WorldWideScience

Sample records for belowground ectomycorrhizal fungal

  1. Belowground ectomycorrhizal fungal communities respond to liming in three southern Swedish coniferous forest stands

    DEFF Research Database (Denmark)

    Kjøller, Rasmus; Clemmensen, Karina

    2009-01-01

    In this study we report on changes in the belowground ectomycorrhizal fungal communities in southern Swedish coniferous forests as a consequence of liming with 3-7 ton limestone per hectare 16 years prior to the study. A total of 107 ectomycorrhizal fungi were identified from 969 independently...

  2. Diversity and spatial structure of belowground plant-fungal symbiosis in a mixed subtropical forest of ectomycorrhizal and arbuscular mycorrhizal plants.

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S

    2014-01-01

    Plant-mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant-fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant-fungal symbiosis in subtropical forests is complex in that it includes "non-typical" plant-fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in that

  3. Diversity and Spatial Structure of Belowground Plant–Fungal Symbiosis in a Mixed Subtropical Forest of Ectomycorrhizal and Arbuscular Mycorrhizal Plants

    Science.gov (United States)

    Toju, Hirokazu; Sato, Hirotoshi; Tanabe, Akifumi S.

    2014-01-01

    Plant–mycorrhizal fungal interactions are ubiquitous in forest ecosystems. While ectomycorrhizal plants and their fungi generally dominate temperate forests, arbuscular mycorrhizal symbiosis is common in the tropics. In subtropical regions, however, ectomycorrhizal and arbuscular mycorrhizal plants co-occur at comparable abundances in single forests, presumably generating complex community structures of root-associated fungi. To reveal root-associated fungal community structure in a mixed forest of ectomycorrhizal and arbuscular mycorrhizal plants, we conducted a massively-parallel pyrosequencing analysis, targeting fungi in the roots of 36 plant species that co-occur in a subtropical forest. In total, 580 fungal operational taxonomic units were detected, of which 132 and 58 were probably ectomycorrhizal and arbuscular mycorrhizal, respectively. As expected, the composition of fungal symbionts differed between fagaceous (ectomycorrhizal) and non-fagaceous (possibly arbuscular mycorrhizal) plants. However, non-fagaceous plants were associated with not only arbuscular mycorrhizal fungi but also several clades of ectomycorrhizal (e.g., Russula) and root-endophytic ascomycete fungi. Many of the ectomycorrhizal and root-endophytic fungi were detected from both fagaceous and non-fagaceous plants in the community. Interestingly, ectomycorrhizal and arbuscular mycorrhizal fungi were concurrently detected from tiny root fragments of non-fagaceous plants. The plant–fungal associations in the forest were spatially structured, and non-fagaceous plant roots hosted ectomycorrhizal fungi more often in the proximity of ectomycorrhizal plant roots. Overall, this study suggests that belowground plant–fungal symbiosis in subtropical forests is complex in that it includes “non-typical” plant–fungal combinations (e.g., ectomycorrhizal fungi on possibly arbuscular mycorrhizal plants) that do not fall within the conventional classification of mycorrhizal symbioses, and in

  4. Vertical distribution of ectomycorrhizal fungal taxa in a podzol profile

    NARCIS (Netherlands)

    Rosling, A.; Landeweert, R.; Lindahl, B.D.; Larsson, K.H.; Kuyper, T.W.; Taylor, A.F.S.; Finlay, R.F.

    2003-01-01

    Studies of ectomycorrhizal fungal communities in forest soils are usually restricted to the uppermost organic horizons. Boreal forest podzols are highly stratified and little is known about the vertical distribution of ectomycorrhizal communities in the underlying mineral horizons. Ectomycorrhizal r

  5. Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems I Above-ground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vries, de F.W.; Kuyper, T.W.

    2000-01-01

    The diversity of ectomycorrhizal (EcM) communities in 16 stands of Salix repens L. growing under a variety of environmental conditions was studied by repeated sampling of EcM sporocarps and ectomycorrhizas, to assess the possible correspondence between above- and below-ground views of fungal taxa. A

  6. Ectomycorrhizal fungal diversity: seperating the wheat from the chaff

    NARCIS (Netherlands)

    Rinaldi, A.C.; Comandini, O.; Kuyper, T.W.

    2008-01-01

    Thousands of ectomycorrhizal (ECM) fungal species exist, but estimates of global species richness of ECM fungi differ widely. Many genera have been proposed as being ECM, but ill a number of studies evidence for the hypothesized ECM habit is lacking. Progress in estimating ECM species richness is th

  7. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Science.gov (United States)

    C. Phillips; L.A. Kluber; J.P. Martin; B.A. Caldwell; B.J. Bond

    2012-01-01

    Distinct aggregations of fungal hyphae and rhizomorphs, or “mats”, formed by some genera of ectomycorrhizal (EcM) fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in western Oregon to investigate whether there was...

  8. Ectomycorrhizal fungal richness declines towards the host species' range edge.

    Science.gov (United States)

    Lankau, Richard A; Keymer, Daniel P

    2016-07-01

    Plant range boundaries are generally considered to reflect abiotic conditions; however, a rise in negative or decline in positive species interactions at range margins may contribute to these stable boundaries. While evidence suggests that pollinator mutualisms may decline near range boundaries, little is known about other important plant mutualisms, including microbial root symbionts. Here, we used molecular methods to characterize root-associated fungal communities in populations of two related temperate tree species from across the species' range in the eastern United States. We found that ectomycorrhizal fungal richness on plant roots declined with distance from the centre of the host species range. These patterns were not evident in nonmycorrhizal fungal communities on roots nor in fungal communities in bulk soil. Climatic and soil chemical variables could not explain these biogeographic patterns, although these abiotic gradients affected other components of the bulk soil and rhizosphere fungal community. Depauperate ectomycorrhizal fungal communities may represent an underappreciated challenge to marginal tree populations, especially as rapid climate change pushes these populations outside their current climate niche.

  9. Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, C.A.; Theimer, T.C.; Whitham, T.G.; Keim, P. [Northern Arizona Univ., Flagstaff, AZ (United States). Dept. of Biological Sciences

    1998-07-01

    The authors used molecular techniques to examine the ectomycorrhizal fungal community associated with pinyon pine (Pinus edulis) growing in two soil types in a semiarid region of northern Arizona. Pinyon performance (e.g., growth, reproduction, water stress) has been shown to be markedly lower in cinder than in sandy-loam environments. Fungal community composition and richness were determined using RFLP (restriction fragment length polymorphism) analysis of ectomycorrhizal root tips collected from three sites within each soil type. Several patterns emerged from these analyses. First, communities in both cinder and sandy-loam soils were dominated by one or a few abundant ectomytcorrhizal types, a species abundance pattern common to many plant and animal communities. Second, unlike the pattern for many other organisms, ectomycorrhizal fungal type richness was not correlated with measures of ecosystem productivity such as soil nutrient and moisture levels; cinder and sandy-loam soils had similar numbers of ectomycorrhizal fungal types. Third, soil type and fungal community composition were linked, as cluster analysis demonstrated greater similarity of fungal communities from sites within soil types than between them. Fourth, a preliminary survey of 14--45 ectomycorrhizal root tips from each of 20 trees at one cinder site indicated that trees were dominated by one or a few ectomycorrhizal RFLP types. Fifth, the RFLP patterns of some fungal sporocarps matched those of ectomycorrhizal root tips, but many did not, indicating that many of the ectomycorrhizal fungi at these sites fruit infrequently, whereas other fungi with more abundant sporocarps may not form ectomycorrhiza.

  10. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities.

    Science.gov (United States)

    Lian, Chunlan; Narimatsu, Maki; Nara, Kazuhide; Hogetsu, Taizo

    2006-01-01

    Tricholoma matsutake (matsutake) is an ectomycorrhizal (ECM) fungus that produces economically important mushrooms in Japan. Here, we use microsatellite markers to identify genets of matsutake sporocarps and below-ground ECM tips, as well as associated host genotypes of Pinus densiflora. We also studied ECM fungal community structure inside, beneath and outside the matsutake fairy rings, using morphological and internal transcribed spacer (ITS) polymorphism analysis. Based on sporocarp samples, one to four genets were found within each fairy ring, and no genetic differentiation among six sites was detected. Matsutake ECM tips were only found beneath fairy rings and corresponded with the genotypes of the above-ground sporocarps. We detected nine below-ground matsutake genets, all of which colonized multiple pine trees (three to seven trees per genet). The ECM fungal community beneath fairy rings was species-poor and significantly differed from those inside and outside the fairy rings. We conclude that matsutake genets occasionally establish from basidiospores and expand on the root systems of multiple host trees. Although matsutake mycelia suppress other ECM fungi during expansion, most of them may recover after the passage of the fairy rings.

  11. Untangling above- and belowground mycorrhizal fungal networks in tropical orchids.

    Science.gov (United States)

    Leake, J R; Cameron, D D

    2012-10-01

    Orchids typically depend on fungi for establishment from seeds, forming mycorrhizal associations with basidiomycete fungal partners in the polyphyletic group rhizoctonia from early stages of germination, sometimes with very high specificity. This has raised important questions about the roles of plant and fungal phylogenetics, and their habitat preferences, in controlling which fungi associate with which plants. In this issue of Molecular Ecology, Martos et al. (2012) report the largest network analysis to date for orchids and their mycorrhizal fungi, sampling a total of over 450 plants from nearly half the 150 tropical orchid species on Reunion Island, encompassing its main terrestrial and epiphytic orchid genera. The authors found a total of 95 operational taxonomic units of mycorrhizal fungi and investigated the architecture and nestedness of their bipartite networks with 73 orchid species. The most striking finding was a major ecological barrier between above- and belowground mycorrhizal fungal networks, despite both epiphytic and terrestrial orchids often associating with closely related taxa across all three major lineages of rhizoctonia fungi. The fungal partnerships of the epiphytes and terrestrial species involved a diversity of fungal taxa in a modular network architecture, with only about one in ten mycorrhizal fungi partnering orchids in both groups. In contrast, plant and fungal phylogenetics had weak or no effects on the network. This highlights the power of recently developed ecological network analyses to give new insights into controls on plant-fungal symbioses and raises exciting new hypotheses about the differences in properties and functioning of mycorrhiza in epiphytic and terrestrial orchids.

  12. Long-term increase in snow depth leads to compositional changes in arctic ectomycorrhizal fungal communities.

    Science.gov (United States)

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2016-09-01

    Many arctic ecological processes are regulated by soil temperature that is tightly interconnected with snow cover distribution and persistence. Recently, various climate-induced changes have been observed in arctic tundra ecosystems, e.g. shrub expansion, resulting in reduction in albedo and greater C fixation in aboveground vegetation as well as increased rates of soil C mobilization by microbes. Importantly, the net effects of these shifts are unknown, in part because our understanding of belowground processes is limited. Here, we focus on the effects of increased snow depth, and as a consequence, increased winter soil temperature on ectomycorrhizal (ECM) fungal communities in dry and moist tundra. We analyzed deep DNA sequence data from soil samples taken at a long-term snow fence experiment in Northern Alaska. Our results indicate that, in contrast with previously observed responses of plants to increased snow depth at the same experimental site, the ECM fungal community of the dry tundra was more affected by deeper snow than the moist tundra community. In the dry tundra, both community richness and composition were significantly altered while in the moist tundra, only community composition changed significantly while richness did not. We observed a decrease in richness of Tomentella, Inocybe and other taxa adapted to scavenge the soil for labile N forms. On the other hand, richness of Cortinarius, and species with the ability to scavenge the soil for recalcitrant N forms, did not change. We further link ECM fungal traits with C soil pools. If future warmer atmospheric conditions lead to greater winter snow fall, changes in the ECM fungal community will likely influence C emissions and C fixation through altering N plant availability, fungal biomass and soil-plant C-N dynamics, ultimately determining important future interactions between the tundra biosphere and atmosphere.

  13. Diversity of an ectomycorrhizal fungal community studied by a root tip and total soil DNA approach

    NARCIS (Netherlands)

    Landeweert, R.; Leeflang, P.; Smit, E.; Kuyper, T.W.

    2005-01-01

    Molecular methods based on soil DNA extracts are increasingly being used to study the fungal diversity of ectomycorrhizal (EM) fungal communities in soil. Contrary to EM root tip identification, the use of molecular methods enables identification of extramatrical mycelia in soil. To compare fungal d

  14. Contributions of ectomycorrhizal fungal mats to forest soil respiration

    Directory of Open Access Journals (Sweden)

    C. L. Phillips

    2012-02-01

    Full Text Available Distinct aggregations of fungal hyphae and rhizomorphs, or "mats" formed by some genera of ectomycorrhizal (EcM fungi are common features of soils in coniferous forests of the Pacific Northwest. We measured in situ respiration rates of Piloderma mats and neighboring non-mat soils in an old-growth Douglas-fir forest in Western Oregon to investigate whether there was an incremental increase in respiration from mat soils, and to estimate mat contributions to total soil respiration. We found that areas where Piloderma mats colonized the organic horizon often had higher soil surface flux than non-mats, with the incremental increase in respiration averaging 16 % across two growing seasons. Both soil physical factors and biochemistry were related to the higher surface flux of mat soils. When air-filled pore space was low (high soil moisture, soil CO2 production was concentrated into near-surface soil horizons where mats tend to colonize, resulting in greater apparent differences in respiration between mat and non-mat soils. Respiration rates were also correlated with the activity of chitin-degrading soil enzymes. This suggests that the elevated activity of fungal mats may be related to consumption or turnover of chitinous fungal cell-wall materials. We found Piloderma mats present across 57 % of the soil surface in the study area, and use this value to estimate a respiratory contribution from mats at the stand-scale of about 9 % of total soil respiration. The activity of EcM mats, which includes both EcM fungi and microbial associates, was estimated to constitute a substantial portion of total soil respiration in this old-growth Douglas-fir forest.

  15. Ectomycorrhizal fungal communities of Coccoloba uvifera (L.) L. mature trees and seedlings in the neotropical coastal forests of Guadeloupe (Lesser Antilles).

    Science.gov (United States)

    Séne, Seynabou; Avril, Raymond; Chaintreuil, Clémence; Geoffroy, Alexandre; Ndiaye, Cheikh; Diédhiou, Abdala Gamby; Sadio, Oumar; Courtecuisse, Régis; Sylla, Samba Ndao; Selosse, Marc-André; Bâ, Amadou

    2015-10-01

    We studied belowground and aboveground diversity and distribution of ectomycorrhizal (EM) fungal species colonizing Coccoloba uvifera (L.) L. (seagrape) mature trees and seedlings naturally regenerating in four littoral forests of the Guadeloupe island (Lesser Antilles). We collected 546 sporocarps, 49 sclerotia, and morphotyped 26,722 root tips from mature trees and seedlings. Seven EM fungal species only were recovered among sporocarps (Cantharellus cinnabarinus, Amanita arenicola, Russula cremeolilacina, Inocybe littoralis, Inocybe xerophytica, Melanogaster sp., and Scleroderma bermudense) and one EM fungal species from sclerotia (Cenococcum geophilum). After internal transcribed spacer (ITS) sequencing, the EM root tips fell into 15 EM fungal taxa including 14 basidiomycetes and 1 ascomycete identified. Sporocarp survey only weakly reflected belowground assessment of the EM fungal community, although 5 fruiting species were found on roots. Seagrape seedlings and mature trees had very similar communities of EM fungi, dominated by S. bermudense, R. cremeolilacina, and two Thelephoraceae: shared species represented 93 % of the taxonomic EM fungal diversity and 74 % of the sampled EM root tips. Furthermore, some significant differences were observed between the frequencies of EM fungal taxa on mature trees and seedlings. The EM fungal community composition also varied between the four investigated sites. We discuss the reasons for such a species-poor community and the possible role of common mycorrhizal networks linking seagrape seedlings and mature trees in regeneration of coastal forests.

  16. Ectomycorrhizal fungal mycelia turnover in a longleaf pine forest.

    Science.gov (United States)

    Hendricks, Joseph J; Mitchell, Robert J; Kuehn, Kevin A; Pecot, Stephen D

    2016-03-01

    Elucidation of the patterns and controls of carbon (C) flow and nitrogen (N) cycling in forests has been hindered by a poor understanding of ectomycorrhizal fungal mycelia (EFM) dynamics. In this study, EFM standing biomass (based on soil ergosterol concentrations), production (based on ergosterol accrual in ingrowth cores), and turnover rate (the quotient of annual production and average standing biomass estimates) were assessed in a 25-yr-old longleaf pine (Pinus palustris) plantation where C flow was manipulated by foliar scorching and N fertilization for 5 yr before study initiation. In the controls, EFM standing biomass was 30 ± 7 g m(-2) , production was 279 ± 63 g m(-2)  yr(-1) , and turnover rate was 10 ± 3 times yr(-1) . The scorched × fertilized treatment had significantly higher EFM standing biomass (38 ± 8 g m(-2) ), significantly lower production (205 ± 28 g m(-2)  yr(-1) ), and a trend of decreased turnover rate (6 ± 1 times yr(-1) ). The EFM turnover estimates, which are among the first reported for natural systems, indicate that EFM are a dynamic component of ecosystems, and that conventional assessments have probably underestimated the role of EFM in C flow and nutrient cycling.

  17. The effect of fertilization on the below-ground diversity and community composition of ectomycorrhizal fungi associated with western hemlock (Tsuga heterophylla).

    Science.gov (United States)

    Wright, Shannon H A; Berch, Shannon M; Berbee, Mary L

    2009-04-01

    Fertilization typically reduces ectomycorrhizal diversity shortly after its application but less is known about its longer-term influence on fungal species. Long-term effects are important in forests where fertilizer is rarely applied. We compared fungal species composition in western hemlock control plots with plots last fertilized 7 years ago with nitrogen (N) or nitrogen plus phosphorus (N + P). The N + P fertilization had a significant lingering effect, increasing the tree size and foliar P content of the western hemlocks. From ectomycorrhizal roots of 24-year-old trees from northern Vancouver Island, Canada, we identified fungi from 12 samples per treatment, by amplifying, cloning, and sequencing fungal ribosomal DNA fragments, placing sequences with 97% or more identity in the same operational taxonomic unit (OTU). Diversity was high across treatments; we detected 77 fungal OTUs, 52 from ectomycorrhizal genera, among 922 clone sequences. The five most frequent OTUs were similar in abundance across treatments. Only 19 OTUs matched any of the 197 previously reported ectomycorrhizal species of western hemlock. Species composition but not diversity in nitrogen plus phosphorus plots differed significantly from control or nitrogen plots. Two Cortinarius OTUs were indicator species for nitrogen plus phosphorus plots and presence of Cortinarius cinnamomeus was correlated with control or nitrogen plots. After 7 years, fertilization history had made no detectable difference in ectomycorrhizal fungal diversity, but long-lasting changes in environment resulting from fertilization had a lingering effect on fungal ectomycorrhizal species composition.

  18. Ectomycorrhizal fungal communities associated with Masson pine (Pinus massoniana Lamb.) in Pb-Zn mine sites of central south China.

    Science.gov (United States)

    Huang, Jian; Nara, Kazuhide; Lian, Chunlan; Zong, Kun; Peng, Kejian; Xue, Shengguo; Shen, Zhenguo

    2012-11-01

    To advance our understanding of ectomycorrhizal fungal communities in mining areas, the diversity and composition of ectomycorrhizal fungi associated with Masson pine (Pinus massoniana Lamb.) and soil chemistry were investigated in Taolin lead-zinc (Pb-Zn) mine tailings (TLT), two fragmented forest patches in a Huayuan Pb-Zn mineland (HY1 and HY2), and a non-polluted forest in Taolin in central south China. Ectomycorrhizal fungal species were identified by morphotyping and sequence analyses of the internally transcribed spacer regions of ribosomal DNA. The two study sites in the Huayuan mineland (HY1 and HY2) were significantly different in soil Pb, Zn, and cadmium (Cd) concentrations, but no significant difference was observed in ectomycorrhizal colonization, ectomycorrhizal fungal richness, diversity, or rank-abundance. In addition, the similarity of ectomycorrhizal fungal communities between HY1 and HY2 was quite high (Sørensen similarity index = 0.47). Thus, the concentration of heavy metals may not be determining factors in the structure of these communities. In the tailings, however, significantly lower ectomycorrhizal colonization and ectomycorrhizal fungal richness were observed. The amounts of Pb and Zn in the tailing sand were higher than the non-polluted forest but far lower than in HY1. Thus, these heavy metals did not account for the reduced colonization and ectomycorrhizal fungal richness in TLT. The ectomycorrhizal fungal community in TLT was dominated by four pioneer species (Rhizopogon buenoi, Tomentella ellisii, Inocybe curvipes, and Suillus granulatus), which collectively accounted for 93.2 % of root tip colonization. The immature soil conditions in tailing (low N and P, sand texture, and lack of organic matter) may only allow certain pioneer ectomycorrhizal fungal species to colonize the site. When soil samples from four sites were combined, we found that the occurrences of major ectomycorrhizal fungal taxa were not clearly related to the

  19. Phylogenetic structure of ectomycorrhizal fungal communities of western hemlock changes with forest age and stand type.

    Science.gov (United States)

    Lim, SeaRa; Berbee, Mary L

    2013-08-01

    On Vancouver Island, British Columbia, fertilization with nitrogen (N) and phosphorus (P) following clearcutting increases growth of western hemlock. To explore whether fertilization also resulted in ectomycorrhizal fungal communities that were more or less similar to neighboring unlogged stands, we sampled roots from western hemlock from three replicate plots from each of five different, well-characterized, forest stand types that differed in site type, and in logging and fertilization history. We harvested four samples of 100 ectomycorrhizal root tips from each plot, a total of 60 samples per stand type. From each sample, we analyzed fungal ribosomal internal transcribed spacers and 28S DNA, sequencing 15-29 clones per sample and 60-116 clones per plot. We detected 147 fungal operational taxonomic units among a total of 1435 sequences. Craterellus tubaeformis was frequently present and resulted in a pattern of phylogenetic overdispersion in the fungal communities. Fungal species composition was strongly correlated with foliar nitrogen concentration. However, other site quality factors were also important because the fertilized regenerating hemlock and mature hemlock-amabilis fir forests had similar foliar nitrogen content but little overlap in fungal species. Compared with unfertilized regenerating forests, fungal communities in N + P-fertilized regenerating forests had significantly more species overlap with old growth forests. However, the fungal communities of all regenerating forest were similar to one another and all differed significantly from older forests. By correlating fungal clades with habitats, this research improves understanding of how forest management can contribute to maintaining diverse ectomycorrhizal fungal communities across a landscape.

  20. Change in soil fungal community structure driven by a decline in ectomycorrhizal fungi following a mountain pine beetle (Dendroctonus ponderosae) outbreak.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Taylor, D Lee; Cigan, Paul W; Erbilgin, Nadir; Cooke, Janice E K; Simard, Suzanne W; Cahill, James F

    2017-01-01

    Western North American landscapes are rapidly being transformed by forest die-off caused by mountain pine beetle (Dendroctonus ponderosae), with implications for plant and soil communities. The mechanisms that drive changes in soil community structure, particularly for the highly prevalent ectomycorrhizal fungi in pine forests, are complex and intertwined. Critical to enhancing understanding will be disentangling the relative importance of host tree mortality from changes in soil chemistry following tree death. Here, we used a recent bark beetle outbreak in lodgepole pine (Pinus contorta) forests of western Canada to test whether the effects of tree mortality altered the richness and composition of belowground fungal communities, including ectomycorrhizal and saprotrophic fungi. We also determined the effects of environmental factors (i.e. soil nutrients, moisture, and phenolics) and geographical distance, both of which can influence the richness and composition of soil fungi. The richness of both groups of soil fungi declined and the overall composition was altered by beetle-induced tree mortality. Soil nutrients, soil phenolics and geographical distance influenced the community structure of soil fungi; however, the relative importance of these factors differed between ectomycorrhizal and saprotrophic fungi. The independent effects of tree mortality, soil phenolics and geographical distance influenced the community composition of ectomycorrhizal fungi, while the community composition of saprotrophic fungi was weakly but significantly correlated with the geographical distance of plots. Taken together, our results indicate that both deterministic and stochastic processes structure soil fungal communities following landscape-scale insect outbreaks and reflect the independent roles tree mortality, soil chemistry and geographical distance play in regulating the community composition of soil fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  1. Development and validation of an oligonucleotide microarray to characterise ectomycorrhizal fungal communities

    Directory of Open Access Journals (Sweden)

    Reich Marlis

    2009-01-01

    Full Text Available Abstract Background In forest ecosystems, communities of ectomycorrhizal fungi (ECM are influenced by several biotic and abiotic factors. To understand their underlying dynamics, ECM communities have been surveyed with ribosomal DNA-based sequencing methods. However, most identification methods are both time-consuming and limited by the number of samples that can be treated in a realistic time frame. As a result of ongoing implementation, the array technique has gained throughput capacity in terms of the number of samples and the capacity for parallel identification of several species. Thus far, although phylochips (microarrays that are used to detect species have been mostly developed to trace bacterial communities or groups of specific fungi, no phylochip has been developed to carry oligonucleotides for several ectomycorrhizal species that belong to different genera. Results We have constructed a custom ribosomal DNA phylochip to identify ECM fungi. Specific oligonucleotide probes were targeted to the nuclear internal transcribed spacer (ITS regions from 95 fungal species belonging to 21 ECM fungal genera. The phylochip was first validated using PCR amplicons of reference species. Ninety-nine percent of the tested oligonucleotides generated positive hybridisation signals with their corresponding amplicons. Cross-hybridisation was mainly restricted at the genus level, particularly for Cortinarius and Lactarius species. The phylochip was subsequently tested with environmental samples that were composed of ECM fungal DNA from spruce and beech plantation fungal communities. The results were in concordance with the ITS sequencing of morphotypes and the ITS clone library sequencing results that were obtained using the same PCR products. Conclusion For the first time, we developed a custom phylochip that is specific for several ectomycorrhizal fungi. To overcome cross-hybridisation problems, specific filter and evaluation strategies that used spot

  2. Summer temperature increase has distinct effects on the ectomycorrhizal fungal communities of moist tussock and dry tundra in Arctic Alaska.

    Science.gov (United States)

    Morgado, Luis N; Semenova, Tatiana A; Welker, Jeffrey M; Walker, Marilyn D; Smets, Erik; Geml, József

    2015-02-01

    Arctic regions are experiencing the greatest rates of climate warming on the planet and marked changes have already been observed in terrestrial arctic ecosystems. While most studies have focused on the effects of warming on arctic vegetation and nutrient cycling, little is known about how belowground communities, such as fungi root-associated, respond to warming. Here, we investigate how long-term summer warming affects ectomycorrhizal (ECM) fungal communities. We used Ion Torrent sequencing of the rDNA internal transcribed spacer 2 (ITS2) region to compare ECM fungal communities in plots with and without long-term experimental warming in both dry and moist tussock tundra. Cortinarius was the most OTU-rich genus in the moist tundra, while the most diverse genus in the dry tundra was Tomentella. On the diversity level, in the moist tundra we found significant differences in community composition, and a sharp decrease in the richness of ECM fungi due to warming. On the functional level, our results indicate that warming induces shifts in the extramatrical properties of the communities, where the species with medium-distance exploration type seem to be favored with potential implications for the mobilization of different nutrient pools in the soil. In the dry tundra, neither community richness nor community composition was significantly altered by warming, similar to what had been observed in ECM host plants. There was, however, a marginally significant increase in OTUs identified as ECM fungi with the medium-distance exploration type in the warmed plots. Linking our findings of decreasing richness with previous results of increasing ECM fungal biomass suggests that certain ECM species are favored by warming and may become more abundant, while many other species may go locally extinct due to direct or indirect effects of warming. Such compositional shifts in the community might affect nutrient cycling and soil organic C storage. © 2014 The Authors. Global Change

  3. Girdling affects ectomycorrhizal fungal (EMF) diversity and reveals functional differences in EMF community composition in a beech forest.

    Science.gov (United States)

    Pena, Rodica; Offermann, Christine; Simon, Judy; Naumann, Pascale Sarah; Gessler, Arthur; Holst, Jutta; Dannenmann, Michael; Mayer, Helmut; Kögel-Knabner, Ingrid; Rennenberg, Heinz; Polle, Andrea

    2010-03-01

    The relationships between plant carbon resources, soil carbon and nitrogen content, and ectomycorrhizal fungal (EMF) diversity in a monospecific, old-growth beech (Fagus sylvatica) forest were investigated by manipulating carbon flux by girdling. We hypothesized that disruption of the carbon supply would not affect diversity and EMF species numbers if EM fungi can be supplied by plant internal carbohydrate resources or would result in selective disappearance of EMF taxa because of differences in carbon demand of different fungi. Tree carbohydrate status, root demography, EMF colonization, and EMF taxon abundance were measured repeatedly during 1 year after girdling. Girdling did not affect root colonization but decreased EMF species richness of an estimated 79 to 90 taxa to about 40 taxa. Cenococcum geophilum, Lactarius blennius, and Tomentella lapida were dominant, colonizing about 70% of the root tips, and remained unaffected by girdling. Mainly cryptic EMF species disappeared. Therefore, the Shannon-Wiener index (H') decreased but evenness was unaffected. H' was positively correlated with glucose, fructose, and starch concentrations of fine roots and also with the ratio of dissolved organic carbon to dissolved organic nitrogen (DOC/DON), suggesting that both H' and DOC/DON were governed by changes in belowground carbon allocation. Our results suggest that beech maintains numerous rare EMF species by recent photosynthate. These EM fungi may constitute biological insurance for adaptation to changing environmental conditions. The preservation of taxa previously not known to colonize beech may, thus, form an important reservoir for future forest development.

  4. Ectomycorrhizal fungal communities coinvading with Pinaceae host plants in Argentina: Gringos bajo el bosque.

    Science.gov (United States)

    Hayward, Jeremy; Horton, Thomas R; Nuñez, Martin A

    2015-10-01

    Coinvasive ectomycorrhizal (ECM) fungi allow Pinaceae species to invade regions otherwise lacking compatible symbionts, but ECM fungal communities permitting Pinaceae invasions are poorly understood. In the context of Pinaceae invasions on Isla Victoria, Nahuel Huapi National Park, Argentina, we asked: what ECM fungi are coinvading with Pinaceae hosts on Isla Victoria; are some ECM fungal species or genera more prone to invade than others; and are all ECM fungal species that associate with Northern Hemisphere hosts also nonnative, or are some native fungi compatible with nonnative plants? We sampled ECMs from 226 Pinaceae host plant individuals, both planted individuals and recruits, growing inside and invading from plantations. We used molecular techniques to examine ECM fungal communities associating with these trees. A distinctive subset of the ECM fungal community predominated far from plantations, indicating differences between highly invasive and less invasive ECM fungi. Some fungal invaders reported here have been detected in other locations around the world, suggesting strong invasion potential. Fungi that were frequently detected far from plantations are often found in early-successional sites in the native range, while fungi identified as late-successional species in the native range are rarely found far from plantations, suggesting a means for predicting potential fungal coinvaders.

  5. Missing checkerboards? An absence of competitive signal in Alnus-associated ectomycorrhizal fungal communities

    Directory of Open Access Journals (Sweden)

    Peter Kennedy

    2014-12-01

    Full Text Available A number of recent studies suggest that interspecific competition plays a key role in determining the structure of ectomycorrhizal (ECM fungal communities. Despite this growing consensus, there has been limited study of ECM fungal community dynamics in abiotically stressful environments, which are often dominated by positive rather than antagonistic interactions. In this study, we examined the ECM fungal communities associated with the host genus Alnus, which live in soils high in both nitrate and acidity. The nature of ECM fungal species interactions (i.e., antagonistic, neutral, or positive was assessed using taxon co-occurrence and DNA sequence abundance correlational analyses. ECM fungal communities were sampled from root tips or mesh in-growth bags in three monodominant A. rubra plots at a site in Oregon, USA and identified using Illumina-based amplification of the ITS1 gene region. We found a total of 175 ECM fungal taxa; 16 of which were closely related to known Alnus-associated ECM fungi. Contrary to previous studies of ECM fungal communities, taxon co-occurrence analyses on both the total and Alnus-associated ECM datasets indicated that the ECM fungal communities in this system were not structured by interspecific competition. Instead, the co-occurrence patterns were consistent with either random assembly or significant positive interactions. Pair-wise correlational analyses were also more consistent with neutral or positive interactions. Taken together, our results suggest that interspecific competition does not appear to determine the structure of all ECM fungal communities and that abiotic conditions may be important in determining the specific type of interaction occurring among ECM fungi.

  6. Strong effect of climate on ectomycorrhizal fungal composition: evidence from range overlap between two mountains.

    Science.gov (United States)

    Miyamoto, Yumiko; Sakai, Atsushi; Hattori, Masahira; Nara, Kazuhide

    2015-08-01

    Separating the effects of environmental factors and spatial distance on microbial composition is difficult when these factors covary. We examined the composition of ectomycorrhizal (EM) fungi along elevation gradients on geographically distant mountains to clarify the effect of climate at the regional scale. Soil cores were collected from various forest types along an elevation gradient in southwestern Japan. Fungal species were identified by the internal transcribed spacer regions of the rDNA using direct sequencing. The occurrence of fungal species in this study was compared with a previous study conducted on a mountain separated by ∼550 km. In total, we recorded 454 EM fungi from 330 of 350 soil cores. Forty-seven fungal species (∼20% of the total excluding singletons) were shared between two mountains, mostly between similar forest types on both mountains. Variation partitioning in redundancy analysis revealed that climate explained the largest variance in EM fungal composition. The similarity of forest tree composition, which is usually determined by climatic conditions, was positively correlated with the similarity of the EM fungal composition. However, the lack of large host effects implied that communities of forest trees and EM fungi may be determined independently by climate. Our data provide important insights that host plants and mutualistic fungi may respond to climate change idiosyncratically, potentially altering carbon and nutrient cycles in relation to the plant-fungus associations.

  7. Ectomycorrhizal-dominated boreal and tropical forests have distinct fungal communities, but analogous spatial patterns across soil horizons.

    Science.gov (United States)

    McGuire, Krista L; Allison, Steven D; Fierer, Noah; Treseder, Kathleen K

    2013-01-01

    Fungi regulate key nutrient cycling processes in many forest ecosystems, but their diversity and distribution within and across ecosystems are poorly understood. Here, we examine the spatial distribution of fungi across a boreal and tropical ecosystem, focusing on ectomycorrhizal fungi. We analyzed fungal community composition across litter (organic horizons) and underlying soil horizons (0-20 cm) using 454 pyrosequencing and clone library sequencing. In both forests, we found significant clustering of fungal communities by site and soil horizons with analogous patterns detected by both sequencing technologies. Free-living saprotrophic fungi dominated the recently-shed leaf litter and ectomycorrhizal fungi dominated the underlying soil horizons. This vertical pattern of fungal segregation has also been found in temperate and European boreal forests, suggesting that these results apply broadly to ectomycorrhizal-dominated systems, including tropical rain forests. Since ectomycorrhizal and free-living saprotrophic fungi have different influences on soil carbon and nitrogen dynamics, information on the spatial distribution of these functional groups will improve our understanding of forest nutrient cycling.

  8. Regional scale gradients of climate and nitrogen deposition drive variation in ectomycorrhizal fungal communities associated with native Scots pine.

    Science.gov (United States)

    Jarvis, S; Woodward, S; Alexander, I J; Taylor, A F S

    2013-06-01

    Ectomycorrhizal fungi commonly associate with the roots of forest trees where they enhance nutrient and water uptake, promote seedling establishment and have an important role in forest nutrient cycling. Predicting the response of ectomycorrhizal fungi to environmental change is an important step to maintaining forest productivity in the future. These predictions are currently limited by an incomplete understanding of the relative significance of environmental drivers in determining the community composition of ectomycorrhizal (ECM) fungi at large spatial scales. To identify patterns of community composition in ECM fungi along regional scale gradients of climate and nitrogen deposition in Scotland, fungal communities were analysed from 15 seminatural Scots pine (Pinus sylvestris L.) forests. Fungal taxa were identified by sequencing of the ITS rDNA region using fungal-specific primers. Nonmetric multidimensional scaling was used to assess the significance of 16 climatic, pollutant and edaphic variables on community composition. Vector fitting showed that there was a strong influence of rainfall and soil moisture on community composition at the species level, and a smaller impact of temperature on the abundance of ectomycorrhizal exploration types. Nitrogen deposition was also found to be important in determining community composition, but only when the forest experiencing the highest deposition (9.8 kg N ha(-1)  yr(-1) ) was included in the analysis. This finding supports previously published critical load estimates for ectomycorrhizal fungi of 5-10 kg N ha(-1)  yr(-1) . This work demonstrates that both climate and nitrogen deposition can drive gradients of fungal community composition at a regional scale.

  9. Short-term impacts of energy wood harvesting on ectomycorrhizal fungal communities of Norway spruce saplings.

    Science.gov (United States)

    Huusko, Karoliina; Tarvainen, Oili; Saravesi, Karita; Pennanen, Taina; Fritze, Hannu; Kubin, Eero; Markkola, Annamari

    2015-03-01

    The increased demand for harvesting energy wood raises questions about its effects on the functioning of the forest ecosystems, soil processes and biodiversity. Impacts of tree stump removal on ectomycorrhizal fungal (EMF) communities of Norway spruce saplings were studied with 454-pyrosequencing in a 3-year field experiment replicated in 3 geographical areas. This is possibly the most thorough investigation of EMF communities associated with saplings grown on sites subjected to energy wood harvesting. To separate impacts of tree stump and logging residue removal on EMF and plant variables, we used three harvesting treatments with increasing complexity from patch mounding alone (P) to patch mounding combined with logging residue removal (RP), and patch mounding combined with both logging residue and stump removal (SRP). Saplings grown in uncut forests (F) served as references for harvesting treatments. A majority of sequences (>92%) and operational taxonomic units (OTUs, 55%) were assigned as EMF. EMF OTU richness, fungal community composition or sapling growth did not differ between harvesting treatments (P, RP and SRP), while EMF OTU richness, diversity and evenness were highest and sapling growth lowest in the undisturbed reference forests (F). The short study period may partially explain the similarities in fungal and sapling variables in different harvesting treatments. In conclusion, our results indicate that neither stump removal nor logging residue removal have significant additional negative impacts on EMF communities or growth of Norway spruce saplings in the short-term compared with the impacts of more conventional harvesting methods, including clear cutting and patch mounding.

  10. Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change.

