few parts per million (ppm. The statistical analysis of the SEM image of the filtrate indicated that by applying higher pressure difference to the filter element the frequency percent of larger particle size increases. The operation of filter cake removing was performed with back flashing of 300 ml of clean liquid with pressures of 3-5 bar of N2 gas.

  14. SLURRY PHASE IRON CATALYSTS FOR INDIRECT COAL LIQUEFACTION

    Energy Technology Data Exchange (ETDEWEB)

    Abhaya K. Datye

    1998-11-19

    This report describes research conducted to support the DOE program in indirect coal liquefaction. Specifically, they have studied the attrition behavior of iron Fischer-Tropsch catalysts, their interaction with the silica binder and the evolution of iron phases in a synthesis gas conversion process. The results provide significant insight into factors that should be considered in the design of catalysts for converting coal based syngas into liquid fuels.

  15. Development and performance of bench-scale reactor for the photocatalytic generation of hydrogen

    International Nuclear Information System (INIS)

    In this study, a new novel bench-scale (5 L) tubular photocatalytic reactor was developed and its feasibility studies were conducted for optimizing the operating variables, namely concentration of sulfide ion, concentration of sulfite ion, pH, catalyst concentration, lamp power, volume of wastewater and recycle flow rates at batch recycle mode for the generation of hydrogen from aqueous sodium sulfide using CdS–ZnS/TiO2 core–shell NPs (nanoparticles). The maximum H2 generation was found at 0.05 M concentration of sulfide ion, 0.2 M concentration of sulfite ion, pH 11.3, 0.5 g/L catalyst concentration and recycle flow rate of 18 L/h. Reusability studies were conducted for analyzing stability of photocatalyst. The results showed that the generation of hydrogen depends on light intensity, photoreactor used, nature of photocatalysts and the operating conditions. - Highlights: • Clean fuel production using solar energy. • Bench-scale tubular photocatalytic reactor was developed. • Operating variables have significant effect

  16. Study on saccharification of cellulosic wastes with bench scale test plant, (2)

    International Nuclear Information System (INIS)

    The mechanical pretreatment of irradiated chaff for saccharification was studied with the bench scale test plant. Chaff was pulverized by an impact type pulverizer which could treat a large amount of cellulosic wastes in short time. The effect of pulverizing on irradiated chaff was investigated from the point of view of particle size and saccharification. From untreated chaff the low accessibility of enzyme reduces the yield of glucose. Pulverized chaff, however, gave high glucose yield resulting from the increase of the enzyme accessibility because of decrease of particle size. The fine powder of chaff rendered the possibility of the saccharification at the high slurry concentration. The radiation pretreatment with electron beam introduced the decrease of electric energy to obtain the fine powder with pulverizer. This pretreatment also increased the fine powder yield. After irradiation dose increased to more than 70 Mrad in the pretreatment, high glucose concentration was obtained only by coarse pulverizing. (author)

  17. Bench-Scale Filtration Testing in Support of the Pretreatment Engineering Platform (PEP)

    Energy Technology Data Exchange (ETDEWEB)

    Billing, Justin M.; Daniel, Richard C.; Kurath, Dean E.; Peterson, Reid A.

    2009-09-28

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes.” The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP testing program specifies that bench-scale testing is to be performed in support of specific operations, including filtration, caustic leaching, and oxidative leaching.

  18. Lab and Bench-Scale Pelletization of Torrefied Wood Chips

    DEFF Research Database (Denmark)

    Shang, Lei; Nielsen, Niels Peter K.; Stelte, Wolfgang;

    2013-01-01

    Combined torrefaction and pelletization is used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. In the present study, a single-pellet press tool was used to screen for the effects of pellet die temperature, moisture...... content, additive addition, and the degree of torrefaction on the pelletizing properties and pellet quality, i.e., density, static friction, and pellet strength. Results were compared with pellet production using a bench-scale pelletizer. The results indicate that friction is the key factor when scaling...... up from single-pellet press to bench-scale pelletizer. Tuning moisture content or increasing the die temperature did not ease the pellet production of torrefied wood chips significantly. The addition of rapeseed oil as a lubricant reduced the static friction by half and stabilized pellet production...

  19. Isobutane/2-butene alkylation over potential heterogeneous catalysts in a slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, T.

    1996-12-31

    The trend towards more effective use of fossil fuels and reduced environmental pollution represents a major task of improvement within the refinery processes. The highly isomerized and high octane paraffins produced from isobutane and light olefins by alkylation fulfill all the requirements for reformulated gasoline. This doctoral thesis discusses new catalyst systems because of their potential in alkylation. A slurry reactor apparatus for solid-acid catalysed isobutane/butene alkylation was developed and used to investigate the performance of various heterogeneous catalysts. The selected materials were mainly zeolite types with faujasite structures. The samples were characterized by various methods before alkylation. In general, the order of decreasing catalyst activity after 3 h of reaction at 80{sup o}C was found to be: H-EMT >> H-FAU, dealuminated H-FAU >> NS.500, TA-Y, CeY-98 > Nafion-H. The order of decreasing alkylate selectivity of the catalysts was: H-EMT >> dealuminated H-FAU > H-FAU >> Nafion-H > CeY-98 > TA-Y > H-SAPO-37, NS.500. H-EMT was the most promising system for further development, also because of the very low formation of the undesirable isooctenes and a high selectivity towards isooctanes among the alkylates. A high density of accessible strong acid sites was found to be essential for a high alkylation activity and selectivity. Open structure, like hexagonal faujasite, was advantageous. The distribution of trimethylpentanes formed in zeolites was ascribed to pore restrictions as a major factor. The effect of operating conditions on catalyst performance was investigated statistically, and a high dilution of butene in the slurry reactor was found to be very important. 153 refs., 40 figs., 12 tabs.

  20. Bench-scale magnetic separation of Department of Energy wastes

    International Nuclear Information System (INIS)

    Criteria were developed for selection of candidate wastes for testing magnetic separation of uranium and/or other paramagnetic materials. A survey of Department of Energy (DOE) hazardous wastes was conducted to determine good candidates for bench-scale magnetic separation tests. Representatives of 21 DOE sites were contacted, and 11 materials were identified as potential candidates for magnetic separation. To date, seven samples have been obtained and tested for separability of uranium with a bench-scale magnetic assaying device. The samples tested have been obtained from the K-1401B and K-1401C ponds in Oak Ridge, Tennessee; from waste piles in Maywood, New Jersey; from North and South Ponds in Richland, Washington; and from magnesium fluoride drums in Fernald, Ohio. The magnetic device utilized in these tests can be used in an open-gradient mode with dry particulate or liquid-suspended materials. Uranium separation from magnesium fluoride has shown exceptionally good performance in both open- and high-gradient modes and could be an important application of the technology

  1. Bench-scale Analysis of Surrogates for Anaerobic Digestion Processes.

    Science.gov (United States)

    Carroll, Zachary S; Long, Sharon C

    2016-05-01

    Frequent monitoring of anaerobic digestion processes for pathogen destruction is both cost and time prohibitive. The use of surrogates to supplement regulatory monitoring may be one solution. To evaluate surrogates, a semi-batch bench-scale anaerobic digester design was tested. Bench-scale reactors were operated under mesophilic (36 °C) and thermophilic (53-55 °C) conditions, with a 15 day solids retention time. Biosolids from different facilities and during different seasons were examined. USEPA regulated pathogens and surrogate organisms were enumerated at different times throughout each experiment. The surrogate organisms included fecal coliforms, E. coli, enterococci, male-specific and somatic coliphages, Clostridium perfringens, and bacterial spores. Male-specific coliphages tested well as a potential surrogate organism for virus inactivation. None of the tested surrogate organisms correlated well with helminth inactivation under the conditions studied. There were statistically significant differences in the inactivation rates between the facilities in this study, but not between seasons. PMID:27131309

  2. BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

    2008-09-25

    radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

  3. 100 Area groundwater biodenitrification bench-scale treatability study procedures

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, B.M.; Martin, K.R.

    1993-05-01

    This document describes the methodologies and procedures for conducting the bench-scale biodenitrification treatability tests at Pacific Northwest Laboratory{sup a} (PNL). Biodenitrification is the biological conversion of nitrate and nitrite to gaseous nitrogen. The tests will use statistically designed batch studies to determine if biodenitrification can reduce residual nitrate concentrations to 45 mg/L, the current maximum contaminant level (MCL). These tests will be carried out in anaerobic flasks with a carbon source added to demonstrate nitrate removal. At the pilot scale, an incremental amount of additional carbon will be required to remove the small amount of oxygen present in the incoming groundwater. These tests will be conducted under the guidance of Westinghouse Hanford Company (WHC) and the 100-HR-3 Groundwater Treatability Test Plan (DOE/RL-92-73) and the Treatability Study Program Plan (DOE/RL-92-48) using groundwater from 100-HR-3. In addition to the procedures, requirements for safety, quality assurance, reporting, and schedule are given. Appendices include analytical procedures, a Quality Assurance Project Plan, a Health and Safety Plan, and Applicable Material Data Safety Sheets. The procedures contained herein are designed specifically for the 100-HR-3 Groundwater Treatability Test Plan, and while the author believes that the methods described herein are scientifically valid, the procedures should not be construed or mistaken to be generally applicable to any other treatability study.

  4. Bench-scale studies with mercury contaminated SRS soil

    International Nuclear Information System (INIS)

    Bench-scale studies with mercury contaminated soil were performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability, leach resistance, and processability. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury. Four soil glasses with slight variations in composition were produced, which were capable of passing the Product Consistency Test (PCT) and the Toxicity Characteristic Leaching Procedure (TCLP). The optimum glass feed composition contained 60 weight percent soil and produced a soda-lime-silica glass when melted at 1,350 C. The glass additives used to produce this glass were 24 weight percent Na2CO3 and 16 weight percent CaCO3. Volatilized mercury released during the vitrification process was released to the proposed mercury collection system. The proposed mercury collection system consisted of quartz and silica tubing with a Na2S wash bottle followed by a NaOH wash bottle. Once in the system, the volatile mercury would pass through the wash bottle containing Na2S, where it would be converted to Hg2S, which is a stable form of mercury. However, attempts to capture the volatilized mercury in a Na2S solution wash bottle were not as successful as anticipated. Maximum mercury captured was only about 3.24% of the mercury contained in the feed. Mercury capture efforts then shifted to condensing and capturing the volatilized mercury. These attempts were much more successful at capturing the volatile mercury, with a capture efficiency of 34.24% when dry ice was used to pack the condenser. This captured mercury was treated on a mercury specific resin after digestion of the volatilized mercury

  5. EFRT M12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2009-08-14

    20 wt% solids using cross-flow ultrafiltration before the addition of caustic. For wastes that have significantly high chromium content, the caustic leaching and slurry dewatering is followed by adding sodium permanganate to UFP-VSL-T02A, and the slurry is subjected to oxidative leaching at nominally ambient temperature. The purpose of the oxidative leaching is to selectively oxidize the poorly alkaline-soluble Cr(III) believed to be the insoluble form in Hanford tank sludge to the much more alkaline-soluble Cr(VI), e.g., chromate. The work described in this report provides the test results that are related to the efficiency of the oxidative leaching process to support process modeling based on tests performed with a Hanford waste simulant. The tests were completed both at the lab-bench scale and in the PEP. The purpose of this report is to summarize the results from both scales that are related to oxidative leaching chemistry to support a scale factor for the submodels to be used in the G2 model, which predicts WTP operating performance. Owing to schedule constraints, the PEP test data to be included in this report are limited to those from Integrated Tests A (T01 A/B caustic leaching) and B (T02A caustic leaching).

  6. Ruthenium promotion of Co/SBA-15 catalysts for Fischer-Tropsch synthesis in slurry-phase reactors

    Institute of Scientific and Technical Information of China (English)

    Jocielys Jovelino Rodrigues; Gina Pecchi; Fabiano André Narciso Fernandes; Meiry Gláucia Freire Rodrigues

    2012-01-01

    The aim of this work was to evaluate the catalytic properties of a Ru promoted Co/SBA-15 catalyst for Fischer-Tropsch synthesis (FTS).The Ru promoted Co/SBA-15 catalyst was prepared by wet impregnation method and was characterized by X-ray diffraction,X-ray energy dispersion spectrophotometer,N2 adsorption-desorption,temperature-programmed reduction and transmission electron microscopy.The Fischer-Tropsch synthesis using the catalyst was carried out to evaluate the catalyst activity and its effect on FTS product distribution.The synthesis was carried out in a slurry reactor operating at 513 K,20 atm,CO ∶ H2 molar ratio of 1 ∶ 1.X-ray diffraction showed that the calcined cobalt catalyst did not modify the structure of SBA-15,proving that Co was present in the form of Co3O4 in the catalyst.The addition of cobalt in SBA-15 decreased the specific superficial area of the molecular sieve.Fischer-Tropsch synthesis activity and C5+ hydrocarbon selectivity increased with the addition of Ru.The increases in activity and selectivity were attributed to the increased number of active sites resulting from higher reducibility and the synergetic effect of Ru and Co.Ru/Co/SBA-15 catalysts showed moderate conversion (40%) and high selectivity towards the production of C5+ (80 wt%).

  7. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  8. Bench-Scale Testing of the Micronized Magnetite Process

    Energy Technology Data Exchange (ETDEWEB)

    Edward R. Torak; Peter J. Suardini

    1997-11-01

    A recent emphasis of the Department of Energy's (DOE's), Coal Preparation Program has been the development of high-efficiency technologies that offer near-term, low-cost improvements in the ability of coal preparation plants to address problems associated with coal fines. In 1992, three cost-shared contracts were awarded to industry, under the first High-Efficiency Preparation (HEP I) solicitation. All three projects involved bench-scale testing of various emerging technologies, at the Federal Energy Technology Center*s (FETC*s), Process Research Facility (PRF). The first HEP I project, completed in mid-1993, was conducted by Process Technology, Inc., with the objective of developing a computerized, on-line system for monitoring and controlling the operation of a column flotation circuit. The second HEP I project, completed in mid-1994, was conducted by a team led by Virginia Polytechnic Institute to test the Mozely Multi-Gravity Separator in combination with the Microcel Flotation Column, for improved removal of mineral matter and pyritic sulfur from fine coal. The last HEP I project, of which the findings are contained in this report, was conducted by Custom Coals Corporation to evaluate and advance a micronized-magnetite-based, fine-coal cycloning technology. The micronized-magnetite coal cleaning technology, also know as the Micro-Mag process, is based on widely used conventional dense-medium cyclone applications, in that it utilizes a finely ground magnetite/water suspension as a separating medium for cleaning fine coal, by density, in a cyclone. However, the micronized-magnetite cleaning technology differs from conventional systems in several ways: ! It utilizes significantly finer magnetite (about 5 to 10 micron mean particle size), as compared to normal mean particle sizes of 20 microns. ! It can effectively beneficiate coal particles down to 500M in size, as compared to the most advanced, existing conventional systems that are limited to a

  9. Comparisons of the hydrogen-rich syngas compositions from wet rice husk slurry steam reforming reactions using different catalysts

    International Nuclear Information System (INIS)

    Rice husk slurry is pumped into a packed reactor and the products from the steam reforming reactions using different catalysts are studied. The steam/biomass weight ratio of such a system is between 3.47 and 5.25. The solids, liquid and gaseous products are a mass fraction of 2.8-4.1%, a mass fraction of 92.4-93.0% and a mass fraction of 3.5-4.7%, respectively. The hydrogen concentration in the gaseous product is approximate a volume fraction of 41% using the Al2O3 catalyst of a CuO mass fraction of 13%, a volume fraction of 38% using the Al2O3 catalyst of a Ni mass fraction of 13%, a volume fraction of 31% using the Al2O3 catalyst of a ZnO mass fraction of 13%, and a volume fraction of 20% using the Al2O3 catalyst at the reactor temperature of 800 oC. In the reactor temperature range studied (350-800 oC), the hydrogen concentration in the product stream increases monotonically with the increasing of the reactor temperature and the steam/carbon molar ratio. The value of dry gas LHV is between 9.4 MJ m-3 and 12 MJ m-3 at the reaction temperature of 600-800 oC. Considering the simple catalyst used in current study, the syngas of a hydrogen volume fraction of approximate 40% is obtained by pumping the biomass slurry to carry out the catalytic steam reforming reaction. -- Highlights: → We carry out steam reforming reaction using rice husk slurry as the feeding. → CuO/Al2O3, Ni/Al2O3, ZnO/Al2O3 and Al2O3 catalysts are used. → The syngas of a hydrogen volume fraction of approximate 40% is obtained. → Gas LHV is between 9.4 MJ m-3 and 12 MJ m-3 at reaction temperature 600-800 oC.

  10. BENCH-SCALE RECOVERY OF LEAD USING AN ELECTROMEMBRANE/CHELATION PROCESS

    Science.gov (United States)

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  11. BENCH-SCALE RECOVERY OF LEAD USING AND ELECTRO- MEMBRANE/CHELATION PROCESS

    Science.gov (United States)

    This report presents the results of a bench-scale treatability test to investigate key process parameters influencing an innovative chelation electrodeposition process for recovery of lead from contaminated sons. thylenediamine tetraacetic acid (EDTA) and diethylenetriamine penta...

  12. Production of uranium hexafluoride by the catalysed fluorox process: pilot plant and supporting bench-scale studies

    International Nuclear Information System (INIS)

    The feasibility of producing UF6 by the catalysed reaction of UF4 with oxygen (the Fluorox process) was investigated in a 150 mm diameter fluidised bed reactor and in supporting bench-scale experiments. The rate of the Fluorox reaction in batch experiments was increased by an order of magnitude with 1 to 5 per cent catalyst (containing 3 to 4 per cent platinum on alumina). The maximum UF6 production rate at 650 deg. C was 0.9 kg h-1. However, the platinum catalyst was completely poisoned after production of only 1 and 20 kg UF6 per kg of catalyst when using respectively French and British UF4. Regeneration of the catalyst was demonstrated to be technically feasible by washing with water or ammonium oxalate solution or treating with hydrogen and hydrogen fluoride at 350-650 deg. C. However, since the very fast rate of poisoning would necessitate higher catalyst concentrations and/or frequent regeneration, the catalysed Fluorox process in unlikely to be economically competitive with the direct fluorination of UF4

  13. Improved Fischer-Tropsch Slurry Reactors

    International Nuclear Information System (INIS)

    The conversion of synthesis gas to hydrocarbons or alcohols involves highly exothermic reactions. Temperature control is a critical issue in these reactors for a number of reasons. Runaway reactions can be a serious safety issue, even raising the possibility of an explosion. Catalyst deactivation rates tend to increase with temperature, particularly of there are hot spots in the reactor. For alcohol synthesis, temperature control is essential because it has a large effect on the selectivity of the catalysts toward desired products. For example, for molybdenum disulfide catalysts unwanted side products such as methane, ethane, and propane are produced in much greater quantities if the temperature increases outside an ideal range. Slurry reactors are widely regarded as an efficient design for these reactions. In a slurry reactor a solid catalyst is suspended in an inert hydrocarbon liquid, synthesis gas is sparged into the bottom of the reactor, un-reacted synthesis gas and light boiling range products are removed as a gas stream, and heavy boiling range products are removed as a liquid stream. This configuration has several positive effects for synthesis gas reactions including: essentially isothermal operation, small catalyst particles to reduce heat and mass transfer effects, capability to remove heat rapidly through liquid vaporization, and improved flexibility on catalyst design through physical mixtures in addition to use of compositions that cannot be pelletized. Disadvantages include additional mass transfer resistance, potential for significant back-mixing on both the liquid and gas phases, and bubble coalescence. In 2001 a multiyear project was proposed to develop improved FT slurry reactors. The planned focus of the work was to improve the reactors by improving mass transfer while considering heat transfer issues. During the first year of the project the work was started and several concepts were developed to prepare for bench-scale testing. Power

  14. Goethite Bench-scale and Large-scale Preparation Tests

    International Nuclear Information System (INIS)

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate (99TcO4-) can be reduced and captured into a solid solution of α-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for 99Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO4-) to Tc(Iv)by reaction with the ferrous ion, Fe2+-Fe2+ is oxidized to Fe3+ - in

  15. Goethite Bench-scale and Large-scale Preparation Tests

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Westsik, Joseph H.

    2011-10-23

    The Hanford Waste Treatment and Immobilization Plant (WTP) is the keystone for cleanup of high-level radioactive waste from our nation's nuclear defense program. The WTP will process high-level waste from the Hanford tanks and produce immobilized high-level waste glass for disposal at a national repository, low activity waste (LAW) glass, and liquid effluent from the vitrification off-gas scrubbers. The liquid effluent will be stabilized into a secondary waste form (e.g. grout-like material) and disposed on the Hanford site in the Integrated Disposal Facility (IDF) along with the low-activity waste glass. The major long-term environmental impact at Hanford results from technetium that volatilizes from the WTP melters and finally resides in the secondary waste. Laboratory studies have indicated that pertechnetate ({sup 99}TcO{sub 4}{sup -}) can be reduced and captured into a solid solution of {alpha}-FeOOH, goethite (Um 2010). Goethite is a stable mineral and can significantly retard the release of technetium to the environment from the IDF. The laboratory studies were conducted using reaction times of many days, which is typical of environmental subsurface reactions that were the genesis of this new process. This study was the first step in considering adaptation of the slow laboratory steps to a larger-scale and faster process that could be conducted either within the WTP or within the effluent treatment facility (ETF). Two levels of scale-up tests were conducted (25x and 400x). The largest scale-up produced slurries of Fe-rich precipitates that contained rhenium as a nonradioactive surrogate for {sup 99}Tc. The slurries were used in melter tests at Vitreous State Laboratory (VSL) to determine whether captured rhenium was less volatile in the vitrification process than rhenium in an unmodified feed. A critical step in the technetium immobilization process is to chemically reduce Tc(VII) in the pertechnetate (TcO{sub 4}{sup -}) to Tc(Iv)by reaction with the

  16. Bench-scale treatability studies for simulated incinerator scrubber blowdown containing radioactive cesium and strontium

    International Nuclear Information System (INIS)

    The purpose of this report is to document the results of bench-scale testing completed to remove 137Cs and 90Sr from the Oak Ridge K-25 Site Toxic Substances Control Act (TSCA) Incinerator blowdown at the K-25 Site Central Neutralization Facility, a wastewater treatment facility designed to remove heavy metals and uranium from various wastewaters. The report presents results of bench-scale testing using chabazite and clinoptilolite zeolites to remove cesium and strontium; using potassium cobalt ferrocyanide (KCCF) to remove cesium; and using strontium chloride coprecipitation, sodium phosphate coprecipitation, and calcium sulfate coprecipitation to remove strontium. Low-range, average-range, and high-range concentration blowdown surrogates were used to complete the bench-scale testing

  17. Revised validation of thermal-hydraulic model of SCWO bench scale reactor

    International Nuclear Information System (INIS)

    The FLUENT computer code was used to construct a coupled fluid flow-chemical kinetics model of a MODAR bench scale reactor. This model predicted temperatures measured during MODAR test run 523.F very satisfactorily but required some modification to the measured boundary conditions. Several improvements to the model were made during a similar study of a MODAR pilot scale reactor. This report presents a rerun of the bench scale results using the updated model and shows better predictions than the initial runs. As before, the results of these calculations indicate that for better model validation, we need to obtain more accurate boundary conditions in future test runs

  18. Cometabolic biotreatment of TCE-contaminated groundwater: Laboratory and bench-scale development studies

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system

  19. Cometabolic biotreatment of TCE-contaminated groundwater - Laboratory and bench-scale development studies

    International Nuclear Information System (INIS)

    The Oak Ridge National Laboratory is conducting a demonstration of two cometabolic technologies for biotreatment of groundwater contaminated with trichloroethylene (TCE) and other organics. Technologies based on methanotrophic (methane-utilizing) and toluene-degrading microorganisms will be compared side-by-side on the same groundwater stream. Laboratory and bench-scale bioreactor studies have been conducted to guide selection of microbial cultures and operating conditions for the field demonstration. This report presents the results of the laboratory and bench-scale studies for the methanotrophic system. (author)

  20. Bench scale demonstration of the Supermethanol concept : The synthesis of methanol from glycerol derived syngas

    NARCIS (Netherlands)

    van Bennekom, J. G.; Venderbosch, R. H.; Assink, D.; Lemmens, K. P. J.; Heeres, H. J.

    2012-01-01

    An integrated process for the synthesis of methanol from aqueous glycerol involving reforming of the feed to syngas followed by methanol synthesis is successfully demonstrated in a continuous bench scale unit. Glycerol reforming was carried out at pressures of 24-27 MPa and temperatures of 948-998 K

  1. Bench-scale Kinetics Study of Mercury Reactions in FGD Liquors

    Energy Technology Data Exchange (ETDEWEB)

    Gary Blythe; John Currie; David DeBerry

    2008-03-31

    This document is the final report for Cooperative Agreement DE-FC26-04NT42314, 'Kinetics Study of Mercury Reactions in FGD Liquors'. The project was co-funded by the U.S. DOE National Energy Technology Laboratory and EPRI. The objective of the project has been to determine the mechanisms and kinetics of the aqueous reactions of mercury absorbed by wet flue gas desulfurization (FGD) systems, and develop a kinetics model to predict mercury reactions in wet FGD systems. The model may be used to determine optimum wet FGD design and operating conditions to maximize mercury capture in wet FGD systems. Initially, a series of bench-top, liquid-phase reactor tests were conducted and mercury species concentrations were measured by UV/visible light spectroscopy to determine reactant and byproduct concentrations over time. Other measurement methods, such as atomic absorption, were used to measure concentrations of vapor-phase elemental mercury, that cannot be measured by UV/visible light spectroscopy. Next, a series of bench-scale wet FGD simulation tests were conducted. Because of the significant effects of sulfite concentration on mercury re-emission rates, new methods were developed for operating and controlling the bench-scale FGD experiments. Approximately 140 bench-scale wet FGD tests were conducted and several unusual and pertinent effects of process chemistry on mercury re-emissions were identified and characterized. These data have been used to develop an empirically adjusted, theoretically based kinetics model to predict mercury species reactions in wet FGD systems. The model has been verified in tests conducted with the bench-scale wet FGD system, where both gas-phase and liquid-phase mercury concentrations were measured to determine if the model accurately predicts the tendency for mercury re-emissions. This report presents and discusses results from the initial laboratory kinetics measurements, the bench-scale wet FGD tests, and the kinetics modeling

  2. Fischer-Tropsch synthesis in slurry-phase reactors over Mn- and Zr-modified Co/SiO2 catalysts

    International Nuclear Information System (INIS)

    Fischer-Tropsch (F-T) synthesis was carried out in a gas-flowed slurry-phase reaction system over Mn- and Zr-modified Co/SiO2 catalysts. A 0.5 L stirred tank slurry reactor (STSR) was used for catalyst screening and a 12.5 L slurry bubble column reactor (SBCR) was used for trial pilot operation. While using the 0.5 L reactor for catalyst screening, Co supported on the SiO2 with an average pore size of 10 nm showed a high catalytic performance for the F-T synthesis due to the suitable Co particle size in the catalyst. Zr promoter improved the activity and Mn promoter improved the stability of Co/SiO2 catalyst for the F-T synthesis. H2-TPR profiles indicated that Zr and Mn promoters improved the reduction degree of Co3O4 particles (on SiO2 surface) to Co0 active species in H2 flow at low temperature. While using the 12.5 L reactor for trial pilot operation over Mn-Zr-Co/SiO2 catalyst, the space-time yield (STY) of C5+ hydrocarbons (liquid fuel) showed almost the same values when various solvents (n-C16H34, n-C14H30, diesel from petrol station, F-T crude oil) were used. Diesel and F-T crude oil are suitable for using in a large-scaled F-T synthesis plant owing to the low prices. Mn-Zr-Co/SiO2 catalyst achieved a STY of C5+ hydrocarbons larger than 1000 g-C5+ kg-cat-1 h-1 in the 12.5 L reactor. The production capacity of liquid fuel from the 12.5 L reactor reached to 15.6 L per day (assumed for 24 h continuous operation). The stirring was very important for the F-T synthesis both reaction in the 0.5 L reactor and reaction in the 12.5 L reactor. The shape of slurry reactor also influenced the CO conversion for the F-T synthesis: reaction in the 12.5 L SBCR gave a higher CO conversion than that of reaction in the 0.5 L STSR (at the same W/F value under the same stirring speed) because the slender column reactor (SBCR) extended the residue time of reaction gas in the slurry-phase containing catalyst. (author)

  3. Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description

    Energy Technology Data Exchange (ETDEWEB)

    Losinski, Sylvester John; Marshall, Douglas William

    2002-08-01

    Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

  4. Bench scale flotation of spodume/quartz and lepidolite/quartz synthetic mixtures

    International Nuclear Information System (INIS)

    Based on results of zeta potential determinations and microflotation tests, bench scale flotation experiments were carried out using spodume/quartz and lepodolite/quartz synthetic mixtures. Pure natural samples, further purified in laboratory, and commercial reagents were employed. The minerals were characterized by X-ray diffraction technique. Selectivity between spodume and quartz was achieved through modification with corn starch and between lepidolite and quartz through pH control in the acidic range. (Author)

  5. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kisner, Roger A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Drira, Anis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Reed, Frederick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-09-01

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  6. Thermal inactivation of Bacillus anthracis surrogate spores in a bench-scale enclosed landfill gas flare.

    Science.gov (United States)

    Tufts, Jenia A McBrian; Rosati, Jacky A

    2012-02-01

    A bench-scale landfill flare system was designed and built to test the potential for landfilled biological spores that migrate from the waste into the landfill gas to pass through the flare and exit into the environment as viable. The residence times and temperatures of the flare were characterized and compared to full-scale systems. Geobacillus stearothermophilus and Bacillus atrophaeus, nonpathogenic spores that may serve as surrogates for Bacillus anthracis, the causative agent for anthrax, were investigated to determine whether these organisms would be inactivated or remain viable after passing through a simulated landfill flare. High concentration spore solutions were aerosolized, dried, and sent through a bench-scale system to simulate the fate of biological weapon (BW)-grade spores in a landfill gas flare. Sampling was conducted downstream of the flare using a bioaerosol collection device containing sterile white mineral oil. The samples were cultured, incubated for seven days, and assessed for viability. Results showed that the bench-scale system exhibited good similarity to the real-world conditions of an enclosed standard combustor flare stack with a single orifice, forced-draft diffusion burner. All spores of G. stearothermophilus and B. atrophaeus were inactivated in the flare, indicating that spores that become re-entrained in landfill gas may not escape the landfill as viable, apparently becoming completely inactivated as they exit through a landfill flare. PMID:22442931

  7. Embedded Sensors and Controls to Improve Component Performance and Reliability -- Bench-scale Testbed Design Report

    International Nuclear Information System (INIS)

    Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings to support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.

  8. Design and fabrication of a glovebox for the Plasma Hearth Process radioactive bench-scale system

    International Nuclear Information System (INIS)

    This paper presents some of the design considerations and fabrication techniques for building a glovebox for the Plasma Hearth Process (PHP) radioactive bench-scale system. The PHP radioactive bench-scale system uses a plasma torch to process a variety of radioactive materials into a final vitrified waste form. The processed waste will contain plutonium and trace amounts of other radioactive materials. The glovebox used in this system is located directly below the plasma chamber and is called the Hearth Handling Enclosure (HHE). The HHE is designed to maintain a confinement boundary between the processed waste and the operator. Operations that take place inside the HHE include raising and lowering the hearth using a hydraulic lift table, transporting the hearth within the HHE using an overhead monorail and hoist system, sampling and disassembly of the processed waste and hearth, weighing the hearth, rebuilding a hearth, and sampling HEPA filters. The PHP radioactive bench-scale system is located at the TREAT facility at Argonne National Laboratory-West in Idaho Falls, Idaho

  9. Manual of procedures for the operation of bench-scale anaerobic digesters

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, R.R.

    1978-12-01

    The successful operation of any laboratory-scale biological system is often a difficult and frustrating experience. This is especially true when dealing with the anaerobic digestion process. Because of the stringent environmental requirements associated with anaerobic digesters, efficient operation of bench-scale units requires rigid monitoring and control. The purpose of this manual is to present the methods and procedures which are followed in bench-scale anaerobic digestion studies at Pacific Northwest Laboratory (PNL). Among the topics discussed are operating parameters, a description of the experimental system, typical digestion substrates, operational procedures, analytical techniques, and safety considerations. The document serves as a technical guide to PNL personnel assigned to a U.S. Department of Energy sponsored program evaluating the effect of powdered activated carbon on the anaerobic digestio of sewage sludge. It should be noted that the methods described in this manual do not necessarily represent the best or only means of conducting the research. They are merely procedures that have been found to be successful at PNL. It is hoped that this information may be useful to other researchers who are contemplating or pursuing bench-scale studies of their own.

  10. Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping for Post-Combustion CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yongqi; DeVries, Nicholas; Ruhter, David; Manoranjan, Sahu; Ye, Qing; Ye, Xinhuai; Zhang, Shihan; Chen, Scott; Li, Zhiwei; O' Brien, Kevin

    2014-03-31

    A novel Hot Carbonate Absorption Process with Crystallization-Enabled High-Pressure Stripping (Hot-CAP) has been developed by the University of Illinois at Urbana-Champaign and Carbon Capture Scientific, LLC in this three-year, bench-scale project. The Hot-CAP features a concentrated carbonate solution (e.g., K{sub 2}CO{sub 3}) for CO{sub 2} absorption and a bicarbonate slurry (e.g., KHCO{sub 3}) for high-pressure CO{sub 2} stripping to overcome the energy use and other disadvantages associated with the benchmark monoethanolamine (MEA) process. The project was aimed at performing laboratory- and bench-scale experiments to prove its technical feasibility and generate process engineering and scale-up data, and conducting a techno-economic analysis (TEA) to demonstrate its energy use and cost competitiveness over MEA. To meet project goals and objectives, a combination of experimental, modeling, process simulation, and economic analysis studies were applied. Carefully designed and intensive experiments were conducted to measure thermodynamic and reaction engineering data relevant to four major unit operations in the Hot-CAP (i.e., CO{sub 2} absorption, CO{sub 2} stripping, bicarbonate crystallization, and sulfate reclamation). The rate promoters that could accelerate the CO{sub 2} absorption rate into the potassium carbonate/bicarbonate (PCB) solution to a level greater than that into the 5 M MEA solution were identified, and the superior performance of CO{sub 2} absorption into PCB was demonstrated in a bench-scale packed-bed column. Kinetic data on bicarbonate crystallization were developed and applied for crystallizer design and sizing. Parametric testing of high-pressure CO{sub 2} stripping with concentrated bicarbonate-dominant slurries at high temperatures ({>=}140{degrees}C) in a bench-scale stripping column demonstrated lower heat use than with MEA. The feasibility of a modified process for combining SO{sub 2} removal with CO{sub 2} capture was preliminarily

  11. Effect of H{sub 2}O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongsheng [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Han, Yizhuo; Tan, Yisheng [State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001 (China); Tsubaki, Noritatsu [Department of Applied Chemistry, School of Engineering, University of Toyama, Toyama 930-8555 (Japan)

    2009-03-15

    One-step dimethyl ether (DME) synthesis in slurry phase was catalyzed by a hybrid catalyst composed of a Cu-based methanol synthesis catalyst and a {gamma}-Al{sub 2}O{sub 3} methanol dehydration catalyst under reaction conditions of 260 C and 5.0 MPa. It was found that instability of the Cu-based catalyst led to rapid deactivation of the hybrid catalyst. The stability of the Cu-based catalyst under DME synthesis conditions was compared with that under methanol synthesis conditions. The results indicated that harmfulness of water, which formed in DME synthesis, caused the Cu-based catalyst to deactivate at a high rate. Surface physical analysis, elemental analysis, XRD and XPS were used to characterize the surface physical properties, components, crystal structures and surface morphologies of the Cu-based catalysts. It was found that Cu{sup 0} was the active component for methanol synthesis and Cu{sub 2}O might have less activity for the reaction. Compared with methanol synthesis process, crystallite size of Cu became bigger in DME synthesis process, but carbon deposition was less severe. It was also found that there was distinct metal loss of Zn and Al caused by hydrothermal leaching, impairing the stability of the catalyst. In slurry phase DME synthesis, a part of Cu transformed into Cu{sub 2}(OH){sub 2}CO{sub 3}, causing a decrease in the number of active sites of the Cu-based catalyst. And some ZnO converted to Zn{sub 5}(OH){sub 6}(CO{sub 3}){sub 2}, which caused the synergistic effect between Cu and ZnO to become weaker. Crystallite size growth of Cu, carbon deposition, metal loss of Zn and Al, formation of Cu{sub 2}(OH){sub 2}CO{sub 3} and Zn{sub 5}(OH){sub 6}(CO{sub 3}){sub 2} were important reasons for rapid deactivation of the Cu-based catalyst. (author)

  12. Boiling behavior of sodium-potassium alloy in a bench-scale solar receiver

    Science.gov (United States)

    Moreno, J. B.; Andraka, C. E.; Moss, T. A.

    During 1989-90, a 75-kW(sub t) sodium reflux pool-boiler solar receiver was successfully demonstrated at Sandia National Laboratories. Significant features of this receiver include the following: (1) boiling sodium as the heat transfer medium, and (2) electric-discharge-machined (EDM) cavities as artificial nucleation sites to stabilize boiling. Since this first demonstration, design of a second-generation pool-boiler receiver that will bring the concept closer to commercialization has begun. For long life, the new receiver uses Haynes Alloy 230. For increased safety factors against film boiling and flooding, it has a refined shape and somewhat larger dimensions. To eliminate the need for trace heating, the receiver will boil the sodium-potassium alloy NaK-78 instead of sodium. To reduce manufacturing costs, it will use one of a number of alternatives to EDM cavities for stabilization of boiling. To control incipient-boiling superheats, especially during hot restarts, it will contain a small amount of inert gas. Before the new receiver design could be finalized, bench-scale tests of some of the proposed changes were necessary. A series of bench-scale pool boilers were built from Haynes Alloy 230 and filled with NaK-78. Various boiling-stabilizer candidates were incorporated into them, including laser-drilled cavities and a number of different sintered-powder-metal coatings. These bench-scale pool boilers have been operated at temperatures up to 750 C, heated by quartz lamps with incident radiant fluxes up to 95 W/sq cm. The effects of various orientations and added gases have been studied. Results of these studies are presented.

  13. Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer

    OpenAIRE

    Kato, Yoshiaki; Enomoto, Ryohei; Akazawa, Minami; Kojima, Yasuo

    2016-01-01

    A bench-scale auger reactor was designed for use as a laboratory-scale fast pyrolyzer for producing bio-oil from Japanese cedar. An analytical pyrolysis method was performed simultaneously to determine the distribution of pyrolysis products. The pyrolysis temperature was found to have the greatest influence on the bio-oil characteristics; bio-oil yields increased as the pyrolysis temperature increased from 450 to 550 °C. The concentration of levoglucosan in the bio-oil, however, decreased sig...

  14. Accumulation of uranium, cesium, and radium by microbial cells: bench-scale studies

    International Nuclear Information System (INIS)

    This report describes bench-scale studies on the utilization of microbial cells for the concentration and removal of uranium, radium, and cesium from nuclear processing waste streams. Included are studies aimed at elucidating the basic mechanism of uranium uptake, process development efforts for the use of a combined denitrification-uranium removal process to treat a specific nuclear processing waste stream, and a preliminary investigation of the applicability of microorganisms for the removal of 137Cs and 226Ra from existing waste solutions

  15. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Benjamin; Genovese, Sarah; Perry, Robert; Spiry, Irina; Farnum, Rachael; Sing, Surinder; Wilson, Paul; Buckley, Paul; Acharya, Harish; Chen, Wei; McDermott, John; Vipperia, Ravikumar; Yee, Michael; Steele, Ray; Fresia, Megan; Vogt, Kirk

    2013-12-31

    A bench-scale system was designed and built to test an aminosilicone-based solvent. A model was built of the bench-scale system and this model was scaled up to model the performance of a carbon capture unit, using aminosilicones, for CO{sub 2} capture and sequestration (CCS) for a pulverized coal (PC) boiler at 550 MW. System and economic analysis for the carbon capture unit demonstrates that the aminosilicone solvent has significant advantages relative to a monoethanol amine (MEA)-based system. The CCS energy penalty for MEA is 35.9% and the energy penalty for aminosilicone solvent is 30.4% using a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the energy penalty for the aminosilicone solvent is reduced to 29%. The increase in cost of electricity (COE) over the non-capture case for MEA is ~109% and increase in COE for aminosilicone solvent is ~98 to 103% depending on the solvent cost at a steam temperature of 395 °C (743 °F). If the steam temperature is lowered to 204 °C (400 °F), the increase in COE for the aminosilicone solvent is reduced to ~95-100%.

  16. Treatment of simulated high-level radioactive waste with formic acid: Bench-scale study on hydrogen evolution

    International Nuclear Information System (INIS)

    At the Savannah River Site, the Defense Waste Processing Facility (DWPF) was constructed to vitrify high-level radioactive liquid waste in borosilicate glass for permanent storage. Formic acid, which serves as both an acid and a reducing agent, is used to treat the washed alkaline sludge during melter feed preparation primarily to improve the processability of the feed and to reduce mercury to its zero state for steam stripping. The high-level sludge is composed of many transition metal hydroxides. Among them, there are small quantities of platinum group metals. During the treatment of simulated sludge with formic acid, significant amounts of hydrogen were generated when the platinum group metals were included in the sludge. Apparently the noble metals in the sludge were reduced to their zero states and caused formic acid to decompose catalytically into hydrogen and carbon dioxide, usually with an induction period. The production of hydrogen gas presented the DWPF with a safety issue. Therefore, the objective of this research was to gain a fundamental understanding of what controlled the hydrogen evolution so that a practical solution to the safety issue could be obtained. A bench-scale parametric study revealed the following: increasing the amount of formic acid added to the sludge increased the hydrogen generation rate dramatically; once the catalysts were activated, the hydrogen generation rate decreased significantly with a lowering of the temperature of the sludge; the relative catalytic activities of the noble metals in the sludge decreased in the following order: rhodium > ruthenium much-gt palladium; ammonium ions were generated catalytically from the reaction between formic acid and nitrate; and when present, the noble metals caused higher upward drifts of the sludge pH

  17. The hot bench scale plant Ester for the vitrification of high level wastes

    International Nuclear Information System (INIS)

    In this paper the hot bench-scale plant ESTER for the vitrification of the high-level radioactive wastes is described, and the main results of the first radioactive campaign are reported. The ESTER plant, which is placed in the ADECO-ESSOR hot cells of the C.C.R.-EURATOM-ISPRA, has been built and is operated by the ENEA, Departement of Fuel Cycle. It began operating with real radioactive wastes about 1 year ago, solidifying a total of 12 Ci of fission products into 2,02 Kg of borosilicate glass, corresponding to 757 ml of glass. During the vitrification many samples of liquid and gaseous streams have been taken and analyzed. A radioactivity balance in the plant has been calculated, as well as a mass balance of nitrates and of the 137Cs and 106Ru volatized in the process

  18. A bench scale hydrogen production test by the thermochemical water-splitting iodine-sulfur process

    International Nuclear Information System (INIS)

    The iodine-sulfur process which utilize nuclear energy has attracted a great deal of interest for economy, environmental conservation and massive production. The IS process should have unique features whereby all chemicals except hydrogen and oxygen circulate through the process. This enables continuous and closed-cycle operations. In order to achieve the operation, process control methods and its automation to maintain the process in a stable state are indispensable. A fundamental concept of the methods was developed, which was installed with automatization in a bench scaled experimental facility made of glass. To demonstrate usefulness of the method, a long-term hydrogen production test was performed. In consequence, stable hydrogen production for 1 weak was successfully accomplished. The production rate of hydrogen was 31NL/h, and the production ratio of oxygen to hydrogen agrees to 0.5:1. This result shows that the water splitting took place stably by effective performance of the control method. (author)

  19. Bench-scale testing of a micronized magnetite, fine-coal cleaning process

    Energy Technology Data Exchange (ETDEWEB)

    Suardini, P.J. [Custom Coals, International, Pittsburgh, PA (United States)

    1995-11-01

    Custom Coals, International has installed and is presently testing a 500 lb/hr. micronized-magnetite, fine-coal cleaning circuit at PETC`s Process Research Facility (PRF). The cost-shared project was awarded as part of the Coal Preparation Program`s, High Efficiency Preparation Subprogram. The project includes design, construction, testing, and decommissioning of a fully-integrated, bench-scale circuit, complete with feed coal classification to remove the minus 30 micron slimes, dense medium cycloning of the 300 by 30 micron feed coal using a nominal minus 10 micron size magnetite medium, and medium recovery using drain and rinse screens and various stages and types of magnetic separators. This paper describes the project circuit and goals, including a description of the current project status and the sources of coal and magnetite which are being tested.

  20. Final PHP bench-scale report for the DOE-ID/SAIC sole source contract

    International Nuclear Information System (INIS)

    The Plasma Hearth Process (PHP) Technology Development Project was established to develop, test, and evaluate a new concept for treating mixed waste. The new concept uses direct current (dc) transferred-arc plasma torch technology to process mixed waste into a glass-like end-product. Under the cognizance of the US Department of Energy (DOE) Office of Technology Development (OTD) Mixed Waste Focus Area (MWFA), the technology is being explored for its potential to treat mixed waste. Because it is a mature technology, well-understood and commercially available, it is expected to develop rapidly in this new application. This report summarizes the radioactive bench-scale system activities funded under PHP Sole Source Contract DE-AC07-94ID13266 through the end of the contract

  1. From a single pellet press to a bench scale pellet mill - Pelletizing six different biomass feedstocks

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; Shang, Lei; Sárossy, Zsuzsa;

    2016-01-01

    (SPP) can be extrapolated to larger scale pellet mills. The single pellet press was used to find the optimum moisture content and die operating temperature for pellet production. Then, these results were compared with those obtained from a bench-scale pellet mill. A moisture content of around 10 wt......The increasing demand for biomass pellets requires the investigation of alternative raw materials for pelletizetion. In the present paper, the pelletization process of fescue, alfalfa, sorghum, triticale, miscanthus and willow is studied to determine if results obtained in a single pellet press.......% was found to be optimal for the six biomass feedstocks. A friction increase was seen when the die temperature increased from room temperature to 60-90 degrees C for most biomass types, and then a friction decrease when the die temperature increased further. The results obtained in the bench...

  2. Temperature control of bench-scaled batch reactor equipped with a monofluid heating/cooling system

    Science.gov (United States)

    Teng, Hai-peng; Song, Yi-ming

    2014-04-01

    An advanced control concept, Predictive Functional Control (PFC), is applied for temperature control of a bench-scaled batch reactor equipped with monofluid heating/cooling system. First principles process models are developed. Based on achieved models, significant process variables, which are difficult or impossible to measure online, are estimated from easily measured variables, and cascade PFC control strategy has been projected and implemented in Matlab R14. The dynamics of individual subunits is explicitly taken into consideration by internal model in the control algorithms, and model uncertainty, various process disturbances are compensated by modification of internal model. The experimental results present an excellent capability of tracking the set point, and the success of PFC technique as a process control paradigm is illustratively demonstrated.

  3. Steam reforming of methane in a bench-scale membrane reactor at realistic working conditions

    Energy Technology Data Exchange (ETDEWEB)

    Saric, M.; Van Delft, Y.C.; Sumbharaju, R.; Meyer, D.F.; De Groot, A.

    2012-10-15

    In this study, a bench-scale Pd membrane reactor was used to carry out the methane steam reforming reaction under realistic operating conditions: 580C, 28 bar(a) and GHSV (Gas hourly space velocity) values up to 950 h{sup -1}. The continuous withdrawal of the H2 product resulted in a maximum CH4 conversion of 98% and a H2 production rate of 0.13 N m{sup 3} h{sup -1}. A continuous methane conversion of 86% and a hydrogen flux of 0.1 mol m{sup -2} s{sup -1} were achieved in the membrane reactor under these challenging conditions for almost 1100 h, demonstrating the great potential of membrane reformers for H2 production.

  4. Performance evaluation of the DCMD desalination process under bench scale and large scale module operating conditions

    KAUST Repository

    Francis, Lijo

    2014-04-01

    The flux performance of different hydrophobic microporous flat sheet commercial membranes made of poly tetrafluoroethylene (PTFE) and poly propylene (PP) was tested for Red Sea water desalination using the direct contact membrane distillation (DCMD) process, under bench scale (high δT) and large scale module (low δT) operating conditions. Membranes were characterized for their surface morphology, water contact angle, thickness, porosity, pore size and pore size distribution. The DCMD process performance was optimized using a locally designed and fabricated module aiming to maximize the flux at different levels of operating parameters, mainly feed water and coolant inlet temperatures at different temperature differences across the membrane (δT). Water vapor flux of 88.8kg/m2h was obtained using a PTFE membrane at high δT (60°C). In addition, the flux performance was compared to the first generation of a new locally synthesized and fabricated membrane made of a different class of polymer under the same conditions. A total salt rejection of 99.99% and boron rejection of 99.41% were achieved under extreme operating conditions. On the other hand, a detailed water characterization revealed that low molecular weight non-ionic molecules (ppb level) were transported with the water vapor molecules through the membrane structure. The membrane which provided the highest flux was then tested under large scale module operating conditions. The average flux of the latter study (low δT) was found to be eight times lower than that of the bench scale (high δT) operating conditions.

  5. Torrefaction of pine in a bench-scale screw conveyor reactor

    International Nuclear Information System (INIS)

    Numerous works are reported in the literature regarding the torrefaction of biomass in batch processes. However, in industrial applications, continuous reactors and processes may by more interesting as this allows for the integration of continuous mass and heat flows. To shed light on the operation of continuous torrefaction processes, this work presents the findings of continuous, bench-scale (2.5 kg h−1) torrefaction experiments using pine wood particles as a feed material in a screw conveyor reactor. The shifts in product mass yields were in line with theoretical expectations for changes in reactor temperature and reactor residence times whereas the degree of filling within the screw reactor and the flow of the nitrogen purge gas were found to be negligible. The process allowed for the measurement of the particle surface temperatures throughout the length of the reactor and significant temperature differences where measured between the wall of the reactor and the reactor screw. The proximate composition and the higher heating value of the torrefied biomass were found to be correlated to the ratio of the mass of dry biomass feed to the mass of the torrefied biomass produced. Important observations regarding the operability of such a process, also relevant to larger-scale processes, include the need to prevent the occurrence of torrefaction vapour condensation (which leaves the torrefaction reactor in the form of a saturated vapour) in the presence of fine, solid particles as this leads to rapid particle agglomeration and process blockage. - Highlights: • Successful, continuous torrefaction of pine at bench-scale (2.5 kg h−1). • Internal reactor temperatures were significantly lower than reactor wall temperatures in all cases. • Agglomeration of fine particles with condensed vapours, and the occurrence of feed variability were encountered. • Proximate composition and HHV of torrefied biomass can be predicted by linear correlation against inverse of

  6. Bench-scale screening tests for a boiling sodium-potassium alloy solar receiver

    Science.gov (United States)

    Moreno, J. B.; Moss, T. A.

    1993-06-01

    Bench-scale tests were carried out in support of the design of a second-generation 75-kW(sub t) reflux pool-boiler solar receiver. The receiver will be made from Haynes Alloy 230 and will contain the sodium-potassium alloy NaK-78. The bench-scale tests used quartz lamp heated boilers to screen candidate boiling stabilization materials and methods at temperatures up to 750 degree C. Candidates that provided stable boiling were tested for hot-restart behavior. Poor stability was obtained with single 1/4-inch diameter patches of powdered metal hot press sintered onto the wetted side of the heat-input area. Laser-drilled and electric discharge machined cavities in the heated surface also performed poorly. Small additions of xenon, and heated-surface tilt out of the vertical, dramatically improved poor boiling stability; additions of helium or oxygen did not. The most stable boiling was obtained when the entire heat-input area was covered by a powdered-metal coating. The effect of heated-area size was assessed for one coating: at low incident fluxes, when even this coating performed poorly, increasing the heated-area size markedly improved boiling stability. Good hot-restart behavior was not observed with any candidate, although results were significantly better with added xenon in a boiler shortened from 3 to 2 feet. In addition to the screening tests, flash-radiography imaging of metal-vapor bubbles during boiling was attempted. Contrary to the Cole-Rohsenow correlation, these bubble-size estimates did not vary with pressure; instead they were constant, consistent with the only other alkali metal measurements, but about 1/2 their size.

  7. Study on the effects of temperature, time and policy of pre polymerization on particle morphology in propylene slurry polymerization with heterogeneous ziegler-Natta catalysts

    International Nuclear Information System (INIS)

    The effects of temperature, time and the strategy of pre polymerization were studied on the morphology of polypropylene particles. Propylene polymerization was carried out in slurry phase using fourth generation of Ziegler-Natta Catalyst, cyclohexylmethyl dimethoxysilane as external electron donor, and triethyl aluminum as co-catalyst. Pre polymerizations were carried out based on two strategies: isothermal and non-isothermal conditions. Particle imaging using SEM, bulk density, and particle size distribution was used to analyse the particle morphology. It was found that the variation of initial condition together with the change in the mechanism of particle fracture has a dominant effect on particle morphology. Each combination between the temperature and reaction time causes to have a special effect on the product particle morphology. It has become clear that in isothermal pre polymerization, spherical particles with identical properties were produced. In low temperature experiments particles with porous surface were observed. At increasing temperature, however, the pores disappeared. Non-isothermal pre polymerization produced different morphological types. In all experiments core shell structures were observed that seemed to be related to the structure of catalysts

  8. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a

  9. Treatment studies of plutonium-bearing INEEL waste surrogates in a bench-scale arc furnace

    International Nuclear Information System (INIS)

    Since 1989, the Subsurface Disposal Area (SDA) at the Idaho National Environmental and Engineering Laboratory (INEEL) has been included on the National Priority List for remediation. Arc- and plasma-heated furnaces are being considered for converting the radioactive mixed waste buried in the SDA to a stabilized-vitreous form. Nonradioactive, surrogate SDA wastes have been melted during tests in these types of furnaces, but data are needed on the behavior of transuranic (TRU) constituents, primarily plutonium, during thermal treatment. To begin collecting this data, plutonium-spiked SDA surrogates were processed in a bench-scale arc furnace to quantify the fate of the plutonium and other hazardous and nonhazardous metals. Test conditions included elevating the organic, lead, chloride, and sodium contents of the surrogates. Blends having higher organic contents caused furnace power levels to fluctuate. An organic content corresponding to 50% INEEL soil in a soil-waste blend was the highest achievable before power fluctuations made operating conditions unacceptable. The glass, metal, and off-gas solids produced from each surrogate blend tested were analyzed for elemental (including plutonium) content and the partitioning of each element to the corresponding phase was calculated

  10. Dissolved gas exsolution to enhance gas production and transport during bench-scale electrical resistance heating

    Science.gov (United States)

    Hegele, P. R.; Mumford, K. G.

    2015-05-01

    Condensation of volatile organic compounds in colder zones can be detrimental to the performance of an in situ thermal treatment application for the remediation of chlorinated solvent source zones. A novel method to increase gas production and limit convective heat loss in more permeable, potentially colder, zones involves the injection and liberation of dissolved gas from solution during heating. Bench-scale electrical resistance heating experiments were performed with a dissolved carbon dioxide and sodium chloride solution to investigate exsolved gas saturations and transport regimes at elevated, but sub-boiling, temperatures. At sub-boiling temperatures, maximum exsolved gas saturations of Sg = 0.12 were attained, and could be sustained when the carbon dioxide solution was injected during heating rather than emplaced prior to heating. This gas saturation was estimated to decrease groundwater relative permeability to krw = 0.64. Discontinuous gas transport was observed above saturations of Sg = 0.07, demonstrating the potential of exsolved CO2 to bridge vertical gas transport through colder zones.

  11. A bench scale study of a one-step dissolution process for treating contaminated fiberglass filters

    International Nuclear Information System (INIS)

    High efficiency mist eliminators (HEME) and high efficiency particulate air filters (HEPA) made of High fiberglass will be used at the Savannah River Site (SRS) to remove particulate matter from offgases generated during melter feed preparation and vitrification of high-level radioactive waste (HLW) at the Defense Waste Processing Facility (DWPF). These filters will be contaminated with high-level, radioactive species and also with various high-boiling organic compounds. For this reason, a process was developed at the Savannah River Technology Center (SRTC) that will dissolve the spent filters so that the residues may be recycled to the HLW tanks for eventual vitrification. This process involves boiling the filters sequentially in NaOH, HN03 and NaOH, while contained in a stainless steal wire mesh frame assembly. The objective of this communication is to present some of the original preliminary work done by Ritter on the simple one-step dissolution process. The results from six bench-scale experiments are reported for the dissolution of an organically-fouled sample of HEME obtained from the Integrated DWPF Melter (IDMS) offgas filtration system. The preliminary effects of filter packing density, air sparging versus rotating basket agitation, fouling, and adding Triton X-405 as a dispersing agent are reported

  12. Destruction of methylphosphonic acid in a supercritical water oxidation bench-scale double wall reactor

    Institute of Scientific and Technical Information of China (English)

    Bambang Veriansyah; Eun-Seok Song; Jae-Duck Kim

    2011-01-01

    The destruction of methylphosphonic acid (MPA), a final product by hydrolysis/neutralization of organophosphorus agents such as satin and VX (O-ethyl S-[2-(diisopropylamino)ethyl] methylphosphonothionate), was investigated in a a bench-scale, continuous concentric vertical double wall reactor under supercritical water oxidation condition. The experiments were conducted at a temperature range of 450-600~C and a fixed pressure of 25 MPa. Hydrogen peroxide was used as an oxidant. The destruction efficiency (DE) was monitored by analyzing total organic carbon (TOC) and MPA concentrations using ion chromatography on the liquid effluent samples. The results showed that the DE of MPA up to 99.999% was achieved at a reaction temperature of 600~C, oxygen concentration of 113% storichiometric requirement, and reactor residence time of 8 sec. On the basis of the data derived from experiments, a global kinetic rate equation for the DE of MPA and DE of TOC were developed by nonlinear regression analysis. The model predictions agreed well with the experimental data.