    Science.gov (United States)

    Gehring, Catherine; Flores-Rentería, Dulce; Sthultz, Christopher M; Leonard, Tierra M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G

    2014-03-01

    Although the importance of plant-associated microbes is increasingly recognized, little is known about the biotic and abiotic factors that determine the composition of that microbiome. We examined the influence of plant genetic variation, and two stressors, one biotic and one abiotic, on the ectomycorrhizal (EM) fungal community of a dominant tree species, Pinus edulis. During three periods across 16 years that varied in drought severity, we sampled the EM fungal communities of a wild stand of P. edulis in which genetically based resistance and susceptibility to insect herbivory was linked with drought tolerance and the abundance of competing shrubs. We found that the EM fungal communities of insect-susceptible trees remained relatively constant as climate dried, while those of insect-resistant trees shifted significantly, providing evidence of a genotype by environment interaction. Shrub removal altered the EM fungal communities of insect-resistant trees, but not insect-susceptible trees, also a genotype by environment interaction. The change in the EM fungal community of insect-resistant trees following shrub removal was associated with greater shoot growth, evidence of competitive release. However, shrub removal had a 7-fold greater positive effect on the shoot growth of insect-susceptible trees than insect-resistant trees when shrub density was taken into account. Insect-susceptible trees had higher growth than insect-resistant trees, consistent with the hypothesis that the EM fungi associated with susceptible trees were superior mutualists. These complex, genetic-based interactions among species (tree-shrub-herbivore-fungus) argue that the ultimate impacts of climate change are both ecological and evolutionary. © 2013 John Wiley & Sons Ltd.

  11. Ectomycorrhizal fungal spore bank recovery after a severe forest fire: some like it hot.

    Science.gov (United States)

    Glassman, Sydney I; Levine, Carrie R; DiRocco, Angela M; Battles, John J; Bruns, Thomas D

    2016-05-01

    After severe wildfires, pine recovery depends on ectomycorrhizal (ECM) fungal spores surviving and serving as partners for regenerating forest trees. We took advantage of a large, severe natural forest fire that burned our long-term study plots to test the response of ECM fungi to fire. We sampled the ECM spore bank using pine seedling bioassays and high-throughput sequencing before and after the California Rim Fire. We found that ECM spore bank fungi survived the fire and dominated the colonization of in situ and bioassay seedlings, but there were specific fire adapted fungi such as Rhizopogon olivaceotinctus that increased in abundance after the fire. The frequency of ECM fungal species colonizing pre-fire bioassay seedlings, post-fire bioassay seedlings and in situ seedlings were strongly positively correlated. However, fire reduced the ECM spore bank richness by eliminating some of the rare species, and the density of the spore bank was reduced as evidenced by a larger number of soil samples that yielded uncolonized seedlings. Our results show that although there is a reduction in ECM inoculum, the ECM spore bank community largely remains intact, even after a high-intensity fire. We used advanced techniques for data quality control with Illumina and found consistent results among varying methods. Furthermore, simple greenhouse bioassays can be used to determine which fungi will colonize after fires. Similar to plant seed banks, a specific suite of ruderal, spore bank fungi take advantage of open niche space after fires.

  12. Ectomycorrhizal Fungal Communities of Red Pine (Pinus densiflora) Seedlings in Disturbed Sites and Undisturbed Old Forest Sites.

    Science.gov (United States)

    Lee, Eun-Hwa; Eom, Ahn-Heum

    2013-06-01

    This study aimed to investigate differences in ectomycorrhizal (ECM) fungal communities between disturbed sites and undisturbed old forest sites. ECM root tips of Pinus densiflora were collected from 4 sites disturbed by human activities and 3 undisturbed old forest sites adjacent to the disturbed sites. Results in this study showed that the number of ECM root tips, species diversity, and number of species were significantly higher in the disturbed sites than in the undisturbed sites, suggesting that the ECM fungal community structure was affected by the degree of disturbance.

  13. Host shifts enhance diversification of ectomycorrhizal fungi: diversification rate analysis of the ectomycorrhizal fungal genera Strobilomyces and Afroboletus with an 80-gene phylogeny.

    Science.gov (United States)

    Sato, Hirotoshi; Tanabe, Akifumi S; Toju, Hirokazu

    2017-04-01

    Mutualisms with new host lineages can provide symbionts with novel ecological opportunities to expand their geographical distribution, thereby leading to evolutionary diversification. Because ectomycorrhizal (ECM) fungi provide ideal opportunities to test the relationship between host shifts and diversification, we tested whether mutualism with new host lineages could increase the diversification rates of ECM fungi. Using a Bayesian tree inferred from 23 027-base nucleotide sequences of 80 single-copy genes, we tested whether the diversification rate had changed through host-shift events in the monophyletic clade containing the ECM fungal genera Strobilomyces and Afroboletus. The results indicated that these fungi were initially associated with Caesalpinioideae/Monotoideae in Africa, acquired associations with Dipterocarpoideae in tropical Asia, and then switched to Fagaceae/Pinaceae and Nothofagaceae/Eucalyptus. Fungal lineages associated with Fagaceae/Pinaceae were inferred to have approximately four-fold and two-fold greater diversification rates than those associated with Caesalpinioideae/Monotoideae and Dipterocarpoideae or Nothofagaceae/Eucalyptus, respectively. Moreover, the diversification rate shift was inferred to follow the host shift to Fagaceae/Pinaceae. Our study suggests that host-shift events, particularly those occurring with respect to Fagaceae/Pinaceae, can provide ecological opportunities for the rapid diversification of Strobilomyces-Afroboletus. Although further studies are needed for generalization, we propose a possible diversification scenario of ECM fungi. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. UTILIZATION OF T-RFLP (TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM) TO CHARACTERIZE MIXED ECTOMYCORRHIZAL FUNGAL COMMUNITIES

    Science.gov (United States)

    Studies of ectomycorrhizal community structure have used a variety of analytical regimens including sole or partial reliance on gross morphological characterization of colonized root tips. Depending on the rigor of the classification protocol, this technique can incorrectly assig...

  15. Studies on the ectomycorrhizal community in a declining Quercus suber L. stand.

    Science.gov (United States)

    Lancellotti, Enrico; Franceschini, Antonio

    2013-10-01

    This survey was carried out in a Quercus suber L. stand with many trees affected by the disease "oak decline". Its aim was to obtain information about both the belowground ectomycorrhizal fungal community in a declining Q. suber stand as a whole, and the ectomycorrhizal fungal community of individual tree (EFT) detected in healthy and diseased plants. To this end, we first categorized the trees into four different decline classes (one for healthy plants and three for diseased plants) and then, by using morphological and molecular tools, we identified the ectomycorrhizas isolated from samples collected near the trees with different declining classes. The ectomycorrhizal community as a whole was seen to be composed of numerous ectomycorrhizal fungal species, only some of which appeared to be dominant (Cenococcum geophilum, Lactarius chrysorrheus, and some species of Tomentella genus), while most occurred sporadically. Results show that all root tips observed are mycorrhized and that decline class does not influence the number of ectomycorrhizal root tips found in the EFTs, thus oak decline does not impact the investment in ectomycorrhizal symbiosis. However, some statistical differences can be observed in the values of evenness and taxonomic distinctness in the EFT associated with trees with different states of health. Finally, both the analysis of similarity test and the ordination technique highlight a compositional difference between the EFT associated with trees in different health conditions, but also suggest that other factors may play a role in causing these differences.

  16. Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone.

    Science.gov (United States)

    Peay, Kabir G; Kennedy, Peter G; Davies, Stuart J; Tan, Sylvester; Bruns, Thomas D

    2010-01-01

    *Relatively little is known about diversity or structure of tropical ectomycorrhizal communities or their roles in tropical ecosystem dynamics. In this study, we present one of the largest molecular studies to date of an ectomycorrhizal community in lowland dipterocarp rainforest. *We sampled roots from two 0.4 ha sites located across an ecotone within a 52 ha forest dynamics plot. Our plots contained > 500 tree species and > 40 species of ectomycorrhizal host plants. Fungi were identified by sequencing ribosomal RNA genes. *The community was dominated by the Russulales (30 species), Boletales (17), Agaricales (18), Thelephorales (13) and Cantharellales (12). Total species richness appeared comparable to molecular studies of temperate forests. Community structure changed across the ecotone, although it was not possible to separate the role of environmental factors vs host plant preferences. Phylogenetic analyses were consistent with a model of community assembly where habitat associations are influenced by evolutionary conservatism of functional traits within ectomycorrhizal lineages. *Because changes in the ectomycorrhizal fungal community parallel those of the tree community at this site, this study demonstrates the potential link between the distribution of tropical tree diversity and the distribution of tropical ectomycorrhizal diversity in relation to local-scale edaphic variation.

  17. Ectomycorrhizal fungal communities in urban parks are similar to those in natural forests but shaped by vegetation and park age.

    Science.gov (United States)

    Hui, Nan; Liu, Xinxin; Kotze, D Johan; Jumpponen, Ari; Francini, Gaia; Setälä, Heikki

    2017-09-29

    Ectomycorrhizal (ECM) fungi are important mutualists for growth and health of most boreal trees. Forest age and its host species composition can impact the composition of ECM fungal communities. Although plentiful empirical data exist for forested environments, the effects of established vegetation and its successional trajectories on ECM fungi in urban greenspaces remain poorly understood. We analyzed ECM fungi in 5 control forests and 41 urban parks of two plant functional groups (conifer and broadleaf trees) and in three age categories (10, ∼50 and >100 years old) in southern Finland. Our results show that although ECM fungal richness was marginally greater in forests than in urban parks, urban parks still hosted rich and diverse ECM communities. ECM community composition differed between the two habitats, but was driven by taxon rank order reordering, as key ECM taxa remained largely the same. In parks, the ECM communities differed between conifer and broadleaf trees. The successional trajectories of ECM fungi -- as inferred in relation to the time since park construction -- differed among the conifers and broadleaf trees: the ECM fungal communities changed over time under the conifers, whereas communities under broadleaf trees provided no evidence for such age related effects. Our data show that plant-ECM interactions in urban parks, in spite of being constructed environments, are surprisingly similar in richness to those in natural forests. This suggests that the presence of host trees, rather than soil characteristics or even disturbance regime of the system, determine ECM fungal community structure and diversity.Importance In urban environments soil and trees improve environmental quality and provide essential ecosystem services. Ectomycorrhizal (ECM) fungi enhance plant growth and performance, increasing plant nutrient acquisition and protecting plants against toxic compounds. Recent evidence indicates that soil-inhabiting fungal communities - including

  18. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition

    Science.gov (United States)

    Alistair J. H. Smith; Lynette R. Potvin; Erik A. Lilleskov

    2015-01-01

    Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one...

  19. Fungal species-specific responses of ectomycorrhizal Scots pine (Pinus sylvestris to elevated (CO2)

    NARCIS (Netherlands)

    Gorissen, A.; Kuyper, T.W.

    2000-01-01

    Ectomycorrhizal seedlings of Scots pine (Pinus sylvestris) inoculated with the nitrotolerant Laccaria bicolor and the nitrophobic Suillus bovinus were exposed to ambient (350 l l1) and elevated (700 l l1) [CO2]. After 79 d the seedlings were labelled for 28 d with 14CO2, after which they were harves

  20. Effect of Soil Ameliorators on Ectomycorrhizal Fungal Communities that Colonize Seedlings of Pinus densiflora in Abandoned Coal Mine Spoils.

    Science.gov (United States)

    Lee, Eun-Hwa; Eo, Ju-Kyeong; Lee, Chang-Seok; Eom, Ahn-Heum

    2012-09-01

    In this study, the effect of soil ameliorators on ectomycorrhizal (ECM) fungal communities in coal mine spoils was investigated. Organic fertilizers and slaked lime were applied as soil ameliorators in 3 abandoned coal mine spoils. One year after the initial treatment, roots of Pinus densiflora seedlings were collected and the number of ECM species, colonization rate, and species diversity were assessed. The results showed that the soil ameliorators significantly increased ECM colonization on the roots of P. densiflora. The results suggest that soil ameliorators can have a positive effect on ECM fungi in terms of growth of host plants and show the potential use of soil ameliorator treatment for revegetation with ECM-colonized pine seedlings in the coal mine spoils.

  1. Ectomycorrhizal fungal diversity associated with endemic Tristaniopsis spp. (Myrtaceae) in ultramafic and volcano-sedimentary soils in New Caledonia.

    Science.gov (United States)

    Waseem, Muhammad; Ducousso, Marc; Prin, Yves; Domergue, Odile; Hannibal, Laure; Majorel, Clarisse; Jourand, Philippe; Galiana, Antoine

    2017-01-13

    New Caledonian serpentine (ultramafic) soils contain high levels of toxic heavy metals, in particular nickel, (up to 20 g kg(-1)) and are deficient in essential elements like carbon, nitrogen and phosphorus while having a high magnesium/calcium ratio. Although previous studies showed that ectomycorrhizal symbioses could play an important role in the adaptation of the endemic plants to ultramafic soils (FEMS Microbiol Ecol 72:238-49, 2010), none of them have compared the diversity of microbial communities from ultramafic vs non-ultramafic soils in New Caledonia. We explored the impact of edaphic characteristics on the diversity of ectomycorrhizal (ECM) fungi associated with different endemic species of Tristaniopsis (Myrtaceae) growing under contrasting soil conditions in the natural ecosystems of New Caledonia. ECM root tips were thus sampled from two different ultramafic sites (Koniambo massif and Desmazures forest) vs two volcano-sedimentary ones (Arama and Mont Ninndo). The molecular characterization of the ECM fungi through partial sequencing of the ITS rRNA gene revealed the presence of different dominant fungal genera including, both soil types combined, Cortinarius (36.1%), Pisolithus (18.5%), Russula (13.4%), Heliotales (8.2%) and Boletellus (7.2%). A high diversity of ECM taxa associated with Tristaniopsis species was found in both ultramafic and volcano-sedimentary soils but no significant differences in ECM genera distribution were observed between both soil types. No link could be established between the phylogenetic clustering of ECM taxa and their soil type origin, thus suggesting a possible functional-rather than taxonomical-adaptation of ECM fungal communities to ultramafic soils.

  2. Influence of autoclaved saprotrophic fungal mycelia on proteolytic activity in ectomycorrhizal fungi.

    Science.gov (United States)

    Mucha, Joanna; Dahm, Hanna; Werner, Antoni

    2007-07-01

    The production of proteolytic enzymes by several strains of ectomycorrhizal fungi i.e., Amanita muscaria (16-3), Laccaria laccata (9-12), L. laccata (9-1), Suillus bovinus (15-4), Suillus bovinus (15-3), Suillus luteus (14-7) on mycelia of Trichoderma harzianum, Trichoderma virens and Mucor hiemalis and sodium caseinate, yeast extract was evaluated. The strains of A. muscaria (16-3) and L. laccata (9-12) were characterized by the highest activity of the acidic and neutral proteases. Taking the mycelia of saprotrophic fungi into consideration, the mycelium of M. hiemalis was the best inductor for proteolytic activity. The examined ectomycorrhizal fungi exhibited higher activity of acidic proteases than neutral ones on the mycelia of saprotrophic fungi, which may imply the participation of acidic proteases in nutrition.

  3. Land use practices and ectomycorrhizal fungal communities from oak woodlands dominated by Quercus suber L. considering drought scenarios.

    Science.gov (United States)

    Azul, Anabela Marisa; Sousa, João Paulo; Agerer, Reinhard; Martín, María P; Freitas, Helena

    2010-02-01

    Oak woodlands in the Mediterranean basin have been traditionally converted into agro-silvo-pastoral systems and exemplified sustainable land use in Europe. In Portugal, in line with the trend of other European countries, profound changes in management options during the twentieth century have led to landscape simplification. Landscapes are dynamic and the knowledge of future management planning combining biological conservation and soil productivity is needed, especially under the actual scenarios of drought and increasing evidence of heavy oak mortality. We examined the ectomycorrhizal (ECM) fungal community associated with cork oak in managed oak woodlands (called montado) under different land use practices, during summer. ECM fungal richness and abundance were assessed in 15 stands established in nine montados located in the Alentejo region (southern Portugal), using morphotyping and ITS rDNA analysis. Parameters related to the montados landscape characteristics, land use history over the last 25 years, climatic and edaphic conditions were taken into account. Fifty-five ECM fungal taxa corresponding to the most abundant fungal symbionts were distinguished on cork oak roots. Cenococcum geophilum and the families Russulaceae and Thelephoraceae explained 56% of the whole ECM fungal community; other groups were represented among the community: Cortinariaceae, Boletaceae, Amanita, Genea, Pisolithus, Scleroderma, and Tuber. There were pronounced differences in ECM fungal community structure among the 15 montados stands: C. geophilum was the only species common to all stands, tomentelloid and russuloid species were detected in 87-93% of the stands, Cortinariaceae was detected in 60% of the stands, and the other groups were more unequally distributed. Ordination analysis revealed that ECM fungal richness was positively correlated with the silvo-pastoral exploitation regime and low mortality of cork oak, while ECM fungal abundance was positively correlated with extensive

  4. Can ectomycorrhizal symbiosis and belowground plant traits be used as ecological tools to mitigate erosion on degraded slopes in the ultramafic soils of New Caledonia?

    Science.gov (United States)

    Demenois, Julien; Carriconde, Fabian; Rey, Freddy; Stokes, Alexia

    2015-04-01

    New Caledonia is an archipelago in the South West Pacific located just above the Tropic of Capricorn. The main island is bisected by a continuous mountain chain whose highest peaks reach more than 1 600 m. With mean annual rainfall above 2 000 mm in the South of the main island, frequent downpours and steep slopes, its soils are prone to water erosion. Deforestation, fires and mining activity are the main drivers of water erosion. Stakes are high to mitigate the phenomenon: extraction of nickel from ultramafic substrates (one third of the whole territory) is the main economic activity; New Caledonia is considered as a biodiversity hotspot. Restoration ecology is seen as a key approach for tackling such environmental challenges. Soil microorganisms could play significant roles in biological processes such as plant nutrition and plant resistance to abiotic and biotic stresses. Microorganisms could increase soil aggregate stability and thus mitigate soil erodibility. Plant roots increase soil cohesion through exudation and decomposition processes. To date, few studies have collected data on the soil aggregate stability of steep slopes affected by erosion and, to our knowledge, interactions between ectomycorrhizas (ECM), roots and erodibility of ultramafic soils have never been considered. The objective of our study is to assess the influence of ECM symbiosis and plant root traits on the erodibility of ultramafic soils of New Caledonia and answer the following questions: 1/ What is the influence of plant root traits of vegetal communities and ECM fungal diversity on soil erodibility? 2/ What are the belowground plant traits of some mycorrhized endemic species used in ecological restoration? 3/ What is the influence of plant root traits and ECM fungal inoculation on soil erodibility? At the scale of plant communities, five types of vegetation have been chosen in the South of the main island: degraded ligno-herbaceous shrubland, ligno-herbaceous shrubland, degraded humid

  5. Structure and species composition of ectomycorrhizal fungal communities colonizing seedlings and adult trees of Pinus montezumae in Mexican neotropical forests.

    Science.gov (United States)

    Reverchon, Frédérique; Ortega-Larrocea, María del Pilar; Bonilla-Rosso, Germán; Pérez-Moreno, Jesús

    2012-05-01

    Mexico is a center of diversity for pines, but few studies have examined the ectomycorrhizal (ECM) fungal communities associated with pines in this country. We investigated the ECM communities associated with Pinus montezumae seedlings and mature trees in neotropical forests of central Mexico and compared their structure and species composition. Root tips were sampled on both planted seedlings and naturally occurring adult trees. A total of 42 ECM operational taxonomic units (OTUs) was found on P. montezumae. Diversity and similarity indices showed that community structure was similar for both plant growth stages, but phylogenetic diversity and Chao-estimated richness were higher for seedlings. Species composition differed between communities. The dominant OTUs belonged to the families Atheliaceae, Cortinariaceae, and Sebacinaceae, although different taxa appeared to colonize seedlings and adults. Only 12 OTUs were shared between seedlings and adults, which suggests that ECM fungi which colonize seedlings are still not fully incorporated into mycelial networks and that ECM taxa colonizing young individuals of P. montezumae are likely to come from fungal propagules. Intra-generic diversity could be an insurance mechanism to maintain forest productivity under stressed conditions. This is the first report describing the abundance of Atheliaceae in tree roots in neotropical ecosystems. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Aboveground Epichloë coenophiala-Grass Associations Do Not Affect Belowground Fungal Symbionts or Associated Plant, Soil Parameters.

    Science.gov (United States)

    Slaughter, Lindsey C; McCulley, Rebecca L

    2016-10-01

    Cool season grasses host multiple fungal symbionts, such as aboveground Epichloë endophytes and belowground arbuscular mycorrhizal fungi (AMF) and dark septate endophytes (DSEs). Asexual Epichloë endophytes can influence root colonization by AMF, but the type of interaction-whether antagonistic or beneficial-varies. In Schedonorus arundinaceus (tall fescue), Epichloë coenophiala can negatively affect AMF, which may impact soil properties and ecosystem function. Within field plots of S. arundinaceus that were either E. coenophiala-free (E-), infected with the common, mammal-toxic E. coenophiala strain (CTE+), or infected with one of two novel, non-toxic strains (AR542 NTE+ and AR584 NTE+), we hypothesized that (1) CTE+ would decrease AMF and DSE colonization rates and reduce soil extraradical AMF hyphae compared to E- or NTE+, and (2) this would lead to E- and NTE+ plots having greater water stable soil aggregates and C than CTE+. E. coenophiala presence and strain did not significantly alter AMF or DSE colonization, nor did it affect extraradical AMF hypha length, soil aggregates, or aggregate-associated C and N. Soil extraradical AMF hypha length negatively correlated with root AMF colonization. Our results contrast with previous demonstrations that E. coenophiala symbiosis inhibits belowground AMF communities. In our mesic, relatively nutrient-rich grassland, E. coenophiala symbiosis did not antagonize belowground symbionts, regardless of strain. Manipulating E. coenophiala strains within S. arundinaceus may not significantly alter AMF communities and nutrient cycling, yet we must further explore these relationships under different soils and environmental conditions given that symbiont interactions can be important in determining ecosystem response to global change.

  7. Increased ectomycorrhizal fungal abundance after long-term fertilization and warming of two arctic tundra ecosystems

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders; Jonasson, Sven Evert;

    2006-01-01

    the response in EM fungal abundance to long-term warming and fertilization in two arctic ecosystems with contrasting responses of the EM shrub Betula nana. •  Ergosterol was used as a biomarker for living fungal biomass in roots and organic soil and ingrowth bags were used to estimate EM mycelial production....... We measured 15N and 13C natural abundance to identify the EM-saprotrophic divide in fungal sporocarps and to validate the EM origin of mycelia in the ingrowth bags. •  Fungal biomass in soil and EM mycelial production increased with fertilization at both tundra sites, and with warming at one site....... This was caused partly by increased dominance of EM plants and partly by stimulation of EM mycelial growth. •  We conclude that cycling of carbon and nitrogen through EM fungi will increase when strongly nutrient-limited arctic ecosystems are exposed to a warmer and more nutrient-rich environment. This has...

  8. Water sources and controls on water-loss rates of epigeous ectomycorrhizal fungal sporocarps during summer drought

    Science.gov (United States)

    Erik A. Lilleskov; Thomas D. Bruns; Todd E. Dawson; Francisco J. Camacho

    2009-01-01

    Access to deeper soil water and water-conserving traits should reduce water stress for ectomycorrhizal fungi, permitting function during drought. Here, we explored whether epigeous fruiting of ectomycorrhizal fungi during drought was facilitated by access to deep soil water, how much water was lost from sporocarps, and how sporocarp surface to volume ratios affected...

  9. Elevated CO2 and O3 effects on ectomycorrhizal fungal root tip communities in consideration of a post-agricultural soil nutrient gradient legacy.

    Science.gov (United States)

    Andrew, Carrie; Lilleskov, Erik A

    2014-11-01

    Despite the critical role of EMF in nutrient and carbon (C) dynamics, combined effects of global atmospheric pollutants on ectomycorrhizal fungi (EMF) are unclear. Here, we present research on EMF root-level community responses to elevated CO2 and O3. We discovered that belowground EMF community richness and similarity were both negatively affected by CO2 and O3, but the effects of CO2 and O3 on EMF communities were contingent on a site soil pH and cation availability gradient. These results contrast with our previous work showing a strong direct effect of CO2 and O3 on sporocarp community dynamics and production. We discuss the possible role of carbon demand and allocation by EMF taxa in the discrepancy of these results. EMF communities were structured by a legacy of spatially defined soil properties, changing atmospheric chemistry and temporal dynamics. It is therefore necessary to understand global change impacts across multiple environmental gradients and spatiotemporal scales.

  10. Ectomycorrhizal fungal diversity, tree diversity and root nutrient relations in a mixed Central European forest.

    Science.gov (United States)

    Lang, Christa; Polle, Andrea

    2011-05-01

    Knowledge is limited about whether root nutrient concentrations are affected by mixtures of tree species and interspecific root competition. The goal of this field study was to investigate root nutrient element concentrations in relation to root and ectomycorrhizal (EM) diversity in six different mixtures of beech (Fagus sylvatica), ash (Fraxinus excelsior) and lime (Tilia sp.) in an old-growth, undisturbed forest ecosystem. Root biomass and nutrient concentrations per tree taxon as well as the abundance and identity of all EM fungi were determined in soil cores of a volume of 1 L (r=40 mm, depth=200 mm). Stand-level nutrient concentrations in overall root biomass and H' (Shannon-Wiener diversity) were obtained by pooling the data per stand. At stand level, Shannon H' for roots and aboveground tree species abundance were correlated. H' for roots and EM fungi were not correlated because of the contribution of ash roots that form only arbuscular mycorrhizal but no EM associations. Nutrient element concentrations in roots showed taxon-related differences and increased in the following order: beech ≤ lime tree diversity because of two effects: increasing contribution of ash roots to the mixture and increasing Ca accumulation in beech roots with increasing root diversity. On a small scale, increasing root diversity, but not EM diversity, was correlated with decreasing P concentrations in beech roots pointing to interspecific tree competition. Nitrogen (N) concentrations of beech roots were unaltered in relation to root and EM diversity. Opposing behavior was observed for lime and ash: the N concentrations in lime roots increased, whereas those in ash roots decreased with increasing EM diversity in a given soil volume. This suggests that EM diversity facilitates N acquisition of lime roots at the expense of non-EM ash.

  11. Fertility-dependent effects of ectomycorrhizal fungal communities on white spruce seedling nutrition.

    Science.gov (United States)

    Smith, Alistair J H; Potvin, Lynette R; Lilleskov, Erik A

    2015-11-01

    Ectomycorrhizal fungi (EcMF) typically colonize nursery seedlings, but nutritional and growth effects of these communities are only partly understood. To examine these effects, Picea glauca seedlings collected from a tree nursery naturally colonized by three dominant EcMF were divided between fertilized and unfertilized treatments. After one growing season seedlings were harvested, ectomycorrhizas identified using DNA sequencing, and seedlings analyzed for leaf nutrient concentration and content, and biomass parameters. EcMF community structure-nutrient interactions were tested using nonmetric multidimensional scaling (NMDS) combined with vector analysis of foliar nutrients and biomass. We identified three dominant species: Amphinema sp., Atheliaceae sp., and Thelephora terrestris. NMDS + envfit revealed significant community effects on seedling nutrition that differed with fertilization treatment. PERMANOVA and regression analyses uncovered significant species effects on host nutrient concentration, content, and stoichiometry. Amphinema sp. had a significant positive effect on phosphorus (P), calcium and zinc concentration, and P content; in contrast, T. terrestris had a negative effect on P concentration. In the unfertilized treatment, percent abundance of the Amphinema sp. negatively affected foliar nitrogen (N) concentration but not content, and reduced foliar N/P. In fertilized seedlings, Amphinema sp. was positively related to foliar concentrations of N, magnesium, and boron, and both concentration and content of manganese, and Atheliaceae sp. had a negative relationship with P content. Findings shed light on the community and species effects on seedling condition, revealing clear functional differences among dominants. The approach used should be scalable to explore function in more complex communities composed of unculturable EcMF.

  12. Do shifts in ectomycorrhizal fungal communities change the sources of N and S for Bishop pine trees?

    Science.gov (United States)

    Willing, C.; Roddy, A. B.; Glassman, S. I.; Dawson, T. E.

    2016-12-01

    Estimates predict that more than 90% percent of land plants are hosts to mycorrhizal fungi. As these ubiquitous symbionts interact with their plant hosts along a spectrum from parasitism to mutualism, it is important to determine how different communities of these fungi might function along this continuum. In this study, we investigated the consequences of Pinus muricata association with ectomycorrhizal fungi (EcM) sampled from different environments throughout North America. Pines are rarely, if ever, found in nature without their EcM associates. As such, it is important to consider the potential consequences of shifts in EcM communities on the trees themselves and how this may also change across different geographical areas occupied by the trees. Our focus was on quantifying how mycorrhizal (M) and non-mycorhizal (NM) trees may differ in their acquisition of the nutrient resources, N and S. N is essential to life, yet it is typically the most limiting nutrient in temperate terrestrial ecosystems. Though C:N ratios did not vary between our treatments, the stable N isotope ratio between M and NM treatments did differ. This result suggests plants could be using different sources (organic versus inorganic) of N. In addition, the relative dependence on organic N pools also appears to vary with latitude of M origin. S is required for the production of many amino-acids, vitamins, chlorophyll, and important antioxidants such as glutathionine, which has been shown to mitigate reactive oxygen species (ROS). In spite of its potential nutritional and ecological importance, sulfur dynamics and the influence of EcM on sulfur uptake is poorly understood. We found that all M treatments demonstrated S isotope enrichment of approximately 6‰ compared to NM treatments. We hypothesize that this apparent enrichment is due to the EcM reduction of soil-borne sulfate to sulfite and the subsequent transport of sulfite from the fungal associate into the tree's roots.

  13. Elevated Atmospheric CO2 Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions

    Directory of Open Access Journals (Sweden)

    Douglas L. Godbold

    2015-04-01

    Full Text Available Anthropogenic activities during the last century have increased levels of atmospheric CO2. Forest net primary productivity increases in response to elevated CO2, altering the quantity and quality of carbon supplied to the rhizosphere. Ectomycorrhizal fungi form obligate symbiotic associations with the fine roots of trees that mediate improved scavenging for nutrients in exchange for a carbohydrate supply. Understanding how the community structure of ectomycorrhizal fungi is altered by climate change is important to further our understanding of ecosystem function. Betula pendula and Fagus sylvatica were grown in an elevated CO2 atmosphere delivered using free air carbon dioxide enrichment (FACE under field conditions in the U.K., and Picea abies was grown under elevated CO2 in glass domes in the Czech Republic. We used morphotyping and sequencing of the internal transcribed spacer region of the fungal ribosomal operon to study ectomycorrhizal community structure. Under FACE, un-colonised roots tips increased in abundance for Fagus sylvatica, and during 2006, sporocarp biomass of Peziza badia significantly increased. In domes, ectomycorrhizal community composition shifted from short-distance and smooth medium-distance to contact exploration types. Supply and competition for carbon belowground can influence ectomycorrhizal community structure with the potential to alter ecosystem function.

  14. Belowground fungal associations and water interact to influence the compensatory response of Ipomopsis aggregata.

    Science.gov (United States)

    Allsup, Cassandra M; Paige, Ken N

    2016-02-01

    Although the concept that some plants benefit from being eaten is counterintuitive, there is now considerable evidence demonstrating enhanced fitness following herbivory. It has been assumed that plants growing in high resource conditions are the ones best able to compensate for herbivory. However, just the opposite has been found for dicotyledonous plants exhibiting patterns of overcompensation, with most occurring in resource-poor conditions. Long-term studies of the monocarpic biennial, scarlet gilia, Ipomopsis aggregata growing in resource-poor conditions have shown that ungulate herbivory by mule deer and elk can result in a threefold increase in plant fitness over uneaten controls. These observations led us to hypothesize that fungal associations would facilitate the compensatory response most commonly observed in this Arizona population of scarlet gilia; perhaps mutualistic associations with fungi, such as arbuscular mycorrhizal fungi, would explain the phenomenon of overcompensation altogether. Fungal removal experiments, using Captan®, a commercially available fungicide, showed that a reduction in fungal abundance altered the compensatory response following ungulate herbivory, particularly in years in which water was limited, increasing fitness compensation from equal compensation to overcompensation. A multifactorial experiment revealed that the interactive effects of water and fungicide maximized fruit production following herbivory. Our results are counter to the “modification of tolerance hypothesis” in which plants associating with mycorrhizal fungi will have higher tolerance to herbivory. It is likely that arbuscular mycorrhizal fungi and dark septate endophytes compete with plants for photosynthates following herbivory, thereby limiting the magnitude of compensation. Thus, fungi appear to be parasitic on scarlet gilia following ungulate herbivory.

  15. Connecting plant-microbial interactions above and belowground: a fungal endophyte affects decomposition.

    Science.gov (United States)

    Lemons, Alisha; Clay, Keith; Rudgers, Jennifer A

    2005-10-01

    Mutualisms can strongly affect the structure of communities, but their influence on ecosystem processes is not well resolved. Here we show that a plant-microbial mutualism affects the rate of leaf litter decomposition using the widespread interaction between tall fescue grass (Lolium arundinaceum) and the fungal endophyte Neotyphodium coenophialum. In grasses, fungal endophytes live symbiotically in the aboveground tissues, where the fungi gain protection and nutrients from their host and often protect host plants from biotic and abiotic stress. In a field experiment, decomposition rate depended on a complex interaction between the litter source (collected from endophyte-infected or endophyte-free plots), the decomposition microenvironment (endophyte-infected or endophyte-free plots), and the presence of mesoinvertebrates (manipulated by the mesh size of litter bags). Over all treatments, decomposition was slower for endophyte-infected fescue litter than for endophyte-free litter. When mesoinvertebrates were excluded using fine mesh and litter was placed in a microenvironment with the endophyte, the difference between endophyte-infected and endophyte-free litter was strongest. In the presence of mesoinvertebrates, endophyte-infected litter decomposed faster in microenvironments with the endophyte than in microenvironments lacking the endophyte, suggesting that plots differ in the detritivore assemblage. Indeed, the presence of the endophyte in plots shifted the composition of Collembola, with more Hypogastruridae in the presence of the endophyte and more Isotomidae in endophyte-free plots. In a separate outdoor pot experiment, we did not find strong effects of the litter source or the soil microbial/microinvertebrate community on decomposition, which may reflect differences between pot and field conditions or other differences in methodology. Our work is among the first to demonstrate an effect of plant-endophyte mutualisms on ecosystem processes under field

  16. Strain Identity of the Ectomycorrhizal Fungus Laccaria bicolor Is More Important than Richness in Regulating Plant and Fungal Performance under Nutrient Rich Conditions

    Directory of Open Access Journals (Sweden)

    Christina Hazard

    2017-09-01

    Full Text Available Effects of biodiversity on productivity are more likely to be expressed when there is greater potential for niche complementarity. In soil, chemically complex pools of nutrient resources should provide more opportunities for niche complementarity than chemically simple pools. Ectomycorrhizal (ECM fungal genotypes can exhibit substantial variation in nutrient acquisition traits and are key components of soil biodiversity. Here, we tested the hypothesis that increasing the chemical complexity and forms of soil nutrients would enhance the effects of intraspecific ECM diversity on host plant and fungal productivity. In pure culture, we found substantial variation in growth of strains of the ECM fungus Laccaria bicolor on a range of inorganic and organic forms of nutrients. Subsequent experiments examined the effects of intraspecific identity and richness using Scots pine (Pinus sylvestris seedlings colonized with different strains of L. bicolor growing on substrates supplemented with either inorganic or organic forms of nitrogen and phosphorus. Intraspecific identity effects on plant productivity were only found under the inorganic nutrient amendment, whereas intraspecific identity affected fungal productivity to a similar extent under both nutrient treatments. Overall, there were no significant effects of intraspecific richness on plant and fungal productivity. Our findings suggest soil nutrient composition does not interact strongly with ECM intraspecific richness, at least under experimental conditions where mineral nutrients were not limiting. Under these conditions, intraspecific identity of ECM fungi becomes more important than richness in modulating plant and fungal performance.

  17. Contrasting diversity and host association of ectomycorrhizal basidiomycetes versus root-associated ascomycetes in a dipterocarp rainforest.

    Directory of Open Access Journals (Sweden)

    Hirotoshi Sato

    Full Text Available Root-associated fungi, including ectomycorrhizal and root-endophytic fungi, are among the most diverse and important belowground plant symbionts in dipterocarp rainforests. Our study aimed to reveal the biodiversity, host association, and community structure of ectomycorrhizal Basidiomycota and root-associated Ascomycota (including root-endophytic Ascomycota in a lowland dipterocarp rainforest in Southeast Asia. The host plant chloroplast ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL region and fungal internal transcribed spacer 2 (ITS2 region were sequenced using tag-encoded, massively parallel 454 pyrosequencing to identify host plant and root-associated fungal taxa in root samples. In total, 1245 ascomycetous and 127 putative ectomycorrhizal basidiomycetous taxa were detected from 442 root samples. The putative ectomycorrhizal Basidiomycota were likely to be associated with closely related dipterocarp taxa to greater or lesser extents, whereas host association patterns of the root-associated Ascomycota were much less distinct. The community structure of the putative ectomycorrhizal Basidiomycota was possibly more influenced by host genetic distances than was that of the root-associated Ascomycota. This study also indicated that in dipterocarp rainforests, root-associated Ascomycota were characterized by high biodiversity and indistinct host association patterns, whereas ectomycorrhizal Basidiomycota showed less biodiversity and a strong host phylogenetic preference for dipterocarp trees. Our findings lead to the working hypothesis that root-associated Ascomycota, which might be mainly represented by root-endophytic fungi, have biodiversity hotspots in the tropics, whereas biodiversity of ectomycorrhizal Basidiomycota increases with host genetic diversity.

  18. Using isotopic patterns of ectomycorrhizal and saprotrophic fungi to elucidate fungal sources of carbon and nitrogen in a Norway spruce stand

    Science.gov (United States)

    Chen, Janet; Rinne-Garmston, Katja; Penttilä, Reijo; Hobbie, Erik; Mäkipää, Raisa

    2016-04-01

    To predict effects of global change on fungal community structure and the consequential effects on carbon (C) and nitrogen (N) cycling, we first need to understand different fungal sources of C and N. We determined sources of C and N by measuring δ15N and δ13C of an extensive collection of ectomycorrhizal and saprotrophic sporocarps and their potential substrates from Norway spruce (Picea abies) stands in southern Finland. The substrates included organic soil, roots in organic soil, mineral soil, roots in mineral soil, moss, needles, needles in litter, branches, twigs in litter, wood and decay wood from stages I-V. Notably, δ15N and δ13C analysis of wood in decay stages I-V was a novel measurement, as were our associations between wood decay fungi and the decay stage of trees. Decay stage of wood significantly correlated with the δ15N and δ13C of associated saprotrophic wood decay fungi species. Fungi were lower in δ15N by 0.3-0.7‰ when associated with decay wood in stages II and III compared to I and IV and higher in δ13C by 0.9-1.2‰ when associated with decay stage I compared to decay stages II-IV. The ectomycorrhizal fungi, Piloderma fallax, was significantly correlated with 15N enrichment of decay wood upon its introduction in decay stages III and IV that continued to the later decay stage V, with δ15N of decay stage V 1.5‰ higher than decay stage IV. These results indicate that wood decay fungi rely on C and N from various wood decay stages and influence C and N pools of wood as well. Litter decay fungi were lower in δ13C than wood decay fungi by 1.9‰ and higher in δ15N by 3‰ and isotopically tracked their C and N sources. Calocera viscosa, Gymnopus acervatus, and Leotia lubrica were highly 15N-enriched compared to other saprotrophic fungi and they had δ15N values similar to fungi with hydrophobic ectomycorrhizae indicating function more similar to ectomycorrhizal fungi or N sources similar to this functional group. Similar to other

  19. Whose truffle is this? Distribution patterns of ectomycorrhizal fungal diversity in Tuber melanosporum brûlés developed in multi-host Mediterranean plant communities.

    Science.gov (United States)

    Taschen, Elisa; Sauve, Mathieu; Taudiere, Adrien; Parlade, Javier; Selosse, Marc-André; Richard, Franck

    2015-08-01

    In the Mediterranean region, patches of vegetation recovering from disturbance and transiently dominated by shrubs produce one of the world's most prized fungi, the black truffle (Tuber melanosporum). In these successional plant communities, we have fragmentary knowledge of the distribution of T. melanosporum in space among ectomycorrhizal (ECM) host species and in time. Molecular identification of hosts (Restriction Fragment Length Polymorphism) and fungi (Internal Transcribed Spacer sequencing) and quantification of T. melanosporum mycelium (quantitative Polymerase Chain Reaction) were employed to evaluate the presence of T. melanosporum on four dominant ECM host species (Quercus ilex, Quercus  coccifera, Arbutus unedo, Cistus albidus) and the extent to which their respective ECM communities shared fungal diversity, over the course of development of truffle grounds, from recent unproductive brûlés to senescent ones where production has stopped. We found that truffle grounds host rich communities in which multi-host fungal species dominate in frequency. When considering both ECM tips and soil mycelia, we documented a dynamic and spatially heterogeneous pattern of T. melanosporum distribution in soils and a presence of ECM tips restricted to Q. ilex roots. This study advances our knowledge of the ecology of T. melanosporum, and provides insight into the extent of ECM fungal sharing among plant species that dominate Mediterranean landscapes. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Ectomycorrhizal fungal communities on seedlings and conspecific trees of Pinus mugo grown on the coastal dunes of the Curonian Spit in Lithuania.

    Science.gov (United States)

    Aučina, Algis; Rudawska, Maria; Leski, Tomasz; Ryliškis, Darius; Pietras, Marcin; Riepšas, Edvardas

    2011-04-01

    Ectomycorrhizal (ECM) communities of mature trees and regenerating seedlings of a non-native tree species Pinus mugo grown in a harsh environment of the coastal region of the Curonian Spit National Park in Lithuania were assessed. We established three study sites (S1, S2, and S3) that were separated from each other by 15 km. The ECM species richness was rather low in particular for mature, 100-year-old trees: 12 ectomycorrhizal taxa were identified by molecular analysis from 11 distinguished morphotypes. All 12 taxa were present on seedlings and on mature trees, with between 8-11 and 9-11 taxa present on seedlings and mature trees, respectively. Cenococcum geophilum dominated all ECM communities, but the relative abundance of C. geophilum mycorrhizas was nearly two times higher on seedlings than on mature trees. Mycorrhizal associations formed by Wilcoxina sp., Lactarius rufus, and Russula paludosa were also abundant. Several fungal taxa were only occasionally detected, including Cortinarius sp., Cortinarius obtusus, Cortinarius croceus, and Meliniomyces sp. Shannon's diversity indices for the ECM assemblages of P. mugo ranged from 0.98 to 1.09 for seedling and from 1.05 to 1.31 for mature trees. According to analysis of similarity, the mycorrhizal communities were similar between the sites (R = 0.085; P = 0.06) and only slightly separated between seedlings and mature trees (R = 0.24; P mugo has moved into quite distinct habitats and is able to adapt a suite of ECM symbionts that sufficiently support growth and development of this tree and allow for natural seedling regeneration.

  1. Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem.

    Science.gov (United States)

    David, Aaron S; Seabloom, Eric W; May, Georgiana

    2016-05-01

    Microbial symbionts inhabit tissues of all plants and animals. Their community composition depends largely on two ecological processes: (1) filtering by abiotic conditions and host species determining the environments that symbionts are able to colonize and (2) dispersal-limitation determining the pool of symbionts available to colonize a given host and community spatial structure. In plants, the above- and belowground tissues represent such distinct habitats for symbionts that we expect different effects of filtering and spatial structuring on their symbiont communities. In this study, we characterized above- and belowground communities of fungal endophytes--fungi living asymptomatically within plants--to understand the contributions of filtering and spatial structure to endophyte community composition. We used a culture-based approach to characterize endophytes growing in leaves and roots of three species of coastal beachgrasses in dunes of the USA Pacific Northwest. For leaves, endophyte isolation frequency and OTU richness depended primarily on plant host species. In comparison, for roots, both isolation frequency and OTU richness increased from the nutrient-poor front of the dune to the higher-nutrient backdune. Endophyte community composition in leaves exhibited a distance-decay relationship across the region. In a laboratory assay, faster growth rates and lower spore production were more often associated with leaf- than root-inhabiting endophytes. Overall, our results reveal a greater importance of biotic filtering by host species and dispersal-limitation over regional geographic distances for aboveground leaf endophyte communities and stronger effects of abiotic environmental filtering and locally patchy distributions for belowground root endophyte communities.

  2. Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards.

    Science.gov (United States)

    Baptista, Paula; Reis, Francisca; Pereira, Eric; Tavares, Rui M; Santos, Pedro M; Richard, Franck; Selosse, Marc-André; Lino-Neto, Teresa

    2015-12-01

    Fungal diversity in Mediterranean forest soils is poorly documented, particularly when considering saprobic and pathogenic organisms. Next-generation sequencing (NGS) methods applied to soil fungi provide the opportunity to unveil the most inconspicuous functional guilds (e.g. saprobes) and life forms (e.g. Corticiaceae) of this tremendous diversity. We used fruitbody surveys over 2 years and soil 454 metabarcoding in Castanea sativa orchards to evaluate respectively the reproductive (fruitbodies) and vegetative (mycelia) parts of fungal communities in three 100-year-old stands. Analysis of 839 fruitbodies and 210 291 ITS1 reads revealed high fungal diversity, mainly shown by belowground analysis, with high (dominant) abundance of mycorrhizal fruitbodies and reads. Both methods displayed contrasted composition and structure of fungal communities, with Basidio- and Ascomycetes dominating above- and belowground, respectively. For the two dominant fungal guilds (i.e. ectomycorrhizal and saprobic), diversity above- and belowground overlapped weakly. This study is the first assessment of the complementarity of fruitbody surveys and NGS for analysing fungal diversity in Mediterranean ecosystems and shows that belowground methods still need to be completed by fruiting diversity to provide a comprehensive overview of the different fungal guilds. The results shed light on chestnut soil biodiversity and question the spatial distribution and synergies among fungal guilds.

  3. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests.

    Science.gov (United States)

    Clemmensen, Karina E; Finlay, Roger D; Dahlberg, Anders; Stenlid, Jan; Wardle, David A; Lindahl, Björn D

    2015-03-01

    Boreal forest soils store a major proportion of the global terrestrial carbon (C) and below-ground inputs contribute as much as above-ground plant litter to the total C stored in the soil. A better understanding of the dynamics and drivers of root-associated fungal communities is essential to predict long-term soil C storage and climate feedbacks in northern ecosystems. We used 454-pyrosequencing to identify fungal communities across fine-scaled soil profiles in a 5000 yr fire-driven boreal forest chronosequence, with the aim of pinpointing shifts in fungal community composition that may underlie variation in below-ground C sequestration. In early successional-stage forests, higher abundance of cord-forming ectomycorrhizal fungi (such as Cortinarius and Suillus species) was linked to rapid turnover of mycelial biomass and necromass, efficient nitrogen (N) mobilization and low C sequestration. In late successional-stage forests, cord formers declined, while ericoid mycorrhizal ascomycetes continued to dominate, potentially facilitating long-term humus build-up through production of melanized hyphae that resist decomposition. Our results suggest that cord-forming ectomycorrhizal fungi and ericoid mycorrhizal fungi play opposing roles in below-ground C storage. We postulate that, by affecting turnover and decomposition of fungal tissues, mycorrhizal fungal identity and growth form are critical determinants of C and N sequestration in boreal forests. © 2014 The Authors New Phytologist © 2014 New Phytologist Trust.

  4. Three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines

    Energy Technology Data Exchange (ETDEWEB)

    Gehring, C.A.; Cobb, N.S.; Whitham, T.G. [Northern Arizona Univ., Flagstaff, AZ (United States)

    1997-05-01

    Herbivores and mycorrhizal fungi are important associates of most plants, but little is known about how these organisms interact. In a 9-yr experiment, we examined how the pinyon needle scale (Matsucoccus acalyptus) affects and is affected by the ectomycorrhizal mutualists found on the roots of scale-resistant and -susceptible pinyon pines (Pinus edulis). Three major results emerged. First, removal experiments demonstrated that scales negatively affected ectomycorrhiza. Second, although ectomycorrhiza could either positively or negatively influence scale performance by improving plant vigor or increasing plant investment in antiherbivore defenses, we found no ectomycorrhizal effect on scale mortality when we experimentally enhanced levels of ectomycorrhiza. This represented the first test of whether ectomycorrhiza promote plant resistance and contrasted with studies showing that arbuscular mycorrhiza negatively affected herbivores. Third, pinyon resistance to scales mediated the asymmetrical interaction between fungal mutualists and scale herbivores. High scale densities suppressed ectomycorrhizal colonization, but only on trees susceptible to scales. Similarities between mycorrhiza-herbivore interactions and competitive interactions among herbivores suggest broader generalities in the way aboveground herbivores interact with belowground plant associates. However, because mycorrhiza are mutualists, mycorrhiza-herbivore interactions do not fit within traditional competition paradigms. The widespread occurrence and importance of both herbivores and mycorrhiza argue for incorporating their interactions into ecological theory. 53 refs., 4 figs.

  5. Three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines.

    Science.gov (United States)

    Gehring, C A; Cobb, N S; Whitham, T G

    1997-05-01

    Herbivores and mycorrhizal fungi are important associates of most plants, but little is known about how these organisms interact. In a 9-yr experiment, we examined how the pinyon needle scale (Matsucoccus acalyptus) affects and is affected by the ectomycorrhizal mutualists found on the roots of scale-resistant and -susceptible pinyon pines (Pinus edulis). Three major results emerged. First, removal experiments demonstrated that scales negatively affected ectomycorrhiza. Second, although ectomycorrhiza could either positively or negatively influence scale performance by improving plant vigor or increasing plant investment in antiherbivore defenses, we found no ectomycorrhizal effect on scale mortality when we experimentally enhanced levels of ectomycorrhiza. This represented the first test of whether ectomycorrhiza promote plant resistance and contrasted with studies showing that arbuscular mycorrhiza negatively affected herbivores. Third, pinyon resistance to scales mediated the asymmetrical interaction between fungal mutualists and scale herbivores. High scale densities suppressed ectomycorrhizal colonization, but only on trees susceptible to scales. Similarities between mycorrhiza-herbivore interactions and competitive interactions among herbivores suggest broader generalities in the way aboveground herbivores interact with belowground plant associates. However, because mycorrhiza are mutualists, mycorrhiza-herbivore interactions do not fit within traditional competition paradigms. The widespread occurrence and importance of both herbivores and mycorrhiza argue for incorporating their interactions into ecological theory.

  6. Clavulina-Membranomyces is the most important lineage within the highly diverse ectomycorrhizal fungal community of Abies religiosa.

    Science.gov (United States)

    Argüelles-Moyao, Andrés; Garibay-Orijel, Roberto; Márquez-Valdelamar, Laura Margarita; Arellano-Torres, Elsa

    2017-01-01

    Abies religiosa is an endemic conifer of Mexico, where its monodominant forests are the winter refuge of the monarch butterfly. Due to climate change, it has been estimated that by 2090, A. religiosa populations will decline by 96.5 %. To achieve success, reforestation programs should consider its ectomycorrhizal (ECM) fungi. We used ITS nrDNA sequences to identify the ECM fungi associated with A. religiosa and, based on its abundance and frequency, determined the diversity and community structure in a pure A. religiosa forest near Mexico City. Using sequence metadata, we inferred the species geographic distribution and host preferences. We conducted phylogenetic analyses of the Clavulinaceae (the most important family). The ECM community held 83 species, among which the richest genera were Inocybe (21 species), Tomentella (10 species), and Russula (8 species). Besides its low species richness, the Clavulina-Membranomyces lineage was the most dominant family. Clavulina cf. cinerea and Membranomyces sp. exhibited the highest relative abundance and relative frequency values. Phylogenetic analyses placed the Clavulinaceae genotypes in three different clades: one within Membranomyces and two within Clavulina. A meta-analysis showed that the majority of the ECM fungi (45.78 %) associated with A. religiosa in Mexico have also been sequenced from North America and are shared by Pinaceae and Fagaceae. In contrast, because they have not been sequenced previously, 32.2 % of the species have a restricted distribution. Here, we highlight the emerging pattern that the Clavulina-Membranomyces lineage is dominant in several ECM communities in the Neotropics, including Aldinia and Dicymbe legume tropical forests in the Guyana Shield, the Alnus acuminata subtropical communities, and the A. religiosa temperate forests in Mexico.

  7. Competition-function tradeoffs in ectomycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Holly V. Moeller

    2016-07-01

    Full Text Available Background. The extent to which ectomycorrhizal fungi mediate primary production, carbon storage, and nutrient remineralization in terrestrial ecosystems depends upon fungal community composition. However, the factors that govern community composition at the root system scale are not well understood. Here, we explore a potential tradeoff between ectomycorrhizal fungal competitive ability and enzymatic function. Methods. We grew Pinus muricata (Bishop Pine seedlings in association with ectomycorrhizal fungi from three different genera in a fully factorial experimental design. We measured seedling growth responses, ectomycorrhizal abundance, and the root tip activity of five different extracellular enzymes involved in the mobilization of carbon and phosphorus. Results. We found an inverse relationship between competitiveness, quantified based on relative colonization levels, and enzymatic activity. Specifically, Thelephora terrestris, the dominant fungus, had the lowest enzyme activity levels, while Suillus pungens, the least dominant fungus, had the highest. Discussion. Our results identify a tradeoff between competition and function in ectomycorrhizal fungi, perhaps mediated by the competing energetic demands associated with competitive interactions and enzymatic production. These data suggest that mechanisms such as active partner maintenance by host trees may be important to maintaining “high-quality” ectomycorrhizal fungal partners in natural systems.

  8. Disproportionate abundance between ectomycorrhizal root tips and their associated mycelia

    DEFF Research Database (Denmark)

    Kjøller, Rasmus

    2006-01-01

    Extensive knowledge of various ectomycorrhizal fungal communities has been obtained over the past 10 years based on molecular identification of the fungi colonizing fine roots. In contrast, only limited information exists about the species composition of ectomycorrhizal hyphae in soil. This study...... compared the ectomycorrhizal external mycelial community with the adjacent root-tip community in a Danish beech forest. Sand-filled in-growth mesh bags were used to trap external mycelia by incubating the mesh bags in the soil for 70 days. The adjacent ectomycorrhizal root-tip communities were recorded...

  9. Genetic host-tree effects on the ectomycorrhizal community and root characteristics of Norway spruce.

    Science.gov (United States)

    Velmala, S M; Rajala, T; Haapanen, M; Taylor, A F S; Pennanen, T

    2013-01-01

    A greenhouse experiment was used to study the effects of host genotype on short root formation and ectomycorrhizal (ECM) fungal community structure in Norway spruce (Picea abies (L.) Karst.). Rooted cuttings representing 55 clones were inoculated with a mix of vegetative hyphae of five ECM fungal species (Laccaria sp., Amphinema byssoides, Piloderma sp., Cadophora finlandia, Paxillus involutus). After one growing season, the ECM fungal community structure was determined by amplifying the fungal internal transcribed spacer (ITS) of ribosomal DNA directly from ECM root tips. Restriction profiles of obtained amplicons were then compared to those of the inoculated strains. Spruce clones differed in their ECM fungal community composition; we found a statistically significant clone-specific effect on ECM fungal diversity and dominating fungal species. Nevertheless, the broad sense heritabilities of the levels of Laccaria sp., Piloderma sp. and A. byssoides colonisations as well as the ECM fungal community structure were low (H(2) = 0.04-0.11), owing to the high within-clone variation. As nitrogen concentration of needles correlated negatively with ECM fungal richness, our results imply that in the experimental conditions nutrient acquisition of young trees may benefit from colonisation with only one or two ECM fungal species. The heritability of short root density was moderate (H(2) = 0.41) and highest among all the measured shoot and root growth characteristics of Norway spruce cuttings. We suggest that the genetic component determining root growth and short root formation is significant for the performance of young trees in natural environments as these traits drive the formation of the below-ground symbiotic interactions.

  10. Beyond ectomycorrhizal bipartite networks: projected networks demonstrate contrasted patterns between early- and late-successional plants in Corsica.

    Directory of Open Access Journals (Sweden)

    Adrien eTaudiere

    2015-10-01

    Full Text Available The ectomycorrhizal (ECM symbiosis connects mutualistic plants and fungal species into bipartite networks. While links between one focal ECM plant and its fungal symbionts have been widely documented, systemic views of ECM networks are lacking, in particular, concerning the ability of fungal species to mediate indirect ecological interactions between ECM plant species (projected-ECM networks. We assembled a large dataset of plant-fungi associations at the species level and at the scale of Corsica using molecular data and unambiguously host-assigned records to: (i examine the correlation between the number of fungal symbionts of a plant species and the average specialization of these fungal species, (ii explore the structure of the plant-plant projected network and (iii compare plant association patterns in regard to their position along the ecological succession. Our analysis reveals no trade-off between specialization of plants and specialization of their partners and a saturation of the plant projected network. Moreover, there is a significantly lower-than-expected sharing of partners between early- and late-successional plant species, with fewer fungal partners for early-successional ones and similar average specialization of symbionts of early- and late-successional plants. Our work paves the way for ecological readings of Mediterranean landscapes that include the astonishing diversity of below-ground interactions.

  11. Ectomycorrhizal Communities on the Roots of Two Beech (Fagus sylvatica) Populations from Contrasting Climates Differ in Nitrogen Acquisition in a Common Environment.

    Science.gov (United States)

    Leberecht, Martin; Dannenmann, Michael; Gschwendtner, Silvia; Bilela, Silvija; Meier, Rudolf; Simon, Judy; Rennenberg, Heinz; Schloter, Michael; Polle, Andrea

    2015-09-01

    Beech (Fagus sylvatica), a dominant forest species in Central Europe, competes for nitrogen with soil microbes and suffers from N limitation under dry conditions. We hypothesized that ectomycorrhizal communities and the free-living rhizosphere microbes from beech trees from sites with two contrasting climatic conditions exhibit differences in N acquisition that contribute to differences in host N uptake and are related to differences in host belowground carbon allocation. To test these hypotheses, young trees from the natural regeneration of two genetically similar populations, one from dryer conditions (located in an area with a southwest exposure [SW trees]) and the other from a cooler, moist climate (located in an area with a northeast exposure [NE trees]), were transplanted into a homogeneous substrate in the same environment and labeled with (13)CO2 and (15)NH4 (+). Free-living rhizosphere microbes were characterized by marker genes for the N cycle, but no differences between the rhizospheres of SW or NE trees were found. Lower (15)N enrichment was found in the ectomycorrhizal communities of the NE tree communities than the SW tree communities, whereas no significant differences in (15)N enrichment were observed for nonmycorrhizal root tips of SW and NE trees. Neither the ectomycorrhizal communities nor the nonmycorrhizal root tips originating from NE and SW trees showed differences in (13)C signatures. Because the level of (15)N accumulation in fine roots and the amount transferred to leaves were lower in NE trees than SW trees, our data support the suggestion that the ectomycorrhizal community influences N transfer to its host and demonstrate that the fungal community from the dry condition was more efficient in N acquisition when environmental constraints were relieved. These findings highlight the importance of adapted ectomycorrhizal communities for forest nutrition in a changing climate.

  12. Genet Variation of Ectomycorrhizal Suillus granulatus Fruiting Bodies in Pinus strobus Stands.

    Science.gov (United States)

    Lee, Hwa-Yong; Koo, Chang-Duck

    2016-03-01

    The genets of Suillus granulatus in a Pinus strobus stand (13 m × 60 m) were identified using random amplified polymorphic DNA molecular markers and the DNA of mushrooms that fruited for two years, and variations in genet size and distribution were analyzed. From a total of 116 mushrooms, 73 genets were identified and were grouped into three locations. The genets of mushrooms in close proximity differed from each other. The genet sizes varied at any of the three locations. The lengths of the identified genets in the pine stand ranged from 0.09 to 2.90 m. The average number of mushrooms per genet was 1.2 to 2.3, and the percentage of genets that were represented by a single mushroom was 44% to 94%. This variation in the genets of mushrooms in close proximity suggests that the ectomycorrhizal mycelial bodies of S. granulatus propagated sexually by fusing haploid spores derived from the mushrooms gills with below-ground mycelia. Therefore, it is necessary further to investigate the formation of new genets through spores in ectomycorrhizal fungal colonies.

  13. Role of fungal trehalose and bacterial thiamine in the improved survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N and the helper bacterium Pseudomonas fluorescens BBc6R8.

    Science.gov (United States)

    Deveau, A; Brulé, C; Palin, B; Champmartin, D; Rubini, P; Garbaye, J; Sarniguet, A; Frey-Klett, P

    2010-08-01

    The mycorrhiza helper bacterial strain Pseudomonas fluorescens BBc6R8 enhances the establishment of Laccaria bicolor S238N ectomycorrhizae by improving the pre-symbiotic growth and survival of the fungus. Nothing is known about the effect of the ectomycorrhizal fungus on the helper bacteria or the molecules that are involved in the interaction. In this study, we have monitored the population density of the helper strain P. fluorescens BBc6R8 in soils inoculated with L. bicolor and in control soils and found that the ectomycorhizal fungus improves the survival of the helper bacteria. We investigated the identity of the fungal and bacterial metabolites involved in this reciprocal growth-promoting effect using a combination of growth measurements, chemoattractant assays, HPLC and in silico genome analyses. We showed that trehalose, a disaccharide that accumulates to high levels in the fungal hyphae, chemoattracted and promoted the growth of the helper bacteria. Meanwhile, P. fluorescens BBc6R8 produced thiamine at concentrations that enhanced the fungal growth in vitro. Altogether our data indicate that the interaction between the two microorganisms is beneficial for both species and relies, at least in part, on trophic mutualism.

  14. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi.

    Science.gov (United States)

    Holste, Ellen K; Kobe, Richard K; Gehring, Catherine A

    2017-04-01

    Experiments with plant species that can host both arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) are important to separating the roles of fungal type and plant species and understanding the influence of the types of symbioses on plant growth and nutrient acquisition. We examined the effects of mycorrhizal fungal type on the growth and tissue nutrient content of two tree species (Eucalyptus grandis and Quercus costaricensis) grown under four nutrient treatments (combinations of low versus high nitrogen (N) and phosphorus (P) with different N:P ratios) in the greenhouse. Trees were inoculated with unidentified field mixtures of AMF or EMF species cultivated on root fragments of AMF- or EMF-specific bait plants. In E. grandis, inoculation with both AMF and EMF positively affected belowground plant dry weight and negatively affected aboveground dry weight, while only inoculation with AMF increased tissue nutrient content. Conversely, Q. costaricensis dry weight and nutrient content did not differ significantly among inoculation treatments, potentially due to its dependence on cotyledon reserves for growth. Mineral nutrition of both tree species differed with the ratio of N to P applied while growth did not. Our results demonstrate that both tree species' characteristics and the soil nutrient environment can affect how AMF and EMF interact with their host plants. This research highlights the importance of mycorrhizal fungal-tree-soil interactions during early seedling growth and suggests that differences between AMF and EMF associations may be crucial to understanding forest ecosystem functioning.

  15. Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement

    NARCIS (Netherlands)

    Heijden, van der E.W.; Kuyper, T.W.

    2003-01-01

    The ecological significance of a range of ectomycorrhizal fungal species, associated with Salix repens, was investigated under controlled conditions. Different ectomycorrhizas increased plant benefits in various ways. Effects of 12 ectomycorrhizal fungi on short-term (12 weeks) and long-term (20 and

  16. Ectomycorrhizal Fungi in Jiangsu Province, China

    Institute of Scientific and Technical Information of China (English)

    LIAN Bin; DONG Yuan-Rong; HOU Wei-Guo; TONG Li-Hua; YUAN Sheng

    2007-01-01

    A survey was conducted for about 3 years to study the abundance and diversity of ectomycorrhizal fungi (EMF) in Jiangsu Province, China. The identification of the fungal species was based on the microscopic and macroscopic characteristics of their fruiting bodies. About 126 species of EMF were found in Jiangsu Province. These fungi were largely categorized into three orders (of 121 species), four families (of 96 species), and six genera (of about 86 species).

  17. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum

    NARCIS (Netherlands)

    Peter, Martina; Kohler, Annegret; Ohm, Robin A.; Kuo, Alan; Krützmann, Jennifer; Morin, Emmanuelle; Arend, Matthias; Barry, Kerrie W.; Binder, Manfred; Choi, Cindy; Clum, Alicia; Copeland, Alex; Grisel, Nadine; Haridas, Sajeet; Kipfer, Tabea; LaButti, Kurt; Lindquist, Erika; Lipzen, Anna; Maire, Renaud; Meier, Barbara; Mihaltcheva, Sirma; Molinier, Virginie; Murat, Claude; Pöggeler, Stefanie; Quandt, C. Alisha; Sperisen, Christoph; Tritt, Andrew; Tisserant, Emilie; Crous, Pedro W.; Henrissat, Bernard; Nehls, Uwe; Egli, Simon; Spatafora, Joseph W.; Grigoriev, Igor V.; Martin, Francis M.

    2016-01-01

    The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal

  18. Multiscale assemblage of an ectomycorrhizal fungal community: the influence of host functional traits and soil properties in a 10-ha miombo forest.

    Science.gov (United States)

    Bauman, David; Raspé, Olivier; Meerts, Pierre; Degreef, Jérôme; Ilunga Muledi, Jonathan; Drouet, Thomas

    2016-10-01

    Ectomycorrhizal fungi (EMF) are highly diversified and dominant in a number of forest ecosystems. Nevertheless, their scales of spatial distribution and the underlying ecological processes remain poorly understood. Although most EMF are considered to be generalists regarding host identity, a preference toward functional strategies of host trees has never been tested. Here, the EMF community was characterised by DNA sequencing in a 10-ha tropical dry season forest-referred to as miombo-an understudied ecosystem from a mycorrhizal perspective. We used 36 soil parameters and 21 host functional traits (FTs) as candidate explanatory variables in spatial constrained ordinations for explaining the EMF community assemblage. Results highlighted that the community variability was explained by host FTs related to the 'leaf economics spectrum' (adjusted R(2) = 11%; SLA, leaf area, foliar Mg content), and by soil parameters (adjusted R(2) = 17%), notably total forms of micronutrients or correlated available elements (Al, N, K, P). Both FTs and soil generated patterns in the community at scales ranging from 75 to 375 m. Our results indicate that soil is more important than previously thought for EMF in miombo woodlands, and show that FTs of host species can be better predictors of symbiont distribution than taxonomical identity.

  19. Ectomycorrhizal and saprotrophic fungi respond differently to long-term experimentally increased snow depth in the High Arctic

    DEFF Research Database (Denmark)

    Mundra, Sunil; Halvorsen, Rune; Kauserud, Håvard

    2016-01-01

    Changing climate is expected to alter precipitation patterns in the Arctic, with consequences for subsurface temperature and moisture conditions, community structure, and nutrient mobilization through microbial belowground processes. Here, we address the effect of increased snow depth on the vari......Changing climate is expected to alter precipitation patterns in the Arctic, with consequences for subsurface temperature and moisture conditions, community structure, and nutrient mobilization through microbial belowground processes. Here, we address the effect of increased snow depth...... on the variation in species richness and community structure of ectomycorrhizal (ECM) and saprotrophic fungi. Soil samples were collected weekly from mid-July to mid-September in both control and deep snow plots. Richness of ECM fungi was lower, while saprotrophic fungi was higher in increased snow depth plots......; and saprotrophic fungi to NO3-N and pH. Small but significant changes in the composition of saprotrophic fungi could be attributed to snow treatment and sampling time, but not so for the ECM fungi. Delayed snow melt did not influence the temporal variation in fungal communities between the treatments. Results...

  20. Ectomycorrhizal diversity associated with Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India.

    Science.gov (United States)

    Itoo, Zahoor Ahmad; Reshi, Zafar A

    2014-01-01

    The present study was undertaken to document the ectomycorrhizal diversity associated with the Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India. The extensive field surveys carried out in the Kashmir Himalaya at five study sites resulted in the collection and identification of 76 potential ectomycorrhizal fungal species associated with the Cedrus deodara and Pinus wallichiana. Maximum 32 number of species were found associated with Pinus wallichiana, 19 with Cedrus deodara and 25 species were found growing in association with both the conifers. The present study reveals that Cedrus deodara and Pinus wallichiana in the Kashmir Himalaya, India harbour diverse ectomycorrhizal fungal species.

  1. Positive effects of organic farming on below-ground mutualists: large-scale comparison of mycorrhizal fungal communities in agricultural soils.

    Science.gov (United States)

    Verbruggen, Erik; Röling, Wilfred F M; Gamper, Hannes A; Kowalchuk, George A; Verhoef, Herman A; van der Heijden, Marcel G A

    2010-06-01

    *The impact of various agricultural practices on soil biodiversity and, in particular, on arbuscular mycorrhizal fungi (AMF), is still poorly understood, although AMF can provide benefit to plants and ecosystems. Here, we tested whether organic farming enhances AMF diversity and whether AMF communities from organically managed fields are more similar to those of species-rich grasslands or conventionally managed fields. *To address this issue, the AMF community composition was assessed in 26 arable fields (13 pairs of organically and conventionally managed fields) and five semi-natural grasslands, all on sandy soil. Terminal restriction fragment length polymorphism community fingerprinting was used to characterize AMF community composition. *The average number of AMF taxa was highest in grasslands (8.8), intermediate in organically managed fields (6.4) and significantly lower in conventionally managed fields (3.9). Moreover, AMF richness increased significantly with the time since conversion to organic agriculture. AMF communities of organically managed fields were also more similar to those of natural grasslands when compared with those under conventional management, and were less uniform than their conventional counterparts, as expressed by higher beta-diversity (between-site diversity). *We suggest that organic management in agro-ecosystems contributes to the restoration and maintenance of these important below-ground mutualists.

  2. Controls of Isotopic Patterns in Saprotrophic and Ectomycorrhizal Fungi

    Science.gov (United States)

    Isotopes of nitrogen (δ15N) and carbon (δ13C) in ectomycorrhizal and saprotrophic fungi contain important information about ecological functioning, but the complexity of physiological and ecosystem processes contributing to fungal carbon and nitrogen dynamics has limited our abil...

  3. Controls of Isotopic Patterns in Saprotrophic and Ectomycorrhizal Fungi

    Science.gov (United States)

    Isotopes of nitrogen (δ15N) and carbon (δ13C) in ectomycorrhizal and saprotrophic fungi contain important information about ecological functioning, but the complexity of physiological and ecosystem processes contributing to fungal carbon and nitrogen dynamics has limited our abil...

  4. Ectomycorrhizal fungi increase soil carbon storage: molecular signatures of mycorrhizal competition driving soil C storage at global scale

    Science.gov (United States)

    Averill, C.; Barry, B. K.; Hawkes, C.

    2015-12-01

    Soil carbon storage and decay is regulated by the activity of free-living decomposer microbes, which can be limited by nitrogen availability. Many plants associate with symbiotic ectomycorrhizal fungi on their roots, which produce nitrogen-degrading enzymes and may be able to compete with free-living decomposers for soil organic nitrogen. By doing so, ectomycorrhizal fungi may able to induce nitrogen limitation and reduce activity of free-living microbial decomposition by mining soil organic nitrogen. The implication is that ectomycorrhizal-dominated systems should have increased soil carbon storage relative to non-ectomycorrhizal systems, which has been confirmed at a global scale. To investigate these effects, we analyzed 364 globally distributed observations of soil fungal communities using 454 sequencing of the ITS region, along with soil C and N concentrations, climate and chemical data. We assigned operational taxonomic units using the QIIME pipeline and UNITE fungal database and assigned fungal reads as ectomycorrhizal or non-mycorrhizal based on current taxonomic knowledge. We tested for associations between ectomycorrhizal abundance, climate, and soil carbon and nitrogen. Sites with greater soil carbon had quantitatively more ectomycorrhizal fungi within the soil microbial community based on fungal sequence abundance, after accounting for soil nitrogen availability. This is consistent with our hypothesis that ectomycorrhizal fungi induce nitrogen-limitation of free-living decomposers and thereby increase soil carbon storage. The strength of the mycorrhizal effect increased non-linearly with ectomycorrhizal abundance: the greater the abundance, the greater the effect size. Mean annual temperature, potential evapotranspiration, soil moisture and soil pH were also significant predictors in the final AIC selected model. This analysis suggests that molecular data on soil microbial communities can be used to make quantitative biogeochemical predictions. The

  5. Environmental drivers of ectomycorrhizal communities in Europe's temperate oak forests.

    Science.gov (United States)

    Suz, Laura M; Barsoum, Nadia; Benham, Sue; Dietrich, Hans-Peter; Fetzer, Karl Dieter; Fischer, Richard; García, Paloma; Gehrman, Joachim; Kristöfel, Ferdinand; Manninger, Miklós; Neagu, Stefan; Nicolas, Manuel; Oldenburger, Jan; Raspe, Stephan; Sánchez, Gerardo; Schröck, Hans Werner; Schubert, Alfred; Verheyen, Kris; Verstraeten, Arne; Bidartondo, Martin I

    2014-11-01

    Ectomycorrhizal fungi are major ecological players in temperate forests, but they are rarely used in measures of forest condition because large-scale, high-resolution, standardized and replicated belowground data are scarce. We carried out an analysis of ectomycorrhizas at 22 intensively monitored long-term oak plots, across nine European countries, covering complex natural and anthropogenic environmental gradients. We found that at large scales, mycorrhizal richness and evenness declined with decreasing soil pH and root density, and with increasing atmospheric nitrogen deposition. Shifts in mycorrhizas with different functional traits were detected; mycorrhizas with structures specialized for long-distance transport related differently to most environmental variables than those without. The dominant oak-specialist Lactarius quietus, with limited soil exploration abilities, responds positively to increasing nitrogen inputs and decreasing pH. In contrast, Tricholoma, Cortinarius and Piloderma species, with medium-distance soil exploration abilities, show a consistently negative response. We also determined nitrogen critical loads for moderate (9.5-13.5 kg N/ha/year) and drastic (17 kg N/ha/year) changes in belowground mycorrhizal root communities in temperate oak forests. Overall, we generated the first baseline data for ectomycorrhizal fungi in the oak forests sampled, identified nitrogen pollution as one of their major drivers at large scales and revealed fungi that individually and/or in combination with others can be used as belowground indicators of environmental characteristics.

  6. Substantial compositional turnover of fungal communities in an alpine ridge-to-snowbed gradient.

    Science.gov (United States)

    Yao, Fang; Vik, Unni; Brysting, Anne K; Carlsen, Tor; Halvorsen, Rune; Kauserud, Håvard

    2013-10-01

    The main gradient in vascular plant, bryophyte and lichen species composition in alpine areas, structured by the topographic gradient from wind-exposed ridges to snowbeds, has been extensively studied. Tolerance to environmental stress, resulting from wind abrasion and desiccation towards windswept ridges or reduced growing season due to prolonged snow cover towards snowbeds, is an important ecological mechanism in this gradient. The extent to which belowground fungal communities are structured by the same topographic gradient and the eventual mechanisms involved are less well known. In this study, we analysed variation in fungal diversity and community composition associated with roots of the ectomycorrhizal plant Bistorta vivipara along the ridge-to-snowbed gradient. We collected root samples from fifty B. vivipara plants in ten plots in an alpine area in central Norway. The fungal communities were analysed using 454 pyrosequencing analyses of tag-encoded ITS1 amplicons. A distinct gradient in the fungal community composition was found that coincided with variation from ridge to snowbeds. This gradient was paralleled by change in soil content of carbon, nitrogen and phosphorus. A large proportion (66%) of the detected 801 nonsingleton operational taxonomic units (OTUs) were ascomycetes, while basidiomycetes dominated quantitatively (i.e. with respect to number of reads). Numerous fungal OTUs, many with taxonomic affinity to Sebacinales, Cortinarius and Meliniomyces, showed distinct affinities either to ridge or to snowbed plots, indicating habitat specialization. The compositional turnover of fungal communities along the gradient was not paralleled by a gradient in species richness.

  7. [Diversity of ectomycorrhizal fungi associated with Picea asperata in Xin Jiashan Forest of Qinling Mountains].

    Science.gov (United States)

    Geng, Rong; Geng, Zengchao; Huang, Jian; He, Wenxiang; Hou, Lin; She, Diao; Zhao, Jun; Shang, Jie

    2015-07-04

    To study the diversity of ectomycorrhizal fungi associated with Picea asperata in Xin Jiashan Forest of Qinling Mountains. This method combined the field investigation, morphological and molecular biology to identify ectomycorrhizal fungi. There were 37 different ectomycorrhizal fungi under 14 genera of 10 families on spruce in Xin Jiashan Forest of Qinling Mountains, 34 types belonged to Basidiomycetes, 1 to Ascomycete and 2 to unknown species. Among these identified ectomycorrhizal fungi types, Inocybe sp. was the dominant group; Russula nauseosa was the most dominant species; Hygrophorus sp., Tomentella coerulea, Inocybe sp. 1, Helotiaceae sp. and Lactarius deterrimus were common species; and the rest species were rare species. The large number but relatively rare species of dominant family and the small number but relatively more species of rare family survived in ectomycorrhizal fungal communities of Picea asperata. For the extreme degradation in arid area of western ecological system, identifing some rare family for further development and utilization had very important practical significance.