  13. Study on hydrogen sulfide removal based on bench-scale experiment by bio-trickling filter

    Institute of Scientific and Technical Information of China (English)

    TIAN Shu-lei; ZHANG Lan-he; WANG Qun-hui; WANG Xu-ming; XIE Wei-min

    2007-01-01

    A bench-scale experiment for control of hydrogen sulfide (H2S) emissions was carried out continuously for nearly four months by using bio-trickling filter packed with ZX01 stuffing. The results suggested that the bio-trickling filter had proven excellent performance over substantial operational periods. Removal efficiency of H2S was nearly 100% when volumetric loading of the bio-trickling filter varied from 0.64 g/(m3·h)to 38.20 g/(m3·h) and metabolism products of H2S were mainly composed of SO42-. When inlet concentration of H2S was 250 mg/m3, the optimum gas retention time was 30 s and the optimum spray water not blocked during experiments for nearly four months during which resistance was maintained at relatively lower value, so that the bio-trickling filter need not carry out back washing frequently and can be operated steadily for long-term.

  14. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    Energy Technology Data Exchange (ETDEWEB)

    Field, J.G.

    1994-06-10

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that {sup 137}Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of {sup 137}Cs in the gravel- and sand-size fractions.

  15. Destruction of chemical agent simulants in a supercritical water oxidation bench-scale reactor

    International Nuclear Information System (INIS)

    A new design of supercritical water oxidation (SCWO) bench-scale reactor has been developed to handle high-risk wastes resulting from munitions demilitarization. The reactor consists of a concentric vertical double wall in which SCWO reaction takes place inside an inner tube (titanium grade 2, non-porous) whereas pressure resistance is ensured by a Hastelloy C-276 external vessel. The performances of this reactor were investigated with two different kinds of chemical warfare agent simulants: OPA (a mixture of isopropyl amine and isopropyl alcohol) as the binary precursor for nerve agent of sarin and thiodiglycol [TDG (HOC2H4)2S] as the model organic sulfur heteroatom. High destruction rates based on total organic carbon (TOC) were achieved (>99.99%) without production of chars or undesired gases such as carbon monoxide and methane. The carbon-containing product was carbon dioxide whereas the nitrogen-containing products were nitrogen and nitrous oxide. Sulfur was totally recovered in the aqueous effluent as sulfuric acid. No corrosion was noticed in the reactor after a cumulative operation time of more than 250 h. The titanium tube shielded successfully the pressure vessel from corrosion

  16. 100 Area soil washing: Bench scale tests on 116-F-4 pluto crib soil

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory conducted a bench-scale treatability study on a pluto crib soil sample from 100 Area of the Hanford Site. The objective of this study was to evaluate the use of physical separation (wet sieving), treatment processes (attrition scrubbing, and autogenous surface grinding), and chemical extraction methods as a means of separating radioactively-contaminated soil fractions from uncontaminated soil fractions. The soil washing treatability study was conducted on a soil sample from the 116-F-4 Pluto Crib that had been dug up as part of an excavation treatability study. Trace element analyses of this soil showed no elevated concentrations above typically uncontaminated soil background levels. Data on the distribution of radionuclide in various size fractions indicated that the soil-washing tests should be focused on the gravel and sand fractions of the 116-F-4 soil. The radionuclide data also showed that 137Cs was the only contaminant in this soil that exceeded the test performance goal (TPG). Therefore, the effectiveness of subsequent soil-washing tests for 116-F-4 soil was evaluated on the basis of activity attenuation of 137Cs in the gravel- and sand-size fractions

  17. Bench-scale vitrification studies with Savannah River Site mercury contaminated soil

    International Nuclear Information System (INIS)

    The Savannah River Technology Center (SRTC) has been charted by the Department of Energy (DOE)--Office of Technology Development (OTD) to investigate vitrification technology for the treatment of Low Level Mixed Wastes (LLMW). In fiscal year 1995, mercury containing LLMW streams were targeted. In order to successfully apply vitrification technology to mercury containing LLMW, the types and quantities of glass forming additives necessary for producing homogeneous glasses from the wastes have to be determined and the treatment for the mercury portion must also be determined. Selected additives should ensure that a durable and leach resistant waste form is produced, while the mercury treatment should ensure that hazardous amounts of mercury are not released into the environment. The mercury containing LLMW selected for vitrification studies at the SRTC was mercury contaminated soil from the TNX pilot-plant facility at the Savannah River Site (SRS). Samples of this soil were obtained so bench-scale vitrification studies could be performed at the SRTC to determine the optimum waste loading obtainable in the glass product without sacrificing durability and leach resistance. Vitrifying this waste stream also required offgas treatment for the capture of the vaporized mercury

  18. Safety analysis of the CSTR-1 bench-scale coal liquefaction unit

    Energy Technology Data Exchange (ETDEWEB)

    Hulburt, D.A.

    1981-05-01

    The objective of the program reported herein was to provide a Safety Analysis of the CSTR-1 bench scale unit located in Building 167 at the Pittsburgh Energy Technology Center. It was apparent that considerable effort was expended in the design and construction of the unit, and in the development of operating procedures, with regard to safety. Exhaust ventilation, H/sub 2/ and H/sub 2/S monitoring, overpressure protection, overtemperature protection, and interlock systems have been provided. Present settings on the pressure and temperature safety systems are too high, however, to insure prevention of vessel deformation or damage in all cases. While the occurrence of catastrophic rupture of a system pressure vessel (e.g., reactor, high pressure separators) is unlikely, the potential consequences to personnel are severe. Feasibility of providing shielding for these components should be considered. A more probable mode of vessel failure in the event of overpressure or overtemperature and failure of the safety system is yielding of the closure bolts followed by high pressure flow across the mating surfaces. As a minimum, shielding should be designed to restrict travel of resultant spray. The requirements for personal protective equipment are presently stated in rather broad and general terms in the operating procedures. Safe practices and procedures would be more assured if specific requirements were stated and included for each operational step. Recommendations were developed for all hazards triggered by the guidelines.

  19. Deposition of CoO and NiO on Supported MoO3 Monolayer Catalysts by Slurry Impregnation

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Zdražil, Miroslav

    Praha : J. Heyrovský Institute of Physical Chemistry, ASCR, 2006, s. 45-46. [Symposium on Catalysis /38./. Prague (CZ), 06.11.2006-07.11.2006] R&D Projects: GA ČR(CZ) GA104/06/P034 Institutional research plan: CEZ:AV0Z40720504 Keywords : slurry impregnation * hydrodesulfurization * solvent assisted spreading Subject RIV: CF - Physical ; Theoretical Chemistry

  20. Bench-Scale Silicone Process for Low-Cost CO{sub 2} Capture

    Energy Technology Data Exchange (ETDEWEB)

    Fresia, Megan; Vogt, Kirk

    2013-12-31

    GE Global Research is developing technology to remove carbon dioxide (CO{sub 2}) from the flue gas of coal-fired power plants. A mixture of 3-aminopropyl end-capped polydimethylsiloxane (GAP-1m) and triethylene glycol (TEG) is the preferred CO{sub 2} capture solvent. GE Global Research was contracted by the Department of Energy to test a bench-scale continuous CO{sub 2} absorption/desorption system using a GAP-1m/TEG mixture as the solvent. SiVance LLC was sub-contracted to provide the GAP-1m material and conduct an Environmental, Health, and Safety (EH&S) assessment for a 550 MW coal-fired power plant. Five components of the solvent, CAS#2469-55-8 (GAP-0), CAS#106214-84-0 (GAP-1-4), TEG, and methanol and xylene (minor contaminants from the aminosilicone) are included in this assessment. One by-product, GAP-1m/SOX salt, and dodecylbenzenesulfonic acid (DDBSA) were also identified for analysis. All of the solvent components and DDBSA are listed on the EPA’s TSCA Inventory allowing companies to manufacture and use the chemicals commercially. The toxicological effects of each component were defined, and control mechanisms necessary to comply with U.S. EH&S regulations are summarized. An engineering and control system, including environmental abatement, was described for minimizing exposure and release of the chemical components. Proper handling and storage recommendations are made for each chemical to minimize risk to workers and the surrounding community.

  1. Bench-scale arc melter for R ampersand D in thermal treatment of mixed wastes

    International Nuclear Information System (INIS)

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800 degrees C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter's ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions

  2. Bioleaching of heavy metals from soil using fungal-organic acids : bench scale testing

    Energy Technology Data Exchange (ETDEWEB)

    Cathum, S.J.; Ousmanova, D.; Somers, A.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Brown, C.E. [Environment Canada, Ottawa, ON (Canada). Emergencies Engineering Division]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre

    2006-07-01

    The ability of fungi to solubilize metals from solid materials may present new opportunities in environmental remediation. This paper presented details of a bench scale experiment that evaluated the leaching of heavy metals from contaminated soil using in situ fungal-generated organic acids. Rice was used as the growing media for organic acid production by A. foetidus. The cultivated fungus was placed on large pieces of potato-dextrose agar (PDA) plates and suspended in 5 L of sterilized water. The cooked rice was inoculated by pouring the 5 L spore suspension over the rice layer. Soil was obtained from a soil pile impacted with heavy metals at a private industrial site and augmented with Pb-contaminated soil. A polyethylene tub was used with a drain pipe leading to a leachate vessel. Crushed stone was spread over the bottom of the tub to assist leachate drainage. Approximately 45 kg of the contaminated soil was spread evenly over the stone layer to a depth of 10 cm. The concentrated spore suspension was sprinkled over the rice. Each week the leachate collection vessel was removed from the bioleaching system and the fine soil particles were allowed to settle. A control was run using the contaminated soil and solid substrate without fungus. Growth of A. foetidus was observed in both control experiment and test experiment after a period of 35 days. The pH of the leachate was measured as the fungal growth progressed. The process was assessed using ICP Mass Spectroscopy and electron spectroscopy, which showed that approximately 65 g of heavy metals were mobilized from 45 kg of soil, and that the biological leaching process resulted in greater mobilization of heavy metals relative to the control experiment. It was concluded that organic acids generated by A. foetidus were capable of leaching heavy metals from the soil. 30 refs., 4 tabs., 15 figs.

  3. Biotreatment of chlorpyrifos in a bench scale bioreactor using Psychrobacter alimentarius T14.

    Science.gov (United States)

    Khalid, Saira; Hashmi, Imran

    2016-01-01

    Bacteria tolerant to high pesticide concentration could be used for designing an efficient treatment technology. Bacterial strains T14 was isolated from pesticide-contaminated soil in mineral salt medium (MSM) and identified as Psychrobacter alimentarius T14 using 16S rRNA gene sequence analysis. Bench scale bioreactor was evaluated for biotreatment of high Chlorpyrifos (CP) concentration using P. alimentarius T14. Effect of various parameters on bioreactor performance was examined and optimum removal was observed at optical density (OD600 nm): 0.8; pH: 7.2; CP concentration: 300 mg L(-1) and hydraulic retention time: 48 h. At optimum conditions, 70.3/79% of CP/chemical oxygen demand (COD) removal was achieved in batch bioreactors. In addition, P. alimentarius T14 achieved 95/91, 62.3/75, 69.8/64% CP/COD removal efficiency with addition of CS (co-substrates), CS1 (yeast extract + synthetic wastewater), CS2 (glucose + synthetic wastewater) and CS3 (yeast extract), respectively. Addition of CS1 to bioreactor could accelerate CP removal rate up to many cycles with considerable efficiency. However, accumulation of 3, 5, 6-trichloro-2-pyridinol affects reactor performance in cyclic mode. First-order rate constant k1 0.062 h(-1) and t1/2 11.1 h demonstrates fast degradation. Change in concentration of total chlorine and nitrogen could be the result of complete mineralization. Photodegradation of CP in commercial product was more than its pure form. Commercial formulation accelerated photodegradation process; however no effect on biodegradation process was observed. After bio-photodegradation, negligible toxicity for seeds of Triticum aestivum was observed. Study suggests an efficient treatment of wastewater containing CP and its metabolites in batch bioreactors could be achieved using P. alimentarius. PMID:26144866

  4. Bench-scale arc melter for R&D in thermal treatment of mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    Kong, P.C.; Grandy, J.D.; Watkins, A.D.; Eddy, T.L.; Anderson, G.L.

    1993-05-01

    A small dc arc melter was designed and constructed to run bench-scale investigations on various aspects of development for high-temperature (1,500-1,800{degrees}C) processing of simulated transuranic-contaminated waste and soil located at the Radioactive Waste Management Complex (RWMC). Several recent system design and treatment studies have shown that high-temperature melting is the preferred treatment. The small arc melter is needed to establish techniques and procedures (with surrogates) prior to using a similar melter with the transuranic-contaminated wastes in appropriate facilities at the site. This report documents the design and construction, starting and heating procedures, and tests evaluating the melter`s ability to process several waste types stored at the RWMC. It is found that a thin graphite strip provides reliable starting with initial high current capability for partially melting the soil/waste mixture. The heating procedure includes (1) the initial high current-low voltage mode, (2) a low current-high voltage mode that commences after some slag has formed and arcing dominates over the receding graphite conduction path, and (3) a predominantly Joule heating mode during which the current can be increased within the limits to maintain relatively quiescent operation. Several experiments involving the melting of simulated wastes are discussed. Energy balance, slag temperature, and electrode wear measurements are presented. Recommendations for further refinements to enhance its processing capabilities are identified. Future studies anticipated with the arc melter include waste form processing development; dissolution, retention, volatilization, and collection for transuranic and low-level radionuclides, as well as high vapor pressure metals; electrode material development to minimize corrosion and erosion; refractory corrosion and/or skull formation effects; crucible or melter geometry; metal oxidation; and melt reduction/oxidation (redox) conditions.

  5. Bench-scale enhanced sludge washing and gravity settling of Hanford Tank C-106 Sludge

    International Nuclear Information System (INIS)

    This report summarizes the results of a bench-scale sludge pretreatment demonstration of the Hanford baseline flowsheet using liter-quantities of sludge from Hanford Site single-shell tank 241-C-106 (tank C-106). The leached and washed sludge from these tests provided Envelope D material for the contractors supporting Tank Waste Remediation System (TWRS) Privatization. Pretreatment of the sludge included enhanced sludge washing and gravity settling tests and providing scale-up data for both these unit operations. Initial and final solids as well as decanted supernatants from each step of the process were analyzed chemically and radiochemically. The results of this work were compared to those of Lumetta et al. (1996a) who performed a similar experiment with 15 grams of C-106, sludge. A summary of the results are shown in Table S.1. Of the major nonradioactive components, those that were significantly removed with enhanced sludge washing included aluminum (31%), chromium (49%), sodium (57%), and phosphorus (35%). Of the radioactive components, a significant amount of 137Cs (49%) were removed during the enhanced sludge wash. Only a very small fraction of the remaining radionuclides were removed, including 90Sr (0.4%) and TRU elements (1.5%). These results are consistent with those of the screening test. All of the supernatants (both individually and as a blend) removed from these washing steps, once vitrified as LLW glasses (at 20 wt% Na2O), would be less than NRC Class C in TRU elements and less than NRC Class B in 90Sr

  6. Bench-scale studies of reactor-based treatment of fuel-contaminated soils

    International Nuclear Information System (INIS)

    Biological treatment of hazardous wastes from accidental spills or underground storage tank leaks has generated interest in bioremediation as a natural, economical mechanism for site decontamination. Because of drawbacks of batch systems, and the successful use of continuous flow treatment of wastewater for several decades, it was felt that continuous treatment of such soils would be a feasible alternative treatment technique. Therefore, bench-scale bioreactor treatability studies were conducted and used contaminated soil made in the laboratory using No. 2 diesel fuel and sand. Contamination levels studied were from 1,335--6,675 mg (TPH) as derived from No. 2 fuel oil per kg sand. Variation in mean cell age was obtained between reactors, with sufficient nutrients and oxygen made available to ensure the fuel oil organics were the only limit to microbial growth. A theoretical biokinetic model was formulated based on Monod's theory of limiting substrate and continuous cultures. Biokinetic constants and removal efficiencies were evaluated. The off-gases, CO2, and volatile hydrocarbons were monitored for mass balance analysis of the process. The solids retention times for evaluating final TPH concentration of 100 mg/kg were also calculated. Removal efficiencies of up to 91% were attained at a loading of 1,335 mg TPH/kg wet sand, operated at a biological solid retention time (BSRT) of 60 days. Experiments also showed that TPH desorption and volatilization were not rate-limiting in the overall removal process. Sand-to-moisture ratios in excess of 3:1 were also shown to retard TPH removal rates very little. However, biokinetic constants were found to vary over a range of values. This was particularly true at varying diesel loading levels. Nevertheless, significant removal efficiency (up to 86%) was noted at the highest loading level tested, 6,675 mg TPH/kg wet sand

  7. Results of bench-scale plasma system testing in support of the Plasma Hearth Process

    International Nuclear Information System (INIS)

    The Plasma Hearth Process (PHP) is a high-temperature process that destroys hazardous organic components and stabilizes the radioactive components and hazardous metals in a leach-resistant vitreous slag waste form. The PHP technology development program is targeted at mixed waste that cannot be easily treated by conventional means. For example, heterogeneous debris, which may contain hazardous organics, toxic metals, and radionuclides, is difficult to characterize and cannot be treated with conventional thermal, chemical, or physical treatment methods. A major advantage of the PHP over other plasma processes is its ability to separate nonradioactive, non-hazardous metals from the non-metallic and radioactive components which are contained in the vitreous slag. The overall PHP program involves the design, fabrication, and operation of test hardware to demonstrate and certify that the PHP concept is viable for DOE waste treatment. The program involves bench-scale testing of PHP equipment in radioactive service, as well as pilot-scale demonstration of the PHP concept using nonradioactive, surrogate test materials. The fate of secondary waste streams is an important consideration for any technology considered for processing mixed waste. The main secondary waste stream generated by the PHP is flyash captured by the fabric- filter baghouse. The PHP concept is that flyash generated by the process can, to a large extent, be treated by processing this secondary waste stream in the PHP. Prior to the work presented in the paper, however, the PHP project has not quantitatively demonstrated the ability to treat PHP generated flyash. A major consideration is the quantity of radionuclides and RCRA-regulated metals in the flyash that can be retained the resultant waste form

  8. Bench-scale experimental determination of the thermal diffusivity of crushed tuff

    International Nuclear Information System (INIS)

    A bench-scale experiment was designed and constructed to determine the effective thermal diffusivity of crushed tuff. Crushed tuff particles ranging from 12.5 mm to 37.5 mm (0.5 in. to 1.5 in.) were used to fill a cylindrical volume of 1.58 m3 at an effective porosity of 0.48. Two iterations of the experiment were completed; the first spanning approximately 502 hours and the second 237 hours. Temperatures near the axial heater reached 700 degrees C, with a significant volume of the test bed exceeding 100 degrees C. Three post-test analysis techniques were used to estimate the thermal diffusivity of the crushed tuff. The first approach used nonlinear parameter estimation linked to a one dimensional radial conduction model to estimate thermal diffusivity from the first 6 hours of test data. The second method used the multiphase TOUGH2 code in conjunction with the first 20 hours of test data not only to estimate the crushed tuffs thermal diffusivity, but also to explore convective behavior within the test bed. Finally, the nonlinear conduction code COYOTE-II was used to determine thermal properties based on 111 hours of cool-down data. The post-test thermal diffusivity estimates of 5.0 x 10-7 m2/s to 6.6 x 10-7 m2/s were converted to effective thermal conductivities and compared to estimates obtained from published porosity-based relationships. No obvious match between the experimental data and published relationships was found to exist; however, additional data for other particle sizes and porosities are needed

  9. Investigation of E. coli and Virus Reductions Using Replicate, Bench-Scale Biosand Filter Columns and Two Filter Media

    OpenAIRE

    Mark Elliott; Stauber, Christine E.; DiGiano, Francis A.; Anna Fabiszewski de Aceituno; Sobsey, Mark D.

    2015-01-01

    The biosand filter (BSF) is an intermittently operated, household-scale slow sand filter for which little data are available on the effect of sand composition on treatment performance. Therefore, bench-scale columns were prepared according to the then-current (2006–2007) guidance on BSF design and run in parallel to conduct two microbial challenge experiments of eight-week duration. Triplicate columns were loaded with Accusand silica or crushed granite to compare virus and E. coli reduction p...

  10. Novel High Performance Ziegler-Natta Catalyst for Ethylene Slurry Polymerization%新型高性能Ziegler-Natta催化剂用于乙烯淤浆聚合

    Institute of Scientific and Technical Information of China (English)

    郭子芳; 陈伟; 周俊领; 杨红旭

    2009-01-01

    A novel high performance MgCl2/TiCl4 catalyst with tetrabutyloxsilicane as electron donor was pre-pared for ethylene slurry polymerization process. The properties of the catalyst such as particle size distribution, catalytic activity, hydrogen responsibility and copolymerization performance were investigated and compared with commercial catalyst (imported catalyst). Copolymerization of ethylene and 1-butylene using the catalyst was stud-ied in a pilot plant. The composition, structure and property of the copolymer were characterized by 13C nuclear magnetic resonance (13C NMR) and gel permeation chromatography-Infrared (GPC-IR), and compared with those of the copolymer obtained from a commercial catalyst. In comparison with the commercial catalyst, the novel cata-lyst had a higher activity (up to 34.6 kg·g-1) and a better particle size distribution (PSD), and produced polymers having higher bulk density (up to 0.37 g·cm-3) with less fine resin. Meanwhile, the novel catalyst showed a higher hydrogen r sponsibility and better copolymerization performance. The results indicated that the copolymer obtained from the novel catalyst has a higher branch in the high molecular weight fraction and lower branch in the low mo-lecular weight fraction.

  11. SUPPORTED ZIEGLER-NATTA CATALYSTS FOR ETHYLENE SLURRY POLYMERIZATION AND CONTROL OF MOLECULAR WEIGHT DISTRIBUTION OF POLYETHYLENE

    Institute of Scientific and Technical Information of China (English)

    Vladimir Zakharov; Ludmila Echevskaya; Tatiana Mikenas; Mikhail Matsko; Andrey Tregubov; Marina Vanina; Marina Nikolaeva

    2008-01-01

    The effect of chemical composition of highly active supported Ziegler-Natta catalysts with controlled morphology on the MWD of PE has been studied.It was shown the variation of transition metal compound in the MgCI2-supported catalyst affect of MWD of PE produced in broad range:Vanadium-magnesium catalyst(VMC)produce PE with broad and bimodal MWD(Mw、Mn=14-21).MWD of PE,produced over titanium-magnesium catalyst(TMC) is narrow or medium depending on Ti content in the catalyst(Mw/Mn=3.1-4.8).The oxidation state of the initial titanium compounds in TMC has only slight effeCt on MWD of PE produced.Based on MWD data of PE heterogeneity of active centers of TMC and VMC was studied.The results of resolution of experimental GPC curves into Flory components indicated three Flory components are snfficient to describe MWD curve of PE,produced with TMC:six Flory components are required in the case of VMC.In the case of copolymerization of ethylene with 1-hexene over TMC the addition of 1-hexene leads to decrease of MW and to slight effect on Mw/Mn values.On the contrary the strong effect of 1-hexene on MWD of PE produced over VMC was found:the introduction of 1-hexene results in considerable broadening of MWD due to the shifting of the main MWD peak tO low MW region.At that comonomer does not affect the position of high molecular weight shoulder The results indicate that some of active centers of VMC producing high MW polymer are not active in the reaction of chain transfer with comonomer.

  12. Soluble Microbial Product Characterization of Biofilm Formation in Bench-Scale

    KAUST Repository

    Mines, Paul

    2012-12-01

    The biological process known as activated sludge (AS) in conjunction with membrane separation technology for the treatment of wastewater has been employed for over four decades. While, membrane biological reactors (MBR) are now widely employed, the phenomenon of membrane fouling is still the most significant factor leading to performance decline of MBRs. Although much research has been done on the subject of MBR fouling over the past two decades, many questions remain unanswered, and consensus within the scientific community is rare. However, research has led to one system parameter generally being regarded as a contributor to membrane fouling, extracellular polymeric compounds (EPS). EPS, and more specifically, the soluble fraction of EPS known as soluble microbial products (SMP), must be further investigated in order to better understand membrane fouling. The biological activity and performance of the MBR is affected by myriad operational parameters, which in turn affects the SMP generated. A commonly varied operational parameter is, depending on the specific treatment needs of a MBR, the sludge retention time (SRT). This study aims to characterize the SMP in three bench-scale MBRs as the SRT is gradually lowered. By studying how the SMP change as the operation of the system is altered, greater understanding of how SMP are related to fouling can be achieved. At the onset of the study, a steady state was established in the system with a SRT of 20 days. Upon stabilization of a 20 day SRT, the system was gradually transitioned to a five and a half day SRT, in stepwise adjustments. Initially, both the trans-membrane pressure (TMP) and the SMP concentrations were at relatively low values, indicating the presence of minimal amounts of biofilm on the membrane surfaces. As the system was altered and more activated sludge was wasted from the reactors, the SRT inherently decreased. As the lower SRT was transitioned and established, the data from TMP measurements, as well

  13. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  14. A kinetic study of methanol synthesis in a slurry reactor using a CuO/ZnO/Al{sub 2}O{sub 3} catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Al-Adwani, H.A.

    1992-05-01

    A kinetic model that describes the methanol production rate over a CuO/ZnO/AI{sub 2}0{sub 3} catalyst (United Catalyst L-951) at typical industrial operating conditions is developed using a slurry reactor. Different experiments are conducted in which the H{sub 2}/(CO+CO{sub 2}) ratio is equal to 2, 1, and 0.5, respectively, while the CO/CO{sub 2} ratio is held constant at 9. At each H{sub 2}/(CO+CO{sub 2}) ratio the space velocity is set at four different values in the range of 3000-13,000 1/hr kg{sub cat}. The effect of H{sub 2}/(CO+CO{sub 2}) ratio and space velocity on methanol production rate, conversions, and product composition is further investigated. The results indicate that the highest methanol production rate can be achieved at H{sub 2}/(CO+CO{sub 2}) ratio of 1 followed by H{sub 2}/(CO+CO{sub 2}) ratio of 0.5 and 2 respectively. The hydrogen and carbon monoxide conversions decrease with increasing space velocity for all H{sub 2}/(CO+CO{sub 2}) ratios tested. Carbon monoxide hydrogenation appears to be the main route to methanol at H{sub 2}/(CO+CO{sub 2}) ratio of 0.5 and 2. On the other hand, carbon dioxide hydrogenation appears to be the main route to methanol at H{sub 2}/(CO+CO{sub 2}) ratio of 1. At all H{sub 2}/(CO+CO{sub 2}) ratios, the extent of the reverse water gas shift reaction decreases with increasing space velocity. The effect of temperature on the kinetics is examined by using the same experimental approach at 508 K. It is found that a different reaction sequence takes place at each temperature. Also, a time on stream study is conducted simultaneously in order to investigate the characteristic of catalyst deactivation with time on stream. During the first 150 hours of time on stream, the catalyst loses approximately 2/3 of its initial activity before reaching a steady state activity.

  15. A kinetic study of methanol synthesis in a slurry reactor using a CuO/ZnO/Al sub 2 O sub 3 catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Al-Adwani, H.A.

    1992-05-01

    A kinetic model that describes the methanol production rate over a CuO/ZnO/AI{sub 2}0{sub 3} catalyst (United Catalyst L-951) at typical industrial operating conditions is developed using a slurry reactor. Different experiments are conducted in which the H{sub 2}/(CO+CO{sub 2}) ratio is equal to 2, 1, and 0.5, respectively, while the CO/CO{sub 2} ratio is held constant at 9. At each H{sub 2}/(CO+CO{sub 2}) ratio the space velocity is set at four different values in the range of 3000-13,000 1/hr kg{sub cat}. The effect of H{sub 2}/(CO+CO{sub 2}) ratio and space velocity on methanol production rate, conversions, and product composition is further investigated. The results indicate that the highest methanol production rate can be achieved at H{sub 2}/(CO+CO{sub 2}) ratio of 1 followed by H{sub 2}/(CO+CO{sub 2}) ratio of 0.5 and 2 respectively. The hydrogen and carbon monoxide conversions decrease with increasing space velocity for all H{sub 2}/(CO+CO{sub 2}) ratios tested. Carbon monoxide hydrogenation appears to be the main route to methanol at H{sub 2}/(CO+CO{sub 2}) ratio of 0.5 and 2. On the other hand, carbon dioxide hydrogenation appears to be the main route to methanol at H{sub 2}/(CO+CO{sub 2}) ratio of 1. At all H{sub 2}/(CO+CO{sub 2}) ratios, the extent of the reverse water gas shift reaction decreases with increasing space velocity. The effect of temperature on the kinetics is examined by using the same experimental approach at 508 K. It is found that a different reaction sequence takes place at each temperature. Also, a time on stream study is conducted simultaneously in order to investigate the characteristic of catalyst deactivation with time on stream. During the first 150 hours of time on stream, the catalyst loses approximately 2/3 of its initial activity before reaching a steady state activity.

  16. Catalytic multi-stage liquefaction of coal at HTI: Bench-scale studies in coal/waste plastics coprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, V.R.; Lee, L.K.; Stalzer, R.H. [Hydrocarbon Technologies, Inc., Lawrenceville, NJ (United States)] [and others

    1995-12-31

    The development of Catalytic Multi-Stage Liquefaction (CMSL) at HTI has focused on both bituminous and sub-bituminous coals using laboratory, bench and PDU scale operations. The crude oil equivalent cost of liquid fuels from coal has been curtailed to about $30 per barrel, thus achieving over 30% reduction in the price that was evaluated for the liquefaction technologies demonstrated in the late seventies and early eighties. Contrary to the common belief, the new generation of catalytic multistage coal liquefaction process is environmentally very benign and can produce clean, premium distillates with a very low (<10ppm) heteroatoms content. The HTI Staff has been involved over the years in process development and has made significant improvements in the CMSL processing of coals. A 24 month program (extended to September 30, 1995) to study novel concepts, using a continuous bench scale Catalytic Multi-Stage unit (30kg coal/day), has been initiated since December, 1992. This program consists of ten bench-scale operations supported by Laboratory Studies, Modelling, Process Simulation and Economic Assessments. The Catalytic Multi-Stage Liquefaction is a continuation of the second generation yields using a low/high temperature approach. This paper covers work performed between October 1994- August 1995, especially results obtained from the microautoclave support activities and the bench-scale operations for runs CMSL-08 and CMSL-09, during which, coal and the plastic components for municipal solid wastes (MSW) such as high density polyethylene (HDPE)m, polypropylene (PP), polystyrene (PS), and polythylene terphthlate (PET) were coprocessed.

  17. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2009-09-01

    Full Text Available In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO. A mixed oxide of Mn-Ce (7:3, the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4-dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed.

  18. SUMMARY PLAN FOR BENCH-SCALE REFORMER AND PRODUCT TESTING TREATABILITY STUDIES USING HANFORD TANK WASTE

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB

    2010-08-19

    ) was found to be comparable to immobilized low-activity waste glass waste form in the initial supplemental LAW treatment technology risk assessment (Mann 2003). To confirm this hypothesis, DOE is funding a treatability study where three actual Hanford tank waste samples (containing both {sup 99}Tc and {sup 125}I) will be processed in Savannah River National Laboratory's (SRNL) Bench-Scale Reformer (BSR) to form the mineral product, similar to the granular NAS waste form, that will then be subject to a number of waste form qualification tests. In previous tests, SRNL have demonstrated that the BSR product is chemically and physically equivalent to the FBSR product (Janzen 2005). The objective of this paper is to describe the sample selection, sample preparation, and environmental and regulatory considerations for treatability studies of the FBSR process using Hanford tank waste samples at the SNRL. The SNRL will process samples in its BSR. These samples will be decontaminated in the 222-S Laboratory to remove undissolved solids and selected radioisotopes to comply with Department of Transportation (DOT) shipping regulations and to ensure worker safety by limiting radiation exposure to As Low As Reasonably Achievable (ALARA). These decontamination levels will also meet the Nuclear Regulatory Commission's (NRC's) definition of low activity waste (LAW). After the SNRL has processed the tank samples to a granular mineral form, SRNL and Pacific Northwest National Laboratory (PNNL) will conduct waste form testing on both the granular material and monoliths prepared from the granular material. The tests being performed are outlined in Appendix A.

  19. Summary Plan For Bench-Scale Reformer And Product Testing Treatability Studies Using Hanford Tank Waste

    International Nuclear Information System (INIS)

    initial supplemental LAW treatment technology risk assessment (Mann 2003). To confirm this hypothesis, DOE is funding a treatability study where three actual Hanford tank waste samples (containing both 99Tc and 125I) will be processed in Savannah River National Laboratory's (SRNL) Bench-Scale Reformer (BSR) to form the mineral product, similar to the granular NAS waste form, that will then be subject to a number of waste form qualification tests. In previous tests, SRNL have demonstrated that the BSR product is chemically and physically equivalent to the FBSR product (Janzen 2005). The objective of this paper is to describe the sample selection, sample preparation, and environmental and regulatory considerations for treatability studies of the FBSR process using Hanford tank waste samples at the SNRL. The SNRL will process samples in its BSR. These samples will be decontaminated in the 222-S Laboratory to remove undissolved solids and selected radioisotopes to comply with Department of Transportation (DOT) shipping regulations and to ensure worker safety by limiting radiation exposure to As Low As Reasonably Achievable (ALARA). These decontamination levels will also meet the Nuclear Regulatory Commission's (NRC's) definition of low activity waste (LAW). After the SNRL has processed the tank samples to a granular mineral form, SRNL and Pacific Northwest National Laboratory (PNNL) will conduct waste form testing on both the granular material and monoliths prepared from the granular material. The tests being performed are outlined in Appendix A.

  20. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters

    DEFF Research Database (Denmark)

    Tatari, Karolina; Smets, Barth F.; Albrechtsen, Hans-Jørgen

    2013-01-01

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled....../m3 packed sand/h could easily be determined at 7.5 g NH4+–N/m3 packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification...

  1. Catalytic Pyrolysis of Oak via Pyroprobe and Bench Scale, Packed Bed Pyrolysis Reactors

    Science.gov (United States)

    The pyrolytic conversion of oak sawdust at 500°C in flowing He over eight proprietary catalysts is described and compared to the control bed material, quartz sand. The reactions were conducted and compared in two reactors, an analytical, ug-scale pyroprobe reactor and a bench, g-scale packed bed re...

  2. EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    Energy Technology Data Exchange (ETDEWEB)

    Rapko, Brian M.; Schonewill, Philip P.; Brown, Christopher F.; Eslinger, Paul W.; Fountain, Matthew S.; Hausmann, Tom S.; Huckaby, James L.; Hanson, Brady D.; Kurath, Dean E.; Minette, Michael J.

    2010-01-01

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, “Undemonstrated Leaching Processes” of the External Flowsheet Review Team (EFRT) issue response plan.( ) The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  3. EFRT M-12 Issue Resolution: Comparison of PEP and Bench-Scale Oxidative Leaching Results

    International Nuclear Information System (INIS)

    Pacific Northwest National Laboratory (PNNL) has been tasked by Bechtel National Inc. (BNI) on the River Protection Project-Hanford Tank Waste Treatment and Immobilization Plant (RPP-WTP) project to perform research and development activities to resolve technical issues identified for the Pretreatment Facility (PTF). The Pretreatment Engineering Platform (PEP) was designed, constructed, and operated as part of a plan to respond to issue M12, 'Undemonstrated Leaching Processes' of the External Flowsheet Review Team (EFRT) issue response plan. The PEP is a 1/4.5-scale test platform designed to simulate the WTP pretreatment caustic leaching, oxidative leaching, ultrafiltration solids concentration, and slurry washing processes. The PEP replicates the WTP leaching processes using prototypic equipment and control strategies. The PEP also includes non-prototypic ancillary equipment to support the core processing.

  4. Effect of Sludge Recycle Ratio for Improvement of Sewage Treatment, in Ghaemshahr Textile Plant, a Bench Scale Model

    Directory of Open Access Journals (Sweden)

    M. Sadeghpour

    2010-01-01

    Full Text Available The purpose of present study was to demonstrate the effect of return sludge ratio which was influenced the treatability of municipal wastewater. The fresh wastewater with identified composition was collected from the influent of a domestic plant, Ghemshar, Iran. To demonstrate the use of activated sludge process in domestic wastewater treatment plant, a bench- scale aerobic digestion tank was used for bench-scale experimental model. A cubical aeration tank and sedimentation tank was fabricated from plexi-glass. Fresh wastewater was introduced into the aerated tank and then the effluent was settled in a settling basin. Some proportional of the aged sludge was recycled to the aeration tank in order to enhance the wastewater treatment. In this experiment, results showed that 8 h hydraulic retention times (HRT was the suitable operational parameters. In this system, pH range, DO and temperature were 7.5 to 8.5, 4-6 mg/l and 22-25 C, respectively. COD removal was directly related to sludge recycle ratio. By increasing return sludge from 2.5 to 40 percent, the COD removal was increased from 70 to 95 percent. Kinetic parameters and kinetic model for COD removal of biological activated sludge system were determined.

  5. Bench scale studies: Ozonation as a potential treatment for waters contaminated with hydrocarbons or dioxins and furans

    International Nuclear Information System (INIS)

    The objective of the bench scale studies was to examine the destruction efficiency and efficacy of ozone on chemicals of concern (COC's) commonly found in contaminated ground water and rhenoformer wash water. The ground water used in these tests contained aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits. The rhenoformer wash water used in these tests contained a variety of dioxins (including 2,3,7,8-tetrachlorodibenzo-p-dioxin) and furans. Summaries are presented of the bench scale studies by describing the COCs, methodologies, test reactors, observations, and results. The summaries also detail which applications hold promise with respect to ozonation and which ones do not. Bench test results for the experiments in which aromatic petroleum hydrocarbons, chlorinated hydrocarbons, and mineral spirits where the COCs were relatively successful. Concentrations for the COCs ranging from 300 to 3,400 micrograms per liter (microg/L) were brought below levels specified for storm sewer discharge per the National Priority Discharge Elimination Systems (NPDES) permit requirements. Bench test results for the experiments in which dioxins and furans were the COCs were less promising and revealed that additional processes would have to be used in conjunction with ozonation to bring the concentration of COCs within the targeted ranges. It was realized, however, that the effectiveness and efficacy of ozonation were diminished by the presence of particulates, to which some of the dioxin and furan compounds adhered

  6. Bench-Scale Process for Low-Cost Carbon Dioxide (CO2) Capture Using a Phase-Changing Absorbent

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany; Caraher, Joel; Chen, Wei; Farnum, Rachael; Perry, Robert; Spiry, Irina; Wilson, Paul; Wood, Benjamin

    2015-03-31

    The objective of this project is to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2-capture solvent. The project will establish scalability and technical and economic feasibility of using a phase-changing CO2-capture absorbent for post-combustion capture of CO2 from coal-fired power plants with 90% capture efficiency and 95% CO2 purity at a cost of $40/tonne of CO2 captured by 2025 and a cost of <$10/tonne of CO2 captured by 2035. In the first budget period of this project, the bench-scale phase-changing CO2 capture process was designed using data and operating experience generated under a previous project (ARPA-e project DE-AR0000084). Sizing and specification of all major unit operations was completed, including detailed process and instrumentation diagrams. The system was designed to operate over a wide range of operating conditions to allow for exploration of the effect of process variables on CO2 capture performance.

  7. Textile wastewater treatment in a bench-scale anaerobic-biofilm anoxic-aerobic membrane bioreactor combined with nanofiltration.

    Science.gov (United States)

    Grilli, Selene; Piscitelli, Daniela; Mattioli, Davide; Casu, Stefania; Spagni, Alessandro

    2011-01-01

    This study evaluated the treatability of textile wastewaters in a bench-scale experimental system, comprising an anaerobic biofilter, an anoxic reactor and an aerobic membrane bioreactor (MBR). The MBR effluent was thereafter treated by a nanofiltration (NF) membrane. The proposed system was demonstrated to be effective in the treatment of the textile wastewater under the operating conditions applied in the study. The MBR system achieved a good COD (90-95%) removal; due to the presence of the anaerobic biofilter, also effective color removal was obtained (70%). The addition of the NF membrane allowed the further improvement in COD (50-80%), color (70-90%) and salt removal (60-70% as conductivity). In particular the NF treatment allowed the almost complete removal of the residual color and a reduction of the conductivity such as to achieve water quality suitable for reuse. PMID:21992723

  8. Development of a standard bench-scale cell for electrochemical studies on inert anodes. Inert Anode/Cathode Program

    Energy Technology Data Exchange (ETDEWEB)

    Windisch, C.F. Jr.; Boget, D.I.

    1986-07-01

    Objective of this work was to develop a standard bench-scale cell for performing short-term ac and dc polarization studies on inert anode candidate materials in molten cryolite. Two designs for electrochemical cells were developed and successfully evaluated in short-term experiments. Both cells consisted on the inert anode as a small cylindrical specimen partially sheathed in alumina, an Al/Al/sub 2/O/sub 3/ reference electrode, and a cryolite bath saturated in alumina. The difference between the two cells was in the design of the cathode. One cell used a bare solid metal cathode; the other used an aluminum pad similar to the Hall-Heroult configuration.

  9. Immobilized lysozyme for the continuous lysis of lactic bacteria in wine: Bench-scale fluidized-bed reactor study.

    Science.gov (United States)

    Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco

    2016-11-01

    Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. PMID:27211619

  10. Restoration of cadmium-contaminated paddy soils by washing with ferric chloride: Cd extraction mechanism and bench-scale verification.

    Science.gov (United States)

    Makino, Tomoyuki; Takano, Hiroyuki; Kamiya, Takashi; Itou, Tadashi; Sekiya, Naoki; Inahara, Makoto; Sakurai, Yasuhiro

    2008-01-01

    The ability of FeCl3 to extract Cd from three paddy soils was compared with that of various irons, manganese, and zinc salts to elucidate the extraction mechanism. Manganese, zinc and iron salts (including FeCl3) extracted 4-41%, 8-44% and 24-66% of total Cd, respectively. This difference reflected the pH of the extraction solution, indicating that the primary mechanism of Cd extraction by FeCl3 is proton release coupled with hydroxide generation, as iron hydroxides are insoluble. Washing with FeCl3 led to the formation of Cd-chloride complexes, enhancing Cd extraction from the soils. FeCl3 effectively extracted Cd from all of the three soils compared to HCl that is a conventional washing chemical, when the concentrations of the two washing chemicals were between 15 and 60mM(c) (at above extraction pH 2.4), while the corresponding extraction pH of FeCl3 was slightly higher than HCl. As HCl is the strong acid of complete dissociation, if excess amount of HCl was added to soil, it is possible to give the dissolution of clay minerals in soils. In contrast, proton release from FeCl3 is controlled by the chemical equilibrium of hydroxide formation. While soil fertility properties were affected by a bench-scale soil washing with 45mM(c) FeCl3, adverse effects were not crucial and could be corrected. The bench-scale test confirmed the effectiveness of FeCl3 for removal of soil Cd. The washing had no negative effect on rice yield and lowered the Cd concentration of rice grain and rice straw in a pot experiment. PMID:17919681

  11. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    International Nuclear Information System (INIS)

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min-1 (120 gal min-1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater

  12. A comparison of large-scale electron beam and bench-scale 60Co irradiations of simulated aqueous waste streams

    Science.gov (United States)

    Kurucz, Charles N.; Waite, Thomas D.; Otaño, Suzana E.; Cooper, William J.; Nickelsen, Michael G.

    2002-11-01

    The effectiveness of using high energy electron beam irradiation for the removal of toxic organic chemicals from water and wastewater has been demonstrated by commercial-scale experiments conducted at the Electron Beam Research Facility (EBRF) located in Miami, Florida and elsewhere. The EBRF treats various waste and water streams up to 450 l min -1 (120 gal min -1) with doses up to 8 kilogray (kGy). Many experiments have been conducted by injecting toxic organic compounds into various plant feed streams and measuring the concentrations of compound(s) before and after exposure to the electron beam at various doses. Extensive experimentation has also been performed by dissolving selected chemicals in 22,700 l (6000 gal) tank trucks of potable water to simulate contaminated groundwater, and pumping the resulting solutions through the electron beam. These large-scale experiments, although necessary to demonstrate the commercial viability of the process, require a great deal of time and effort. This paper compares the results of large-scale electron beam irradiations to those obtained from bench-scale irradiations using gamma rays generated by a 60Co source. Dose constants from exponential contaminant removal models are found to depend on the source of radiation and initial contaminant concentration. Possible reasons for observed differences such as a dose rate effect are discussed. Models for estimating electron beam dose constants from bench-scale gamma experiments are presented. Data used to compare the removal of organic compounds using gamma irradiation and electron beam irradiation are taken from the literature and a series of experiments designed to examine the effects of pH, the presence of turbidity, and initial concentration on the removal of various organic compounds (benzene, toluene, phenol, PCE, TCE and chloroform) from simulated groundwater.

  13. Crucible melts and bench-scale ISV [in situ vitrification] tests on simulated wastes in INEL [Idaho National Engineering Laboratory] soils

    International Nuclear Information System (INIS)

    This report summarizes the results of eight crucible melt tests and three bench-scale in situ vitrification (ISV) test that were performed on simulated metals/soils mixtures containing actual site soils from the Idaho National Engineering Laboratory (INEL). The crucible melt and bench-scale ISV tests are a part of efforts by the Pacific Northwest Laboratory (PNL) to assist the INEL in conducting a treatability study on ISV for application to the mixed waste buried at the INEL subsurface disposal area (SDA). The crucible melt tests were performed to evaluate the effect of various chemical additives and metal oxidation techniques on soil melting temperatures, melt viscosities, metals versus electrode oxidation potentials, and metals incorporation in the glass. The bench-scale ISV tests were performed to supplement the existing ISV data base with information on certain hazardous materials that have not been adequately evaluated in previous ISV tests. These materials included five EP toxicity metals, various volatile organic materials fixed in a cementitious matrix [including carbon tetrachloride (CCl4), trichloroethylene (TCE), and tetrachloroethylene (PCE)], and asbestos. In addition, the bench-scale test were used to evaluated the effect of the proposed chemical additive on ISV processing performance and product quality. 8 refs., 24 figs., 19 tabs

  14. Aerosol entrainment from a sparged non-Newtonian slurry.

    Science.gov (United States)

    Fritz, Brad G

    2006-08-01

    Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model. PMID:16933643

  15. Suspended-slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-22

    An apparatus for generating a large volume of gas from a liquid stream is disclosed. The apparatus includes a first channel through which the liquid stream passes. The apparatus also includes a layer of catalyst particles suspended in a solid slurry for generating gas from the liquid stream. The apparatus further includes a second channel through which a mixture of converted liquid and generated gas passes. A heat exchange channel heats the liquid stream. A wicking structure located in the second channel separates the gas generated from the converted liquid.

  16. Experimental investigations on temperature distributions of flame sections in a bench-scale opposed multi-burner gasifier

    International Nuclear Information System (INIS)

    Based on a flame image processing technique, the temperature distributions of flame sections in a bench-scale opposed multi-burner (OMB) gasifier is visualized. With the assumption of the gray radiation, a charge-coupled device camera installed on the top of the gasifier is used to capture the approximately monochromatic radiant images under the visible wavelengths. To reduce the errors, the camera is calibrated by a blackbody cavity. By using the two-color method, the radiant intensity captured by the camera is calculated from the pair of red/green with reference to the calibration data. Based on the assumption of rotational symmetry, the temperature distributions of flame sections are reconstructed by the Filtered back-projection method. The results show that the temperature distributions of flame sections are consistent with the flame structure. The flame temperature distribution at the burner plane ranges from 1700 to 2100 deg. C. The section is farther from the burner plane, the temperature is lower. The relative errors between the calculated temperatures and the measured temperatures by a B-type thermocouple are no greater than ±6.4%. The research results establish the foundation for understanding the flame internal structure and temperature distribution in the OMB gasifier

  17. Dynamics of bacterial populations during bench-scale bioremediation of oily seawater and desert soil bioaugmented with coastal microbial mats.

    Science.gov (United States)

    Ali, Nidaa; Dashti, Narjes; Salamah, Samar; Sorkhoh, Naser; Al-Awadhi, Husain; Radwan, Samir

    2016-03-01

    This study describes a bench-scale attempt to bioremediate Kuwaiti, oily water and soil samples through bioaugmentation with coastal microbial mats rich in hydrocarbonoclastic bacterioflora. Seawater and desert soil samples were artificially polluted with 1% weathered oil, and bioaugmented with microbial mat suspensions. Oil removal and microbial community dynamics were monitored. In batch cultures, oil removal was more effective in soil than in seawater. Hydrocarbonoclastic bacteria associated with mat samples colonized soil more readily than seawater. The predominant oil degrading bacterium in seawater batches was the autochthonous seawater species Marinobacter hydrocarbonoclasticus. The main oil degraders in the inoculated soil samples, on the other hand, were a mixture of the autochthonous mat and desert soil bacteria; Xanthobacter tagetidis, Pseudomonas geniculata, Olivibacter ginsengisoli and others. More bacterial diversity prevailed in seawater during continuous than batch bioremediation. Out of seven hydrocarbonoclastic bacterial species isolated from those cultures, only one, Mycobacterium chlorophenolicum, was of mat origin. This result too confirms that most of the autochthonous mat bacteria failed to colonize seawater. Also culture-independent analysis of seawater from continuous cultures revealed high-bacterial diversity. Many of the bacteria belonged to the Alphaproteobacteria, Flavobacteria and Gammaproteobacteria, and were hydrocarbonoclastic. Optimal biostimulation practices for continuous culture bioremediation of seawater via mat bioaugmentation were adding the highest possible oil concentration as one lot in the beginning of bioremediation, addition of vitamins, and slowing down the seawater flow rate. PMID:26751253

  18. Bench-scale column experiments to study the containment of Cr(VI) in confined aquifers by bio-transformation.

    Science.gov (United States)

    Shashidhar, T; Philip, Ligy; Murty Bhallamudi, S

    2006-04-17

    Bench-scale soil column experiments were conducted to study the effectiveness of Cr(VI) containment in confined aquifers using in situ bio-transformation. Batch adsorption studies were carried out to estimate the adsorption capacities of two different soils for Cr(VI) and Cr(III). Bio-kinetic parameters were evaluated for the enriched microbial system. The inhibition constant, evaluated using Monod's inhibition model, was found to be 11.46 mg/L of Cr(VI). Transport studies indicated that it would not be possible to contain Cr(VI) by adsorption alone. Transport and bio-transformation studies indicated that the pore velocity and the initial bio-mass concentration significantly affect the containment process. In situ bio-remediation is effective in the case of silty aquifers. Cr(VI) concentration of 25 mg/L was effectively contained within 60 cm of a confined silty aquifer. Cr(VI) containment could be achieved in sandy aquifers when the pore velocity was very low and the initial augmented bio-mass was high. A bio-barrier of approximately one meter width would be able to contain Cr(VI) if the initial Cr(VI) concentration is as much as 25 mg/L. PMID:16263213

  19. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    International Nuclear Information System (INIS)

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs

  20. Design of a mixing system for simulated high-level nuclear waste melter feed slurries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, M.E.; McCarthy, D.; Muhlstein, K.D.

    1986-03-01

    The Nuclear Waste Treatment Program development program consists of coordinated nonradioactive and radioactive testing combined with numerical modeling of the process to provide a complete basis for design and operation of a vitrification facility. The radioactive demonstration tests of equipment and processes are conducted before incorporation in radioactive pilot-scale melter systems for final demonstration. The mixing system evaluation described in this report was conducted as part of the nonradioactive testing. The format of this report follows the sequence in which the design of a large-scale mixing system is determined. The initial program activity was concerned with gaining an understanding of the theoretical foundation of non-Newtonian mixing systems. Section 3 of this report describes the classical rheological models that are used to describe non-Newtonian mixing systems. Since the results obtained here are only valid for the slurries utilized, Section 4, Preparation of Simulated Hanford and West Valley Slurries, describes how the slurries were prepared. The laboratory-scale viscometric and physical property information is summarized in Section 5, Laboratory Rheological Evaluations. The bench-scale mixing evaluations conducted to define the effects of the independent variables described above on the degree of mixing achieved with each slurry are described in Section 6. Bench-scale results are scaled-up to establish engineering design requirements for the full-scale mixing system in Section 7. 24 refs., 37 figs., 44 tabs.

  1. Improvement of liquefaction solvent. Increase of light oil yield with a reduction in catalyst addition; Ekika yozai no kairyo kenkyu. Sekitan ekikayu no keishitsuka to shokubai tenkaryo no teigen

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, N.; Yasumuro, M.; Sato, K.; Komatsu, N.; Okui, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    For developing coal liquefaction processes, it is an important problem to improve the light oil yield with increased oil yield. It was previously reported that distillate mainly containing lighter fraction can be produced with high oil yield by reducing the iron/sulfur catalyst addition in slurry, by recycling gas in the process operation, by utilizing these effects, and by using heavy oil as recycling solvent. In this study, the maximum distillate yield of Victorian brown coal was investigated through continuous liquefaction using a bench scale unit. In addition, operation conditions for obtaining sufficient oil yield were investigated under the reduced catalyst addition into one-third. Consequently, it was confirmed that the maximum content of lighter fraction in distillate product was obtained with reduced catalyst addition by using heavy oil as recycling solvent, by adopting new catalyst, and by utilizing effects of CLB recycling and gas recycling in maximum. It was also revealed that lighter distillate can be produced compared with the oil product obtained by recycling conventional solvent. 3 refs., 6 figs., 2 tabs.

  2. Bench-scale testing of on-line control of column flotation using a novel analyzer. Second quarterly technical progress report, January 1, 1993--March 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-16

    This document contains the second quarterly technical progress report for PTI`s Bench-Scale Testing Project of a circuit integrating PTI`s KEN-FLOTE{trademark} Column Flotation Technology and PTI`s On-Line Quality Monitor and Control System. The twelve-month project involves installation and testing of a 200--300 lb/hr. bench-scale testing circuit at PETC`s Coal Preparation Process Research Facility (CPPRF) for two bituminous coals (Upper Freeport and Pittsburgh No. 8 Seam Raw Coals). The project schedule timeline by task series for the twelve month project, as it was laid out in the initial Project Work Plan. At the present time, all tasks are progressing according to schedule with the exception of the Task 800 Circuit Testing and Sample Prep and Task 1000 Circuit Decommissioning, which have slipped approximately five weeks due to delays incurred within in the project.

  3. Effect of temperature downshifts on a bench-scale hybrid A/O system: Process performance and microbial community dynamics.

    Science.gov (United States)

    Zhou, Hexi; Li, Xiangkun; Chu, Zhaorui; Zhang, Jie

    2016-06-01

    Effect of temperature downshifts on process performance and bacterial community dynamics was investigated in a bench-scale hybrid A/O system treating real domestic wastewater. Results showed that the average COD removal in this system reached 90.5%, 89.1% and 90.3% for Run 1 (25 °C), Run 2 (15 °C) and Run 3 (10 °C), respectively, and variations in temperature barely affected the effluent COD concentration. The average removal efficiencies of NH4(+)-N were 98.4%, 97.8%, 95.7%, and that of TN were 77.1%, 61.8%, 72% at 25 °C, 15 °C and 10 °C, respectively. Although the hybrid system was subjected to low temperature, this process effectively removed NH4(+)-N and TN even at 10 °C with the average effluent concentrations of 2.4 mg/L and 14.3 mg/L, respectively. Results from high-throughput sequencing analysis revealed that when the operation temperature decreased from 25 °C to 10 °C, the richness and diversity indexes of the system decreased in the sludge samples, while underwent an increase in the biofilm samples. Furthermore, the major heterotrophic bacteria consisted of Lewinella, Lutimonas, Chitinophaga and Fluviicola at 10 °C, which could be central to effective COD removal at low temperature. Additionally, Azospira, one denitrifying-related genus increased from 0.4% to 4.45% in the biofilm samples, with a stable TN removal in response to temperature downshifts. Nitrosomonas and Nitrospira increased significantly in the biofilm samples, implying that the attached biofilm contributed to more nitrification at low temperature. PMID:27035388

  4. Archaeal and bacterial community dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Garcia-Ruiz, Maria Jesus; Rodriguez-Sanchez, Alejandro; Osorio, Francisco; Gonzalez-Lopez, Jesus

    2016-07-01

    Two-stage technologies have been developed for anaerobic digestion of waste-activated sludge. In this study, the archaeal and bacterial community structure dynamics and bioprocess performance of a bench-scale two-stage anaerobic digester treating urban sewage sludge have been studied by the means of high-throughput sequencing techniques and physicochemical parameters such as pH, dried sludge, volatile dried sludge, acid concentration, alkalinity, and biogas generation. The coupled analyses of archaeal and bacterial communities and physicochemical parameters showed a direct relationship between archaeal and bacterial populations and bioprocess performance during start-up and working operation of a two-stage anaerobic digester. Moreover, results demonstrated that archaeal and bacterial community structure was affected by changes in the acid/alkalinity ratio in the bioprocess. Thus, a predominance of the acetoclastic methanogen Methanosaeta was observed in the methanogenic bioreactor at high-value acid/alkaline ratio, while a predominance of Methanomassilicoccaeceae archaea and Methanoculleus genus was observed in the methanogenic bioreactor at low-value acid/alkaline ratio. Biodiversity tag-iTag sequencing studies showed that methanogenic archaea can be also detected in the acidogenic bioreactor, although its biological activity was decreased after 4 months of operation as supported by physicochemical analyses. Also, studies of the VFA producers and VFA consumers microbial populations showed as these microbiota were directly affected by the physicochemical parameters generated in the bioreactors. We suggest that the results obtained in our study could be useful for future implementations of two-stage anaerobic digestion processes at both bench- and full-scale. PMID:26940050

  5. Destruction of hazardous and mixed wastes using mediated electrochemical oxidation in a Ag(II)HNO3 bench scale system

    International Nuclear Information System (INIS)

    Mediated Electrochemical Oxidation (MEO) is a promising technology for the destruction of organic containing wastes and the remediation of mixed wastes containing transuranic components. The combination of a powerful oxidant and an acid solution allows the conversion of nearly all organics, whether present in hazardous or in mixed waste, to carbon dioxide. Insoluble transuranics are dissolved in this process and may be recovered by separation and precipitation.The MEO technique offers several advantages which are inherent in the system. First, the oxidation/dissolution processes are accomplished at near ambient pressures and temperatures (30-70 degrees C). Second, all waste stream components and oxidation products (with the exception of evolved gases) are contained in an aqueous environment. This electrolyte acts as an accumulator for inorganics which were present in the original waste stream, and the large volume of electrolyte provides a thermal buffer for the energy released during oxidation of the organics. Third, the generation of secondary waste is minimal, as the process needs no additional reagents. Finally, the entire process can be shut down by simply turning off the power, affording a level of control unavailable in some other techniques.Numerous groups, both in the United States and Europe, have made substantial progress in the last decade towards understanding the mechanistic pathways, kinetics, and engineering aspects of the process. At Lawrence Livermore National Laboratory, substantial contributions have been made to this knowledge base in these areas and others. Conceptual design and engineering development have been completed for a pilot plant-scale MEO system, and numerous data have been gathered on the efficacy of the process for a wide variety of anticipated waste components. This presentation will review the data collected at LLNL for a bench scale system based primarily on the use of a Ag(II) mediator in a nitric acid electrolyte; results

  6. Investigations into NOx emissions and burnout for coals with high ash content in a bench scale test facility

    Energy Technology Data Exchange (ETDEWEB)

    Greul, U.; Kluger, F.; Peter, G.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. fuer Verfahrenstechnik und Dampfkesselwesen

    2000-07-01

    At the Stuttgart University's Institute of Process Engineering and Power Plant Technology (IVD) investigations of in-furnace DeNOx technologies with regard to their NOx reduction efficiency are carried out using an electrically heated bench-scale test facility to evaluate the effect of different process parameters independently. The DeNOx technologies of air and fuel staging have been demonstrated to be effective control techniques to reduce NOx from stationary sources. For a wide range of brown and hard coals from Europe, South Africa and Australia test runs with air-staged combustion have been carried out. The ash content of the hard coals used was in the range between 8 and 28%. The investigated parameters were temperature (1000-1300{degree}C), stoichiometry (1.25-0.55), and residence time (1-6 s) in the fuel rich primary zone. With increasing temperatures and residence times in fuel-rich conditions in air-staged combustion NOx emissions below 300 mg/m{sup 3} can be achieved even with hard coals. For a few brown coals NOx values lower than 100 mg/m{sup 3} are possible. Dependent on the coal rank individual parameters are more important than others. For low and medium volatile hard coals the increasing of the residence time is more effective than higher temperature or lower air ratios in the primary zone. However, with high volatile hard coal or brown coal as primary fuel the influence of temperature and stoichiometry in the primary zone plays a key role for NOx reduction effectiveness. The burnout led to restrictions in large scale applications for air-staged combustion especially with hard coals as primary fuel. Investigations at different primary air ratios and temperatures show the effect of these parameters on the burnout values along the course of combustion. 7 refs., 14 figs., 2 tabs.

  7. Electrical resistivity tomography as a tool for monitoring CO2 injection: Demonstration of leakage detection during bench-scale experiments

    Science.gov (United States)

    Breen, S. J.; Carrigan, C. R.; LaBrecque, D. J.; Detwiler, R. L.

    2011-12-01

    Field-scale studies have shown Electrical Resistivity Tomography (ERT) to be an effective tool for imaging resistivity anomalies and monitoring infiltration events in the near subsurface. ERT also shows potential for monitoring CO2 injections, despite deployment challenges in the deep subsurface. We present results from analog bench-scale experiments aimed at evaluating the ability of ERT to quantify the volume and spatial distribution of a gas injected into a brine-saturated porous medium. We injected measured volumes of gas into translucent chambers filled with quartz sand, lined with electrodes, and saturated with a low resistivity salt solution. Between injections, a CCD camera captured high-resolution images, and an ERT data acquisition system scanned the chamber. Using the CCD images, quantitative visualization techniques resulted in high-resolution measurements of the spatial distribution and saturation of the injected gas. Direct comparison to inverted resistivity fields then provided a quantitative measure of the ability of ERT to estimate the total volume of injected gas and its spatial distribution within the chamber. We present results from two experiments designed to represent different injection scenarios: (A) low injection rate and strong capillary barrier, and (B) high injection rate and weaker capillary barrier. Results show that ERT provides good estimates of the shape, size and location of the primary gas plume, but underestimates gas content and does not detect thin pathways of gas from the injection port or within the overlying capillary barrier. However, ERT measurements did detect a change in saturation within the primary plume caused by leakage through the capillary barrier in (B), demonstrating the potential utility of ERT as a leakage-monitoring tool. Repeated ERT scans during our experiments led to degradation in data quality that corresponded with an increase in measured contact resistance. Decreased data quality over time is clearly a

  8. Investigation of in situ and ex situ catalytic pyrolysis of miscanthus × giganteus using a PyGC-MS microsystem and comparison with a bench-scale spouted-bed reactor.

    Science.gov (United States)

    Gamliel, David P; Du, Shoucheng; Bollas, George M; Valla, Julia A

    2015-09-01

    The objective of the present work is to explore the particularities of a micro-scale experimental apparatus with regards to the study of catalytic fast pyrolysis (CFP) of biomass. In situ and ex situ CFP of miscanthus × giganteus were performed with ZSM-5 catalyst. Higher permanent gas yields and higher selectivity to aromatics in the bio-oil were observed from ex situ CFP, but higher bio-oil yields were recorded during in situ CFP. Solid yields were comparable across both configurations. The results from in situ and ex situ PyGC were also compared with the product yields and selectivities obtained using a bench-scale, spouted-bed reactor. The bio-oil composition and overall product distribution for the PyGC ex situ configuration more closely resembled that of the spouted-bed reactor. The coke/char from in situ CFP in the PyGC was very similar in nature to that obtained from the spouted-bed reactor. PMID:25997007

  9. Silver doped catalysts for treatment of exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Park, Paul Worn (Peoria, IL); Hester, Virgil Raymond (Edelstein, IL); Ragle, Christie Susan (Havana, IL); Boyer, Carrie L. (Shiloh, IL)

    2009-06-02

    A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.

  10. Numerical simulation of competitive aerobic / anaerobic hydrocarbon plume biodegradation in two-dimensional bench scale lab-experiments

    Science.gov (United States)

    Beyer, C.; Ballarini, E.; Bauer, R.; Griebler, C.; Bauer, S.

    2011-12-01

    The biodegradation of oxidizable hydrocarbon contaminants in the subsurface requires the presence of compatible microbial communities as well as sufficient amounts of electron acceptors and nutrients. In this context, transverse mixing, driven by dispersion and diffusion, is one of the main mechanisms governing the availability of dissolved electron acceptors at a hydrocarbon plume fringe. Aerobic and anaerobic biodegradation of hydrocarbons limited by transverse mixing has been studied experimentally in 2D bench-scale flow-through tanks, filled with a saturated porous medium. Flow of groundwater through the tanks was induced by pumping water at one side through injection ports, and simultaneously extracting water at the other side of the tank. An ethylbenzene plume was established by injection through the central inlet port. A mixture of unlabeled and fully deuterium-labeled isotopomers was used in order to investigate the spatial distribution of degradation processes via monitoring of compound-specific stable isotope fractionation. In the first phase of the experiment, aerobic biodegradation was studied. For this purpose, the tank was recharged with water containing oxygen as a dissolved electron acceptor and the aerobic strain Pseudomonas putida F1 was inoculated. Later, nitrate was added to the recharge water as an additional electron acceptor and the denitrifying strain Aromatoleum aromaticum EbN1 was amended to study competitive aerobic/anaerobic biodegradation. A numerical reactive transport model of the experiment was set up for a model based interpretation of the observed degradation patterns. In a sensitivity analysis, the influence of the relevant hydrodynamic parameters on the observable distributions of ethylbenzene isotopomers, oxygen and nitrate was studied. Subsequent model calibration allowed for a good agreement with ethylbenzene concentrations measured at the tank outlet ports as well as oxygen concentrations, which were measured at several

  11. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.

    Science.gov (United States)

    Kim, Heonki; Ahn, Dayoung; Annable, Michael D

    2016-01-01

    The effects of controlled air flow paths during air sparging on the removal of volatile organic compounds were examined in this study using a two-dimensional bench-scale physical model. An aqueous solution of sodium carboxymethylcellulose (SCMC), which is a thickener, was used to increase the resistance of water to displacement by injected air in a region around the targeted zone. At the same time, an aqueous solution of sodium dodecylbenzene sulfonate (SDBS), which is a surfactant, was used to reduce the air entry pressure to enhance the air flow through the targeted region. Trichloroethene (TCE), dissolved in water, was used to represent an aqueous phase volatile organic compound (VOC). A binary mixture of perchloroethene (PCE) and n-hexane was also used as a nonaqeous phase liquid (NAPL). Controlled air flow through the source zone, achieved by emplacing a high viscosity aqueous solution into a region surrounding the TCE-impacted zone, resulted in increased TCE removal from 23.0% (control) to 38.2% during a 2.5h period. When the air flow was focused on the targeted source zone of aqueous phase TCE (by decreasing the surface tension within the source zone and its vicinity by 28 dyn/cm, no SCMC applied), the mass removal of TCE was enhanced to 41.3% during the same time period. With SCMC and SDBS applied simultaneously around and beneath a NAPL source zone, respectively, the NAPL components were found to be removed more effectively over a period of 8.2h than the sparging experiment with no additives applied; 84.6% of PCE and 94.0% of n-hexane were removed for the controlled air flow path experiments (with both SCMC and SDBS applied) compared to 52.7% (PCE) and 74.0% (n-hexane) removal for the control experiment (no additives applied). Based on the experimental observations made in this study, applying a viscous aqueous solution around the source zone and a surfactant solution in and near the source zone, the air flow was focused through the targeted contaminant

  12. Permeable Reactive Biobarriers for In Situ Cr(VI) Reduction: Bench Scale Tests Using Cellulomonas sp. Strain ES6

    Energy Technology Data Exchange (ETDEWEB)

    Sridhar Viamajala; Brent M. Peyton; Robin Gerlach; Vaideeswaran; William A. Apel; James N. Petersen

    2008-12-01

    Chromate (Cr(VI)) reduction studies were performed in bench scale flow columns using the fermentative subsurface isolate Cellulomonas sp. strain ES6. In these tests, columns packed with either quartz sand or hydrous ferric oxide (HFO)-coated quartz sand, were inoculated with strain ES6 and fed nutrients to stimulate growth before nutrient-free Cr(VI) solutions were injected. Results show that in columns containing quartz sand, a continuous inflow of 2 mg/L Cr(VI) was reduced to below detection limits in the effluent for durations of up to 5.7 residence times after nutrient injection was discontinued proving the ability of strain ES6 to reduce chromate in the absence of an external electron donor. In the HFO-containing columns, Cr(VI) reduction was significantly prolonged and effluent Cr(VI) concentrations remained below detectable levels for periods of up to 66 residence times after nutrient injection was discontinued. Fe was detected in the effluent of the HFO-containing columns throughout the period of Cr(VI) removal indicating that the insoluble Fe(III) bearing solids were being continuously reduced to form soluble Fe(II) resulting in prolonged abiotic Cr(VI) reduction. Thus, growth of Cellulomonas within the soil columns resulted in formation of permeable reactive barriers that could reduce Cr(VI) and Fe(III) for extended periods even in the absence of external electron donors. Other bioremediation systems employing Fe(II)-mediated reactions require a continuous presence of external nutrients to regenerate Fe(II). After depletion of nutrients, contaminant removal within these systems occurs by reaction with surface-associated Fe(II) that can rapidly become inaccessible due to formation of crystalline Fe-minerals or other precipitates. The ability of fermentative organisms like Cellulomonas to reduce metals without continuous nutrient supply in the subsurface offers a viable and economical alternative technology for in situ remediation of Cr

  13. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments

    Science.gov (United States)

    Kim, Heonki; Ahn, Dayoung; Annable, Michael D.

    2016-01-01

    The effects of controlled air flow paths during air sparging on the removal of volatile organic compounds were examined in this study using a two-dimensional bench-scale physical model. An aqueous solution of sodium carboxymethylcellulose (SCMC), which is a thickener, was used to increase the resistance of water to displacement by injected air in a region around the targeted zone. At the same time, an aqueous solution of sodium dodecylbenzene sulfonate (SDBS), which is a surfactant, was used to reduce the air entry pressure to enhance the air flow through the targeted region. Trichloroethene (TCE), dissolved in water, was used to represent an aqueous phase volatile organic compound (VOC). A binary mixture of perchloroethene (PCE) and n-hexane was also used as a nonaqeous phase liquid (NAPL). Controlled air flow through the source zone, achieved by emplacing a high viscosity aqueous solution into a region surrounding the TCE-impacted zone, resulted in increased TCE removal from 23.0% (control) to 38.2% during a 2.5 h period. When the air flow was focused on the targeted source zone of aqueous phase TCE (by decreasing the surface tension within the source zone and its vicinity by 28 dyn/cm, no SCMC applied), the mass removal of TCE was enhanced to 41.3% during the same time period. With SCMC and SDBS applied simultaneously around and beneath a NAPL source zone, respectively, the NAPL components were found to be removed more effectively over a period of 8.2 h than the sparging experiment with no additives applied; 84.6% of PCE and 94.0% of n-hexane were removed for the controlled air flow path experiments (with both SCMC and SDBS applied) compared to 52.7% (PCE) and 74.0% (n-hexane) removal for the control experiment (no additives applied). Based on the experimental observations made in this study, applying a viscous aqueous solution around the source zone and a surfactant solution in and near the source zone, the air flow was focused through the targeted contaminant

  14. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    Energy Technology Data Exchange (ETDEWEB)

    Presto, A.A.; Granite, E.J

    2008-07-01

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  15. Preliminary study on unsupported nickel naphthenate catalyst for heavy oil slurry-bed hydrocracking%重油悬浮床加氢裂化非负载型环烷酸镍催化剂的初步研究

    Institute of Scientific and Technical Information of China (English)

    崔敏; 李传; 尚猛; 乔鹏; 邓文安

    2011-01-01

    采用皂化反应和复分解反应合成了适用于重油悬浮床加氢裂化的非负载型环烷酸镍催化剂,并通过光学显微镜、激光粒度仪、XRD和SEM对该催化剂硫化后的性质进行了表征.结果表明,环烷酸和NaOH摩尔配比为1:0.995、皂化反应温度为95℃,NiSO4溶液浓度为10%、复分解反应时间为2h,复分解反应温度为90℃时,合成的催化剂中镍金属含量最高.通过釜式反应评价了该催化剂在委内瑞拉380号燃料油悬浮床加氢裂化反应中的催化效果,结果表明,该催化剂具有较好的抑焦效果.%Unsupported nickel naphthenate catalyst which was good for slurry-bed hydrocracking of heavy oil was prepared through saponification and double-decomposition reactions, and the properties of the nickel naphthenate catalyst sulfurized were characterized using optical microscopy, laser hondrometer, X-ray diffraction ( XRD) and scanning electron microscopy (SEM). The results showed that the metal content was highest when the mol ratio of naphthenic acid and NaOH was 1 = 0. 995, saponification temperature was 95 t, the mass content of NiSO4 solution was 10% , double-decomposition time was 2 hours and double-decomposition temperature was 90 t. The catalytic effects of the unsupported nickel naphthenate in the slurry-bed hydro-cracking of Venezuela 380 fuel oil were studied using autoclave, and the results demonstrated that the catalyst had a good performance of inhibiting coke formation.

  16. EVALUATION OF SCR CATALYSTS FOR COMBINED CONTROL OF NOX AND MERCURY

    Science.gov (United States)

    The report documents two-task, bench- and pilot-scale research on the effect of selective catalytic reduction (SCR) catalysts on mercury speciation in Illinois and Powder River Basin (PRB) coal combustion flue gases. In task I, a bench-scale reactor was used to study the oxidatio...

  17. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater: From bench scale reactor to full scale wastewater treatment plant.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Sun, Qingliang; Fu, Liya; Xi, Hongbo; Yu, Yin; Yu, Ruozhen

    2016-05-15

    A hydrolysis acidification (HA)-anoxic-oxic (A/O) process was adopted to treat a petrochemical wastewater. The operation optimization was carried out firstly by a bench scale experimental reactor. Then a full scale petrochemical wastewater treatment plant (PCWWTP, 6500 m(3) h(-1)) was operated with the same parameters. The results showed that the BOD5/COD of the wastewater increased from 0.30 to 0.43 by HA. The effluent COD was 54.4 mg L(-1) for bench scale reactor and 60.9 mg L(-1) for PCWWTP when the influent COD was about 480 mg L(-1) on optimized conditions. The organics measured by gas chromatography-mass spectrometry (GC-MS) reduced obviously and the total concentration of the 5 organics (1,3-dioxolane, 2-pentanone, ethylbenzene, 2-chloromethyl-1,3-dioxolane and indene) detected in the effluent was only 0.24 mg L(-1). There was no obvious toxicity of the effluent. However, low acute toxicity of the effluent could be detected by the luminescent bacteria assay, indicating the advanced treatment is needed. The clone library profiling analysis showed that the dominant bacteria in the system were Acidobacteria, Proteobacteria and Bacteriodetes. HA-A/O process is suitable for the petrochemical wastewater treatment. PMID:26894292

  18. In Situ and ex Situ Catalytic Pyrolysis of Pine in a Bench-Scale Fluidized Bed Reactor System

    Energy Technology Data Exchange (ETDEWEB)

    Iisa, Kristiina; French, Richard J.; Orton, Kellene A.; Yung, Matthew M.; Johnson, David K.; ten Dam, Jeroen; Watson, Michael J.; Nimlos, Mark R.

    2016-03-17

    In situ and ex situ catalytic pyrolysis were compared in a system with two 2-in. bubbling fluidized bed reactors. Pine was pyrolyzed in the system with a catalyst, HZSM-5 with a silica-to-alumina ratio of 30, placed either in the first (pyrolysis) reactor or the second (upgrading) reactor. Both the pyrolysis and upgrading temperatures were 500 degrees C, and the weight hourly space velocity was 1.1 h-1. Five catalytic cycles were completed in each experiment. The catalytic cycles were continued until oxygenates in the vapors became dominant. The catalyst was then oxidized, after which a new catalytic cycle was begun. The in situ configuration gave slightly higher oil yield but also higher oxygen content than the ex situ configuration, which indicates that the catalyst deactivated faster in the in situ configuration than the ex situ configuration. Analysis of the spent catalysts confirmed higher accumulation of metals in the in situ experiment. In all experiments, the organic oil mass yields varied between 14 and 17% and the carbon efficiencies between 20 and 25%. The organic oxygen concentrations in the oils were 16-18%, which represented a 45% reduction compared to corresponding noncatalytic pyrolysis oils prepared in the same fluidized bed reactor system. GC/MS analysis showed the oils to contain one- to four-ring aromatic hydrocarbons and a variety of oxygenates (phenols, furans, benzofurans, methoxyphenols, naphthalenols, indenols). High fractions of oxygen were rejected as water, CO, and CO2, which indicates the importance of dehydration, decarbonylation, and decarboxylation reactions. Light gases were the major sources of carbon losses, followed by char and coke.

  19. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    Science.gov (United States)

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  20. Determination and modeling of the influence of the fluid-dynamics in hydro-treating bench scale plants

    Energy Technology Data Exchange (ETDEWEB)

    Burkhardt, T.

    1999-09-16

    At an industrial scale, the hydro-treating of oil fractions is carried out in multiphase fixed bed reactors. The oil and hydrogen cross the catalyst bed, usually in co-current downflow. Since the product specifications are steadily becoming more severe, the testing of new catalysts and of modified operating conditions in pilot plants becomes increasingly important. Although these pilot plants are frequently by a factor of 100 000 smaller than the industrial units, they still have to allow the up-scaling to industrial units. In the literature relatively low conversion degrees in pilot plants are frequently reported, especially in downflow. The significantly lower fluid velocities in pilot plants seem to be responsible for such differences, as the influence of fluid-dynamic non-idealities and of the extra-particle mass transfer phenomena increases with a decrease of the fluid velocities. In the present work, the influence of important fluid-dynamic non-idealities on the hydro-treating of gas oil fractions in pilot plants was examined. This was done on the one hand in experiments with different pilot plants and on the other hand by simulations with an especially developed multiphase model. The phenomena were considered as well in an isolated manner. In order to examine any interactions with the chemical reactions, they were also studied in a reactive system. This methodology was applied to the phenomena, 'axial dispersion'and 'gas-liquid mass transfer'. (author)

  1. Ruthenium Modification on Mn and Zr-Modified Co/SiO2 Catalysts for Slurry-Phase Fischer-Tropsch Synthesis

    Directory of Open Access Journals (Sweden)

    Tomohisa Miyazawa

    2015-01-01

    Full Text Available The addition of Ru to Mn and Zr-modified Co/SiO2 catalysts, while applying different preparation orders and loading amounts, was investigated as a means of enhancing the Fischer-Tropsch synthesis reaction. The coimpregnation of Zr/SiO2 with Co, Mn and Ru gave the most attractive catalytic properties. This can be attributed to the higher dispersion of Co metal resulting from the coimpregnation of Co and Mn as well as enhanced reducibility due to the presence of Ru. The addition of a moderate amount of Ru together with the appropriate order of addition affected both the Co reducibility and the catalytic activity, primarily because of increased reducibility. The addition of even 0.1 wt.% Ru resulted in an obvious enhancement of Fischer-Tropsch synthesis activity.

  2. Alkali resistivity of Cu based selective catalytic reduction catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Jensen, Anker Degn; Riisager, Anders;

    2012-01-01

    The deactivation of V2O5–WO3–TiO2, Cu–HZSM5 and Cu–HMOR plate type monolithic catalysts was investigated when exposed to KCl aerosols in a bench-scale reactor. Fresh and exposed catalysts were characterized by selective catalytic reduction (SCR) activity measurements, scanning electron microscope...... catalysts revealed that the potassium salt not only deposited on the catalyst surface, but also penetrated into the catalyst wall. Thus, the K/M ratio (M = V or Cu) was high on V2O5–WO3–TiO2 catalyst and comparatively less on Cu–HZSM5 and Cu–HMOR catalysts. NH3-TPD revealed that the KCl exposed Cu–HZSM5...

  3. Cesium Removal From Tanks 241-AN-103 and 241-SX-105 and 241-AZ-101 and 241-AZ-102 Composite For Testing In Bench Scale Steam Reformer

    International Nuclear Information System (INIS)

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  4. CESIUM REMOVAL FROM TANKS 241-AN-103 & 241-SX-105 & 241-AZ-101 & 241AZ-102 COMPOSITE FOR TESTING IN BENCH SCALE STEAM REFORMER

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN JB; HUBER HJ

    2011-04-21

    This report documents the preparation of three actual Hanford tank waste samples for shipment to the Savannah River National Laboratory (SRNL). Two of the samples were dissolved saltcakes from tank 241-AN-103 (hereafter AN-103) and tank 241-SX-105 (hereafter SX-105); one sample was a supernate composite from tanks 241-AZ-101 and 241-AZ-102 (hereafter AZ-101/102). The preparation of the samples was executed following the test plans LAB-PLAN-10-00006, Test Plan for the Preparation of Samples from Hanford Tanks 241-SX-105, 241-AN-103, 241-AN-107, and LAB-PLN-l0-00014, Test Plan for the Preparation of a Composite Sample from Hanford Tanks 241-AZ-101 and 241-AZ-102 for Steam Reformer Testing at the Savannah River National Laboratory. All procedural steps were recorded in laboratory notebook HNF-N-274 3. Sample breakdown diagrams for AN-103 and SX-105 are presented in Appendix A. The tank samples were prepared in support of a series of treatability studies of the Fluidized Bed Steam Reforming (FBSR) process using a Bench-Scale Reformer (BSR) at SRNL. Tests with simulants have shown that the FBSR mineralized waste form is comparable to low-activity waste glass with respect to environmental durability (WSRC-STI-2008-00268, Mineralization of Radioactive Wastes by Fluidized Bed Steam Reforming (FBSR): Comparisons to Vitreous Waste Forms and Pertinent Durability Testing). However, a rigorous assessment requires long-term performance data from FBSR product formed from actual Hanford tank waste. Washington River Protection Solutions, LLC (WRPS) has initiated a Waste Form Qualification Program (WP-5.2.1-2010-001, Fluidized Bed Steam Reformer Low-level Waste Form Qualification) to gather the data required to demonstrate that an adequate FBSR mineralized waste form can be produced. The documentation of the selection process of the three tank samples has been separately reported in RPP-48824, Sample Selection Process for Bench-Scale Steam Reforming Treatability Studies Using

  5. ICE SLURRY APPLICATIONS.

    Science.gov (United States)

    Kauffeld, M; Wang, M J; Goldstein, V; Kasza, K E

    2010-12-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology. PMID:21528014

  6. Numerical Studies of the Gas-Solid Hydrodynamics at High Temperature in the Riser of a Bench-Scale Circulating Fluidized Bed

    Directory of Open Access Journals (Sweden)

    Maximilian J. Hodapp

    2012-01-01

    Full Text Available The hydrodynamics of circulating fluidized beds (CFBs is a complex phenomenon that can drastically vary depending on operational setup and geometrical configuration. A research of the literature shows that studies for the prediction of key variables in CFB systems operating at high temperature still need to be implemented aiming at applications in energy conversion, such as combustion, gasification, or fast pyrolysis of solid fuels. In this work the computational fluid dynamics (CFD technique was used for modeling and simulation of the hydrodynamics of a preheating gas-solid flow in a cylindrical bed section. For the CFD simulations, the two-fluid approach was used to represent the gas-solid flow with the k-epsilon turbulence model being applied for the gas phase and the kinetic theory of granular flow (KTGF for the properties of the dispersed phase. The information obtained from a semiempirical model was used to implement the initial condition of the simulation. The CFD results were in accordance with experimental data obtained from a bench-scale CFB system and from predictions of the semiempirical model. The initial condition applied in this work was shown to be a viable alternative to a more common constant solid mass flux boundary condition.

  7. A microdevice assisted approach for the preparation, characterization and selection of continuous aqueous two-phase systems: from micro to bench-scale.

    Science.gov (United States)

    Vázquez-Villegas, Patricia; Ouellet, Eric; González, Claudia; Ruiz-Ruiz, Federico; Rito-Palomares, Marco; Haynes, Charles A; Aguilar, Oscar

    2016-07-01

    Aqueous two-phase systems (ATPS) have emerged as an alternative strategy for the recovery and purification of a wide variety of biological products. Typical process development requires a large screening of experimental conditions towards industrial adoption where continuous processes are preferred. In this work, it was proved that under certain flow conditions, ATPS could be formed continuously inside a microchannel, starting from stocks of phase components. Staggered herringbone chaotic micromixers included within the device sequentially and rapidly prepare two-phase systems across an entire range of useful phase compositions. Two-phase diagrams (binodal curves) were easily plotted using the cloud-point method for systems of different components and compared with previously reported curves for each system, proving that phase formation inside the device correlated with the previously reported diagrams. A proof of concept for sample partitioning in such a microdevice was performed with two different experimental models: BSA and red blood cells. Finally, the microdevice was employed to obtain information about the recovery and partition coefficient of invertase from a real complex mixture of proteins (yeast extract) to design a process for the recovery of the enzyme selecting a suitable system and composition to perform the process at bench-scale. PMID:27302418

  8. Bench Scale Process for Low Cost CO2 Capture Using a Phase-Changing Absorbent: Topical Report EH&S Risk Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Westendorf, Tiffany; Farnum, Rachel; Perry, Robert; Herwig, Mark; Giolando, Salvatore; Green, Dianne; Morall, Donna

    2016-05-11

    GE Global Research was contracted by the Department of Energy to design and build a bench-scale process for a novel phase-changing aminosilicone-based CO2 capture solvent (award number DEFE0013687). As part of this program, a technology EH&S assessment (Subtask 5.1) has been completed for a CO2 capture system for a 550 MW coal-fired power plant. The assessment focuses on two chemicals used in the process, the aminosilicone solvent, GAP-0, and dodecylbenzenesulfonic acid (DDBSA), the GAP-0 carbamate formed upon reaction of the GAP-0 with CO2, and two potential byproducts formed in the process, GAP-0/SOx salts and amine-terminated, urea-containing silicone (also referred to as “ureas” in this report). The EH&S assessment identifies and estimates the magnitude of the potential air and water emissions and solid waste generated by the process and reviews the toxicological profiles of the chemicals associated with the process. Details regarding regulatory requirements, engineering controls, and storage and handling procedures are also provided in the following sections.

  9. An Inorganic Microsphere Composite for the Selective Removal of 137 Cesium from Acidic Nuclear Waste Solutions 2: Bench-Scale Column Experiments, Modeling, and Preliminary Process Design

    Energy Technology Data Exchange (ETDEWEB)

    Troy J. Tranter; T. A. Vereschagina; V. Utgikar

    2009-03-01

    A new inorganic ion exchange composite for removing radioactive cesium from acidic waste streams has been developed. The new material consists of ammonium molybdophosphate, (NH4)3P(Mo3O10)4?3H2O (AMP), synthesized within hollow aluminosilicate microspheres (AMP-C), which are produced as a by-product from coal combustion. The selective cesium exchange capacity of this inorganic composite was evaluated in bench-scale column tests using simulated sodium bearing waste solution as a surrogate for the acidic tank waste currently stored at the Idaho National Laboratory (INL). Total cesium loading on the columns at saturation agreed very well with equilibrium values predicted from isotherm experiments performed previously. A numerical algorithm for solving the governing partial differential equations (PDE) for cesium uptake was developed using the intraparticle mass transfer coefficient obtained from previous batch kinetic experiments. Solutions to the governing equations were generated to obtain the cesium concentration at the column effluent as a function of throughput volume using the same conditions as those used for the actual column experiments. The numerical solutions of the PDE fit the column break through data quite well for all the experimental conditions in the study. The model should therefore provide a reliable prediction of column performance at larger scales.

  10. Flexible Bench-Scale Recirculating Flow CPC Photoreactor for Solar Photocatalytic Degradation of Methylene Blue Using Removable TiO2 Immobilized on PET Sheets

    Directory of Open Access Journals (Sweden)

    Doaa M. EL-Mekkawi

    2016-01-01

    Full Text Available TiO2 immobilized on polyethylene (PET nonwoven sheet was used in the solar photocatalytic degradation of methylene blue (MB. TiO2 Evonik Aeroxide P25 was used in this study. The amount of loaded TiO2 on PET was approximately 24%. Immobilization of TiO2 on PET was conducted by dip coating process followed by exposing to mild heat and pressure. TiO2/PET sheets were wrapped on removable Teflon rods inside home-made bench-scale recirculating flow Compound Parabolic Concentrator (CPC photoreactor prototype (platform 0.7 × 0.2 × 0.4 m3. CPC photoreactor is made up of seven low iron borosilicate glass tubes connected in series. CPC reflectors are made of stainless steel 304. The prototype was mounted on a platform tilted at 30°N local latitude in Cairo. A centrifugal pump was used to circulate water containing methylene blue (MB dye inside the glass tubes. Efficient photocatalytic degradation of MB using TiO2/PET was achieved upon the exposure to direct sunlight. Chemical oxygen demand (COD analyses reveal the complete mineralization of MB. Durability of TiO2/PET composite was also tested under sunlight irradiation. Results indicate only 6% reduction in the amount of TiO2 after seven cycles. No significant change was observed for the physicochemical characteristics of TiO2/PET after the successive irradiation processes.

  11. Fischer-Tropsch Synthesis (FTS) catalytic evaluation of a 10%Co/Nb{sub 2}O{sub 5} catalyst in a agitated slurry reactor; Avaliacao catalitica do catalisador 10%Co/Nb{sub 2}O{sub 5} na Sintese de Fischer-Tropsch (SFT) em um reator em leito de lama agitado

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Gustavo P.; Meza, Lucas P.; Spigao Junior, Antonio C.S.; Soares, Ricardo R. [Universidade Federal de Uberlandia, MG (Brazil)

    2004-07-01

    The objective of this work was to evaluate the performance of a Co/Nb{sub 2}O{sub 5} catalyst in the Fischer-Tropsch Synthesis (FTS) in an agitated slurry reactor, using a methodology and reaction unit developed by the authors. Besides this, an evaluation of the reaction kinetic parameters, from the literature, was accomplished. The catalyst was prepared by the homogeneous precipitation method to obtain a cobalt content of 10 wt%. The reactions were accomplished, after ex-situ reduction, at 500 deg C, of 20 g of 10% Co/Nb{sub 2}O{sub 5} catalyst, in a 500 mL slurry reactor, loaded with 150 g of octacosane solvent (C{sub 28}H{sub 58}). The reaction temperature was varied from 180 to 220 deg C and the initial reaction mixture flow rate from 20 to 60 mL/min. The used reaction pressure was 20 bar. The selectivities were calculated by gaseous effluent chromatographic analysis, relating these effluent molar fractions with the slurry composition by an asymmetric model of the liquid - vapor equilibrium. An evaluation of the carbon chain growth probability parameter ({alpha}) was accomplished using the Anderson-Schulz-Flory products distribution model. The parameters of both kinetic models, with a possible reaction mechanism, were estimated by non linear regression analysis. The obtained results showed that the 10%Co/Nb{sub 2}O{sub 5} catalyst presented high stability within few hours of reaction, little selectivity for methane and CO{sub 2}, and high selectivity for C{sub 5+}, specially for gasoline (C{sub 5} - C{sub 11}) and diesel (C{sub 12} - C{sub 20}). The {alpha} calculated values were all grater than 0.75. The estimated parameters for both kinetic models were slightly smaller than the others cobalt catalysts parameters, from the literature. This models adjustment to the experimental data was satisfactory, showing correlation coefficients grater than 0.97. (author)

  12. Slurry pipeline design approach

    Energy Technology Data Exchange (ETDEWEB)

    Betinol, Roy; Navarro R, Luis [Brass Chile S.A., Santiago (Chile)

    2009-12-19

    Compared to other engineering technologies, the design of a commercial long distance Slurry Pipeline design is a relatively new engineering concept which gained more recognition in the mid 1960 's. Slurry pipeline was first introduced to reduce cost in transporting coal to power generating units. Since then this technology has caught-up worldwide to transport other minerals such as limestone, copper, zinc and iron. In South America, the use of pipeline is commonly practiced in the transport of Copper (Chile, Peru and Argentina), Iron (Chile and Brazil), Zinc (Peru) and Bauxite (Brazil). As more mining operations expand and new mine facilities are opened, the design of the long distance slurry pipeline will continuously present a commercially viable option. The intent of this paper is to present the design process and discuss any new techniques and approach used today to ensure a better, safer and economical slurry pipeline. (author)

  13. Hydrogen production with short contact time. Catalytic partial oxidation of hydrocarbons and oxygenated compounds: Recent advances in pilot- and bench-scale testing and process design

    Energy Technology Data Exchange (ETDEWEB)

    Guarinoni, A.; Ponzo, R.; Basini, L. [ENI Refining and Marketing Div., San Donato Milanese (Italy)

    2010-12-30

    ENI R and D has been active for fifteen years in the development of Short Contact Time - Catalytic Partial Oxidation (SCT-CPO) technologies for producing Hydrogen/Synthesis Gas. From the beginning the experimental work addressed either at defining the fundamental principles or the technical and economical potential of the technology. Good experimental responses, technical solutions' simplicity and flexibility, favourable techno-economical evaluations promoted the progressive widening of the field of the investigations. From Natural Gas (NG) the range of ''processable'' Hydrocarbons extended to Liquefied Petroleum Gas (LPG) and Gasoils, including those characterised by high levels of unsaturated and sulphurated molecules and, lately, to other compounds with biological origin. The extensive work led to the definition of different technological solutions, grouped as follows: Technology 1: Air Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 2: Enriched Air/Oxygen Blown SCT-CPO of Gaseous Hydrocarbons and/or Light Compounds with biological origin Technology 3: Enriched Air/Oxygen Blown SCT-CPO of Liquid Hydrocarbons and/or Compounds with biological origin Recently, the licence rights on a non-exclusive basis for the commercialisation of SCT-CPO based processes for H{sub 2}/Synthesis gas production from light hydrocarbons with production capacity lower than 5,000 Nm{sup 3}/h of H{sub 2} or 7,500 Nm3/h of syngas have been assigned to two external companies. In parallel, development of medium- and large-scale plant solutions is progressing within the ENI group framework. These last activities are addressed to the utilisation of SCT-CPO for matching the variable Hydrogen demand in several contexts of oil refining operation. This paper will report on the current status of SCT-CPO with a focus on experimental results obtained, either at pilot- and bench- scale level. (orig.)

  14. Radioactive Bench-scale Steam Reformer Demonstration of a Monolithic Steam Reformed Mineralized Waste Form for Hanford Waste Treatment Plant Secondary Waste - 12306

    International Nuclear Information System (INIS)

    Hanford currently has 212,000 m3 (56 million gallons) of highly radioactive mixed waste stored in the Hanford tank farm. This waste will be processed to produce both high-level and low-level activity fractions, both of which are to be vitrified. Supplemental treatment options have been under evaluation for treating portions of the low-activity waste, as well as the liquid secondary waste from the low-activity waste vitrification process. One technology under consideration has been the THORR fluidized bed steam reforming process offered by THOR Treatment Technologies, LLC (TTT). As a follow-on effort to TTT's 2008 pilot plant FBSR non-radioactive demonstration for treating low-activity waste and waste treatment plant secondary waste, TTT, in conjunction with Savannah River National Laboratory, has completed a bench scale evaluation of this same technology on a chemically adjusted radioactive surrogate of Hanford's waste treatment plant secondary waste stream. This test generated a granular product that was subsequently formed into monoliths, using a geo-polymer as the binding agent, that were subjected to compressibility testing, the Product Consistency Test and other leachability tests, and chemical composition analyses. This testing has demonstrated that the mineralized waste form, produced by co-processing waste with kaolin clay using the TTT process, is as durable as low-activity waste glass. Testing has shown the resulting monolith waste form is durable, leach resistant, and chemically stable, and has the added benefit of capturing and retaining the majority of Tc-99, I-129, and other target species at high levels. (authors)

  15. Co-Firing of Sewage Sludge with Bark in A Bench-Scale Bubbling Fluidized BED — A Study of Deposits and Emissions

    Science.gov (United States)

    Yrjas, Patrik; Aho, Martti; Zevenhoven, Maria; Taipale, Raili; Silvennoinen, Jaani; Hupa, Mikko

    It has been shown that addition of either sulfur and/or aluminosilicates such as kaolinite may reduce alkali induced deposit formation when firing biomass fuels. Sewage sludge is a fuel containing substantial amounts of sulfur and aluminosilicates, such as zeolites. In this work different amounts of sewage sludge (0, 2, 4, 6 and 8%en) were co-fired with bark in a bench-scale BFB. SO2 and HCl emissions were measured and deposits were sampled during 3 hrs with an air-cooled probe with a surface temperature of 500°C at two different locations with flue gas temperatures of 850°C and 650°C, respectively. The test results showed that an increase of the share of sewage sludge to the fuel mixture increased theformation of HCl and simultaneously decreased the Cl-content in the deposits. Usually this is considered to be a sign of sulfation of alkali chlorides. However, the increase of HCl canalso be caused by AI-silicates capturing alkali, thus releasing Cl as HCl to the gas phase. AIthough, sulfur increased in the fuel input with an increased share of sewage sludge, this was not reflected in the gaseous emissions as may be expected. Up to 4%en sewage sludge was fired together with bark without increasing the sulfur content in theemissions. At higher shares of sewage sludge the sulfur emissions increased linearly with an increase of sewage sludge. The amount of water soluble potassium fed into the boiler remained relatively constant in the different tests. This potassium is usually released as volatile salts. Nevertheless, the amount found in deposits decreased with an increase in sludge feeding. In this paper it was shown that interaction of potassium with AI-silicates in the bed is a probable cause for the decrease of potassium in the deposits, while both the sulfation of potassium chlorides and possibly also, the alkali capture by AI-silicates can weaken the deposition of Cl.

  16. Overview of Fischer-Tropsch Synthesis in Slurry Reactors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A brief review of Fischer-Tropsch synthesis specially in slurry reactors ispresented, covering reaction kinetics, activity and selectivity of catalysts, productdistribution, effects of process parameters, mass transfer and solubility of gas. Someimportant aspects of further research are proposed for improving both theories andproduction.

  17. Slurry reactor bioremediation of soil-bound polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    ECOVA Corporation conducted pilot-scale process development studies in 1991 using a slurry-phase biotreatment design to evaluate bioremediation of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soil collected from a superfund site. Bench-scale studies were performed as an antecedent to pilot-scale evaluations in order to collect data which would be used to determine the optimal treatment protocols. This study was performed for the US EPA to supply information as part of the database on Best Demonstrated Available Technology (BDAT) for soil remediation. The database will be used to develop soil standards for land disposal restriction. This paper is a summary of the complete on-site engineering (OER) report is available from the US EPA. The site is a former railroad tie-treating facility. Two surface impoundments were used for the disposal of wastewater generated from wood-treating processes (Resource Conservation and Recovery Act waste code K001). Although all wastewater and liquid creosote have been removed from the impoundments, there is an estimated 12,500 cubic yards of soil and sludge remaining that is contaminated with 2-, 3-, and 4+-ring PAHs. There is also some groundwater contamination restricted to a relatively small area downgradient from the site

  18. Ice slurry accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  19. The effects of physical separtation treatment on the removal of uranium from contaminated soils at Fernald: A bench-scale study

    International Nuclear Information System (INIS)

    A bench-scale treatability study incorporating the use of physical separation techniques and chemical dispersants/extractants was conducted on uranium contaminated soils at the Fernald Environmental Management Project (FEMP) site. The soils contained approximately 497 and 450 milligrams per kilogram (mg/kg) of total uranium, respectively. Geotechnical characterization indicated that 77.4 and 74.6 percent of the soil was in the less that 50 micrometer (μm) size fraction for the ID-A and ID-B soils, respectively. An initial characterization effort indicated that uranium was distributed among all particle size fractions. After each soil was dispersed in water, it was noted that the uranium concentrated in the sand and clay fractions for the ID-A soil (1028 and 1475 mg kg-1, respectively) and the clay fraction for ID-B soil (2710 mg kg-1). Four 1 millimolar (mM) sodium reagent solutions (sodium hydroxide, sodium carbonate, sodium bicarbonate, and a sodium citrate-bicarbonate-dithionite mixture) and potable water were evaluated for effectiveness in dispersing each soil into single grain separates and extracting total uranium from each of the resulting particle size fractions. Dilute sodium solutions were more effective than water in dispersing the soil. The use of dispersants, as compared to water, on the less than 2 mm size fraction causes a shift in the distribution of uranium out of the sand fraction and into the silt and clay fractions for ID-A soil and into the clay fraction for the ID-B soil. Attrition scrubbing tests were conducted on the less than 2 mm size fraction for the ID-A and ID-B soils using water and three alkaline extraction solutions, sodium pyrophosphate, sodium carbonate/bicarbonate, and ammonium carbonate/bicarbonate. There was little difference among the chemical extractants on their effectiveness in removing uranium from the greater than 53 μm (sand) or less than 53 μm (silt and clay) soil fraction

  20. Bench-scale Development of an Advanced Solid Sorbent-based CO2 Capture Process for Coal-fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Thomas [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Soukri, Mustapha [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Farmer, Justin [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Mobley, Paul [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Tanthana, Jak [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Dongxiang [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Wang, Xiaoxing [Research Triangle Institute (RTI), Research Triangle Park, NC (United States); Song, Chunshan [Research Triangle Institute (RTI), Research Triangle Park, NC (United States)

    2015-12-31

    It is increasingly clear that CO2 capture and sequestration (CCS) must play a critical role in curbing worldwide CO2 emissions to the atmosphere. Development of these technologies to cost-effectively remove CO2 from coal-fired power plants is very important to mitigating the impact these power plants have within the world’s power generation portfolio. Currently, conventional CO2 capture technologies, such as aqueous-monoethanolamine based solvent systems, are prohibitively expensive and if implemented could result in a 75 to 100% increase in the cost of electricity for consumers worldwide. Solid sorbent CO2 capture processes – such as RTI’s Advanced Solid Sorbent CO2, Capture Process – are promising alternatives to conventional, liquid solvents. Supported amine sorbents – of the nature RTI has developed – are particularly attractive due to their high CO2 loadings, low heat capacities, reduced corrosivity/volatility and the potential to reduce the regeneration energy needed to carry out CO2 capture. Previous work in this area has failed to adequately address various technology challenges such as sorbent stability and regenerability, sorbent scale-up, improved physical strength and attrition-resistance, proper heat management and temperature control, proper solids handling and circulation control, as well as the proper coupling of process engineering advancements that are tailored for a promising sorbent technology. The remaining challenges for these sorbent processes have provided the framework for the project team’s research and development and target for advancing the technology beyond lab- and bench-scale testing. Under a cooperative agreement with the US Department of Energy, and part of NETL’s CO2 Capture Program, RTI has led an effort to address and mitigate the challenges associated with solid sorbent CO2 capture. The overall objective

  1. Slurry walls and slurry trenches - construction quality control

    International Nuclear Information System (INIS)

    Slurry (panel) walls and slurry trenches have become conventional methods for construction of deep underground structures, interceptor trenches and hydraulic (cutoff) barriers. More recently polymers mixed with water are used to stabilize the excavation instead of bentonite slurry. Slurry walls are typically excavated in short panel segments, 2 to 7 m (7 to 23 ft) long, and backfilled with structural materials; whereas slurry trenches are fairly continuous excavations with concurrent backfilling of blended soils, or cement-bentonite mixtures. Slurry trench techniques have also been used to construct interceptor trenches. Currently no national standards exist for the design and/or construction of slurry walls/trenches. Government agencies, private consultants, contractors and trade groups have published specifications for construction of slurry walls/trenches. These specifications vary in complexity and quality of standards. Some place excessive emphasis on the preparation and control of bentonite or polymer slurry used for excavation, with insufficient emphasis placed on quality control of bottom cleaning, tremie concrete, backfill placement or requirements for the finished product. This has led to numerous quality problems, particularly with regard to identification of key depths, bottom sediments and proper backfill placement. This paper will discuss the inspection of slurry wall/trench construction process, identifying those areas which require special scrutiny. New approaches to inspection of slurry stabilized excavations are discussed

  2. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  3. Thinning of kaolin slurry

    OpenAIRE

    Vlasák, Pavel

    2002-01-01

    After mixing kaolin with water attractive and repulsive forces between kaolin particles initiate process of coagulation and peptisation, respectively. The coagulation process in the kaolin slurry gives rise to voluminous aggregates of kaolin particles, where a great deal of water is fixed.

  4. Synthesis of polymerization-stable nitrile rubber in bench-scale test%聚稳丁腈橡胶的小试合成

    Institute of Scientific and Technical Information of China (English)

    肖瑞; 李冬红; 张霖; 米普科; 李彤霞; 潘广勤

    2012-01-01

    以丁二烯(Bd)和丙烯腈(AN)为单体,防老剂NAPM为反应型防老剂,过氧化氢二异丙苯(DBHP)为引发剂,松香酸皂(ROSIN)为乳化剂,β-萘磺酸钠甲醛缩合物(NF)为助乳化剂,叔十二碳硫醇(TDM)为相对分子质量调节剂,进行了聚稳丁腈橡胶的小试合成研究,考察了各组分以及聚合反应温度对转化率的影响,并对合成的聚稳丁腈橡胶与国外公司的同类产品N 765的性能进行了对比.结果表明,在Bd/AN(质量比)为70/30、防老剂NAPM质量分数为1.5% ~2.0%(以Bd和AN总量计,下同)、TDM质量分数为0.46% ~0.51%、DBHP/FeSO4(质量比)为0.150/0.017 5、ROSIN/NF(质量比)为(4.6 ~5.0)/0.6的条件下,采用在反应最初1h内将反应温度控制在15℃、之后将温度降至5℃并保持至反应结束的温度控制方式,可合成出力学性能和热氧老化性能与N 765相当的聚稳丁腈橡胶.%The polymerization-stable nitrile rubber was synthesized in a bench-scale unit with butadiene ( Bd) and acrylonitrile( AN) as monomers, antioxidant NAPM as reactive antioxidant,p-dipropylbenzene hydroperoxide( DBHP) as initiator, rosin as emulsifier, sodium naphthalenesulfonate-formaldehyde condensate ( NF) as coemulsifier, terf-dodecyl mercaptan (TDM) as relative molecular mass regulator. The effects of the components and polymerization temperature on the conversion of polymerization reaction were investigated. And the properties of polymerization-stable nitrile rubber were compared with those of similar product N 765 produced by foreign company. The results showed that the polymerization -stable nitrile rubber could be synthesized, and its mechanicalproperties and thermal-oxidative aging properties were similar to those of N 765 when Bd/AN(mass ratio) was 70/30, the mass fraction of antioxidant NAPM was 1. 5% - 2. 0% ( by total amount of Bd and AN ) , the mass fraction of TDM was 0.46% -0.51% (by total amount of Bd and AN) , DBHP/ FeSO4 ( mass ratio ) was 0

  5. Bench-Scale Testing and Process Performance Projections of CO2 Capture by CO2–Binding Organic Liquids (CO2BOLs) With and Without Polarity-Swing-Assisted Regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Feng; Heldebrant, David J.; Mathias, Paul M.; Koech, Phillip K.; Bhakta, Mukund; Freeman, Charles J.; Bearden, Mark D.; Zwoster, Andy

    2016-01-12

    This manuscript provides a detailed analysis of a continuous flow, bench scale study of the CO2BOL solvent platform with and without its Polarity Swing Assisted Regeneration (PSAR). This study encompassed four months of continuous flow testing of a candidate CO2BOL with a thermal regeneration and PSAR regeneration using decane antisolvent. In both regeneration schemes, steady state capture of >90 %CO2 was achieved using simulated flue gas at acceptable L/G ratios. Aspen Plus™ modeling was performed to assess process performance compared to previous equilibrium performance projections. This paper also includes net power projections, and comparisons to DOE’s Case 10 amine baseline.

  6. Study of the characteristics of methanol synthesis in a recirculation slurry reactor - a novel three-phase synthesis reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.H.; Wang, X.J.; Yu, G.S.; Wang, F.C.; Yu, Z.H. [Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai 200237 (China)

    2008-01-15

    A process feasibility analysis on the liquid phase methanol synthesis (LPMeOH trademark) process was performed in a recirculation slurry reactor (RSR). In the three-phase RSR system, a fine catalyst is slurried in the paraffin and this catalyst slurry is continuously recirculated through the nozzle from the slurry sector to the entrained sector by a pump. The syngas is fed concurrently with the downward flow of slurry to form the methanol product. A laboratory scale mini-pilot plant version of a recirculation slurry reactor system was successfully designed and built to carry out process engineering research, and in addition, an identical cold model was built to measure the mass transfer coefficient in the recirculation slurry reactor. The effects of operating conditions, including temperature, pressure, gas flow rate and catalyst slurry recirculation flow rate on the productivity of methanol were studied. This experimental data helps the scale-up and commercialization of the methanol synthesis process in recirculation slurry reactors. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  7. ICE SLURRY APPLICATIONS

    OpenAIRE

    Kauffeld, M.; Wang, M.J.; Goldstein, V.; Kasza, K.E.

    2010-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers ...

  8. European workshop on spent catalysts. Book of abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In 1999 and 2002 two well attended workshops on recycling, regeneration, reuse and disposal of spent catalysts took place in Frankfurt. This series has been continued in Berlin. The workshop was organized in collaboration with DGMK, the German Society for Petroleum and Coal Science and Technology. Contributions were in the following areas of catalyst deactivation: recycling of spent catalysts in chemical and petrochemical industry, recycling of precious metal catalysts and heterogenous base metal catalysts, legal aspects of transboundary movements, catalyst regeneration, quality control, slurry catalysts, commercial reactivation of hydrotreating catalysts. (uke)

  9. The role of salicylate and biosurfactant in inducing phenanthrene degradation in batch soil slurries.

    Science.gov (United States)

    Gottfried, Avery; Singhal, Naresh; Elliot, Roy; Swift, Simon

    2010-05-01

    The majority of polycyclic aromatic hydrocarbons (PAHs) sorb strongly to soil organic matter posing a complex barrier to biodegradation. Biosurfactants can increase soil-sorbed PAHs desorption, solubilisation, and dissolution into the aqueous phase, which increases the bioavailability of PAHs for microbial metabolism. In this study, biosurfactants, carbon sources, and metabolic pathway inducers were tested as stimulators of microorganism degradation. Phenanthrene served as a model PAH and Pseudomonas putida ATCC 17484 was used as the phenanthrene degrading microorganism for the liquid solutions and soil used in this investigation. Bench-scale trials demonstrated that the addition of rhamnolipid biosurfactant increases the apparent aqueous solubility of phenanthrene, and overall degradation by at least 20% when combined with salicylate or glucose in liquid solution, when compared to solutions that contained salicylate or glucose with no biosurfactant. However, salicylate addition, with no biosurfactant addition, increased the total degradation of phenanthrene 30% more than liquid systems with only biosurfactant addition. In soil slurries, small amounts of biosurfactant (0.25 g/L) showed a significant increase in total removal when only biosurfactant was added. In soil slurries containing salicylate, the effects of biosurfactant additions were negligible as there was greater than 90% removal, regardless of the biosurfactant concentration. The results of experiments performed in this study provide further evidence that an in situ enhancement strategy for phenanthrene degradation could focus on providing additional carbon substrates to induce metabolic pathway catabolic enzyme production, if degradation pathway intermediates are known. PMID:20146061

  10. Modelling of slurry droplet drying

    Energy Technology Data Exchange (ETDEWEB)

    Kadja, M.; Bergeles, G. [National Technical University of Athens, Athens (Greece). Dept. of Mechanical Engineering

    2003-05-01

    Heat, mass and momentum transfer between a slurry droplet and a gas flow are investigated numerically. The developed model can be applied to assess drying and combustion properties of slurries inside spray dryers or combustors and to estimate the time needed to reach ignition of the solid component in slurry fuels. The model was applied to coal water droplet slurries the properties of which are available in the literature but can also be used for study of drying of any other slurry such as that encountered in flue gas desulfurization systems. The parametric study revealed that the most important factor in slurry drying is the ambient temperature and that the injection velocity, the ambient pressure of the flowing medium or the particle initial temperature affect very little the drying rate.

  11. Coating powdered copper catalyst with yttria sol

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kuan-Ying [Department of Chemical and Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan (China); Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China); Shen, Chia-Chieh, E-mail: ccshen@saturn.yzu.edu.tw [Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Graduate School of Renewable Energy Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Lee, Chi-Yuan; Lee, Shuo-Jen [Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China); Department of Mechanical Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Graduate School of Renewable Energy Engineering, Yuan Ze University, Chung-Li, Taiwan (China); Leu, Chih-Hsing [Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan (China); Wang, Jung-Hui [Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China); Yeh, Chuin-Tih [Department of Chemical and Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan (China); Fuel Cell Center, Yuan Ze University, Chung-Li, Taiwan (China)

    2011-07-15

    Research highlights: {yields} The neutral Y{sub 2}O{sub 3} sol is an effective binder for coating powders of CuZnAl catalyst. {yields} A particle size ratio of 15 for catalyst to binder is suggested for stable coating. {yields} Sufficient stirring is an important step in the catalyst slurry preparation. - Abstract: A commercial Y{sub 2}O{sub 3} sol was tested as a binder for coating CuZnAl catalyst powder onto microchannels of a stainless steel plate (SSP). Coated plates were used to fabricate microchannel reactors that generate hydrogen via the steam reforming of methanol (SRM). Washcoating slurries were prepared by suspending catalyst powders into the sol. Slurry parameters, such as solid content, binder content, pH value, and stir time, were optimized to achieve a stable catalyst coating and good SRM performance. The expected stable coating could be obtained from neutral (pH 7) Y{sub 2}O{sub 3} slurry that is required for a negligible dissolution of the copper component of the catalyst. The experimental coating stability generally improved with the slurry stir time. Observed improvements were attributed to a dispersion of catalyst powders in the slurry through a two-step mechanism: the mechanical disassembly of agglomerated CuZnAl powders into primary particles, and the repelling of dissembled particles through adsorption of positively charged Y{sub 2}O{sub 3} binders. A reasonable reaction temperature of 280 deg. C was found for 95% conversion of methanol in SRM from the resulted microchannel reactors. A low CO fraction of 0.3% was also found in the hydrogen-rich gas reformed.

  12. International symposium on slurry flows

    International Nuclear Information System (INIS)

    This book presents the papers given at a conference on two-phase slurry flow. Topics considered at the conference included flow models, drag, flow rate, stresses in a fluid-solid mixture, kinetic models, the shear viscosity of dense-phase slurries at varying shear rates, the modeling of particulates based on the Markov process, fluid-particle flows in geothermal drilling applications, two-phase nozzle flow, laminar flow, centrifugal slurry pumps, slurry pipeline flow, and the beneficiation of coal by agglomeration during hydraulic transport

  13. Co-Production of Electricity and Hydrogen Using a Novel Iron-based Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Hilaly, Ahmad; Georgas, Adam; Leboreiro, Jose; Arora, Salil; Head, Megann; Trembly, Jason; Turk, Brian; Gupta, Raghubir

    2011-09-30

    The primary objective of this project was to develop a hydrogen production technology for gasification applications based on a circulating fluid-bed reactor and an attrition resistant iron catalyst. The work towards achieving this objective consisted of three key activities: • Development of an iron-based catalyst suitable for a circulating fluid-bed reactor • Design, construction, and operation of a bench-scale circulating fluid-bed reactor system for hydrogen production • Techno-economic analysis of the steam-iron and the pressure swing adsorption hydrogen production processes. This report describes the work completed in each of these activities during this project. The catalyst development and testing program prepared and iron-based catalysts using different support and promoters to identify catalysts that had sufficient activity for cyclic reduction with syngas and steam oxidation and attrition resistance to enable use in a circulating fluid-bed reactor system. The best performing catalyst from this catalyst development program was produced by a commercial catalyst toll manufacturer to support the bench-scale testing activities. The reactor testing systems used during material development evaluated catalysts in a single fluid-bed reactor by cycling between reduction with syngas and oxidation with steam. The prototype SIP reactor system (PSRS) consisted of two circulating fluid-bed reactors with the iron catalyst being transferred between the two reactors. This design enabled demonstration of the technical feasibility of the combination of the circulating fluid-bed reactor system and the iron-based catalyst for commercial hydrogen production. The specific activities associated with this bench-scale circulating fluid-bed reactor systems that were completed in this project included design, construction, commissioning, and operation. The experimental portion of this project focused on technical demonstration of the performance of an iron-based catalyst and a

  14. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    International Nuclear Information System (INIS)

    This report covers the first year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H2O, CO2, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we have completed one STSR test with precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany). This catalyst was initially in commercial fixed bed reactors at Sasol in South Africa. The catalyst was tested at 13 different sets of process conditions, and had experienced a moderate deactivation during the first 500 h of testing (decrease in conversion from 56% to 50% at baseline process conditions). The second STSR test has been initiated and after 270 h on stream, the catalyst was tested at 6 different sets of process conditions

  15. Performance of a Centrifugal Slurry Pump

    OpenAIRE

    Hawas Yahya Bajawi; Basharat Salim; Ziyadh Suhibani

    2014-01-01

    The aim of this study was to experimentally investigate the effect of speed, concentration and size of slurry on the performance of a centrifugal pump. For this purpose a facility was built where the performance of a centrifugal slurry pump was examined using aggregate slurry. Three sizes of slurry with three concentrations and at three impeller speeds were used for the performance investigations of a centrifugal slurry pump. As a reference performance the performance of centrifugal slurry pu...