  8. Community structure of ectomycorrhizal fungi in Swedish boreal forests

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, Lena [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    1998-12-31

    The main aim of this work has been to elucidate the species composition and community structure of ectomycorrhizal fungi associated with mature trees and naturally regenerated seedlings in natural boreal forests in Sweden. Further, the effects of disturbances, such as wildfire and nitrogen inputs, were studied. Sporocarp surveys, morphological stratification and DNA-based analyses of mycorrhizas were used to describe the mycorrhizal fungal communities. In addition, a reference database useful for identifying individual mycorrhizas was developed based on analyses of sporocarp tissue. Overall, the species richness of ectomycorrhizal fungi was at least 30 to 40 times higher than that of their host trees. Naturally regenerated seedlings were colonized by the ectomycorrhizal fungal species present in the mycelial network of the old trees, indicating that the species composition will remain about the same provided that the host does not disappear. Wildfire, disturbing the fungal continuum, caused a shift in the frequencies of ectomycorrhizal fungi rather than a change in species composition. Nitrogen addition did not have any detectable effect on the abundance or species richness of mycorrhizas, but led to a decrease in sporocarp production. In all the studies, there was little resemblance between the species composition of sporocarps and that of mycorrhizas. The ITS-RFLP reference database was very useful in identifying single mycorrhizas, and proved to be a powerful tool for species identification of unknown mycorrhizas 76 refs, 2 figs, 2 tabs

  9. An overview of Cistus ectomycorrhizal fungi.

    Science.gov (United States)

    Comandini, O; Contu, M; Rinaldi, A C

    2006-09-01

    The genus Cistus comprises a group of about 20 shrub species found in wide areas throughout the whole Mediterranean region to the Caucasus. Being one of the main constituents of the Mediterranean-type maquis, this plant genus is peculiar in that it has developed a range of specific adaptations to resist summer drought and frequent disturbance events, such as fire and grazing. In addition, it can form both ectomycorrhizas and arbuscular mycorrhizas. In this paper, we review the information available on the ectomycorrhizal fungi of Cistus across its entire geographic range, as gathered and critically sifted from both published literature sources and personal observations. Although the resulting data matrix was based primarily on accounts of sporocarp inventories in the field, existing knowledge on the features of Cistus natural and synthesized ectomycorrhizas was also included and discussed. In total, more than 200 fungal species belonging to 40 genera have been reported so far to be associated with Cistus. An analysis of the pattern of ectomycorrhizal diversity and host specificity revealed that members of the Cortinariaceae and Russulaceae make the most of both Cistus-aspecific and Cistus-specific mycobionts. Further studies are needed to expand our preliminary knowledge of the mycorrhizal ecology and biology of Cistus and its fungal associates, focusing on topics such as mycobiont diversity, host specificity, fungal succession, mycorrhizal influence on stress tolerance, and impact of disturbances, while comparing the findings with those from other ecosystems.

  10. Epigeous fruiting bodies of ectomycorrhizal fungi as indicators of soil fertility and associated nitrogen status of boreal forests.

    Science.gov (United States)

    Kranabetter, J M; Friesen, J; Gamiet, S; Kroeger, P

    2009-10-01

    Soil fertility and associated nitrogen (N) status was a key ecosystem attribute, and surveys of ectomycorrhizal fungal (EMF) communities via epigeous fruiting bodies could provide an effective biotic indicator of forest soil productivity. We explored the utility of aboveground EMF communities in this regard by surveying sporocarps over a 3-year period from contrasting plant associations of southern old-growth boreal forests of British Columbia (Canada). Cumulative richness ranged from 39 to 89 EMF species per plot (0.15 ha) and followed a skewed parabolic correlation with foliar N concentrations and soil N availability. EMF species composition was consistently distinct in ordinations and strongly correlated to the increasing rates of N mineralization aligned with soil productivity. Approximately 40 EMF species were specialists, as they collectively indicated oligotrophic, mesotrophic, and eutrophic nutrient regimes, while the remaining species were categorized as broadly tolerant (distributed over 100% of the N gradient), partially intolerant (approximately 70%), or satellites (rare). The functional organization of EMF communities reflected by distribution classes could help define the ecological integrity of forests, which was characterized in this boreal landscape by an average allotment of 20 broadly tolerant, 25 partially intolerant, 15 specialist, and ten satellite species per plot. Epigeous fruiting bodies provided a disparate yet complementary view to the belowground assessment of EMF communities that was valuable in identifying indicators for ecosystem monitoring.

  11. Rock-eating fungi: Ectomycorrhizal fungi are picky eaters

    Science.gov (United States)

    Rosenstock, Nicholas; Smits, Mark; Berner, Christoffer; Kram, Pavel; Wallander, Hakan

    2014-05-01

    Ectomycorrhizal fungi, which form mutualistic symbiosis with the roots of most temperate and boreal forest trees, play a key role in the provision of nitrogen and phosphorus to their plant symbionts; they have also been shown to provide potassium and magnesium. Ectomycorhizal hyphae colonize and take up mineral nutrients (including P, K, and Mg) from primary mineral surfaces in the soil. It is poorly understood whether mineral colonization and uptake of nutrients from minerals can increase in accordance with host plant demand for these nutrients, and this question has been difficult to address in field settings. Ectomycorrhizal fungal communities are diverse and niche separation according to nutrient uptake and transport to the host is commonly considered one of the major factors maintaining diversity and shaping ectomycorrhizal community composition.We investigated ectomycorrhizal growth, community composition, and mineral colonization in a series of connected Norway spruce forests in the Czech republic. These forests have similar aspect, climate and stand history, but are underlain by different parent materials and are, as a result, limited by different nutrients. The productivity of forests overlying a high amount of serpentinite rock are co-limited by K and P, those growing on primarily granitic rock are limited by Mg, while those on amphibolite are N limited. We assessed the fungal community in both soil and in-growth mesh bags measuring biomarkers, using in-growth assays and performing community analysis with 454 sequencing of the ITS region. In-growth mesh bags were filled with quartz sand and incubated for two growing seasons in the soil. These mesh bags select for ectomycorrhizal hyphae and were either pure quartz sand or amended with ground apatite (Ca and P source), hornblende (Mg source) or biotite (K source). Ectomycorrhizal growth and community composition were most strongly affected by parent material. The phosphorus-limited site had the lowest tree

  12. Moth outbreaks alter root-associated fungal communities in subarctic mountain birch forests.

    Science.gov (United States)

    Saravesi, Karita; Aikio, Sami; Wäli, Piippa R; Ruotsalainen, Anna Liisa; Kaukonen, Maarit; Huusko, Karoliina; Suokas, Marko; Brown, Shawn P; Jumpponen, Ari; Tuomi, Juha; Markkola, Annamari

    2015-05-01

    Climate change has important implications on the abundance and range of insect pests in forest ecosystems. We studied responses of root-associated fungal communities to defoliation of mountain birch hosts by a massive geometrid moth outbreak through 454 pyrosequencing of tagged amplicons of the ITS2 rDNA region. We compared fungal diversity and community composition at three levels of moth defoliation (intact control, full defoliation in one season, full defoliation in two or more seasons), replicated in three localities. Defoliation caused dramatic shifts in functional and taxonomic community composition of root-associated fungi. Differentially defoliated mountain birch roots harbored distinct fungal communities, which correlated with increasing soil nutrients and decreasing amount of host trees with green foliar mass. Ectomycorrhizal fungi (EMF) abundance and richness declined by 70-80 % with increasing defoliation intensity, while saprotrophic and endophytic fungi seemed to benefit from defoliation. Moth herbivory also reduced dominance of Basidiomycota in the roots due to loss of basidiomycete EMF and increases in functionally unknown Ascomycota. Our results demonstrate the top-down control of belowground fungal communities by aboveground herbivory and suggest a marked reduction in the carbon flow from plants to soil fungi following defoliation. These results are among the first to provide evidence on cascading effects of natural herbivory on tree root-associated fungi at an ecosystem scale.

  13. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling.

    Directory of Open Access Journals (Sweden)

    Mónica Sebastiana

    Full Text Available Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.

  14. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling.

    Science.gov (United States)

    Sebastiana, Mónica; Vieira, Bruno; Lino-Neto, Teresa; Monteiro, Filipa; Figueiredo, Andreia; Sousa, Lisete; Pais, Maria Salomé; Tavares, Rui; Paulo, Octávio S

    2014-01-01

    Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.

  15. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts

    Directory of Open Access Journals (Sweden)

    Rygiewicz Paul T

    2005-05-01

    Full Text Available Abstract Background The Internal Transcribed Spacer (ITS regions of fungal ribosomal DNA (rDNA are highly variable sequences of great importance in distinguishing fungal species by PCR analysis. Previously published PCR primers available for amplifying these sequences from environmental samples provide varying degrees of success at discriminating against plant DNA while maintaining a broad range of compatibility. Typically, it has been necessary to use multiple primer sets to accommodate the range of fungi under study, potentially creating artificial distinctions for fungal sequences that amplify with more than one primer set. Results Numerous sequences for PCR primers were tested to develop PCR assays with a wide range of fungal compatibility and high discrimination from plant DNA. A nested set of 4 primers was developed that reflected these criteria and performed well amplifying ITS regions of fungal rDNA. Primers in the 5.8S sequence were also developed that would permit separate amplifications of ITS1 and ITS2. A range of basidiomycete fruiting bodies and ascomycete cultures were analyzed with the nested set of primers and Restriction Fragment Length Polymorphism (RFLP fingerprinting to demonstrate the specificity of the assay. Single ectomycorrhizal root tips were similarly analyzed. These primers have also been successfully applied to Quantitative PCR (QPCR, Length Heterogeneity PCR (LH-PCR and Terminal Restriction Fragment Length Polymorphism (T-RFLP analyses of fungi. A set of wide-range plant-specific primers were developed at positions corresponding to one pair of the fungal primers. These were used to verify that the host plant DNA was not being amplified with the fungal primers. Conclusion These plant primers have been successfully applied to PCR-RFLP analyses of forest plant tissues from above- and below-ground samples and work well at distinguishing a selection of plants to the species level. The complete set of primers was

  16. Bio-Mobilization of Potassium from Clay Minerals: II. By Ectomycorrhizal Fungi

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Ectomycorrhizal fungi, including Cenococcum geophilurn SIV (Cg SIV), and Pisolithus tinctorius 2144(Pt 2144), 441 (Pt 441) and XC1 (Pt XC1), were cultured in Pachlewski liquid medium with H2KPO4, KClsaturated vermiculite and mica as K sources, respectively, to investigate the mechanism of K absorption and mobilization by the fungi. Fungal growth rate, K absorption and mobilization varied significantly among the fungal species. Faster growth and greater K accumulation in Pt XC1 than Pt 2 144, Pt 441 and Cg siv were observed. Ectomycorrhizal fungi depressed HCl-soluble K in minerals after successive extractions by water and NH4OAc. Ratio of the total amount of K, including water-, NH4OAc- and HCl-soluble K, lost from substrates to the K accumulated in fungal colonies was less than 60%. These reveal that the ectomycorrhizal fungi could utilize K in interlayer and structural pools, which are usually unavailable for plants in short period. Large differences in the depletion of K in interlayer and structural pools by fungi were observed at fungal harvest. Taking into account the nutrient absorption by ectomycorrhizal fungi in symbionts and the direct contact between hyphae and soils, the fungi species colonized on the root surfaces seemed to be related to the effectiveness of mycorrhizas to utilize K in soils. Ectomycorrhizal fungi differed in the efflux of protons and oxalate. Pt XC1 was observed to have greatest ability to effuse protons and oxalate among the fungi adopted in the experiment. Furthermore, the higher the concentrations of protons and oxalate in the liquid culture solutions, the larger the depletion of K in interlayer and structural pools in minerals by fungi. Protons could replace interlayer K and chelation of oxalate with Fe and A1 in crystal lattice could cause weathering of clay minerals. So, protons and oxalate produced by ectomycorrhizal fungi might play an important role in K mobilization in these two pools.

  17. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species.

    Science.gov (United States)

    Duponnois, R; Plenchette, C

    2003-04-01

    The aims of this study were to test the effects of a mycorrhiza helper bacterium (MHB), Pseudomonas monteilii strain HR13 on the mycorrhization of (1) an Australian Acacia, A. holosericea, by several ectomycorrhizal fungi or one endomycorrhizal fungus Glomus intraradices, and (2) several Australian Acacia species by Pisolithus alba strain IR100 under glasshouse conditions. Bacterial inoculant HR13 significantly promoted ectomycorrhizal colonization for all the Acacia species, from 45.8% ( A. mangium) to 70.3% ( A. auriculiformis). A stimulating effect of HR13 on the ectomycorrhizal establishment was recorded with all the fungal isolates (strains of Pisolithus and Scleroderma). The same effect of bacteria on the frequency of endomycorrhizal colonization of A. holosericea seedlings by G. intraradices with vesicles and hyphae frequencies was recorded. The stimulation of saprophytic fungal growth by MHB is usually the main mechanism that could explain this bacterial effect on mycorrhizal establishment. MHB could stimulate the production of phenolic compounds such as hypaphorine and increase the aggressiveness of the fungal symbiont. However, no significant effect of MHB on fungal growth was recorded with Scleroderma isolates under axenic conditions but positive bacterial effects were observed with Pisolithus strains. From a practical viewpoint, it appears that MHB could stimulate the mycorrhizal colonization of Australian Acacia species with ectomycorrhizal or endomycorrhizal fungi, and could also facilitate controlled mycorrhization in nursery practices where Acacia species are grown for forestation purposes.

  18. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum

    NARCIS (Netherlands)

    Peter, Martina; Kohler, Annegret; Ohm, Robin A|info:eu-repo/dai/nl/304837628; Kuo, Alan; Krützmann, Jennifer; Morin, Emmanuelle; Arend, Matthias; Barry, Kerrie W; Binder, Manfred; Choi, Cindy; Clum, Alicia; Copeland, Alex; Grisel, Nadine; Haridas, Sajeet; Kipfer, Tabea; LaButti, Kurt; Lindquist, Erika; Lipzen, Anna; Maire, Renaud; Meier, Barbara; Mihaltcheva, Sirma; Molinier, Virginie; Murat, Claude; Pöggeler, Stefanie; Quandt, C Alisha; Sperisen, Christoph; Tritt, Andrew; Tisserant, Emilie; Crous, Pedro W|info:eu-repo/dai/nl/252069927; Henrissat, Bernard; Nehls, Uwe; Egli, Simon; Spatafora, Joseph W; Grigoriev, Igor V; Martin, Francis M

    2016-01-01

    The most frequently encountered symbiont on tree roots is the ascomycete Cenococcum geophilum, the only mycorrhizal species within the largest fungal class Dothideomycetes, a class known for devastating plant pathogens. Here we show that the symbiotic genomic idiosyncrasies of ectomycorrhizal basidi

  19. Ectomycorrhizal community structure and function in relation to forest residue harvesting and wood ash applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahmood, Shahid

    2000-05-01

    Ectomycorrhizal fungi form symbiotic associations with tree roots and assist in nutrient-uptake and -cycling in forest ecosystems, thereby constituting a most significant part of the microbial community. The aims of the studies described in this thesis were to evaluate the potential of DNA-based molecular methods in below-ground ectomycorrhizal community studies and to investigate changes in ectomycorrhizal communities on spruce roots in sites with different N deposition, and in sites subjected to harvesting of forest residues or application of wood ash. The ability of selected ectomycorrhizal fungi to mobilise nutrients from wood ash and to colonise root systems in the presence and absence of ash was also studied. In total 39 ectomycorrhizal species were detected in the experimental forests located in southern Sweden. At each site five to six species colonised around 60% of the root tips. The dominant species, common to the sites, were Tylospora fibrillosa, Thelephora terrestris and Cenococcum geophilum. Differences between two sites with differing levels of N deposition suggested that community structure may be influenced by N deposition, although site history, location and degree of isolation may also influence species composition. Repeated harvesting of forest residues reduced numbers of mycorrhizal roots in the humus layer to approximately 50% of that in control plots but no shift in the ectomycorrhizal community could be detected. At another site, application of granulated wood ash induced a shift in ectomycorrhizal community structure and three ectomycorrhizal fungi ('ash fungi') were found to colonise ash granules. Two 'ash fungi' showed a superior ability to solubilise stabilised wood ash in laboratory experiments compared to other ectomycorrhizal isolates from the same site. In laboratory microcosms containing intact mycorrhizal mycelia, colonisation of wood ash patches by one 'ash fungus' was good whereas colonisation by

  20. Linking aboveground and belowground diversity

    NARCIS (Netherlands)

    Deyn, de G.B.; Putten, van der W.H.

    2005-01-01

    Aboveground and belowground species interactions drive ecosystem properties at the local scale, but it is unclear how these relationships scale-up to regional and global scales. Here, we discuss our current knowledge of aboveground and belowground diversity links from a global to a local scale. Glob

  1. Unravelling soil fungal communities from different Mediterranean land-use backgrounds.

    Directory of Open Access Journals (Sweden)

    Alberto Orgiazzi

    Full Text Available BACKGROUND: Fungi strongly influence ecosystem structure and functioning, playing a key role in many ecological services as decomposers, plant mutualists and pathogens. The Mediterranean area is a biodiversity hotspot that is increasingly threatened by intense land use. Therefore, to achieve a balance between conservation and human development, a better understanding of the impact of land use on the underlying fungal communities is needed. METHODOLOGY/PRINCIPAL FINDINGS: We used parallel pyrosequencing of the nuclear ribosomal its regions to characterize the fungal communities in five soils subjected to different anthropogenic impact in a typical mediterranean landscape: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards. Marked differences in the distribution of taxon assemblages among the different sites and communities were found. Data analyses consistently indicated a sharp distinction of the fungal community of the cork oak forest soil from those described in the other soils. Each soil showed features of the fungal assemblages retrieved which can be easily related to the above-ground settings: ectomycorrhizal phylotypes were numerous in natural sites covered by trees, but were nearly completely missing from the anthropogenic and grass-covered sites; similarly, coprophilous fungi were common in grazed sites. CONCLUSIONS/SIGNIFICANCE: Data suggest that investigation on the below-ground fungal community may provide useful elements on the above-ground features such as vegetation coverage and agronomic procedures, allowing to assess the cost of anthropogenic land use to hidden diversity in soil. Datasets provided in this study may contribute to future searches for fungal bio-indicators as biodiversity markers of a specific site or a land-use degree.

  2. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests?

    Science.gov (United States)

    Näsholm, Torgny; Högberg, Peter; Franklin, Oskar; Metcalfe, Daniel; Keel, Sonja G; Campbell, Catherine; Hurry, Vaughan; Linder, Sune; Högberg, Mona N

    2013-04-01

    Symbioses between plant roots and mycorrhizal fungi are thought to enhance plant uptake of nutrients through a favourable exchange for photosynthates. Ectomycorrhizal fungi are considered to play this vital role for trees in nitrogen (N)-limited boreal forests. We followed symbiotic carbon (C)-N exchange in a large-scale boreal pine forest experiment by tracing (13) CO(2) absorbed through tree photosynthesis and (15) N injected into a soil layer in which ectomycorrhizal fungi dominate the microbial community. We detected little (15) N in tree canopies, but high levels in soil microbes and in mycorrhizal root tips, illustrating effective soil N immobilization, especially in late summer, when tree belowground C allocation was high. Additions of N fertilizer to the soil before labelling shifted the incorporation of (15) N from soil microbes and root tips to tree foliage. These results were tested in a model for C-N exchange between trees and mycorrhizal fungi, suggesting that ectomycorrhizal fungi transfer small fractions of absorbed N to trees under N-limited conditions, but larger fractions if more N is available. We suggest that greater allocation of C from trees to ectomycorrhizal fungi increases N retention in soil mycelium, driving boreal forests towards more severe N limitation at low N supply. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  3. Diversity of Ectomycorrhizal Fungi Associated with Eucalyptus in Africa and Madagascar

    Directory of Open Access Journals (Sweden)

    Marc Ducousso

    2012-01-01

    Full Text Available Use of the Australian genus Eucalyptus in short rotation plantations in Africa and Madagascar has developed over the last century to such an extent that it is becoming the most frequently planted genus in Africa. In order to find ecologically well-adapted eucalypts, foresters have tested different species of various origins and the number of tested Eucalyptus species now exceeds 150 in Africa. Due to the ability of eucalypts to naturally form ectomycorrhizae, even in the absence of any controlled introduction of compatible ectomycorrhizal fungal partners, their introduction in new ecosystems has direct consequences for ectomycorrhizal fungus communities. A bibliographical compilation, together with original field observations on putative ectomycorrhizal fungi associated with eucalypts in Africa and in Madagascar, has been drawn up in two lists: one for Africa and one for Madagascar where surprisingly high fungal diversity was observed. The level of diversity, the putative origin of the fungi, and their potential impact on native ectomycorrhizal fungi are discussed. The development of eucalypts plantations will inexorably lead to the increase of exotic fungal species being potentially invasive in the considered region.

  4. The carbon starvation response of the ectomycorrhizal fungus Paxillus involutus.

    Science.gov (United States)

    Ellström, Magnus; Shah, Firoz; Johansson, Tomas; Ahrén, Dag; Persson, Per; Tunlid, Anders

    2015-04-01

    The amounts of carbon allocated to the fungal partner in ectomycorrhizal associations can vary substantially depending on the plant growth and the soil nutrient conditions, and the fungus may frequently be confronted with limitations in carbon. We used chemical analysis and transcriptome profiling to examine the physiological response of the ectomycorrhizal fungus Paxillus involutus to carbon starvation during axenic cultivation. Carbon starvation induced a decrease in the biomass. Concomitantly, ammonium, cell wall material (chitin) and proteolytic enzymes were released into the medium, which suggest autolysis. Compared with the transcriptome of actively growing hyphae, about 45% of the transcripts analyzed were differentially regulated during C-starvation. Induced during starvation were transcripts encoding extracellular enzymes such as peptidases, chitinases and laccases. In parallel, transcripts of N-transporters were upregulated, which suggest that some of the released nitrogen compounds were re-assimilated by the mycelium. The observed changes suggest that the carbon starvation response in P. involutus is associated with complex cellular changes that involves autolysis, recycling of intracellular compounds by autophagy and reabsorption of the extracellular released material. The study provides molecular markers that can be used to examine the role of autolysis for the turnover and survival of the ectomycorrhizal mycelium in soils.

  5. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita.

    Science.gov (United States)

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V; Pringle, Anne

    2015-03-01

    The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes involved in carbon metabolism, including decomposition and carbon storage. CE1 genes of the ectomycorrhizal A. muscaria appear diverged from all other fungal homologues, and more similar to CE1s of bacteria, suggesting a horizontal gene transfer (HGT) event. In order to test whether AmanitaCE1s were acquired horizontally, we built a phylogeny of CE1s collected from across the tree of life, and describe the evolution of CE1 genes among Amanita and relevant lineages of bacteria. CE1s of symbiotic Amanita were very different from CE1s of asymbiotic Amanita, and are more similar to bacterial CE1s. The protein structure of one CE1 gene of A. muscaria matched a depolymerase that degrades the carbon storage molecule poly((R)-3-hydroxybutyrate) (PHB). Asymbiotic Amanita do not carry sequence or structural homologues of these genes. The CE1s acquired through HGT may enable novel metabolisms, or play roles in signaling or defense. This is the first evidence for the horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal fungi.

  6. [Nutrient transfer and growth of Pinus greggii Engelm. inoculated with edible ectomycorrhizal mushrooms in two substrates].

    Science.gov (United States)

    Rentería-Chávez, María C; Pérez-Moreno, Jesús; Cetina-Alcalá, Víctor M; Ferrera-Cerrato, Ronald; Xoconostle-Cázares, Beatriz

    An ectomycorrhiza is a mutualistic symbiosis of paramount importance in forestry and tree production. One of the selection criteria of ectomycorrhizal fungi that has currently gained importance is their edibility due to the economic, ecological and cultural relevance of edible ectomycorrhizal mushrooms as a non-timber forest product. The effect of the inoculation with three edible ectomycorrhizal mushrooms: Laccaria laccata, Laccaria bicolor y Hebeloma leucosarx, which are widely sold in Mexico, on the growth and nutrient contents of Pinus greggii grown in an experimental substrate and a commercial substrate enriched with a slow-release fertilizer, was evaluated. Two years after sowing, differences in terms of shoot and root biomass and macro and micronutrient contents between inoculated and non-inoculated plants, were recorded independently of the fungal species and the substrate. Despite the fact that plants grown in the commercial substrate had higher growth and nutrient contents, their ectomycorrhizal colonization percentages were smaller than those of the plants grown in the experimental substrate. The differences in the nutrient transfer to the inoculated plant shoots among the evaluated fungal species were recorded. Ca mobilization by L. laccata, Na by L. bicolor and Mn by H. leucosarx were observed in the plants growing in the experimental substrate. It has been demonstrated that the selection of substrates constitutes an important factor in the production of ectomycorrhizal plants and that the three evaluated species of edible ectomycorrhizal mushrooms have an enormous potential in the controlled mycorrhization of P. greggii. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  7. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems.

    Science.gov (United States)

    Bödeker, Inga T M; Clemmensen, Karina E; de Boer, Wietse; Martin, Francis; Olson, Åke; Lindahl, Björn D

    2014-07-01

    In northern forests, belowground sequestration of nitrogen (N) in complex organic pools restricts nutrient availability to plants. Oxidative extracellular enzymes produced by ectomycorrhizal fungi may aid plant N acquisition by providing access to N in macromolecular complexes. We test the hypotheses that ectomycorrhizal Cortinarius species produce Mn-dependent peroxidases, and that the activity of these enzymes declines at elevated concentrations of inorganic N. In a boreal pine forest and a sub-arctic birch forest, Cortinarius DNA was assessed by 454-sequencing of ITS amplicons and related to Mn-peroxidase activity in humus samples with- and without previous N amendment. Transcription of Cortinarius Mn-peroxidase genes was investigated in field samples. Phylogenetic analyses of Cortinarius peroxidase amplicons and genome sequences were performed. We found a significant co-localization of high peroxidase activity and DNA from Cortinarius species. Peroxidase activity was reduced by high ammonium concentrations. Amplification of mRNA sequences indicated transcription of Cortinarius Mn-peroxidase genes under field conditions. The Cortinarius glaucopus genome encodes 11 peroxidases - a number comparable to many white-rot wood decomposers. These results support the hypothesis that some ectomycorrhizal fungi--Cortinarius species in particular--may play an important role in decomposition of complex organic matter, linked to their mobilization of organically bound N.

  8. Growth dynamic of dual culture systems comprising ectomycorrhizal fungi and mycorrhiza helper bacteria

    OpenAIRE

    Sousa, Nadine R.; Ramos, Miguel A.; Castro, Paula M. L.

    2013-01-01

    Ectomycorrhizal fungi are ubiquitous root symbionts that associate with the majority of forest trees and often have a crucial role on plant survival and growth in impoverished soils. Within the vast community of soil microorganisms, the mycorrhiza helper bacteria (MHB) are recognizably one of the groups that most directly affect fungal growth and mycorrhiza establishment. Although their positive effect on the mycorrhizal partnership has been previously reported, the specificity of such associ...

  9. Formation of Mycorrhizs-like Structures in Cultured Root/Callus of Cathays argyrophylla Chun et Kuang Infected with the Ectomycorrhizal Fungus Cenococcum geophilum Fr.

    Institute of Scientific and Technical Information of China (English)

    Xue Sun; Yu-Hua Li; Lu-Min Vaario

    2006-01-01

    An in vitro system was used for ectomycorrhizal synthesis of Cenococcum geophilum Fr. with Cathaya argyrophylla Chun et Kuang, an endangered species. Calli initiated from stem segments and adventitious roots differentiated from young seedlings were removed and cocultured with Cenococcum geophilum on a modified Murashige-Skoog medium. Fungal hyphae were visible within intercellular spaces of the callus 4 weeks after inoculation, but definite and well-developed Hartig net structures did not form in the calli 8 weeks after inoculation. The typical ectomycorrhizal structures (i.e. hyphal mantle and intracortical Hartig net) were observed in root segments 8 weeks after inoculation. This is the first report of aseptic ectomycorrhizal-like formation/infection between root organ/callus of Cathaya argyrophylla and the ectomycorrhizal fungus Cenococcum geophilum. This culture system is useful for further investigation of mycorrhizal synthesis in Cathaya trees.

  10. Ectomycorrhizal communities in a Tuber aestivum Vittad. orchard in Poland

    Directory of Open Access Journals (Sweden)

    Hilszczańska Dorota

    2016-01-01

    Full Text Available Cultivation of the Burgundy truffle, Tuber aestivum Vittad., has become a new agricultural alternative in Poland. For rural economies, the concept of landscaping is often considerably more beneficial than conventional agriculture and promotes reforestation, as well as land-use stability. Considering examples from France, Italy, Hungary and Spain, truffle cultivation stimulates economic and social development of small, rural communities. Because there is no long tradition of truffle orchards in Poland, knowledge regarding the environmental factors regulating the formation of fruiting bodies of T. aestivum is limited. Thus, knowledge concerning ectomycorrhizal communities of T. aestivum host species is crucial to ensuring successful Burgundy truffle production. We investigated the persistence of T. aestivum ectomycorrhizae on roots of hazel (Corylus avellana L. and oak (Quercus robur L. and checked the host-species influence on community structure of ectomycorrhizal fungi. The study was conducted in an experimental plantation located in eastern Poland and established in 2008. We demonstrated that the number of fungal taxa was not significantly different between oak and hazel. However, the species composition differed between these two host trees. During the three-year study, we observed that species richness did not increase with the age of the plantation.

  11. ClassII peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi.

    Science.gov (United States)

    Bödeker, Inga T M; Nygren, Cajsa M R; Taylor, Andy F S; Olson, Ake; Lindahl, Björn D

    2009-12-01

    Fungal peroxidases (ClassII) have a key role in degrading recalcitrant polyphenolic compounds in boreal forest wood, litter and humus. To date, their occurrence and activity have mainly been studied in a small number of white-rot wood decomposers. However, peroxidase activity is commonly measured in boreal forest humus and mineral soils, in which ectomycorrhizal fungi predominate. Here, we used degenerate PCR primers to investigate whether peroxidase-encoding genes are present in the genomes of a wide phylogenetic range of ectomycorrhizal taxa. Cloning and sequencing of PCR products showed that ectomycorrhizal fungi from several different genera possess peroxidase genes. The new sequences represent four major homobasidiomycete lineages, but the majority is derived from Cortinarius, Russula and Lactarius. These genera are ecologically important, but consist mainly of non-culturable species from which little ecophysiological information is available. The amplified sequences contain conserved active sites, both for folding and substrate oxidation. In some Cortinarius spp., there is evidence for gene duplications during the evolution of the genus. ClassII peroxidases seem to be an ancient and a common feature of most homobasidiomycetes, including ectomycorrhizal fungi. Production of extracellular peroxidases may provide ectomycorrhizal fungi with access to nitrogen sequestered in complex polyphenolic sources.

  12. Ectomycorrhizal Community Structure and Soil Characteristics of Mature Lodgepole Pine (Pinus Contorta) and Adjacent Stands of Old Growth Mixed Conifer in Yellowstone National Park, Wyoming USA

    Science.gov (United States)

    Douglas, Robert B.; Parker, V. Thomas; Cullings, Kenneth W.; Sun, Sidney (Technical Monitor)

    2003-01-01

    Forest development patterns following disturbance are known to influence the physical and chemical attributes of soils at different points in time. Changes in soil resources are thought to have a corresponding effect on ectomycorrhizal (ECM) community structure. We used molecular methods to compare below-ground ECM species richness, composition, and abundance between adjacent stands of homogenous lodgepole pine and old growth mixed conifer in Yellowstone National Park (YNP). In each stand-type we collected soil cores to both identify mycorrhizae and assess soil chemistry. Although no statistical difference was observed in the mean number of ECM root tips per core between stand types, the total number of species identified (85 versus 35) and the mean number of species per core (8.8 +/- 0.6 versus 2.5 +/- 0.3) were significantly higher in lodgepole pine. Differences between the actual and estimated species richness levels indicated that these forest types support a high number of ECM species and that undersampling was severe. Species compositions were widely disparate between stands where only four species were shared out of a total of 116. Soil analysis also revealed that mixed conifer was significantly lower in pH, but higher in organic matter, potassium, phosphorus, and ammonium when compared to lodgepole pine stands. Species richness per core was correlated with these chemical data, however, analysis of covariance indicated that stand type was the only statistically significant factor in the observed difference in species richness. Our data suggest that ECM fungal richness increases as homogenous lodgepole pine stands grow and mature, but declines after Engelmann spruce and subalpine fir colonize. Despite difficulties linking species composition with soil chemistry, there are a variety of physical and chemical factors that could be influencing ECM community structure. Future field experiments are necessary to test some of the mechanisms potentially operating

  13. Metal-chelating compounds produced by ectomycorrhizal fungi collected from pine plantations.

    Science.gov (United States)

    Machuca, A; Pereira, G; Aguiar, A; Milagres, A M F

    2007-01-01

    To investigate the in vitro production of metal-chelating compounds by ectomycorrhizal fungi collected from pine plantations in southern Chile. Scleroderma verrucosum, Suillus luteus and two isolates of Rhizopogon luteolus were grown in solid and liquid modified Melin-Norkans (MMN) media with and without iron addition and the production of iron-chelating compounds was determined by Chrome Azurol S (CAS) assay. The presence of hydroxamate and catecholate-type compounds and organic acids was also investigated in liquid medium. All isolates produced iron-chelating compounds as detected by CAS assay, and catecholates, hydroxamates as well as oxalic, citric and succinic acids were also detected in all fungal cultures. Scleroderma verrucosum produced the greatest amounts of catecholates and hydroxamates whereas the highest amounts of organic acids were detected in S. luteus. Nevertheless, the highest catecholate, hydroxamate and organic acid concentrations did not correlate with the highest CAS reaction which was observed in R. luteolus (Yum isolate). Ectomycorrhizal fungi produced a variety of metal-chelating compounds when grown in liquid MMN medium. However, the addition of iron to all fungi cultures reduced the CAS reaction, hydroxamate and organic acid concentrations. Catecholate production was affected differently by iron, depending on the fungal isolate. The ectomycorrhizal fungi described in this study have never been reported to produce metal-chelating compound production. Moreover, apart from some wood-rotting fungi, this is the first evidence of the presence of catecholates in R. luteolus, S. luteus and S. verrucosum cultures.

  14. Characterisation of ectomycorrhizal formation by the exotic fungus Amanita muscaria with Nothofagus cunninghamii in Victoria, Australia.

    Science.gov (United States)

    Dunk, Christopher William; Lebel, Teresa; Keane, Philip J

    2012-02-01

    The occurrence of the exotic ectomycorrhizal fungus Amanita muscaria in a mixed Nothofagus-Eucalyptus native forest was investigated to determine if A. muscaria has switched hosts to form a successful association with a native tree species in a natural environment. A mycorrhizal morphotype consistently found beneath A. muscaria sporocarps was examined, and a range of morphological and anatomical characteristics in common with those described for ectomycorrhizae formed by A. muscaria on a broad range of hosts were observed. A full description is provided. The likely plant associate was determined to be Nothofagus cunninghamii based upon anatomy of the roots. Analysis of ITS-1 and ITS-2 regions of nuclear ribosomal DNA sequences confirmed the identities of both fungal and plant associates. These findings represent conclusive evidence of the invasion of a non-indigenous ectomycorrhizal fungus into native forest and highlight the ecological implications of this discovery.

  15. The spatial distribution of acid phosphatase activity in ectomycorrhizal tissues depends on soil fertility and morphotype, and relates to host plant phosphorus uptake.

    Science.gov (United States)

    Alvarez, Maricel; Huygens, Dries; Díaz, Leila Milena; Villanueva, Claudia Añazco; Heyser, Wolfgang; Boeckx, Pascal

    2012-01-01

    Acid phosphatase (ACP) enzymes are involved in the mobilization of soil phosphorus (P) and polyphosphate accumulated in the fungal tissues of ectomycorrhizal roots, thereby influencing the amounts of P that are stored in the fungus and transferred to the host plant. This study evaluated the effects of ectomycorrhizal morphotype and soil fertility on ACP activity in the extraradical mycelium (ACP(myc)), the mantle (ACP(mantle)) and the Hartig net region (ACP(Hartig)) of ectomycorrhizal Nothofagus obliqua seedlings. ACP activity was quantified in vivo using enzyme-labelled fluorescence-97 (ELF-97) substrate, confocal laser microscopy and digital image processing routines. There was a significant effect of ectomycorrhizal morphotype on ACP(myc), ACP(mantle) and ACP(Hartig), while soil fertility had a significant effect on ACP(myc) and ACP(Hartig). The relative contribution of the mantle and the Hartig net region to the ACP activity on the ectomycorrhizal root was significantly affected by ectomycorrhizal morphotype and soil fertility. A positive correlation between ACP(Hartig) and the shoot P concentration was found, providing evidence that ACP activity at the fungus:root interface is involved in P transfer from the fungus to the host. It is concluded that the spatial distribution of ACP in ectomycorrhizas varies as a function of soil fertility and colonizing fungus.

  16. Growth and Nutrition of Eucalypt Rooted Cuttings Promoted by Ectomycorrhizal Fungi in Commercial Nurseries

    Directory of Open Access Journals (Sweden)

    Andrezza Mara Martins Gandini

    2015-12-01

    Full Text Available ABSTRACT Ectomycorrhizal fungi (EMF may improve the adaptation of eucalypts saplings to field conditions and allow more efficient fertilizer use. The effectiveness of EMF inoculum application in promoting fungal colonization, plant growth, nutrient uptake, and the quality of rooted cuttings was evaluated forEucalyptus urophylla under commercial nursery conditions. For inoculated treatments, fertilization of the sapling substrate was reduced by 50 %. The experiment was carried out in a completely randomized design in a 4 × 4 factorial arrangement, wherein the factors were inoculum application rates of 0 (control, 5, 10, and 15 gel beads of calcium alginate containing the vegetative mycelium of Amanita muscaria, Elaphomyces antracinus, Pisolithus microcarpus, andScleroderma areolatum, plus a non-inoculated treatment without fertilization reduction in the substrate (commercial. Ectomycorrhizal fungi increased plant growth and fungal colonization as well as N and K uptake evenly. The best plant growth and fungal colonization were observed for the highest application rate. The greatest growth and fungal colonization and contents of P, N, and K were observed at the 10-bead rate. Plant inoculation with Amanita muscaria, Elaphomyces anthracinus, and Scleroderma areolatum increased P concentrations and contents in a differential manner. The Dickson Quality Index was not affected by the type of fungi or by inoculum application rates. Eucalypt rooted cuttings inoculated with ectomycorrhizal fungi and under half the amount of commercial fertilization had P, N, and K concentrations and contents greater than or equal to those of commercial plants and have high enough quality to be transplanted after 90 days.

  17. Aboveground and belowground net primary production

    Science.gov (United States)

    Marianne K. Burke; Hal O. Liechty; Mark H. Eisenbies

    2000-01-01

    The relationship among net primary productivity (NPP), hydroperiod, and fertility in forested wetlands is poorly understood (Burke and others 1999), particularly with respect to belowground NPP (Megonigal and others 1997). Although some researchers have studied aboveground and belowground primary production in depressional, forested wetland systems, e.g., Day and...

  18. Legacy effects of aboveground-belowground interactions.

    Science.gov (United States)

    Kostenko, Olga; van de Voorde, Tess F J; Mulder, Patrick P J; van der Putten, Wim H; Martijn Bezemer, T

    2012-08-01

    Root herbivory can greatly affect the performance of aboveground insects via changes in plant chemistry. These interactions have been studied extensively in experiments where aboveground and belowground insects were feeding on the same plant. However, little is known about how aboveground and belowground organisms interact when they feed on plant individuals that grow after each other in the same soil. We show that feeding by aboveground and belowground insect herbivores on ragwort (Jacobaea vulgaris) plants exert unique soil legacy effects, via herbivore-induced changes in the composition of soil fungi. These changes in the soil biota induced by aboveground and belowground herbivores of preceding plants greatly influenced the pyrrolizidine alkaloid content, biomass and aboveground multitrophic interactions of succeeding plants. We conclude that plant-mediated interactions between aboveground and belowground insects are also important when they do not feed simultaneously on the same plant.