  16. 浆态床合成二甲醚用CuZnAlSi催化剂的完全液相法制备及表征%Complete liquid phase preparation and characterization of CuZnAlSi catalysts for DME synthesis in slurry reactor

    Institute of Scientific and Technical Information of China (English)

    李志红; 黄伟; 樊金串; 左志军; 谢克昌

    2009-01-01

    采用完全液相法制备了不同SiO_2含量的二甲醚(DME)合成CuZnAlSi双功能催化剂,并在浆态床反应器中评价其催化反应活性,通过in-situ XPS、XRD、BET、NH_3-TPD等方法对其物理化学性能进行研究.结果表明,CuZnAl催化剂中加入SiO_2组分,能够促进活性组分Cu的分散,并通过与AlOOH的作用调变催化剂的孔结构和表面酸性,从而提高催化剂在DME合成反应中的活性.准原位 XPS表征结果显示,还原后的催化剂表面Cu0和ZnO共同构成DME合成反应中的甲醇合成活性中心.SiO_2的加入可能导致Cu、Zn和Al组分间的相互作用减弱,催化剂稳定性降低.%A series of CuZnAlSi bifunctional catalysts with different SiO_2 contents were prepared by a complete liquid phase method, and the catalysts were characterized by using in-situ XPS, XRD, BET and NH_3-TPD. The catalytic performance was evaluated in a slurry reactor. Based on these results, it was deduced that SiO_2 in the CuZnAlSi catalyst could interact with A1OOH resulting in the change of some physicochemical properties, such as the pore structure and surface acidity, thus the catalytic activity for DME synthesis has got improved. It was found from the in-situ XPS characterization that the surface active species for the methanol synthesis in the process of DME production is composed by the reduced Cu~0 species and ZnO. However, the stability of the catalyst decreased owing to the introduction of SiO_2, which may due to a lower interaction among the components of Cu, Zn and Al.

  17. Bench-scale feasibility testing of pulsed-air technology for in-tank mixing of dry cementitious solids with tank liquids and settled solids

    International Nuclear Information System (INIS)

    This report documents the results of testing performed to determine the feasibility of using a pulsed-air mixing technology (equipment developed by Pulsair Systems, Inc., Bellevue, WA) to mix cementitious dry solids with supernatant and settled solids within a horizontal tank. The mixing technology is being considered to provide in situ stabilization of the open-quotes Vclose quotes tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). The testing was performed in a vessel roughly 1/6 the scale of the INEEL tanks. The tests used a fine soil to simulate settled solids and water to simulate tank supernatants. The cementitious dry materials consisted of Portland cement and Aquaset-2H (a product of Fluid Tech Inc. consisting of clay and Portland cement). Two scoping tests were conducted to allow suitable mixing parameters to be selected. The scoping tests used only visual observations during grout disassembly to assess mixing performance. After the scoping tests indicated the approach may be feasible, an additional two mixing tests were conducted. In addition to visual observations during disassembly of the solidified grout, these tests included addition of chemical tracers and chemical analysis of samples to determine the degree of mixing uniformity achieved. The final two mixing tests demonstrated that the pulsed-air mixing technique is capable of producing slurries containing substantially more cementitious dry solids than indicated by the formulations suggested by INEEL staff. Including additional cement in the formulation may have benefits in terms of increasing mobilization of solids, reducing water separation during curing, and increasing the strength of the solidified product. During addition to the tank, the cementitious solids had a tendency to form clumps which broke down with continued mixing

  18. A Study on the Slurry Bed Hydrocracking Process of Extra Heavy Oil at Catalyst%催化剂对重油悬浮床中压加氢工艺的影响研究

    Institute of Scientific and Technical Information of China (English)

    张学花; 丁玉华

    2012-01-01

    以胜利重油为原料,采用间歇式反应考察催化剂对重油悬浮床中压加氢裂化反应的影响.研究发现镍铁分散型催化剂中活性金属具有很强的加氢活性,可使大量的自由基加氢饱和,抑制反应过程中自由基的缩合,即分散型镍铁催化剂具有比较好的加氢和抑制生焦性能.%The victory of heavy oil as raw material, the batch reactor is studied the impact of pressure hydro-cracking catalyst for heavy oil suspension bed in. The study found that active metal has a strong hydrogenation activity of nickel-iron dispersed catalyst, allows the number of free radicals hydrogenation saturated, inhibition of free radicals in the reaction process of condensation, that is dispersed nickel-iron catalyst has a relatively good hydrogenation and inhibition of coke performance.

  19. Hydrodynamic models for slurry bubble column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gidaspow, D. [IIT Center, Chicago, IL (United States)

    1995-12-31

    The objective of this investigation is to convert a {open_quotes}learning gas-solid-liquid{close_quotes} fluidization model into a predictive design model. This model is capable of predicting local gas, liquid and solids hold-ups and the basic flow regimes: the uniform bubbling, the industrially practical churn-turbulent (bubble coalescence) and the slugging regimes. Current reactor models incorrectly assume that the gas and the particle hold-ups (volume fractions) are uniform in the reactor. They must be given in terms of empirical correlations determined under conditions that radically differ from reactor operation. In the proposed hydrodynamic approach these hold-ups are computed from separate phase momentum balances. Furthermore, the kinetic theory approach computes the high slurry viscosities from collisions of the catalyst particles. Thus particle rheology is not an input into the model.

  20. Slurry flow principles and practice

    CERN Document Server

    Shook, C A; Brenner, Howard

    2015-01-01

    Slurry Flow: Principles and Practice describes the basic concepts and methods for understanding and designing slurry flow systems, in-plan installations, and long-distance transportation systems. The goal of this book is to enable the design or plant engineer to derive the maximum benefit from a limited amount of test data and to generalize operating experience to new situations. Design procedures are described in detail and are accompanied by illustrative examples needed by engineers with little or no previous experience in slurry transport.The technical literature in this field is extensive:

  1. Slurry pipeline technology: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jay P. [Pipeline Systems Incorporated (PSI), Belo Horizonte, MG (Brazil); Lima, Rafael; Pinto, Daniel; Vidal, Alisson [Ausenco do Brasil Engenharia Ltda., Nova Lima, MG (Brazil). PSI Div.

    2009-12-19

    Slurry pipelines represent an economical and environmentally friendly transportation means for many solid materials. This paper provides an over-view of the technology, its evolution and current Brazilian activity. Mineral resources are increasingly moving farther away from ports, processing plants and end use points, and slurry pipelines are an important mode of solids transport. Application guidelines are discussed. State-of-the-Art technical solutions such as pipeline system simulation, pipe materials, pumps, valves, automation, telecommunications, and construction techniques that have made the technology successful are presented. A discussion of where long distant slurry pipelines fit in a picture that also includes thickened and paste materials pipe lining is included. (author)

  2. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    International Nuclear Information System (INIS)

    This report covers the second year of this three-year research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict concentrations of all reactants and major product species (H2O, CO2, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the second year of the project we completed the STSR test SB-26203 (275-343 h on stream), which was initiated during the first year of the project, and another STSR test (SB-28603 lasting 341 h). Since the inception of the project we completed 3 STSR tests, and evaluated catalyst under 25 different sets of process conditions. A precipitated iron catalyst obtained from Ruhrchemie AG (Oberhausen-Holten, Germany) was used in all tests. This catalyst was used initially in commercial fixed bed reactors at Sasol in South Africa. Also, during the second year we performed a qualitative analysis of experimental data from all three STSR tests. Effects of process conditions (reaction temperature, pressure, feed composition and gas space velocity) on water-gas-shift (WGS) activity and hydrocarbon product distribution have been determined

  3. Comparative testing of slurry monitors

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Bayne, C.K. [Oak Ridge National Lab., TN (United States); Anderson, M.S. [Ames Lab., IA (United States); Van Essen, D.C. [Advanced Integrated Management Services, Inc., Oak Ridge, TN (United States)

    1998-05-01

    The US Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks, transferred to treatment facilities, and processed to a final waste form. The wastes will be removed from the current storage tanks by mobilizing the sludge wastes and mixing them with the liquid wastes to create slurries. Each slurry would then be transferred by pipeline to the desired destination. To reduce the risk of plugging a pipeline, the transport properties (e.g., density, suspended solids concentration, viscosity, particle size range) of the slurry should be determined to be within acceptable limits prior to transfer. These properties should also be monitored and controlled within specified limits while the slurry transfer is in progress. The DOE issued a call for proposals for developing on-line instrumentation to measure the transport properties of slurries. In response to the call for proposals, several researchers submitted proposals and were funded to develop slurry monitoring instruments. These newly developed DOE instruments are currently in the prototype stage. Before the instruments were installed in a radioactive application, the DOE wanted to evaluate them under nonradioactive conditions to determine if they were accurate, reliable, and dependable. The goal of this project was to test the performance of the newly developed DOE instruments along with several commercially available instruments. The baseline method for comparison utilized the results from grab-sample analyses.

  4. Medical ice slurry production device

    Science.gov (United States)

    Kasza, Kenneth E.; Oras, John; Son, HyunJin

    2008-06-24

    The present invention relates to an apparatus for producing sterile ice slurries for medical cooling applications. The apparatus is capable of producing highly loaded slurries suitable for delivery to targeted internal organs of a patient, such as the brain, heart, lungs, stomach, kidneys, pancreas, and others, through medical size diameter tubing. The ice slurry production apparatus includes a slurry production reservoir adapted to contain a volume of a saline solution. A flexible membrane crystallization surface is provided within the slurry production reservoir. The crystallization surface is chilled to a temperature below a freezing point of the saline solution within the reservoir such that ice particles form on the crystallization surface. A deflector in the form of a reciprocating member is provided for periodically distorting the crystallization surface and dislodging the ice particles which form on the crystallization surface. Using reservoir mixing the slurry is conditioned for easy pumping directly out of the production reservoir via medical tubing or delivery through other means such as squeeze bottles, squeeze bags, hypodermic syringes, manual hand delivery, and the like.

  5. Comparative testing of slurry monitors

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has millions of gallons of radioactive liquid and sludge wastes that must be retrieved from underground storage tanks, transferred to treatment facilities, and processed to a final waste form. The wastes will be removed from the current storage tanks by mobilizing the sludge wastes and mixing them with the liquid wastes to create slurries. Each slurry would then be transferred by pipeline to the desired destination. To reduce the risk of plugging a pipeline, the transport properties (e.g., density, suspended solids concentration, viscosity, particle size range) of the slurry should be determined to be within acceptable limits prior to transfer. These properties should also be monitored and controlled within specified limits while the slurry transfer is in progress. The DOE issued a call for proposals for developing on-line instrumentation to measure the transport properties of slurries. In response to the call for proposals, several researchers submitted proposals and were funded to develop slurry monitoring instruments. These newly developed DOE instruments are currently in the prototype stage. Before the instruments were installed in a radioactive application, the DOE wanted to evaluate them under nonradioactive conditions to determine if they were accurate, reliable, and dependable. The goal of this project was to test the performance of the newly developed DOE instruments along with several commercially available instruments. The baseline method for comparison utilized the results from grab-sample analyses

  6. Modeling of Bubble Column Slurry Reactor for Dimethyl Ether Synthesis from Syngas

    Institute of Scientific and Technical Information of China (English)

    张海涛; 应卫勇; 房鼎业

    2005-01-01

    A mathematical model for a bubble column slurry reactor is presented for dimethyl ether synthesis from syngas. Methanol synthesis from carbon monoxide and carbon dioxide by hydrogenation and the methanol dehydration are considered as independent reactions, in which methanol, dimethyl ether and carbon dioxide are the key components. In this model, the gas phase is considered to be in plug flow and the liquid phase to be in partly back mixing with axial distribution of solid catalyst. The simulation results show that the axial dispersion of solid catalysts, the operational height of the slurry phase in the bubble column slurry reactor, and the reaction results are influenced by the reaction temperature and pressure, which are the basic data for the scale-up of reactor.

  7. Heated fly ash/hydrated lime slurries for SO[sub 2] removal in spray dryer absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.F.; Keener, T.C.; Wang, J. (Univ. of Cincinnati, OH (United States). Dept. of Civil and Environmental Engineering)

    1995-01-01

    Coal fly ashes have been slurried with quicklime at elevated temperatures to determine their reactivity with SO[sub 2] in a minipilot spray dryer. Bench-scale experimental results indicate that this hydration process greatly increases the total surface area of the solids. Minipilot-scale spray dryer tests reveal that the slurry reaction step can significantly increase calcium utilization and SO[sub 2] removal of these fly ash/quicklime sorbents, depending on the type of fly ash used. One type of fly ash showed considerably better reactivity in the spray dryer tests. This enhancement is considered due to the presence of calcium silica hydrate material formed from the reaction between calcium and the alumina silicate found in the fly ashes and the difference in reactivity due to the type of calcium silica hydrate material formed. The benefit, however, decreases with the calcium feed rate. Pozzolanic strength tests were performed on the fly ashes used, and the measured unconfined compressive strengths followed the reactivity results in the spray dryer; the most reactive fly ash possessed the highest pozzolanic activity.

  8. Effects of calcium magnesium acetate on the combustion of Coal-Water Slurry

    Energy Technology Data Exchange (ETDEWEB)

    Levendis, Y.A.

    1990-01-01

    The general objective of the project is to investigate the combustion behavior of single and multiple Coal-Water Slurry particles burning at high temperature environments. Both uncatalyzed as well as catalyzed CWS drops with Calcium Magnesium Acetate (CMA) catalyst will be investigated. Emphasis will also be given in the effects of CMA on the sulfur capture during combustion.

  9. Attrition resistant bulk iron catalysts and processes for preparing and using same

    Science.gov (United States)

    Jothimurugesan, Kandaswamy; Goodwin, Jr., James G.; Gangwal, Santosh K.

    2007-08-21

    An attrition resistant precipitated bulk iron catalyst is prepared from iron oxide precursor and a binder by spray drying. The catalysts are preferably used in carbon monoxide hydrogenation processes such as Fischer-Tropsch synthesis. These catalysts are suitable for use in fluidized-bed reactors, transport reactors and, especially, slurry bubble column reactors.

  10. Bench-Scale Study of Hydrogen Separation Using Pre-Commercial Membranes; Estudio, a Escala de Planta Piloto, del Proceso de Separacion de Hidrogeno mediante Membranas Pre-Comerciales

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Hervas, J. M.; Marano, M.

    2011-11-10

    This report compiles the research undertaken by CIEMAT over 2009-2011 in the sub-project 8 Purification and Separation of Hydrogen of the PSE H2ENOV Project funded by the Spanish Ministry of Science and Innovation, MICINN. Permeability and hydrogen selectivity of a pre-commercial palladium membrane was studied at bench scale level. The effect of main operating parameters - pressure, temperature and feed-flow-rate- on permeate flow-rate was determined. The influence of other gas components on hydrogen permeation was evaluated. Mixtures of H{sub 2}-N{sub 2} and H{sub 2}-CO{sub 2} were studied. Although nitrogen and carbon dioxide did not permeate, both components decreased hydrogen permeation rate. Operating the membrane for around 1000 h under various conditions showed a small decrease in hydrogen permeation, but not in selectivity. A literature review was done in order to identify causes for permeation inhibition and reduction and for the definition of procedures for membrane regeneration. (Author) 29 refs.

  11. Alcohol synthesis in a high-temperature slurry reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, G.W.; Marquez, M.A.; McCutchen, M.S. [North Carolina State Univ., Raleigh, NC (United States)

    1995-12-31

    The overall objective of this contract is to develop improved process and catalyst technology for producing higher alcohols from synthesis gas or its derivatives. Recent research has been focused on developing a slurry reactor that can operate at temperatures up to about 400{degrees}C and on evaluating the so-called {open_quotes}high pressure{close_quotes} methanol synthesis catalyst using this reactor. A laboratory stirred autoclave reactor has been developed that is capable of operating at temperatures up to 400{degrees}C and pressures of at least 170 atm. The overhead system on the reactor is designed so that the temperature of the gas leaving the system can be closely controlled. An external liquid-level detector is installed on the gas/liquid separator and a pump is used to return condensed slurry liquid from the separator to the reactor. In order to ensure that gas/liquid mass transfer does not influence the observed reaction rate, it was necessary to feed the synthesis gas below the level of the agitator. The performance of a commercial {open_quotes}high pressure {close_quotes} methanol synthesis catalyst, the so-called {open_quotes}zinc chromite{close_quotes} catalyst, has been characterized over a range of temperature from 275 to 400{degrees}C, a range of pressure from 70 to 170 atm., a range of H{sub 2}/CO ratios from 0.5 to 2.0 and a range of space velocities from 2500 to 10,000 sL/kg.(catalyst),hr. Towards the lower end of the temperature range, methanol was the only significant product.

  12. Ammonia abatement by slurry acidification

    DEFF Research Database (Denmark)

    Petersen, Søren O.; Hutchings, Nicholas John; Hafner, Sasha;

    2016-01-01

    Livestock production systems can be major sources of trace gases including ammonia (NH3), the greenhouse gases methane (CH4) and nitrous oxide (N2O), and odorous compounds such as hydrogen sulphide (H2S). Short-term campaigns have indicated that acidification of livestock slurry during in....... The effect of acidification on emissions of H2S differed between experiments. Implications of slurry acidification for subsequent field application, including N and S availability, and soil pH, are discussed....... rates were generally high. It was concluded that the contribution from floors to NH3 emissions was <50%. There was some evidence for reduced CH4 emissions from acidified slurry, but CH4 emissions were generally low and apparently dominated by enteric fermentation. No effect on N2O emissions was observed...

  13. TECHNOLOGY DEVELOPMENT FOR IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.H.

    1998-07-22

    The goal of the proposed work described in this Final Report was the development of iron-based Fischer-Tropsch catalysts that combined high activity, selectivity and life with physical robustness for slurry phase reactors that will produce either low-alpha or high-alpha products. The work described here has optimized the catalyst composition and pretreatment operation for a low-alpha catalyst. In parallel, work has been conducted to design a high-alpha iron catalyst that is suitable for slurry phase synthesis. Studies have been conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors have been studied at the laboratory scale. Catalyst performance has been determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  14. Hydrogen production by Thermo Catalytic Decomposition of Natural Gas: Ni-based catalysts

    International Nuclear Information System (INIS)

    Thermo Catalytic Decomposition of methane using Ni and Ni-Cu catalyst is studied. The conventional co-precipitation method is compared versus an easier preparation method based on the fusing of the metallic nitrates. The role of copper has also been analyzed. TCD has been carried out in a bench scale fixed bed and a semi-pilot scale fluidized bed. Catalysts prepared by both methods shown similar behaviour. Introduction of copper in the catalyst promoted NiO reduction which prevented hydrogen from CO contamination. Fluid-dynamic studies have shown that TCD can be carried out in a fluidized bed reactor without reactor clogging provided that a methane velocity of two times the minimum fluidization velocity is used. This high spatial velocity resulted in a reduction of methane conversion. So the optimum gas velocity should be chosen in terms of hydrogen production rates and fluidization quality. (authors)

  15. Impacts of acid gases on mercury oxidation across SCR catalyst

    International Nuclear Information System (INIS)

    A series of bench-scale experiments were completed to evaluate acid gases of HCl, SO2, and SO3 on mercury oxidation across a commercial selective catalytic reduction (SCR) catalyst. The SCR catalyst was placed in a simulated flue gas stream containing O2, CO2, H2O, NO, NO2, and NH3, and N2. HCl, SO2, and SO3 were added to the gas stream either separately or in combination to investigate their interactions with mercury over the SCR catalyst. The compositions of the simulated flue gas represent a medium-sulfur and low- to medium-chlorine coal that could represent either bituminous or subbituminous. The experimental data indicated that 5-50 ppm HCl in flue gas enhanced mercury oxidation within the SCR catalyst, possibly because of the reactive chlorine species formed through catalytic reactions. An addition of 5 ppm HCl in the simulated flue gas resulted in mercury oxidation of 45% across the SCR compared to only 4% mercury oxidation when 1 ppm HCl is in the flue gas. As HCl concentration increased to 50 ppm, 63% of Hg oxidation was reached. SO2 and SO3 showed a mitigating effect on mercury chlorination to some degree, depending on the concentrations of SO2 and SO3, by competing against HCl for SCR adsorption sites. High levels of acid gases of HCl (50 ppm), SO2 (2000 ppm), and SO3 (50 ppm) in the flue gas deteriorate mercury adsorption on the SCR catalyst. (author)

  16. THOR Bench-Scale Steam Reforming Demonstration

    International Nuclear Information System (INIS)

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful

  17. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, D.W.; Soelberg, N.R.

    2003-05-21

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  18. TWR Bench-Scale Steam Reforming Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    D. W. Marshall; N. R. Soelberg

    2003-05-01

    The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

  19. Catalytic oxidation of calcium sulfite in solution/aqueous slurry

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-qin; WU Zhong-biao; WANG Da-hui

    2004-01-01

    Forced oxidation of calcium sulfite aqueous slurry is a key step for the calcium-based flue gas desulfurization(FGD) residue. Experiments were conducted in a semi-batch system and a continuous flow system on lab scales. The main reactor in semi-batch system is a 1000 ml volume flask. It has five necks for continuous feeding of gas and a batch of calcium sulfite solution/aqueous slurry. In continuous flow system, the main part is a jacketed Pyrex glass reactor in which gas and solution/aqueous slurry are fed continuously. Calcium sulfite oxidation is a series of complex free-radical reactions. According to experimental results and literature data, the reactions are influenced significantly by manganese as catalyst. At low concentration of manganese and calcium sulfite, the reaction rate is dependent on 1.5 order of sulfite concentration, 0.5 order of manganese concentration, and zero order of oxygen concentration in which the oxidation is controlled by chemical kinetics. With concentrations of calcium sulfite and manganese increasing, the reactions are independent gradually on the constituents in solution but are impacted by oxygen concentration. Manganese can accelerate the free-radical reactions, and then enhances the mass transfer of oxygen from gas to liquid. The critical concentration of calcium sulfite is 0.007 mol/L, manganese is 10-4 mol/L, and oxygen is of 0.2-0.4 atm.

  20. Comparative one-factor-at-a-time, response surface (statistical and bench-scale bioreactor level optimization of thermoalkaline protease production from a psychrotrophic Pseudomonas putida SKG-1 isolate

    Directory of Open Access Journals (Sweden)

    Singh Santosh K

    2011-12-01

    Full Text Available Abstract Background Production of alkaline protease from various bacterial strains using statistical methods is customary now-a-days. The present work is first attempt for the production optimization of a solvent stable thermoalkaline protease by a psychrotrophic Pseudomonas putida isolate using conventional, response surface methods, and fermentor level optimization. Results The pre-screening medium amended with optimized (w/v 1.0% glucose, 2.0% gelatin and 0.5% yeast extract, produced 278 U protease ml-1 at 72 h incubation. Enzyme production increased to 431 Uml-1 when Mg2+ (0.01%, w/v was supplemented. Optimization of physical factors further enhanced protease to 514 Uml-1 at pH 9.0, 25°C and 200 rpm within 60 h. The combined effect of conventionally optimized variables (glucose, yeast extract, MgSO4 and pH, thereafter predicted by response surface methodology yielded 617 U protease ml-1 at glucose 1.25% (w/v, yeast extract 0.5% (w/v, MgSO4 0.01% (w/v and pH 8.8. Bench-scale bioreactor level optimization resulted in enhanced production of 882 U protease ml-1 at 0.8 vvm aeration and 150 rpm agitation during only 48 h incubation. Conclusions The optimization of fermentation variables using conventional, statistical approaches and aeration/agitation at fermentor level resulted in ~13.5 folds increase (882 Uml-1 in protease production compared to un-optimized conditions (65 Uml-1. This is the highest level of thermoalkaline protease reported so far by any psychrotrophic bacterium.

  1. DEVELOPMENT OF A NANO-Ni-La-Fe/Al2O3 CATALYST TO BE USED FOR SYN-GAS PRODUCTION AND TAR REMOVAL AFTER BIOMASS GASIFICATION

    Directory of Open Access Journals (Sweden)

    Jianfen Li

    2009-11-01

    Full Text Available The objective of this study was to develop a supported tri-metallic catalyst (nano-Ni-La-Fe/γ-Al2O3 for tar removal in biomass steam gasification, to significantly enhance the quality of the produced gas. For this purpose, the supported tri-metallic catalysts were prepared by a deposition-precipitation (DP method. Different analytical approaches were used to characterize the synthesized catalysts. The results showed that the prepared tri-metallic catalysts had an egg-shell structure with a specific surface area of 214.7 m2/g. The activity of the catalysts for gas production and tar removal in the process of biomass gasification was also investigated using a bench-scale combined fixed bed reactor. The experiments indicated that the tar yield after adding catalyst was reduced significantly and the efficiency of tar removal reached 99% for the biomass steam gasification at 800oC, while the gas yield after adding catalysts increased markedly and less coke was found over the catalyst. Meanwhile, the compositions of gas products before and after adding catalyst in the process also changed significantly; in particular, the content of hydrogen in catalytic steam gasification was improved by over 10 vol%. Therefore, using the prepared tri-metallic catalyst in biomass gasification can significantly improve the quality of the produced gas and efficiently eliminate the tar generation, preventing coke deposition on the catalyst surfaces, thus demonstrating a long lifetime of the catalyst.

  2. Application of the Endurance Catalyst in RFCCU Unit

    Institute of Scientific and Technical Information of China (English)

    Li Bin; Zhao Hua; Wang Mingdong

    2008-01-01

    In order to improve the capability of the RFCC unit for heavy oil conversion, reduce the yields of coke and oil slurry, and increase the economic benefits of the unit, starting August 2007 the SINOPEC Luoyang Branch Company began to apply in its No. 2 RFCC unit the Endurance catalyst featuring strong heavy oil conversion ability, low yields of coke and oil slurry, and high total light liquid yield. The results on calibration of the Endurance catalyst conducted in November 2007 indicated that under the circumstances of using deteriorating feedstock quality and lower unit consumption of catalyst, the yields of coke, oil slurry and gas decreased by 0.28 %, 1.24 % and 0.35 %,respectively. The light distillate yield and total light liquid yield increased by 0.8 % and 1.88%,respectively.

  3. Static dissolution rate of tungsten film versus chemical adjustments of a reused slurry for chemical mechanical polishing

    International Nuclear Information System (INIS)

    Tungsten is widely used as deposited layer for the multi-level interconnection structures of wafers. The chemical composition of abrasive slurry plays an important role in chemical mechanical polishing (CMP) process. Removal of tungsten is driven by complex oxidation mechanisms between slurry components. The slurry for tungsten CMP generally contains oxidizer, iron catalyst, complexing agents and stabilizers in a pH adjusted solution of abrasive particles. Interaction between iron complex and H2O2 in the slurry is the main factor governing the chemical mode of material removal, oxidation potencies and kinetics. In this study, we investigate the effects of chemical additives in silica (SiO2)-based slurry on the removal rate of the tungsten film. Experiments were carried out in static batch as a preliminary study to understand and optimize chemical mechanisms in CMP-Tungsten process. Experiment designs were conducted to understand the influence of the chemical additives on the main performances of W-CMP. Used slurry, concentrated and retreated with chemical adjustments, is compared to the original slurry as a reference.

  4. Life Cycle Assessment of Slurry Management Technologies

    DEFF Research Database (Denmark)

    Wesnæs, Marianne; Wenzel, Henrik; Petersen, Bjørn Molt

    This report contains the results of Life Cycle Assessments of two slurry management technologies - acidification and decentred incineration. The LCA foundation can be used by the contributing companies for evaluating the environmental sustainability of a specific technology from a holistic Life...... Cycle perspective. Through this the companies can evaluate the environmental benefits and disadvantages of introducing a specific technology for slurry management. From a societal perspective the results can contribute to a clarification of which slurry management technologies (or combination of...

  5. Flow behaviour of sand-water slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk

    Cranfield, Bedforshire : BHR Group, 2010 - (Heywood, N.), s. 383-392 ISBN 978-1-85598-119-5. [International Conference on Hydrotransport /18./. Rio de Janeiro (BR), 22.09.2010-24.09.2010] R&D Projects: GA ČR(CZ) GAP105/10/1574 Institutional research plan: CEZ:AV0Z20600510 Keywords : sand slurry * sand -kaolin slurry * flow behavior * pressure drop * particle size distribution effect * concentration effect * slurry peptisation Subject RIV: BK - Fluid Dynamics

  6. Technology development for iron Fischer-Tropsch catalysts

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.J.; Raje, A.; Keogh, R.A. [and others

    1995-12-31

    The objective of this research project is to develop the technology for the production of physically robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry phase synthesis reactor development. The catalysts that are developed shall be suitable for testing in the Advanced Fuels Development Facility at LaPorte, Texas, to produce either low-or high-alpha product distributions. Previous work by the offeror has produced a catalyst formulation that is 1.5 times as active as the {open_quotes}standard-catalyst{close_quotes} developed by German workers for slurry phase synthesis. In parallel, work will be conducted to design a high-alpha iron catalyst this is suitable for slurry phase synthesis. Studies will be conducted to define the chemical phases present at various stages of the pretreatment and synthesis stages and to define the course of these changes. The oxidation/reduction cycles that are anticipated to occur in large, commercial reactors will be studied at the laboratory scale. Catalyst performance will be determined for catalysts synthesized in this program for activity, selectivity and aging characteristics.

  7. SLURRY FLOW MODELLING BY CFD

    Directory of Open Access Journals (Sweden)

    K.C. Ghanta

    2010-12-01

    Full Text Available An attempt has been made in the present study to develop a generalized slurry flow model using CFD and utilize the model to predict concentration profile. The purpose of the CFD model is to gain better insight into the solid liquid slur¬ry flow in pipelines. Initially a three-dimensional model problem was developed to understand the influence of the particle drag coefficient on the solid concen¬tration profile. The preliminary simulations highlighted the need for correct mo¬delling of the inter phase drag force. The various drag correlations available in the literature were incorporated into a two-fluid model (Euler-Euler along with the standard k- turbulence model with mixture properties to simulate the tur¬bulent solid-liquid flow in a pipeline. The computational model was mapped on to a commercial CFD solver FLUENT6.2 (of Fluent Inc., USA. To push the en¬velope of applicability of the simulation, recent data from Kaushal (2005 (with solid concentration up to 50% was selected to validate the three dimensional simulations. The experimental data consisted of water-glass bead slurry at 125 and 440-micron particle with different flow velocity (from 1 to 5 m/s and overall concentration up to 10 to 50% by volume. The predicted pressure drop and concentration profile were validated by experimental data and showed excel-lent agreement. Interesting findings came out from the parametric study of ve-locity and concentration profiles. The computational model and results discus¬sed in this work would be useful for extending the applications of CFD models for simulating large slurry pipelines.

  8. Effect of important operating parameters on product properties and operation of HDPE slurry reactor

    International Nuclear Information System (INIS)

    In this article, a complete model for the mixed flow slurry reactor for polymerization of ethylene to high density polyethylene in the presence of Ziegler-Natta catalyst is presented. In addition to the effects of the multiple active sites, the effect of other important parameters such as the catalyst concentration, co-catalyst, hydrogen, monomer, impurities and pressure on the mass-average and number-average polymer product chain length, the average product distribution index and the required residence time for the reactor were investigated. The simulation results show that as the catalyst, hydrogen and solvent concentrations increase, the mass and number-average polymer chain length decrease, whereas with increasing monomer concentration and pressure, the average molecular weight increases. The effects of these parameters on the polydispersity index and residence time do not follow the same trend and their relationship changes in some of these variables

  9. Slurry discharge management-beach profile prediction

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, R.; Nawrot, J.R. [Southern Illinois University at Carbondale, Carbondale, IL (United States). Dept. of Civil Engineering

    1996-11-01

    Mine tailings dams are embankments used by the mining industry to retain the tailings products after the mineral preparation process. Based on the acid-waste stereotype that all coal slurry is acid producing, current reclamation requires a four foot soil cover for inactive slurry disposal areas. Compliance with this requirement is both difficult and costly and in some case unnecessary, as not all the slurry, or portions of slurry impoundments are acid producing. Reduced costs and recent popularity of wetland development has prompted many operators to request reclamation variances for slurry impoundments. Waiting to address slurry reclamation until after the impoundment is full, limits the flexibility of reclamation opportunities. This paper outlines a general methodology to predict the formation of the beach profile for mine tailings dams, by the discharge volume and location of the slurry into the impoundment. The review is presented under the perspective of geotechnical engineering and waste disposal management emphasizing the importance of pre-planning slurry disposal land reclamation. 4 refs., 5 figs.

  10. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D

    2015-03-31

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  11. Catalyst functionalized buffer sorbent pebbles for rapid separation of carbon dioxide from gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Aines, Roger D.

    2013-03-12

    A method for separating CO.sub.2 from gas mixtures uses a slurried media impregnated with buffer compounds and coating the solid media with a catalyst or enzyme that promotes the transformation of CO.sub.2 to carbonic acid. Buffer sorbent pebbles with a catalyst or enzyme coating are provided for rapid separation of CO.sub.2 from gas mixtures.

  12. Separation of Fischer-Tropsch Wax Products from Ultrafine Iron Catalyst Particles

    Energy Technology Data Exchange (ETDEWEB)

    Amitava Sarkar; James K. Neathery; Burtron H. Davis

    2006-12-31

    A fundamental filtration study was started to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. Slurry-phase FTS in slurry bubble column reactor systems is the preferred mode of operation since the reaction is highly exothermic. Consequently, heavy wax products in one approach may be separated from catalyst particles before being removed from the reactor system. Achieving an efficient wax product separation from iron-based catalysts is one of the most challenging technical problems associated with slurry-phase iron-based FTS and is a key factor for optimizing operating costs. The separation problem is further compounded by attrition of iron catalyst particles and the formation of ultra-fine particles.

  13. Acidification of animal slurry--a review.

    Science.gov (United States)

    Fangueiro, David; Hjorth, Maibritt; Gioelli, Fabrizio

    2015-02-01

    Ammonia emissions are a major problem associated with animal slurry management, and solutions to overcome this problem are required worldwide by farmers and stakeholders. An obvious way to minimize ammonia emissions from slurry is to decrease slurry pH by addition of acids or other substances. This solution has been used commonly since 2010 in countries such as Denmark, and its efficiency with regard to the minimization of NH3 emissions has been documented in many studies. Nevertheless, the impact of such treatment on other gaseous emissions during storage is not clear, since the studies performed so far have provided different scenarios. Similarly, the impact of the soil application of acidified slurry on plant production and diffuse pollution has been considered in several studies. Also, the impact of acidification upon combination with other slurry treatment technologies (e.g. mechanical separation, anaerobic digestion …) is important to consider. Here, a compilation and critical review of all these studies has been performed in order to fully understand the global impact of slurry acidification and assess the applicability of this treatment for slurry management. PMID:25463570

  14. Performance of a Centrifugal Slurry Pump

    Directory of Open Access Journals (Sweden)

    Hawas Yahya Bajawi

    2014-02-01

    Full Text Available The aim of this study was to experimentally investigate the effect of speed, concentration and size of slurry on the performance of a centrifugal pump. For this purpose a facility was built where the performance of a centrifugal slurry pump was examined using aggregate slurry. Three sizes of slurry with three concentrations and at three impeller speeds were used for the performance investigations of a centrifugal slurry pump. As a reference performance the performance of centrifugal slurry pump was also tested with clean water. The performance of pump has been reported as variations of head, power and efficiency at various flow rates along with the system characteristics of the pump. The results reveal that the pump performance is grossly affected by the type of slurry, its concentration and size. Besides this the variation in speed also affects the performance as is observed in pumps with water. The maximum decrease in the head, with respect to clear water, at the operating point was found to be 47% for aggregate for size 20 mm, 15% concentration and 2600 rpm. The maximum decrement in efficiency at operating point for aggregate was found to be 47% for 4 mm size, 15% concentration and at 2200 rpm. The power increment requirement for aggregate was 9% for 4 mm size, 15% concentration and 2600 rpm.

  15. Liquefying of concentrated fine-grained slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk

    Jaroslavl: Jaroslavskij Gosudarstvennyj technicheskij Institut, 2007 - (Balakirev, V.), s. 114-121 ISBN 5-230-20704-3. [Mezhdunarodnaja nauchnaja konferencija Matematicheskije Metody v Nauke i Technologijach /20./. Yaroslavl (RU), 29.05.2007-01.06.2007] R&D Projects: GA AV ČR IAA200600503; GA MPO FF-P/051 Institutional research plan: CEZ:AV0Z20600510 Keywords : fine-grained slurries * drag reduction * kaolin slurry * fluidic ash slurry * laminar/turbulent transition Subject RIV: JM - Building Engineering

  16. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  17. Thermoreversible Gelling Slurry for Solid Freeforming Fabrication

    International Nuclear Information System (INIS)

    Direct-Ink-writing technique (DIW) can perform solid freeforming fabrication (SFF) to produce on-demand complex ceramic components. In this study, thermally gelling concentrated alumina slurry was prepared as a new ink for the direct-ink-writing technique. By employing the triblock copolymers of poly (ethylene oxide) (PEO) and poly (propylene oxide) (PPO), the concentrated alumina slurry showed nearly Newtonian behavior (sol state) at cooled temperature (5 deg. C) and thickened (gel state) at room temperature (30 deg. C). These states were reversible with the temperature change. The thermally-thickened alumina slurry had enough viscoelastic response to perform direct-ink-writing of 3D periodic colloidal structures with feature sizes of around 100μm in air without any clogging. The cooled slurry can be also handled easily on its setting up for DIW due to its low viscosity.

  18. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    OpenAIRE

    Nediljka Gaurina-Međimurec; Davorin Matanović; Gracijan Krklec

    1994-01-01

    During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures) and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production...

  19. SEPARATION OF FISCHER-TROPSCH WAX PRODUCTS FROM ULTRAFINE IRON CATALYST PARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    James K. Neathery; Gary Jacobs; Burtron H. Davis

    2005-03-31

    In this reporting period, a fundamental filtration study was continued to investigate the separation of Fischer-Tropsch Synthesis (FTS) liquids from iron-based catalyst particles. The overall focus of the program is with slurry-phase FTS in slurry bubble column reactor systems. Hydrocarbon products must be separated from catalyst particles before being removed from the reactor system. An efficient wax product/catalyst separation system is a key factor for optimizing operating costs for iron-based slurry-phase FTS. Previous work has focused on catalyst particle attrition and the formation of ultra-fine iron carbide and/or carbon particles. With the current study, we are investigating how the filtration properties are affected by these chemical and physical changes of the catalyst slurry during activation/synthesis. In this reporting period, a series of crossflow filtration experiments were initiated to study the effect of olefins and oxygenates on the filtration flux and membrane performance. Iron-based FTS reactor waxes contain a significant amount of oxygenates, depending on the catalyst formulation and operating conditions. Mono-olefins and aliphatic alcohols were doped into an activated iron catalyst slurry (with Polywax) to test their influence on filtration properties. The olefins were varied from 5 to 25 wt% and oxygenates from 6 to 17 wt% to simulate a range of reactor slurries reported in the literature. The addition of an alcohol (1-dodecanol) was found to decrease the permeation rate while the olefin added (1-hexadecene) had no effect on the permeation rate. A passive flux maintenance technique was tested that can temporarily increase the permeate rate for 24 hours.

  20. Bimetallic Catalysts.

    Science.gov (United States)

    Sinfelt, John H.

    1985-01-01

    Chemical reaction rates can be controlled by varying composition of miniscule clusters of metal atoms. These bimetallic catalysts have had major impact on petroleum refining, where work has involved heterogeneous catalysis (reacting molecules in a phase separate from catalyst.) Experimentation involving hydrocarbon reactions, catalytic…

  1. Kinetics of Liquid-Phase Hydrogenation of Benzene in a Metal Hydride Slurry System Formed by M1Ni5 and Benzene

    Institute of Scientific and Technical Information of China (English)

    代世耀; 徐国华; 安越; 陈长聘; 陈立新; 王启东

    2003-01-01

    The kinetics of liquid-phase hydrogenation of benzene in misch metal nickel-five (M1Ni5) and benzene slurry system was studied by investigating the influences of the reaction temperature, pressure, alloy concentration and stirring speed on the mass transfer-reaction processes inside the slurry. The results show that the whole process is controlled by the reaction at the surface of the catalyst. The mass transfer resistance at gas-liquid interface and that from the bulk liquid phase to the surface of the catalyst particles are negligible. The apparent reaction rate is zero order for benzene concentration and first order for hydrogen concentration in the liquid phase. The kinetic model obtained fits the experimental data very well. The apparent activation energy of the hydrogen absorption reaction of M1Ni5-C6H6 slurry system is 42.16 kJ·mo1-1.

  2. Effects of calcium magnesium acetate on the combustion of Coal-Water Slurry. Third quarterly project status report, 1 March 1990--31 May 1990

    Energy Technology Data Exchange (ETDEWEB)

    Levendis, Y.A.

    1990-12-31

    The general objective of the project is to investigate the combustion behavior of single and multiple Coal-Water Slurry particles burning at high temperature environments. Both uncatalyzed as well as catalyzed CWS drops with Calcium Magnesium Acetate (CMA) catalyst will be investigated. Emphasis will also be given in the effects of CMA on the sulfur capture during combustion.

  3. Studies of coal slurries property; Slurry no seijo ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, M.; Aihara, Y.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Nogami, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan); Sakaki, T.; Shibata, M.; Hirosue, H. [Kyushu National Industrial Research Institute, Saga (Japan)

    1996-10-28

    It was previously found that the increase of slurry temperature provides a significant effect of slurry viscosity reduction for the coal slurry with high concentration of 50 wt%. To investigate the detailed influence of slurry temperature for the coal slurry with concentration of 50 wt%, influence of temperature on the successive change of apparent viscosity was observed at the constant shear rate. When the concentration of coal was increased from 45 wt% to 50 wt%, viscosity of the slurry was rapidly increased. When heated above 70{degree}C, the apparent viscosity decreased during heating to the given temperature, but it increased successively after reaching to the given temperature. The apparent viscosity showed higher value than that of the initial viscosity. The coal slurry with concentration of 50 wt% showed the fluidity of Newtonian fluid at the lower shear rate region, but showed the fluidity of pseudo-plastic fluid at the higher shear rate region. The slurry having high apparent viscosity by the successive change showed higher apparent viscosity with increasing the higher even by changing the shear rate. 1 ref., 4 figs.

  4. Optical measurement of slurry concentration profile in a concurrent-flow gas-slurry column

    International Nuclear Information System (INIS)

    An optical technique is described which allows the measurement of steady-state slurry concentration profile in a slender concurrent-flow gas-slurry bubble column. The optically measured profile is compared with that predicted by a previously reported semiempirical dispersion model. Qualitative agreement is observed between them, and the reliability of the technique is supported by additional experimental data

  5. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  6. Modelling-based Optimisation of the Direct Synthesis of Dimethyl Ether from Syngas in a Commercial Slurry Reactor

    Institute of Scientific and Technical Information of China (English)

    Sadegh Papari; Mohammad Kazemeini; Moslem Fattahi

    2013-01-01

    In the present study,we developed a multi-component one-dimensional mathematical model for simulation and optimisation of a commercial catalytic slurry reactor for the direct synthesis of dimethyl ether (DME) from syngas and CO2,operating in a chum-turbulent regime.DME productivity and CO conversion were optimised by tuning operating conditions,such as superficial gas velocity,catalyst concentration,catalyst mass over molar gas flow rate (W/F),syngas composition,pressure and temperature.Reactor modelling was accomplished utilising mass balance,global kinetic models and heterogeneous hydrodynamics.In the heterogeneous flow regime,gas was distributed into two bubble phases:small and large.Simulation results were validated using data obtained from a pilot plant.The developed model is also applicable for the design of large-scale slurry reactors.

  7. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-01-01

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H{sub 2} + CO = CH{sub 3}OH; 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O; H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a

  8. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN

    Energy Technology Data Exchange (ETDEWEB)

    Andrew W. Wang

    2002-05-15

    The Liquid Phase Dimethyl Ether (LPDME{trademark}) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is: 2H{sub 2} + CO = CH{sub 3}OH 2CH{sub 3}OH = CH{sub 3}OCH{sub 3} + H{sub 2}O H{sub 2}O + CO = CO{sub 2} + H{sub 2}. Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME{trademark} process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO{sub 2}-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME{trademark} process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup project

  9. Mathematical modeling of a slurry reactor for DME direct synthesis from syngas

    Institute of Scientific and Technical Information of China (English)

    Sadegh Papari; Mohammad Kazemeini; Moslem Fattahi

    2012-01-01

    In this paper,an axial dispersion mathematical model is developed to simulate a three-phase slurry bubble column reactor for direct synthesis of dimethyl ether (DME) from syngas.This large-scale reactor is modeled using mass and energy balances,catalyst sedimentation and single-bubble as well as two-bubbles class flow hydrodynamics.A comparison between the two hydrodynamic models through pilot plant experimental data from the literature shows that heterogeneous two-bubbles flow model is in better agreement with the experimental data than homogeneous single-bubble gas flow model.Also,by investigating the heterogeneous gas flow and axial dispersion model for small bubbles as well as the large bubbles and slurry (i.e.including paraffins and the catalyst) phase,the temperature profile along the reactor is obtained.A comparison between isothermal and non-isothermal reactors reveals no obvious performance difference between them.The optimum values of reactor diameter and height were obtained at 7 m and 50 m,respectively.The effects of operating variables on the axial catalyst distribution,DME productivity and CO conversion are also investigated in this research.

  10. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  11. Photo-oxidation catalysts

    Science.gov (United States)

    Pitts, J. Roland; Liu, Ping; Smith, R. Davis

    2009-07-14

    Photo-oxidation catalysts and methods for cleaning a metal-based catalyst are disclosed. An exemplary catalyst system implementing a photo-oxidation catalyst may comprise a metal-based catalyst, and a photo-oxidation catalyst for cleaning the metal-based catalyst in the presence of light. The exposure to light enables the photo-oxidation catalyst to substantially oxidize absorbed contaminants and reduce accumulation of the contaminants on the metal-based catalyst. Applications are also disclosed.

  12. Rocketdyne's advanced coal slurry pumping program

    Science.gov (United States)

    Davis, D. E.; Wong, G. S.; Gilman, H. H.

    1977-01-01

    The Rocketdyne Division of Rockwell International Corporation is conducting a program for the engineering, fabrication, and testing of an experimental/prototype high-capacity, high-pressure centrifugal slurry feed pump for coal liquefaction purposes. The abrasion problems in a centrifugal slurry pump are primarily due to the manner in which the hard, solid particles contained in the slurry are transported through the hydraulic flow passages within the pump. The abrasive particles can create scraping, grinding, cutting, and sandblasting effects on the various exposed parts of the pump. These critical areas involving abrasion and impact erosion wear problems in a centrifugal pump are being addressed by Rocketdyne. The mechanisms of abrasion and erosion are being studied through hydrodynamic analysis, materials evaluation, and advanced design concepts.

  13. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Dragomir B. Bukur; Dr. X. Lang; Dr. S. Chokkaram; Dr. L. Nowicki; G. Wei; Dr. Y. Ding; Dr. B. Reddy; Dr. S. Xiao

    1999-07-22

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration

  14. DEVELOPMENT OF PRECIPITATED IRON FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    Despite the current worldwide oil glut, the US will ultimately require large-scale production of liquid (transportation) fuels from coal. Slurry phase Fischer-Tropsch (F-T) technology, with its versatile product slate, may be expected to play a major role in production of transportation fuels via indirect coal liquefaction. Some of the F-T catalysts synthesized and tested at Texas A and M University under DOE Contract No. DE-AC22-89PC89868 were more active than any other known catalysts developed for maximizing production of high molecular weight hydrocarbons (waxes). The objectives of the present contract were to demonstrate repeatability of catalyst performance and reproducibility of preparation procedures of two of these catalysts on a laboratory scale. Improvements in the catalyst performance were attempted through the use of: (a) higher reaction pressure and gas space velocity to maximize the reactor productivity; (b) modifications in catalyst preparation steps; and (c) different pretreatment procedures. Repeatability of catalyst performance and reproducibility of catalyst synthesis procedure have been successfully demonstrated in stirred tank slurry reactor tests. Reactor space-time-yield was increased up to 48% by increasing reaction pressure from 1.48 MPa to 2.17 MPa, while maintaining the gas contact time and synthesis gas conversion at a constant value. Use of calcination temperatures above 300 C, additional CaO promoter, and/or potassium silicate as the source of potassium promoter, instead of potassium bicarbonate, did not result in improved catalyst performance. By using different catalyst activation procedures they were able to increase substantially the catalyst activity, while maintaining low methane and gaseous hydrocarbon selectivities. Catalyst productivity in runs SA-0946 and SA-2186 was 0.71 and 0.86 gHC/g-Fe/h, respectively, and this represents 45-75% improvement in productivity relative to that achieved in Rheinpreussen's demonstration plant

  15. Review and Assessment of Commercial Vendors/Options for Feeding and Pumping Biomass Slurries for Hydrothermal Liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Berglin, Eric J.; Enderlin, Carl W.; Schmidt, Andrew J.

    2012-11-01

    The National Advanced Biofuels Consortium is working to develop improved methods for producing high-value hydrocarbon fuels. The development of one such method, the hydrothermal liquefaction (HTL) process, is being led by the Pacific Northwest National Laboratory (PNNL). The HTL process uses a wet biomass slurry at elevated temperatures (i.e., 300 to 360°C [570 to 680°F]) and pressures above the vapor pressure of water (i.e., 15 to 20 MPa [2200 to 3000 psi] at these temperatures) to facilitate a condensed-phase reaction medium. The process has been successfully tested at bench-scale and development and testing at a larger scale is required to prove the viability of the process at production levels. Near-term development plans include a pilot-scale system on the order of 0.5 to 40 gpm, followed by a larger production-scale system on the order of 2000 dry metric tons per day (DMTPD). A significant challenge to the scale-up of the HTL process is feeding a highly viscous fibrous biomass wood/corn stover feedstock into a pump system that provides the required 3000 psi of pressure for downstream processing. In October 2011, PNNL began investigating commercial feed and pumping options that would meet these HTL process requirements. Initial efforts focused on generating a HTL feed and pump specification and then providing the specification to prospective vendors to determine the suitability of their pumps for the pilot-scale and production-scale plants. Six vendors were identified that could provide viable equipment to meet HTL feed and/or pump needs. Those six vendors provided options consisting three types of positive displacement pumps (i.e., diaphragm, piston, and lobe pumps). Vendors provided capabilities and equipment related to HTL application. This information was collected, assessed, and summarized and is provided as appendices to this report.

  16. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    International Nuclear Information System (INIS)

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming < 25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the

  17. Elimination Of Catalytic Hydrogen Generation In Defense Waste Processing Facility Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2013-01-22

    Based on lab-scale simulations of Defense Waste Processing Facility (DWPF) slurry chemistry, the addition of sodium nitrite and sodium hydroxide to waste slurries at concentrations sufficient to take the aqueous phase into the alkaline region (pH > 7) with approximately 500 mg nitrite ion/kg slurry (assuming <25 wt% total solids, or equivalently 2,000 mg nitrite/kg total solids) is sufficient to effectively deactivate the noble metal catalysts at temperatures between room temperature and boiling. This is a potential strategy for eliminating catalytic hydrogen generation from the list of concerns for sludge carried over into the DWPF Slurry Mix Evaporator Condensate Tank (SMECT) or Recycle Collection Tank (RCT). These conclusions are drawn in large part from the various phases of the DWPF catalytic hydrogen generation program conducted between 2005 and 2009. The findings could apply to various situations, including a solids carry-over from either the Sludge Receipt and Adjustment Tank (SRAT) or Slurry Mix Evaporator (SME) into the SMECT with subsequent transfer to the RCT, as well as a spill of formic acid into the sump system and transfer into an RCT that already contains sludge solids. There are other potential mitigating factors for the SMECT and RCT, since these vessels are typically operated at temperatures close to the minimum temperatures that catalytic hydrogen has been observed to occur in either the SRAT or SME (pure slurry case), and these vessels are also likely to be considerably more dilute in both noble metals and formate ion (the two essential components to catalytic hydrogen generation) than the two primary process vessels. Rhodium certainly, and ruthenium likely, are present as metal-ligand complexes that are favored under certain concentrations of the surrounding species. Therefore, in the SMECT or RCT, where a small volume of SRAT or SME material would be significantly diluted, conditions would be less optimal for forming or sustaining the

  18. Continuous in-house acidification affecting animal slurry composition

    DEFF Research Database (Denmark)

    Hjorth, Maibritt; Cocolo, Giorgia; Jonassen, Kristoffer;

    2015-01-01

    The emerging slurry acidification technology affects gaseous emissions, fertiliser value, biogas production and solid-liquid separation; however, maximising the advantages is difficult, as the effect of acidification on the slurry characteristics resulting in those observations remains unclarifie...... acidification-induced aggregation. Overall, the acidified slurry was significantly different from untreated slurry; it had higher conductivity, more dissolved inorganic components, fewer small organic compounds, more large dissolved organic compounds, and larger particles....

  19. Preparation of MoO3/gamma-Al2O3 Catalyst by the Reaction of alpha-Boehmite with MoO3/H2O Slurry - Dual Role of MoO3 as Active Phase and Texture Stabilizer during Calcination

    Czech Academy of Sciences Publication Activity Database

    Kaluža, Luděk; Zdražil, Miroslav

    2005-01-01

    Roč. 85, č. 2 (2005), s. 391-398. ISSN 0133-1736 R&D Projects: GA AV ČR(CZ) IAA4072306 Institutional research plan: CEZ:AV0Z40720504 Keywords : alpha- boehmite * alumina * molybdena catalysts Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 0.670, year: 2005

  20. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2005-09-29

    This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H{sub 2}O, CO{sub 2}, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter ({alpha}) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number

  1. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYSTHESIS

    International Nuclear Information System (INIS)

    This report covers the third year of this research grant under the University Coal Research program. The overall objective of this project is to develop a comprehensive kinetic model for slurry phase Fischer-Tropsch synthesis (FTS) on iron catalysts. This model will be validated with experimental data obtained in a stirred tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (H2O, CO2, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the reporting period we utilized experimental data from the STSR, that were obtained during the first two years of the project, to perform vapor-liquid equilibrium (VLE) calculations and estimate kinetic parameters. We used a modified Peng-Robinson (PR) equation of state (EOS) with estimated values of binary interaction coefficients for the VLE calculations. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Occasional discrepancies (for some of the experimental data) between calculated and experimental values of the liquid phase composition were ascribed to experimental errors. The VLE calculations show that the vapor and the liquid are in thermodynamic equilibrium under reaction conditions. Also, we have successfully applied the Levenberg-Marquardt method (Marquardt, 1963) to estimate parameters of a kinetic model proposed earlier by Lox and Froment (1993b) for FTS on an iron catalyst. This kinetic model is well suited for initial studies where the main goal is to learn techniques for parameter estimation and statistical analysis of estimated values of model parameters. It predicts that the chain growth parameter (α) and olefin to paraffin ratio are independent of carbon number, whereas our experimental data show that they vary with the carbon number. Predicted molar flow

  2. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  3. Observations on microbial activity in acidified pig slurry

    DEFF Research Database (Denmark)

    Ottosen, Lars Ditlev Mørck; Poulsen, Henrik Vestergaard; Nielsen, Daniel Aagren; Finster, Kai; Nielsen, Lars Peter; Revsbech, Niels Peter

    2009-01-01

    . Oxygen consumption rate, methanogenesis and sulphate reduction were all reduced by more than 98% in the stored acidified slurry compared to untreated slurry. Despite higher sulphate concentration, the microbial metabolism was greatly compromised or absent in the acidified slurry. This could be explained...

  4. Potassium sorbate as an inhibitor in copper chemical mechanical planarization slurry. Part I. Elucidating slurry chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Nagar, Magi; Starosvetsky, David [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel); Vaes, Jan [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Ein-Eli, Yair, E-mail: eineli@tx.technion.ac.i [Department of Materials Engineering, Technion Israel Institute of Technology, Haifa 32000 (Israel)

    2010-04-01

    The integration of an advanced inhibitor, potassium sorbate (K[CH{sub 3}(CH){sub 4}CO{sub 2}]), in a copper CMP slurry based on hydrogen peroxide and glycine is reported. The first part of the study discusses the slurry chemistry by qualitatively describing the processes involved and proposes a mechanism for a hydrogen peroxide-glycine based slurry having sorbate anion as an inhibitor. For this purpose, the specific role of each chemical constituent in the slurry was elucidated at a fundamental level by electrochemical studies, X-ray photon spectroscopy (XPS) and contact angle measurements, all linked to the CMP performance on blanket wafers. Once the polishing mechanism was resolved the influence of the inhibitor was evaluated by CMP processing of patterned wafers.

  5. Potassium sorbate as an inhibitor in copper chemical mechanical planarization slurry. Part I. Elucidating slurry chemistry

    International Nuclear Information System (INIS)

    The integration of an advanced inhibitor, potassium sorbate (K[CH3(CH)4CO2]), in a copper CMP slurry based on hydrogen peroxide and glycine is reported. The first part of the study discusses the slurry chemistry by qualitatively describing the processes involved and proposes a mechanism for a hydrogen peroxide-glycine based slurry having sorbate anion as an inhibitor. For this purpose, the specific role of each chemical constituent in the slurry was elucidated at a fundamental level by electrochemical studies, X-ray photon spectroscopy (XPS) and contact angle measurements, all linked to the CMP performance on blanket wafers. Once the polishing mechanism was resolved the influence of the inhibitor was evaluated by CMP processing of patterned wafers.