  19. The effect of ectomycorrhizal fungi and bacteria on pine seedlings

    Directory of Open Access Journals (Sweden)

    Hanna Dahm

    2014-08-01

    Full Text Available The effect of ecomycorrhizal fungi (Hebelon crustuliniforme(Bull.: Fr. Quél. 5392 and Pisolithus tinctorius (Pers. Coker et Couch 5335 and bacteria (Bacillus polymyxa and Azospirillum brasilense. associated with mycorrhizas on the growth of pine seedligs was investigated. In addition the influence of bacteria on fungal biomass production and the relationship between ectomycorrhizal fungi and fungi pathogenic to root of pine seedlings were determined. In general, the shoot/root ratio was higher in plants inoculated with Hebeloma crustuliniforme and bacteria than in the control seedlings (grown only under sterile conditions. In non-sterile substrate the root/shoot ratio of the mycorrhizal seedlings was lower as compared to the control. Similar phenomenon was noted in plants inoculated with the mycorrhizal fungus Pisolithus tinetorius. The bacteria used as well as the time of introduction of these organisms into the cultures of mycorrhiza fungi affected the production of fungal biomass. Hebeloma crustuliniforme and Pisolithus tinctorius inhibited the growth of Rizoctonia solani and Fusarium oxysporum fungi pathogenic to pine seedlings.

  20. Using next generation transcriptome sequencing to predict an ectomycorrhizal metablome.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, P. E.; Sreedasyam, A.; Trivedi, G; Podila, G. K.; Cseke, L. J.; Collart, F. R. (Biosciences Division); (On Assignment, Scientific Staffing); (Univ. of Alabama at Huntsville)

    2011-05-13

    Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.

  1. Mycorrhizal formation of nine ectomycorrhizal fungi on poplar cuttings

    Institute of Scientific and Technical Information of China (English)

    Lei MA; Xiaoqin WU; Ling ZHENG

    2008-01-01

    In order to discover which ectomycorrhizal-(ECM) fungi have better growth-promoting effects on poplars, cuttings from four poplar species were inoculated with nine species of ECM fungi by three methods. We investigated the status of mycorrhizal formation and the effects of these fungi on the growth of the poplars. The results show that Xrocomus chrysentero (Xc), Boletus edu-lis (Be), Pisolithus tinctorius (Pt) and Laccaria amethystea (La) formed clear ectomycorrhizal symbiosis with the poplar seedlings. Among these four ECM fungi, Xc had the greatest ability to develop mycorrhizae with all four poplar species. Be shows a greater ability to form mycor-rhizae with Populus deltoides Bartr cv. 'Lux' (Poplar I-69). Pt and La had relatively weaker abilities of colonization. The other five ECM fungal species, i.e., Scleroderma luteus (S1), Leeeinum scabrum (Ls), Boletus speeiosus (Bs), Calvatia eraniiformis (Cc) and Rhizopogen luteous (RI) could not easily form mycorrhizae with poplar seed-lings grown in sterilized substrates, but could do so in non-sterilized soil. With the method of drilling and inject-ing liquid inoculum, a simple operation, the mycorrhizal infection rates were higher than with the other two meth-ods, applying solid inoculum as fertilizer at the bottom of the pots and dipping roots in the inoculum slurry. P. simonii Carr. formed mycorrhizae with most of the nine ECM fungi. P. × euramericana (Dode) Guinier cv. 'San Martino' (Poplar 1-72) and P. deltoids Harvard × P. del-toids Lux (Poplar NL-351) had the highest compatibility with Pt. Poplar I-69 shows the highest compatibility with Xc. The study indicates that the optimal ECM fungi for poplars I-69, I-72 and NL-351 were Be, Xc and Pt, respectively. The optimal fungi for P. simonii Carr. were Xc and Be. These ECM fungi promoted the growth of the poplar seedlings significantly.

  2. Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome

    Directory of Open Access Journals (Sweden)

    Cseke Leland J

    2011-05-01

    Full Text Available Abstract Background Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling. Results We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose. Conclusions The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.

  3. Diversity of ectomycorrhizal Thelephoraceae in Tuber melanosporum-cultivated orchards of Northern Spain.

    Science.gov (United States)

    De Miguel, Ana María; Águeda, Beatriz; Sáez, Raimundo; Sánchez, Sergio; Parladé, Javier

    2016-04-01

    Truffles are edible hypogeous ascomycetes highly appreciated worldwide, especially the black truffle (Tuber melanosporum Vittad.). In recent decades, the cultivation of the black truffle has expanded across the Mediterranean climate regions in and outside its native range. Members of the Thelephoraceae (Thelephorales, Agaricomycetes, Basidiomycota) are commonly found in truffle plantations, but their co-occurrence with Tuber species and other members of the fungal community has been scarcely reported. Thelephoraceae is one of the most represented families of the ectomycorrhizal fungal community in boreal and Mediterranean forests. To reveal the diversity of these fungi in T. melanosporum-cultivated plantations, ten orchards located in the Navarra region (Northern Spain) were surveyed for 2 years. Morphological and molecular approaches were used to detect and identify the Thelephoraceae ectomycorrhizas present in those plantations. Ten different mycorrhizal types were detected and described. Four of them were morphologically identified as Tomentella galzinii, Quercirhiza cumulosa, Q. squamosa, and T39 Thelephoraceae type. Molecular analyses revealed 4-6 operational taxonomic units (OTUs), depending on the nucleotide database used, but similarities remained under 95 % and no clear species assignments could be done. The results confirm the diversity and abundance of this fungal family in the ectomycorrhizal community of black truffle plantations, generally established in Mediterranean areas. The occurrence and relative abundance of Thelephoraceae ectomycorrhizas is discussed in relation to their possible influence on truffle production.

  4. Growth of the Ectomycorrhizal Fungus Pisolithus Microcarpus in different nutritional conditions

    Directory of Open Access Journals (Sweden)

    Márcio José Rossi

    2011-06-01

    Full Text Available The most important plant species employed in reforestation programs depend on ectomycorrhizal fungi for their establishment and growth. The exploitation of this symbiosis to improve forest productivity requires fungal inoculants in a large scale level. To develop such a technology it is necessary to define the optimal composition of the culture medium for each fungus. With these objectives in mind, the effect of the composition of the culture medium on biomass production of the ectomycorrhizal fungus Pisolithus microcarpus (isolate UFSC-Pt116 was studied. The original composition of two culture media, already employed for cultivation of ectomycorrhizal fungi, was submitted to several variations with the C/N ratio as the main variable. A variation of the Pridham-Gottlieb medium was the most efficient for the production of biomass. Therefore, it was submitted to a factorial assay where glucose, peptone and yeast extract components were the factors analyzed. Results showed that the glucose concentration may be increased up to 40 % in order to promote higher biomass production. Peptone had a positive effect on this variable, whereas yeast extract promoted a deleterious effect. These results indicate that it is advisable to eliminate yeast extract from the medium and replace it with peptone prior to use.

  5. Nitrogen decreases and precipitation increases ectomycorrhizal extramatrical mycelia production in a longleaf pine forest.

    Science.gov (United States)

    Sims, Stephanie E; Hendricks, Joseph J; Mitchell, Robert J; Kuehn, Kevin A; Pecot, Stephen D

    2007-06-01

    The rates and controls of ectomycorrhizal fungal production were assessed in a 22-year-old longleaf pine (Pinus palustris Mill.) plantation using a complete factorial design that included two foliar scorching (control and 95% plus needle scorch) and two nitrogen (N) fertilization (control and 5 g N m(-2) year(-1)) treatments during an annual assessment. Ectomycorrhizal fungi production comprised of extramatrical mycelia, Hartig nets and mantles on fine root tips, and sporocarps was estimated to be 49 g m(-2) year(-1) in the control treatment plots. Extramatrical mycelia accounted for approximately 95% of the total mycorrhizal production estimate. Mycorrhizal production rates did not vary significantly among sample periods throughout the annual assessment (p = 0.1366). In addition, reduction in foliar leaf area via experimental scorching treatments did not influence mycorrhizal production (p = 0.9374), suggesting that stored carbon (C) may decouple the linkage between current photosynthate production and ectomycorrhizal fungi dynamics in this forest type. Nitrogen fertilization had a negative effect, whereas precipitation had a positive effect on mycorrhizal fungi production (p = 0.0292; r (2) = 0.42). These results support the widely speculated but poorly documented supposition that mycorrhizal fungi are a large and dynamic component of C flow and nutrient cycling dynamics in forest ecosystems.

  6. Ectomycorrhizal communities above and below ground and truffle productivity in a Tuber aestivum orchard

    OpenAIRE

    Elena Salerni; Maria D'Aguanno; Pamela Leonardi; Claudia Perini

    2014-01-01

    Aim of study: The diversity of ectomycorrhizal fungal communities (EM) above (EMFb) and below (EMMt) ground associated with Quercus cerris L., Q. pubescens Willd., and Pinus nigra J.F.Arnold was analyzed.Area of study: A 20 year-old orchard that produces Tuber aestivum truffles, located a few kilometers from Chiusi della Verna (latitude 43° 41’ 53’’; longitude 11° 56’ 9’’) in Tuscany (central Italy) was observed.Material and Methods: This investigation combined analyses of EMFb, EMMt, T. aest...

  7. Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient.

    Science.gov (United States)

    Peay, Kabir G; Russo, Sabrina E; McGuire, Krista L; Lim, Zhenyu; Chan, Ju Ping; Tan, Sylvester; Davies, Stuart J

    2015-08-01

    Plants interact with a diversity of microorganisms, and there is often concordance in their community structures. Because most community-level studies are observational, it is unclear if such concordance arises because of host specificity, in which microorganisms or plants limit each other's occurrence. Using a reciprocal transplant experiment, we tested the hypothesis that host specificity between trees and ectomycorrhizal fungi determines patterns of tree and fungal soil specialisation. Seedlings of 13 dipterocarp species with contrasting soil specialisations were seeded into plots crossing soil type and canopy openness. Ectomycorrhizal colonists were identified by DNA sequencing. After 2.5 years, we found no evidence of host specificity. Rather, soil environment was the primary determinant of ectomycorrhizal diversity and composition on seedlings. Despite their close symbiosis, our results show that ectomycorrhizal fungi and tree communities in this Bornean rain forest assemble independently of host-specific interactions, raising questions about how mutualism shapes the realised niche.

  8. Mycorrhizal Fungal Community of Poplars Growing on Pyrite Tailings Contaminated Site near the River Timok

    Directory of Open Access Journals (Sweden)

    Marina Katanić

    2015-06-01

    Full Text Available Background and Purpose: Mycorrhizal fungi are of high importance for functioning of forest ecosystems and they could be used as indicators of environmental stress. The aim of this research was to analyze ectomycorrhizal community structure and to determine root colonization rate with ectomycorrhizal, arbuscular mycorrhizal and endophytic fungi of poplars growing on pyrite tailings contaminated site near the river Timok (Eastern Serbia. Materials and Methods: Identification of ectomycorrhizal types was performed by combining morphological and anatomical characterization of ectomycorrhizae with molecular identification approach, based on sequencing of the nuclear ITS rRNA region. Also, colonization of poplar roots with ectomycorrhizal, arbuscular mycorrhizal and dark septated endophytic fungi were analysed with intersection method. Results and Conclusions: Physico-chemical analyses of soil from studied site showed unfavourable water properties of soil, relatively low pH and high content of heavy metals (copper and zinc. In investigated samples only four different ectomycorrhizal fungi were found. To the species level were identified Thelephora terrestris and Tomentella ellisi, while two types remained unidentified. Type Thelephora terrestris made up 89% of all ectomycorrhizal roots on studied site. Consequently total values of Species richness index and Shannon-Weaver diversity index were 0.80 and 0.43, respectively. No structures of arbuscular mycorrhizal fungi were recorded. Unfavourable environmental conditions prevailing on investigated site caused decrease of ectomycorrhizal types diversity. Our findings point out that mycorrhyzal fungal community could be used as an appropriate indicator of environmental changes.

  9. Ectomycorrhizal identification in environmental samples of tree roots by Fourier-transform infrared (FTIR spectroscopy

    Directory of Open Access Journals (Sweden)

    Rodica ePena

    2014-05-01

    Full Text Available Roots of forest trees are associated with various ectomycorrhizal (ECM fungal species that are involved in nutrient exchange between host plant and the soil compartment. The identification of ECM fungi in small environmental samples is difficult. The present study tested the feasibility of attenuated total reflection Fourier-transform infrared (ATR-FTIR spectroscopy followed by hierarchical cluster analysis (HCA to discriminate in situ collected ECM fungal species. Root tips colonized by distinct ECM fungal species, i.e., Amanita rubescens, Cenococcum geophilum, Lactarius subdulcis, Russula ochroleuca, and Xerocomus pruinatus were collected in mono-specific beech (Fagus sylvatica and mixed deciduous forests in different geographic areas to investigate the environmental variability of the ECM FTIR signatures.A clear HCA discrimination was obtained for ECM fungal species independent of individual provenance. Environmental variability neither limited the discrimination between fungal species nor provided sufficient resolution to discern species sub-clusters for different sites. However, the de-convoluted FTIR spectra contained site-related spectral information for fungi with wide nutrient ranges, but not for Lactarius subdulcis, a fungus residing only in the litter layer. Specific markers for distinct ECM were identified in spectral regions associated with carbohydrates (i.e. mannans, lipids, and secondary protein structures. The present results support that FTIR spectroscopy coupled with multivariate analysis is a reliable and fast method to identify ECM fungal species in minute environmental samples. Moreover, our data suggest that the FTIR spectral signatures contain information on physiological and functional traits of ECM fungi.

  10. Soil propagule banks of ectomycorrhizal fungi share many common species along an elevation gradient.

    Science.gov (United States)

    Miyamoto, Yumiko; Nara, Kazuhide

    2016-04-01

    We conducted bioassay experiments to investigate the soil propagule banks of ectomycorrhizal (EM) fungi in old-growth forests along an elevation gradient and compared the elevation pattern with the composition of EM fungi on existing roots in the field. In total, 150 soil cores were collected from three forests on Mt. Ishizuchi, western Japan, and subjected to bioassays using Pinus densiflora and Betula maximowicziana. Using molecular analyses, we recorded 23 EM fungal species in the assayed propagule banks. Eight species (34.8 %) were shared across the three sites, which ranged from a warm-temperate evergreen mixed forest to a subalpine conifer forest. The elevation pattern of the assayed propagule banks differed dramatically from that of EM fungi on existing roots along the same gradient, where only a small proportion of EM fungal species (3.5 %) were shared across sites. The EM fungal species found in the assayed propagule banks included many pioneer fungal species and composition differed significantly from that on existing roots. Furthermore, only 4 of 23 species were shared between the two host species, indicating a strong effect of bioassay host identity in determining the propagule banks of EM fungi. These results imply that the assayed propagule bank is less affected by climate compared to EM fungal communities on existing roots. The dominance of disturbance-dependent fungal species in the assayed propagule banks may result in higher ecosystem resilience to disturbance even in old-growth temperate forests.

  11. Fungal Sinusitis

    Science.gov (United States)

    ... Marketplace Find an ENT Doctor Near You Fungal Sinusitis Fungal Sinusitis Patient Health Information News media interested ... sinusitis results. There Are Four Types Of Fungal Sinusitis: Mycetoma Fungal Sinusitis produces clumps of spores, a " ...

  12. Comparisons of ectomycorrhizal colonization of transgenic american chestnut with those of the wild type, a conventionally bred hybrid, and related fagaceae species.

    Science.gov (United States)

    D'Amico, Katherine M; Horton, Thomas R; Maynard, Charles A; Stehman, Stephen V; Oakes, Allison D; Powell, William A

    2015-01-01

    American chestnut (Castanea dentata [Marsh.] Borkh.) dominated the eastern forests of North America, serving as a keystone species both ecologically and economically until the introduction of the chestnut blight, Cryphonectria parasitica, functionally eradicated the species. Restoration efforts include genetic transformation utilizing genes such as oxalate oxidase to produce potentially blight-resistant chestnut trees that could be released back into the native range. However, before such a release can be undertaken, it is necessary to assess nontarget impacts. Since oxalate oxidase is meant to combat a fungal pathogen, we are particularly interested in potential impacts of this transgene on beneficial fungi. This study compares ectomycorrhizal fungal colonization on a transgenic American chestnut clone expressing enhanced blight resistance to a wild-type American chestnut, a conventionally bred American-Chinese hybrid chestnut, and other Fagaceae species. A greenhouse bioassay used soil from two field sites with different soil types and land use histories. The number of colonized root tips was counted, and fungal species were identified using morphology, restriction fragment length polymorphism (RFLP), and DNA sequencing. Results showed that total ectomycorrhizal colonization varied more by soil type than by tree species. Individual fungal species varied in their colonization rates, but there were no significant differences between colonization on transgenic and wild-type chestnuts. This study shows that the oxalate oxidase gene can increase resistance against Cryphonectria parasitica without changing the colonization rate for ectomycorrhizal species. These findings will be crucial for a potential deregulation of blight-resistant American chestnuts containing the oxalate oxidase gene.

  13. Iron ore weathering potentials of ectomycorrhizal plants.

    Science.gov (United States)

    Adeleke, R A; Cloete, T E; Bertrand, A; Khasa, D P

    2012-10-01

    Plants in association with soil microorganisms play an important role in mineral weathering. Studies have shown that plants in symbiosis with ectomycorrhizal (ECM) fungi have the potential to increase the uptake of mineral-derived nutrients. However, it is usually difficult to study many of the different factors that influence ectomycorrhizal weathering in a single experiment. In the present study, we carried out a pot experiment where Pinus patula seedlings were grown with or without ECM fungi in the presence of iron ore minerals. The ECM fungi used included Pisolithus tinctorius, Paxillus involutus, Laccaria bicolor and Suillus tomentosus. After 24 weeks, harvesting of the plants was carried out. The concentration of organic acids released into the soil, as well as potassium and phosphorus released from the iron ore were measured. The results suggest that different roles of ectomycorrhizal fungi in mineral weathering such as nutrient absorption and transfer, improving the health of plants and ensuring nutrient circulation in the ecosystem, are species specific, and both mycorrhizal roots and non-mycorrhizal roots can participate in the weathering process of iron ore minerals.

  14. Belowground productivity of two cool desert communities.

    Science.gov (United States)

    Caldwell, M M; Camp, L B

    1974-06-01

    A new technique based upon the dilution of C (14) /C (12) ratios in structural carbon of root systems during the course of the growing season was used to evaluate belowground turnover or productivity of two cool desert communities in northern Utah, USA. This technique provides a measure of turnover of the root system of established perennial plant communities avoiding many of the disadvantages of other techniques. Adjacent communities dominated by Atriplex confertifolia and Ceratoides lanata both exhibited belowground productivity values exceeding aboveground production by three-fold. The greater belowground turnover of the Atriplex-dominated community may be a factor contributing to the maintenance of a greater quantity of aboveground biomass and prolonged periods of active photosynthesis during the driest portions of the year when Ceratoides becomes largely photosynthetically inactive.

  15. GROWTH INHIBITION OF PATHOGENIC ROOT FUNGI BY EXTRACTS OF ECTOMYCORRHIZAL FUNGI OR Picea glehnii INOCULATED WITH ECTOMYCORRHIZAL FUNGI

    Directory of Open Access Journals (Sweden)

    MARIA CATARINA MEGUMI KASUYA

    1996-01-01

    Full Text Available This work sought to verify the presence of compounds with antimicrobial properties in extracts of ectomycorrhizal fungi or in Picea glehnii inoculated with ectomycorrhizal fungi. Extracts from Pisolithus tinctorius, Scleroderma flavidum, Amanita pantherina and Paxillus sp., grown in liquid culture media, and from P. glehnii seedlings inoculated or not with the above ectomycorrhizal fungi and cultivated in in vitro condition, were processed to obtain two fractions, water and ethyl acetate solubles. These fractions were tested for the presence of inhibitory constituents against Fusarium roseum, Pythium sp. and Rhizoctonia solani. Direct bioautography technique on TLC or paper disc technique was used, depending on the extract and pathogenic fungi tested. The results showed the production on inhibitory components, not only by ectomycorrhizal fungi, but also by P. glehnii inoculated or not with ectomycorrhizal fungi. The sensitivity varied considerably according to the type of fungus or extract.

  16. Similar biodiversity of ectomycorrhizal fungi in set-aside plantations and ancient old-growth broadleaved forests

    Science.gov (United States)

    Spake, Rebecca; van der Linde, Sietse; Newton, Adrian C.; Suz, Laura M.; Bidartondo, Martin I.; Doncaster, C. Patrick

    2016-01-01

    Setting aside overmature planted forests is currently seen as an option for preserving species associated with old-growth forests, such as those with dispersal limitation. Few data exist, however, on the utility of set-aside plantations for this purpose, or the value of this habitat type for biodiversity relative to old-growth semi-natural ecosystems. Here, we evaluate the contribution of forest type relative to habitat characteristics in determining species richness and composition in seven forest blocks, each containing an ancient old-growth stand (> 1000 yrs) paired with a set-aside even-aged planted stand (ca. 180 yrs). We investigated the functionally important yet relatively neglected ectomycorrhizal fungi (EMF), a group for which the importance of forest age has not been assessed in broadleaved forests. We found that forest type was not an important determinant of EMF species richness or composition, demonstrating that set-aside can be an effective option for conserving ancient EMF communities. Species richness of above-ground EMF fruiting bodies was principally related to the basal area of the stand (a correlate of canopy cover) and tree species diversity, whilst richness of below-ground ectomycorrhizae was driven only by tree diversity. Our results suggest that overmature planted forest stands, particularly those that are mixed-woods with high basal area, are an effective means to connect and expand ecological networks of ancient old-growth forests in historically deforested and fragmented landscapes for ectomycorrhizal fungi. PMID:26917858

  17. Fungal root endophytes of the carnivorous plant Drosera rotundifolia.

    Science.gov (United States)

    Quilliam, Richard S; Jones, David L

    2010-06-01

    As carnivorous plants acquire substantial amounts of nutrients from the digestion of their prey, mycorrhizal associations are considered to be redundant; however, fungal root endophytes have rarely been examined. As endophytic fungi can have profound impacts on plant communities, we aim to determine the extent of fungal root colonisation of the carnivorous plant Drosera rotundifolia at two points in the growing season (spring and summer). We have used a culture-dependent method to isolate fungal endophytes and diagnostic polymerase chain reaction methods to determine arbuscular mycorrhizal fungi colonisation. All of the roots sampled contained culturable fungal root endophytes; additionally, we have provided molecular evidence that they also host arbuscular mycorrhizal fungi. Colonisation showed seasonal differences: Roots in the spring were colonised by Articulospora tetracladia, two isolates of uncultured ectomycorrhizal fungi, an unidentified species of fungal endophyte and Trichoderma viride, which was present in every plant sampled. In contrast, roots in the summer were colonised by Alatospora acuminata, an uncultured ectomycorrhizal fungus, Penicillium pinophilum and an uncultured fungal clone. Although the functional roles of fungal endophytes of D. rotundifolia are unknown, colonisation may (a) confer abiotic stress tolerance, (b) facilitate the acquisition of scarce nutrients particularly at the beginning of the growing season or (c) play a role in nutrient signalling between root and shoot.

  18. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina.

    Science.gov (United States)

    Barroetaveña, C; Cázares, E; Rajchenberg, M

    2007-07-01

    The putative ectomycorrhizal fungal species registered from sporocarps associated with ponderosa pine and Douglas-fir forests in their natural range distribution (i.e., western Canada, USA, and Mexico) and from plantations in south Argentina and other parts of the world are listed. One hundred and fifty seven taxa are reported for native ponderosa pine forests and 514 taxa for native Douglas-fir forests based on available literature and databases. A small group of genera comprises a high proportion of the species richness for native Douglas-fir (i.e., Cortinarius, Inocybe, and Russula), whereas in native ponderosa pine, the species richness is more evenly distributed among several genera. The comparison between ectomycorrhizal species richness associated with both trees in native forests and in Patagonia (Argentina) shows far fewer species in the latter, with 18 taxa for the ponderosa pine and 15 for the Douglas-fir. Epigeous species richness is clearly dominant in native Douglas-fir, whereas a more balanced relation epigeous/hypogeous richness is observed for native ponderosa pine; a similar trend was observed for Patagonian plantations. Most fungi in Patagonian Douglas-fir plantations have not been recorded in plantations elsewhere, except Suillus lakei and Thelephora terrestris, and only 56% of the fungal taxa recorded in Douglas-fir plantations around the world are known from native forests, the other taxa being new associations for this host, suggesting that new tree + ectomycorrhizal fungal taxa associations are favored in artificial situations as plantations.

  19. Oaks belowground: mycorrhizas, truffles, and small mammals

    Science.gov (United States)

    Jonathan Frank; Seth Barry; Joseph Madden; Darlene Southworth

    2008-01-01

    Oaks depend on hidden diversity belowground. Oregon white oaks (Quercus garryana) form ectomycorrhizas with more than 40 species of fungi at a 25-ha site. Several of the most common oak mycorrhizal fungi form hypogeous fruiting bodies or truffles in the upper layer of mineral soil. We collected 18 species of truffles associated with Oregon white...

  20. Reciprocal trade of Carbon and Nitrogen at the root-fungus interface in ectomycorrhizal beech plants

    Science.gov (United States)

    Kaiser, Christina; Mayerhofer, Werner; Dietrich, Marlies; Gorka, Stefan; Schintlmeister, Arno; Reipert, Siegfried; Schweiger, Peter; Weidinger, Marieluise; Wiesenbauer, Julia; Martin, Victoria; Richter, Andreas; Woebken, Dagmar

    2017-04-01

    Plants deliver recently assimilated carbon (C) to mycorrhizal fungi, and receive nutrients, such as N and P, in exchange. A reciprocal exchange of C and nutrients between plants and mycorrhizal fungi (i.e., fungi which deliver more nutrients receive more plant C in return and vice versa) has been suggested for arbuscular mycorrhizal symbioses by some studies, but challenged by others. For ectomycorrhizal associations even less is known on how the exchange of C for nutrients is regulated, and whether it is based on reciprocity, or other controls. The aim of this study was to test the concept of reciprocal rewards between beech (Fagus sylvatica) and their associated ectomycorrhizal fungi on different scales, namely (a) across associations between individual root tips of beech and different fungal partners, and (b) at the subcellular scale at the plant-fungus interface. We exposed young beech trees associated with natural mycorrhizal fungal communities to a 13CO2 atmosphere and added 15N-labelled amino acids to a 'litter compartment', that mycorrhizal hyphae, but not plant roots could access. Plants were harvested within 2 days after application of 15N and less than one day after applying 13CO2. If the trading of C for N was reciprocal, we expect that 13C would be correlated to 15N across individual plant-fungal connections and at the subcellular scale within one mycorrhizal root tip, respectively. We collected individual mycorrhizal root-tips from 8 plants right after harvest, analyzed their 13C and 15N content by isotope-ratio mass spectrometry (EA-IRMS) and performed ITS sequencing to identify fungal communities associated with individual root tips. Selected mycorrhizal root tips were also prepared for nano-scale secondary ion mass spectrometry (NanoSIMS) to visualize the spatial distribution of 13C and 15N in cross-sections of mycorrhizal root-tips at the subcellular scale. Our results showed a significant, albeit weak correlation between 13C and 15N across

  1. The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes

    Science.gov (United States)

    Dimitrios Floudas; Manfred Binder; Robert Riely; Kerrie Barry; Robert A. Blanchette; Bernard Henrissat; Angel T. Martínez; Robert Otillar; Joseph W. Spatafora; Jagjit S. Yadav; Andrea Aerts; Isabelle Benoit; Alex Boyd; Alexis Carlson; Alex Copeland; Pedro M. Coutinho; Ronald P. deVries; Patricia Ferreira; Keisha Findley; Brian Foster; Jill Gaskell; Dylan Glotzer; Pawe³ Górecki; Joseph Heitman; Cedar Hesse; Chiaki Hori; Kiyohiko Igarashi; Joel A. Jurgens; Nathan Kallen; Phil Kersten; Annegret Kohler; Ursula Kües; T. K. ArunKumar; Alan Kuo; Kurt LaButti; Luis F. Larrondo; Erika Lindquist; Albee Ling; Vincent Lombard; Susan Lucas; Taina Lundell; Rachael Martin; David J. McLaughlin; Ingo Morgenstern; Emanuelle Morin; Claude Murat; Laszlo G. Nagy; Matt Nolan; Robin A. Ohm; Aleksandrina Patyshakuliyeva; Antonis Rokas; Francisco J. Ruiz-Dueñas; Grzegorz Sabat; Asaf Salamov; Masahiro Samejima; Jeremy Schmutz; Jason C. Slot; Franz St. John; Jan Stenlid; Hui Sun; Sheng Sun; Khajamohiddin Syed; Adrian Tsang; Ad Wiebenga; Darcy Young; Antonio Pisabarro; Daniel C. Eastwood; Francis Martin; Dan Cullen; Igor V. Grigoriev; David S. Hibbett

    2012-01-01

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non–lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study)...

  2. Differential effect of purified spruce chitinases and beta-1,3-glucanases on the activity of elicitors from ectomycorrhizal fungi.

    Science.gov (United States)

    Salzer, P; Hübner, B; Sirrenberg, A; Hager, A

    1997-07-01

    Two chitinases (EC 3.2.1.14) and two beta-1,3-glucanases (EC 3.2.1.39) were purified from the culture medium of spruce (Picea abines [L.] Karst.) cells to study their role in modifying elicitors, cell walls, growth, and hyphal morphology of ectomycorrhizal fungi. The 36-kD class I chitinase (isoelectric point [pl] 8.0) and the 28-kD chitinase (pl 8.7) decreased the activity of elicitor preparations from Hebeloma crustuliniforme (Bull. ex Fries.) Quél., Amanita muscaria (L.) Pers., and Suillus variegatus (Sw.: Fr.) O.K., as demonstrated by using the elicitor-induced extracellular alkalinization in spruce cells as a test system. In addition, chitinases released monomeric products from the walls of these ectomycorrhizal fungi. The beta-1,3-glucanases (35 kD, pl 3.7 and 3.9), in contrast, had little influence on the activity of the fungal elicitors and released only from walls of A. muscaria some polymeric products. Furthermore, chitinases alone and in combination with beta-1,3-glucanases had no effect on the growth and morphology of the hyphae. Thus, it is suggested that apoplastic chitinases in the root cortex destroy elicitors from the ectomycorrhizal fungi without damaging the fungus. By this mechanism the host plant could attenuate the elicitor signal and adjust its own defense reactions to a level allowing symbiotic interaction.

  3. [Effect of exogenous calcium on the activities of antioxidative protective enzymes in ectomycorrhizal fungi under aluminum stress].

    Science.gov (United States)

    Wang, Ming-Xia; Huang, Jian-Guo; Yuan, Ling; Zhou, Zhi-Feng

    2012-10-01

    In order to investigate the function of Ca2+ in the alleviation of Al3+ stress in ectomycorrhizal fungi, four strains (Bo 02, Bo 15, Pt 715 and Sl 08) were grown in liquid culture media to study the Al resistance of different strains and the effect of exogenous Ca2+ (0, 0.25, 0.5, 1.0 mmol x L(-1)) on the activity of antioxidative protective enzymes under Al3+ stress. It was showed that ectomycorrhizal fungal species varied in resistance to Al3+ stress. Pt 715 and Sl 08 were more tolerant to Al3+ than Bo 02 and Bo 15 in vitro. The activities of CAT and SOD in Bo 02, SOD in Bo 15, CAT and POD in Sl 08 increased significantly under Al3+ stress. It was showed that the activities of these enzymes in ectomycorrhizal fungi had a close relationship with Al3+ stress. The enzymes in Bo 02 were most sensitive to exogenous Ca2+ and the function of Ca2+ in resisting Al3+ stress was the best in the four strains. A high concentration of Ca2+ (> or = 0.5 mmol x L(-1)) could alleviate or offset the increased activities of antioxidative protective enzymes by Al3+ stress in Sl 08.

  4. Standing crop and animal consumption of fungal sporocarps in Pacific Northwest forests

    Science.gov (United States)

    Malcolm North; James Trappe; Jerry Franklin

    1997-01-01

    Although fungal fruiting bodies are a common food supplement for many forest animals and an important dietary staple for several small mammals, changes in their abundance and consumption with forest succession or disturbance have not been quantified. Above- and belowground fungal fruiting bodies (epigeous and hypogeous sporocarps) were sampled for 46 mo in managed-...

  5. Plant species distribution along environmental gradient: do belowground interactions with fungi matter?

    Directory of Open Access Journals (Sweden)

    Loïc ePellissier

    2013-12-01

    Full Text Available The distribution of plants along environmental gradients is constrained by abiotic and biotic factors. Cumulative evidence attests of the impact of abiotic factors on plant distributions, but only few studies discuss the role of belowground communities. Soil fungi, in particular, are thought to play an important role in how plant species assemble locally into communities. We first review existing evidence, and then test the effect of the number of soil fungal operational taxonomic units (OTUs on plant species distributions using a recently collected dataset of plant and metagenomic information on soil fungi in the Western Swiss Alps. Using species distribution models, we investigated whether the distribution of individual plant species is correlated to the number of OTUs of two important soil fungal classes known to interact with plants: the Glomeromycetes, that are obligatory symbionts of plants, and the Agaricomycetes, that may be facultative plant symbionts, pathogens, or wood decayers. We show that including the fungal richness information in the models of plant species distributions improves predictive accuracy. Number of fungal OTUs is especially correlated to the distribution of high elevation plant species. We suggest that high elevation soil show greater variation in fungal assemblages that may in turn impact plant turnover among communities. We finally discuss how to move beyond correlative analyses, through the design of field experiments manipulating plant and fungal communities along environmental gradients.

  6. Convergence in mycorrhizal fungal communities due to drought, plant competition, parasitism and susceptibility to herbivory: Consequences for fungi and host plants

    Directory of Open Access Journals (Sweden)

    Catherine A. Gehring

    2014-06-01

    Full Text Available Plants and mycorrhizal fungi influence each other’s abundance, diversity and distribution. How other biotic interactions affect the mycorrhizal symbiosis is less well understood. Likewise, we know little about the effects of climate change on the fungal component of the symbiosis or its function. We synthesized our long-term studies on the influence of mistletoe parasites, insect herbivores, competing trees, and drought on the ectomycorrhizal fungal communities associated with a foundation tree species of the southwestern United States, pinyon pine (Pinus edulis, and described how these changes feed back to affect host plant performance. We found that drought and all three of the biotic interactions studied resulted in similar shifts in ectomycorrhizal fungal community composition, demonstrating a convergence of the community towards dominance by a few closely related fungal taxa. Ectomycorrhizal fungi responded similarly to each of these stressors resulting in a predictable trajectory of community disassembly, consistent with ecological theory. Although we predicted that the fungal communities associated with trees stressed by drought, herbivory, competition, and parasitism would be poor mutualists, we found the opposite pattern in field studies. Our results suggest that climate change and the increased importance of herbivores, competitors and parasites that can be associated with it, may ultimately lead to reductions in ectomycorrhizal fungal diversity, but that the remaining fungal community may be beneficial to host trees under the current climate and the warmer, drier climate predicted for the future.

  7. Changes in fungal community composition in response to experimental soil warming at the alpine treeline

    Science.gov (United States)

    Solly, Emily; Lindahl, Bjorn; Dawes, Melissa; Peter, Martina; Souza, Romulo; Rixen, Christian; Hagedorn, Frank

    2017-04-01

    Increased CO2 emissions and global warming may alter the composition of fungal communities through the reduction of low temperature limitation in the plant-soil system, faster nitrogen cycling and changes in the carbon allocation of host plants to the rhizosphere. Shifts in fungal community composition due to global changes are likely to affect the routes of carbon and nitrogen flows in the plant-soil system and alter the rates at which organic matter is decomposed. The main aim of our study was to estimate the effects of multiple years of free air CO2 enrichment (ambient concentration +200 ppm) and soil warming (+ 4°C) on the fungal community structure and composition. At an alpine treeline in Switzerland featuring two key high-elevation tree species, Larix decidua and Pinus uncinata, fungal communities within different organic horizons were analysed by high-throughput 454-pyrosequencing of ITS2 amplicons. In addition, we assessed the ectomycorrhizal community composition on root tips and monitored changes in sporocarp productivity of fungal species during the course of the experiment. Three years of experimental warming at the alpine treeline altered the composition of the fungal community in the organic horizons, whereas nine years of CO2 enrichment had only weak effects. Tree species influenced the composition of the fungal community and the magnitude of the responses of fungal functional groups to soil warming differed between plots with Larix and those with Pinus. The abundance of ectomycorrhizal fungi was positively correlated with nitrogen availability, and ectomycorrhizal taxa specialized for conditions of high nitrogen availability proliferated with warming, corresponding to considerable increases in extractable inorganic nitrogen in warmed soils. Changes in productivity of specific fungal fruiting bodies in response to soil warming (e.g. more Lactarius rufus sporocarps and less Hygrophorus speciousus sporocarps) were consistent with the 454-sequencing

  8. The role of phosphorus, magnesium and potassium availability in soil fungal exploration of mineral nutrient sources in Norway spruce forests.

    Science.gov (United States)

    Rosenstock, Nicholas P; Berner, Christoffer; Smits, Mark M; Krám, Pavel; Wallander, Håkan

    2016-07-01

    We investigated fungal growth and community composition in buried meshbags, amended with apatite, biotite or hornblende, in Norway spruce (Picea abies) forests of varying nutrient status. Norway spruce needles and soil collected from forests overlying serpentinite had low levels of potassium and phosphorus, those from granite had low levels of magnesium, whereas those from amphibolite had comparably high levels of these nutrients. We assayed the fungal colonization of meshbags by measuring ergosterol content and fungal community with 454 sequencing of the internal transcribed spacer region. In addition, we measured fine root density. Fungal biomass was increased by apatite amendment across all plots and particularly on the K- and P-deficient serpentinite plots, whereas hornblende and biotite had no effect on fungal biomass on any plots. Fungal community (total fungal and ectomycorrhizal) composition was affected strongly by sampling location and soil depth, whereas mineral amendments had no effect on community composition. Fine root biomass was significantly correlated with fungal biomass. Ectomycorrhizal communities may respond to increased host-tree phosphorus demand by increased colonization of phosphorus-containing minerals, but this does not appear to translate to a shift in ectomycorrhizal community composition. This growth response to nutrient demand does not appear to exist for potassium or magnesium limitation.

  9. One Shroom to Rule Them All: Identifying the mechanisms employed in ectomycorrhizal mutualisms for the generalist fungus Thelephora terrestris and seven genetically diverse host tree species

    Science.gov (United States)

    Francis, N.; Laura, B.; Peay, K.

    2016-12-01

    This summer, through the Stanford EARTH Young Investigators Internship, I worked in the Peay fungal ecology lab to set up an experiment to identify what fungal mechanisms are at work in ectomycorrhizal mutualisms between seven phylogenetically distinct tree species and the generalist fungus Thelephora terrestris. Ectomycorrhizal fungi occupy an important niche in terrestrial ecology through their symbiotic mutualisms with plant hosts that allow for the exchange of carbon and nitrogen. However, very little is known about what determines partner choice for ectomycorrhizal fungal mutualists. Among pathogenic fungi, specialization on particular hosts is common, likely because the pathogen must work in specialized ways with the host's immune system. Ectomycorrhizal mutualists, however, tend to be generalists, even though their associations with plants are physically intimate and chemically complex. In order to understand how ectomycorrhizal fungi maintain a broad host range, I grew and planted seedlings and cuttings of Pinus muricata (bishop pine), Pseudotsuga menziesii (Douglas fir), Salix lasiolepis (arroyo willow), Populus trichocarpa (black cottonwood), Quercus agrifolia (coastal live oak), Eucalyptus globulus (blue gum), and Arbutus menziesii (Pacific madrone). Within each pot, the seven seedlings was planted around a previously planted donor bishop pine in potting mixture inoculated with Thelephora terrestris so that the fungus could spread from the donor pine to the others. I also helped analyze the extent of Thelephora terrestris growth on the plant roots from a preliminary round of the experiment in order to refine the data collection protocol for the coming experiment. Several months from now, my research mentor will label the carbon and nitrogen moving between the fungus and the plant to find out how well the symbiosis is working for each partner, and will sequence the RNA from the fungus to see if it uses different genes to communicate and associate with

  10. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests.

    Science.gov (United States)

    Phillips, Lori A; Ward, Valerie; Jones, Melanie D

    2014-03-01

    Soils of northern temperate and boreal forests represent a large terrestrial carbon (C) sink. The fate of this C under elevated atmospheric CO2 and climate change is still uncertain. A fundamental knowledge gap is the extent to which ectomycorrhizal fungi (EMF) and saprotrophic fungi contribute to C cycling in the systems by soil organic matter (SOM) decomposition. In this study, we used a novel approach to generate and compare enzymatically active EMF hyphae-dominated and saprotrophic hyphae-enriched communities under field conditions. Fermentation-humus (FH)-filled mesh bags, surrounded by a sand barrier, effectively trapped EMF hyphae with a community structure comparable to that found in the surrounding FH layer, at both trophic and taxonomic levels. In contrast, over half the sequences from mesh bags with no sand barrier were identified as belonging to saprotrophic fungi. The EMF hyphae-dominated systems exhibited levels of hydrolytic and oxidative enzyme activities that were comparable to or higher than saprotroph-enriched systems. The enzymes assayed included those associated with both labile and recalcitrant SOM degradation. Our study shows that EMF hyphae are likely important contributors to current SOM turnover in sub-boreal systems. Our results also suggest that any increased EMF biomass that might result from higher below-ground C allocation by trees would not suppress C fluxes from sub-boreal soils.

  11. Modelling the Influence of Ectomycorrhizal Decomposition on Plant Nutrition and Carbon Sequestartion in Boreal Forst Ecosystem

    Science.gov (United States)

    Baskaran, P.; Hyvönen, R.; Agren, G. I.; Clemmensen, K.; Lindahl, B.; Manzoni, S.

    2016-12-01

    Tree growth in boreal forests is limited by nitrogen availability (N). Most boreal forest trees form symbiotic association with ectomycorrhizal (ECM) fungi, that improve uptake of inorganic N and also have the capacity to decompose soil organic matter and to mobilize organic N (`ECM decomposition'). To mechanistically understand the effect of `ECM decomposition' on ecosystem C and N balances, we formulated a model of C and N flows to and from plants, SOM, saprotrophs, ECM fungi, and inorganic N stores. Our predictions indicate that the optimal C allocation to ECM fungi, above which the symbiosis switches from mutualism to parasitism, depends strongly on the partitioning of soil organic matter decomposition between ECM fungi and saprotrophs. At high relative ECM decomposition and low N availability, optimal C allocation was estimated to 15% of NPP. The model also predicts a negative correlation between plant production and soil C sequestration, as increased plant belowground C allocation increases ECM mining of organic N which promotes tree growth but decreases soil C storage. In conclusion, our model provides a tool for studying ecosystem productivity and C storage, where ECM decomposition acts as a potential driver of both decomposition of soil organic matter and plant N uptake.

  12. Effects of Ectomycorrhizal Fungi on Growth of Seedlings of Pinus densiflora.

    Science.gov (United States)

    Sim, Mi-Yeong; Eom, Ahn-Heum

    2006-12-01

    This study was conducted to investigate the different effects of ectomycorrhizal fungal (ECMF) species on the growth of seedlings of Pinus densiflora, and the effects of ECMF diversity on plant productivity. A total of five species of ECMF were isolated from root tips of pine seedlings collected from Mt. Songni and used as inocula. Pots containing pine seedlings were inoculated with either a single ECMF species or a mixture of five ECMF species. All of the seedlings formed ECM on their roots except for the control plants. The pine seedlings' growth responses varied by the different ECMF species. Also, pine seedlings inoculated with a mixture of five ECMF species showed the highest growth response. The results of the study suggest that the colonization of diverse species of ECMF will increase plant productivity, and the selection of suitable ECMF species could be an important factor for plant growth.

  13. Characterisation of seven Inocybe ectomycorrhizal morphotypes from a semiarid woody steppe.

    Science.gov (United States)

    Seress, Diána; Dima, Bálint; Kovács, Gábor M

    2016-04-01

    Ectomycorrhizas (ECM) of Inocybe species (Inocybaceae, Basidiomycota) formed by three host plant species (Populus alba, Salix rosmarinifolia and Pinus nigra) in a semiarid woody steppe of Hungary were studied. To identify the fungal partners, we performed phylogenetic analyses of nucleotide sequences for the internal transcribed spacer region of nuclear DNA (nrDNA ITS) together with sequences gained from public databases. Seven Inocybe ectomycorrhiza morphotypes were morpho-anatomically characterised. Five morphotypes were identified (I. phaeoleuca, I. psammophila, I. semifulva, I. splendens and I. subporospora), whereas two morphotypes represented unidentified Inocybe species. Differences were discernible among the morphotypes, and they showed general anatomical characteristics of Inocybe ECM, such as the slightly organised plectenchymatic mantle (types A, B and E and the gelatinous C). The ECM of I. subporospora and I. phaeoleuca were detected from the introduced Pinus nigra. These two fungi are probably native to the area but capable of forming a novel ectomycorrhizal association with the invasive host.

  14. The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings

    Directory of Open Access Journals (Sweden)

    Pablo Vásquez-Gassibe

    2016-04-01

    Full Text Available Aim of the study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability.Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance.Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm. We also measured several morphometric traits (tap root length, shoot length, dry biomass of shoots and root/shoot ratio, which were used to test the influence of fire severity and soil chemistry upon them.Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity.Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires. 

  15. The effects of fire severity on ectomycorrhizal colonization and morphometric features in Pinus pinaster Ait. seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Vásquez-Gassibe, P.; Oria-de-Rueda, J.A.; Santos-del-Blanco, L.; Martín-Pinto, P.

    2016-07-01

    Aim of study: Mycorrhizal fungi in Mediterranean forests play a key role in the complex process of recovery after wildfires. A broader understanding of an important pyrophytic species as Pinus pinaster and its fungal symbionts is thus necessary for forest restoration purposes. This study aims to assess the effects of ectomycorrhizal symbiosis on maritime pine seedlings and how fire severity affects fungal colonization ability. Area of study: Central Spain, in a Mediterranean region typically affected by wildfires dominated by Pinus pinaster, a species adapted to fire disturbance. Material and Methods: We studied P. pinaster root apexes from seedlings grown in soils collected one year after fire in undisturbed sites, sites moderately affected by fire and sites highly affected by fire. Natural ectomycorrhization was observed at the whole root system level as well as at two root vertical sections (0-10 cm and 10-20 cm). We also measured several morphometric traits (tap root length, shoot length, dry biomass of shoots and root/shoot ratio), which were used to test the influence of fire severity and soil chemistry upon them. Main results: Ectomycorrhizal colonization in undisturbed soils for total and separated root vertical sections was higher than in soils that had been affected by fire to some degree. Inversely, seedling vegetative size increased according to fire severity. Research highlights: Fire severity affected soil properties and mycorrhizal colonization one year after occurrence, thus affecting plant development. These findings can contribute to a better knowledge of the factors mediating successful establishment of P. pinaster in Mediterranean forests after wildfires. (Author)

  16. The ectomycorrhizal basidiomycete Hebeloma cylindrosporum undergoes early waves of transcriptional reprogramming prior to symbiotic structures differentiation.

    Science.gov (United States)

    Doré, Jeanne; Kohler, Annegret; Dubost, Audrey; Hundley, Hope; Singan, Vasanth; Peng, Yi; Kuo, Alan; Grigoriev, Igor V; Martin, Francis; Marmeisse, Roland; Gay, Gilles

    2017-03-01

    To clarify the early molecular interaction between ectomycorrhizal partners, we performed a RNA-Seq study of transcriptome reprogramming of the basidiomycete Hebeloma cylindrosporum before symbiotic structure differentiation with Pinus pinaster. Mycorrhiza transcriptome was studied for comparison. By reference to asymbiotic mycelium, 47 and 46 genes were specifically upregulated over fivefold (p ≤ 0.05) upon rhizosphere colonization and root adhesion respectively. Other 45 were upregulated throughout the symbiotic interaction, from rhizosphere colonization to differentiated mycorrhizas, whereas 274 were specifically upregulated in mycorrhizas. Although exoproteome represents 5.6% of H. cylindrosporum proteome, 38.5% of the genes upregulated upon pre-infectious root colonization encoded extracellular proteins. The proportion decreased to 23.5% in mycorrhizas. At all studied time points, mycorrhiza-induced small secreted proteins (MiSSPs), representing potential effectors, were over-represented among upregulated genes. This was also the case for carbohydrate-active enzymes (CAZymes). Several CAZymes were upregulated at all studied stages of the interaction. Consistent with a role in fungal morphogenesis and symbiotic interface differentiation, CAZymes over-expressed before and upon root attachment targeted fungal and both fungal and plant polysaccharides respectively. Different hydrophobins were upregulated upon early root adhesion, in mycorrhizas or throughout interaction. The functional classification of genes upregulated only in mycorrhizas pointed to intense metabolic activity and nutritional exchanges. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Gut passage of epigeous ectomycorrhizal fungi by two opportunistic mycophagous rodents

    Institute of Scientific and Technical Information of China (English)

    Citlalli CASTILLO-GUEVARA; Josette SIERRA; Gema GALINDO-FLORES; Mariana CUAUTLE; Carlos LARA

    2011-01-01

    Mycophagists can influence fungal diversity within their home ranges by ensuring the continued and effective dispersal of spores from one site to another. However, the passage of spores through the digestive tract of vertebrates can affect the activity and viability of the spores ingested. This phenomenon has been rarely documented in opportunistic mycophagists consuming epigeous fungi. Using laboratory experiments, we investigated the activity and viability of spores of two epigeous ectomycorrhizal fungal species (Laccaria trichodermopkora and Suillus tomentosus) after passage through the digestive tract of two opportunistic mycophagous small rodents, the volcano mouse Peromyscus alstoni and the deer mouse P. Maniculatus. We found that passage through the gut of either species of rodent had a significant effect on spore activity and viability for both fungal species. The proportion of active spores (0.37-0.40) of L. Trichodermophora in the feces of both species of rodents was less than that recorded for the control (0.82). However, the proportion of active spores (0.64-0.73) of 5. Tomentosus in the feces of each species of rodent was higher than in the control (0.40). On the other hand, the viability of spores was lower (0.26-0.30 in L. Trichodermophora and 0.60-0.69 in 5. Tomentosus) for both fungi when consumed by either rodent relative to the controls (0.90 in L trichodermophora and 0.82 in 5. Tomentosus). These findings suggest that these rodent species may be effective dispersers of both epigeous fungi.

  18. Fungal arthritis

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000444.htm Fungal arthritis To use the sharing features on this page, please enable JavaScript. Fungal arthritis is swelling and irritation (inflammation) of a joint ...

  19. Fungal Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Fungal Meningitis Language: English Español (Spanish) Recommend on Facebook Tweet ... the brain or spinal cord. Investigation of Fungal Meningitis, 2012 In September 2012, the Centers for Disease ...

  20. The ectomycorrhizal morphotype Pinirhiza sclerotia is formed by Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii.

    Science.gov (United States)

    Münzenberger, Babette; Bubner, Ben; Wöllecke, Jens; Sieber, Thomas N; Bauer, Robert; Fladung, Matthias; Hüttl, Reinhard F

    2009-09-01

    Relatively few ectomycorrhizal fungal species are known to form sclerotia. Usually, sclerotia are initiated at the extraradical mycelium. In this study, we present anatomical and ultrastructural evidence for the formation of sclerotia directly in the hyphal mantle of the mycorrhizal morphotype Pinirhiza sclerotia. A dark-pigmented fungal strain was isolated from Pinirhiza sclerotia and identified by molecular tools as Acephala macrosclerotiorum sp. nov., a close relative of Phialocephala fortinii s.l. As dark septate fungi are known to be mostly endophytic, resyntheses with Pinus sylvestris and A. macrosclerotiorum as well as Populus tremula x Populus tremuloides and A. macrosclerotiorum or P. fortinii s.l. were performed under axenic conditions. No mycorrhizas were found when hybrid aspen was inoculated with A. macrosclerotiorum or P. fortinii. However, A. macrosclerotiorum formed true ectomycorrhizas in vitro with P. sylvestris. Anatomical and ultrastructural features of this ectomycorrhiza are presented. The natural and synthesized ectomycorrhizal morphotypes were identical and characterized by a thin hyphal mantle that bore sclerotia in a later ontogenetic stage. The Hartig net was well-developed and grew up to the endodermis. To our knowledge, this is the first evidence at the anatomical and ultrastructural level that a close relative of P. fortinii s.l. forms true ectomycorrhizas with a coniferous host.

  1. SPATIAL DISTRIBUTION OF SOME ECTOMYCORRHIZAL FUNGI (RUSSULACEAE, FUNGI, BASIDIOMYCOTA IN FOREST HABITATS FROM THE NORTH-EAST REGION (ROMANIA

    Directory of Open Access Journals (Sweden)

    Ovidiu COPOT

    2016-12-01

    Full Text Available Ectomycorrhizal macromycetes are, generally, an important ecological component for forest habitats, and a valuable resource in the context of sustainable development of rural communities in the North-East Region of Romania. The woody species distribution is an extremely important factor for the ECM macromycetes presence. The purpose of this study was to elaborate maps of potential distribution for some ECM edible macromycetes from Russula and Lactarius genera, based on chorological information, ICAS Forest Types Map, vegetation tables and bibliographical sources. These information allowed the elaboration of 15 potential maps of distribution for 15 edible species of Russula and Lactarius. The study was based entirely on the plant – fungal associations. The results highlighted that in the North-East Region of Romania there is a noteworthy potential for Russulaceae species. As expected, there is a large amplitude of species presence in the field depending on the fungal specificity for tree host and tree species distribution.

  2. Draft Genome Sequence of the Soil Bacterium Burkholderia terrae Strain BS001, Which Interacts with Fungal Surface Structures

    DEFF Research Database (Denmark)

    Nazir, Rashid; Hansen, Martin A.; Sorensen, Soren

    2012-01-01

    Burkholderia terrae BS001 is a soil bacterium which was originally isolated from the mycosphere of the ectomycorrhizal fungus Laccaria proxima. It exhibits a range of fungus-interacting traits which reveal its propensity to actively interact at fungal interfaces. Here, we present the approximatel...

  3. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands.

    Science.gov (United States)

    Kyaschenko, Julia; Clemmensen, Karina E; Hagenbo, Andreas; Karltun, Erik; Lindahl, Björn D

    2017-04-01

    Forestry reshapes ecosystems with respect to tree age structure, soil properties and vegetation composition. These changes are likely to be paralleled by shifts in microbial community composition with potential feedbacks on ecosystem functioning. Here, we assessed fungal communities across a chronosequence of managed Pinus sylvestris stands and investigated correlations between taxonomic composition and extracellular enzyme activities. Not surprisingly, clear-cutting had a negative effect on ectomycorrhizal fungal abundance and diversity. In contrast, clear-cutting favoured proliferation of saprotrophic fungi correlated with enzymes involved in holocellulose decomposition. During stand development, the re-establishing ectomycorrhizal fungal community shifted in composition from dominance by Atheliaceae in younger stands to Cortinarius and Russula species in older stands. Late successional ectomycorrhizal taxa correlated with enzymes involved in mobilisation of nutrients from organic matter, indicating intensified nutrient limitation. Our results suggest that maintenance of functional diversity in the ectomycorrhizal fungal community may sustain long-term forest production by retaining a capacity for symbiosis-driven recycling of organic nutrient pools.

  4. Mycorrhizal fungal community relationship to root nitrogen concentration over a regional atmospheric nitrogen deposition gradient in the northeastern USA

    Science.gov (United States)

    Erik A. Lilleskov; Philip M. Wargo; Kristiina A. Vogt; Daniel J. Vogt

    2008-01-01

    Increased nitrogen (N) input has been found to alter ectomycorrhizal fungal communities over short deposition gradients and in fertilization experiments; however, its effects over larger spatial scales have not been determined. To address this gap, we reanalyzed data from a study originally designed to examine the effects of soil aluminum/calcium (Al/Ca) ratios on the...

  5. [Response of ectomycorrhizal fungi to aluminum stress and low potassium soil].

    Science.gov (United States)

    Zhang, Wei; Huang, Jian-Guo; Yuan, Ling; Li, Yang-Bo; He, Lin-Wei

    2014-10-01

    Soil acidification, aluminum (Al3+) toxicity and nutrient deficiency could be some of the most important reasons for the decline and death of forests in tropical and subtropical areas. Ectomycorrhizal fungi for Al3+ resistance and nutrient mobilization are beneficial for preventing forests against Al3+ toxicity and increasing forest productivity. Therefore, Suillus luteus (SI 13), Pisolithus tinctorius (Pt 715) and Suillus subluteus (Ss 00) were grown in liquid culture medium with soil as the sole K source under Al3+ stress to study the fungal growth, organic acid and proton efflux, and potassium (K) unitization. The result indicated that the fungal growth, organic acid and proton efflux, and nutrient uptake, including nitrogen (N), phosphorus (P) and potassium (K), were regulated by Al3+ concentration in culture solutions. They increased with increasing Al3+ at low concentration and after reaching a peak, they started to decrease. Fungal strain with high resistance to Al3+ also showed higher Al3+ concentration at the peak than those with low ability. Al3+ concentration at the peak of fungal biomass and N uptake by Pt 715 was four folds or twice of Ss 00 and SI 13, respectively. The uptake of P and K and efflux of organic acids and protons by Pt 715 were also higher than Ss 00 and Sl 13. All three fungal strains could utilize structural K in soil minerals and the utilization rate reached 2.10% for Pt 715, 1.43% for Ss 00 and 1.17% for Sl 13, respectively, which could be related to the types and amount of organic acids and protons.

  6. Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd.

    Science.gov (United States)

    Krznaric, Erik; Verbruggen, Nathalie; Wevers, Jan H L; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V

    2009-05-01

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils.

  7. Metatranscriptomic Study of Common and Host-Specific Patterns of Gene Expression between Pines and Their Symbiotic Ectomycorrhizal Fungi in the Genus Suillus.

    Directory of Open Access Journals (Sweden)

    Hui-Ling Liao

    2016-10-01

    Full Text Available Ectomycorrhizal fungi (EMF represent one of the major guilds of symbiotic fungi associated with roots of forest trees, where they function to improve plant nutrition and fitness in exchange for plant carbon. Many groups of EMF exhibit preference or specificity for different plant host genera; a good example is the genus Suillus, which grows in association with the conifer family Pinaceae. We investigated genetics of EMF host-specificity by cross-inoculating basidiospores of five species of Suillus onto ten species of Pinus, and screened them for their ability to form ectomycorrhizae. Several Suillus spp. including S. granulatus, S. spraguei, and S. americanus readily formed ectomycorrhizae (compatible reaction with white pine hosts (subgenus Strobus, but were incompatible with other pine hosts (subgenus Pinus. Metatranscriptomic analysis of inoculated roots reveals that plant and fungus each express unique gene sets during incompatible vs. compatible pairings. The Suillus-Pinus metatranscriptomes utilize highly conserved gene regulatory pathways, including fungal G-protein signaling, secretory pathways, leucine-rich repeat and pathogen resistance proteins that are similar to those associated with host-pathogen interactions in other plant-fungal systems. Metatranscriptomic study of the combined Suillus-Pinus transcriptome has provided new insight into mechanisms of adaptation and coevolution of forest trees with their microbial community, and revealed that genetic regulation of ectomycorrhizal symbiosis utilizes universal gene regulatory pathways used by other types of fungal-plant interactions including pathogenic fungal-host interactions.

  8. Enzymatic activities and stable isotope patterns of ectomycorrhizal fungi in relation to phylogeny and exploration types in an afrotropical rain forest.

    Science.gov (United States)

    Tedersoo, Leho; Naadel, Triin; Bahram, Mohammad; Pritsch, Karin; Buegger, Franz; Leal, Miguel; Kõljalg, Urmas; Põldmaa, Kadri

    2012-09-01

    Ectomycorrhizal (ECM) fungi obtain both mineral and simple organic nutrients from soil and transport these to plant roots. Natural abundance of stable isotopes (¹⁵N and ¹³C) in fruit bodies and potential enzymatic activities of ECM root tips provide insights into mineral nutrition of these mutualistic partners. By combining rDNA sequence analysis with enzymatic and stable isotope assays of root tips, we hypothesized that phylogenetic affinities of ECM fungi are more important than ECM exploration type, soil horizon and host plant in explaining the differences in mineral nutrition of trees in an African lowland rainforest. Ectomycorrhizal fungal species belonging to extraradical mycelium-rich morphotypes generally displayed the strongest potential activities of degradation enzymes, except for laccase. The signature of ¹⁵N was determined by the ECM fungal lineage, but not by the exploration type. Potential enzymatic activities of root tips were unrelated to ¹⁵N signature of ECM root tip. The lack of correlation suggests that these methods address different aspects in plant nutrient uptake. Stable isotope analysis of root tips could provide an additional indirect assessment of fungal and plant nutrition that enables enhancement of taxonomic coverage and control for soil depth and internal nitrogen cycling in fungal tissues.

  9. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    Science.gov (United States)

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized.

  10. Estimates of carbon allocation to ectomycorrhizal fungi in a temperate forest

    Science.gov (United States)

    Tumber-Davila, S. J.; Ouimette, A.

    2014-12-01

    Nitrogen (N) limitation restricts net primary productivity both globally and within the northeastern United States; therefore limiting the amount of carbon stored. Despite the importance of N to carbon (C) storage, we still lack an understanding of how trees compete for N belowground. In the Northeasters UN, trees associate with two main groups of fungal symbionts which supply the plant nitrogen, either ectomcorrhizal (ECM) or arbuscular mycorrhizal (AM) fungi. Since ECM creates an extensive hyphal network and has strong enzymatic capabilities, they are generally favored in forests with low N availabilities; however they have a higher C demand. Here we attempt to provide a more thorough understanding of whole-plant carbon allocation in temperate forests, by quantifying wood, foliar, and root NPP, as well as belowground C allocation to ECM fungi. The study was conducted across plots with a range of N availability and tree species composition within Bartlett Experimental Forest (BEF), NH, a current NEON site. Ingrowth core-methods utilized in the study indicate there is high soil fungal biomass in N-poor sites than at N-rich sites with the N-poor sites averaging at 600 grams of fungal carbon per meter squared compared to the N-rich sites having less than 200 grams. Soil, foliar, and root N isotopes (δ15N) show evidence of enhanced N isotope fractionation and C allocation to mycorrhizal fungi in the N-poor sites. Results from this study are being used to incorporate C allocation to mycorrhizal fungi into a process-based forest ecosystem.

  11. Growth, nutrient uptake and ectomycorrhizal function in Pinus sylvestris plants exposed to aluminium and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Ahonen-Jonnarth, Ulla [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-07-01

    The potential role of aluminium (Al) toxicity to trees has been of particular concern to forest owners and scientists since the early 1980's when Ulrich hypothesised that both Al and heavy metals were involved in forest dieback because of their increased concentrations in soil due to acidification. Since then, numerous studies have examined the effects of metals upon nutrient uptake by plants. However, most of these investigations have been carried out in the absence of mycorrhizal fungi, which, in most ecosystems, are crucial components in nutrient uptake by plants. The present work focused on the effects of elevated concentrations of Al and heavy metals on Scots pine (Pinus sylvestris L.) and the potential role of ectomycorrhiza in modifying these effects. Ectomycorrhizal colonisation enhanced the growth and nutrient uptake by seedlings. To some extent, colonisation also alleviated reduced nutrient uptake which was a feature of seedlings growing in the presence of the metals. This effect was particularly noticeable with respect to P uptake. In general, mycorrhizal seedlings grew better and had an improved P, K, Mg and S status compared with non-mycorrhizal seedlings. Significant differences were also found in nutrient uptake among seedlings colonised by different fungi. One fungus, Hebeloma cf. longicaudum, was more sensitive to the Al treatment than the pine seedlings. The use of the base cation / Al ratio as an indicator of the potential detrimental effects to trees to acidification and Al is discussed. The production of oxalic acid was found to increase when mycorrhizal and nonmycorrhizal seedlings were exposed to Al or Cu. Colonisation by Suillus variegatus or Rhizopogon roseolus, in particular, resulted in a marked increase. These results demonstrate that there is a capacity, especially by certain ectomycorrhizal fungi, for increased production of the metal-chelating oxalic acid when root systems are exposed to increased levels of metals. In a field

  12. [Fungal keratitis].

    Science.gov (United States)

    Bourcier, T; Sauer, A; Letscher-Bru, V; Candolfi, E

    2011-10-01

    Fungal keratitis (keratomycosis) is a rare but severe cause of infectious keratitis. Its incidence is constant, due to steroids or immunosuppressive treatments and contact lenses. Pathogens often invade corneas with chronic diseases of the ocular surface but fungal keratitis is also observed following injuries with plant foreign objects. The poor prognosis of these infections is related both to fungal virulence, decreased host defense, as well as delays in diagnosis. However, new antimycotic treatments allow better management and prognosis.

  13. Ectomycorrhizal communities above and below ground and truffle productivity in a Tuber aestivum orchard

    Directory of Open Access Journals (Sweden)

    Elena Salerni

    2014-08-01

    Full Text Available Aim of study: The diversity of ectomycorrhizal fungal communities (EM above (EMFb and below (EMMt ground associated with Quercus cerris L., Q. pubescens Willd., and Pinus nigra J.F.Arnold was analyzed.Area of study: A 20 year-old orchard that produces Tuber aestivum truffles, located a few kilometers from Chiusi della Verna (latitude 43° 41’ 53’’; longitude 11° 56’ 9’’ in Tuscany (central Italy was observed.Material and Methods: This investigation combined analyses of EMFb, EMMt, T. aestivum productivity, different host trees, and statistical data on community ecology.Main results: The EM communities showed high species richness and differed slightly in relation to both the host tree and their location above or below ground, providing frequent findings of Tricholoma and Tomentella, respectively. Positive correlations were found between the number of truffles and host trees, and between the weight and number of truffles and EMFb.Research highlights: Mycorrhizal fungi and truffle production are not in competition.Key words: Fungal communities; fruiting bodies; morphotypes; Tuber aestivum; competition; Italy.

  14. Detecting the heavy metal tolerance level in ectomycorrhizal fungi in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Ray, P.; Tiwari, R.; Reddy, U.G.; Adholeya, A. [India Habitat Center, New Delhi (India). Energy & Resources Institute

    2005-04-01

    Eight isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Laccaria laccata (EM-1191), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1293), Scleroderma cepa (EM-1233), Scleroderma flavidum (EM-1235), Scleroderma verucosum, (EM-1283) and Hysterangium incarceratum (EM-1185) were grown on specially designed cocktail media prepared by adding various concentrations of different heavy metals namely Al, As, Cd, Cr, Ni and Pb. The heavy metals were selected keeping in view their relative abundance in coal ash and potential toxicity. The fungal isolates were grown on such designed cocktail media. The colony diameter was used for the measurement of the fungal growth. Total heavy metal accumulated in the mycelia was assayed by atomic absorption spectrophotometry. In relation to metal tolerance ability in general, Hysterangium incarceratum (EM-1185) showed maximum tolerance with respect to growth, Laccaria fraterna (EM-1083) and Pisolithus tinctorius (EM-1293) also showed considerable tolerance to the heavy metals tested. In relation to metal uptake in particular, Pisolithus tinctorius (EM-1293), has reported maximum uptake of Al (34642.58 ppm), Cd (302.12 ppm) and Pb (3501.96 ppm). In Laccaria fraterna (EM-1083), As (130.57 ppm) and Cr (402.38 ppm) uptake was recorded maximum; and Hysterangium incarceratum (EM-1185) has recorded maximum Ni (2648.59 ppm) uptake among the three suitable isolates documented here.

  15. Spatial Segregation and Aggregation of Ectomycorrhizal and Root-Endophytic Fungi in the Seedlings of Two Quercus Species

    Science.gov (United States)

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S.; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus–fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus–fungus interactions in plant root systems. PMID:24801150

  16. Spatial segregation and aggregation of ectomycorrhizal and root-endophytic fungi in the seedlings of two Quercus species.

    Science.gov (United States)

    Yamamoto, Satoshi; Sato, Hirotoshi; Tanabe, Akifumi S; Hidaka, Amane; Kadowaki, Kohmei; Toju, Hirokazu

    2014-01-01

    Diverse clades of mycorrhizal and endophytic fungi are potentially involved in competitive or facilitative interactions within host-plant roots. We investigated the potential consequences of these ecological interactions on the assembly process of root-associated fungi by examining the co-occurrence of pairs of fungi in host-plant individuals. Based on massively-parallel pyrosequencing, we analyzed the root-associated fungal community composition for each of the 249 Quercus serrata and 188 Quercus glauca seedlings sampled in a warm-temperate secondary forest in Japan. Pairs of fungi that co-occurred more or less often than expected by chance were identified based on randomization tests. The pyrosequencing analysis revealed that not only ectomycorrhizal fungi but also endophytic fungi were common in the root-associated fungal community. Intriguingly, specific pairs of these ectomycorrhizal and endophytic fungi showed spatially aggregated patterns, suggesting the existence of facilitative interactions between fungi in different functional groups. Due to the large number of fungal pairs examined, many of the observed aggregated/segregated patterns with very low P values (e.g., fungi could influence each other through interspecific competitive/facilitative interactions in root. To test the potential of host-plants' control of fungus-fungus ecological interactions in roots, we further examined whether the aggregated/segregated patterns could vary depending on the identity of host plant species. Potentially due to the physiological properties shared between the congeneric host plant species, the sign of hosts' control was not detected in the present study. The pyrosequencing-based randomization analyses shown in this study provide a platform of the high-throughput investigation of fungus-fungus interactions in plant root systems.

  17. Interactions of biotic and abiotic environmental factors in an ectomycorrhizal symbiosis, and the potential for selection mosaics

    Directory of Open Access Journals (Sweden)

    Hoeksema Jason D

    2008-05-01

    Full Text Available Abstract Background Geographic selection mosaics, in which species exert different evolutionary impacts on each other in different environments, may drive diversification in coevolving species. We studied the potential for geographic selection mosaics in plant-mycorrhizal interactions by testing whether the interaction between bishop pine (Pinus muricata D. Don and one of its common ectomycorrhizal fungi (Rhizopogon occidentalis Zeller and Dodge varies in outcome, when different combinations of plant and fungal genotypes are tested under a range of different abiotic and biotic conditions. Results We used a 2 × 2 × 2 × 2 factorial experiment to test the main and interactive effects of plant lineage (two maternal seed families, fungal lineage (two spore collections, soil type (lab mix or field soil, and non-mycorrhizal microbes (with or without on the performance of plants and fungi. Ecological outcomes, as assessed by plant and fungal performance, varied widely across experimental environments, including interactions between plant or fungal lineages and soil environmental factors. Conclusion These results show the potential for selection mosaics in plant-mycorrhizal interactions, and indicate that these interactions are likely to coevolve in different ways in different environments, even when initially the genotypes of the interacting species are the same across all environments. Hence, selection mosaics may be equally as effective as genetic differences among populations in driving divergent coevolution among populations of interacting species.

  18. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria.

    Science.gov (United States)

    Schrey, Silvia D; Schellhammer, Michael; Ecke, Margret; Hampp, Rüdiger; Tarkka, Mika T

    2005-10-01

    The interaction between the mycorrhiza helper bacteria Streptomyces nov. sp. 505 (AcH 505) and Streptomyces annulatus 1003 (AcH 1003) with fly agaric (Amanita muscaria) and spruce (Picea abies) was investigated. The effects of both bacteria on the mycelial growth of different ectomycorrhizal fungi, on ectomycorrhiza formation, and on fungal gene expression in dual culture with AcH 505 were determined. The fungus specificities of the streptomycetes were similar. Both bacterial species showed the strongest effect on the growth of mycelia at 9 wk of dual culture. The effect of AcH 505 on gene expression of A. muscaria was examined using the suppressive subtractive hybridization approach. The responsive fungal genes included those involved in signalling pathways, metabolism, cell structure, and the cell growth response. These results suggest that AcH 505 and AcH 1003 enhance mycorrhiza formation mainly as a result of promotion of fungal growth, leading to changes in fungal gene expression. Differential A. muscaria transcript accumulation in dual culture may result from a direct response to bacterial substances.

  19. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Directory of Open Access Journals (Sweden)

    Rachel L Vannette

    2013-09-01

    Full Text Available Belowground symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above and belowground herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed--which all produce toxic cardenolides--with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in above- and below-ground plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and

  20. Sporocarps of Pisolithus albus as an ecological niche for fluorescent pseudomonads involved in Acacia mangium Wild - Pisolithus albus ectomycorrhizal symbiosis.

    Science.gov (United States)

    Duponnois, Robin; Lesueur, Didier

    2004-09-01

    Fresh sporocarps and root and soil samples were collected under a monospecific forest plantation of Acacia mangium in Dagana in Northern Senegal and checked for the presence of fluorescent pseudomonads. No bacteria were detected except from sporocarps collected with adhering soil and hyphal strands. Pisolithus sporocarps were dried at 30 degrees C for 2 weeks, ground, passed through a 2-mm sieve and mixed together. This dry sporocarp powder (DSP) was used to inoculate and form mycorrhizas on A. mangium seedlings in a glasshouse experiment. After 3 months culture, plant growth was increased in the DSP treatment but no ectomycorrhizas were present on the A. mangium root systems; however fluorescent pseudomonads were recorded in the cultural soil. The stimulatory effects on the plant growth were maintained for 6 months. However, fluorescent pseudomonads were no longer detected and 35% of the short roots were ectomycorrhizal. Some of the fluorescent pseudomonad isolates detected after 3 months stimulated the radial fungal growth in axenic conditions. These observations suggest that these bacteria are closely associated with the Pisolithus fructifications and could interact with the ectomycorrhizal symbiosis establishment.

  1. Survey of ectomycorrhizal, litter-degrading, and wood-degrading Basidiomycetes for dye decolorization and ligninolytic enzyme activity.

    Science.gov (United States)

    Casieri, Leonardo; Anastasi, Antonella; Prigione, Valeria; Varese, Giovanna Cristina

    2010-11-01

    Basidiomycetes are essential in forest ecology, being deeply involved in wood and litter decomposition, humification, and mineralization of soil organic matter. The fungal oxidoreductases involved in these processes are today the focus of much attention with a view to their applications. The ecological role and potential biotechnological applications of 300 isolates of Basidiomycetes were assessed, taking into account the degradation of model dyes in different culture conditions and the production of oxidoreductase enzymes. The tested isolates belong to different ecophysiological groups (wood-degrading, litter-degrading, ectomycorrhizal, and coprophilous fungi) and represent a broad systematic and functional biodiversity among Basidiomycetes occurring in deciduous and evergreen forests of northwest Italy (Piedmont Region). The high number of species tested and the use of different culture conditions allowed the investigation of the degradation activity of several novel species, neglected to date. Oxidative enzyme activities varied widely among all ecophysiological groups and laccases were the most commonly detected enzymes. A large number of isolates (86%), belonging to all ecophysiological groups, were found to be active against at least one model dye; the wood-degrading fungi represented the most efficient group. Noteworthily, also some isolates of litter-degrading and ectomycorrhizal fungi achieved good decolorization yield. The 25 best isolates were then tested against nine industrial dyes commonly employed in textile industries. Three isolates of Bjerkandera adusta efficiently decolorized the dyes on all media and can be considered important candidates for application in textile wastewater treatment.

  2. Biochemical and ecophysiological responses to manganese stress by ectomycorrhizal fungus Pisolithus tinctorius and in association with Eucalyptus grandis.

    Science.gov (United States)

    Canton, Gabriela C; Bertolazi, Amanda A; Cogo, Antônio J D; Eutrópio, Frederico Jacob; Melo, Juliana; de Souza, Sávio Bastos; A Krohling, Cesar; Campostrini, Eliemar; da Silva, Ary Gomes; Façanha, Arnoldo R; Sepúlveda, Nuno; Cruz, Cristina; Ramos, Alessandro C

    2016-07-01

    At relatively low concentrations, the element manganese (Mn) is essential for plant metabolism, especially for photosynthesis and as an enzyme antioxidant cofactor. However, industrial and agricultural activities have greatly increased Mn concentrations, and thereby contamination, in soils. We tested whether and how growth of Pisolithus tinctorius is influenced by Mn and glucose and compare the activities of oxidative stress enzymes as biochemical markers of Mn stress. We also compared nutrient accumulation, ecophysiology, and biochemical responses in Eucalyptus grandis which had been colonized by the ectomycorrhizal Pisolithus tinctorius with those which had not, when both were exposed to increasing Mn concentrations. In vitro experiments comprised six concentrations of Mn in three concentrations of glucose. In vivo experiments used plants colonized by Pisolithus tinctorius, or not colonized, grown with three concentrations of Mn (0, 200, and 1000 μM). We found that fungal growth and glucose concentration were correlated, but these were not influenced by Mn levels in the medium. The anti-oxidative enzymes catalase and glutathione S-transferase were both activated when the fungus was exposed to Mn. Also, mycorrhizal plants grew more and faster than non-mycorrhizal plants, whatever Mn exposure. Photosynthesis rate, intrinsic water use efficiency, and carboxylation efficiency were all inversely correlated with Mn concentration. Thus, we originally show that the ectomycorrhizal fungus provides protection for its host plants against varying and potentially toxic concentrations of Mn.

  3. Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads

    NARCIS (Netherlands)

    Frey-Klett, P.; Chavatte, M.; Clausse, M.L.; Courrier, S.; Roux, Le C.; Raaijmakers, J.M.; Giovanna Martinotti, M.; Pierrat, J.C.; Garbaye, J.