  6. Settlement of tailings slurries by creep compression

    Energy Technology Data Exchange (ETDEWEB)

    Scott, J.D.; Chalaturnyk, R.J.; Jeeravipoolvarn, S. [Alberta Univ., Edmonton, AB (Canada). Dept. of Civil and Environmental Engineering

    2004-07-01

    Large volumes of sand, silt, clay and small amounts of bitumen are produced from the oil sand mining operations in northern Alberta. A model is being developed to predict the consolidation behaviour of highly thixotrophic tailings slurries. The model incorporates effective stress-void ratio and void ratio-hydraulic conductivity relationships for the material. The thixotrophic strength-time relationship and the void ratio-creep rate relationship is also considered along with the mineralogy, bitumen content and water chemistry. Most analytical predictions of the rate and magnitude tailings settling overestimate how fast pore pressures will dissipate. Field deposits of non-segregating tailings to mature fine tailings demonstrate continued high pore pressures near the surface which deter surface reclamation. A finite strain theory is used in geotechnical analyses which predict the consolidation behavior of soft soils. However, this theory does not predict the full range of sedimentation, consolidation and pore pressure dissipation which occurs in thixotrophic tailings slurries. This new strain consolidation model assumes that the creep rate of the slurry exceeds the pore pressure dissipation rate. The model is useful for rapidly deposited, low permeability thixotrophic slurries where the upwards drainage path increases by several metres a year such as in oil sand tailings ponds and consolidated tailings (CT) deposits. 13 refs., 2 tabs., 12 figs.

  7. Catalyst Architecture

    DEFF Research Database (Denmark)

    Kiib, Hans; Marling, Gitte; Hansen, Peter Mandal

    2014-01-01

    How can architecture promote the enriching experiences of the tolerant, the democratic, and the learning city - a city worth living in, worth supporting and worth investing in? Catalyst Architecture comprises architectural projects, which, by virtue of their location, context and their combination...... of programs, have a role in mediating positive social and/or cultural development. In this sense, we talk about architecture as a catalyst for: sustainable adaptation of the city’s infrastructure appropriate renovation of dilapidated urban districts strengthening of social cohesiveness in the city...

  8. Monitoring of slurry fields solutions of aluminium production

    International Nuclear Information System (INIS)

    Results of annual monitoring of slurry fields solutions of aluminium industrial production of Tajik Aluminium Plant are considered in this work. It is found that in summer period the containing of sulfate, carbonate, hydro carbonate and fluoride salts in slurry fields solutions increase. This is due to intensive evaporation of solvent (water). In autumn-winter period due to air temperature decreasing the precipitation of above mentioned salts is observed. The results of chemical analysis of slurry fields solutions are presented in this work. The slurry fields solutions are analyzed by means of X-ray and thermal analysis. The flowsheet of purification of processed slurry fields solutions from sodium sulphate is proposed.

  9. Application of a mixed metal oxide catalyst to a metallic substrate

    Science.gov (United States)

    Sevener, Kathleen M. (Inventor); Lohner, Kevin A. (Inventor); Mays, Jeffrey A. (Inventor); Wisner, Daniel L. (Inventor)

    2009-01-01

    A method for applying a mixed metal oxide catalyst to a metallic substrate for the creation of a robust, high temperature catalyst system for use in decomposing propellants, particularly hydrogen peroxide propellants, for use in propulsion systems. The method begins by forming a prepared substrate material consisting of a metallic inner substrate and a bound layer of a noble metal intermediate. Alternatively, a bound ceramic coating, or frit, may be introduced between the metallic inner substrate and noble metal intermediate when the metallic substrate is oxidation resistant. A high-activity catalyst slurry is applied to the surface of the prepared substrate and dried to remove the organic solvent. The catalyst layer is then heat treated to bind the catalyst layer to the surface. The bound catalyst layer is then activated using an activation treatment and calcinations to form the high-activity catalyst system.

  10. Auto-Thermal Reforming of Jet-A Fuel over Commercial Monolith Catalysts: MicroReactor Evaluation and Screening Test Results

    Science.gov (United States)

    Yen, Judy C. H.; Tomsik, Thomas M.

    2004-01-01

    This paper describes the results of a series of catalyst screening tests conducted with Jet-A fuel under auto-thermal reforming (ATR) process conditions at the research laboratories of SOFCo-EFS Holdings LLC under Glenn Research Center Contract. The primary objective is to identify best available catalysts for future testing at the NASA GRC 10-kW(sub e) reformer test facility. The new GRC reformer-injector test rig construction is due to complete by March 2004. Six commercially available monolithic catalyst materials were initially selected by the NASA/SOFCo team for evaluation and bench scale screening in an existing 0.05 kW(sub e) microreactor test apparatus. The catalyst screening tests performed lasted 70 to 100 hours in duration in order to allow comparison between the different samples over a defined range of ATR process conditions. Aging tests were subsequently performed with the top two ranked catalysts as a more representative evaluation of performance in a commercial aerospace application. The two catalyst aging tests conducted lasting for approximately 600 hours and 1000 hours, respectively.

  11. Evaluation of slurry characteristics for rechargeable lithium-ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Lithium-ion battery slurries are prepared for rechargeable batteries. • The dispersion state of slurry constituents is identified. • Thermal, morphological, rheological, and electrical properties of slurries are analyzed. - Abstract: A multi-component slurry for rechargeable batteries is prepared by dispersing LiCoO2, conductive additives, and polymeric binders in a solvent. The physical properties, including rheological, morphological, electrical, and spectroscopic features of battery slurries are investigated. The relationship between the measured physical properties and the internal structure of the slurry is analyzed. It is found that the rheological behavior of the slurry is determined by the interaction of active materials and binding materials (e.g., network structure) and that the dispersion state of conductive additives (e.g., agglomeration) also depends on the binder–carbon interaction

  12. Elemental analysis of slurry samples with laser induced breakdown spectroscopy

    International Nuclear Information System (INIS)

    Direct analysis of wet slurry samples with laser induced breakdown spectroscopy (LIBS) is challenging due to problems of sedimentation, splashing, and surface turbulence. Also, water can quench the laser plasma and suppress the LIBS signal, resulting in poor sensitivity. The effect of water on LIBS spectra from slurries was investigated. As the water content decreased, the LIBS signal was enhanced and the standard deviation was reduced. To improve LIBS slurry analysis, dried slurry samples prepared by applying slurry on PVC coated slides were evaluated. Univariate and multivariate calibration was performed on the LIBS spectra of the dried slurry samples for elemental analysis of Mg, Si, and Fe. Calibration results show that the dried slurry samples give a good correlation between spectral intensity and elemental concentration.

  13. How to make Fischer-Tropsch catalyst scale-up fully reliable?

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, L.; Heraud, J.P.; Forret, A.; Gazarian, J. [IFP Energies nouvelles, Solaize (France); Cornaro, U. [Eni S.p.A., San Donato Milanese (Italy). R and M Div.; Carugati, A. [Eni S.p.A., San Donato Milanese (Italy). E and P Div.

    2011-07-01

    Several players use Fischer-Tropsch catalysts and technologies industrially [1,2] or declare to be ready for industrial application [e.g. 3]. Present R and D aims to further increase capacities per train [4] or improve catalyst selectivity towards middle distillates [5]. For transforming promising laboratory results into industrial reality, representative catalyst testing is of particular importance for slurry bubble column FT. In the Italian eni's refinery of Sannazzaro, a 20 BPD slurry bubble column pilot plant has cumulated more than 20,000 hours time on stream in different campaigns. Non reactive slurry bubble columns corresponding to reactor capacities between 20 BPD and 1000 BPD permitted to determine the profiles for gas hold up and liquid velocities as a function of gas flow, catalyst loading, reactor diameter and internals. A hydrodynamic model based on those data led to design a Large Validation Tool, which can reproduce under reaction conditions a high mechanical stress on the catalyst equivalent to the one experienced in an industrial 15000 BPD reactor. While those tools have proven to be efficient for developing an industrial scale FT catalyst [3], they predict today in a representative manner fines formation, activity and selectivity of improved catalysts and / or for optimization of operation conditions to increase the capacity per train. We compare the here presented approach to others. We have found that it is mandatory to combine chemical stress from the reaction products with mechanical stress as experienced in an industrial slurry bubble column, in order to evaluate in a reliable way catalyst performance stability and fines formation. The potential of improvements are discussed. (orig.)

  14. Low temperature incineration of mixed wastes using bulk metal oxide catalysts

    International Nuclear Information System (INIS)

    Volume reduction of low-level mixed wastes from former nuclear weapons facilities is a significant environmental problem. Processing of these materials presents unique scientific and engineering problems due to the presence of minute quantities of radionuclides which must be contained and concentrated for later safe disposal. Low-temperature catalytic incineration is one option that has been utilized at the Rocky Flats facility for this purpose. This paper presents results of research regarding evaluation of bulk metal oxides as catalysts for low-temperature incineration of carbonaceous residues which are typical by-products of fluidized bed combustion of mixed wastes under oxygen-lean conditions. A series of 14 metal oxides were screened in a thermogravimetric analyzer, using on-line mass spectrometry for speciation of reaction product gases. Catalyst evaluation criteria focused on the thermal-redox activity of the metals using both carbon black and PVC char as surrogate waste materials. Results indicated that metal oxides which were P-type semiconductor materials were suitable as catalysts for this application. Oxides of cobalt, molybdenum, vanadium, and manganese were found to be particularly stable and active catalysts under conditions specific to this process (T<650C, low oxygen partial pressures). Bench-scale evaluation of these metal oxides with respect to stability to chlorine (HCl) attack was carried out at 550C using a TG/MS system. Cobalt oxide was found to be resistant to metal loss in a HCl/He gaseous environment while metal loss from Mo, Mn, and V-based catalysts was moderate to severe. XRD and SEM/EDX analysis of spent Co catalysts indicated the formation of non-stoichiometric cobalt chlorides. Regeneration of chlorinated cobalt was found to successfully restore the low-temperature combustion activity to that of the fresh metal oxide

  15. Environmental Consequences of Pig Slurry Treatment Technologies

    DEFF Research Database (Denmark)

    ten Hoeve, Marieke

    compared with a reference scenario. The treatment scenarios were field acidification, in-house acidification, screw press separation with and without composting of the solid fraction, decanter centrifuge separation with and without ammonia stripping of the liquid fraction, and four anaerobic digestion...... scenarios with different co-substrates. These co-substrates were straw that would otherwise have been left on the field, straw that would otherwise have been incinerated, the organic fraction of household waste and the solid fraction of slurry. The impact categories analysed were climate change potential...... occur during manure storage and after field application. The main emissions are ammonia, nitrous oxide, methane, carbon dioxide, nitrate, phosphorus and odour. Slurry treatment technologies have been and are being developed in order to reduce the environmental impacts of manure. However, it is important...

  16. Biomass to hydrogen-rich syngas via catalytic steam gasification of bio-oil/biochar slurry.

    Science.gov (United States)

    Chen, Guanyi; Yao, Jingang; Liu, Jing; Yan, Beibei; Shan, Rui

    2015-12-01

    The catalytic steam gasification of bio-oil/biochar slurry (bioslurry) for hydrogen-rich syngas production was investigated in a fixed-bed reactor using LaXFeO3 (X=Ce, Mg, K) perovskite-type catalysts. The effects of elemental substitution in LaFeO3, temperature, water to carbon molar ratio (WCMR) and bioslurry weight hourly space velocity (WbHSV) were examined. The results showed that La0.8Ce0.2FeO3 gave the best performance among the prepared catalysts and had better catalytic activity and stability than the commercial 14 wt.% Ni/Al2O3. The deactivation caused by carbon deposition and sintering was significantly depressed in the case of La0.8Ce0.2FeO3 catalyst. Both higher temperature and lower WbHSV contributed to more H2 yield. The optimal WCMR was found to be 2, and excessive introducing of steam reduced hydrogen yield. The La0.8Ce0.2FeO3 catalyst gave a maximum H2 yield of 82.01% with carbon conversion of 65.57% under the optimum operating conditions (temperature=800°C, WCMR=2 and WbHSV=15.36h(-1)). PMID:26378962

  17. Catalyst for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  18. Research advances in settling slurry flows

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav; Vlasák, Pavel

    Tel Aviv, 2015. [The 8th International Conference for Conveying and Handling of Particulate Solids. Tel Aviv (IL), 03.05.2015-07.05.2015] R&D Projects: GA ČR GA103/09/0383; GA ČR GAP105/10/1574; GA ČR(CZ) GAP105/12/1082 Institutional support: RVO:67985874 Keywords : slurry flows * flow patterns * turbulent dispersion * collisional dispersion * particle-support mechanisms Subject RIV: BK - Fluid Dynamics

  19. Fischer-Tropsch Slurry Reactor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Soong, Y.; Gamwo, I.K.; Harke, F.W. [Pittsburgh Energy Technology Center, PA (United States)] [and others

    1995-12-31

    This paper reports experimental and theoretical results on hydrodynamic studies. The experiments were conducted in a hot-pressurized Slurry-Bubble Column Reactor (SBCR). It includes experimental results of Drakeol-10 oil/nitrogen/glass beads hydrodynamic study and the development of an ultrasonic technique for measuring solids concentration. A model to describe the flow behavior in reactors was developed. The hydrodynamic properties in a 10.16 cm diameter bubble column with a perforated-plate gas distributor were studied at pressures ranging from 0.1 to 1.36 MPa, and at temperatures from 20 to 200{degrees}C, using a dual hot-wire probe with nitrogen, glass beads, and Drakeol-10 oil as the gas, solid, and liquid phase, respectively. It was found that the addition of 20 oil wt% glass beads in the system has a slight effect on the average gas holdup and bubble size. A well-posed three-dimensional model for bed dynamics was developed from an ill-posed model. The new model has computed solid holdup distributions consistent with experimental observations with no artificial {open_quotes}fountain{close_quotes} as predicted by the earlier model. The model can be applied to a variety of multiphase flows of practical interest. An ultrasonic technique is being developed to measure solids concentration in a three-phase slurry reactor. Preliminary measurements have been made on slurries consisting of molten paraffin wax, glass beads, and nitrogen bubbles at 180 {degrees}C and 0.1 MPa. The data show that both the sound speed and attenuation are well-defined functions of both the solid and gas concentrations in the slurries. The results suggest possibilities to directly measure solids concentration during the operation of an autoclave reactor containing molten wax.

  20. Emplacement-related layering in magma slurries

    Science.gov (United States)

    Petford, N.

    2009-04-01

    Textures and structures such as layering, grading and foliations preserved in igneous rocks offer a glimpse into the magma emplacement process. However, despite recent advances, a full and proper understanding of the fluid dynamics of congested fluid-particle mixtures during shear remains elusive. This is a shame as without recourse to such fundamental understanding, the interpretation of structural field data in the context of magma flow remains problematic. One way to gain insight into the process is to treat flowing magma as a dynamic material with a rheology similar to sheared, congested slurries. The idea that dense magma equates to a high temperature slurry is an attractive one, and opens up a way to examine the emplacement process that does not rely on equilibrium thermodynamics as a final explanation for commonly observed igneous structures. Using the Basement Sill, Antarctica, as a world class example of a magmatic slurry, shearing at high Peclet (Pe) number where particle diffusion is negligible has the potential to impart a rich diversity of structures including layering, grading and flow segregation. Work to model numerically the flow of the Basement Sill slurry using a range of theoretical and experimentally-derived non-Newtonian magma rheologies will be presented and assessed. A key impilcation is that in addition to more classical explanations such as compaction and gravitational settling, igneous layering can also arise spontaneously during shear associated with the ascent and emplacement of congested magma. A final aspect of the emplacement model considers the irregular geometry of the Basement Sill boundaries. Movement of magma along these boundaries results in the formation of local eddies and fluid swirl/back-flow that add additional complexity to macroscopic flow field.

  1. PROGRESS TOWARDS MODELING OF FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gandrik; Steven P. Antal

    2010-11-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  2. Modeling of Bubble Column Slurry Reactor for Dimethyl Ether Synthesis from Syngas%合成气制二甲醚三相淤浆床反应器的数学模型研究

    Institute of Scientific and Technical Information of China (English)

    张海涛; 应卫勇; 房鼎业

    2005-01-01

    A mathematical model for a bubble column slurry reactor is presented for dimethyl ether synthesis from syngas. Methanol synthesis from carbon monoxide and carbon dioxide by hydrogenation and the methanol dehydration are considered as independent reactions, in which methanol, dimethyl ether and carbon dioxide are the key components. In this model, the gas phase is considered to be in plug flow and the liquid phase to be in partly back mixing with axial distribution of solid catalyst. The simulation results show that the axial dispersion of solid catalysts, the operational height of the slurry phase in the bubble column slurry reactor, and the reaction results are influenced by the reaction temperature and pressure, which are the basic data for the scale-up of reactor.

  3. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski

    2006-09-29

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight

  4. Injection of Aqueous Slurry for Making Zirconia Fiber

    Institute of Scientific and Technical Information of China (English)

    HE Shun'ai; LI Maoqiang

    2009-01-01

    Zirconia aqueous slurry was prepared with fine zirconia powder.Injection process for making zirconia fiber was demonstrated,including preparation of aqueous slurry,injection of slurry,fiber setting in acetone,and fiber firing.The principle of the process was discussed.The effects of solid loading in the zirconia slurry,addition of dispersant in the slurry,and ball milling time on the rheological properties of the slurry,especially yield stress,were illustrated.The role of acetone as curing agent was discussed.Zirconia poly-crystalline fber with at 1 530 ℃ for 5 h.Microstructure of the sintered zirconia fiber was investigated.

  5. Change in catalyst properties during coal liquefaction; Kokoritsu sekitan ekika shokubai no kaihatsu (Hanno no shinko ni tomonau shokubai seijo no henka). 1

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Sato, K.; Kaneko, T.; Shimasaki, K. [Nippon Brown Coal Liquefaction Co. Ltd., Tokyo (Japan)

    1996-10-28

    The purpose of this study is to prevent the deactivation of catalysts recycled in the 0.1 t/d bench scale unit (BSU). Catalysts recovered during reactions in the BSU and after reactions in the 5-liter autoclave were analyzed, to investigate the influences of the reaction condition on the property and activity of catalysts. Were used {gamma}-iron oxyhydroxide ({gamma}-FeOOH), {alpha}-iron oxyhydroxide ({alpha}-FeOOH), and natural pyrite (FeS2) as catalysts. At the S/Fe atomic ration of 1.2 under the BSU reaction condition, troilite was more easily formed from {gamma}-FeOOH compared with pyrite and {alpha}-FeOOH. As the reaction proceeded through the first, second, and third reactors, the crystal size increased, the pyrrhotite content decreased, and the troilite content increased. Deactivation due to the formation of troilite was irreversible. At the S/Fe of 3.0, however, both the formation of troilite and the crystal growth of pyrrhotite were not observed. It was found that the deactivation of catalysts can be remarkably suppressed. 5 refs., 6 figs., 1 tab.

  6. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    OpenAIRE

    Wenyan Chen; Qiang Cai; Yuan Zhao; Guojuan Zheng; Yuting Liang

    2014-01-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested...

  7. Ultrasonic measurements in ice slurry generation by direct contact evaporation

    OpenAIRE

    Vuarnoz, Didier; Ata-Caesar, Derrick; Sari, Osmann; Egolf, Peter

    2004-01-01

    Important reductions of refrigerant amounts can be achieved by using secondary refrigeration fluids. Ice slurry is a two-phase fluid and thus, compared to single phase secondary refrigeration fluids, offers the advantage of the latent heat of fusion when the ice phase melts during heat exchange. Therefore, the challenges that the introduction of ice slurry as a common thermal fluid is facing are, in the first place, how to generate ice slurry in an efficient and ecological way. Optimal design...

  8. Survey of state water laws affecting coal slurry pipeline development

    Energy Technology Data Exchange (ETDEWEB)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  9. Heterogeneous ice slurry flow and concentration distribution in horizontal pipes

    International Nuclear Information System (INIS)

    Highlights: • A Mixture CFD model is applied to describe heterogeneous ice slurry flow. • The ice slurry rheological behavior is considered piecewise. • The coupled flow and concentration profiles in heterogeneous slurry flow is acquired. • The current numerical model achieves good balance between precision and universality. -- Abstract: Ice slurry is an energy-intensive solid–liquid mixture fluid which may play an important role in various cooling purposes. Knowing detailed flow information is important from the system design point of view. However, the heterogeneous ice slurry flow makes it difficult to be quantified due to the complex two phase flow characteristic. The present study applies a Mixture computational fluid dynamics (CFD) model based on different rheological behavior to characterize the heterogeneous ice slurry flow. The Mixture CFD model was firstly validated by three different experiments. Then the validated Mixture CFD model was applied to solve the ice slurry isothermal flow by considering the rheological behavior piecewise. Finally, the numerical solutions have displayed the coupled flow information, such as slurry velocity, ice particle concentration and pressure drop distribution. The results show that, the ice slurry flow distribution will appear varying degree of asymmetry under different operating conditions. The rheological behavior will be affected by the asymmetric flow distributions. When mean flow velocity is high, Thomas equation can be appropriate for describing ice slurry viscosity. While with the decreasing of mean flow velocity, the ice slurry behaves Bingham rheology. As compared with experimental pressure drop results, the relative errors of numerical computation are almost within ±15%. The Mixture CFD model is validated to be an effective model for describing heterogeneous ice slurry flow and could supply plentiful flow information

  10. State of the art on phase change material slurries

    International Nuclear Information System (INIS)

    Highlights: ► A bibliographic study on PCM slurries. ► Clathrate Hydrate slurry, Microencapsulated PCM Slurry, shape-stabilized PCM slurries and Phase Change Material Emulsions. ► Formation, thermo-physical, rheological, heat transfers properties and applications of these four PCS systems. ► The use of thermal energy storage and distribution based on PCM slurries can improve the refrigerating machine performances. - Abstract: The interest in using phase change slurry (PCS) media as thermal storage and heat transfer fluids is increasing and thus leading to an enhancement in the number of articles on the subject. In air-conditioning and refrigeration applications, PCS systems represent a pure benefit resulting in the increase of thermal energy storage capacity, high heat transfer characteristics and positive phase change temperatures which can occur under low pressures. Hence, they allow the increase of energy efficiency and reduce the quantity of thermal fluids. This review describes the formation, thermo-physical, rheological, heat transfer properties and applications of four PCS systems: Clathrate hydrate slurry (CHS), Microencapsulated Phase Change Materials Slurry (MPCMS), shape-stabilized PCM slurries (SPCMSs) and Phase Change Material Emulsions (PCMEs). It regroups a bibliographic summary of important information that can be very helpful when such systems are used. It also gives interesting and valuable insights on the choice of the most suitable PCS media for laboratory and industrial applications.

  11. Denitrification in nitric-acid-treated cattle slurry during storage.

    OpenAIRE

    Oenema, O.; G. L. Velthof

    1993-01-01

    Lowering the pH of cattle slurry with HNO3 was used to reduce NH3 volatilization during storage and after application. Incubation studies were carried out to examine possible NO3 losses and N2O emission from HNO3 treated slurry during storage. Batches of cattle slurry were treated with various amounts of HNO3 to obtain a pH range of 6.0 to 3.0. The slurries were stirred once or twice a week and stored for 6 months at 15 degrees C. Changes in pH, Eh, NO3- and NH4 concn, and emissions of N2O, C...

  12. Nitrogen fertiliser value of digested dairy cow slurry, its liquid and solid fractions, and of dairy cow slurry

    Directory of Open Access Journals (Sweden)

    Daniele Cavalli

    2014-06-01

    Full Text Available An understanding of crop availability of livestock slurry nitrogen (N is necessary to maximise crop N use efficiency and to minimise environmental losses. Results from field and laboratory incubation experiments suggest that first-year crop availability of slurry N comes mainly from its ammonium fraction because net mineralisation of organic N is often negligible in the short term. A two-year field experiment during 2011 and 2012 in northern Italy was undertaken with several aims: to estimate the N fertiliser value of raw dairy cow slurry, digested dairy cow slurry, and the liquid and solid fractions of the digested slurry, and to verify if applied ammonium recovery was similar both among slurries and between slurries and inorganic N fertiliser (ammonium sulphate. Different fertilisers were applied before silage maize cultivation followed by an unfertilised Italian ryegrass crop. The results showed that ammonium recovery was significantly higher in mineral-fertilised (75% versus slurry-fertilised (30% treatments, except in digested slurry (65%. This indicates that ammonium applied with organic materials is less efficient than when applied with mineral fertiliser. For the digested slurry and its liquid fraction, most of the applied ammonium was available to the maize during its application year (55% due to a low carbon (C/organic N ratio. The apparent N recovery of the raw slurry and digested slurry solid fraction increased substantially between the first (-1.4% and second (20% years, as these materials had high C/organic N ratios; they likely immobilised N for several months post application, producing residual effects during the Italian ryegrass and next maize crops.

  13. Whole slurry fermentation of maleic acid-pretreated oil palm empty fruit bunches for ethanol production not necessitating a detoxification process.

    Science.gov (United States)

    Jung, Young Hoon; Kim, In Jung; Kim, Hyun Kyung; Kim, Kyoung Heon

    2014-04-01

    The yield of ethanol from oil palm empty fruit bunches (EFB) was increased on exploiting maleic acid pretreatment combined with fermentation of the pretreated whole slurry. The optimized conditions for pretreatment were to expose EFB to a high temperature (190 °C) with 1 % (w/v) maleic acid for a short time duration (3 min ramping to the set temperature with no holding) in a microwave digester. An enzymatic digestibility of 60.9 % (based on theoretical glucose yield) was exhibited using pretreated and washed EFB after 48 h of hydrolysis. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated EFB for 48 h resulted in 61.3 % theoretical yield of ethanol based on the initial amount of glucan in untreated EFB. These results indicate that maleic acid is a suitable catalyst not requiring detoxification steps for whole slurry fermentation of EFB for ethanol production, thus improving the process economics. Also, the whole slurry fermentation can significantly increase the biomass utilization by converting sugar from both solid and liquid phases of the pretreated slurry. PMID:23982450

  14. Rheology of sludge-slurry grouts

    International Nuclear Information System (INIS)

    A series of rheograms was developed that relates the critical velocity (velocity where flow changes from laminar to turbulent) of a cementitious grout that incorporates a suspended sludge-slurry to the critical velocity of a reference grout made with a simulated waste solution. The sludge that is now in the Gunite waste tanks at the Oak Ridge National Laboratory (ORNL) will be suspended and pumped to the new waste storage tanks in Melton Valley. The sludge will then be blended with a cement mix base to form a grout which will be injected underground by the shale fracturing process. This report describes the materials, equipment, and techniques used in the laboratory studies to suspend sludges and mix sludge-slurry grouts that have flow properties similar to those of current shale fracturing grouts. Bentonite clay is an effective suspender in dilute NaNO3 solutions; 15 wt % solids can be suspended with 2.0 wt % bentonite in a 0.1 M NaNO3 solution. Other suspending materials were evaluated, but bentonite gave the best results. If a slurry grout becomes too viscous to pump, methods must be available to thin the mixture. A number of thinners, friction reducers, and plasticizers were examined. Q-Broxin, a thinner supplied by Baroid, reduced the velocity of a grout required for turbulent flow in a 5.0-cm (2-in.)-diam tube from 1.76 to 1.20 m/s (5.79 to 3.95 ft/s); FX-32C, a plasticizer supplied by Fox Industries, Inc., reduced the velocity from 1.76 to 0.75 m/s

  15. Morphological transformation during activation and reaction of an iron Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, N.B.; Kohler, S.; Harrington, M. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1995-12-31

    The purpose of this project is to support the development of slurry-phase bubble column processes being studied at the La Porte Alternative Fuel Development Unit. This paper describes the aspects of Sandia`s recent work regarding the advancement and understanding of the iron catalyst used in the slurry phase process. A number of techniques were used to understand the chemical and physical effects of pretreatment and reaction on the attrition and carbon deposition characteristics of iron catalysts. Unless otherwise stated, the data discussed was derived form experiments carried out on the catalyst chosen for the summer 1994 Fischer-Tropsch run at LaPorte, UCI 1185-78-370, (an L 3950 type) that is 88% Fe{sub 2}O{sub 3}, 11% CuO, and 0.052%K{sub 2}O.

  16. Fabrication of catalyst-coated membrane-electrode assemblies by doctor blade method and their performance in fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, In-Su; Li, Wen; Manthiram, Arumugam [Electrochemical Energy Laboratory and Materials Science and Engineering Program, University of Texas at Austin, 1 University Station C2200, Austin, TX 78712 (United States)

    2010-10-15

    Membrane-electrode assemblies (MEAs) have been fabricated with a direct coating of the catalyst slurry by a doctor blade method on the pre-swollen Nafion membrane for proton exchange membrane (PEMFC) and direct methanol fuel cells (DMFC). The effects of various swelling agents with different boiling points such as ethylene glycol (EG), diethylene glycol (DEG), triethylene glycol (TEG), tetraethylene glycol (TEEG), and glycerol in the swelling step of the membrane and the drying step of the coated catalyst have been investigated. Also, the use of dimethyl sulfoxide (DMSO) as a dispersing agent in the catalyst slurry has been investigated. Among the various swelling agents investigated, EG gives the best results with the dispersing agent DMSO offering further improvement. The MEAs fabricated with the EG-swollen membranes and DMSO as a dispersing agent in the catalyst layer show good performance in single fuel cells with hydrogen and methanol fuels. (author)

  17. Acidification of pig slurry before separation to improve slurry management on farms.

    Science.gov (United States)

    Regueiro, Iria; Coutinho, João; Balsari, Paolo; Popovic, Olga; Fangueiro, David

    2016-08-01

    Pig slurry, rich in plant nutrients such as nitrogen (N) and phosphorus (P), is generally applied to soil as organic fertilizer. However, costs related to slurry transport may limit its utilization to fields close to the farm, leading to significant N losses, namely ammonia (NH3) emissions. Slurry acidification, to minimize NH3 emissions, is a potential solution to this problem, while solid-liquid separation leads to a solid fraction (SF) - rich in organic matter (OM) and phosphorus - and a liquid fraction (LF) rich in soluble nutrients. We hypothesized that a combination of acidification and separation could affect the quality of the resulting fractions depending on the separation technique used. After acidification, the two most common techniques for separation, centrifugation (CF) and screw-press (SP), were applied. The main characteristics of the slurry fractions in terms of nutrient concentrations and speciation as well as the potential N mineralization (PNM) were analysed. Our results show SFs with improved properties, mostly N and PNM when acidification is performed before separation with both techniques. The PNM was significantly increased in LFs from both techniques after acidification. The [Formula: see text] concentration increased in LFs from SP with acidification; therefore, slurry acidification is recommended to avoid any N losses during the separation process with SP, while CF may not require such pretreatment. Acidification could allow the use of a cheaper technique such as SP relative to CF since it prevents NH3 emissions during the separation process and leads to more equilibrated fractions in terms of nutrient composition. PMID:26695081

  18. Supercritical water gasification of an aqueous by-product from biomass hydrothermal liquefaction with novel Ru modified Ni catalysts.

    Science.gov (United States)

    Zhang, Linghong; Champagne, Pascale; Charles Xu, Chunbao

    2011-09-01

    Supercritical water gasification (SCWG) of glucose solution (50-200 g/L), a simulated aqueous organic waste (composed of glucose, acetic acid and guaiacol) and a real aqueous organic waste stream generated from a sludge hydrothermal liquefaction process was performed in a bench-scale continuous down-flow tubular reactor with novel 0.1 RuNi/γ-Al(2)O(3) or 0.1 RuNi/activated carbon (AC) catalyst (10 wt.% Ni with a Ru-to-Ni molar ratio of 0.1). 0.1 RuNi/γ-Al(2)O(3) was very effective in catalyzing SCWG of glucose solution and the simulated aqueous organic waste, attaining an H(2) yield of 53.9 mol/kg dried feedstock at 750°C, 24 MPa and a WHSV of 6h(-1). However, the γ-Al(2)O(3)-supported catalyst was not resistant to the attack of alkali and nitrogen compounds in the real waste during the SCWG of the real aqueous organic waste, whereas the AC-based catalyst exhibited higher stability. This research provides a promising approach to the treatment and valorization of aqueous organic waste via SCWG. PMID:21741235

  19. The Settling and Compaction of Nuclear Waste Slurries

    International Nuclear Information System (INIS)

    The settling and compaction of simulated and real nuclear waste slurries were extensively studied. Experiments were carried out with simulated wastes at laboratory and large-scale sizes, and the results compared. A model of settling was derived and a method developed to correlate and scale-up settling data for different slurries and vessel sizes

  20. Sulfur turnover and emissions during storage of cattle slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Andersen, Astrid J; Poulsen, Henrik Vestergaard;

    2012-01-01

    Slurry acidification using sulfuric acid reduces ammonia emissions but also affects sulfur (S) cycling. Emission of sulfur is a source of malodor and reduces the sulfur fertilizer value of the slurry. We investigated the effect of sulfate and methionine amendments, alone or in combination with ac...

  1. The Settling and Compaction of Nuclear Waste Slurries

    Energy Technology Data Exchange (ETDEWEB)

    MACLEAN, G.T.

    1999-11-15

    The settling and compaction of simulated and real nuclear waste slurries were extensively studied. Experiments were carried out with simulated wastes at laboratory and large-scale sizes, and the results compared. A model of settling was derived and a method developed to correlate and scale-up settling data for different slurries and vessel sizes.

  2. Inactivation of Aujeszky's disease virus in slurry at various temperatures

    DEFF Research Database (Denmark)

    Bøtner, Anette

    Survival of Aujeszky's disease virus in pig slurry was investigated during anaerobic storage at 5, 20, 35, 40, 45, 50 and 55°C using 100-ml laboratory models simulating the conditions in slurry tanks during winter and summer seasons and during anaerobic digestion in batch reactors. The inactivation...

  3. Washcoating copper catalyst on ZrO2 coated stainless steel plate with yttria sol for steam reforming of methanol in a microreactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.H.; Chen, K.Y. [Yuan Ze Univ., Taiwan (China). Fuel Cell Center; Shen, C.C. [Yuan Ze Univ., Taiwan (China). Dept. of Mechanical Engineering; Yeh, C.T. [Yuan Ze Univ., Taiwan (China). Fuel Cell Center, Dept. of Chemical Engineering and Materials Science

    2009-07-01

    A copper-aluminium (CuO/ZnO-Al2O3) catalyst was washcoated on a microchannel. A brushing method was used to make a slurry with commercial yttria sol for the steam reforming of methanol (SRM). Increases in adhesion were investigated by tuning the solid content (SC) and ratio of the catalyst to the binder in the slurry as well as the pH values and stirring times. Catalyst adhesion was quantified by estimating the weight losses of the catalyst layer. The catalysts were then characterized using X-ray diffraction (XRD); scanning electron microscopy (SEM); X-ray photoelectron spectroscopy (XPS); and temperature programmed reduction (TPR). The micro-reformer was then tested in a steam reforming methanol reaction at temperatures ranging between 210 and 300 degrees C. It was concluded that methanol conversion was lower at 210 degrees C, and increased with increases in temperature.

  4. The slurry-column coal beneficiation process

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, G.F.; Noah, K.S. [Idaho National Engineering Laboratory, Idaho Falls, ID (United States). Biotechnology Dept.

    1997-11-01

    The slurry-column coal beneficiation process is described. It is a second-generation process developed at the Idaho National Engineering Laboratory for the beneficiation of fine (60 mesh x 10 {mu}m) coal by a combination of the physical separation of mineral matter and the biooxidation of pyrite. The bioreactor is slurry-type airlift, specifically designed to allow the large liberated inclusions of pyrite and other insoluble minerals to settle out. They are transferred to a similar reactor, called the rougher/propagator, that gives a second stage of physical separation, as well as the longer residence time for the biodegradation of the large pyritic inclusions and the associated bacterial growth. The bioreactors operate in sequencing-batch mode, and also serve as settlers for coal/water separation when the air turned off. This separation allows counter-current flow of coal and water, which minimizes the volumes of water consumed and wastewater generated. The complete flow sheet incorporates two-stage washing to remove sulfate and bacteria from the product coal, and recycle of bacteria into the process to inoculate the feed coal. A description of the process illustrates some general principles applicable to the optimum design of any coal bioprocess. 17 refs., 5 figs., 2 tabs.

  5. Bauxite slurry pipeline: start up operation

    Energy Technology Data Exchange (ETDEWEB)

    Othon, Otilio; Babosa, Eder; Edvan, Francisco; Brittes, Geraldo; Melo, Gerson; Janir, Joao; Favacho, Orlando; Leao, Marcos; Farias, Obadias [Vale, Rio de Janeiro, RJ (Brazil); Goncalves, Nilton [Anglo Ferrous Brazil S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    The mine of Miltonia is located in Paragominas-PA, in the north of Brazil. Bauxite slurry pipeline starts at the Mine of Miltonia and finishes in the draining installation of Alunorte refinery at the port of Barcarena-PA, located approximately 244km away from the mine. The pipeline runs over seven cities and passes below four great rivers stream beds. The system was designed for an underground 24 inches OD steel pipe to carry 9.9 million dry metric tonnes per annum (dMTAs) of 50.5% solid concentration bauxite slurry, using only one pumping station. The system is composed by four storage tanks and six piston diaphragm pumps, supplying a flow of 1680 m3/h. There is a cathodic protection system along the pipeline extension to prevent external corrosion and five pressure monitoring stations to control hydraulic conditions, there is also a fiber optic cable interconnection between pump station and terminal station. Pipeline Systems Incorporated (PSI) was the designer and followed the commissioning program of the start up operations. This paper will describe the beginning of the pipeline operations, technical aspects of the project, the operational experiences acquired in these two years, the faced problems and also the future planning. (author)

  6. Effective Compressibility of a Bubbly Slurry.

    Science.gov (United States)

    Kam, S. I.; Gauglitz, P. A.; Rossen, W. R.

    2001-09-01

    The goal of this study is to fit model parameters to changes in waste level in response to barometric pressure changes in underground storage tanks at the Hanford Site. This waste compressibility is a measure of the quantity of gas, typically hydrogen and other flammable gases, that can pose a safety hazard, retained in the waste. A one-dimensional biconical-pore-network model for compressibility of a bubbly slurry is presented in a companion paper. Fitting these results to actual waste level changes in the tanks implies that bubbles in the slurry layer are long and the ratio of pore-body radius to pore-throat radius is close to 1; unfortunately, compressibility can not be quantified unambiguously from the data without additional information on pore geometry. Therefore, determining the quantity of gas in the tanks requires more than just waste-level data. The non-uniqueness of the fit is also found with two other simple models: a capillary-tube model with contact angle hysteresis and a spherical-pore model. Copyright 2001 Academic Press. PMID:11502128

  7. Improving feed slurry rheology by colloidal techniques

    Energy Technology Data Exchange (ETDEWEB)

    Heath, W.O.; Ternes, R.L.

    1984-06-01

    Pacific Northwest Laboratory (PSN) has investigated three colloidal techniques in the laboratory to improve the sedimentation and flowability of Hanford simulated (nonradioactive) current acid waste (CAW) melter feed slurry: polymer-induced bridging flocculation; manipulating glass former (raw SiO/sub 2/ or frit) particle size; and alteration of nitric acid content. All three methods proved successful in improving the rheology of the simulated CAW feed. This initially had exhibited nearly worst-case flow and clogging properties, but was transformed into a flowable, resuspendable (nonclogging) feed. While each has advantages and disadvantages, the following three specific alternatives proved successful: addition of a polyelectrolyte in 2000 ppM concentration to feed slurry; substitution of a 49 wt % SiO/sub 2/ colloidal suspension (approx. 10-micron particle size) for the -325 mesh (less than or equal to 44-micron particle size) raw-chemical SiO/sub 2/; and increase of nitric acid content from the reference 1.06 M to optimum 1.35 M. The first method, polymer-induced bridging flocculation, results in a high sediment volume, nonclogging CAW feed. The second method, involving the use of colloidal silica particles results in a nonsedimenting feed that when left unagitated forms a gel. The third method, increase in feed acidity, results in a highly resuspendable (nonclogging) melter feed. Further research is therefore required to determine which of the three alternatives is the preferred method of achieving rheological control of CAW melter feeds.

  8. SCALEUP OF ALUMINUM PHOSPHATE CATALYST FOR PILOT PLANT LPDMEtm RUN; TOPICAL

    International Nuclear Information System (INIS)

    The Liquid Phase Dimethyl Ether (LPDME(trademark)) process converts synthesis gas to dimethyl ether in a single slurry bubble column reactor. A mixed slurry of methanol synthesis catalyst and methanol dehydration catalyst in a neutral mineral oil simultaneously synthesizes methanol from syngas and converts some of it to dimethyl ether and water. The reaction scheme is shown below: 2H(sub 2)+ CO= CH(sub 3)OH; 2CH(sub 3)OH= CH(sub 3)OCH(sub 3)+ H(sub 2)O; H(sub 2)O+ CO= CO(sub 2)+ H(sub 2). Most of the water produced in this reaction is converted to hydrogen by reduction with carbon monoxide (water gas shift reaction). This synergy permits higher per pass conversion than methanol synthesis alone. The enhancement in conversion occurs because dehydration of the methanol circumvents the equilibrium constraint of the syngas-to-methanol step. The slurry bubble column reactor provides the necessary heat transfer capacity to handle the greater heat duty associated with high conversion. In order to improve the stability of the catalyst system, non-stoichiometric aluminum phosphate was proposed as the dehydration catalyst for the LPDME(trademark) process. This aluminum phosphate material is a proprietary catalyst. This catalyst system of a standard methanol catalyst and the aluminum phosphate provided stable process performance that met the program targets under our standard test process conditions in the laboratory. These targets are (1) an initial methanol equivalent productivity of 28 gmol/kg/hr, (2) a CO(sub 2)-free, carbon selectivity of 80% to dimethyl ether and (3) stability of both catalysts equivalent to that of the methanol catalyst in the absence of the aluminum phosphate. A pilot plant trial of the LPDME(trademark) process using the aluminum phosphate catalyst was originally planned for March 1998 at the DOE-owned, Air Products (APCI)-operated facility at LaPorte, Texas. Because the aluminum phosphate catalyst is not commercially available, we initiated a scaleup

  9. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton;

    2011-01-01

    Managing phosphorus (P) losses in soil leachate following land application of manure is key to curbing eutrophication in many regions. We compared P leaching from columns of variably textured, intact soils (20 cm diam., 20 cm high) subjected to surface application or injection of dairy cattle (Bos...... retention of particulate P and dissolved organic P, caused by placing slurry away from active flow paths in the fine-textured soil columns, as well as to chemical retention of dissolved inorganic P, caused by better contact between slurry P and soil adsorption sites. Dissolved organic P was less retained in...... soil after slurry application than other P forms. On these soils with low to intermediate P status, slurry injection lowered P leaching losses from clay-rich soil, but not from the sandy soils, highlighting the importance of soil texture in managing P losses following slurry application....

  10. BENCH SCALE DEVELOPMENT OF MEYERS PROCESS FOR COAL DESULFURIZATION

    Science.gov (United States)

    The report gives results of coal desulfurization experiments to determine the feasibility and advantages of combining gravity separation of coal with chemical desulfurization. The investigations led to the definition of the Gravichem Process, a combination physical/chemical coal ...

  11. 100 Area soil washing bench-scale test procedures

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, H.D.; Gerber, M.A.; Mattigod, S.V.; Serne, R.J.

    1993-03-01

    This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing.

  12. Nitrate to ammonia ceramic (NAC) bench scale stabilization study

    Energy Technology Data Exchange (ETDEWEB)

    Caime, W.J.; Hoeffner, S.L. [RUST - Clemson Technical Center, Anderson, SC (United States)

    1995-10-01

    Department of Energy (DOE) sites such as the Hanford site, Idaho National Engineering Laboratory (INEL), Savannah River site, Oak Ridge National Laboratory (ORNL) have large quantities of sodium-nitrate based liquid wastes. A process to reduce the nitrates to ammonia has been developed at ORNL. This technology creates a sludge lower in nitrates. This report describes stabilization possibilities of the sludge.

  13. Modified IRC bench-scale arc melter for waste processing

    International Nuclear Information System (INIS)

    This report describes the INEL Research Center (IRC) arc melter facility and its recent modifications. The arc melter can now be used to study volatilization of toxic and high vapor pressure metals and the effects of reducing and oxidizing (redox) states in the melt. The modifications include adding an auger feeder, a gas flow control and monitoring system, an offgas sampling and exhaust system, and a baghouse filter system, as well as improving the electrode drive, slag sampling system, temperature measurement and video monitoring and recording methods, and oxidation lance. In addition to the volatilization and redox studies, the arc melter facility has been used to produce a variety of glass/ceramic waste forms for property evaluation. Waste forms can be produced on a daily basis. Some of the melts performed are described to illustrate the melter's operating characteristics

  14. Electrodialytic remediation of air pollution control residues in bench scale

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ferreira, Celia; Hansen, Henrik K.;

    2008-01-01

    Air pollution control (APC) residue from municipal solid waste incineration (MSWI) is considered a hazardous waste due to its alkalinity and high content of salts and mobile heavy metals. Various solutions for the handling of APC-residue exist in different regions; however, most commercial...

  15. Performance of a bench-scale fast fluidized bed carbonator

    DEFF Research Database (Denmark)

    Pathi, Sharat Kumar; Lin, Weigang; Illerup, Jytte Boll;

    2014-01-01

    The carbonate looping process is a promising technology for CO2 capture from flue gas. In this process, the CO2 capture efficiency depends on the performance of a carbonator that may be operated as a circulating fluidized bed (CFB). In this paper, the carbonator performance is investigated by...... applying a new experimental method with accurate control of the particle recirculation rate. The experimental results show that the inlet calcium to carbon molar ratio is the main factor on the CO2 capture efficiency in the carbonator, that is, increasing the inlet Ca/C from 4 to 13 results in increasing...... the CO2 capture efficiency from 40 to 85% with limestone having a maximum CO2 capture capacity of only 11.5%. Furthermore, a reactor model for a carbonator is developed based on the Kunii-Levenspiels model. A key parameter in the model is the particle distribution along the height of the reactor...

  16. 100 Area soil washing bench-scale test procedures

    International Nuclear Information System (INIS)

    This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing

  17. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE), National Energy Technology Laboratory (NETL), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2)TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2)TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown. The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  18. BENCH-SCALE DEMONSTRATION OF HOT-GAS DESULFURIZATION TECHNOLOGY

    International Nuclear Information System (INIS)

    The U.S. Department of Energy (DOE), Federal Energy Technology Center (FETC), is sponsoring research in advanced methods for controlling contaminants in hot coal gasifier gas (coal-derived fuel-gas) streams of integrated gasification combined-cycle (IGCC) power systems. The hot gas cleanup work seeks to eliminate the need for expensive heat recovery equipment, reduce efficiency losses due to quenching, and minimize wastewater treatment costs. Hot-gas desulfurization research has focused on regenerable mixed-metal oxide sorbents that can reduce the sulfur in coal-derived fuel-gas to less than 20 ppmv and can be regenerated in a cyclic manner with air for multicycle operation. Zinc titanate (Zn(sub 2) TiO(sub 4) or ZnTiO(sub 3)), formed by a solid-state reaction of zinc oxide (ZnO) and titanium dioxide (TiO(sub 2)), is currently one of the leading sorbents. Overall chemical reactions with Zn(sub 2) TiO(sub 4) during the desulfurization (sulfidation)-regeneration cycle are shown below: Sulfidation: Zn(sub 2) TiO(sub 4)+ 2H(sub 2)S(yields) 2ZnS+ TiO(sub 2)+ 2H(sub 2)O; Regeneration: 2ZnS+ TiO(sub 2)+ 3O(sub 2)(yields) Zn(sub 2) TiO(sub 4)+ 2SO(sub 2) The sulfidation/regeneration cycle can be carried out in a fixed-bed, moving-bed, or fluidized-bed reactor configuration. The fluidized-bed reactor configuration is most attractive because of several potential advantages including faster kinetics and the ability to handle the highly exothermic regeneration to produce a regeneration offgas containing a constant concentration of SO(sub 2)

  19. Extended Dry Storage Signature Bench Scale Detector Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Eric Benton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    This report is the conceptual design of a detector based on research within the Extended Dry Storage Signature Development project under the DOE-­NE MPACT campaign. This is the second year of the project; from this year’s positive results, the next step is building a prototype and testing with real materials .

  20. DEVELOPMENT OF ATTRITION RESISTANT IRON-BASED FISCHER-TROPSCH CATALYSTS

    International Nuclear Information System (INIS)

    The Fischer-Tropsch (F-T) reaction provides a way of converting coal-derived synthesis gas (CO+H2) to liquid fuels. Since the reaction is highly exothermic, one of the major problems in control of the reaction is heat removal. Recent work has shown that the use of slurry bubble column reactors (SBCRs) can largely solve this problem. The use of iron-based catalysts is attractive not only due to their low cost and ready availability, but also due to their high water-gas shift activity which makes it possible to use these catalysts with low H2/CO ratios. However, a serious problem with use of Fe catalysts in a SBCR is their tendency to undergo attrition. This can cause fouling/plugging of downstream filters and equipment, makes the separation of catalyst from the oil/wax product very difficult if not impossible, and results in a steady loss of catalyst from the reactor. Recently, fundamental understanding of physical attrition is being addressed by incorporating suitable binders into the catalyst recipe. This has resulted in the preparation of a spray dried Fe-based catalyst having aps of 70 mm with high attrition resistance. This Fe-based attrition resistant, active and selective catalyst gave 95% CO conversion through 125 hours of testing in a fixed-bed at 270 C, 1.48 MPa, H2/CO=0.67 and 2.0 NL/g-cat/h with C5+ selectivity of >78% and methane selectivity of <5%. However, further development of the catalyst is needed to address the chemical attrition due to phase changes that any Fe-catalyst goes through potentially causing internal stresses within the particle and resulting in weakening, spalling or cracking. The objective of this research is to develop robust iron-based Fischer-Tropsch catalysts that have suitable activity, selectivity and stability to be used in the slurry bubble column reactor. Specifically we aim to develop to: (i) improve the performance and preparation procedure of the high activity, high attrition resistant, high alpha iron-based catalysts

  1. Acidic ionic liquids for n-alkane isomerization in a liquid-liquid or slurry-phase reaction mode

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, C.; Hager, V.; Geburtig, D.; Kohr, C.; Wasserscheid, P. [Erlangen-Nuernberg Univ. (Germany). Lehrstuhl fuer Chemische Reaktionstechnik; Haumann, M. [Chemical Reaction Engineering, FAU Busan Campus, Korea (Korea, Republic of)

    2011-07-01

    Highly acidic ionic liquid (IL) catalysts offer the opportunity to convert n-alkanes at very low reaction temperatures. The results of IL catalyzed isomerization and cracking reactions of pure n-octane are presented. Influence of IL composition, [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / H{sub 2}SO{sub 4} and [C{sub 4}C{sub 1}Im]Cl / AlCl{sub 3} / 1-chlorooctane, on catalyst activity and selectivities to branched alkanes was investigated. Acidic chloroaluminate IL catalysts form liquid-liquid biphasic systems with unpolar organic product mixtures. Thus, recycling of the acidic IL is enabled by simple phase separation in the liquid-liquid biphasic reaction mode or the IL can be immobilized on an inorganic support with a large specific surface area. These supported ionic liquid phase (SILP) catalysts offer the advantage to get a macroscopically heterogeneous system while still preserving all benefits of the homogeneous catalyst which can be used for the slurry-phase n-alkane isomerization. The interaction of the solid support and acidic IL influences strongly the catalytic activity. (orig.)

  2. 浆态床合成二甲醚的研究%Synthesis of DME in slurry bed

    Institute of Scientific and Technical Information of China (English)

    赵宁; 陈小平; 任杰; 孙予罕

    2001-01-01

    考察了合成甲醇催化剂和甲醇脱水催化剂对于浆态床合成二甲醚反应的影响。结果表明,甲醇合成催化剂对于CO转化率和二甲醚的选择性都有一定的影响。甲醇催化剂对于合成二甲醚反应的活性顺序为:HY>γ-Al2O3>Hβ>HZSM-5,反应结果结合NH3-TPD表征,认为甲醇脱水生成二甲醚的反应是以弱酸中心为活性中心,在强弱酸中心的协同作用下进行的。%Dimethyl ether (DME) synthesis in slurry bed was investigated by using different methanol synthesis catalysts and different dehydration catalysts. It was found that methanol synthesis catalyst had great effect on DME synthesis, and a better methanol synthesis catalyst would be favorable for DME synthesis. The dehydration catalyst showed different performance in DME synthesis due to not only the acid strength, but also interaction between strong and weak acid sites.

  3. PREPARATION OF STARCH SUCCINATE WITH INTERMEDIATE DS BY AQUEOUS SLURRY REACTION

    Institute of Scientific and Technical Information of China (English)

    ZHUChangying; WANGBin; 等

    2001-01-01

    The succinylation of cornstarch by slurry reaction has been studied using sodium hydroxide as catalyst.Several reaction parameters affecting the succinylation were investigated including the concentration of starch in water,the ratio of succinic anhydride to starch,the reaction time and the reaction temperature,The favorable conditions for an intermediate degree of substitution(DS) and reasonably high reaction efficiency(RE) are pH 8.5-9.0,50% starch by weight to water.succinic anhydride to starch 1/1(w/w),reaction time 4h,reaction temperature 30℃ .Under these conditions,the DS of 0.45 and RE of 28% were achieved.The addition of an adequate amount of crosslinking agent imparted starch succinate water absorbency.

  4. PREPARATION OF STARCH SUCCINATE WITH INTERMEDIATE DS BY AQUEOUS SLURRY REACTION

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The succinylation of cornstarch by slurry reaction has been studied using sodium hydroxide as catalyst. Several reaction parameters afJecting the succinylation were investigated including the concentration of starch in water, the ratio of succinic anhydride to starch, the reaction time and the reaction temperature. The favorable conditions for an intermediate degree of substitution (DS) and reasonably high reaction efficiency (RE) are pH 8.5~9.0, 50% starch by weight to water, succinic anhydride to starch I/I (w/w), reaction time 4h, reaction temperature 30 ℃Under these conditions, the DS of 0.45 and RE of 28% were achieved. The addition of an adequate amount of crosslinking agent imparted starch succinate water absorbency.

  5. Testing of In-Line Slurry Monitors and Pulsair Mixers with Radioactive Slurries

    Energy Technology Data Exchange (ETDEWEB)

    Hylton, T.D.; Bayne, C.K.

    1999-08-01

    Three in-line slurry monitoring instruments were demonstrated, tested, and evaluated for their capability to determine the transport properties of radioactive slurries. The instruments included the Endress + Hauser Promass 63M Coriolis meter for measuring density, the Lasentec M600P for measuring particle size distribution, and a prototype ultrasonic monitor that was developed by Argonne National Laboratory for measuring suspended solids concentration. In addition, the power consumption of the recirculation pump was monitored to determine whether this parameter could be used as a tool for in-line slurry monitoring. The Promass 63M and the M600P were also evaluated as potential indicators of suspended solids concentration. In order to use the Promass 63M as a suspended solids monitor, the densities of the fluid phase and the dry solid particle phase must be known. In addition, the fluid phase density and the dry solids density must remain constant, as any change will affect the correlation between the slurry density and the suspended solids concentration. For the M600P, the particle size distribution would need to remain relatively constant. These instruments were demonstrated and tested at the Gunite and Associated Tanks Remediation Project at the Oak Ridge National Laboratory. The testing of the instruments was conducted in parallel with the testing of a Pulsair mixing system, which was used to mix the contents of the selected tank. A total of six tests were performed. A submersible pump was positioned at two depths, while the Pulsair system was operated at three mixing rates.

  6. PCB dechlorination in anaerobic soil slurry reactors

    International Nuclear Information System (INIS)

    Many industrial locations, including the US Department of Energy's, have identified needs for treatment of polychlorinated biphenyl (PCB) wastes and remediation of PCB-contaminated sites. Biodegradation of PCBs is a potentially effective technology for the treatment of PCB-contaminated soils and sludges, including mixed wastes; however, a practical remediation technology has not yet been demonstrated. In laboratory experiments, soil slurry bioreactors inoculated with microorganisms extracted from PCB-contaminated sediments from the Hudson River have been used to obtain anaerobic dechlorination of PCBS. The onset of dechlorination activity can be accelerated by addition of nutritional amendments and inducers. After 15 weeks of incubation with PCB-contaminated soil and nutrient solution, dechlorination has been observed under several working conditions. The best results show that the average chlorine content steadily dropped from 4.3 to 3.5 chlorines per biphenyl over a 15-week period

  7. Ice slurry cooling development and field testing

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K.E. [Argonne National Lab., IL (United States); Hietala, J. [Northern States Power Co., Minneapolis, MN (United States); Wendland, R.D. [Electric Power Research Inst., Palo Alto, CA (United States); Collins, F. [USDOE, Washington, DC (United States)

    1992-07-01

    A new advanced cooling technology collaborative program is underway involving Argonne National Laboratory (ANL), Northern States Power (NSP) and the Electric Power Research Institute (EPRI). The program will conduct field tests of an ice slurry distributed load network cooling concept at a Northern States Power utility service center to further develop and prove the technology and to facilitate technology transfer to the private sector. The program will further develop at Argonne National Laboratory through laboratory research key components of hardware needed in the field testing and develop an engineering data base needed to support the implementation of the technology. This program will sharply focus and culminate research and development funded by both the US Department of Energy and the Electric Power Research Institute on advanced cooling and load management technology over the last several years.