    2005-01-01

    Here we characterized the effect of the ectomycorrhizal symbiosis on the genotypic and functional diversity of soil Pseudomonas fluorescens populations and analysed its possible consequences in terms of plant nutrition, development and health. ¿ Sixty strains of P. fluorescens were isolated from the

  4. Ectomycorrhizal Fungi and Biogeochemical Cycles of Boreal Forests

    NARCIS (Netherlands)

    Smits, M.M.

    2006-01-01

    Inpodzolsin Europe and North America tunnels in weatherable mineral grains were found, presumably created by ectomycorrhizal (EcM) fungi. This finding was the incentive for a research program on rock-eating mycorrhizas, of which this project is part of. The focus of this

  5. Ectomycorrhizal fungi in Amazonian tropical forests in Colombia

    NARCIS (Netherlands)

    Vasco Palacios, A.M.

    2016-01-01

    The ectomycorrhizal (EcM) symbiosis was assumed to be restricted to the temperate regions where forests are dominated by EcM host plants, and the tropics were supposed to be dominated by endomycorrhizal fungi. However, evidence of the presence of EcM symbiosis in tropical lowland ecosystems has been

  6. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita

    NARCIS (Netherlands)

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V.; Pringle, Anne

    2015-01-01

    - The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes invol

  7. Evolution and host specificity in the ectomycorrhizal genus Leccinum

    NARCIS (Netherlands)

    Bakker, den H.C.; Zuccarello, G.C.; Kuyper, T.W.; Noordeloos, M.E.

    2004-01-01

    Species of the ectomycorrhizal genus Leccinum are generally considered to be host specialists. We determined the phylogenetic relationships between species of Leccinum from Europe and North America based on second internal transcribed spacer (ITS2) and glyceraldehyde 3-phosphate dehydrogenase (Gapdh

  8. Eliciting maize defense pathways aboveground attracts belowground biocontrol agents

    Science.gov (United States)

    Filgueiras, Camila Cramer; Willett, Denis S.; Pereira, Ramom Vasconcelos; Moino Junior, Alcides; Pareja, Martin; Duncan, Larry W.

    2016-01-01

    Plant defense pathways mediate multitrophic interactions above and belowground. Understanding the effects of these pathways on pests and natural enemies above and belowground holds great potential for designing effective control strategies. Here we investigate the effects of aboveground stimulation of plant defense pathways on the interactions between corn, the aboveground herbivore adult Diabrotica speciosa, the belowground herbivore larval D. speciosa, and the subterranean ento-mopathogenic nematode natural enemy Heterorhabditis amazonensis. We show that adult D. speciosa recruit to aboveground herbivory and methyl salicylate treatment, that larval D. speciosa are relatively indiscriminate, and that H. amazonensis en-tomopathogenic nematodes recruit to corn fed upon by adult D. speciosa. These results suggest that entomopathogenicnematodes belowground can be highly attuned to changes in the aboveground parts of plants and that biological control can be enhanced with induced plant defense in this and similar systems. PMID:27811992

  9. Marsh Soil Responses to Nutrients: Belowground Structural and Organic Properties.

    Science.gov (United States)

    Coastal marsh responses to nutrient enrichment apparently depend upon soil matrix and whether the system is primarily biogenic or minerogenic. Deteriorating organic rich marshes (Jamaica Bay, NY) receiving wastewater effluent had lower belowground biomass, organic matter, and soi...

  10. Fungal rhinosinusitis.

    Science.gov (United States)

    Netkovski, J; Shirgoska, B

    2012-01-01

    Fungi are a major part of the ecosystem. In fact, over 250 fungal species have been reported to produce human infections. More than ever, fungal diseases have emerged as major challenges for physicians and clinical microbiologists. The aim of this study was to summarize the diagnostic procedures and endoscopic surgical treatment of patients with fungal rhinosinusitis. Eleven patients, i.e. 10% of all cases with chronic inflammation of paranasal sinuses, were diagnosed with fungal rhinosinusitis. Ten of them were patients with a noninvasive form, fungus ball, while only one patient was classified in the group of chronic invasive fungal rhinosinusitis which was accompanied with diabetes mellitus. All patients underwent nasal endoscopic examination, skin allergy test and had preoperative computed tomography (CT) scans of the sinuses in axial and coronal plane. Functional endoscopic sinus surgery was performed in 10 patients with fungus ball, while a combined approach, endoscopic and external, was done in the immunocompromised patient with the chronic invasive form of fungal rhinosinusitis. Most cases (9/11) had unilateral infection. In 9 cases infection was restricted to a single sinus, and here the maxillary sinus was most commonly affected (8/9) with infections in other patients being restricted to the sphenoid sinus (1/9). Two patients had infections affecting two or more sinuses. In patients with an invasive form of the fungal disease there was involvement of the periorbital and orbital tissues. In patients with fungus ball the mycelia masses were completely removed from the sinus cavities. Long-term outcome was positive in all the operated patients and no recurrence was detected. The most frequent fungal agent that caused rhinosinusitis was Aspergillus. Mucor was identified in the patient with the invasive form. Endoscopic examination of the nasal cavity and CT scanning of paranasal sinuses followed by endoscopic sinus surgery were represented as valuable

  11. Release from belowground enemies and shifts in root traits as interrelated drivers of alien plant invasion success: a hypothesis.

    Science.gov (United States)

    Dawson, Wayne

    2015-10-01

    Our understanding of the interrelated mechanisms driving plant invasions, such as the interplay between enemy release and resource-acquisition traits, is biased by an aboveground perspective. To address this bias, I hypothesize that plant release from belowground enemies (especially fungal pathogens) will give invasive plant species a fitness advantage in the alien range, via shifts in root traits (e.g., increased specific root length and branching intensity) that increase resource uptake and competitive ability compared to native species in the alien range, and compared to plants of the invader in its native range. Such root-trait changes could be ecological or evolutionary in nature. I explain how shifts in root traits could occur as a consequence of enemy release and contribute to invasion success of alien plants, and how they could be interrelated with other potential belowground drivers of invasion success (allelopathy, mutualist enhancement). Finally, I outline the approaches that could be taken to test whether belowground enemy release results in increased competitive ability and nutrient uptake by invasive alien plants, via changes in root traits in the alien range.

  12. The effect of local ectomycorrhizal nitrogen supply on allocation of recent photosynthates within the mycorrhizosphere

    Science.gov (United States)

    Gorka, Stefan; Mayerhofer, Werner; Dietrich, Marlies; Gabriel, Raphael; Wiesenbauer, Julia; Martin, Victoria; Schweiger, Peter; Woebken, Dagmar; Richter, Andreas; Kaiser, Christina

    2017-04-01

    Understanding allocation patterns of carbon (C) released by plants into their soil environment is vital for understanding global C cycling. Plants release photosynthetically acquired C not only to the rhizosphere and respective soil bacteria, but also to associated mycorrhizal fungi. Mycorrhizal fungi extend further into the adjacent soil, mining for essential nutrients like nitrogen (N) and phosphorous (P), with a dramatically increased surface area compared to plant roots. Symbiotically, plants receive these nutrients in exchange for C. A reciprocal control on exchange rates has been shown in arbuscular mycorrhizal systems, but the situation remains equivocal for the ectomycorrhizal (EM) symbiosis. Furthermore, the symbiosis may conceptually be extended to interactions between mycorrhizal fungal hyphae and soil bacteria. For example, a transfer of plant-derived C from hyphae to surrounding soil microbial communities has been suggested, with however only limited experimental evidence. We hypothesized that (i) reciprocal reward within the EM symbiosis may be observed at the level of root system architecture, i.e. that plants allocate C preferentially to parts of their root system that receive more N by EM fungi, (ii) that EM fungi allocate recent photosynthates to soil bacteria, and (iii) that this C allocation is influenced by N availability. We conducted a split-root experiment with ectomycorrhizal beech (Fagus sylvatica) trees. Young trees were collected in the Wienerwald near Vienna. Each plant was transferred to a 'split-root'-box, dividing its root system into two parts, with each part growing into one of two disconnected soil compartments. Each of the two soil compartments was connected to a separated litter compartment by a mesh (35 μm) penetrable only for fungal hyphae, but not for roots. Stable isotope tracing was used for determining the fate of nutrients and photosynthates in this system, by applying 15N labelled ammonium and amino acids to only one of

  13. Fungal allergens.

    OpenAIRE

    1995-01-01

    Airborne fungal spores occur widely and often in far greater concentrations than pollen grains. Immunoglobulin E-specific antigens (allergens) on airborne fungal spores induce type I hypersensitivity (allergic) respiratory reactions in sensitized atopic subjects, causing rhinitis and/or asthma. The prevalence of respiratory allergy to fungi is imprecisely known but is estimated at 20 to 30% of atopic (allergy-predisposed) individuals or up to 6% of the general population. Diagnosis and immuno...

  14. Fungal symbionts alter plant responses to global change.

    Science.gov (United States)

    Kivlin, Stephanie N; Emery, Sarah M; Rudgers, Jennifer A

    2013-07-01

    While direct plant responses to global change have been well characterized, indirect plant responses to global change, via altered species interactions, have received less attention. Here, we examined how plants associated with four classes of fungal symbionts (class I leaf endophytes [EF], arbuscular mycorrhizal fungi [AMF], ectomycorrhizal fungi [ECM], and dark septate endophytes [DSE]) responded to four global change factors (enriched CO2, drought, N deposition, and warming). We performed a meta-analysis of 434 studies spanning 174 publications to search for generalizable trends in responses of plant-fungal symbioses to future environments. Specifically, we addressed the following questions: (1) Can fungal symbionts ameliorate responses of plants to global change? (2) Do fungal symbiont groups differ in the degree to which they modify plant response to global change? (3) Do particular global change factors affect plant-fungal symbioses more than others? In all global change scenarios, except elevated CO2, fungal symbionts significantly altered plant responses to global change. In most cases, fungal symbionts increased plant biomass in response to global change. However, increased N deposition reduced the benefits of symbiosis. Of the global change factors we considered, drought and N deposition resulted in the strongest fungal mediation of plant responses. Our analysis highlighted gaps in current knowledge for responses of particular fungal groups and revealed the importance of considering not only the nonadditive effects of multiple global change factors, but also the interactive effects of multiple fungal symbioses. Our results show that considering plant-fungal symbioses is critical to predicting ecosystem response to global change.

  15. Fungal nail infection

    Science.gov (United States)

    Nails - fungal infection; Onychomycosis; Infection - fungal - nails; Tinea unguium ... hair, nails, and outer skin layers. Common fungal infections include: Athlete's foot Jock itch Ringworm on the ...

  16. Potassium nutrition of ectomycorrhizal Pinus pinaster: overexpression of the Hebeloma cylindrosporum HcTrk1 transporter affects the translocation of both K(+) and phosphorus in the host plant.

    Science.gov (United States)

    Garcia, Kevin; Delteil, Amandine; Conéjéro, Geneviève; Becquer, Adeline; Plassard, Claude; Sentenac, Hervé; Zimmermann, Sabine

    2014-02-01

    Mycorrhizal associations are known to improve the hydro-mineral nutrition of their host plants. However, the importance of mycorrhizal symbiosis for plant potassium nutrition has so far been poorly studied. We therefore investigated the impact of the ectomycorrhizal fungus Hebeloma cylindrosporum on the potassium nutrition of Pinus pinaster and examined the involvement of the fungal potassium transporter HcTrk1. HcTrk1 transcripts and proteins were localized in ectomycorrhizas using in situ hybridization and EGFP translational fusion constructs. Importantly, an overexpression strategy was performed on a H. cylindrosporum endogenous gene in order to dissect the role of this transporter. The potassium nutrition of mycorrhizal pine plants was significantly improved under potassium-limiting conditions. Fungal strains overexpressing HcTrk1 reduced the translocation of potassium and phosphorus from the roots to the shoots of inoculated plants in mycorrhizal experiments. Furthermore, expression of HcTrk1 and the phosphate transporter HcPT1.1 were reciprocally linked to the external inorganic phosphate and potassium availability. The development of these approaches provides a deeper insight into the role of ectomycorrhizal symbiosis on host plant K(+) nutrition and in particular, the K(+) transporter HcTrk1. The work augments our knowledge of the link between potassium and phosphorus nutrition via the mycorrhizal pathway.

  17. Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd

    Energy Technology Data Exchange (ETDEWEB)

    Krznaric, Erik [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Verbruggen, Nathalie [Laboratoire de Physiologie et de Genetique Moleculaire des Plantes, Universite Libre de Bruxelles, Campus Plaine, CP242, Bd du Triomphe, 1050 Brussels (Belgium); Wevers, Jan H.L. [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Carleer, Robert [Laboratory of Applied Chemistry, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Vangronsveld, Jaco [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Colpaert, Jan V., E-mail: jan.colpaert@uhasselt.b [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium)

    2009-05-15

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils. - The evolutionary adaptation for higher Cd tolerance in Suillus luteus, an ectomycorrhizal fungus, is of major importance for the amelioration of Cd toxicity in pine trees exposed to high Cd concentrations.

  18. Fungal keratitis

    Directory of Open Access Journals (Sweden)

    Sonal S Tuli

    2011-02-01

    Full Text Available Sonal S TuliUniversity of Florida, Gainesville, FL, USA  Clinical question: What is the most appropriate management of fungal keratitis?Results: Traditionally, topical Natamycin is the most commonly used medication for filamentous fungi while Amphotericin B is most commonly used for yeast. Voriconazole is rapidly becoming the drug of choice for all fungal keratitis because of its wide spectrum of coverage and increased penetration into the cornea.Implementation: Repeated debridement of the ulcer is recommended for the penetration of topical medications. While small, peripheral ulcers may be treated in the community, larger or central ulcers, especially if associated with signs suggestive of anterior chamber penetration should be referred to a tertiary center. Prolonged therapy for approximately four weeks is usually necessary.Keywords: fungal keratitis, keratomycosis, antifungal medications, debridement

  19. Growth and photosynthetic responses of ectomycorrhizal pine seedlings exposed to elevated Cu in soils.

    Science.gov (United States)

    Chen, Yahua; Nara, Kazuhide; Wen, Zhugui; Shi, Liang; Xia, Yan; Shen, Zhenguo; Lian, Chunlan

    2015-10-01

    It is still controversial whether ectomycorrhizal (ECM) mycelia filter out toxic metals in nutrient absorption of host trees. In this study, pine (Pinus densiflora) seedlings colonized by Cu-sensitive and Cu-tolerant ECM species were exposed to a wide spectrum of soil Cu concentrations to investigate functions of ECM fungi under Cu stress. The photosynthetic rates of intact needles were monitored in situ periodically. The biomass and elements of plants were also measured after harvest. The ameliorating effect of ECM infection on host plants exposed to toxic stress was metal concentration specific. Under lower-level Cu stress, ECM fungi increased seedling performance, while ECM seedlings accumulated more Cu than nonmycorrhizal (NM) seedlings. Under higher-level Cu stress, photosynthesis decreased well before visible symptoms of Cu toxicity appeared. The reduced photosynthesis and biomass in ECM seedlings compared to NM seedlings under higher Cu conditions were also accompanied by lower phosphorus in needles. There was no marked difference between the two fungal species. Our results indicate that the two ECM fungi studied in our system may not have an ability to selectively eliminate Cu in nutrient absorption and may not act as effective barriers that decrease toxic metal uptake into host plants.

  20. Utilization of rocks and ectomycorrhizal fungi to promote growth of eucalypt

    Directory of Open Access Journals (Sweden)

    Luciano Alves

    2010-10-01

    Full Text Available The utilization of rocks as fertilizers is limited by their low solubility. However, solubilization may be achieved by some micro-organisms, such as ectomycorrhizal fungi (ECMf. The aim of this study was to evaluate the potential of seven isolates of ECMf to solubilize two rocks, alkaline breccia and granite, and to liberate potassium and phosphorus for Eucalyptus dunnii seedlings under greenhouse conditions. Fungal inoculants were produced in a peat-vermiculite-liquid medium mixture and added to the planting substrate at 10 %. Rocks were ground up and added at 0.500 mg and 16.0 mg per plant, as a source of phosphorus and potassium, respectively. Other nutrients were added and E. dunnii seeds were sown. Control plants, non-inoculated, were fertilized with the same amount of phosphorus and potassium using soluble forms. After 90 days, the plant height, shoot dry weight, root length, phosphorus and potassium contents, and mycorrhizal colonization were evaluated. Alkaline breccia was more efficient than granite as a source of phosphorus and potassium for the plants, and may be an alternative to conventional fertilizers. Isolates UFSC-Pt22 (Pisolithus sp. and UFSC-Pt186 (Pisolithus microcarpus were the most efficient in promoting plant growth, mainly when combined with alkaline breccia to replace potassium and phosphorus fertilizers, respectively.

  1. Ectomycorrhizal impacts on plant nitrogen nutrition: emerging isotopic patterns, latitudinal variation and hidden mechanisms.

    Science.gov (United States)

    Mayor, Jordan; Bahram, Mohammad; Henkel, Terry; Buegger, Franz; Pritsch, Karin; Tedersoo, Leho

    2015-01-01

    Ectomycorrhizal (EcM)-mediated nitrogen (N) acquisition is one main strategy used by terrestrial plants to facilitate growth. Measurements of natural abundance nitrogen isotope ratios (denoted as δ(15)N relative to a standard) increasingly serve as integrative proxies for mycorrhiza-mediated N acquisition due to biological fractionation processes that alter (15)N:(14)N ratios. Current understanding of these processes is based on studies from high-latitude ecosystems where plant productivity is largely limited by N availability. Much less is known about the cause and utility of ecosystem δ(15)N patterns in the tropics. Using structural equation models, model selection and isotope mass balance we assessed relationships among co-occurring soil, mycorrhizal plants and fungal N pools measured from 40 high- and 9 low-latitude ecosystems. At low latitudes (15)N-enrichment caused ecosystem components to significantly deviate from those in higher latitudes. Collectively, δ(15)N patterns suggested reduced N-dependency and unique sources of EcM (15)N-enrichment under conditions of high N availability typical of the tropics. Understanding the role of mycorrhizae in global N cycles will require reevaluation of high-latitude perspectives on fractionation sources that structure ecosystem δ(15)N patterns, as well as better integration of EcM function with biogeochemical theories pertaining to climate-nutrient cycling relationships.

  2. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi.

    Science.gov (United States)

    Tedersoo, Leho; Bahram, Mohammad; Toots, Märt; Diédhiou, Abdala G; Henkel, Terry W; Kjøller, Rasmus; Morris, Melissa H; Nara, Kazuhide; Nouhra, Eduardo; Peay, Kabir G; Põlme, Sergei; Ryberg, Martin; Smith, Matthew E; Kõljalg, Urmas

    2012-09-01

    Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi-microbial symbionts that play key roles in plant nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM fungi, greater evolutionary age and larger total area of EcM host vegetation may also contribute to the higher diversity in temperate ecosystems. Our results provide useful biogeographic and ecological hypotheses for explaining the distribution of fungi that remain to be tested by involving next-generation sequencing techniques and relevant soil metadata.

  3. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus.

    Science.gov (United States)

    Sebastiana, Mónica; Martins, Joana; Figueiredo, Andreia; Monteiro, Filipa; Sardans, Jordi; Peñuelas, Josep; Silva, Anabela; Roepstorff, Peter; Pais, Maria Salomé; Coelho, Ana Varela

    2017-02-01

    An increased knowledge on the real impacts of ectomycorrhizal symbiosis in forest species is needed to optimize forest sustainable productivity and thus to improve forest services and their capacity to act as carbon sinks. In this study, we investigated the response of an oak species to ectomycorrhizae formation using a proteomics approach complemented by biochemical analysis of carbohydrate levels. Comparative proteome analysis between mycorrhizal and nonmycorrhizal cork oak plants revealed no differences at the foliar level. However, the protein profile of 34 unique oak proteins was altered in the roots. Consistent with the results of the biochemical analysis, the proteome analysis of the mycorrhizal roots suggests a decreasing utilization of sucrose for the metabolic activity of mycorrhizal roots which is consistent with an increased allocation of carbohydrates from the plant to the fungus in order to sustain the symbiosis. In addition, a promotion of protein unfolding mechanisms, attenuation of defense reactions, increased nutrient mobilization from the plant-fungus interface (N and P), as well as cytoskeleton rearrangements and induction of plant cell wall loosening for fungal root accommodation in colonized roots are also suggested by the results. The suggested improvement in root capacity to take up nutrients accompanied by an increase of root biomass without apparent changes in aboveground biomass strongly re-enforces the potential of mycorrhizal inoculation to improve cork oak forest resistance capacity to cope with coming climate change.

  4. Molecular signals required for the establishment and maintenance of ectomycorrhizal symbioses.

    Science.gov (United States)

    Garcia, Kevin; Delaux, Pierre-Marc; Cope, Kevin R; Ané, Jean-Michel

    2015-10-01

    Ectomycorrhizal (ECM) symbioses are among the most widespread associations between roots of woody plants and soil fungi in forest ecosystems. These associations contribute significantly to the sustainability and sustainagility of these ecosystems through nutrient cycling and carbon sequestration. Unfortunately, the molecular mechanisms controlling the mutual recognition between both partners are still poorly understood. Elegant work has demonstrated that effector proteins from ECM and arbuscular mycorrhizal (AM) fungi regulate host defenses by manipulating plant hormonal pathways. In parallel, genetic and evolutionary studies in legumes showed that a 'common symbiosis pathway' is required for the establishment of the ancient AM symbiosis and has been recruited for the rhizobia-legume association. Given that genes of this pathway are present in many angiosperm trees that develop ectomycorrhizas, we propose their potential involvement in some but not all ECM associations. The maintenance of a successful long-term relationship seems strongly regulated by resource allocation between symbiotic partners, suggesting that nutrients themselves may serve as signals. This review summarizes our current knowledge on the early and late signal exchanges between woody plants and ECM fungi, and we suggest future directions for decoding the molecular basis of the underground dance between trees and their favorite fungal partners.

  5. Fungal prions.

    Science.gov (United States)

    Staniforth, Gemma L; Tuite, Mick F

    2012-01-01

    For both mammalian and fungal prion proteins, conformational templating drives the phenomenon of protein-only infectivity. The conformational conversion of a protein to its transmissible prion state is associated with changes to host cellular physiology. In mammals, this change is synonymous with disease, whereas in fungi no notable detrimental effect on the host is typically observed. Instead, fungal prions can serve as epigenetic regulators of inheritance in the form of partial loss-of-function phenotypes. In the presence of environmental challenges, the prion state [PRION(+)], with its resource for phenotypic plasticity, can be associated with a growth advantage. The growing number of yeast proteins that can switch to a heritable [PRION(+)] form represents diverse and metabolically penetrating cellular functions, suggesting that the [PRION(+)] state in yeast is a functional one, albeit rarely found in nature. In this chapter, we introduce the biochemical and genetic properties of fungal prions, many of which are shared by the mammalian prion protein PrP, and then outline the major contributions that studies on fungal prions have made to prion biology.

  6. Fungal Entomopathogens

    Science.gov (United States)

    Fungal entomopathogens are important biological control agents worldwide and have been the subject of intense research for more than100 years. They exhibit both sexual and asexual reproduction and produce different types of infective propagules. Their mode of action against insects involves attachme...

  7. Belowground carbon cycle of Napier and Guinea grasses

    Science.gov (United States)

    Sumiyoshi, Y.; Crow, S. E.; Litton, C. M.; Deenik, J. L.

    2011-12-01

    Soil carbon (C) sequestration may partially offset rising atmospheric CO2 concentration. Napier grass (Pennisetum purpureum) and Guinea grass (Panicum maximum), in particular, are perennial C4 grasses with high capacity to produce large amounts of both aboveground and belowground biomass. Thus, they have a potential to sequester soil C while simultaneously provide aboveground biomass for energy production. In this study, both grasses were ratooned (no-till) to leave belowground biomass intact and facilitate C accumulation through improvement of soil aggregation. The primary objective of the study was to determine if and how these grasses sequester soil C. For 8 selected grass varieties, we: (1) determined the quantity and quality of belowground C input, (2) quantified changes in soil organic C (SOC) during two harvesting cycles (May 2010 to July 2011), and (3) fractionated soil C pools to determine where changes in SOC occurred. Soil-surface CO2 efflux and root biomass were used as measures of the quantity of belowground C input. Root lignin/N ratios and decay constants from litterbag studies were used as measures of the belowground C input quality. We hypothesized that grass varieties with higher quantity and lower quality of belowground C input would sequester more soil C. Root biomass collected on May 2010 ranged from 13 to 302 g m-2 at 15 cm depth, where Local (Napier) and OG05 (Guinea) varieties were significantly greater than the K06 variety (Guinea). However, cumulative soil-surface CO2 efflux showed no significant differences between the three varieties. Root Lignin/N ranged from 16 to 55 and Guinea varieties were significantly higher on average than Napier varieties. Root decay constants were variable among varieties, with OG05 and K06 showing higher resistance to decay compared to Local. Soil C sequestration potentials and factors affecting the process are imperative to determine suitable variety for bioenergy production.

  8. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Science.gov (United States)

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  9. Influences of excessive Cu on photosynthesis and growth in ectomycorrhizal Pinus sylvestris seedlings

    Institute of Scientific and Technical Information of China (English)

    HUANG Yi; TAO Shu

    2004-01-01

    Growth and photosynthesis responses were measured for Scots pine(Pinus sylvestris L. cv.) inoculated with ectomycorrhizal fungi(Suillus bovinus) under 6.5 and 25 mg/L Cu treatments to evaluate ectomycorrhizal seedlings' tolerance to heavy metal stress. Results showed that excessive Cu can significantly impair the growth and photosynthesis of pine seedlings, but such impairment is much smaller to the ectomycorrhizal seedlings. Under 25 mg/L Cu treatment, the dry weight of ectomycorrhizal seedlings is 25% lower than the control in contrary to 53% of the non-mycorrhizal seedlings, and the fresh weight of ectomycorrhizal roots was significantly higher than those of non-mycorrhizal roots, about 25% and 42% higher at 6.5 and 25 mg/L Cu treatments respectively. Furthermore, ectomycorrhizal fungi induced remarkable difference in the growth rate and pigment content of seedlings under excessive Cu stress. At 25 mg/L Cu, the contents of total chlorophyll, chlorophyll-a and chlorophyll-b were 30% higher in ectomycorrhizal plants than those in non-mycorrhizal plants. O2 evolution and electron transport of PSI and PSII were restrained by elevated Cu stress. However, no significant improvement was observed in reducing the physiological restraining in ectomycorrhizal seedlings over the non-mycorrhizal ones.

  10. Large grazers modify effects of aboveground–belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G.F.; Geuverink, E.; Olff, H.

    2012-01-01

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  11. Large grazers modify effects of aboveground-belowground interactions on small-scale plant community composition

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Geuverink, Elzemiek; Olff, Han; Schmid, Bernhard

    Aboveground and belowground organisms influence plant community composition by local interactions, and their scale of impact may vary from millimeters belowground to kilometers aboveground. However, it still poorly understood how large grazers that select their forage on large spatial scales

  12. Decomposition by ectomycorrhizal fungi alters soil carbon storage in a simulation model

    DEFF Research Database (Denmark)

    Moore, J. A. M.; Jiang, J.; Post, W. M.

    2015-01-01

    that ectomycorrhizal fungi can also be active decomposers when plant carbon allocation to fungi is low. Here, we reviewed the literature on ectomycorrhizal decomposition and we developed a simulation model of the plant-mycorrhizae interaction where a reduction in plant productivity stimulates ectomycorrhizal fungi...... to decompose soil organic matter. Our review highlights evidence demonstrating the potential for ectomycorrhizal fungi to decompose soil organic matter. Our model output suggests that ectomycorrhizal activity accounts for a portion of carbon decomposed in soil, but this portion varied with plant productivity...... and the mycorrhizal carbon uptake strategy simulated. Lower organic matter inputs to soil were largely responsible for reduced soil carbon storage. Using mathematical theory, we demonstrated that biotic interactions affect predictions of ecosystem functions. Specifically, we developed a simple function to model...

  13. Breakdown of Clays by Ectomycorrhizal Fungi Through Changes in Oxidation State of Iron

    Science.gov (United States)

    Arocena, J. M.; Velde, B.

    2012-04-01

    Organisms are known to play a significant role in the transformation of clay minerals in soils. In our earlier work on canola, barley and alfalfa, we reported that Glomus, an arbuscular mycorrhizae, selectively transformed biotite into 2:1 expanding clays through the oxidation of Fe (II) in biotite to Fe(III). In this presentation, we will share similar results on clay transformations mediated by ectomycorrhizal fungi colonizing the roots of coniferous trees. Clay samples were isolated from rhizosphere soils of sub-alpine fir (Abies lasiocarpa (Hook.) Nutt.) in northern British Columbia (Canada). Chemical and mineralogical properties of these soils had been reported in our earlier paper. In this study, we subjected the clay samples to iron X-ray Absorption Near Edge Spectroscopy (Fe-XANES) at the Canadian Light Source synchrotron facility in Saskatoon (Canada). Our initial results showed relatively higher amounts of Fe (III) than Fe(II) in clays collected from rhizosphere of Piloderma (an ectomycorrhizal fungus) compared to soils influenced by non-Piloderma species and Control (non-rhizosphere soil). Coupled with the results of X-ray diffraction (XRD) analysis, there seems to be a positive relationship between the relative amounts of Fe(III) and the 2:1 expanding clays. This relationship is consistent with our results on agricultural plants in laboratory experiments on biotites where we suggested that oxidation of Fe(II) to Fe(III) results in the formation of 2:1 expanding clays. In a related data set on chlorite alteration we observed that after dithionite-citrate-bicarbonate (DCB) treatment, the d-spacing of a slight portion of chloritic expanding clays shifted to higher angles indicating decreased d-spacing towards micaceous clays. The reductive process initiated through the action of the DCB treatment seems to indicate the collapsed of expandable clays upon the reduction of Fe(III) to Fe(II). Initial results from the Fe-XANES and XRD analysis of DCB

  14. Soil propagule banks of ectomycorrhizal fungi along forest development stages after mining.

    Science.gov (United States)

    Huang, Jian; Nara, Kazuhide; Zong, Kun; Lian, Chunlan

    2015-05-01

    Ectomycorrhizal fungal (EMF) propagules play an important role in seedling establishment following disturbance. However, little is known about how the EMF propagule community changes with forest development. In this study, EMF propagules were examined using seedling bioassays in rhizosphere soils collected from a recently closed Pb-Zn tailing (Taolin Pb-Zn tailing (TLT)), a Cu tailing (Dexing Cu No. 2 tailing (DXT)) that had undergone 21 years of restoration, and a mature Masson pine (Pinus massoniana) forest (DXC) outside the Cu mining areas. The corresponding EMF communities colonizing Masson pine at each site were also investigated for comparison. After 8 months of running bioassays, ectomycorrhizal colonization was poor for seedlings grown in TLT (9.0 % ± 14.9 %) and DXT soils (22.4 % ± 17.7 %), while DXC seedlings were well colonized (47.5 % ± 24.9 %). Internal transcribed spacer sequencing revealed that EMF species richness increased with forest development in both the propagule bank (TLT, 6; DXT, 7; DXC, 12) and in the field (TLT, 8; DXT, 14; DXC, 26), though richness was lower in propagule banks. Several lineages, such as Cenococcum, Rhizopogon, Inocybe, Suillus, and Atheliaceae, were frequently encountered in propagule communities, but species assemblages were different among the three sites. Canonical correspondence analysis revealed that several soil parameters, i.e., N, EC, Cu, Pb, Zn, etc., were responsible for the distribution of EMF in the field and bioassay seedlings. The highest overlap in EMF species composition between the propagule bank and the field community was observed at the recently closed tailing (Morisita-Horn similarity = 0.71 for TLT), whereas the lowest overlap occurred at the mature forest (0.26 for DXC). These results indicate that EMF propagules in soil are less frequent and diverse in early primary succession and become more frequent and diverse along forest development, due mainly to the accumulation of

  15. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    NARCIS (Netherlands)

    Peng, Wang; Heijmans, M.M.P.D.; Mommer, L.; Ruijven, van J.; Maximov, Trofim C.; Berendse, F.

    2016-01-01

    Climatewarming is known to increase the aboveground productivity of tundra ecosystems.
    Recently, belowground biomass is receiving more attention, but the effects of climate warming on
    belowground productivity remain unclear. Enhanced understanding of the belowground component
    of the tund

  16. Empirical and theoretical challenges in aboveground-belowground ecology

    DEFF Research Database (Denmark)

    W.H. van der Putten,; R.D. Bardgett; P.C. de Ruiter

    2009-01-01

    A growing body of evidence shows that aboveground and belowground communities and processes are intrinsically linked, and that feedbacks between these subsystems have important implications for community structure and ecosystem functioning. Almost all studies on this topic have been carried out f...

  17. Potential remobilization of belowground permafrost carbon under future global warming

    Science.gov (United States)

    P. Kuhry; E. Dorrepaal; G. Hugelius; E.A.G. Schuur; C. Tarnocai

    2010-01-01

    Research on permafrost carbon has dramatically increased in the past few years. A new estimate of 1672 Pg C of belowground organic carbon in the northern circumpolar permafrost region more than doubles the previous value and highlights the potential role of permafrost carbon in the Earth System. Uncertainties in this new estimate remain due to relatively few available...

  18. Isotopic patterns in caps and stipes in sporocarps reveal patterns of organic nitrogen use by ectomycorrhizal fungi

    Science.gov (United States)

    Hobbie, Erik; Ouimette, Andrew; Chen, Janet

    2016-04-01

    Current ecosystem models use inorganic nitrogen as the currency of nitrogen acquisition by plants. However, many trees may gain access to otherwise unavailable soil resources, such as soil organic nitrogen, through their symbioses with ectomycorrhizal fungi, and this pathway of nitrogen acquisition may therefore be important in understanding plant responses to environmental change. Different functional groups of ectomycorrhizal fungi vary in their ability to enzymatically access protein and other soil resources. Such fungal parameters as hyphal hydrophobicity, the presence of rhizomorphs (long-distance transport structures), and exploration strategies (e.g., short-distance versus long-distance, mat formation) correspond with how fungi interact with and explore the environment, and the proportions of different exploration types present will shift along environmental gradients such as nitrogen availability. Isotopic differences between caps and stipes may provide a means to test for organic nitrogen use, since caps and stipes differ in δ13C and δ15N as a result of variable proportions of protein and other classes of compounds, and protein should differ isotopically among de novo synthesis, litter sources, and soil sources. Here, we propose that (1) isotopic differences between caps and stipes could be related to organic nitrogen uptake and to the δ13C and δ15N values of different pools of soil-derived or de novo-synthesized amino acids; (2) these isotopic differences will reflect greater acquisition of soil-derived organic nitrogen by exploration types of greater enzymatic capabilities to degrade recalcitrant nitrogen forms, specifically long-distance, medium-distance fringe, and medium-distance mat exploration types. To test these hypotheses, we use a dataset of isotopic values, %N, and %C in 208 cap/stipe samples collected from Oregon, western USA. δ13C differences in caps and stipes in a multiple regression model had an adjusted r2 of 0.292 (p protein and

  19. Copper resistance of different ectomycorrhizal fungi such as Pisolithus microcarpus, Pisolithus sp., Scleroderma sp. and Suillus sp.

    Directory of Open Access Journals (Sweden)

    R.F. Silva

    2013-01-01

    Full Text Available Environments contaminated with heavy metals negatively impact the living organisms. Ectomycorrhizal fungi have shown important role in these impacted sites. Thus, this study aimed to evaluate the copper-resistance of ectomycorrhizal fungi isolates Pisolithus microcarpus - UFSC-Pt116; Pisolithus sp. - UFSC-PT24, Suillus sp. - UFSM RA 2.8 and Scleroderma sp. - UFSC-Sc124 to different copper doses in solid and liquid media. The copper doses tested were: 0.00, 0.25, 0.5, 0.75, 1.0 and 1.25 mmol L-1 in the solid medium and 0.00, 0.32, 0.64 and 0.96 mmol L-1 in the liquid medium. Copper was amended as copper sulphate in order to supplement the culture medium MNM at pH 4.8, with seven replicates to each fungus-dose combination. The fungal isolates were incubated for 30 days at 28 °C. UFSC-Pt116 showed high copper-resistance such as accessed by CL50 determinations (concentration to reduce 50% of the growth as while as UFSC-PT24 displayed copper-resistance mechanism at 0.50 mmol L-1 in solid medium. The UFSC-PT24 and UFSC-Sc124 isolates have increased copper-resistance in liquid medium. The higher production of extracellular pigment was detected in UFSC-Pt116 cultures. The UFSC-Pt116 and UFSC-PT24 isolates showed higher resistance for copper and produced higher mycelium biomass than the other isolates. In this way, the isolates UFSG-Pt116 and UFSC-PT24 can be important candidates to survive in copper-contaminated areas, and can show important role in plants symbiosis in these contaminated sites.

  20. Correspondence of ectomycorrhizal diversity and colonisation of willows (Salix spp.) grown in short rotation coppice on arable sites and adjacent natural stands.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Toljander, Ylva K; Baum, Christel; Fransson, Petra M A; Taylor, Andy F S; Weih, Martin

    2012-11-01

    Willows (Salix spp.) are mycorrhizal tree species sometimes cultivated as short rotation coppice (SRC) on arable sites for energy purposes; they are also among the earliest plants colonising primary successional sites in natural stands. The objective of this study was to analyse the degree of colonisation and diversity of ectomycorrhizal (EM) communities on willows grown as SRC in arable soils and their adjacent natural or naturalized stands. Arable sites usually lack ectomycorrhizal host plants before the establishment of SRC, and adjacent natural or naturalized willow stands were hypothesized to be a leading source of ectomycorrhizal inoculum for the SRC. Three test sites including SRC stands (Salix viminalis, Salix dasyclados, and Salix schwerinii) and adjacent natural or naturalized (Salix caprea, Salix fragilis, and Salix × mollissima) stands in central Sweden were investigated on EM colonisation and morphotypes, and the fungal partners of 36 of the total 49 EM fungi morphotypes were identified using molecular tools. The frequency of mycorrhizas in the natural/naturalized stands was higher (two sites) or lower (one site) than in the corresponding cultivated stands. Correspondence analysis revealed that some EM taxa (e.g. Agaricales) were mostly associated with cultivated willows, while others (e.g. Thelephorales) were mostly found in natural/naturalized stands. In conclusion, we found strong effects of sites and willow genotype on EM fungi formation, but poor correspondence between the EM fungi abundance and diversity in SRC and their adjacent natural/naturalized stands. The underlying mechanism might be selective promotion of some EM fungi species by more effective spore dispersal.

  1. The host plant Pinus pinaster exerts specific effects on phosphate efflux and polyphosphate metabolism of the ectomycorrhizal fungus Hebeloma cylindrosporum: a radiotracer, cytological staining and (31) P NMR spectroscopy study.