  8. Desulfurization from Bauxite Water Slurry (BWS) Electrolysis

    Science.gov (United States)

    Gong, Xuzhong; Ge, Lan; Wang, Zhi; Zhuang, Siyuan; Wang, Yuhua; Ren, Lihui; Wang, Mingyong

    2016-02-01

    Feasibility of high-sulfur bauxite electrolysis desulfurization was examined using the electrochemical characterization, XRD, DTA, and FTIR. The cyclic voltammetry curves indicated that bauxite water slurry (BWS) electrolysis in NaOH system was controlled by diffusion. Additionally, the desulfurization effect of NaCl as the electrolyte was significantly better than that of NaOH as an electrolyte. As the stirring rate increased, the desulfurization ratio in NaCl system was not increased obviously, while the desulfurization ratio in NaOH system increased significantly, indicating further that electrolysis desulfurization in NaOH solution was controlled by diffusion. According to XRD, DTA, and FTIR analysis, the characteristic peaks of sulfur-containing phase in bauxite after electrolysis weakened or disappeared, indicating that the pyrite in bauxite was removed from electrolysis. Finally, the electrolytic desulfurization technology of bauxite was proposed based on the characteristics of BWS electrolysis.

  9. Toxicity Evaluation of Pig Slurry Using Luminescent Bacteria and Zebrafish

    Directory of Open Access Journals (Sweden)

    Wenyan Chen

    2014-07-01

    Full Text Available Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri, larvae and embryos of zebrafish (Danio rerio were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v and 1.95% (v/v respectively, and embryonic development was inhibited at just 1% (v/v. Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR, while the LC50 of larvae was 75.23% (v/v and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent.

  10. ORGANIC NITROGEN IN A TYPIC HAPLUDOX FERTILIZED WITH PIG SLURRY

    Directory of Open Access Journals (Sweden)

    Marco André Grohskopf

    2015-02-01

    Full Text Available The application of pig slurry may have a different effect on nitrogen dynamics in soil compared to mineral fertilization. Thus, the aim of this study was to determine the different forms of organic N in a Latossolo Vermelho distroférrico (Typic Hapludox and their relationship to N uptake by crops in response to 10 years of annual application of pig slurry and mineral fertilizer. The treatments were application rates of 0, 25, 50, 100, and 200 m3 ha-1 of pig slurry, in addition to mineral fertilizer, organized in a randomized block design with four replications. The N contents were determined in the plant tissue and in the forms of total N and acid hydrolyzed fractions: ammonium-N, hexosamine-N, α-amino-N, amide-N, and unidentified-N. Annual application of pig slurry or mineral fertilizer increased the total-N content in the 0-10 cm depth layer. The main fractions of organic N in the soil were α-amino-N when pig slurry was applied and unidentified-N in the case of mineral fertilizers. Pig slurry increased the N fractions considered as labile: α-amino-N, ammonium-N, and amide-N. The increase in these labile organic N fractions in the soil through pig slurry application allows greater N uptake by the maize and oat crops in a no-tillage system.

  11. Toxicity evaluation of pig slurry using luminescent bacteria and zebrafish.

    Science.gov (United States)

    Chen, Wenyan; Cai, Qiang; Zhao, Yuan; Zheng, Guojuan; Liang, Yuting

    2014-07-01

    Biogas slurry has become a serious pollution problem and anaerobic digestion is widely applied to pig manure treatment for environmental protection and energy recovery. To evaluate environmental risk of the emission of biogas slurry, luminescent bacteria (Vibrio fischeri), larvae and embryos of zebrafish (Danio rerio) were used to detect the acute and development toxicity of digested and post-treated slurry. Then the ability of treatment process was evaluated. The results showed that digested slurry displayed strong toxicity to both zebrafish and luminescent bacteria, while the EC50 for luminescent bacteria and the LC50 for larvae were only 6.81% (v/v) and 1.95% (v/v) respectively, and embryonic development was inhibited at just 1% (v/v). Slurry still maintained a high level of toxicity although it had been treated by membrane bioreactor (MBR), while the LC50 of larvae was 75.23% (v/v) and there was a little effect on the development of embryos and V. fischeri; the results also revealed that the zebrafish larvae are more sensitive than embryos and luminescent bacteria to pig slurry. Finally, we also found the toxicity removal rate was higher than 90% after the treatment of MBR according to toxicity tests. In conclusion, further treatment should be used in pig slurry disposal or reused of final effluent. PMID:24995598

  12. Coal-water slurry as utility boiler fuel. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Scheffee, R.S.; Boyd, T.J.; Rossmeissl, N.P.; McHale, E.T.; Henderson, C.B.; Glenn, R.D.

    1982-03-01

    Coal-water slurries are a potential replacement for heavy fuel oil in utility boilers. Slurries have the major advantages of low cost, ease of handling, and early availability. A program was conducted to characterize the formulation, processing, handling, combustion, and storage of coal-water slurries made from cleaned coals. Acceptable slurries containing between 67 and 70% coal (by weight) were made from two different coals. A selected slurry was burned with good results in the Atlantic Research Corporation's one-million Btu/h experimental furnace. Approximately five tons (4,500 kg) of slurry were prepared on a pilot line for testing in the four-million Btu/h Babcock and Wilcox Basic Combustion Test Unit. A plant flowsheet was developed for a slurry plant designed to process five-million tons (4.5 x 10/sup 9/ kg) of coal a year. Total plant investment is estimated at $104-million (1980). Assuming a delivered coal cost of $50/ton (800 kg), the production costs are estimated to be $58/ton of coal or $2.14/million Btu. This cost compares favorably to a cost of $4.76/million Btu for heavy fuel oil at $30/barrel. These costs exclude certain ancillary costs such as marketing, fees and permits, insurance, interest on capital, profit, local taxes, and corporate income tax.

  13. Influence of liquid medium on the activity of a low-alpha Fischer-Tropsch catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, R.J.; Zarochak, M.F.; Deffenbaugh, P.W.; Rao, K.R.P.M.

    1995-12-31

    The purpose of this research was to measure activity, selectivity, and the maintenance of these properties in slurry autoclave experiments with a Fischer-Tropsch (FT) catalyst that was used in the {open_quotes}FT II{close_quotes} bubble-column test, conducted at the Alternative Fuels Development Unit (AFDU) at LaPorte, Texas during May 1994. The catalyst contained iron, copper, and potassium and was formulated to produce mainly hydrocarbons in the gasoline range with lesser production of diesel-range products and wax. The probability of chain growth was thus deliberately kept low. Principal goals of the autoclave work have been to find the true activity of this catalyst in a stirred tank reactor, unhindered by heat or mass transfer effects, and to obtain a steady conversion and selectivity over the approximately 15 days of each test. Slurry autoclave testing of the catalyst in heavier waxes also allows insight into operation of larger slurry bubble column reactors. The stability of reactor operation in these experiments, particularly at loadings exceeding 20 weight %, suggests the likely stability of operations on a larger scale.

  14. Flow behavior of coarse-grained slurries in pipes

    OpenAIRE

    Vlasák, P.; Chára, Z.; Kysela, B. (Bohuš); Sobota , J.

    2011-01-01

    The paper describes the experimental investigation of model coarse-grained slurry on a recirculation pipe loop with smooth stainless steel pipes. Graded pebble gravel and glass balls were used as a model for poly-metallic nodules, and very fine glass beads as a model for fine-grained sand. The investigation was focused on evaluating the effect of slurry velocity and particle concentration on pressure drops and the slurry flow behavior in the turbulent regime. Also the effect of fine-grained p...

  15. Evaluation of plant available nitrogen in concentrated pig slurry

    International Nuclear Information System (INIS)

    In Northeast Spin the expansion of the pig industry has brought as a result the production of vast amounts of pig slurry that exceeds field crops fertilization needs and consequently has contributed to the environmental deterioration of the region particularly ground water with NO3 pollution. Under such circumstances, it is needed to treat and/or export pig slurry. During the last year the implantation of cogeneration plants that take advantage of the surplus of energy to produce concentrate pig slurry by water evaporation that could easily transported. (Author)

  16. ORGANIC NITROGEN IN A TYPIC HAPLUDOX FERTILIZED WITH PIG SLURRY

    OpenAIRE

    2015-01-01

    The application of pig slurry may have a different effect on nitrogen dynamics in soil compared to mineral fertilization. Thus, the aim of this study was to determine the different forms of organic N in a Latossolo Vermelho distroférrico (Typic Hapludox) and their relationship to N uptake by crops in response to 10 years of annual application of pig slurry and mineral fertilizer. The treatments were application rates of 0, 25, 50, 100, and 200 m3 ha-1 of pig slurry, in addition to mineral fer...

  17. Use of radiation-induced polymers in cement slurries

    International Nuclear Information System (INIS)

    Water loss from cement slurries is reduced by incorporating within a cement slurry a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in 10-60 percent aqueous monomer solution with gamma radiation. The aqueous monomer solution preferably contains 25-99 percent acrylamide and 75-1 percent sodium acrylate. The polymer can be present in concentration of about 0.001 to about 3.0 weight percent, based on the aqueous phase of the slurry

  18. Use of radiation-induced polymers in cement slurries

    International Nuclear Information System (INIS)

    Water loss from cement slurries is reduced by incorporating within a cement slurry a polymer obtained as a product of radiation-induced polymerization of acrylamide and/or methacrylamide and acrylic acid, methacrylic acid, and/or alkali metal salts thereof. The polymerization is preferably carried out in 10 to 60 percent aqueous monomer solution with gamma radiation. The aqueous monomer solution preferably contains 25 to 99 percent acrylamide and 75 to 1 percent sodium acrylate. The polymer can be present in concentration of about 0.001 to about 3.0 weight percent, based on the aqueous phase of the slurry. (U.S.)

  19. Development of Syringe/Bottle Hybrids for Sampling Slurries

    International Nuclear Information System (INIS)

    A convenient and effective sample bottle system based on simple modifications of disposable plastic syringes and bottles has been devised and tested for slurry samples. Syringe/ bottle hybrids (hereafter referred to as syringe bottles) have the convenience of regular flat-bottom bottles with screw cap closures. In addition, the syringe imparts a sliding and adjustable bottom to the bottle that forces the entire contents from the bottle. The system was designed especially to collect samples for high temperature work-ups of DWPF slurry samples. The syringe bottles together with fixed-bottom sample vial inserts would provide the DWPF with convenient and reliable methods for dealing with slurry samples

  20. Microstructure of silicon carbide nano powder-polycarbosilane-solvent mixed slurries and observed shear rate dependence in slurry viscosity

    International Nuclear Information System (INIS)

    SiC powder, polycarbosilane and xylene mixed slurries were prepared for microstructure observation and viscosity measurement. Slurries with averaged primary SiC size of 270 or 50 nm revealed existence of isolated secondary particles smaller than 1 μm in optical microscope observation. These secondary particles showed a Brownian motion in a xylene-PCS medium. On the other hand, slurry with an averaged primary SiC size of 20 nm revealed existence of large secondary particles in the size of 2-5 μm. The apparent area occupied with these secondary particles was far larger than that occupied by secondary particles of 270 or 50 nm in spite of a low SiC content. It was suggested that the secondary particles observed in the 20 nm slurry possessed small spaces among the primary SiC particles. Viscosity measurement presented that apparent viscosity of the slurry was high in general when the primary SiC particle size was small. In particular, the 20 nm SiC slurries showed quite high viscosity even at a SiC content of 5-6 mass%, which almost corresponded to that of 40 mass% for a SiC 270 nm slurry. Shear thinning effect was also remarkable when the primary SiC particle size was small

  1. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.

    Science.gov (United States)

    Lee, Chun W; Serre, Shannon D; Zhao, Yongxin; Lee, Sung Jun; Hastings, Thomas W

    2008-04-01

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas. PMID:18422035

  2. Visible-Light-Responsive Photocatalysis: Ag-Doped TiO2 Catalyst Development and Reactor Design Testing

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Meier, Anne; Shah, Malay G.; Devor, Robert W.; Surma, Jan M.; Maloney, Phillip R.; Bauer, Brint M.; Mazyck, David W.

    2016-01-01

    In recent years, the alteration of titanium dioxide to become visible-light-responsive (VLR) has been a major focus in the field of photocatalysis. Currently, bare titanium dioxide requires ultraviolet light for activation due to its band gap energy of 3.2 eV. Hg-vapor fluorescent light sources are used in photocatalytic oxidation (PCO) reactors to provide adequate levels of ultraviolet light for catalyst activation; these mercury-containing lamps, however, hinder the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure. VLR-TiO2 would allow for use of ambient visible solar radiation or highly efficient visible wavelength LEDs, both of which would make PCO approaches more efficient, flexible, economical, and safe. Over the past three years, Kennedy Space Center has developed a VLR Ag-doped TiO2 catalyst with a band gap of 2.72 eV and promising photocatalytic activity. Catalyst immobilization techniques, including incorporation of the catalyst into a sorbent material, were examined. Extensive modeling of a reactor test bed mimicking air duct work with throughput similar to that seen on the International Space Station was completed to determine optimal reactor design. A bench-scale reactor with the novel catalyst and high-efficiency blue LEDs was challenged with several common volatile organic compounds (VOCs) found in ISS cabin air to evaluate the system's ability to perform high-throughput trace contaminant removal. The ultimate goal for this testing was to determine if the unit would be useful in pre-heat exchanger operations to lessen condensed VOCs in recovered water thus lowering the burden of VOC removal for water purification systems.

  3. Foundation Flash Catalyst

    CERN Document Server

    Goralski, Greg

    2010-01-01

    This book offers an introduction to Flash Catalyst for designers with intermediate to advanced skills. It discusses where Catalyst sits within the production process and how it communicates with other programs. It covers all of the features of the Flash Catalyst workspace, teaching you how to create designs from scratch, how to build application designs and add functionality, and how to master the Catalyst/Flex workflow. * Introduces Flash Catalyst * Focuses on production process * Covers the interrelation between Flash Catalyst and Photoshop/Illustrator/Flex/Flash What you'll learn Starting f

  4. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  5. Kinetics of Slurry Phase Fischer-Tropsch Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Dragomir B. Bukur; Gilbert F. Froment; Tomasz Olewski; Lech Nowicki; Madhav Nayapati

    2006-12-31

    The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. Three STSR tests of the Ruhrchemie LP 33/81 catalyst were conducted to collect data on catalyst activity and selectivity under 25 different sets of process conditions. The observed decrease in 1-olefin content and increase in 2-olefin and n-paraffin contents with the increase in conversion are consistent with a concept that 1-olefins participate in secondary reactions (e.g. 1-olefin hydrogenation, isomerization and readsorption), whereas 2-olefins and n-paraffins are formed in these reactions. Carbon number product distribution showed an increase in chain growth probability with increase in chain length. Vapor-liquid equilibrium calculations were made to check validity of the assumption that the gas and liquid phases are in equilibrium during FTS in the STSR. Calculated vapor phase compositions were in excellent agreement with experimental values from the STSR under reaction conditions. Discrepancies between the calculated and experimental values for the liquid-phase composition (for some of the experimental data) are ascribed to experimental errors in the amount of wax collected from the reactor, and the relative amounts of hydrocarbon wax and Durasyn 164 oil (start-up fluid) in the liquid samples. Kinetic parameters of four kinetic models (Lox and Froment, 1993b; Yang et al., 2003; Van der Laan and Beenackers, 1998, 1999; and an extended kinetic model of Van der Laan and Beenackers) were estimated from experimental data in the STSR tests. Two of these kinetic models (Lox and Froment, 1993b; Yang et al., 2003) can predict a complete product distribution (inorganic species and hydrocarbons), whereas the kinetic model of Van der Laan and Beenackers (1998, 1999) can

  6. Effect of Impeller Agitation on Preparation of Tetra-n-Butyl Ammonium Bromide Semiclathrate Hydrate Slurries

    OpenAIRE

    Yoshiro Inoue; Kazunari Ohgaki; Shunsuke Hashimoto; Hiroyuki Ito

    2012-01-01

    The slurries-containing tetra-n-butyl ammonium bromide (TBAB) solution and its semiclathrate hydrate have attracted a lot of interest as latent heat transport media. These hydrate slurries contain some microparticles of crystal, and the size and shape of these hydrate particles could affect the mobility of slurries. Hence, it is essential to investigate the efficient hydrate-slurry preparation methods and the effect of hydrate particles on the fluid property of slurries for the application to...

  7. New-Generation Sealing Slurries For Borehole Injection Purposes

    Science.gov (United States)

    Stryczek, Stanisław; Gonet, Andrzej; Wiśniowski, Rafał; Złotkowski, Albert

    2015-12-01

    The development of techniques and technologies thanks to which parameters of the ground medium can be modified makes specialists look for new recipes of geopolymers - binders for the reinforcing and sealing of unstable and permeable grounds. The sealing slurries are expected to meet a number of strict requirements, therefore it is important to find new admixtures and additives which could modify the fresh and hardened slurry. Special attention has been recently paid to the fluid ash - a by-product of the combustion of hard coals. However, the use of this additive is associated with the application of appropriate superplastifier. Laboratory analyses of rheological parameters of fresh sealing slurries and the ways of improving their liquidity by a properly selected third-generation superplastifier are presented in the paper. The slurries were based on Portland cement CEM I, milled granulated large-furnace slag and fly ash from fluidized-bed combustion of hard coal.

  8. Environmental Consequences of Future Biogas Technologies based on Separated Slurry

    DEFF Research Database (Denmark)

    Hamelin, Lorie; Wesnæs, Marianne; Wenzel, Henrik;

    2011-01-01

    This consequential life cycle assessment study highlights the key environmental aspects of producing biogas from separated pig and cow slurry, a relatively new but probable scenario for future biogas production, as it avoids the reliance on constrained carbon cosubstrates. Three scenarios involving...... different slurry separation technologies have been assessed and compared to a business-as-usual reference slurry management scenario. The results show that the environmental benefits of such biogas production are highly dependent upon the efficiency of the separation technology used to concentrate the...... volatile solids in the solid fraction. The biogas scenario involving the most efficient separation technology resulted in a dry matter separation efficiency of 87% and allowed a net reduction of the global warming potential of 40%, compared to the reference slurry management. This figure comprises the...

  9. Interactions between Soil Texture and Placement of Dairy Slurry Application

    DEFF Research Database (Denmark)

    Glæsner, Nadia; Kjærgaard, Charlotte; Rubæk, Gitte Holton;

    2011-01-01

    soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 μm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam......-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting...... physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil...

  10. Cost estimate for a coal slurry pipeline in western Sumatra

    Energy Technology Data Exchange (ETDEWEB)

    Kappelle, H.J.

    1982-08-01

    Contents: Introduction to pipeline slurry transport; Calculation of pressure drop due to friction; Calculation of the total pressure drop; Determination of the type of pumps; Wall thickness and the cost of the pipe; Storage capacity; Dewatering; Grinding; Cost evaluation.

  11. Ice slurry based thermal storage in multifunctional buildings

    Science.gov (United States)

    Wang, M. J.; Kusumoto, N.

    Ice slurry based thermal storage plays an important role in reshaping patterns of electricity use for space cooling and heating. It offers inherent advantages in energy efficiency, operating savings, load follow-up and flexible installation over conventional thermal storage technologies. This paper provides discussions on the generation mechanism and performance of ice slurry, as well as the operation principle of the ice slurry based thermal storage system. Details of the system design, control strategy and operation performance are given through a case study on a recent installation in Herbis Osaka, the largest simple building complex in Japan. An evaluation of different installations with ice slurry thermal storage reveals that it is a rewarding technology that provides significant operating savings for the building air-conditioning and improves energy utilization efficiency in modern society.

  12. A novel kind of TSV slurry with guanidine hydrochloride

    International Nuclear Information System (INIS)

    The effect of a novel alkaline TSV (through-silicon-via) slurry with guanidine hydrochloride (GH) on CMP (chemical mechanical polishing) was investigated. The novel alkaline TSV slurry was free of any inhibitors. During the polishing process, the guanidine hydrochloride serves as an effective surface-complexing agent for TSV CMP applications, the removal rate of barrier (Ti) can be chemically controlled through tuned selectivity with respect to the removal rate of copper and dielectric, which is helpful to modifying the dishing and gaining an excellent topography performance in TSV manufacturing. In this paper, we mainly studied the working mechanism of the components of slurry and the skillful application guanidine hydrochloride in the TSV slurry. (paper)

  13. Dilute acid pretreatment of lignocellulose for whole slurry ethanol fermentation.

    Science.gov (United States)

    Jung, Young Hoon; Kim, In Jung; Kim, Hyun Kyung; Kim, Kyoung Heon

    2013-03-01

    Dilute sulfuric acid pretreatment of oil palm empty fruit bunches (EFB) followed by the whole slurry fermentation of the pretreated EFB slurry was investigated. The optimized pretreatment conditions were at 1% (w/v) sulfuric acid with 3 min ramping to 190 °C in a microwave digester. Pretreated and washed EFB exhibited enzymatic digestibility of 88.5% of theoretical glucose yield after 48 h of hydrolysis. When the whole slurry of pretreated and neutralized EFB was used in simultaneous saccharification and fermentation (SSF) using cellulase and Saccharomyces cerevisiae, sulfuric acid-pretreated EFB resulted in 52.5% of theoretical ethanol yield based on total glucan in the untreated initial EFB after 72 h of SSF. When pretreated EFB slurry was treated with activated carbon before subjecting to SSF, the SSF furnished 87.5% ethanol yield based on the initial glucan content in untreated EFB (after 48 h of SSF). PMID:23395763

  14. The aggressiveness of pig slurry to cement mortars

    OpenAIRE

    Massana Guitart, Jordi; Guerrero Bustos, Ana; Antón Fuentes, Rebeca; Garcimartin Molina, Miguel Angel; Sanchez Espinosa, Elvira

    2013-01-01

    The aim was to measure the behaviour of various mortars employed in livestock media in central Spain and to analyse the aggressiveness of pig slurry to cement blended with fly ash mortars. To achieve this, mortar specimens were immersed in ponds storing pig slurry. Mortar specimens, of 40 ? 40 ? 160 mm, were made from four types of cement commonly used and recommended for rural areas. The types were a sulphate-resistant Portland cement and three cements blended in different proportions with ...

  15. A study on the treatment of radioactive slurry liquid waste

    International Nuclear Information System (INIS)

    The influence of anionic flocculants on the dewatering of radioactive slurries has been investigated in a laboratory-scale vacuum filtration unit. Simultaneously the influence of certain surfactants on the dewatering of radioactive slurries with anionic flocculants has also been investigated. Test results show that the flocculated filter cake generally contains higher residual water than the unflocculated cake. The non-ionic surfactant Triton X-100 was effective in reducing the moisture content of the cake

  16. Resistance coefficient during ice slurry flow through pipe sudden constriction

    Directory of Open Access Journals (Sweden)

    Ł. Mika

    2010-07-01

    Full Text Available Due to the adverse environmental effects of some commonly-used refrigerants, efforts are still underway to find new cooling mediumsthat would be safer to the ozone layer and would not increase the greenhouse effect. Ice slurry as a new ecological coolant suits theprocesses requiring the preservation of constant and equal temperature in the cooling process of the full section of the cooled solid. Thanks to that, ice slurry can find a wide potential application in such branches of industry, as heat treatment, materials engineering, or foundry. In this paper, flow systems which are commonly used in fittings elements such as diameter’s reductions in ice slurry pipelines, are experimentally investigated. In the study reported in this paper, the consideration was given to the specific features of the slurry flow in which the flow qualities depend mainly on the volume fraction of solid particles. The results of the experimental studies on the flow resistance, presented herein, enabled to determine the resistance coefficient during the ice slurry flow through the pipe sudden constriction. The volume fraction of solid particles in the slurry ranged from 5 to 30%. The recommended and non-recommended range of the Reynolds number for the ice slurry flow through the pipe sudden constriction were presented in this paper. The experimental studies were conducted on a few variants of the most common reductions of copper pipes. Further studies on the determination of the resistance coefficient in the remaining fittings elements of the pipeline were recommended in the paper as well as the further theoretical studies intended to determine the theoretical relations to calculate the resistance coefficient in all the fittings elements in the pipeline (on the basis of the experimental studies and to elaborate the calculation pattern of the entire ice slurry system.

  17. Investigation of aqueous slurries as fusion reactor blankets

    International Nuclear Information System (INIS)

    Numerical and experimental studies were carried out to assess the feasibility of using an aqueous slurry, with lithium in its solid component, to meet the tritium breeding, cooling, and shielding requirements of a controlled thermonuclear reactor (CTR). The numerical studies were designed to demonstrate the theoretical ability of a conceptual slurry blanket to breed adequate tritium to sustain the CTR. The experimental studies were designed to show that the tritium retention characteristics of likely solid components for the slurry were conducive to adequate tritium recovery without the need for isotopic separation. The numerical portion of this work consisted in part of using ANISN, a one-dimensional finite difference neutron transport code, to model the neutronic performance of the slurry blanket concept. The parameters governing tritium production and retention in a slurry were computed and used to modify the results of the ANISN computer runs. The numerical work demonstrated that the slurry blanket was only marginally capable of breeding sufficient tritium without the aid of a neutron multiplying region. The experimental portion of this work consisted of several neutron irradiation experiments, which were designed to determine the retention abilities of LiF particles

  18. Contamination effects of drilling fluid additives on cement slurry

    Directory of Open Access Journals (Sweden)

    Youzhi Zheng

    2015-10-01

    Full Text Available During the cementation of deep wells, contamination at the contact surface between cement slurry and drilling fluid will present a technical challenge, which may threaten operation safety. To deal with the problem, lab tests and analysis were performed specifically on the compatibility of fluids during cementation in Sichuan and Chongqing gas fields. Impacts of commonly used additives for drilling fluids were determined on fluidity and thickening time of conventional cement slurry. Through the infrared spectrum analysis, SEM and XRD, infrared spectrum data of kalium polyacrylamide (KPAM and bio-viscosifier were obtained, together with infrared spectrum, SEM and XRD data of cement slurry with additives. Contamination mechanisms of the cement slurry by conventional additives for drilling fluid were reviewed. Test results show that both KPAM and bio-viscosifier are such high-molecular materials that the long chains in these materials may easily absorb cement particles in the slurry to form mixed network structures; as a result, cement particles were prone to agglomeration and eventually lost their pumpability. Finally, assessment of and testing methods for the contamination effects of drilling fluid additives on cement slurry were further improved to form standards and codes that may help solve the said problems. This study will provide technological supports for the preparation of drilling fluids with desirable properties prior to cementation, the selection of optimal drilling fluids additives, and the development of innovative drilling fluids additives.

  19. Effect of lapping slurry on critical cutting depth of spinel

    International Nuclear Information System (INIS)

    Highlights: • Measured spinel wafers’ hardness and crack length in different slurries. • Evaluated the softened layer thickness in different slurries. • Discussed the effect of slurries on critical cutting depth of spinel. - Abstract: The critical cutting depth for lapping process is very important because it influences the mode of material removal. In this paper, a serial of microscopic indentation experiments were carried out for measuring spinel wafers’ hardness and crack length in different lapping slurries. Their critical cutting depth and fracture toughness were calculated. X-ray photoelectron spectroscopy (XPS) was also employed to study the surface chemical composition and softened layer thickness of wafers in different slurries. Experimental results indicate that the softened layers of spinel wafers are formed due to the corrosion of lapping slurries, which leads to a lower hardness and a larger fracture toughness of samples, and increases the critical cutting depth. Among them, the critical cutting depth in ethylene glycol solution is the largest and up to 21.8 nm. The increase of critical cutting depth is helpful to modify the surface quality of the work-piece being lapped via ductile removal mode instead of brittle fracture mode

  20. Sorption of 17b-Estradiol to Pig Slurry Separates and Soil in the Soil-Slurry Environment

    DEFF Research Database (Denmark)

    Amin, Mostofa; Petersen, Søren O; Lægdsmand, Mette

    2012-01-01

    ) by separation technologies, which may also remove parts of the estrogens and enhance infiltration of the slurry on field application and hence the interaction between estrogens and the soil matrix. This study investigated how 17β-estradiol (E2), a natural estrogen commonly found in pig manure, sorbs...... to agricultural soils, to different size fractions of pig slurry separates, and to soils amended with each size fraction to simulate conditions in the soil–slurry environment. A crude fiber fraction (SS1) was prepared by sieving (<500 μm) the solids removed by an on-farm separation process. Three...... solids used. Sorption of E2 to soil increased with its organic carbon content for both liquid phases. The solid–liquid partition coefficients of slurry separates were 10 to 30 times higher than those of soils, but the organoic carbon normalized partition coefficient values, reflecting sorption per unit...

  1. DEVELOPMENT OF A COMPUTATIONAL MULTIPHASE FLOW MODEL FOR FISCHER TROPSCH SYNTHESIS IN A SLURRY BUBBLE COLUMN REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Donna Post Guillen; Tami Grimmett; Anastasia M. Gribik; Steven P. Antal

    2010-09-01

    The Hybrid Energy Systems Testing (HYTEST) Laboratory is being established at the Idaho National Laboratory to develop and test hybrid energy systems with the principal objective to safeguard U.S. Energy Security by reducing dependence on foreign petroleum. A central component of the HYTEST is the slurry bubble column reactor (SBCR) in which the gas-to-liquid reactions will be performed to synthesize transportation fuels using the Fischer Tropsch (FT) process. SBCRs are cylindrical vessels in which gaseous reactants (for example, synthesis gas or syngas) is sparged into a slurry of liquid reaction products and finely dispersed catalyst particles. The catalyst particles are suspended in the slurry by the rising gas bubbles and serve to promote the chemical reaction that converts syngas to a spectrum of longer chain hydrocarbon products, which can be upgraded to gasoline, diesel or jet fuel. These SBCRs operate in the churn-turbulent flow regime which is characterized by complex hydrodynamics, coupled with reacting flow chemistry and heat transfer, that effect reactor performance. The purpose of this work is to develop a computational multiphase fluid dynamic (CMFD) model to aid in understanding the physico-chemical processes occurring in the SBCR. Our team is developing a robust methodology to couple reaction kinetics and mass transfer into a four-field model (consisting of the bulk liquid, small bubbles, large bubbles and solid catalyst particles) that includes twelve species: (1) CO reactant, (2) H2 reactant, (3) hydrocarbon product, and (4) H2O product in small bubbles, large bubbles, and the bulk fluid. Properties of the hydrocarbon product were specified by vapor liquid equilibrium calculations. The absorption and kinetic models, specifically changes in species concentrations, have been incorporated into the mass continuity equation. The reaction rate is determined based on the macrokinetic model for a cobalt catalyst developed by Yates and Satterfield [1]. The

  2. Pd Close Coupled Catalyst

    Institute of Scientific and Technical Information of China (English)

    Zhong Hua SHI; Mao Chu GONG; Yao Qiang CHEN

    2006-01-01

    A catalyst comprised novel high surface area alumina support was prepared to control emission of automobiles. The results showed that prepared catalyst could satisfy the requirements of a high performance close coupled catalyst for its good catalytic activity at low temperature and good stability at high temperature.

  3. Mixing and sampling of sludge-frit-CST slurries

    International Nuclear Information System (INIS)

    The Thermal Fluids Lab of SRTC designed, built and operated a 1/240th-scale test facility to perform a series of mixing and sampling tests with aqueous and sludge-based slurries of crystalline silicotitanate (CST) resin. Note that the CST-based Ion Exchange (IX) process is one of the two options being assessed as a replacement to the original In-Tank TPB Precipitation Process to remove cesium from the high level waste stream. The particle size of as-received CST resin ranges from 200--800 microns, which is larger than the glass frit size range of 75--175 microns. This raises two technical issues of homogeneity and Hydragardregsign sampling of CST slurries. Seven different test series were conducted to address these issues. The first four tests used two batches of aqueous slurries of 10-wt% CST and the remaining three tests used three different batches of sludge-based slurries. Test results showed that the aqueous slurry of 10-wt% of ''as-received'' CST could not be effectively mixed with an agitator speed representative of DWPF mixing conditions. However, this slurry can easily be re-suspended by agitator. The agitation system could not effectively reduce the CST particle size. However, prolonged (18 hrs) repeated pumping of the slurry through a centrifugal pump broke up 55% of CST particles. The sludge-frit batch was homogeneously mixed under DWPF representative mixing conditions and the Hydragardregsign samples of sludge-frit slurry showed an excellent agreement with process tank grab samples. The sludge-frit reduced CST slurry was also homogeneously mixed under DWPG mixing conditions. However, the Hydragardregsign samples exhibited about 12% frit depletion as compared to grab samples. The CST/sludge ratios showed an excellent agreement with grab samples. Finally, the sludge-frit slurry with ''as-received'' CST repeatedly plugged the Hydrgardregsign sampler and no steady flow conditions were achieved. However, this sludge batch was well mixed in the process tank

  4. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean C. [United Technologies Research Center, East Hartford, CT (United States); Davis, Timothy D. [United Technologies Research Center, East Hartford, CT (United States); Peles, A. [United Technologies Research Center, East Hartford, CT (United States); She, Ying [United Technologies Research Center, East Hartford, CT (United States); Sheffel, Joshua [United Technologies Research Center, East Hartford, CT (United States); Willigan, Rhonda R. [United Technologies Research Center, East Hartford, CT (United States); Vanderspurt, Thomas H. [United Technologies Research Center, East Hartford, CT (United States); Zhu, Tianli [United Technologies Research Center, East Hartford, CT (United States)

    2011-09-30

    This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood

  5. Design of heterogeneous catalysts

    DEFF Research Database (Denmark)

    Frey, Anne Mette

    was inspired by a computational screening, suggesting that alloys such as Ni-Fe, Co-Ni, and Co-Fe should show superior activity to the industrially used nickel catalyst. Especially the Ni-Fe system was considered to be interesting, since such alloy catalysts should be both more active and cheaper than...... turned out to work well, and the best catalyst prepared had a C5+ yield almost a factor of two higher than a standard air calcined Co catalyst. In the NH3-SCR reaction it is desirable to develop an active and stable catalyst for NOx removal in automotive applications, since the traditionally used...

  6. Stability for a novel low-pH alkaline slurry during the copper chemical mechanical planarization

    International Nuclear Information System (INIS)

    The stability of a novel low-pH alkaline slurry (marked as slurry A, pH = 8.5) for copper chemical mechanical planarization was investigated in this paper. First of all, the stability mechanism of the alkaline slurry was studied. Then many parameters have been tested for researching the stability of the slurry through comparing with a traditional alkaline slurry (marked as slurry B, pH = 9.5), such as the pH value, particle size and zeta potential. Apart from this, the stability of the copper removal rate, dishing, erosion and surface roughness were also studied. All the results show that the stability of the novel low-pH alkaline slurry is better than the traditional alkaline slurry. The working-life of the novel low-pH alkaline slurry reaches 48 h. (semiconductor technology)

  7. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  8. POISONING OF ACTIVE SITES ON ZIEGLER-NATTA CATALYST FOR PROPYLENE POLYMERIZATION

    Institute of Scientific and Technical Information of China (English)

    Kitti Tangjituabun; Sang Yull Kim; Yuichi Hiraoka; Toshiaki Taniike; Minoru Terano; Bunjerd Jongsomjit; Piyasan Praserthdam

    2008-01-01

    The effects of poisoning materials on catalytic activity and isospecificity of the supported Ziegler-Natta catalyst were investigated.A minor amount of simple structure of Lewis base,i.e.,methanol,acetone,ethyl acetate,was introduced into the catalyst slurry for partial poisoning catalytic active centers.It was found that the variations in deactivation power were in the order of methanol>acetone>ethyl acetate.The kinetic investigation via stopped-flow polymerization showed that poisoning compounds caused a decrease in activity through the reduction of the number of active sites whereas no effect on the degree of isotacticity was observed.

  9. Commercial Application of X-62 Catalyst for Reducing Olefins in Gasoline

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhenhui; Liu Jingxiang; Xu Wuqing; Hou Yubao

    2005-01-01

    In order to reduce the coke yield and increase the economic benefits of FCC unit under the prerequisites of securing the olefin content of gasoline in compliance with the requirement, SINOPEC Luoyang Branch Company applied in the period from July through October 2004 the new generation X-62 catalyst (FlexTec-LOL1) developed by the Engelhard Corporation of USA to improve the heavy oil conversion and to reduce coke make. The result of tests has shown that indicators on reducing the unit catalyst consumption,amplitude on reduction of non-ideal products (coke+oil slurry+dry gas) yield, and amplitude on reduction of coke yield were comparatively satisfactory.

  10. Novel techniques for slurry bubble column hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dudukovic, M.P.

    1999-05-14

    The objective of this cooperative research effort between Washington University, Ohio State University and Exxon Research Engineering Company was to improve the knowledge base for scale-up and operation of slurry bubble column reactors for syngas conversion and other coal conversion processes by increased reliance on experimentally verified hydrodynamic models. During the first year (July 1, 1995--June 30, 1996) of this three year program novel experimental tools (computer aided radioactive particle tracking (CARPT), particle image velocimetry (PIV), heat probe, optical fiber probe and gamma ray tomography) were developed and tuned for measurement of pertinent hydrodynamic quantities, such as velocity field, holdup distribution, heat transfer and bubble size. The accomplishments were delineated in the First Technical Annual Report. The second year (July, 1996--June 30, 1997) was spent on further development and tuning of the novel experimental tools (e.g., development of Monte Carlo calibration for CARPT, optical probe development), building up the hydrodynamic data base using these tools and comparison of the two techniques (PIV and CARPT) for determination of liquid velocities. A phenomenological model for gas and liquid backmixing was also developed. All accomplishments were summarized in the Second Annual Technical Report. During the third and final year of the program (July 1, 1997--June 30, 1998) and during the nine months no cost extension, the high pressure facility was completed and a set of data was taken at high pressure conditions. Both PIV, CT and CARPT were used. More fundamental hydrodynamic modeling was also undertaken and model predictions were compared to data. The accomplishments for this period are summarized in this report.

  11. Study on Effect and Catalytic Mechanism of the Catalysts for Coal Oxidation in Alkaline Medium%Study on Effect and Catalytic Mechanism of the Catalysts for Coal Oxidation in Alkaline Medium

    Institute of Scientific and Technical Information of China (English)

    刘怀有; 吕经康; 赵永刚; 周尉; 印仁和

    2011-01-01

    Coal electro-oxidation in sodium hydroxide solution with catalysts, K3Fe(CN)6, sodium hypochlorite and sup- ported FeS, were investigated, respectively. Gas produced from electro-analysis of coal slurry was collected by drainage-method and l-t curves were recorded to testify the catalysis of each catalyst for coal oxidation. The results show that the three kinds of catalysts can obviously improve the coal oxidation current. Furthermore, K3Fe(CN)6 and sodium hypochlorite played an indirect oxidation role in the electrolysis process. Catalysts bridge the coal par- ticles and the solid electrode surface, thus increase the coal oxidation rates. The changes of catalyst content during the electrolysis were further determined by quantitative titration to discuss the catalytic Mechanism. The dynamic transition of K3Fe(CN)6/K4Fe(CN)6 and ClO^-/Cl^- are proposed by iodometric method.

  12. Catalyst and method for reduction of nitrogen oxides

    Science.gov (United States)

    Ott, Kevin C.

    2008-05-27

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  13. Predicting wear of hydrotransport pipelines in oil sand slurries

    Energy Technology Data Exchange (ETDEWEB)

    Been, J.; Lu, B.; Wolodko, J. [Alberta Research Council, Edmonton, AB (Canada); Kiel, D. [Coanda Research and Development Corp., Burnaby, BC (Canada)

    2008-07-01

    An overview of erosion and corrosion methods and techniques was presented. Wear to pipelines is influenced by slurry flow and chemistry; solids loading; and electrochemical interactions. While several experimental techniques have been developed to rank the performance of different pipeline materials, experiments do not currently provide accurate quantitative prediction of pipeline wear in the field. Rotating cylinder electrodes (RCE) and jet impingement methods are used to study the effect of flow velocity on corrosion rate. Slurry pot erosion-corrosion testers are used to rank materials for use in more dilute, less turbulent slurries. Coriolois slurry erosion testers are used to rank the erosion resistance of different pipeline materials. A pilot-scale flow loop is now being constructed by the Alberta Research Council (ARC) in order to replicate wet erosion phenomena in oil sands applications. The flow loop will be used to simulate the field conditions of oil sands pipelines and develop predictive wear data and models. Coulombic shear stress and characteristic wall velocities have been determined using a 2-layer model designed to represent flow as 2 distinct layers. To date, the flow loop pilot study has demonstrated that wear rates in smaller diameter flow loops are not significantly different than larger diameter field installations. Preliminary calculations have demonstrated that the flow loop can be used to accurately simulate the hydrodynamics and wear typically experienced in field slurry flows. 67 refs., 2 tabs., 7 figs.

  14. Effect of nutrient sources on bench scale vinegar production using response surface methodology Efeito das fontes de nutrientes sobre a produção de vinagre em escala de bancada, usando-se a metodologia de superfície de resposta

    Directory of Open Access Journals (Sweden)

    Joelma M. Ferreira

    2005-03-01

    Full Text Available The present work aims to evaluate on a bench scale, the effects of nitrogen and phosphorous nutrient source concentrations in vinegar production, a process that is used by small scale industries in the State of Paraiba. The response surface methodology has been utilized for modeling and optimization of the fermentation process. Initially a 2³ complete factorial design was used, where the effects of initial concentrations of ethyl alcohol, phosphorous and nitrogen sources were observed. After this analysis the concentration range of the nutrient variables were extended and a two level plus a star configuration factorial experimental design was performed. The experimental values are well represented by the linear and quadratic model equations obtained. The optimum concentration of ethanol was 4% in which the yield and the productivity of the acetic acid were maximized to the values of 70% and 0.87 g L-1 h-1 respectively, for a 24 hours fermentation period. The evaluation of the quadratic models showed that the yield of vinegar is maximized from 28.1 to 51.04% and the productivity from 0.69 to 1.29 g L-1 h-1 when the concentration of the nitrogen nutrient in the medium is increased from 0.2 to 2.3 g mL-1. Thus, at the optimized nitrogen nutrient concentration both the yield and the productivity of the vinegar are increased by 1.85 times.Objetivou-se com o presente trabalho, estudar em escala de bancada, os efeitos de concentrações de fontes dos nutrientes nitrogênio e fósforo sobre a produção de vinagre de álcool, um processo muito utilizado nas indústrias de pequeno porte do Estado da Paraíba. A metodologia de superfície de resposta foi usada na modelagem e otimização de processo de fermentação acética. Inicialmente, a metodologia de planejamento fatorial completo 2³ foi utilizada, onde os efeitos das concentrações iniciais de etanol, de fontes de fósforo e de nitrogênio foram observados. Após esta análise as faixas das

  15. Protozoan predation in soil slurries compromises determination of contaminant mineralization potential

    International Nuclear Information System (INIS)

    Soil suspensions (slurries) are commonly used to estimate the potential of soil microbial communities to mineralize organic contaminants. The preparation of soil slurries disrupts soil structure, however, potentially affecting both the bacterial populations and their protozoan predators. We studied the importance of this “slurry effect” on mineralization of the herbicide 2-methyl-4-chlorophenoxyacetic acid (MCPA, 14C-labelled), focussing on the effects of protozoan predation. Mineralization of MCPA was studied in “intact” soil and soil slurries differing in soil:water ratio, both in the presence and absence of the protozoan activity inhibitor cycloheximide. Protozoan predation inhibited mineralization in dense slurry of subsoil (soil:water ratio 1:3), but only in the most dilute slurry of topsoil (soil:water ratio 1:100). Our results demonstrate that protozoan predation in soil slurries may compromise quantification of contaminant mineralization potential, especially when the initial density of degrader bacteria is low and their growth is controlled by predation during the incubation period. - Highlights: ► We studied the protozoan impact on MCPA mineralization in soil slurries. ► Cycloheximide was used as protozoan inhibitor. ► Protozoa inhibited MCPA mineralization in dilute topsoil slurry and subsoil slurry. ► Mineralization potentials may be underestimated when using soil slurries. - Protozoan predation may strongly bias the quantification of mineralization potential when performed in soil slurries, especially when the initial density of degrader bacteria is low such as in subsoil or very dilute topsoil slurries.

  16. Preparation and characterization of platinum/carbon and ruthenium/platinum/carbon nanocatalyst using the novel rotating disk-slurry electrode (RoDSE) technique

    Science.gov (United States)

    Santiago de Jesus, Diana

    An effort to develop electrochemically smaller and well-dispersed catalytic material on a high surface area carbon material is required for fuel cell applications. In terms of pure metal catalysts, platinum has shown to be the most common catalyst used in fuel cells, but suffers from poisoning when carbon monoxide is strongly adsorbed on its surface when used for direct methanol fuel cell applications. The addition of a metal with the ability to form oxides, such as ruthenium, helps to oxidize the carbon monoxide, freeing the platinum surface for new methanol oxidation. The deposition of catalysts of PtRu onto a carbon support helps to increase the active surface area of the catalyst. Vulcan X is the most commonly used of the amorphous carbon materials for fuel cell applications. Also, a high-surface-area carbon material of interest is carbon nano-onions (CNOs), also known as multilayer fullerenes. The most convenient synthetic method for CNOs is annealing nanodiamond particles, thus retaining the size of the precursors and providing the possibility to prepare very small nanocatalysts using electrochemical techniques. A rotating disk-slurry electrode (RoDSE) technique was developed as a unique method to electrochemically prepare bulk Pt/Carbon and PtRu/Carbon nanocatalysts avoiding a constant contact of the carbon support to an electrode surface during the electrodeposition process. The nanocatalysts were prepared by using a slurry that was saturated with functionalized Vulcan XC-72R and the metal precursor in sulfuric acid. The electrochemically prepared Pt/C and PtRu/C catalysts were characterized by using TEM, STEM, XRD, XRF, TGA, XPS and electrochemical techniques. A computational analysis also was done.

  17. Semisolid Slurry Preparation of Die Steel with High Chromium Content

    Institute of Scientific and Technical Information of China (English)

    MAO Wei-min; ZHAO Ai-min; ZHANG Li-juan; ZHONG Xue-you

    2004-01-01

    The semisolid slurry preparation of die steels Cr12 and Cr12MoV with high chromium content was studied. The results show that the semisolid slurry of both steels with solid of 40 %-60 % can be made by electromagnetic stirring method and is easy to be discharged from the bottom little hole of the stirring chamber. The sizes of the spherical primary austenite in the slurry of die steels Cr12 and Cr12MoV are 50-100 μm and 80-150 μm, respectively. The homogeneous temperature field and solute field for both steel melts are obtained. The strong temperature fluctuation in the melt with many fine primary austenite grains occurs and the remelting of the secondary arm roots at the same time is accelerated because of the electromagnetic stirring. These are the most important reasons for deposition of spherical primary austenite grains.

  18. Gas distribution effects on waste properties: Viscosities of bubbly slurries

    International Nuclear Information System (INIS)

    The retention and episodic release of flammable gases are critical safety concerns for double-shell tanks that contain waste slurries. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The presence of gas bubbles is expected to affect the rheology of the sludge, but essentially no literature data are available to assess the effect of bubbles. Accordingly, the objectives of this study are to develop models for the effect of gas bubbles on the viscosity of a particulate slurry, develop an experimental method (capillary rheometer), collect data on the viscosity of a bubbly slurry, and develop a theoretical basis for interpreting the experimental data from the capillary rheometer

  19. Selection of design parameters for a slurry injection tool

    DEFF Research Database (Denmark)

    Chen, Y; Munkholm, Lars Juhl; Nyord, Tavs

    2013-01-01

    selected through applying the optimization approach. The four sweeps were tested at different working depths (75, 100, and 125 mm below soil surface) in a field with loamy sandy soil. The results showed that draft force and soil cross-sectional area tilled had similar trends as predicted in the...... determined through minimizing the tool draft force with constraints which ensured that the desired amount of slurry can be injected into the soil without slurry being exposed on the soil surface. Four sweeps with different working widths (50, 110, 180, and 250 mm) and a constant rake angle of 15° were...... optimization in terms of the effects of sweep width and working depth. Among all the combinations of sweep width and working depth, the 180 mm sweep working at 100 mm depth had the best performance, as indicated by its lowest draft force and most favorable soil surface profile for covering injected slurry....

  20. Concentrated biogas slurry enhanced soil fertility and tomato quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang-Bo Yu; Xi-Ping Luo; Fang-Bo Yu; Xi-Ping Luo; Cheng-Fang Song; Miao-Xian Zhang; Sheng-Dao Shan (Dept. of Environmental Sciences, Inst. of Environmental Technology, Zhejiang Forestry University, Linan (China))

    2010-05-15

    Biogas slurry is a cheap source of plant nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its further development. In this paper, a one-growing-season field study was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of microflora in both nonrhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could bring significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, beta-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It was concluded that the application is a practicable means in tomato production and will better service the area of sustainable agriculture

  1. Disposal of radioactive wastes by slurry fracture injection

    International Nuclear Information System (INIS)

    Slurry fracture injection is used in Saskatchewan and Alberta to dispose of inert, low-toxicity fine-grained oily quartzose sand and oily water. This waste disposal method can be extended to low-level, large-volume radioactive solid wastes with reasonable cost and low environmental risk; all technical factors seem favorable. Some of the geotechnical and monitoring issues related to large-volume emplacement of wastes are discussed in this article. Stress alterations and fracture orientation changes occur during solids injection. Injection processes are monitored using wells and the induced displacement field. Most sedimentary basins have favourable characteristics for implementation of slurry fracture injection; with proper site selection and slurry design, million-year security seems entirely reasonable. (author)

  2. Development of Alternative Rheological Measurements for DWPF Slurry Samples (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. c.

    2005-09-01

    Rheological measurements are used to evaluate the fluid dynamic behavior of Defense Waste Processing Facility, DWPF, slurry samples. Measurements are currently made on non-radioactive simulant slurries using two state-of-the-art rheometers located at the Aiken County Technical Laboratory, ACTL. Measurements are made on plant samples using a rheometer in the Savannah River National Laboratory, SRNL, Shielded Cells facility. Low activity simulants or plant samples can be analyzed using a rheometer located in a radioactive hood in SRNL. Variations in the rheology of SB2 simulants impacted the interpretation of results obtained in a number of related studies. A separate rheological study was initiated with the following four goals: (1) Document the variations seen in the simulant slurries, both by a review of recent data, and by a search for similar samples for further study. (2) Attempt to explain the variations in rheological behavior, or, failing that, reduce the number of possible causes. In particular, to empirically check for rheometer-related variations. (3) Exploit the additional capabilities of the rheometers by developing new measurement methods to study the simulant rheological properties in new ways. (4) Formalize the rheological measurement process for DWPF-related samples into a series of protocols. This report focuses on the third and fourth goals. The emphasis of this report is on the development and formalization of rheological measurement methods used to characterize DWPF slurry samples. The organization is by rheological measurement method. Progress on the first two goals was documented in a concurrent technical report, Koopman (2005). That report focused on the types and possible causes of unusual rheological behavior in simulant slurry samples. It was organized by the sample being studied. The experimental portion of this study was performed in the period of March to April 2004. A general rheology protocol for routine DWPF slurry samples, Koopman

  3. Development of Alternative Rheological Measurements for DWPF Slurry Samples

    International Nuclear Information System (INIS)

    Rheological measurements are used to evaluate the fluid dynamic behavior of Defense Waste Processing Facility, DWPF, slurry samples. Measurements are currently made on non-radioactive simulant slurries using two state-of-the-art rheometers located at the Aiken County Technical Laboratory, ACTL. Measurements are made on plant samples using a rheometer in the Savannah River National Laboratory, SRNL, Shielded Cells facility. Low activity simulants or plant samples can be analyzed using a rheometer located in a radioactive hood in SRNL. Variations in the rheology of SB2 simulants impacted the interpretation of results obtained in a number of related studies. A separate rheological study was initiated with the following four goals: (1) Document the variations seen in the simulant slurries, both by a review of recent data, and by a search for similar samples for further study. (2) Attempt to explain the variations in rheological behavior, or, failing that, reduce the number of possible causes. In particular, to empirically check for rheometer-related variations. (3) Exploit the additional capabilities of the rheometers by developing new measurement methods to study the simulant rheological properties in new ways. (4) Formalize the rheological measurement process for DWPF-related samples into a series of protocols. This report focuses on the third and fourth goals. The emphasis of this report is on the development and formalization of rheological measurement methods used to characterize DWPF slurry samples. The organization is by rheological measurement method. Progress on the first two goals was documented in a concurrent technical report, Koopman (2005). That report focused on the types and possible causes of unusual rheological behavior in simulant slurry samples. It was organized by the sample being studied. The experimental portion of this study was performed in the period of March to April 2004. A general rheology protocol for routine DWPF slurry samples, Koopman

  4. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  5. Experimental module for removal of radioactive slurry from Lrw storage tanks

    International Nuclear Information System (INIS)

    This report gives information on elaboration and creation of an experimental module for removal radioactive slurry from LRW storage tanks. The main functional features of this experimental module are to suspend radioactive slurry packed in the bottom of a storage tank subjected to cleaning up, to suck the suspended radioactive slurry, to concentrate and separate radioactive slurry in a settling apparatus. The resulting flows from the module are concentrated and preconditioned radioactive slurry and LRW freed from solids. The concentrated and preconditioned radioactive slurry can be further directed for solidification by appropriate methods and LRW freed from solids can be cleaned by commonly used purification methods. The experimental module is supplied with a video-controlling system, which allows supervising the process of slurry removal. The experimental module is currently under testing with non-radioactive slurry therefore, there are no results of its application for real radioactive waste. (authors)

  6. Method and apparatus for in-situ drying investigation and optimization of slurry drying methodology

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Beth L.; Daniel, Claus; Howe, Jane Y.; Kiggans, Jr, James O.; Sabau, Adrian S.; Wood, III, David L.; Kalnaus, Sergiy

    2016-05-10

    A method of drying casted slurries that includes calculating drying conditions from an experimental model for a cast slurry and forming a cast film. An infrared heating probe is positioned on one side of the casted slurry and a thermal probe is positioned on an opposing side of the casted slurry. The infrared heating probe may control the temperature of the casted slurry during drying. The casted slurry may be observed with an optical microscope, while applying the drying conditions from the experimental model. Observing the casted slurry includes detecting the incidence of micro-structural changes in the casted slurry during drying to determine if the drying conditions from the experimental model are optimal.

  7. CATALYSTS FOR MANUFACTURING METHYL METHACRYLATE FROM ISOBUTYLENE%异丁烯为原料制备甲基丙烯酸甲酯的催化剂

    Institute of Scientific and Technical Information of China (English)

    王蕾; 张锁江; 李增喜; 李桂花; 李铭岫

    2004-01-01

    The catalysts used for manufacturing methyl methacrylate (MMA) by two-step conversion of isobutylene via methacrolein (MAID were studied. The selective oxidation of isobutylene to MAL was carried out in a fixed-bed flow microreactor using a series of Mo-Bi-containing catalysts and the oxidative esterification of MAL to MMA was carried out in a slurry-bed reactor using a series of palladiumcontaining catalysts. By means of BET and XPS, the properties of the catalysts were characterized. It was found that the performance of Mo-Bi-Co-Fe-Ce-O catalyst was improved distinctly when Cs was added for the selective oxidation of isobutylene to MAL, and the Pd5Bi2PbFe/CaCO3 catalyst with the loading sequence of Pd, Pb and Bi, Fe showed the best performance for the oxidative esterification of MAL to MMA.

  8. Combined pig slurry and mineral fertilization for corn cultivation

    OpenAIRE

    Maritane Prior; Silvio César Sampaio; Lúcia Helena Pereira Nóbrega; Miguel Angel Uribe Opazo; Jonhatan Dieter; Thaisa Pegoraro

    2013-01-01

    The objective of this work was to evaluate the environmental effects of the use of pig slurry to irrigate the corn crop grown in a typical Red Distroferric Latosol and in leachate composition. Twenty four lysimeters, filled with soil, in a protected environment, received five doses of pig slurry (0; 112.5; 225; 337.5 and 450 m³ ha-1 per growing cycle) combined with two mineral fertilization doses (50 and 75% of the recommended dose - 80 kg ha-1of nitrogen). Corn height and yield were evaluate...

  9. Electrochemical behaviors of silicon wafers in silica slurry

    Institute of Scientific and Technical Information of China (English)

    Xiaolan Song; Haiping Yang; Xunda Shi; Xi He; Guanzhou Qiu

    2008-01-01

    The electrochemical behaviors of n-type silicon wafers in silica-based slurry were investigated, and the influences of the pH value and solid content of the slurry on the corrosion of silicon wafers were studied by using electrochemical DC polarization and AC impedance techniques. The results revealed that these factors affected the corrosion behaviors of silicon wafers to different degrees and had their suitable parameters that made the maximum corrosion rate of the wafers. The corrosion potential of (100) surface was lower than that of (111), whereas the current density of (100) was much higher than that of (111).

  10. Separation of phosphorus from pig slurry using chemical additives

    DEFF Research Database (Denmark)

    Estevez Rodriguez, M.D.; Gomez del Puerto, A.M.; Montealegre Meléndez, M.L.;

    2005-01-01

    Increasing livestock production and regulation of the amount of phosphorus (P) that may be applied to arable land may force livestock farmers to transport animal manure over long distances if plant nutrients in the manure are to be used in a sustainable way. Animal slurry contains large amounts of...... retention of P in a solid fraction. The laboratory studies showed that 98% of the P in slurry was retained in the solid fraction retained on the filter net (12% to 28% retained W:W) after the addition of coagulants and flocculants. Linear cationic polyacrylamide polymers proved to be more efficient at lower...

  11. Drag reduction of concentrated fine-grained slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    Wroclaw : Wydawnictwo Akademii Rolniczej we Wroclawiu, 2006 - (Gochitashvili, T.; Sobota, J.), s. 177-186 ISBN 83-60574-00-6. ISSN 0867-7964. - (Zeszyty Naukowe Akademii Rplniczej we Wroclawiu Nr 542. Konferencje XXXVIII). [International Conference on Transport and Sedimentation of Solid Particles /13./. Tbilisi (GE), 18.09.2006-20.09.2006] R&D Projects: GA AV ČR IAA200600503 Institutional research plan: CEZ:AV0Z20600510 Keywords : concentrated slurry * kaolin slurry * ash-water mixture * effect of shearing * drag reduction * effect of particle size distribution Subject RIV: BK - Fluid Dynamics

  12. Steam Explosions in Slurry-fed Ceramic Melters

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J.T.

    2001-03-28

    This report assesses the potential and consequences of a steam explosion in Slurry Feed Ceramic Melters (SFCM). The principles that determine if an interaction is realistically probable within a SFCM are established. Also considered are the mitigating effects due to dissolved, non-condensable gas(es) and suspended solids within the slurry feed, radiation, high glass viscosity, and the existence of a cold cap. The report finds that, even if any explosion were to occur, however, it would not be large enough to compromise vessel integrity.

  13. THE RESEARCH OF RHEOLOGICAL PROPERTIES OF STOWING SLURRY WITH HIGH-WATER MATERIAL SOLIDIFYING TAILINGS

    Institute of Scientific and Technical Information of China (English)

    杨本生; 刘文永

    1996-01-01

    High-water material, tailings from goldmine and water are mixed into a new slurry.Testing of rheological properties of stowing slurries A and B is made to determine type and rheo-logical parameters of the slurry. The main factors influencing rheological properties of the slurryare analyzed and the rational concentration and empirical resistance calculating formula of pipeline transportation are presented.

  14. Measurement of ion speciation in animal slurries using the Donnan Membrane Technique

    NARCIS (Netherlands)

    Stelt, van der B.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2005-01-01

    The availability of nutrients in animal slurry for plant uptake depends on the total content as well as on the forms in which these nutrients are present in slurry manure. A DMT-manure cell was developed which can help to determine the speciation of nutrients in animal slurries. The cell consists of

  15. 30 CFR 77.216 - Water, sediment, or slurry impoundments and impounding structures; general.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment, or slurry impoundments and... WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216 Water, sediment, or slurry... structures which impound water, sediment, or slurry shall be required if such an existing or...

  16. Effects of Cattle Slurry Acidification on Ammonia and Methane Evolution during Storage

    DEFF Research Database (Denmark)

    Petersen, Søren O; Andersen, Astrid; Eriksen, Jørgen

    2012-01-01

    . In a third storage experiment, cattle slurry acidified with commercial equipment on two farms was incubated. In the manipulation experiments, effects of acid and sulfate were distinguished by adding hydrochloric acid and potassium sulfate separately or in combination, rather than sulfuric acid. In...... storage of cattle slurry, and that slurry acidification may be a cost-effective greenhouse gas mitigation option....

  17. Effect of K promoter on the structure and catalytic behavior of supported iron-based catalysts in fischer-tropsch synthesis

    Directory of Open Access Journals (Sweden)

    F. E. M Farias

    2011-09-01

    Full Text Available Effects of K addition on the performance of supported Fe catalysts for Fischer - Tropsch synthesis (FTS were studied in a slurry reactor at 240 to 270ºC, 2.0 to 4.0 MPa and syngas H2/CO = 1.0. The catalysts were characterized by N2 adsorption, H2 temperature programmed reduction, X - ray diffraction, X - ray fluorescence, thermogravimetric analysis, scanning electron microscopy and dispersive X - ray spectroscopy. A strong interaction was observed between Fe and K, which inhibited the reduction of Fe catalyst. Addition of potassium increased the production of heavy hydrocarbons (C20+.

  18. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  19. Alloy catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel alloy catalyst material for use in the synthesis of hydrogen peroxide from oxygen and hydrogen, or from oxygen and water. The present invention also relates to a cathode and an electrochemical cell comprising the novel catalyst material, and the process use...

  20. Degradation of chloroanilines in soil slurry by specialized organisms

    International Nuclear Information System (INIS)

    The microbial degradation of 2-chloro-, 3-chloro-, 4-chloro-, and 3,4-dichloroaniline was examined as single compounds as well as a mixture in soil slurries. At 30 C the degradation of chloroanilines by indigenous soil populations in soil slurries was observed when soil slurry was freshly contaminated or precontaminated to allow binding of chloroanilines to the soil matrix. Within 6 weeks, 3-chloro- and 3,4-dichloroaniline (each 2 mM) were degraded more rapidly (about 50% chloride elimination) than 4-chloro- and 2-chloroaniline, due to stronger adsorption of 4-chloroaniline and greater resistance of 2-chloroaniline. The addition of various supplements such as buffer, mineral salts and acetate only slightly influenced the degradation of chloroanilines by the indigenous soil populations. The mineralization was drastically enhanced when laboratory-selected chloroaniline-degraders (8.106 cells/g) such as Pseudomonas acidovorans strain BN3.1 were supplemented to the soil slurries so that complete elimination of chloride from the chloroanilines occurred within 10 days. (orig.)

  1. Design and construction of a deep slurry trench barrier

    International Nuclear Information System (INIS)

    A 24 m (80 ft) deep slurry trench surrounding a former chromium manufacturing facility on the Patapsco River in Baltimore, Maryland was constructed in 1995 to contain groundwater and site Soils, and to reduce the volume of groundwater extracted to maintain an inward gradient. In 1992, an embankment made of crushed stone was constructed in the Patapsco River to make land for barrier construction outboard of the bulkheads, and to protect the barrier. Stability of the slurry-supported trench excavation in the embankment required construction from an elevated work platform. An extended reach backhoe was used to excavate the deep slurry trench and to clean the trench bottom. Soil-Bentonite backfill was prepared at a central mixing area and transported by truck to the perimeter barrier. A synthetic membrane was inserted partially into the backfill for connection to a multimedia cap, and for redundancy and erosion control in the tidal zone. Hydraulic testing of the aquitard contained by the barrier demonstrated excellent performance of the barrier and bottom closure. Detailed definition of subsurface conditions and the closure stratum was necessary for the design and successful construction of the barrier, and is recommended for comparable slurry trench construction projects

  2. Laminar and turbulent transition of fine-grained slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk

    Budapest: ORTRA, 2003 - ( Kalman , H.), s. 1245 [International conference for conveying and handling of particulated solids /4./. Budapest (HU), 27.05.2003-30.05.2003] R&D Projects: GA AV ČR IBS2060007 Institutional research plan: CEZ:AV0Z2060917 Keywords : Laminar/turbulent transition * slurry concentrated fine grained * experimental measurement Subject RIV: BK - Fluid Dynamics

  3. Hydrate plugging or slurry flow : effect of key variables

    Energy Technology Data Exchange (ETDEWEB)

    Dellecase, E.; Geraci, G.; Barrios, L.; Estanga, D.; Domingues, R.; Volk, M. [Tulsa Univ., Tulsa, OK (United States)

    2008-07-01

    Although oil and gas companies have proven design criteria and proper operating procedures to prevent hydrate plugs from forming, hydrates remain the primary issue in flow assurance. The costs associated with hydrate prevention affect project economics, particularly in deepwater pipelines. As such, there is an interest in developing a technology that allows hydrates to be transported as a slurry, while avoiding plugs. The feasibility of managing such hydrate flow was investigated. This study used a hydrate flow loop to investigate the effects of flow conditions on the transportability of a slurry in both steady-state and restart conditions. For most cases, uninhibited steady-state slurry flow conditions above 25 per cent water-cut were marginal, and most likely not feasible at 50 per cent water-cut or above. Liquid loading and velocity appeared to have a marginal effect on plugging tendency. However, minimum velocity may be needed to guarantee slurry transportation. Some of the important parameters and key variables that determine if a plug will form, particularly in restart conditions, include oil-water dispersion properties; oil-water phase segregation on the plugging tendency of model fluids; the location and state of the water; and the flow pattern. It was concluded that the plugging behaviour of oil systems changes with these variables, and with the oil-water chemistry. As such, specific strategies must be developed for each field. 4 refs., 1 tab., 14 figs.

  4. Entrained flow gasification of coal/bio-oil slurries

    DEFF Research Database (Denmark)

    Feng, Ping; Lin, Weigang; Jensen, Peter Arendt;

    2016-01-01

    steam/carbon ratio of 5, the syngas components are similar with that in equilibrium. A synergistic effect exists between coal and bio-oil in coal/bio-oil slurry gasification which might be caused by the catalysis effect of alkali metals and alkaline earth metals in bio-oil....

  5. Chemical aspects of coal liquefaction by oxygen in alkaline slurries

    Energy Technology Data Exchange (ETDEWEB)

    Andreozzi, R.; Caprio, V.; Insola, A.

    1988-03-01

    Coal liquefaction by oxygen in alkaline slurries is reviewed from the chemical point of view. Available information is considered in the light of questions relating to coal liquefaction. A lack of chemical knowledge in this area is noted, especially on model compounds. 72 refs.

  6. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 4, July 1, 1993--September 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, A.H.

    1993-12-14

    The goal of this project is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. Cobalt-based catalysts have long been known as being active for F-T synthesis. They typically possess greater activity than iron-based catalysts, historically the predominant catalyst being used commercially for the conversion of syngas based on coal, but possess two disadvantages that somewhat lessen its value: (1) cobalt tends to make more methane than iron does, and (2) cobalt is less versatile with low H2/CO ratio syngas due to its lack of water-gas shift activity. Therefore, the major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low ( < 5 %) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. It will be demonstrated that these catalysts have the desired activity, selectivity, and life, and can be made reproducibly. Following this experimental work, a design and a cost estimate will be prepared for a plant to produce sufficient quantities of catalyst for scale-up studies.

  7. Technology development for cobalt F-T catalysts. Quarterly technical progress report No. 5, October 1, 1993--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Singleton, A.H.

    1994-05-31

    The goal of this project is the development of a commercially viable, cobalt-based Fischer-Tropsch (F-T) catalyst for use in a slurry bubble column reactor. Cobalt-based catalysts have long been known as being active for F-T synthesis. They typically possess greater activity than iron-based catalysts, historically the predominant catalyst being used commercially for the conversion of syngas based on coal, but possess two disadvantages that somewhat lessen its value: (1) cobalt tends to make more methane than iron does, and (2) cobalt is less versatile with low H{sub 2}/CO ratio syngas due to its lack of water-gas shift activity. Therefore, the major objectives of this work are (1) to develop a cobalt-based F-T catalyst with low (< 5 %) methane selectivity, (2) to develop a cobalt-based F-T catalyst with water-gas shift activity, and (3) to combine both these improvements into one catalyst. It will be demonstrated that these catalysts have the desired activity, selectivity, and life, and can be made reproducibly. Following this experimental work, a design and a cost estimate will be prepared for a plant to produce sufficient quantities of catalyst for scale-up studies.

  8. Development and Commercial Application of RFCC Catalyst for Reducing Sulfur Content in Gasoline

    Institute of Scientific and Technical Information of China (English)

    Xu Mingde; Zhu Yuxia; Huang Lei; Hou Dianguo

    2007-01-01

    The sulfur-reducing functional component-the Lewis acid-base pair compound-and associated active zeolite component were developed to prepare the RFCC catalyst DOS for reducing sulfur content in gasoline.The results of catalyst evaluation have revealed that the Lewis acid-base pair compound developed hereby could enhance the conversion of macromolecular sulfur compounds by the catalyst to promote the proceeding of desulfurization reactions,and the synergetic action of the selected zeolite and the Lewis acid-base pair compound could definitely reduce the olefins and sulfur contents in gasoline.The heavy oil conversion capability of the catalyst DOS thus developed was higher coupled with an enhanced resistance to heavy metals contamination to reduce the sulfur content in gasoline by over 20%.The commercial application of this catalyst at the SINOPEC Jiujiang Branch Company has revealed that compared to the GRV-C catalyst the oil slurry yield obtained by the catalyst DOS was reduced along with an improved coke selectivity,an increased total liquid yield,and a decreased olefin content in gasoline.The ratio of sulfur in gasoline/sulfur in feed oil could be reduced by 20.3 m%.

  9. Heterogeneous hydrogenation catalysts

    International Nuclear Information System (INIS)

    The main types of heterogeneous catalysts used for hydrogenation, the methods for their preparation, and the structure and chemistry of their surfaces are considered, as well as the catalytic activity and the mechanism of action in the hydrogenation of unsaturated and aromatic compounds, of CO, and of carbonyl compounds and in the hydrorefining of fuels. Chief attention is paid to supported Ni catalysts, to the methods for their preparation and physicochemical studies, and to the development of novel catalytic systems through modification. A novel type of catalyst for hydrogenation, viz. metal carbides, is described. Some aspects of the mechanochemical treatment of hydrogenation catalysts, including in situ methods, are discussed. Sulfide catalysts for hydrotreating are also discussed in detail. The bibliography includes 340 references.

  10. Life cycle assessment of biogas from separated slurry

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H. (Univ. of Southern Denmark, Odense (Denmark)); Molt Petersen, B. (Aarhus Univ.. Faculty of Agricultural Sciences, Aarhus (Denmark))

    2010-07-01

    The environmental aspects of biogas production based on pre-treated slurry from fattening pigs and dairy cows have been investigated in a life cycle perspective. The pre-treatment consists of concentrating the slurry using a separation technology. Significant environmental benefits, compared to the status quo slurry management, can be obtained for both pig and cow slurry, especially regarding reductions of the contributions to global warming, but the results depend to a large extent on the efficiency of the separation technology. Adding separation after the biogas plant can contribute to a more efficient management of the phosphorus, and this has also been investigated. Based on the results of the study it can be concluded that: 1) The environmental benefits of biogas from separated slurry are very dependent upon the separation efficiency (for carbon, nitrogen and phosphorous). This particularly applies for carbon, as the separation efficiency defines the extent to which the degradable carbon contained in the slurry is transferred to the biogas plant. Efficient separation can be obtained by using polymer, but also by using a suitable separation technology. It could be mentioned that the decanter centrifuge used has a rather high efficiency of transferring volatile solids (VS) to the fibre fraction also without the use of polymer. 2) Biogas production from separated slurry can lead to significant reductions in the contributions to global warming, provided that the 'best available technologies' described in the report are used. That includes, among others: - a covered and short time storage of the fibre fraction before entering the biogas plant, - a 2-step biogas production where the post-digestion tank is covered with air-tight cover, - a covered storage of the degassed fibre fraction The benefits are also highly dependent upon the source of energy substituted by the biogas. 3) Based on evidences from reviewed studies, the cationic polyacrylamide polymer

  11. Rheological Characterization of Unusual DWPF Slurry Samples (U)

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, D. C.

    2005-09-01

    A study was undertaken to identify and clarify examples of unusual rheological behavior in Defense Waste Processing Facility (DWPF) simulant slurry samples. Identification was accomplished by reviewing sludge, Sludge Receipt and Adjustment Tank (SRAT) product, and Slurry Mix Evaporator (SME) product simulant rheological results from the prior year. Clarification of unusual rheological behavior was achieved by developing and implementing new measurement techniques. Development of these new methods is covered in a separate report, WSRC-TR-2004-00334. This report includes a review of recent literature on unusual rheological behavior, followed by a summary of the rheological measurement results obtained on a set of unusual simulant samples. Shifts in rheological behavior of slurries as the wt. % total solids changed have been observed in numerous systems. The main finding of the experimental work was that the various unusual DWPF simulant slurry samples exhibit some degree of time dependent behavior. When a given shear rate is applied to a sample, the apparent viscosity of the slurry changes with time rather than remaining constant. These unusual simulant samples are more rheologically complex than Newtonian liquids or more simple slurries, neither of which shows significant time dependence. The study concludes that the unusual rheological behavior that has been observed is being caused by time dependent rheological properties in the slurries being measured. Most of the changes are due to the effect of time under shear, but SB3 SME products were also changing properties while stored in sample bottles. The most likely source of this shear-related time dependence for sludge is in the simulant preparation. More than a single source of time dependence was inferred for the simulant SME product slurries based on the range of phenomena observed. Rheological property changes were observed on the time-scale of a single measurement (minutes) as well as on a time scale of hours

  12. Aerosols generated by spills of viscous solutions and slurries

    International Nuclear Information System (INIS)

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of potential airborne releases caused by accidents. Aerosols generated by accidents are being investigated by Pacific Northwest Laboratory to develop methods for estimating source terms from these accidents. Experiments were run by spilling viscous solutions and slurries to determine the mass and particle-size distribution of the material made airborne. In all cases, 1 L of solution was spilled from a height of 3 m. Aqueous solutions of sucrose (0 to 56%) gave a range of viscosities from 1.3 to 46 cp. The percent of spill mass made airborne from the spills of these solutions ranged from 0.001 to 0.0001. The mass of particles made airborne decreased as solution viscosity increased. Slurry loading ranged from 25 to 51% total solids. The maximum source airborne (0.0046 wt %) occurred with the slurry that had the lightest loading of soluble solids. The viscosity of the carrying solution also had an impact on the source term from spilling slurries. The effect of surface tension on the source term was examined in two experiments. Surface tension was halved in these spills by adding a surfactant. The maximum weight percent airborne from these spills was 0.0045, compared to 0.003 for spills with twice the surface tension. The aerodynamic mass medium diameters for the aerosols produced by spills of the viscous solutions, slurries, and low surface tension liquids ranged from 0.6 to 8.4 μm, and the geometric standard deviation ranged from 3.8 to 28.0

  13. Indian Creek-AML: Coal slurry reclamation (Kansas case history)

    International Nuclear Information System (INIS)

    Black and Veatch, assisted by Jack Nawrot, developed conceptual and final designs and provided construction assistance to create grasslands and wetlands in order to reclaim an abandoned coal mine for the state of Kansas. The mine included spoils, a coal refuse dump, and slurry pond in the Indian Creek drainage basin in east central Kansas. The Indian Creek flowed from an off-site abandoned mine and through the coal slurry pond where its waters became more polluted. The intent of the reclamation project was to improve water quality and create a wildlife refuge. The coal refuse was covered and seeded with a diversity of vegetation including several grasses and legume. The slurry pond was developed into a series of large wetland cells to improve water quality. Prior to reclamation, the water leaving the site had a typical pH of 3.3, ranging from 2.4 to 5.6, an iron content which typically over 22 mg/L and ranging over 100 mg/L, and contained large amounts of coal slurry. The acid sediment in the slurry killed fish and caused visible damage to a new large concrete box culvert several miles downstream of the site. Post-reclamation water quality leaving the Indian Creek site showed immediate improvement even before vegetation was reestablished. The existing wetland treatment systems have been successfully treating water for over seven years with the pH of the water leaving the wetlands above 7 and soluble iron content less than 1 mg/L. Fish in the constructed wetlands support waterfowl which now nest onsite

  14. Properties of slurries made of fast pyrolysis oil and char or beech wood

    DEFF Research Database (Denmark)

    Trinh, Ngoc Trung; Jensen, Peter Arendt; Dam-Johansen, Kim;

    2014-01-01

    The properties of slurries made of pyrolysis oil mixed with wood, char or ground char were investigated with respect to phase transitions, rheological properties, elemental compositions, and energy density. Also the pumping properties of the slurries were investigated at temperatures of 25, 40 and...... ground char slurry samples with 5e20 wt% solid loading obtain a volumetric energy density of 21e23 GJ/m3. The slurry sample with 20 wt% ground char having a d80 of 118 mm was pumped successfully into a pressurized chamber (0e6 bar) while plugging appeared when the slurry samples with 15 wt% char having a...

  15. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    International Nuclear Information System (INIS)

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs

  16. Hanford Waste Vitrification Plant full-scale feed preparation testing with water and process simulant slurries

    Energy Technology Data Exchange (ETDEWEB)

    Gaskill, J.R.; Larson, D.E.; Abrigo, G.P. [and others

    1996-03-01

    The Hanford Waste Vitrification Plant was intended to convert selected, pretreated defense high-level waste and transuranic waste from the Hanford Site into a borosilicate glass. A full-scale testing program was conducted with nonradioactive waste simulants to develop information for process and equipment design of the feed-preparation system. The equipment systems tested included the Slurry Receipt and Adjustment Tank, Slurry Mix Evaporator, and Melter-Feed Tank. The areas of data generation included heat transfer (boiling, heating, and cooling), slurry mixing, slurry pumping and transport, slurry sampling, and process chemistry. 13 refs., 129 figs., 68 tabs.

  17. Physical properties, fuel characteristics and P-fertilizer production related to animal slurry and products from separation of animal slurry

    DEFF Research Database (Denmark)

    Thygesen, Ole; Johnsen, Tina; Triolo, Jin Mi;

    from slurry separation and phosphorus (P) fertilizer production from recycling of the ash. Manure fibre has a positive calorific value and may be used as a CO2-neutral fuel for combustion. The ashes from combustion are rich in P, an essential fertilizer compound. The study is based on samples of animal...

  18. Catalysts, methods of making catalysts, and methods of use

    KAUST Repository

    Renard, Laetitia

    2014-03-06

    Embodiments of the present disclosure provide for catalysts, methods of making catalysts, methods of using catalysts, and the like. In an embodiment, the method of making the catalysts can be performed in a single step with a metal nanoparticle precursor and a metal oxide precursor, where a separate stabilizing agent is not needed.

  19. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  20. Slurry atomizer for a coal-feeder and dryer used to provide coal at gasifier pressure

    Science.gov (United States)

    Loth, John L.; Smith, William C.; Friggens, Gary R.

    1982-01-01

    The present invention is directed to a coal-water slurry atomizer for use a high-pressure dryer employed in a pumping system utilized to feed coal into a pressurized coal gasifier. The slurry atomizer is provided with a venturi, constant area slurry injection conduit, and a plurality of tangentially disposed steam injection ports. Superheated steam is injected into the atomizer through these ports to provide a vortical flow of the steam, which, in turn, shears slurry emerging from the slurry injection conduit. The droplets of slurry are rapidly dispersed in the dryer through the venturi where the water is vaporized from the slurry by the steam prior to deleterious heating of the coal.

  1. Transport of Cryptosporidium parvum oocysts in soil columns following applications of raw and separated liquid slurry

    DEFF Research Database (Denmark)

    Petersen, Heidi Huus; Enemark, Heidi L.; Olsen, Annette;

    2012-01-01

    the total number of oocysts found. Destructively sampling of the soil columns showed that type of slurry and irrigation played a role in the vertical distribution of oocysts, with more oocysts recovered from soil columns added liquid slurry irrespectively of irrigation status. Further studies are......The potential for transport of viable Cryptosporidium parvum oocysts through soil to land drains and groundwater was studied using simulated rainfall and intact soil columns which were applied raw slurry or separated liquid slurry. Following irrigation and weekly samplings over a four week period...... needed to determine the effectiveness of different slurry separation technologies to remove oocysts and other pathogens, as well as whether application of separated liquid slurry to agricultural land may represent higher risks for ground water contamination as compared to application of raw slurry....

  2. Extra heavy oil and refinery residues upgrading through Eni Slurry Technology : first EST commercial unit

    Energy Technology Data Exchange (ETDEWEB)

    Rispoli, G.; Sanfilippo, D.; Amoroso, A [Eni S.p.A., Rome (Italy)

    2009-07-01

    The production of heavy crude oils is projected to continue to grow in the upstream oil industry given that large reserves of unconventional extra heavy crude and bitumen exist in several geographic areas including Canada and Venezuela. As reserves of conventional crude oil continue to decline, these unconventional feedstocks are becoming an opportunity to pursue, but they require effective technologies for upgrading and meeting the growing demand for light and middle distillate fuels. This paper described the proprietary technology that offers a solution to upstream and downstream oil producers for bottom-of-the-barrel upgrading. En i Slurry Technology (EST) is constructing an industrial plant in its Sannazzaro refinery in Italy. The plant is designed to convert 23,000 BPSD of vacuum residue into high quality diesel and other valuable refinery streams such as liquefied petroleum gas, naphtha and jet fuel. EST is an H-addition process characterized by the use of a special homogeneous isothermal intrinsically safe reactor, and of a nano-dispersed non-ageing catalyst. EST converts more than 98 per cent of any type of residues to about 110 per cent volume of light products and distillates or extra heavy oils to high quality bottomless SCO. In typical performance, HDS is greater than 85 per cent, HDM greater than 99 per cent and HDCCR greater than 97 per cent. EST also achieves the target of zero fuel oil - zero coke. 12 refs., 4 tabs., 5 figs.

  3. Catalyst in Basic Oleochemicals

    Directory of Open Access Journals (Sweden)

    Eva Suyenty

    2007-10-01

    Full Text Available Currently Indonesia is the world largest palm oil producer with production volume reaching 16 million tones per annum. The high crude oil and ethylene prices in the last 3 – 4 years contribute to the healthy demand growth for basic oleochemicals: fatty acids and fatty alcohols. Oleochemicals are starting to replace crude oil derived products in various applications. As widely practiced in petrochemical industry, catalyst plays a very important role in the production of basic oleochemicals. Catalytic reactions are abound in the production of oleochemicals: Nickel based catalysts are used in the hydrogenation of unsaturated fatty acids; sodium methylate catalyst in the transesterification of triglycerides; sulfonic based polystyrene resin catalyst in esterification of fatty acids; and copper chromite/copper zinc catalyst in the high pressure hydrogenation of methyl esters or fatty acids to produce fatty alcohols. To maintain long catalyst life, it is crucial to ensure the absence of catalyst poisons and inhibitors in the feed. The preparation methods of nickel and copper chromite catalysts are as follows: precipitation, filtration, drying, and calcinations. Sodium methylate is derived from direct reaction of sodium metal and methanol under inert gas. The sulfonic based polystyrene resin is derived from sulfonation of polystyrene crosslinked with di-vinyl-benzene. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: E. Suyenty, H. Sentosa, M. Agustine, S. Anwar, A. Lie, E. Sutanto. (2007. Catalyst in Basic Oleochemicals. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 22-31.  doi:10.9767/bcrec.2.2-3.6.22-31][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.6.22-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/6

  4. Study of spent hydrorefining catalysts

    International Nuclear Information System (INIS)

    Aluminonickelmolybdenum catalysts for diesel fuel hydrorefining have been studied by DTA, XSPS, and diffuse reflection spectroscopy. Chemical and phase states of molybdenum compounds in samples of fresh catalyst, regenerated one after one year operation, and clogged with coke catalyst after five year operation, are determined. Chemical reactions and crystal-phase transformations of the molybdenum compounds during catalyst deactivation and regeneration are discussed

  5. Nutrient losses from cattle co-digestate slurry during storage

    Directory of Open Access Journals (Sweden)

    Francesca Perazzolo

    2016-06-01

    Full Text Available Among environmental issues related to intensive livestock activity, emissions to air from manure management are of increasing concern. Thus the knowledge of the effect of treatment application on subsequent emissions from manure is required to assess the environment impact of management solutions. This work addresses the effect of anaerobic digestion and phase separation on emissions during storage by studying nitrogen losses from lab-scale stores and field pilot-scale stores of a co-digestate cattle slurry and its respective separated fractions. Lab-scale experiment was carried in temperature-controlled room where each fraction (untreated, separated liquid and separated solid was stored in duplicate for a period of 32 days in 30 L vessel. Pilot-scale experiment was carried out both during the cold season and during warm season for 90 days of storage. In both experimentations samples of the manure were analysed periodically for total Kjeldahl nitrogen (TKN, total ammonia nitrogen, dry matter and volatile solids and pH. These analyses allow estimating nitrogen losses in different storage conditions. Effects of mechanical separation and season were assessed by ANOVA (Wilcoxon test, P<0.05. In temperature controlled conditions nitrogen losses measured account for 13% and 26% of TKN for unseparated and separated slurries respectively. In field conditions during cold season nutrient losses were limited. On average unseparated and separated slurries lost respectively 6.8% and 12.6% of their initial TKN content. Much higher were the TKN losses from the slurries examined in warm season where losses raised up to 40% of the initial TKN content. Generally mechanical separation increases nutrient losses, but the differences were not significant in field conditions. The results highlighted that nutrient losses, in particular the nitrogen ones, can be considerable especially during summer storage. The latter, in case of separated slurries, are mainly related

  6. Catalyst for microelectromechanical systems microreactors

    Energy Technology Data Exchange (ETDEWEB)

    Morse, Jeffrey D. (Martinez, CA); Sopchak, David A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA); Reynolds, John G. (San Ramon, CA); Satcher, Joseph H. (Patterson, CA); Gash, Alex E. (Brentwood, CA)

    2011-11-15

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  7. Catalyst for microelectromechanical systems microreactors

    Science.gov (United States)

    Morse, Jeffrey D.; Sopchak, David A.; Upadhye, Ravindra S.; Reynolds, John G.; Satcher, Joseph H.; Gash, Alex E.

    2010-06-29

    A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.

  8. RHEOLOGICAL AND ELEMENTAL ANALYSES OF SIMULANT SB5 SLURRY MIX EVAPORATOR-MELTER FEED TANK SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, A.

    2010-02-08

    The Defense Waste Processing Facility (DWPF) will complete Sludge Batch 5 (SB5) processing in fiscal year 2010. DWPF has experienced multiple feed stoppages for the SB5 Melter Feed Tank (MFT) due to clogs. Melter throughput is decreased not only due to the feed stoppage, but also because dilution of the feed by addition of prime water (about 60 gallons), which is required to restart the MFT pump. SB5 conditions are different from previous batches in one respect: pH of the Slurry Mix Evaporator (SME) product (9 for SB5 vs. 7 for SB4). Since a higher pH could cause gel formation, due in part to greater leaching from the glass frit into the supernate, SRNL studies were undertaken to check this hypothesis. The clogging issue is addressed by this simulant work, requested via a technical task request from DWPF. The experiments were conducted at Aiken County Technology Laboratory (ACTL) wherein a non-radioactive simulant consisting of SB5 Sludge Receipt and Adjustment Tank (SRAT) product simulant and frit was subjected to a 30 hour SME cycle at two different pH levels, 7.5 and 10; the boiling was completed over a period of six days. Rheology and supernate elemental composition measurements were conducted. The caustic run exhibited foaming once, after 30 minutes of boiling. It was expected that caustic boiling would exhibit a greater leaching rate, which could cause formation of sodium aluminosilicate and would allow gel formation to increase the thickness of the simulant. Xray Diffraction (XRD) measurements of the simulant did not detect crystalline sodium aluminosilicate, a possible gel formation species. Instead, it was observed that caustic conditions, but not necessarily boiling time, induced greater thickness, but lowered the leach rate. Leaching consists of the formation of metal hydroxides from the oxides, formation of boric acid from the boron oxide, and dissolution of SiO{sub 2}, the major frit component. It is likely that the observed precipitation of Mg

  9. Mesoporous molecular sieve catalysts

    DEFF Research Database (Denmark)

    Højholt, Karen Thrane

    the micropores. Furthermore, preliminary work was done using mesoporous ZSM-5 zeolites as support material for anchoring molecular CoMo6 species for the application as potential bi-functional catalyst in simultaneous hydrodesulfurisation (HDS) and hydrocracking. HDS activity tests revealed that the...... of different catalytic applications. Primarily the zeolites were modified regarding the porosity and the introduction of metals to the framework. The obtained materials were used as solid acid catalysts, as an inert matrix for stabilising metal nanoparticles and as an anchoring material for molecular...... only be used as solid acid catalysts but can also be used as a size-selective matrix. It was shown that it is possible to encapsulate 1-2 nm sized gold nanoparticles by silicalite-1 or ZSM-5 zeolite crystals thereby forming a sintering-stable and substrate size-selective oxidation catalyst. After...

  10. Epoxidation catalyst and process

    Science.gov (United States)

    Linic, Suljo; Christopher, Phillip

    2010-10-26

    Disclosed herein is a catalytic method of converting alkenes to epoxides. This method generally includes reacting alkenes with oxygen in the presence of a specific silver catalyst under conditions suitable to produce a yield of the epoxides. The specific silver catalyst is a silver nanocrystal having a plurality of surface planes, a substantial portion of which is defined by Miller indices of (100). The reaction is performed by charging a suitable reactor with this silver catalyst and then feeding the reactants to the reactor under conditions to carry out the reaction. The reaction may be performed in batch, or as a continuous process that employs a recycle of any unreacted alkenes. The specific silver catalyst has unexpectedly high selectivity for epoxide products. Consequently, this general method (and its various embodiments) will result in extraordinarily high epoxide yields heretofore unattainable.

  11. Heterogeneous chromium catalysts

    OpenAIRE

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based silica-containing support, (c) activating the chromium-based silica-containing support, (d) chemically reducing the activated chromium-based silica-containing support to produce a precursor catalyst, (e) r...

  12. Aftermarket catalyst durability evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Bruetsch, R.I.; Cheng, J.P.; Hellman, K.H.

    1986-01-01

    Suppliers have introduced replacement aftermarket catalytic converters which are characterized by design differences from the original equipment converters in the direction of lower costs. The objective of the work reported here was to test a group of nine aftermarket catalysts from three manufacturers for 25,000 miles. Mileage was accumulated on three routes in Maryland and West Virginia characterized by varying degrees of tire wear. All catalysts were dynamometer tested on the same vehicle at the same laboratory.

  13. Corrosion inhibitors for water-base slurry in multiblade sawing

    Science.gov (United States)

    Chen, C. P.; Odonnell, T. P.

    1982-01-01

    The use of a water-base slurry instead of the standard PC oil vehicle was proposed for multiblade sawing (MBS) silicon wafering technology. Potential cost savings were considerable; however, significant failures of high-carbon steel blades were observed in limited tests using a water-based slurry during silicon wafering. Failures were attributed to stress corrosion. A specially designed fatigue test of 1095 steel blades in distilled water with various corrosion inhibitor solutions was used to determine the feasibility of using corrosion inhibitors in water-base MBS wafering. Fatigue tests indicate that several corrosion inhibitors have significant potential for use in a water-base MBS operation. Blade samples tested in these specific corrosion-inhibitor solutions exhibited considerably greater lifetime than those blades tested in PC oil.

  14. Studies on Slurry Design Fundamentals for Advanced CMP Applications

    KAUST Repository

    Basim, G. B.

    2013-06-14

    New developments and device performance requirements in microelectronics industry add to the challenges in chemical mechanical planarization (CMP) process. One of the recently introduced materials is germanium which enables improved performance through better channel mobility in shallow trench isolation (STI) applications. This paper reports on the slurry design alternatives for Ge CMP with surfactant mediation to improve on the silica/germanium selectivity using colloidal silica slurry. In addition to the standard CMP tests to evaluate the material removal rates, atomic force microscopy (AFM) based wear tests were also conducted to evaluate single particle-surface interaction of the polishing system. Furthermore, nature of the surface oxide film of germanium was studied through contact angle measurements and surface roughness tested by AFM. It was observed that the CMP selectivity of the silica/germanium system and defectivity control were possible with a reasonable material removal rate value by using self-assembled structures of cationic surfactants.

  15. Naphthalene biodegradation kinetics in an aerobic slurry-phase bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Collina, E.; Bestetti, G.; Di Gennaro, P.; Franzetti, A.; Gugliersi, F.; Lasagni, M.; Pitea, D. [Milano-Bicocca Univ. (Italy). Dip. Scienze dell' Ambiente e del Territorio

    2005-02-01

    The research was focused on the slurry-phase biodegradation of naphthalene in soil. Among ex situ techniques, the slurry phase offers the advantage of increased availability of contaminants to bacteria. From naphthalene contaminated soil, a Pseudomonas putida M8 strain capable to degrade naphthalene was selected. Experiments were performed in a stirred and oxygenated reactor. In this study, the influence of air flow rate and agitation rate on volatilisation and biodegradation of naphthalene was investigated. The hydrocarbon disappearance, the carbon dioxide production, and the ratio of total heterotrophic and naphthalene-degrading bacteria was monitored. The results obtained confirm that the selected bioremediation technology is successful in the treatment of contaminated soils. (author)

  16. Flow resistance of ice slurry in bends and elbow pipes

    Science.gov (United States)

    Niezgoda-Żelasko, B.; Żelasko, J.

    2014-08-01

    The present paper covers the flow of ice slurry made of a 10.6% ethanol solution through small-radius bends and elbow pipes. The paper presents the results of experimental research on the flow resistances of Bingham-fluid ice slurry in bends and elbows. The research, performed for three pipe diameters and a relative bend radius of 1<=D/di<=2, has made it possible to take into consideration the influence of friction resistances as well the of the flow geometry on the total local resistance coefficients. The study attempts to make the local resistance coefficient dependent on the Dean number defined for a generalized Reynolds number according to Metzner-Reade

  17. Analysis of Slurry Drying in a Spray Dryer

    Directory of Open Access Journals (Sweden)

    Wittaya Julklang

    2014-01-01

    Full Text Available Spray drying has recently been exploited to prepare a large variety of high-value particles. The aim of the present paper is to analyze the drying mechanism of slurry droplets consist of nanosized particles in an industrial-scale spray dryer. For this purpose, a mathematical model is developed comprising a comprehensive model for the heat and mass transfer for a single droplet and a model for the flow of droplets and gas, and the heat and mass transfer in the dryer. Using the developed model, the drying behaviour of slurry droplets in the spray dryer is investigated in the initial heating-up, constant rate and falling rate periods by analyzing the profiles of air temperature and humidity, and the droplet velocity, average temperature and moisture content in the dryer axial direction as well as the distributions of temperature and water vapor concentration in the droplet.

  18. Rheological properties of concentrated alumina slurries: influence of ph and dispersant agent

    International Nuclear Information System (INIS)

    The relationship between the ph, the electrolyte concentrations and the rheological properties of high concentrated alumina slurries in aqueous medium is of great importance because it is considered to be the key to control the stability of the slurries from flocculation. Zeta potential of alumina slurries with and without Duramax C (dispersant agent) as a function of ph was studied. Two ph around the zero point of charge of alumina slurries were selected for the investigation of rheological properties. The rheological properties of aqueous alumina slurries with respect to different parameters, e.g.: viscosity, elastic modulus (storage modulus G) and viscous modulus (loss modulus G), were investigated. Viscosity measurements of the slurries as a function of Duramax C content at both ph 8.4 and 9.4) were used to determine the state of slurries. Three states of slurries, termed flocculated, partially de flocculated and fully de flocculated, were selected for further investigation. The viscosity of the three slurries at both ph as a function of shear rate was determined. Fully de flocculated slurry shows Newtonian behavior at all shear rates at both tested ph compared by the partial de flocculated and flocculated system. Results of investigation of G and G at ph of 9.4 as a function of applied stress explored the critical stress

  19. First experimental experience with new laboratory slurry loop

    Czech Academy of Sciences Publication Activity Database

    Krupička, Jan; Matoušek, Václav

    Madrid: International Freight Pipeline Society, 2011, s. 154-162. ISBN 978-84-96398-51-1. [International Freight Pipeline Society Symposium /14./. Madrid (ES), 28.06.2011-01.07.2011] R&D Projects: GA ČR GA103/09/0383; GA ČR(CZ) GAP105/10/1574 Institutional research plan: CEZ:AV0Z20600510 Keywords : experiment * hydraulic transport * radiometric device * concentration profile * slurry flow Subject RIV: BK - Fluid Dynamics

  20. Greenhouse gas emissions from organic and conventional cattle slurry tanks

    OpenAIRE

    Peu, P.; Béline, F.

    2003-01-01

    Dairy cattle slurry tanks could represent significant sources of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2) to the atmosphere. To monitor greenhouse gas (GHG) emitted during storage, a new method based on tracer gas ratios was developed. For this purpose, a controlled quantity of sulphur hexafluoride (SF6, tracer gas) was continuously released above the storage tank to supplement the GHG emissions. The ratio between GHG and SF6 was calculated from data measured using gas chro...

  1. Permeability and compressibility of slurries from seepage-induced consolidation

    OpenAIRE

    Huerta, Antonio; Kriegsmann, Gregory; Krizek, Raymond J.

    1988-01-01

    A one-dimensional mathematical model based on finite-strain theory is developed to solve the problem of seepage-induced consolidation in sedimented slurries or very soft clays. The direct solution employs known or assumed material property relationships to determine the final thickness of a soft sediment subjected to a constant piezometric head. It is useful for predicting the capacity of a disposal area and the time-dependent improvement in material properties. Alternatively, the inver...

  2. Advanced control of propylene polimerizations in slurry reactors

    OpenAIRE

    Bolsoni A.; Lima E.L.; Pinto J.C.

    2000-01-01

    The objective of this work is to develop a strategy of nonlinear model predictive control for industrial slurry reactors of propylene polymerizations. The controlled variables are the melt index (polymer quality) and the amount of unreacted monomer (productivity). The model used in the controller presents a linear dynamics and a nonlinear static gain given by a neuronal network MLP (multilayer perceptron). The simulated performance of the controller was evaluated for a typical propylene polym...

  3. Tape casting of cobalt ferrite from nonaqueous slurry

    Energy Technology Data Exchange (ETDEWEB)

    Jian, Gang, E-mail: jiangang456@126.com [School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); MOE Engineering Research Center for Information Functional Ceramics, Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Zhou, Dongxiang, E-mail: dxzhou@mail.hust.edu.cn [MOE Engineering Research Center for Information Functional Ceramics, Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Yang, Junyou [State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Fu, Qiuyun [MOE Engineering Research Center for Information Functional Ceramics, Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2012-12-15

    This paper describes the fabrication of CoFe{sub 2}O{sub 4} thick films using the tape casting method from nonaqueous slurry. CoFe{sub 2}O{sub 4} particles with average size of {approx}800 nm were prepared by the solid-state reaction method. Sediment volumes and viscosity were tested to study the effects of dispersant in reducing aggregations in slurry. Slurry with 0.25 wt% dispersant amounts and 41.3 wt% solid content showed the optimal stability and rheological properties. A tape velocity of 8 cm/s was used in this study considering the non-Newtonian flow behavior at low shear rate. CoFe{sub 2}O{sub 4} ceramic films sintered at 1150 Degree-Sign C for 2 h have dense structure (relative density of 94%) and exhibited ferromagnetic properties with in-plane saturation magnetization of {approx}324 emu/cm{sup 3}. - Highlights: Black-Right-Pointing-Pointer CoFe{sub 2}O{sub 4} thick films were fabricated by the nonaqueous tape casting method. Black-Right-Pointing-Pointer Slurry with 0.25 wt% dispersant amounts and 41.3 wt% solid content showed the optimal stability and rheological properties. Black-Right-Pointing-Pointer The cold isostatic pressed CIP treatment enhanced the structure of green tapes. Black-Right-Pointing-Pointer CoFe{sub 2}O{sub 4} ceramic films sintered at 1150 Degree-Sign C for 2 h exhibited optimal structure and properties.

  4. Solids stress at wall of vertical slurry pipe

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav

    Izrael: Ortra, 2006, s. 12.8. [International Conference of Conveying and Hadling of Pariculate Solids /5./. Sorrento (IT), 27.08.2006-31.08.2006] R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : slurry-flow experiment * off-the-wall lift * collisional stress Subject RIV: BK - Fluid Dynamics

  5. Pipe-wall friction in vertical sand-slurry flows

    Czech Academy of Sciences Publication Activity Database

    Matoušek, Václav

    2009-01-01

    Roč. 27, č. 5 (2009), s. 456-468. ISSN 0272-6351 R&D Projects: GA ČR GA103/06/0428 Institutional research plan: CEZ:AV0Z20600510 Keywords : slurry-flow experiment * off-the-wall lift * collisional stress * solids friction * pressure drop Subject RIV: BK - Fluid Dynamics Impact factor: 0.522, year: 2009

  6. The role of arsine in the deactivation of methanol synthesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, R.; Mebrahtu, T.; Dahl, T.A.; Lucrezi, F.A.; Toseland, B.A. [Air Products and Chemicals Inc., Adsorption Technology Center, 7201 Hamilton Boulevard, Allentown, PA 18195-1501 (United States)

    2004-06-18

    The liquid phase methanol (LPMEOH) process is successfully producing methanol from coal-derived synthesis gas on an industrial scale. This process uses a standard copper, zinc oxide, and alumina catalyst suspended in an inert mineral oil in a slurry bubble column reactor. An arsenic-containing species, most reasonably arsine, was found in the feed to the LPMEOH commercial demonstration facility located at Eastman Chemical Company's chemicals-from-coal complex in Kingsport, TN. Laboratory testing showed that arsine is, in fact, a powerful methanol synthesis catalyst poison. At levels as low as 150ppbv, arsine results in a rapid deactivation of the catalyst. Removal of arsine results in a deactivation rate consistent with a clean synthesis gas feed; that is, arsine poisoning stops when it is removed from the feed. We infer that arsine reacts irreversibly with the catalyst under the methanol synthesis conditions. X-ray absorption spectroscopy (XAS) of arsenic-containing used catalyst indicated the presence of zero-valent arsenic in an intermetallic surface phase that is structurally related to Domeykite (Cu{sub 3}As). Experimental evidence, thermodynamics, and literature relating to other metal-arsine chemistry were consistent with dissociative adsorption of arsine on the copper surface to form gaseous H{sub 2} and Cu{sub 3}As. To deal with arsine poisoning, we have developed adsorption technology that can remove arsine to levels low enough that catalyst performance is unaffected.

  7. Surfactant mediated slurry formulations for Ge CMP applications

    KAUST Repository

    Basim, G. Bahar

    2013-01-01

    In this study, slurry formulations in the presence of self-assembled surfactant structures were investigated for Ge/SiO2 CMP applications in the absence and presence of oxidizers. Both anionic (sodium dodecyl sulfate-SDS) and cationic (cetyl trimethyl ammonium bromide-C12TAB) micelles were used in the slurry formulations as a function of pH and oxidizer concentration. CMP performances of Ge and SiO2 wafers were evaluated in terms of material removal rates, selectivity and surface quality. The material removal rate responses were also assessed through AFM wear rate tests to obtain a faster response for preliminary analyses. The surfactant adsorption characteristics were studied through surface wettability responses of the Ge and SiO2 wafers through contact angle measurements. It was observed that the self-assembled surfactant structures can help obtain selectivity on the silica/germanium system at low concentrations of the oxidizer in the slurry. © 2013 Materials Research Society.

  8. Rheology of slurries and environmental impacts in the mining industry.

    Science.gov (United States)

    Boger, David V

    2013-01-01

    The world's resource industries are the largest producers of waste. Much of this waste is produced as a fine particle slurry, which is pumped to a storage area, generally at a low concentration, where it behaves like a Newtonian fluid. Simply removing, reusing, and recycling water from the slurry represents a step toward a more sustainable practice in this industry. As the concentration of such a slurry is increased as a result of dewatering, the materials exhibit non-Newtonian behavior, which is characterized by shear thinning, a yield stress, and in some instances thixotropic behavior. Such high-concentration, nonideal (dirty) suspensions in the resource industries have meant that new rheological methods and techniques have been needed to measure and interpret the basic flow properties. Also, some older empirical techniques have needed to be modified and interpreted in a more fundamental way so that the results could be used in design. This article reviews these techniques and illustrates how the industry itself has motivated their development. Understanding and exploiting this rheology has resulted in dramatic improvement in the waste-disposal strategy for some industries, but many have failed to embrace the available technology. The reasons for this are discussed. The article concludes that a greater positive change in waste-management practice will occur in the future, motivated by several factors, including public perception, tighter regulation, and perhaps even commonsense life cycle accounting. PMID:23540291

  9. Very low conductivity self-hardening slurry for permanent enclosures

    International Nuclear Information System (INIS)

    Attapulgite clay and ground blast furnace slag cement can form a low solids slurry which, after setting and curing, exhibits very low permeability and substantial strength. Compared to better known cement bentonite slurries, the conductivity is 3 orders of magnitude lower and the strength is four times higher at a similar solids content. Coefficients of permeability have been measured in the 10-10 cm/sec. range. As a containment barrier, no chemical compound has had detrimental effects on the integrity of the material. Compatibility with leachates at a pH under 2 has been demonstrated. Compared to leachable Ordinary Portland Cement and to bentonite gel shrinkage in the presence of certain organic compounds, the attapulgite clay and the selected slag cement behave as remarkably inert. A number of successful applications as vertical barriers, trenched and by the vibrated beam method, have been installed at remedial sites. Applications by jet grouting have been implemented under utilities to provide continuity. The potential for placement of such materials to form horizontal barriers by jet grouting or frac-grouting/mud jacking techniques, offers the possibility of creating complete enclosures in soils. The purely mineral nature of these slurries ensures long term chemical stability necessary for permanent containment

  10. Thermophilic slurry-phase treatment of petroleum hydrocarbon waste sludges

    International Nuclear Information System (INIS)

    Chemoheterotrophic thermophilic bacteria were used to achieve enhanced hydrocarbon degradation during slurry-phase treatment of oily waste sludges from petroleum refinery operations. Aerobic and anaerobic bacterial cultures were examined under thermophilic conditions to assess the effects of mode of metabolism on the potential for petroleum hydrocarbon degradation. The study determined that both aerobic and anaerobic thermophilic bacteria are capable of growth on petroleum hydrocarbons. Thermophilic methanogenesis is feasible during the degradation of hydrocarbons when a strict anaerobic condition is achieved in a slurry bioreactor. Aerobic thermophilic bacteria achieved the largest apparent reduction in chemical oxygen demand, freon extractable oil, total and volatile solid,s and polycyclic aromatic hydrocarbons (PAHs) when treating oily waste sludges. The observed shift with time in the molecular weight distribution of hydrocarbon material was more pronounced under aerobic metabolic conditions than under strict anaerobic conditions. The changes in the hydrocarbon molecular weight distribution, infrared spectra, and PAH concentrations during slurry-phase treatment indicate that the aerobic thermophilic bioslurry achieved a higher degree of hydrocarbon degradation than the anaerobic thermophilic bioslurry during the same time period

  11. Characterization of coal water slurry prepared for PRB coal

    Institute of Scientific and Technical Information of China (English)

    Fei Yi; Akshay Gopan; Richard L. Axelbaum

    2014-01-01

    Powder River Basin (PRB) coal, which accounts for over 40% of the coal consumed for power generation in the United States, was investigated for preparation of coal water slurry ( CWS). The static stability and rheology of the CWS were characterized as a function of loading. The coal loading was varied from 30% to 50% and both ionic ( sodium polystyrene sulphonate (PSS)) and nonionic (Triton X-100) surfactants were employed as additives. The addition of PSS to PRB slurries was found to yield poor static stability. On the other hand, Triton X-100 was found to be an effective surfactant, reducing the sedimentation by more than 50% compared to the one without surfactant in 45% CWS. Adding Triton X-100 reduces the viscosity of the CWS for coal loadings of 30% and 40% . Although the viscosities for coal loading of 42. 5% and 45% are higher when Triton X-100 is added, the static stability is significantly better than for samples without surfactant. The highest coal loading for PRB slurry with acceptable viscosity for pumping is 42. 5% .

  12. Surface Modification of Nickel Foams by a Slurry Aluminizing Process

    International Nuclear Information System (INIS)

    A novel slurry-based process for aluminizing nickel foams while improving the mechanical properties and conserving the excellent ductility is reported. Cellular unalloyed nickel foams with 92% porosity and uniform pore size and distribution were used as a starting material. Several slurries of different compositions were examined to investigate the possibility of developing an aluminide-nickel intermetallic coating on a Ni foam without considerably degrading the original ductile properties of the foam. The process temperature was varying from 400 to 850 deg. C and the process holding time was ranging between 2h to 6h. Scanning electron microscopy with an energy dispersive X-ray spectrometry and X-Ray diffraction were applied to assess the effectiveness of the aluminizing process and determine both the optimum parameters of the procedure (slurry composition, holding temperature and time) and the concentration profiles across the coating cross-section. The mechanical behavior of the aluminized Ni-foams was evaluated by the conduction of micro-tension tests. The resulting Ni-foams after aluminization retain the pore structure of original Ni-foams and present a thick outer surface layer which consists of a range of aluminide phases. The mechanical properties of the Ni-foams aluminized in low process temperature were insignificantly affected.

  13. Automation of the second iron ore slurry pipeline from Samarco

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Juliana M.; Fonseca, Mario L.; Drumond, Pablo P.; Barbosa, Sylvio [IHM Engenharia, Belo Horizonte, MG (Brazil)

    2009-07-01

    The second iron ore slurry pipeline from Samarco was build to attend the Third Pellet Plant Project, which includes a new Concentration Plant at Germano-MG and a third Pellet Plant at Ubu-ES. It has 396km of extension and links the two plants by pulping the iron ore slurry prepared at Germano Unit. This works aims to present the iron ore slurry pipeline with emphasis on the automation architecture for the supervision and control system, interconnect throughout the pipe extension by fiber optics. The control system is composed of ControlLogix CLP's at the pulping and valve station and Micrologix CLP's at the pressure and cathodic protection monitoring points, totalizing 19 PLC's. The supervisory system was developed using the Wonderware IAS 3.0 suite, including the supervisory software InTouch 9.5 and the integrated ArchestrA IDE, and is composed of two data servers in redundancy and nine operation stations. The control and supervision system is interconnect through and Ethernet network using fiber optics and multiplexer modules (GE JungleMux) for voice, data and video. Among the expected results, it can be highlighted the sequence automation, greater process data availability (real and historical) and greater facility for the operation and detection of failures. (author)

  14. Diffusion controlled deposition of particulate matter from flowing slurries

    International Nuclear Information System (INIS)

    Investigations have been carried out to determine the rate of deposition of micron sized magnetite particles from flowing slurry onto the inner walls of simulated heat exchanger tubes. Slurry was circulated in a closed-loop facility with deposition measurements being made in an aluminium tube of 19mm bore. Runs were conducted under isothermal conditions at temperatures between 293K and 350K over a Reynolds Number range 9,600 to 147,000. Slurry concentration was maintained in the range 200 to 600 mg/kg. The average magnetite particle size as measured on a Coulter Counter was approximately 1.5 μm. Deposit growth on the test section was measured by means of a low energy X-ray machine. The results showed high initial deposition rates accompanied by steadily increasing removal rates producing asymptotic curves. Analysis indicates that deposition is governed by the forced convective diffusion of particles to the tube wall. Correlation of deposition rates is possible using standard mass transfer equations. Deposits were friable and porous with void fractions ≅70%

  15. Incorporation of Reaction Kinetics into a Multiphase, Hydrodynamic Model of a Fischer Tropsch Slurry Bubble Column Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Donna Guillen, PhD; Anastasia Gribik; Daniel Ginosar, PhD; Steven P. Antal, PhD

    2008-11-01

    This paper describes the development of a computational multiphase fluid dynamics (CMFD) model of the Fischer Tropsch (FT) process in a Slurry Bubble Column Reactor (SBCR). The CMFD model is fundamentally based which allows it to be applied to different industrial processes and reactor geometries. The NPHASE CMFD solver [1] is used as the robust computational platform. Results from the CMFD model include gas distribution, species concentration profiles, and local temperatures within the SBCR. This type of model can provide valuable information for process design, operations and troubleshooting of FT plants. An ensemble-averaged, turbulent, multi-fluid solution algorithm for the multiphase, reacting flow with heat transfer was employed. Mechanistic models applicable to churn turbulent flow have been developed to provide a fundamentally based closure set for the equations. In this four-field model formulation, two of the fields are used to track the gas phase (i.e., small spherical and large slug/cap bubbles), and the other two fields are used for the liquid and catalyst particles. Reaction kinetics for a cobalt catalyst is based upon values reported in the published literature. An initial, reaction kinetics model has been developed and exercised to demonstrate viability of the overall solution scheme. The model will continue to be developed with improved physics added in stages.

  16. Magnetic and dendritic catalysts.

    Science.gov (United States)

    Wang, Dong; Deraedt, Christophe; Ruiz, Jaime; Astruc, Didier

    2015-07-21

    The recovery and reuse of catalysts is a major challenge in the development of sustainable chemical processes. Two methods at the frontier between homogeneous and heterogeneous catalysis have recently emerged for addressing this problem: loading the catalyst onto a dendrimer or onto a magnetic nanoparticle. In this Account, we describe representative examples of these two methods, primarily from our research group, and compare them. We then describe new chemistry that combines the benefits of these two methods of catalysis. Classic dendritic catalysis has involved either attaching the catalyst covalently at the branch termini or within the dendrimer core. We have used chelating pyridyltriazole ligands to insolubilize catalysts at the termini of dendrimers, providing an efficient, recyclable heterogeneous catalysts. With the addition of dendritic unimolecular micelles olefin metathesis reactions catalyzed by commercial Grubbs-type ruthenium-benzylidene complexes in water required unusually low amounts of catalyst. When such dendritic micelles include intradendritic ligands, both the micellar effect and ligand acceleration promote faster catalysis in water. With these types of catalysts, we could carry out azide alkyne cycloaddition ("click") chemistry with only ppm amounts of CuSO4·5H2O and sodium ascorbate under ambient conditions. Alternatively we can attach catalysts to the surface of superparamagnetic iron oxide nanoparticles (SPIONs), essentially magnetite (Fe3O4) or maghemite (γ-Fe2O3), offering the opportunity to recover the catalysts using magnets. Taking advantage of the merits of both of these strategies, we and others have developed a new generation of recyclable catalysts: dendritic magnetically recoverable catalysts. In particular, some of our catalysts with a γ-Fe2O3@SiO2 core and 1,2,3-triazole tethers and loaded with Pd nanoparticles generate strong positive dendritic effects with respect to ligand loading, catalyst loading, catalytic activity and

  17. KINETICS OF SLURRY PHASE FISCHER-TROPSCH SYNTHESIS. FOURTH ANNUAL TECHNICAL PROGRESS REPORT

    International Nuclear Information System (INIS)

    This report covers the fourth year of a research project conducted under the University Coal Research Program. The overall objective of this project is to develop a comprehensive kinetic model for slurry-phase Fischer-Tropsch synthesis (FTS) employing iron-based catalysts. This model will be validated with experimental data obtained in a stirred-tank slurry reactor (STSR) over a wide range of process conditions. The model will be able to predict molar flow rates and concentrations of all reactants and major product species (water, carbon dioxide, linear 1- and 2-olefins, and linear paraffins) as a function of reaction conditions in the STSR. During the fourth year of the project, an analysis of experimental data collected during the second year of this project was performed. Kinetic parameters were estimated utilizing product distributions from 27 mass balances. During the reporting period two kinetic models were employed: a comprehensive kinetic model of Dr. Li and co-workers (Yang et al., 2003) and a hydrocarbon selectivity model of Van der Laan and Beenackers (1998, 1999) The kinetic model of Yang et al. (2003) has 24 parameters (20 parameters for hydrocarbon formation, and 4 parameters for the water-gas-shift (WGS) reaction). Kinetic parameters for the WGS reaction and FTS synthesis were estimated first separately, and then simultaneously. The estimation of these kinetic parameters employed the Levenberg-Marquardt (LM) method and the trust-region reflective Newton large-scale (LS) method. A genetic algorithm (GA) was incorporated into estimation of parameters for FTS reaction to provide initial estimates of model parameters. All reaction rate constants and activation energies were found to be positive, but at the 95% confidence level the intervals were large. Agreement between predicted and experimental reaction rates has been fair to good. Light hydrocarbons are predicted fairly accurately, whereas the model underpredicts values of higher molecular weight

  18. Ammonia emissions from pig and cattle slurry in the field and utilization of slurry nitrogen in crop production

    OpenAIRE

    Mattila, Pasi

    2006-01-01

    Volatilization of ammonia (NH3) from animal manure is a major pathway for nitrogen (N) losses that cause eutrophication, acidification, and other environmental hazards. In this study, the effect of alternative techniques of manure treatment (aeration, separation, addition of peat) and application (broadcast spreading, band spreading, injection, incorporation by harrowing) on ammonia emissions in the field and on nitrogen uptake by ley or cereals was studied. The effect of a mixture of slurry ...

  19. Rheological behavior of Shengli coal-solvent slurry at low-temperatures and atmospheric pressure

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-gang; YAN Yan; GUO Xiang-kun; Xu De-ping

    2009-01-01

    We report the results from systematic studies of Shengli lignite coal-solvent slurries. Solvent type, temperature, coal to solvent ratio, particle granularity, shear rate and shear time were investigated. The viscosity of the solvents is time independent. However, the slurries are thixotropic. A change from pseudo-plastic to Newtonian behavior occurs as the temperature, or as the solvent to coal ratio, increases. The solvent used in the slurry affects the point at which the theology changes from pseudo-plastic to Newtonian. The REC slurry changes at 1 : 1.2 coal to solvent ratio and at 40 ℃. The HAR slurry changes at a 1:1.5 ratio and at 60 ℃. The theology of the slurries is pseudo-plastic at low shear rates but Newtonian at high shear rates.

  20. Influence of slurry flocculation on the character and compaction of spray-dried silicon nitride granules

    International Nuclear Information System (INIS)

    The effect of slurry flocculation on the characteristics of silicon nitride granules prepared by the spray drying process is investigated. The flocculation state of an aqueous silicon nitride slurry is controlled by adding nitric acid and evaluated as a function of pH. Dense and hard silicon nitride granules result from a well-dispersed slurry having a high pH (e.g., 10.8). These hard granules retain their shape in green compacts and form detrimental defects. Lowering the pH of the slurry to a certain value (e.g., pH 7.9) results in slurry flocculation. Granules prepared from this flocculated slurry have low density and low diametral compression strength and contribute to the elimination large pores in green compacts

  1. Effects of Main Parameters on Rheological Properties of Oil-Coal Slurry

    Institute of Scientific and Technical Information of China (English)

    WANG Yong-gang; HAO Li-fang; XIONG Chu-an; SUN Xiu-ying

    2006-01-01

    Oil-coal slurry prepared in coal direct liquefaction is a dispersed solid-liquid suspension system. In this paper, some factors such as solvent properties, solid concentrations and temperatures, which affect viscosity change of oil-coal slurry, were studied. The viscosity of coal slurry was measured using rotary viscometer, and the rheological properties have been investigated. The viscosity and rheological curves were plotted and regressed, respectively. The results show that the coal slurry behaves a pseudoplastic and thixotropic property. The rheological type of coal slurry was ascertained and its rheological equations were educed. The oil-coal slurry changes to non-Newtonian fluid from Newtonian fluid with the increasing of solid concentration.

  2. Comparative study of laser-induced breakdown spectroscopy measurement using two slurry circulation systems

    International Nuclear Information System (INIS)

    The experimental conditions associated with slurry measurements to achieve good precision by using laser-induced breakdown spectroscopy (LIBS) are examined. LIBS analysis was applied to a special waste slurry sample that contains 85.4% water, 2.5% ferric oxide Fe2O3, 1.7% alumina Al2O3, and small quantities of oxides of boron and chromium. While liquids add challenge to LIBS measurements, the analysis was successfully performed on iron and aluminum. Two slurry circulation systems were devised to overcome the major technical problems associated with LIBS measurements of slurry samples, namely, sedimentation and change in the lens-to-sample distance during measurement. LIBS slurry measurements using both circulation systems are compared. The results show that the experimental configuration plays a crucial role for online slurry analysis

  3. In-situ study of the thermal properties of hydrate slurry by high pressure DSC

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Brun, F.; Erbeau, N. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2008-07-01

    Knowing the enthalpy of hydrate slurry is very essential for energy balance and industrial applications. No direct measurement processes had been developed in this field in the past time. A new experimental method with special device has been developed to carry out on-line measurement of the thermal properties for hydrate slurry under dynamic conditions. With this special device, it is possible to deliver the hydrate slurry to the high pressure DSC (Differential Scanning Calorimetry) directly from the production tank or pipes. Thermal data acquisition will be performed afterwards by DSC. The investigated conditions were at pressure of 30 bar and temperature of {approx}+7 {sup o}C. The dissociation enthalpy of CO{sub 2} hydrate slurry was about 54 kJ/kg, corresponding 10.8% of solid fraction. The on-line measurement results for CO{sub 2} hydrate slurry give a good tendency to apply this phase change slurry to the industrial refrigeration process. (author)

  4. Analysis of high-level radioactive slurries as a method to reduce DWPF turnaround times

    International Nuclear Information System (INIS)

    Analysis of Defense Waste Processing Facility (DWPF) samples as slurries rather than as dried or vitrified samples is an effective way to reduce sample turnaround times. Slurries can be dissolved with a mixture of concentrated acids to yield solutions for elemental analysis by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Slurry analyses can be performed in eight hours, whereas analyses of vitrified samples require up to 40 hours to complete. Analyses of melter feed samples consisting of the DWPF borosilicate frit and either simulated or actual DWPF radioactive sludge were typically within a range of 3--5% of the predicted value based on the relative amounts of sludge and frit added to the slurry. The results indicate that the slurry analysis approach yields analytical accuracy and precision competitive with those obtained from analyses of vitrified samples. Slurry analyses offer a viable alternative to analyses of solid samples as a simple way to reduce analytical turnaround times

  5. Catalyst component interactions in nickel/alumina catalyst

    Directory of Open Access Journals (Sweden)

    Kiš Erne E.

    2007-01-01

    Full Text Available The influence of nickel loading (5; 10; 20 wt% Ni, temperature of heat treatment (400; 700; 1100°C and way of catalyst preparation on the catalyst component interactions (CCI in the impregnated, mechanical powder mixed and co-precipitated catalyst was investigated. For sample characterization, low temperature nitrogen adsorption (LTNA and X-ray diffraction (XRD were applied. Significant differences were revealed, concerning CCI in dependence of nickel loading, temperature of heat treatment and way of catalyst preparation. The obtained results show that the support metal oxide interactions (SMI in impregnated and co-precipitated catalysts are more intensive than in the mechanical powder mixed catalyst. The degree and intensity of CCI is expressed by the ratio of real and theoretical surface area of the catalyst. This ratio can be used for a quantitative estimation of CCI and it is generally applicable to all types of heterogeneous catalysts.

  6. ANAEROBIC DIGESTION IN SANITIZATION OF PIG SLURRY AND BIOMASS IN AGRICULTURAL BIOGAS PLANT

    OpenAIRE

    Michał Grudziński; Arkadiusz Pietruszka; Wojciech Sawicki

    2015-01-01

    Pig slurry is one of the production manure, which should be managed properly because of environmental threats it can cause. Pig slurry contains a wide range of microorganisms, most of which are opportunistic or obligatory pathogens for people and animals. Spreading it on fields without control can cause microbial contaminations of water and soil. Use of pig slurry as substrate in anaerobic digestion can be an effective way of sanitization. In this work role of methanogenic fermentation in pig...

  7. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    International Nuclear Information System (INIS)

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  8. Aerobic Biological treatment of municipal wastewaters and pig slurry and the associated bacteriological and parasitological risks

    Energy Technology Data Exchange (ETDEWEB)

    Venglovsky, J.; Sasokova, N.; Juris, P.; Papajova, I.; Vargova, M.; Ondrasovicova, O.; Ondrasovic, M.

    2009-07-01

    The aim of the present study was to investigate the bacteriological and parasitological risk associated with the products of aerobic treatment of pig slurry and municipal sewage. We focused on the quality of effluents and on sewage sludge and pig slurry solids from two wastewater treatment plants (pig slurry WWTP.1; municipal wastewater WWTP-2 with regard to place counts of selected groups of bacteria (mesophilic, coliform, faecal coliform) and the efficiency of their removal. (Author)

  9. Deactivation-resistant catalyst for selective catalyst reduction of NOx

    OpenAIRE

    Jensen, Anker Degn; Castellino, Francesco; Rams, Per Donskov; Pedersen, Jannik Blaabjerg; Putluru, Siva Sankar Reddy

    2011-01-01

    The present invention relates to a catalyst for selective catalytic reduction of NOx in alkali metal containing flue gas using ammonia as reductant, the catalyst comprising a surface with catalytically active sites, wherein the surface is at least partly coated with a coating comprising at least one metal oxide. In another aspect the present invention relates to the use of said catalyst and to a method of producing said catalyst. In addition, the present invention relates to a method of treat...

  10. Supported organoiridium catalysts for alkane dehydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, R. Thomas; Sattelberger, Alfred P.; Li, Hongbo

    2013-09-03

    Solid supported organoiridium catalysts, a process for preparing such solid supported organoiridium catalysts, and the use of such solid supported organoiridium catalysts in dehydrogenation reactions of alkanes is provided. The catalysts can be easily recovered and recycled.

  11. Skeletal Amorphous Nickel Based Alloy Catalysts and Magnetically Stabilized Bed Hydrogenation Technology

    Institute of Scientific and Technical Information of China (English)

    Min Enze

    2004-01-01

    Looking toward 21 century, smaller, cleaner and more energy-efficient technology will be an important trend in the development of chemical industry. In light of the new process requirements,a number of technology breakthroughs have occurred. One of these discoveries, the magnetically stabilized bed (MSB), has been proven a powerful process for intensification. Since its initial research in the late 1980's at Research Institute of Petroleum Processing (RIPP), the MSB technology and related catalytic material have matured rapidly through an intensive research and engineering program, primarily focused on its scaling-up.In this paper, we report the discovery of a novel skeletal amorphous nickel-based alloy and its use in magnetically stabilized bed (MSB). Amorphous alloys are new kinds of catalytic materials with short-range order but long-range disorder structure. In comparison with Raney Ni, the skeletal amorphous nickel-based alloy has an increasingly higher activity in the hydrogenation of reactive groups and compounds including nitro, nitrile, olefin, acetylene, aromatics, etc. Up to now, the amorphous nickel based alloy catalysts, SRNA series catalyst, one with high Ni ratio have been commercially manufactured more than four year. The new SRNA catalyst has been successfully implemented for hydrogenation applications in slurry reactor at Balin Petrochemical, SINOPEC.SRNA catalyst with further improvement in catalytic activity and stability raise its relative stability to 2~4 times of that of conventional catalyst. In the course of the long-cycle operation of SRNA-4 the excellent catalyst activity and stability can bring about such advantage as low reaction temperature, good selectivity and low catalyst resumption.Magnetically stabilized bed (MSB), a fluidized bed of magnetizable particles by applying a spatially uniform and time-invariant magnetic field oriented axially relative to the fluidizing fluid flow, had many advantages such as the low pressure drop and

  12. Redistribution and persistence of microorganisms and steroid hormones after soil-injection of swine slurry

    DEFF Research Database (Denmark)

    Amin, Mostofa; Bech, Tina B.; Forslund, Anita;

    2014-01-01

    Typhimurium Bacteriophage 28B (phage 28B), Escherichia coli, steroid hormones and other slurry components (water, volatile solids, chloride and mineral N) determined in and around the injection slit. The two experiments at Silstrup and Estrup differed with respect to slurry solid content (6.3 vs. 0.8%), as...... were detected in the slurry slit, and a slow redistribution to the surrounding soil was observed. Overall recovery of estrogens was 0.0 to 6.6% in different samples. The study showed that the combination of soil and slurry properties determined the initial spreading of contaminants, and hence the...

  13. Fused metallic slurry coatings for improving the oxidation resistance of wrought alloys

    OpenAIRE

    Segura-Cedillo, Ismael

    2011-01-01

    The aim of this project was to investigate the potential of fused-slurry coatings for improving the oxidation resistance of wrought alloys. Slurry-aluminised coatings were deposited on Alloy 800H (Fe-33Ni-20Cr), Alloy HCM12A (Fe-12Cr-2W), Alloy 214 (Ni-16Cr-4Al-3Fe), Fe-27Cr-4Al and Fe-14Cr-4Al alloys. The slurry contained a cellulose-based binder in an aqueous carrier and spherical aluminium powder, with a particle size below 20 microns. The slurries were applied with a paint-brush, dried in...

  14. Dietary Fibre in Pig's Diets: Effects on Greenhouse Gas Emissions from Slurry Storage to Field Application

    OpenAIRE

    Estellés, Fernando; Sanz Cobeña, Alberto; Beccaccia, Alba; Antezana, W.; Cambra López, M.; Ferrer, Pablo; Cerisuelo, A.; García Rebollar, Pilar; Vallejo Garcia, Antonio; Blas, C. de; Calvet, Salvador

    2014-01-01

    Pig’s slurry is a key source of greenhouse gases (GHG). In Spain, GHG emissions (CH4+ N2O) from pig slurry (storage and land application) accounted in 2011 for 18.4% of total GHG emissions (in CO2- equivalent) of the agriculture sector according to the National Inventory Report (NIR). Slurry composition can be modified through diet manipulation. The aim of this work was to evaluate the effect of different fibre types in fattening pigs’ diets on GHG emissions from pig slurry storag...

  15. Flow velocity analysis for avoidance of solids deposition during transport of Hanford tank waste slurries

    International Nuclear Information System (INIS)

    This engineering analysis calculates minimum slurry transport velocities intended to maintain suspensions of solid particulate in slurries. This transport velocity is also known as the slurry flow critical velocity. It is not universally recognized that a transfer line flow velocity in excess of the slurry critical velocity is a requirement to prevent solids deposition and possible line plugging. However, slurry critical velocity seems to be the most prevalent objective measure to prevent solids deposition in transfer lines. The following critical velocity correlations from the literature are investigated: Durand (1953), Spells (1955), Sinclair (1962), Zandi and Gavatos (1967), Babcock (1968), Shook (1969), and Oroskar and Turian (1980). The advantage of these critical velocity correlations is that their use is not reliant upon any measure of bulk slurry viscosity. The input parameters are limited to slurry phase densities and mass fractions, pipe diameter, particle diameter, and viscosity of the pure liquid phase of the slurry. Consequently, the critical velocity calculation does not require determination of system pressure drops. Generalized slurry properties can, therefore, be recommended if the slurry can be adequately described by these variables and if the liquid phase viscosity is known. Analysis of these correlations are presented, indicating that the Oroskar and Turian (1980) models appear to be more conservative for smaller particulate sizes, typically those less than 100 microns diameter. This analysis suggests that the current Tank Farms waste compatibility program criteria may be insufficient to prevent particulate solids settling within slurry composition ranges currently allowed by the waste compatibility program. However, in order to relate a critical velocity associated with a certain slurry composition to a system limit, a means of relating the system capabilities to the slurry composition must be found. Generally, this means expressing the bulk

  16. Numerical simulation of the preparation of semi-solid metal slurry with damper cooling tube method

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In semi-solid forming process, preparing the slurry with rosette or globular microstructure is very important. A new approach named the damper cooling tube method (DCT), to produce the semi-solid metal slurry, has been introduced. To optimize the technical parameters in designing the apparatus, the finite volume method was adopted to simulate the flow process. The temperature effects on the rheological properties of the slurries were also considered. The effects of the technical parameters on the slurry properties were studied in detail.

  17. Investigation of properties of coal-water slurries produced by electric discharge methods

    Science.gov (United States)

    Buyantuev, S.; Khmelev, A.; Kondratenko, A.; Baldynova, F.

    2015-11-01

    The purpose of research is to obtain high quality coal-water slurry with minimum energy consumption. The paper presents the characteristics of coal-water slurries produced by electric discharge methods. The raw material is coal from different mines (Tugnuisky, Aduun- Chulunsky, etc.). Micrographs of the surface of the coal particles in the slurry and its chemical composition are obtained by scanning electron microscopy. Micrographs showed that the electric discharge treatment resulted in a significant dispersion of the coal particles. Elemental analysis showed a significant reduction of oxides of sulfur and nitrogen. Viscosity of slurries was determined by Brookfield rotational viscometer and corresponds to the standard of GB / T18856.4.

  18. Anaerobic digestion as a slurry management strategy : a consequential life cycle assessment

    Energy Technology Data Exchange (ETDEWEB)

    Hamelin, L.; Wesnaes, M.; Wenzel, H.; Petersen, B.M. [Southern Denmark Univ. (Denmark). Inst. of Chemical Engineering, Biotechnology and Environmental Technology

    2010-07-01

    Anaerobic digestion of slurry represents an environmental opportunity for both slurry management and renewable energy production in countries with high animal density. This study evaluated the environmental impacts of 4 biogas production alternatives in which slurry was the only input in the process, without supplementary addition of easily degradable carbon. This was achieved by exposing the slurry to different separation technologies. The biomass mixture input for biogas production included solid fraction from slurry separation as well as raw slurry, proportioned in order to achieve economical methane yield. The separation processes considered in this study were mechanical separation; mechanical separation combined with the addition of flocculants; and mechanical separation combined with a thermal treatment. Four biogas alternatives were compared to a reference slurry management scenario, notably to use the slurry as a fertilizer without prior treatment. The modelling was based on Danish conditions and used the consequential life cycle assessment methodology. The produced biogas was used for production of heat and power and the degassed slurry was used as an organic fertilizer.

  19. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    International Nuclear Information System (INIS)

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs

  20. Evaluation of the transport and resuspension of a simulated nuclear waste slurry: Nuclear Waste Treatment Program

    Energy Technology Data Exchange (ETDEWEB)

    Carleson, T.E.; Drown, D.C.; Hart, R.E.; Peterson, M.E.

    1987-09-01

    The Department of Chemical Engineering at the University of Idaho conducted research on the transport and resuspension of a simulated high-level nuclear waste slurry. In the United States, the reference process for treating both defense and civilian HLLW is vitrification using the liquid-fed ceramic melter process. The non-Newtonian behavior of the slurry complicates the evaluation of the transport and resuspension characteristics of the slurry. The resuspension of a simulated (nonradioactive) melter feed slurry was evaluated using a slurry designated as WV-205. The simulated slurry was developed for the West Valley Demonstration Project and was used during a pilot-scale ceramic melter (PSCM) experiment conducted at PNL in July 1985 (PSCM-21). This study involved determining the transport characteristics of a fully suspended slurry and the resuspension characteristics of settled solids in a pilot-scale pipe loop. The goal was to predict the transport and resuspension of a full-scale system based on rheological data for a specific slurry. The rheological behavior of the slurry was evaluated using a concentric cylinder rotational viscometer, a capillary tube viscometer, and the pilot-scale pipe loop. The results obtained from the three approaches were compared. 40 refs., 74 figs., 15 tabs.

  1. Dynamics of Catalyst Nanoparticles

    DEFF Research Database (Denmark)

    Hansen, Thomas Willum; Cavalca, Filippo; Wagner, Jakob Birkedal

    under gas exposure, dynamic phenomena such as sintering and growth can be observed with sub-Ångstrøm resolution. Metal nanoparticles contain the active sites in heterogeneous catalysts, which are important for many industrial applications including the production of clean fuels, chemicals...... and pharmaceuticals, and the cleanup of exhaust from automobiles and stationary power plants. Sintering, or thermal deactivation, is an important mechanism for the loss of catalyst activity. In order to initiate a systematic study of the dynamics and sintering of nanoparticles, various catalytic systems have been...

  2. Effect of Vanadium and Titanium substitution over an antimony-based mixed oxide catalysts for propane ammoxidation to acrylonitrile

    International Nuclear Information System (INIS)

    Antimony (Sb) oxide is known to be the active phase for the ammoxidation of propane to acrylonitrile (ACN). The influenced of V and/ or Ti on the physicochemical properties of Sb-based mixed oxide catalysts were studied using catalysts prepared by slurry method. The dried precursor was calcined in air at 350-600 degree Celsius for a total of 10 h. The active phases in Sb-promoted catalysts were determined using X-ray Diffraction (XRD) while the changes in microstructure of these catalysts were studied using physical adsorption of nitrogen gas. The catalytic activities of these catalysts were tested in a fixed-bed reactor with online GC at 420 degree Celsius with reaction feed (% v) of 5.8:7:17.4 for propane, ammonia and oxygen, respectively. Results show that promotional of Sb with V and/ or Ti has an effect on the chemical environment of the Sb-mixed oxide catalysts, leading to differences in catalytic activity of these catalysts. (author)

  3. Hydroprocessing full-range of heavy oils and bitumen using ultradispersed catalysts at low severity

    Science.gov (United States)

    Peluso, Enzo

    The progressive exhaustion of light crude oils is forcing the petroleum industry to explore new alternatives for the exploitation of unconventional oils. New approaches are searching for technologies able to produce, transport and refine these feedstocks at lower costs, in which symbiotic processes between the enhanced oil recovery (EOR) and the conventional upgrading technologies are under investigation. The process explored in this thesis is an interesting alternative for in-situ upgrading of these crude oils in the presence of ultradispersed (UD) catalysts, which are included as a disperse phase able to circulate along with the processed feed. The objectives of this work are: (a) study the performance of UD catalysts in the presence of a full range (non fractioned) heavy oil and bitumen and (b) evaluate the recyclability of the UD catalysts. Four different heavy crude oils were evaluated in the presence with UD catalysts at a total pressure of 2.8 MPa, residence time of 8 hours and reaction temperatures from 360 up to 400ºC. Thermal and catalytic hydro-processing were compared in terms of conversion and product stability. A comparison between the different crude oils was additionally derived in terms of SARA, initial micro-carbon content and virgin oil stability among other properties. Advantages of catalytic hydro-processing over thermal hydro-processing were evidenced, with UD catalysts playing an essential hydrogenating role while retarding coke formation; microcarbon and asphaltenes reduction in the presence of UD catalysts was observed. To evaluate the feasibility of recycling the UD catalysts, a micro-slurry recycled unit was developed as part of this research. These main results showed: (a) a successful design of this unit, (b) that temperature, LHSV and fractional recycling ratio have more impact on VGO conversion, while pressure has almost no effect, and (c) an UD catalysts agglomeration process was detected, however this process is slow and reversible.

  4. Investigation of microbial nitrate reduction processes in Boom Clay slurries

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. At the moment, many countries are considering geological disposal of nuclear waste in a clay formation. In Belgium, the Boom Clay is currently studied as a potential host formation, due to its interesting physicochemical properties, which cause a delay and spread in time of the migration of leached radionuclides. However, waste disposal will have a certain impact on the barrier function of the clay. Emplacement of the Belgian bituminized waste, Eurobitum, which contains 20 to 30 weight% NaNO3, is expected to result in certain perturbations of the clay barrier. Both a mechanical disturbance due to an osmotically induced pressure increase and a physico-chemical disturbance caused by the leaching of NaNO3 from the Eurobitum into the clay can be expected. One of these chemical perturbations is the microbial reduction (assimilatory and/or dissimilatory) of nitrate and nitrite in Boom Clay. Assimilation of nitrate or nitrite leads to the formation of R-NH2, while denitrification (dissimilatory pathway) results in gas production (NO, N2O and N2). In some bacterial species, a dissimilative reduction of nitrite into ammonia can also occur, followed by the excretion of NH3 into the medium. A high gas pressure could result in a gas-driven transport of pore water (i.e. two-phase transport), and hence of radionuclides, and possibly in a fracturing of the clay (i.e. gas breakthrough). Besides these microbial reduction processes, abiotic reduction of nitrate and nitrite by Boom Clay components cannot be excluded. The oxidation of Boom Clay components would result in a less reducing capacity towards redox-sensitive radionuclides, and thus could increase their migration rate in the oxidized Boom Clay. To study the microbial reduction processes of nitrate and nitrite in Boom Clay, batch reactor tests were performed. In a first series of tests, Boom Clay slurries (solid/liquid weight ratio 2/3 g/ml) were mixed in two reactors to

  5. Dynamic injection tests of dense slurry into fine rock fractures

    International Nuclear Information System (INIS)

    Dynamic injection is the technology that efficiently injects with high dense slurry into small rock fractures. This technology may be expected for the improvement of fluidity and a penetration property of grout materials and the prevention of blockade phenomena. On this study, in order to make clear the effect of the dynamic injection method and the condition of pulsation pressure, injection tests with a fine model fractures and rheological tests under a proper vibration were made for high dense and viscosity grout materials. (author)

  6. Field Efficiency of Slurry Applications Involving In-field Transports

    DEFF Research Database (Denmark)

    Bochtis, Dionysis; Sørensen, Claus Aage Grøn; Green, Ole;

    2009-01-01

    Controlled traffic farming can significantly reduce the soil compaction caused from heavy machinery systems. However, using CTF in material handling operations executed by cooperative machines, the significantly increased in-field transports lead to a lower system’s efficiency. Recently, a discrete...... event model for the simulation of CTF operations executed by cooperating machines has been introduced. The use of this model makes it possible to estimate the extent of reduction of the field efficiency. In this paper, a field experiment involving slurry application under the conventional unconstrained...

  7. Deep conversion of black oils with Eni Slurry technology

    Energy Technology Data Exchange (ETDEWEB)

    Panariti, Nicoletta; Rispoli, Giacomo

    2010-09-15

    Eni Slurry Technology represents a significant technological innovation in residue conversion and unconventional oils upgrading. EST allows the almost total conversion of heavy feedstocks into useful products, mainly transportation fuels, with a great major impact on the economic and environmental valorization of hydrocarbon resources. The peculiar characteristics of EST in terms of yields, products quality, absence of undesired by-products and feedstock flexibility constitute its superior economic and environmental attractiveness. The first full scale industrial plant based on this new technology will be realized in Eni's Sannazzaro refinery (23,000 bpd). Oil in is scheduled by 4th quarter 2012.

  8. Advanced control of propylene polimerizations in slurry reactors

    Directory of Open Access Journals (Sweden)

    Bolsoni A.

    2000-01-01

    Full Text Available The objective of this work is to develop a strategy of nonlinear model predictive control for industrial slurry reactors of propylene polymerizations. The controlled variables are the melt index (polymer quality and the amount of unreacted monomer (productivity. The model used in the controller presents a linear dynamics and a nonlinear static gain given by a neuronal network MLP (multilayer perceptron. The simulated performance of the controller was evaluated for a typical propylene polymerization process. It is shown that the performance of the proposed control strategy is much better than the one obtained with the use of linear predictive controllers for setpoint tracking control problems.

  9. Analysis of Slurry Drying in a Spray Dryer

    OpenAIRE

    Wittaya Julklang; Boris Golman

    2014-01-01

    Spray drying has recently been exploited to prepare a large variety of high-value particles. The aim of the present paper is to analyze the drying mechanism of slurry droplets consist of nanosized particles in an industrial-scale spray dryer. For this purpose, a mathematical model is developed comprising a comprehensive model for the heat and mass transfer for a single droplet and a model for the flow of droplets and gas, and the heat and mass transfer in the dryer. Using the developed model,...

  10. Magnetic sorbents added to soil slurries lower Cr aqueous concentration

    Science.gov (United States)

    Aravantinos, Konstantinos; Isari, Ekavi; Karapanagioti, Hrissi K.; Manariotis, Ioannis D.; Werner, David

    2016-04-01

    Activated carbon (AC) acts as a strong binding agent that lowers the pollutant concentration and, thus its toxicity. Another promising sorbent material in environmental applications is biochar (BC) which is obtained from the incomplete combustion of carbon-rich biomass under oxygen-limited conditions. Both of these materials could be used as soil or sediment amendments that would lower the toxicity in the aqueous phase. A draw back of this technique is that although the pollutant will remain non- bioavailable for many years being sorbed into these sorbents, it actually stays into the system. The objective of this study was (a) to synthesize a magnetic powdered activated carbon (AC/Fe) and magnetic powdered biochar (BC/Fe) produced from a commercial AC sample and BC, respectively and (b) to evaluate the potential use of AC/Fe and BC/Fe to lower Cr concentration that desorb from two soils in their soil slurries. The two soil samples originate from the vicinity of a local metal shop. The BC was produced from olive pomace. The surface area, the pore volume, and the average pore size of each sorbent were determined using gas (N2) adsorption-desorption cycles and the Brunauer, Emmett, and Teller (BET) equation. Isotherms with 30 adsorption and 20 desorption points were conducted at liquid nitrogen temperature (77K). Open surface area and micropore volume were determined using t-plot method and Harkins & Jura equation. For both AC/Fe, surface area measurements resulted in 66% those of corresponding AC. For BC/Fe, the surface area was 82% that of BC. Our previous studies have shown that both AC/Fe and BC/Fe are effective sorbents for mercury in aqueous solutions but with lower sorption capacity compared to the initial materials (50-75% lower). Batch experiments with all sorbent samples and each soil were conducted at room temperature (25oC) in order to compare the sorption properties of the materials. The soil slurries demonstrated low Cr concentrations (10.9 and 14.6

  11. YIELD STRESS REDUCTION OF DWPF MELTER FEED SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Stone, M; Michael02 Smith, M

    2006-12-28

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site vitrifies High Level Waste for repository internment. The process consists of three major steps: waste pretreatment, vitrification, and canister decontamination/sealing. The HLW consists of insoluble metal hydroxides (primarily iron, aluminum, magnesium, manganese, and uranium) and soluble sodium salts (carbonate, hydroxide, nitrite, nitrate, sulfate). The pretreatment process acidifies the sludge with nitric and formic acids, adds the glass formers as glass frit, then concentrates the resulting slurry to approximately 50 weight percent (wt%) total solids. This slurry is fed to the joule-heated melter where the remaining water is evaporated followed by calcination of the solids and conversion to glass. The Savannah River National Laboratory (SRNL) is currently assisting DWPF efforts to increase throughput of the melter. As part of this effort, SRNL has investigated methods to increase the solids content of the melter feed to reduce the heat load required to complete the evaporation of water and allow more of the energy available to calcine and vitrify the waste. The process equipment in the facility is fixed and cannot process materials with high yield stresses, therefore increasing the solids content will require that the yield stress of the melter feed slurries be reduced. Changing the glass former added during pretreatment from an irregularly shaped glass frit to nearly spherical beads was evaluated. The evaluation required a systems approach which included evaluations of the effectiveness of beads in reducing the melter feed yield stress as well as evaluations of the processing impacts of changing the frit morphology. Processing impacts of beads include changing the settling rate of the glass former (which effects mixing and sampling of the melter feed slurry and the frit addition equipment) as well as impacts on the melt behavior due to decreased surface area of the beads versus frit

  12. Surface characteristics of ruthenium in periodate-based slurry during chemical mechanical polishing

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jie; Wang, Tongqing; Jiang, Liang; Lu, Xinchun, E-mail: xclu@tsinghua.edu.cn

    2015-10-01

    Highlights: • The Ru surface chemical and mechanical property varies with KIO{sub 4} slurry pH. • In alkaline slurry, the corrosion proceeds uniformly like a direct dissolution. • In neutral and acidic slurries, Ru exhibits passivation behavior. • MRR is highest in neutral slurry due to inhomogeneous RuO{sub 2}·2H{sub 2}O/RuO{sub 3} passivation. • Weak alkaline slurry is preferred to get good MRR and avoid toxic RuO{sub 4} formation. - Abstract: When the feature size of integrated circuit continues to shrink below 14 nm, ruthenium (Ru) has become one of the most promising candidates for the application of novel barrier layer. To reveal the material removal mechanism of Ru during chemical mechanical polishing (CMP), surface characteristics of Ru in KIO{sub 4}-based slurry were investigated. The corrosion behavior of ruthenium was measured by the surface chemistry and morphology analysis. Then the mechanical properties of the passivated/corroded surface were evaluated by AES and tribocorrosion experiments. CMP experiments were carried out to make clear the effects of surface property during polishing. It was found that the Ru surface chemistry and mechanical properties vary obviously as a function of slurry pH. In neutral slurries, the Ru surface is covered with RuO{sub 2}·2H{sub 2}O/RuO{sub 3} inhomogeneous passivation films, with the highest material removal rate obtained during the CMP process. It could be concluded that the material removal mechanism largely depends on the slurry pH values. In near neutral slurries, Ru is passivated with thick and heterogeneous oxides film, which proves the easiest to be mechanically removed during polishing. The weak alkaline slurry is preferred in order to achieve desirable polishing rate as well as avoid the formation of toxic RuO{sub 4}.

  13. Surface characteristics of ruthenium in periodate-based slurry during chemical mechanical polishing

    International Nuclear Information System (INIS)

    Highlights: • The Ru surface chemical and mechanical property varies with KIO4 slurry pH. • In alkaline slurry, the corrosion proceeds uniformly like a direct dissolution. • In neutral and acidic slurries, Ru exhibits passivation behavior. • MRR is highest in neutral slurry due to inhomogeneous RuO2·2H2O/RuO3 passivation. • Weak alkaline slurry is preferred to get good MRR and avoid toxic RuO4 formation. - Abstract: When the feature size of integrated circuit continues to shrink below 14 nm, ruthenium (Ru) has become one of the most promising candidates for the application of novel barrier layer. To reveal the material removal mechanism of Ru during chemical mechanical polishing (CMP), surface characteristics of Ru in KIO4-based slurry were investigated. The corrosion behavior of ruthenium was measured by the surface chemistry and morphology analysis. Then the mechanical properties of the passivated/corroded surface were evaluated by AES and tribocorrosion experiments. CMP experiments were carried out to make clear the effects of surface property during polishing. It was found that the Ru surface chemistry and mechanical properties vary obviously as a function of slurry pH. In neutral slurries, the Ru surface is covered with RuO2·2H2O/RuO3 inhomogeneous passivation films, with the highest material removal rate obtained during the CMP process. It could be concluded that the material removal mechanism largely depends on the slurry pH values. In near neutral slurries, Ru is passivated with thick and heterogeneous oxides film, which proves the easiest to be mechanically removed during polishing. The weak alkaline slurry is preferred in order to achieve desirable polishing rate as well as avoid the formation of toxic RuO4

  14. The CO{sub 2} hydrate slurry; Le coulis de glace

    Energy Technology Data Exchange (ETDEWEB)

    Sari, O.; Hu, J.; Eicher, S.; Brun, F. [Institute of Thermal Engineering, University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Sari, O.; Hu, J. [Clean Cooling Solutions, spin off of University of Applied Sciences of Western Switzerland, Yverdon-les-Bains (Switzerland); Homsy, P. [Nestec Ltd, Vevey (Switzerland); Logel, J.-C. [Axima Refrigeration, Bischheim (France)

    2007-12-15

    A new, very promising refrigerant was developed, which could be used in industrial processes as well as air conditioners: the CO{sub 2} hydrate slurry. Replacing hydrochlorofluorocarbon HCFC refrigerants has a high priority, due to the strong negative environmental impact of these fluids. New refrigerants have to be environment friendly, non-inflammable, cheap and made of natural materials. CO{sub 2} hydrate slurries and/or a mixture of ice slurry and CO{sub 2} hydrate slurry meet these requirements. The University of Applied Sciences of Western Switzerland in Yverdon, together with industrial partners, investigated the properties of such slurries. The slurries were created using the Coldeco process: the refrigerating fluid is directly injected into the liquid brine. The evaporation of the refrigerating fluid cools the liquid down to its freezing point and homogeneously distributed small crystals appear in the liquid. A test rig was built to measure the physical and chemical properties of the slurries obtained in this way. CO{sub 2} hydrate slurries have a higher energy storage capacitance (500 kJ/kg) than ice slurries (333 kJ/kg). The production of CO{sub 2} hydrate slurries in large quantities in a continuous process was demonstrated. The solid particle concentration was 10%, the pressure amounted to 30 bar and the temperature 2 to 4 {sup o}C. Such slurries can be pumped and circulated in pipe networks. Stainless steel is the appropriate material for such networks. However, the main advantage of the new refrigerant will be, according to the authors, a reduced energy consumption compared to traditional refrigerating cycles: the difference between the temperature required by the user and the refrigerant temperature is reduced, thanks to the use of the latent heat in the new process.

  15. An investigation on the rheological behavior of metallic semi-solid slurries of Al-6.5 pct Si and semi-solid composite slurries of SiC particulates in an Al-6.5 pct Si alloy matrix

    Science.gov (United States)

    Moon, H.-K.; Ito, Y.; Cornie, J. A.; Flemings, M. C.

    1993-01-01

    The rheology of SiC particulate/Al-6.5 pct Si composite slurries was explored. The rheological behavior of the composite slurries shows both thixotropic and pseudoplastic behaviors. Isostructural experiments on the composite slurries revealed a Newtonian behavior beyond a high shear rate limit. The rheology of fully molten composite slurries over the low to high shear rate range indicates the existence of a low shear rate Newtonian region, an intermediate pseudoplastic region and a high shear rate Newtonian region. The isostructural studies indicate that the viscosity of a composite slurry depends upon the shearing history of a given volume of material. An unexpected shear thinning was noted for SiC particulate + alpha slurries as compared to semi-solid metallic slurries at the same fraction solid. The implications of these findings for the processing of slurries into cast components is discussed.

  16. Catalysts for Environmental Remediation

    DEFF Research Database (Denmark)

    Abrams, B. L.; Vesborg, Peter Christian Kjærgaard

    2013-01-01

    The properties of catalysts used in environmental remediation are described here through specific examples in heterogeneous catalysis and photocatalysis. In the area of heterogeneous catalysis, selective catalytic reduction (SCR) of NOx was used as an example reaction with vanadia and tungsta on...

  17. Tight bifunctional hierarchical catalyst.

    Science.gov (United States)

    Højholt, Karen T; Vennestrøm, Peter N R; Tiruvalam, Ramchandra; Beato, Pablo

    2011-12-28

    A new concept to prepare tight bifunctional catalysts has been developed, by anchoring CoMo(6) clusters on hierarchical ZSM-5 zeolites for simultaneous use in HDS and hydrocracking catalysis. The prepared material displays a significant improved activity in HDS catalysis compared to the impregnated counterpart. PMID:22048337

  18. Hydrogen evolution reaction catalyst

    Science.gov (United States)

    Subbaraman, Ram; Stamenkovic, Vojislav; Markovic, Nenad; Tripkovic, Dusan

    2016-02-09

    Systems and methods for a hydrogen evolution reaction catalyst are provided. Electrode material includes a plurality of clusters. The electrode exhibits bifunctionality with respect to the hydrogen evolution reaction. The electrode with clusters exhibits improved performance with respect to the intrinsic material of the electrode absent the clusters.

  19. Synthesis and characterization of cement slurries additives with epoxy resins - kinetics, thermodynamic and calorimetric analysis

    International Nuclear Information System (INIS)

    Cement has been used in the world, presenting a wide versatility. However, due to its chemical nature, it is subject to several types of chemical damages, especially for agents of acidic nature. With the purpose of increase its life-time, new cement slurries have been modified with the addition of specific additives. The objective of this work is to modify cement slurries with epoxy resins, which promote higher resistance of those materials in relation to acid attacks. Three cement slurries were synthesized with epoxy resins and a standard slurries, which was composed by cement and water. After 30 days of hydration, the samples were characterized by XDR, FTIR and thermal analysis (TG and DSC). The hydration processes of the cement slurries were studied by heat-conduction microcalorimetry. A kinetic study of HCl interaction with the new slurries were performed by the batch methodology at 25, 35, 45 e 55 deg C. It was verified that the addition of the polymers delayed the processes of hydration of the slurries, decreasing the flow of heat released as a function of the amount of added resin and, increased the resistance of those slurries to the acid attack. (author)

  20. 30 CFR 77.216-4 - Water, sediment or slurry impoundments and impounding structures; reporting requirements...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment or slurry impoundments and....216-4 Water, sediment or slurry impoundments and impounding structures; reporting requirements... of the initial plan approval, the person owning, operating, or controlling a water, sediment,...

  1. 30 CFR 77.216-3 - Water, sediment, or slurry impoundments and impounding structures; inspection requirements...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment, or slurry impoundments and... COAL MINES Surface Installations § 77.216-3 Water, sediment, or slurry impoundments and impounding structures; inspection requirements; correction of hazards; program requirements. (a) All water, sediment,...

  2. 30 CFR 77.216-5 - Water, sediment or slurry impoundments and impounding structures; abandonment.

    Science.gov (United States)

    2010-07-01

    ..., sediment, or slurry impoundment and impounding structure which meets the requirements of 30 CFR 77.216(a... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment or slurry impoundments and... AND SURFACE WORK AREAS OF UNDERGROUND COAL MINES Surface Installations § 77.216-5 Water, sediment...

  3. Effect of novel alkaline copper slurry on 300 mm copper global planarization

    Science.gov (United States)

    Weijuan, Liu; Yuling, Liu; Chenwei, Wang; Guodong, Chen; Mengting, Jiang; Haobo, Yuan; Pengfei, Cheng

    2014-09-01

    The copper removal rate and uniformity of two types copper slurries were investigated, which was performed on the 300 mm chemical mechanical planarization (CMP) platform. The experiment results illustrate that the removal rate of the two slurries is nearly the same. Slurry A is mainly composed of a FA/OII type chelating agent and the uniformity reaches to 88.32%. While the uniformity of slurry B is 96.68%, which is mainly composed of a FA/OV type chelating agent. This phenomenon demonstrates that under the same process conditions, the uniformity of different slurries is vastly different. The CMP performance was evaluated in terms of the dishing and erosion values. In this paper, the relationship between the uniformity and the planarization was deeply analyzed, which is mainly based on the endpoint detection mechanism. The experiment results reveal that the slurry with good uniformity has low dishing and erosion. The slurry with bad uniformity, by contract, increases Cu dishing significantly and causes copper loss in the recessed region. Therefore, the following conclusions are drawn: slurry B can improve the wafer leveling efficiently and minimize the resistance and current density along the line, which is helpful to improve the device yield and product reliability. This investigation provides a guide to improve the uniformity and achieve the global and local planarization. It is very significant to meet the requirements for 22 nm technology nodes and control the dishing and erosion efficiently.

  4. Erosion Characteristics of Aluminum-based Metal Matrix Composites in Slurry Environments

    Institute of Scientific and Technical Information of China (English)

    Tu Jiangping

    2000-01-01

    The erosion resistance of the Al18B4O33 whisker reinforced AC4C Al composites in water and saline slurry were investigated using a jet-in-slit rig. Erosion tests were performed at slurry velocities between 6.4 m/s to 15.2 m/s and at normal impact angle. The detachment of flake and dislodgement of whisker were identified as the major mechanisms of material removal in slurry environments. The composites showed better erosion resistance due to the protection of the matrix by the whisker at low slurry velocities. Because of reduced fracture strain, the erosion rates of the composites were generally greater than that of the unreinforced alloy at high slurry velocities. Owing to interfacial reaction which resulted in decrease in hardness and fracture strain,the T6 treatment for the composites had a deleterious influence on the erosion resistance. By considering the material removal processes in the water slurry, a simple rationalization of the inverse dependence of slurry erosion rate on Hεf was obtained. In the saline slurry, there exists a strong synergistic effect between erosion and corrosion. The volume loss of the composites was enhanced through cracking of flakes and detaching of whisker induced by stress and corrosion.

  5. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    International Nuclear Information System (INIS)

    Since the Cooperative Wildlife Research Laboratory's (CWRL) Mined Land Reclamation Program's first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surface (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow (≤12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled

  6. Pig slurry characteristics, nutrient balance and biogas production as affected by separation and acidification

    DEFF Research Database (Denmark)

    Sommer, S. G.; Hjorth, M.; Leahy, J. J.;

    2015-01-01

    Animal slurry is separated in order to avoid excessive nitrogen, phosphorus and potassium (NPK) fertilization of crops in the field. To enhance fertilizer efficiency further, slurry and its separation products may be acidified, for instance in animal houses. The current study quantified the effec...

  7. Effect of novel alkaline copper slurry on 300 mm copper global planarization

    International Nuclear Information System (INIS)

    The copper removal rate and uniformity of two types copper slurries were investigated, which was performed on the 300 mm chemical mechanical planarization (CMP) platform. The experiment results illustrate that the removal rate of the two slurries is nearly the same. Slurry A is mainly composed of a FA/OII type chelating agent and the uniformity reaches to 88.32%. While the uniformity of slurry B is 96.68%, which is mainly composed of a FA/OV type chelating agent. This phenomenon demonstrates that under the same process conditions, the uniformity of different slurries is vastly different. The CMP performance was evaluated in terms of the dishing and erosion values. In this paper, the relationship between the uniformity and the planarization was deeply analyzed, which is mainly based on the endpoint detection mechanism. The experiment results reveal that the slurry with good uniformity has low dishing and erosion. The slurry with bad uniformity, by contract, increases Cu dishing significantly and causes copper loss in the recessed region. Therefore, the following conclusions are drawn: slurry B can improve the wafer leveling efficiently and minimize the resistance and current density along the line, which is helpful to improve the device yield and product reliability. This investigation provides a guide to improve the uniformity and achieve the global and local planarization. It is very significant to meet the requirements for 22 nm technology nodes and control the dishing and erosion efficiently. (semiconductor technology)

  8. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    Science.gov (United States)

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  9. Metals attenuation in minerally-enhanced slurry walls

    Energy Technology Data Exchange (ETDEWEB)

    Evans, J.C.; Prince, M.J. [Bucknell Univ., Lewisburg, PA (United States); Adams, T.L. [Woodward-Clyde Consultants, Blue Bell, PA (United States)

    1997-12-31

    In current practice, a soil-bentonite slurry trench cutoff wall is a mixture of water, soil, and bentonite that is designed to serve as a passive barrier to ground water and contaminant transport. This study evaluated the transformation of a passive slurry trench cutoff wall barrier to an active barrier system. Conventional soil-bentonite vertical barriers presently serve as passive barriers to contaminated ground water. An active barrier will not only fulfill the functions of the present passive barrier system, but also retard contaminant transport by adsorptive processes. Attapulgite, Na-chabazite, and Ca-chabazite were added to {open_quotes}activate{close_quotes} the conventional soil-bentonite backfill. Batch extraction tests were performed to determine the partitioning coefficients of cadmium and zinc between the liquid and solid phase when in contact with the backfill mixes. Batch extraction and mathematical modeling results demonstrate the ability of an active barrier to retard the transport of cadmium and zinc. The reactivity of the soil-bentonite vertical barrier depends heavily on the inorganic being adsorbed. The reactivity of the barrier also depends on the adsorptive capabilities of the clay minerals added to the conventional soil-bentonite vertical barrier. The results of laboratory studies suggest that passive barrier systems can be transformed to active systems. Further, the data suggests that although conventional soil-bentonite vertical barriers are presently designed as passive barriers, they already have adsorptive capacity associated with active barriers.

  10. MECHANICAL BEHAVIOUR OF ALUMINA-ZIRCONIA COMPOSITE BY SLURRY METHOD

    Directory of Open Access Journals (Sweden)

    JYOTI PRAKASH

    2011-02-01

    Full Text Available Alumina has got some excellent properties like chemical inertness, thermal and mechanical strength against hazardous environment. Alumina is a good ceramic material which is being used for structuralapplications. To enhance the toughness and strength of the body some Zirconia is also used with it. The use of Zirconia in alumina is known as toughening of alumina. One difficulty arises, when alumina and alumina toughened composite are sintered , because the low sinterability of Alumina-Zirconia forced the compact to give very low density body. To overcome this problem alumina and alumina composites are made from slurry method which gives nearly theoretical density. The combined effect of alumina and Zirconia on the phase transformation and microstructure development of heat-treated Alumina-Zirconia composites has been studied. Slurry is prepared by adding water, dispersant, binder and anti-foaming agent. In the present study, Sintering schedule is optimized and kept constant for all samples. After sintering, mechanical behaviour of the composite has been studied.

  11. Effect of chemical additives on flow characteristics of coal slurries

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Mosa; A.-H. M. Saleh; T.A. Taha; A.M. El-Molla [Al-Azhar University, Cairo (Egypt). Mining & Petroleum Engineering Department

    2008-07-01

    In the present paper, the effect of chemical additives or reagents on rheological characteristics of coal water slurry (CWS) was investigated. The power-law model was applied to determine the non-Newtonian properties of coal slurries. Three types of dispersants namely, sulphonic acid, sodium tripolyphosphate and sodium carbonate were studied and tested at different concentrations ranging from 0.5 to 1.5% by weight from total solids. Sodium salt of carboxymethyl cellulose (Na-CMC) and xanthan gum were tested as stabilizers at concentrations in the range of 0.05 to 0.25% by weight from total solids. It was found that apparent viscosity and flow properties of CWS are sensitive to the use of chemical additives (dispersants and stabilizers). Among studied dispersing agents, sulphonic acid recorded the best performance in modification and reducing CWS viscosity. The best dosage of all tested dispersants was found to be 0.75% by wt of solids. With regard to studied stabilizers, Na-CMC recorded better performance than xanthan gum. The best dosage of investigated stabilizers was found to be as 0.1 % by wt. from total solids. 13 refs., 9 figs., 1 tab.

  12. Phenanthrene Contaminated Soil Biotreatment Using Slurry Phase Bioreactor

    Directory of Open Access Journals (Sweden)

    M. Arbabi

    2009-01-01

    Full Text Available Problem Statement: Polycyclic Aromatic Hydrocarbons (PAHs are suspected toxins that accumulate in soils and sediments due to their insolubility in water and lack of volatility. Slurry-phase biological treatment is one of the innovative technologies that involve the controlled treatment of excavated soil in a bioreactor. Due to highly soil contamination from petroleum compounds in crude oil extraction and also oil refinery sites in Iran, this research was designed based on slurry phase biotreatment to find out a solution to decontamination of oil compounds polluted sites. Approach: Soil samples were collected from Tehran oil refinery site and Bushehr oil zones. Two compositions of soils (clay and silt were selected for slurry biotreatment experiment. Soil samples were contaminated with three rates of phenanthrene (a 3 ring PAH, 100, 500 and 1000 mg kg-1 and mixed with distilled water in solid concentration of 30% by weight after washing out with strong solvent (hexane and putting in to the oven. Bacterial consortium was revived in culture medium which consisted of Mineral Salt Medium (MSM based on phenanthrene concentrations and ratio of C/N/P in the range of 100/10/2. Prepared soil samples were mixed with distilled water, nutrient and bacterial consortium together in the 250 mL glass Erlenmeyer and putted in the shaker incubator with 200 rpm revolutions and 25°C for 7 weeks (45 days. Samples were analyzed for residual phenanthrene, bacterial population every week. For statistical analysis, general linear model with repeated measures (type III analysis was applied. Results: The concentration of 100 mg Ll of phenanthrene in clayey and silty soils reached to non detectable limit after 5 and 6 weeks, respectively. While concentration of 500 mg L-1 of phenanthrene both in clayey and silty soils reached to non detectable limit after 6 weeks. But concentration of 1000 mg L-1both in clayey and silty soil samples has not met this limitation after 7

  13. Escherichia coli Contamination of Lettuce Grown in Soils Amended with Animal Slurry

    DEFF Research Database (Denmark)

    Jensen, Annette Nygaard; Storm, Christina; Forslund, A.;

    2013-01-01

    A pilot study was conducted to assess the transfer of Escherichia coli from animal slurry fertilizer to lettuce, with E. coli serving as an indicator of fecal contamination and as an indicator for potential bacterial enteric pathogens. Animal slurry was applied as fertilizer to three Danish...... agricultural fields prior to the planting of lettuce seedlings. At harvest, leaves (25 g) of 10 lettuce heads were pooled into one sample unit (n = 147). Soil samples (100 g) were collected from one field before slurry application and four times during the growth period (n = 75). E. coli was enumerated in...... slurry, soil, and lettuce on 3M Petrifilm Select E. coli Count Plates containing 16 mg/liter streptomycin, 16 mg/liter ampicillin, or no antimicrobial agent. Selected E. coli isolates (n = 83) originating from the slurry, soil, and lettuce were genotyped by pulsed-field gel electrophoresis (PFGE) to...

  14. Emissions of sulfur-containing odorants, ammonia, and methane from pig slurry

    DEFF Research Database (Denmark)

    Eriksen, Jørgen; Adamsen, Anders Peter S.; Nørgaard, Jan Værum;

    2010-01-01

    from the slurry of the control treatment, which came from pigs fed according to Danish recommendations for amino acids and minerals. The emission patterns of volatile S compounds suggested an intense cycling between pools of organic S in the slurries, with urinary sulfate as the main source. Diet......Supplementation of benzoic acid to pig diets reduces the pH of urine and may thereby affect emissions of ammonia and other gases from slurry, including sulfur-containing compounds that are expected to play a role in odor emission. Over a period of 112 d, we investigated hydrogen sulfide (H2S......), methanethiol (MT), dimethyl sulfide (DMS), dimethyl disulfide (DMDS), and dimethyl trisulfide (DMTS), as well as ammonia and methane emissions from stored pig slurry. The slurry was derived from a feeding experiment with four pig diets in a factorial design with 2% (w/w) benzoic acid and 1% (w/w) methionine...

  15. Promoted slurryability of petroleum coke-water slurry by using black liquor as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Zhan, Xiuli; Zhou, Zhijie; Wang, Fuchen [Key Laboratory of Coal Gasification of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Kang, Wanzhong [School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2010-10-15

    The purpose of this paper is to prepare the petroleum coke-water slurry with a maximal coke mass fraction and the superior slurry natures using black liquor as an additive. The variations of rheological properties, contact angle, fluidity, stability and zeta potential of the coke-water slurry with different black liquor dosages were investigated. It was observed that the addition of a black liquor dosage around 1.0 wt.% of the petroleum coke remarkably improved the rheological properties, fluidity and stability of the slurry, and the slurry could hold a mass of petroleum coke as high as 70 wt.%, with the superior apparent viscosity, fluidity and stability available for practical utilization. (author)

  16. Coating system of hydrogen storage alloy powder slurry; Suiso kyuzo gokin funmatsu surari no tofu sochi

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, J.

    1995-03-31

    As the hydrogen storage alloy powder slurry has a high density and a high viscosity, it is necessary to apply a considerably high tension to the current collector sheet when the current collector sheet is continuously coated with the hydrogen storage alloy powder slurry. This invention provides a method of continuously coating the hydrogen storage alloy powder slurry on the running current collector sheet. In order to keep the viscosity of alloy powder slurry constant and to reduce the tension to be applied to the sheet during coating, a stirring jig is installed facing to the front surface and back surface of the current collector sheet and rotating in the sheet running direction and in the opposite direction. In this way, the thixotropic structure of the hydrogen storage alloy powder slurry is constantly broken, so that a gradual increase in viscosity does not take place. Resultingly, the homogeneous hydrogen storage alloy electrode can be continuously produced. 6 figs.

  17. Technical Report on NETL's Non Newtonian Multiphase Slurry Workshop: A path forward to understanding non-Newtonian multiphase slurry flows

    Energy Technology Data Exchange (ETDEWEB)

    Edited by Guenther, Chris; Garg, Rahul

    2013-08-19

    The Department of Energy’s (DOE) National Energy Technology Laboratory (NETL) sponsored a workshop on non-Newtonian multiphase slurry at NETL’s Morgantown campus August 19 and 20, 2013. The objective of this special two-day meeting of 20-30 invited experts from industry, National Labs and academia was to identify and address technical issues associated with handling non-Newtonian multiphase slurries across various facilities managed by DOE. Particular emphasis during this workshop was placed on applications managed by the Office of Environmental Management (EM). The workshop was preceded by two webinars wherein personnel from ORP and NETL provided background information on the Hanford WTP project and discussed the critical design challenges facing this project. In non-Newtonian fluids, viscosity is not constant and exhibits a complex dependence on applied shear stress or deformation. Many applications under EM’s tank farm mission involve non-Newtonian slurries that are multiphase in nature; tank farm storage and handling, slurry transport, and mixing all involve multiphase flow dynamics, which require an improved understanding of the mechanisms responsible for rheological changes in non-Newtonian multiphase slurries (NNMS). To discuss the issues in predicting the behavior of NNMS, the workshop focused on two topic areas: (1) State-of-the-art in non-Newtonian Multiphase Slurry Flow, and (2) Scaling up with Confidence and Ensuring Safe and Reliable Long-Term Operation.

  18. Characterization of Flow Behavior of Semi-Solid Slurries with Low Solid Fractions

    Science.gov (United States)

    Chucheep, Thiensak; Wannasin, Jessada; Canyook, Rungsinee; Rattanochaikul, Tanate; Janudom, Somjai; Wisutmethangoon, Sirikul; Flemings, Merton C.

    2013-10-01

    Semi-solid slurry casting is a metal-forming process that involves transforming liquid metal into slurry having a low solid fraction and then forming the slurry into solid parts. To successfully apply this slurry-forming process, it is necessary to fully understand the flow behavior of semi-solid slurries. This present work applied the rapid quenching method and the modified gravity fluidity casting to investigate the flow behavior, which involves characterizations of the initial solid fraction, fluidity, and microstructure of semi-solid slurries. Three commercial aluminum alloys were used in this study: 383 (Al-Si11Cu), 356 (Al-Si7MgFe), and 7075 (Al-Zn6MgCu) alloys. The results show that the initial solid fractions can be controlled by varying the rheocasting time. The rapid quenching mold can be used to determine the initial solid fractions. In this method, it is important to apply the correcting procedure to account for growth during quenching and to include all the solid phases. Results from the fluidity study of semi-solid slurries show that the fluidity decreases as the initial solid fraction increases. The decrease is relatively rapid near the low end of the initial solid fraction curves, but is quite slow near the high end of the curves. All the three alloys follow this trend. The results also demonstrate that the slurries that contain high solid fractions of up to 30 pct can still flow well. The microstructure characterization results show that the solid particles in the slurries flow uniformly in the channel. A uniform and fine microstructure with limited phase segregation is observed in the slurry cast samples.

  19. Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts

    Institute of Scientific and Technical Information of China (English)

    JIANG Hong; MENG Lie; CHEN Rizhi; JIN Wanqin; XING Weihong; XU Nanping

    2013-01-01

    Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes,but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry.A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis.This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis,which covers classification of configurations of porous ceramic membrane reactor,major considerations and some important industrial applications.A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design,optimization of ceramic membrane reactor performance and membrane fouling mechanism.Finally,brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined.

  20. 30 CFR 77.216-2 - Water, sediment, or slurry impoundments and impounding structures; minimum plan requirements...

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water, sediment, or slurry impoundments and... COAL MINES Surface Installations § 77.216-2 Water, sediment, or slurry impoundments and impounding... under design storm conditions, sediment or slurry level, water level and other information pertinent...