    Science.gov (United States)

    Torres-Aquino, Margarita; Becquer, Adeline; Le Guernevé, Christine; Louche, Julien; Amenc, Laurie K; Staunton, Siobhan; Quiquampoix, Hervé; Plassard, Claude

    2017-02-01

    Ectomycorrhizal (ECM) association can improve plant phosphorus (P) nutrition. Polyphosphates (polyP) synthesized in distant fungal cells after P uptake may contribute to P supply from the fungus to the host plant if they are hydrolyzed to phosphate in ECM roots then transferred to the host plant when required. In this study, we addressed this hypothesis for the ECM fungus Hebeloma cylindrosporum grown in vitro and incubated without plant or with host (Pinus pinaster) and non-host (Zea mays) plants, using an experimental system simulating the symbiotic interface. We used (32) P labelling to quantify P accumulation and P efflux and in vivo and in vitro nuclear magnetic resonance (NMR) spectroscopy and cytological staining to follow the fate of fungal polyP. Phosphate supply triggered a massive P accumulation as newly synthesized long-chain polyP in H. cylindrosporum if previously grown under P-deficient conditions. P efflux from H. cylindrosporum towards the roots was stimulated by both host and non-host plants. However, the host plant enhanced (32) P release compared with the non-host plant and specifically increased the proportion of short-chain polyP in the interacting mycelia. These results support the existence of specific host plant effects on fungal P metabolism able to provide P in the apoplast of ectomycorrhizal roots.

  2. Issues and prospects of belowground ecology with special reference to global climate change

    Institute of Scientific and Technical Information of China (English)

    HE Jinsheng; WANG Zhengquan; FANG Jingyun

    2004-01-01

    The theory of ecology is based on over 100 a of research and investigation, all centered on aboveground patterns and processes. However, as contemporary ecologists are increasingly acknowledging, belowground structures, functions, and processes are some of the most poorly understood areas in ecology. This lack of understanding of belowground ecological processes seriously restricts the advance of global change research. The interdisciplinary field of belowground ecology began to flourish in the 1990s, along with the expansion of global change research, and quickly gained momentum. Belowground ecology aims to investigate belowground structures, functions, and processes, as well as their relationships with corresponding aboveground features, emphasizing the responses of belowground systems under global change conditions. Key research areas include root ecology,belowground animals, and soil microorganisms. This review summarizes and analyzes the relationships between aboveand belowground ecosystems, root ecology, root biogeography, belowground biodiversity, as well as research areas with particular challenges and progress. This commentary emphasizes certain theoretical issues concerning the responses of belowground processes to global change, and concludes that belowground ecology is a critical research priority in the 21st century.

  3. Availability of ectomycorrhizal fungi to black spruce above the present treeline in Eastern Labrador.

    Science.gov (United States)

    Reithmeier, Laura; Kernaghan, Gavin

    2013-01-01

    Ectomycorrhizal fungi (ECMF) are an important biotic factor in the survival of conifer seedlings under stressful conditions and therefore have the potential to facilitate conifer establishment into alpine and tundra habitats. In order to assess patterns of ectomycorrhizal availability and community structure above treeline, we conducted soil bioassays in which Picea mariana (black spruce) seedlings were grown in field-collected soils under controlled conditions. Soils were collected from distinct alpine habitats, each dominated by a different ectomycorrhizal host shrub: Betula glandulosa, Arctostaphylos alpina or Salix herbacaea. Within each habitat, half of the soils collected contained roots of ectomycorrhizal shrubs (host (+)) and the other half were free of host plants (host(-)). Forest and glacial moraine soils were also included for comparison. Fungi forming ectomycorrhizae during the bioassays were identified by DNA sequencing. Our results indicate that ECMF capable of colonizing black spruce are widespread above the current tree line in Eastern Labrador and that the level of available inoculum has a significant influence on the growth of seedlings under controlled conditions. Many of the host(-) soils possessed appreciable levels of ectomycorrhizal inoculum, likely in the form of spore banks. Inoculum levels in these soils may be influenced by spore production from neighboring soils where ectomycorrhizal shrubs are present. Under predicted temperature increases, ectomycorrhizal inoculum in soils with host shrubs as well as in nearby soils without host shrubs have the potential to facilitate conifer establishment above the present tree line.

  4. Spatial structure and the effects of host and soil environments on communities of ectomycorrhizal fungi in wooded savannas and rain forests of Continental Africa and Madagascar.

    Science.gov (United States)

    Tedersoo, Leho; Bahram, Mohammad; Jairus, Teele; Bechem, Eneke; Chinoya, Stephen; Mpumba, Rebecca; Leal, Miguel; Randrianjohany, Emile; Razafimandimbison, Sylvain; Sadam, Ave; Naadel, Triin; Kõljalg, Urmas

    2011-07-01

    Mycorrhizal fungi play a key role in mineral nutrition of terrestrial plants, but the factors affecting natural distribution, diversity and community composition of particularly tropical fungi remain poorly understood. This study addresses shifts in community structure and species frequency of ectomycorrhizal (EcM) fungi in relation to host taxa, soil depth and spatial structure in four contrasting African ecosystems. We used the rDNA and plastid trnL intron sequence analysis for identification of fungi and host plants, respectively. By partitioning out spatial autocorrelation in plant and fungal distribution, we suggest that African EcM fungal communities are little structured by soil horizon and host at the plant species and family levels. These findings contrast with patterns of vegetation in these forests and EcM fungal communities in other tropical and temperate ecosystems. The low level of host preference indirectly supports an earlier hypothesis that pioneer Phyllanthaceae may facilitate the establishment of late successional Fabaceae and potentially other EcM host trees by providing compatible fungal inoculum in deforested and naturally disturbed ecosystems of tropical Africa.

  5. Acid protease production in fungal root endophytes.

    Science.gov (United States)

    Mayerhofer, Michael S; Fraser, Erica; Kernaghan, Gavin

    2015-01-01

    Fungal endophytes are ubiquitous in healthy root tissue, but little is known about their ecosystem functions, including their ability to utilize organic nutrient sources such as proteins. Root-associated fungi may secrete proteases to access the carbon and mineral nutrients within proteins in the soil or in the cells of their plant host. We compared the protein utilization patterns of multiple isolates of the root endophytes Phialocephala fortinii s.l., Meliniomyces variabilis and Umbelopsis isabellina with those of two ectomycorrhizal (ECM) fungi, Hebeloma incarnatulum and Laccaria bicolor, and the wood-decay fungus Irpex lacteus at pH values of 2-9 on liquid BSA media. We also assessed protease activity using a fluorescently labeled casein assay and gelatin zymography and characterized proteases using specific protease inhibitors. I. lacteus and U. isabellina utilized protein efficiently, while the ECM fungi exhibited poor protein utilization. ECM fungi secreted metallo-proteases and had pH optima above 4, while other fungi produced aspartic proteases with lower pH optima. The ascomycetous root endophytes M. variabilis and P. fortinii exhibited intermediate levels of protein utilization and M. variabilis exhibited a very low pH optimum. Comparing proteolytic profiles between fungal root endophytes and fungi with well defined ecological roles provides insight into the ecology of these cryptic root associates.

  6. A new conceptual framework for unifying the heterogeneity of plant-microbe interactions in forests by linking belowground measurements with large-scale modeling and remote sensing

    Science.gov (United States)

    Brzostek, E. R.; Phillips, R.; Fisher, J. B.

    2015-12-01

    Recognition of the importance of rhizosphere interactions to ecosystem processes has led to efforts to integrate these dynamics into a conceptual framework that can be tested, refined and applied across spatial scales. A new view suggests that a plant's mycorrhizal association represents a "trait integrator" for a suite of aboveground and belowground functional traits involved in coupling C-nutrient cycles, since nearly all plants associate with a single type of mycorrhizal fungi. The MANE framework predicts that tree species that associate with arbuscular mycorrhizal (AM) fungi differ from trees that associate with ectomycorrhizal (ECM) fungi in a suite of functional traits, and that such differences contribute to unique "biogeochemical syndromes" in forests with varying abundances of AM- and ECM-associated trees. To date, we have found that relative to AM trees, the leaf litter of ECM trees decomposes nearly 50% more slowly; as such, the nutrient economy of ECM-dominated stands is driven by organic forms of N and P whereas the nutrient economy of AM-dominated stands in driven by inorganic forms of N and P. Moreover, differences in the nutrient economies between AM- and ECM-dominated stands can affect the carbon (C) cost of nutrient acquisition. For example, while ECM trees allocate 2-3-fold more C to fine roots and mycorrhizal fungi, this greater investment results in the enhanced activity of enzymes that mobilize nitrogen (N) and phosphorus (P) from soil organic matter, and ultimately the greater uptake of nutrients by plants. However, this enhanced uptake by ECM trees comes at a cost to soil organic C, which declines as a function of root-accelerated N mineralization. By incorporating these dynamics into a coupled nutrient acquisition-microbial decomposition model, and scaling these processes following development of a map of mycorrhizal associations, we are now quantifying how belowground processes shape ecosystem sensitivity to global changes (e.g., rising CO

  7. Ability of Ectomycorrhizal FUngus Laccaria biclor S238N to Increase the Growth of Douglas FIr Seedlings and Their Phosphorus and Potassium Uptake

    Institute of Scientific and Technical Information of China (English)

    HUANGJIANGUO; F.LAPEYRIE; 等

    1996-01-01

    Ectomycorrhizal fungus Laccaria bicolor S238N,isolated from a forest soil in central France in 1990s,has demonstrated unequivocally and ability to promote pine growth.In the present nursery bed experiment,the ability of this ectomycorrhizal fungus to increase growth and P and K uptake of Douglas Fir seedlings (Zone 22) was examined.Growth of inoculated seedlings was over twice(plant height) and three times (biomass)that of non-inoculated ones.Similarly,both the concentrations and the amounts of P and K uptake by seedlings were significantly increased by fungal inoculation,indicating the improvement of P and K nutrition in mycorrhizal seedlings.In contrast,Al-P in the soils was decreased obviously by plants,especially by mycorrhizas,suggesting utilization of this soil P pool by plants and more efficient Al-P mobilization by mycorrhizas than by nomycorrhizas.Moreover,K extracted by 1mol/L HCl following consecutive extraction of H2O and CH3COONH4,which may not be plant available,could be utilized by fungus colonied roots.This could be explained by the release of protons and oxalate by hypae which leads to replacement of interlayer K in nonexpanded 2:1 clay minerals and bio-weathering of phyllosilicates.

  8. Fungal Eye Infections

    Science.gov (United States)

    ... Treatment & Outcomes Statistics More Resources Fungal Nail Infections Histoplasmosis Definition Symptoms People at Risk & Prevention Sources Diagnosis & ... CDC at Work Global Fungal Diseases Cryptococcal Meningitis Histoplasmosis ... Resistance Resources Laboratory Submission Information Reportable Fungal ...

  9. Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch

    Directory of Open Access Journals (Sweden)

    Chiang Vincent L

    2009-09-01

    Full Text Available Abstract Background The monolignol biosynthetic pathway interconnects with the biosynthesis of other secondary phenolic metabolites, such as cinnamic acid derivatives, flavonoids and condensed tannins. The objective of this study is to evaluate whether genetic modification of the monolignol pathway in silver birch (Betula pendula Roth. would alter the metabolism of these phenolic compounds and how such alterations, if exist, would affect the ectomycorrhizal symbiosis. Results Silver birch lines expressing quaking aspen (Populus tremuloides L. caffeate/5-hydroxyferulate O-methyltransferase (PtCOMT under the 35S cauliflower mosaic virus (CaMV promoter showed a reduction in the relative expression of a putative silver birch COMT (BpCOMT gene and, consequently, a decrease in the lignin syringyl/guaiacyl composition ratio. Alterations were also detected in concentrations of certain phenolic compounds. All PtCOMT silver birch lines produced normal ectomycorrhizas with the ectomycorrhizal fungus Paxillus involutus (Batsch: Fr., and the formation of symbiosis enhanced the growth of the transgenic plants. Conclusion The down-regulation of BpCOMT in the 35S-PtCOMT lines caused a reduction in the syringyl/guaiacyl ratio of lignin, but no significant effect was seen in the composition or quantity of phenolic compounds that would have been caused by the expression of PtCOMT under the 35S or UbB1 promoter. Moreover, the detected alterations in the composition of lignin and secondary phenolic compounds had no effect on the interaction between silver birch and P. involutus.

  10. Selection of ectomycorrhizal willow genotype in phytoextraction of heavy metals.

    Science.gov (United States)

    Hrynkiewicz, Katarzyna; Baum, Christel

    2013-01-01

    Willow clones are used for the phytoextraction of heavy metals from contaminated soils and are usually mycorrhizal. The receptiveness of willow clones for mycorrhizal inoculum varies specific to genotype; however, it is unknown if this might have a significant impact on their efficiency in phytoextraction of heavy metals. Therefore, a model system with mycorrhizal and non-mycorrhizal willows of two different genotypes--one with usually stronger natural mycorrhizal colonization (Salix dasyclados), and one with lower natural mycorrhizal colonization (S. viminalis)--was investigated for its efficiency of phytoextraction of heavy metals (Cd, Pb, Cu, Zn) from contaminated soil. Inoculation with the ectomycorrhizal fungus Amanita muscaria significantly decreased the biomass of leaves of both inoculated willow clones, and increased or had no effect on the biomass of trunks and roots of S. dasyclados and S. viminalis, respectively. The concentrations of heavy metals in the biomass of S. dasyclados were in general higher than in S. viminalis irrespective of inoculation with the ectomycorrhizal fungus. Inoculation with A. muscaria significantly decreased the concentration of Cu in the trunks of both Salix taxa, but did not affected the concentrations of other heavy metals in the biomass. In conclusion, stronger receptiveness of willow clones for mycorrhizal inoculum was correlated with an increased total extraction of heavy metals from contaminated soils. Therefore, this seems to be a suitable criterion for effective willow clone selection for phytoremediation. Increased biomass production with relatively constant metal concentrations seems to be a major advantage of mycorrhizal formation of willows in phytoremediation of contaminated soils.

  11. Carbon isotope labeling in boreal forests to assess roles of fungal species in decomposition

    Science.gov (United States)

    Treseder, K. K.; Czimczik, C. I.; Trumbore, S. E.; Allison, S. D.

    2006-12-01

    We used 14C and 13C labeling to assess the in situ respiration of alanine-, starch-, and lignocellulose-derived carbon from the sporocarps of particular fungal species fruiting in a boreal forest in Alaska. By measuring isotopically-labeled respiration of sporocarps, which can be identified to species, we were able to attribute turnover of carbon compounds to specific fungal groups. Moreover, collection of sporocarp respiration is non-destructive, so we could return to the same sporocarps to collect a time series of measurements that spanned hours to days. We tested the hypotheses that alanine and starch turn over more quickly than lignocellulose, and that saprotrophic fungi would use starch-C and lignocellulose-C but ectomycorrhizal fungi would not. Small amounts of 14C-labeled alanine (about 100,000 permil) were dispensed into the soil within three meters of sporocarps of the ectomycorrhizal fungus Lactarius alnicola. Δ14CO2 values of sporocarp respiration climbed from 75.8 +/- 6.3 permil to 7855 +/- 3940 permil within one hour of additions, indicating that the fungus quickly acquired, transported, and transformed the alanine-C. In a separate approach, a mixture of 13C-labeled starch (about 15,000 permil) and 14C-labeled lignocellulose (about 36,000 permil) was applied in 9 m2 plots containing sporocarps of the ectomycorrhizal genera Phellodon and Sarcodon and the saprotrophic genera Lycoperdon and Polyporus. An unlabeled control plot was also established. We observed no detectable increase in 14CO2 or 13CO2 over a 144 hour period, suggesting that neither ectomycorrhizal nor saprotrophic fungi significantly broke down starch or lignocellulose during this time. The alanine experiment is one of the first to indicate that ectomycorrhizal fungi can influence the spatial distribution and storage of soil carbon over short time scales. This influence may be restricted to carbon of organic compounds like amino acids. In contrast, starch was not transformed quickly even

  12. Ectomycorrhizal communities of ponderosa pine and lodgepole pine in the south-central Oregon pumice zone.

    Science.gov (United States)

    Garcia, Maria O; Smith, Jane E; Luoma, Daniel L; Jones, Melanie D

    2016-05-01

    Forest ecosystems of the Pacific Northwest of the USA are changing as a result of climate change. Specifically, rise of global temperatures, decline of winter precipitation, earlier loss of snowpack, and increased summer drought are altering the range of Pinus contorta. Simultaneously, flux in environmental conditions within the historic P. contorta range may facilitate the encroachment of P. ponderosa into P. contorta territory. Furthermore, successful pine species migration may be constrained by the distribution or co-migration of ectomycorrhizal fungi (EMF). Knowledge of the linkages among soil fungal diversity, community structure, and environmental factors is critical to understanding the organization and stability of pine ecosystems. The objectives of this study were to establish a foundational knowledge of the EMF communities of P. ponderosa and P. contorta in the Deschutes National Forest, OR, USA, and to examine soil characteristics associated with community composition. We examined EMF root tips of P. ponderosa and P. contorta in soil cores and conducted soil chemistry analysis for P. ponderosa cores. Results indicate that Cenococcum geophilum, Rhizopogon salebrosus, and Inocybe flocculosa were dominant in both P. contorta and P. ponderosa soil cores. Rhizopogon spp. were ubiquitous in P. ponderosa cores. There was no significant difference in the species composition of EMF communities of P. ponderosa and P. contorta. Ordination analysis of P. ponderosa soils suggested that soil pH, plant-available phosphorus (Bray), total phosphorus (P), carbon (C), mineralizable nitrogen (N), ammonium (NH4), and nitrate (NO3) are driving EMF community composition in P. ponderosa stands. We found a significant linear relationship between EMF species richness and mineralizable N. In conclusion, P. ponderosa and P. contorta, within the Deschutes National Forest, share the same dominant EMF species, which implies that P. ponderosa may be able to successfully establish

  13. Associations between ectomycorrhizal fungi and bacterial needle endophytes in Pinus radiata: implications for biotic selection of microbial communities

    Directory of Open Access Journals (Sweden)

    Megan Arlene Rúa

    2016-03-01

    Full Text Available Studies of the ecological and evolutionary relationships between plants and their associated microbes have long been focused on single microbes, or single microbial guilds, but in reality, plants associate with a diverse array of microbes from a varied set of guilds. As such, multitrophic interactions among plant-associated microbes from multiple guilds represent an area of developing research, and can reveal how complex microbial communities are structured around plants. Interactions between coniferous plants and their associated microbes provide a good model system for such studies, as conifers host a suite of microorganisms including mutualistic ectomycorrhizal (ECM fungi and foliar bacterial endophytes. To investigate the potential role ECM fungi play in structuring foliar bacterial endophyte communities, we sampled three isolated, native populations of Monterey pine (Pinus radiata, and used constrained analysis of principal coordinates to relate the community matrices of the ECM fungi and bacterial endophytes. Our results suggest that ECM fungi may be important factors for explaining variation in bacterial endophyte communities but this effect is influenced by population and environmental characteristics, emphasizing the potential importance of other factors — biotic or abiotic — in determining the composition of bacterial communities. We also classified ECM fungi into categories based on known fungal traits associated with substrate exploration and nutrient mobilization strategies since variation in these traits allows the fungi to acquire nutrients across a wide range of abiotic conditions and may influence the outcome of multi-species interactions. Across populations and environmental factors, none of the traits associated with fungal foraging strategy types significantly structured bacterial assemblages, suggesting these ECM fungal traits are not important for understanding endophyte-ECM interactions. Overall, our results suggest

  14. Nutrient subsidies to belowground microbes impact aboveground food web interactions.

    Science.gov (United States)

    Hines, Jes; Megonigal, J Patrick; Denno, Robert F

    2006-06-01

    Historically, terrestrial food web theory has been compartmentalized into interactions among aboveground or belowground communities. In this study we took a more synthetic approach to understanding food web interactions by simultaneously examining four trophic levels and investigating how nutrient (nitrogen and carbon) and detrital subsidies impact the ability of the belowground microbial community to alter the abundance of aboveground arthropods (herbivores and predators) associated with the intertidal cord grass Spartina alterniflora. We manipulated carbon, nitrogen, and detrital resources in a field experiment and measured decomposition rate, soil nitrogen pools, plant biomass and quality, herbivore density, and arthropod predator abundance. Because carbon subsidies impact plant growth only indirectly (microbial pathways), whereas nitrogen additions both directly (plant uptake) and indirectly (microbial pathways) impact plant primary productivity, we were able to assess the effect of both belowground soil microbes and nutrient availability on aboveground herbivores and their predators. Herbivore density in the field was suppressed by carbon supplements. Carbon addition altered soil microbial dynamics (net potential ammonification, litter decomposition rate, DON [dissolved organic N] concentration), which limited inorganic soil nitrogen availability and reduced plant size as well as predator abundance. Nitrogen addition enhanced herbivore density by increasing plant size and quality directly by increasing inorganic soil nitrogen pools, and indirectly by enhancing microbial nitrification. Detritus adversely affected aboveground herbivores mainly by promoting predator aggregation. To date, the effects of carbon and nitrogen subsidies on salt marshes have been examined as isolated effects on either the aboveground or the belowground community. Our results emphasize the importance of directly addressing the soil microbial community as a factor that influences

  15. Growth response of Pinus densiflora seedlings inoculated with three indigenous ectomycorrhizal fungi in combination

    OpenAIRE

    Dalong,M; Luhe,W; Guoting,Y; M Liqiang; Chun,L

    2011-01-01

    Pinus densiflora seedlings were inoculated with three indigenous ectomycorrhizal fungi (Cenococcum geophilum, Rhizopogon roseolus and Russula densifolia) in single-, two-, and three-species treatments. After 8 months, the colonization rates of each ectomycorrhizal species, seedling growth and the nutrition were assessed in each treatment. P. densiflora seedlings inoculated with different ECM species composition showed an increase in height and basal diameter and improved seedling root and sho...

  16. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil.

    Science.gov (United States)

    Kaiser, Christina; Koranda, Marianne; Kitzler, Barbara; Fuchslueger, Lucia; Schnecker, Jörg; Schweiger, Peter; Rasche, Frank; Zechmeister-Boltenstern, Sophie; Sessitsch, Angela; Richter, Andreas

    2010-08-01

    *Plant seasonal cycles alter carbon (C) and nitrogen (N) availability for soil microbes, which may affect microbial community composition and thus feed back on microbial decomposition of soil organic material and plant N availability. The temporal dynamics of these plant-soil interactions are, however, unclear. *Here, we experimentally manipulated the C and N availability in a beech forest through N fertilization or tree girdling and conducted a detailed analysis of the seasonal pattern of microbial community composition and decomposition processes over 2 yr. *We found a strong relationship between microbial community composition and enzyme activities over the seasonal course. Phenoloxidase and peroxidase activities were highest during late summer, whereas cellulase and protease peaked in late autumn. Girdling, and thus loss of mycorrhiza, resulted in an increase in soil organic matter-degrading enzymes and a decrease in cellulase and protease activity. *Temporal changes in enzyme activities suggest a switch of the main substrate for decomposition between summer (soil organic matter) and autumn (plant litter). Our results indicate that ectomycorrhizal fungi are possibly involved in autumn cellulase and protease activity. Our study shows that, through belowground C allocation, trees significantly alter soil microbial communities, which may affect seasonal patterns of decomposition processes.

  17. Foliar and fungal 15N:14N ratios reflect development of mycorrhizae and nitrogen supply during primary succession: testing analytical models.

    Science.gov (United States)

    Hobbie, Erik A; Jumpponen, Ari; Trappe, Jim

    2005-12-01

    per thousand. Plants, fungi and soil were at least 4 per thousand higher in delta15N from the mature site than in recently exposed sites. On both the forefront and the mature site, host-specific ectomycorrhizal fungi had higher delta15N values than ectomycorrhizal fungi with a broad host range. From these isotopic patterns, we conclude: (1) large enrichments in 15N of many ectomycorrhizal fungi relative to co-occurring ectomycorrhizal plants are best explained by treating the plant-fungal-soil system as a closed system with a discrimination against 15N of 8-10 per thousand during transfer from fungi to plants, (2) based on models of 15N mass balance, ericoid and ectomycorrhizal fungi retain up to two-thirds of the N in the plant-mycorrhizal system under the N-limited conditions at forefront sites, (3) sporocarps are probably enriched in 15N by an additional 3 per thousand relative to available nitrogen, and (4) host-specific ectomycorrhizal fungi may transfer more N to plant hosts than non-host-specific ectomycorrhizal fungi. Our study confirms that nitrogen isotopes are a powerful tool for probing nitrogen dynamics between mycorrhizal fungi and associated plants.

  18. Nutrient availability controls the decomposition activities of the ectomycorrhizal fungi Paxillus involutus and Laccaria bicolor

    Science.gov (United States)

    Nicolás, César; Martin-Bertelsen, Tomas; Bentzer, Johan; Johansson, Tomas; Smits, Mark; Troein, Carl; Persson, Per; Tunlid, Anders

    2017-04-01

    Ectomycorrhizal (ECM) fungi play an important role in the ecological sustainability of northern temperate and boreal forests by foraging and mining soil organic matter for nutrients to their host plants. In this process, the fungal partner provides the plant host with nutrients and receives in return carbon, which supports the growth of extramatrical mycelium. Here, we examine the chemical changes in the soil organic matter (SOM) and physiological response of two species of ECM fungi Paxillus involutus and Laccaria bicolor during the decomposition of SOM and utilization of glucose. These two ECM fungi were grown in axenic cultures containing a water extract of organic matter (WEOM), which was supplemented with glucose at the start of the experiment. The fungi then went through two phases: a decomposition phase characterized by a WEOM with glucose followed by a starvation phase, with no glucose left in the media. The chemical modifications in the WEOM were followed using techniques such as infrared and X-ray absorption spectroscopy, while the fungal physiological response was studied using transcriptomic (RNAseq) analysis. The spectroscopic techniques showed that both fungi enhanced the amount of oxidized compounds while uptaking glucose or nitrogen from the media. In case of P. involutus, this oxidation process was more pronounced than that occurring with L. bicolor. In addition, the X-ray absorption spectroscopy showed a higher reduced iron content in WEOM incubated with P. involutus in comparison to L. bicolor, which may suggest the preference of P. involutus for oxidative mechanisms via Fenton chemistry. During the decomposition phase, both fungi expressed a large number of transcripts encoding proteins associated with oxidation of lignocellulose in wood decomposing fungi. In parallel, the expression levels of extracellular peptidases, and enzymes involved in the metabolism of amino acids and assimilated glucose were regulated. However, during prolonged

  19. Plant Functional Traits Associated with Mycorrhizal Root Foraging in Arbuscular Mycorrhizal and Ectomycorrhizal Trees

    Science.gov (United States)

    Eissenstat, D. M.; Chen, W.; Cheng, L.; Liu, B.; Koide, R. T.; Guo, D.

    2016-12-01

    Root foraging for nutrient "hot spots" is a key strategy by which some plants maximize nutrient gain from their carbon investment in root and mycorrhizal hyphae. Foraging strategies may depend on costs of root construction, with thick roots generally costing more per unit length than thin roots. Investment in mycorrhizal hyphae, which are considerably thinner than roots, may represent an alternative strategy for cost-effective nutrient foraging, especially for thick-root species. Type of mycorrhiza may matter, as ectomycorrhizal (EM) fungi are more associated with longer hyphae and ability to mineralize organic matter than arbuscular mycorrhizal (AM) fungi. Among AM trees in both subtropical forests in SE China and in temperate forests in central Pennsylvania, USA, we found that tree species with thin roots proliferated their roots in soil patches enriched with mineral nutrients to a greater extent than species with thick roots. In addition, thick-root species were consistently colonized more heavily with mycorrhizal fungi than thin root species, although nutrient addition tended to diminish colonization. In a common garden in central Pennsylvania of both AM and EM tree species, we found that nutrient patches enriched with organic materials resulted in greater root and mycorrhizal fungal proliferation compared to those enriched with inorganic nutrients and that thick-root species proliferated more with their mycorrhizal fungi whereas thin-root species proliferated more with their roots. We further examined with many more species, patterns of root and mycorrhizal fungal proliferation in organic-nutrient-enriched patches. Foraging precision, or the extent that roots or mycorrhizal hyphae grew in the enriched patch relative to the unenriched patch, was related to both root thickness and type of mycorrhiza. In both AM and EM trees, thick-root species were not selective foragers of either their roots or hyphae. In thin-root species, there was strong selectivity in

  20. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient.

    Science.gov (United States)

    Nilsson, Lars Ola; Bååth, Erland; Falkengren-Grerup, Ursula; Wallander, Håkan

    2007-08-01

    Deciduous forests may respond differently from coniferous forests to the anthropogenic deposition of nitrogen (N). Since fungi, especially ectomycorrhizal (EM) fungi, are known to be negatively affected by N deposition, the effects of N deposition on the soil microbial community, total fungal biomass and mycelial growth of EM fungi were studied in oak-dominated deciduous forests along a nitrogen deposition gradient in southern Sweden. In-growth mesh bags were used to estimate the production of mycelia by EM fungi in 19 oak stands in the N deposition gradient, and the results were compared with nitrate leaching data obtained previously. Soil samples from 154 oak forest sites were analysed regarding the content of phospholipid fatty acids (PLFAs). Thirty PLFAs associated with microbes were analysed and the PLFA 18:2omega6,9 was used as an indicator to estimate the total fungal biomass. Higher N deposition (20 kg N ha(-1)y(-1) compared with 10 kg N ha(-1)y(-1)) tended to reduce EM mycelial growth. The total soil fungal biomass was not affected by N deposition or soil pH, while the PLFA 16:1omega5, a biomarker for arbuscular mycorrhizal (AM) fungi, was negatively affected by N deposition, but also positively correlated to soil pH. Other PLFAs positively affected by soil pH were, e.g., i14:0, a15:0, 16:1omega9, a17:0 and 18:1omega7, while some were negatively affected by pH, such as i15:0, 16:1omega7t, 10Me17:0 and cy19:0. In addition, N deposition had an effect on the PLFAs 16:1omega7c and 16:1omega9 (negatively) and cy19:0 (positively). The production of EM mycelia is probably more sensitive to N deposition than total fungal biomass according to the fungal biomarker PLFA 18:2omega6,9. Low amounts of EM mycelia covaried with increased nitrate leaching, suggesting that EM mycelia possibly play an important role in forest soil N retention at increased N input.

  1. In vitro EVALUATION OF EUCALYPTUS ECTOMYCORRHIZAE ON SUBSTRATE WITH PHOSPHORUS DOSES FOR FUNGAL PRE-SELECTION

    Directory of Open Access Journals (Sweden)

    Lidiomar Soares Costa

    2015-02-01

    Full Text Available The benefit promoted by ectomycorrhizal depends on the interaction between symbionts and phosphorus (P contents. Phosphorus effect on ectomycorrhizal formation and the effectiveness of these in promoting plant growth for fungal pre-selection were assessed under in vitro conditions. For P effect evaluation, Eucalyptus urophylla seedlings inoculated with four Pisolithus sp. isolates and others non-inoculated were grown on substrate containing 0.87, 1.16 and 1.72 mg P per plant. For evaluation of effectiveness and fungal pre-selection, other 30 isolates of Pisolithus sp., Pisolithus microcarpus ITA06 isolate, Amanita muscaria AM16 isolate, Scleroderma areolatum SC129 isolate were studied. D26 isolate promoted the highest plant heights for the three P doses, D51 at the lower dose and D72 at the intermediate dose. P doses did not influenced shoot fresh weight and fungal colonization. In the pre-selection of fungi, 14 isolates of Pisolithus sp., P. microcarpus ITA06 isolate and S. areolatum SC129isolate increased plant height and fresh weight. D82 isolate of Pisolithus sp. had effect singly on plant height while D17 and D58 on fresh weight. Of these, only D15, D17, D58 and ITA06 had typical ectomycorrhizae. The cultivation in vitro has shown adequate for pre-selection of ectomycorrhizal fungi. Colonization and benefits depend on species and isolate. D15, D17 and D58 of Pisolithus sp. and P. microcarpus isolate ITA06 are the most promising for nursery studies.

  2. The alpha-tubulin gene AmTuba1: a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria.

    Science.gov (United States)

    Tarkka, Mika T; Schrey, Silvia; Nehls, Uwe

    2006-05-01

    The apical extension of hyphae is of central importance for extensive spread of fungal mycelium in forest soils and for effective ectomycorrhiza development. Since the tubulin cytoskeleton is known to be important for fungal tip growth, we have investigated the expression of an alpha-tubulin gene from the ectomycorrhizal basidiomycete Amanita muscaria (AmTuba1). The phylogenetic analysis of protein sequences revealed the existence of two subgroups of alpha-tubulins in homobasidiomycetes, clearly distinguishable by defined amino acids. AmTuba1 belongs to subgroup1. The AmTuba1 transcript level is related to mycelial growth rate. Growth induction of carbohydrate starved (non-growing) hyphae resulted in an enhanced AmTuba1 expression as soon as hyphal growth started, reaching a maximum at highest mycelial growth rate. Bacterium-induced hyphal elongation also leads to increased AmTuba1 transcript levels. In mature A. muscaria/P. abies ectomycorrhizas, where fungal hyphae are highly branched, and slowly growing, AmTuba1 expression were even lower than in carbohydrate-starved mycelium, indicating a further down-regulation of gene expression in symbiosis. In conclusion, our analyses show that the AmTuba1 gene can be used as a marker for active apical extension in fly agaric, and that alpha-tubulin proteins are promising tools for the classification of fungi.

  3. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    Science.gov (United States)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kaestner, Matthias

    2015-04-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore, ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amount of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a soil bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 50 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  4. Screening of ectomycorrhizal fungi for degradation of polycyclic aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Braun-Luellemann, A.; Huettermann, A.; Majcherczyk, A. [Goettingen Univ. (Germany). Inst. fuer Forstbotanik

    2000-07-01

    Ectomycorrhizal fungi belonging to 16 species (27 strains) were tested for their ability to degrade polycyclic aromatic hydrocarbons (PAHs): Phenanthrene, chrysene, pyrene and benzo[a]pyrene. Cultivated on a complex liquid medium, most of the fungi tested were able to metabolise these compounds. Approximately 50% of the benzo[a]pyrene was removed by strains of Amanita excelsa, Leccinum versipelle, Suillus grevillei, S. luteus, and S. variegatus during a 4-week incubation period. The same amount of phenanthrene was also metabolised by A. muscaria, Paxillus involutus, and S. grevillei. The degradation of the other two PAHs was, for the most part, less effective. Only S. grevillei was able to remove 50% of the pyrene, whereas Boletus edulis and A. muscaria removed 35% of the chrysene. (orig.)

  5. Comparative Metagenomics Reveal Phylum Level Temporal and Spatial Changes in Mycobiome of Belowground Parts of Crocus sativus

    Science.gov (United States)

    Ambardar, Sheetal; Singh, Heikham Russiachand; Gowda, Malali; Vakhlu, Jyoti

    2016-01-01

    Plant-fungal associations have been explored by routine cultivation based approaches and cultivation based approaches cannot catalogue more than 5% of fungal diversity associated with any niche. In the present study, an attempt has been made to catalogue fungal diversity associated with belowground parts i.e. rhizosphere and cormosphere, of Crocus sativus (an economically important herb) during two growth stages, using cultivation independent ITS gene targeted approach, taking bulk soil as reference. The 454 pyrosequencing sequence data analysis suggests that the fungal diversity was niche and growth stage specific. Fungi diversity, in the present case, was not only different between the two organs (roots and corm) but the dominance pattern varies between the cormosphere during two growth stages. Zygomycota was dominant fungal phylum in the rhizosphere whereas Basidiomycota was dominant in cormosphere during flowering stage. However in cormosphere though Basidiomycota was dominant phylum during flowering stage but Zygomycota was dominant during dormant stage. Interestingly, in cormosphere, the phyla which was dominant at dormant stage was rare at flowering stage and vice-versa (Basidiomycota: Flowering = 93.2% Dormant = 0.05% and Zygomycota: Flowering = 0.8% Dormant = 99.7%). At genus level, Rhizopus was dominant in dormant stage but was rare in flowering stage (Rhizopus: Dormant = 99.7% Flowering = 0.55%). This dynamics is not followed by the bulk soil fungi which was dominated by Ascomycota during both stages under study. The genus Fusarium, whose species F. oxysporum causes corm rot in C. sativus, was present during both stages with slightly higher abundance in roots. Interestingly, the abundance of Rhizopus varied a great deal in two stages in cormosphere but the abundance of Fusarium was comparable in two growth stages (Bulk soil Flowering = 0.05%, Rhizosphere Flowering = 1.4%, Cormosphere Flowering = 0.06%, Bulk soil Dormant = 2.47% and cormosphere dormant

  6. Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale

    OpenAIRE

    S. Bonneville; M. M. Smits; A. Brown; J. Harrington; J. R. Leake; R. Brydson; Liane G. Benning

    2009-01-01

    Plant-driven fungal weathering is a major pathway of soil formation, yet the precise mechanism by which mycorrhiza alter minerals is poorly understood. Here we report the first direct in situ observations of the effects of a soil fungus on the surface of a mineral over which it grew in a controlled experiment. An ectomycorrhizal fungus was grown in symbiosis with a tree seedling so that individual hyphae expanded across the surface of a biotite flake over a period of three months. Ultramicros...

  7. A Foray into Fungal Ecology: Understanding Fungi and Their Functions Across Ecosystems

    Science.gov (United States)

    Francis, N.; Dunkirk, N. C.; Peay, K.

    2015-12-01

    Despite their incredible diversity and importance to terrestrial ecosystems, fungi are not included in a standard high school science curriculum. This past summer, however, my work for the Stanford EARTH High School Internship program introduced me to fungal ecology through experiments involving culturing, genomics and root dissections. The two fungal experiments I worked on had very different foci, both searching for answers to broad ecological questions of fungal function and physiology. The first, a symbiosis experiment, sought to determine if the partners of the nutrient exchange between pine trees and their fungal symbionts could choose one another. The second experiment, a dung fungal succession project, compared the genetic sequencing results of fungal extractions from dung versus fungal cultures from dung. My part in the symbiosis experiment involved dissection, weighing and encapsulation of root tissue samples characterized based on the root thickness and presence of ectomycorrhizal fungi. The dung fungi succession project required that I not only learn how to culture various genera of dung fungi but also learn how to extract DNA and RNA for sequencing from the fungal tissue. Although I primarily worked with dung fungi cultures and thereby learned about their unique physiologies, I also learned about the different types of genetic sequencing since the project compared sequences of cultured fungi versus Next Generation sequencing of all fungi present within a dung pellet. Through working on distinct fungal projects that reassess how information about fungi is known within the field of fungal ecology, I learned not only about the two experiments I worked on but also many past related experiments and inquiries through reading scientific papers. Thanks to my foray into fungal research, I now know not only the broader significance of fungi in ecological research but also how to design and conduct ecological experiments.

  8. Arctic root-associated fungal community composition reflects environmental filtering.

    Science.gov (United States)

    Blaalid, Rakel; Davey, Marie L; Kauserud, Håvard; Carlsen, Tor; Halvorsen, Rune; Høiland, Klaus; Eidesen, Pernille B

    2014-02-01

    There is growing evidence that root-associated fungi have important roles in Arctic ecosystems. Here, we assess the diversity of fungal communities associated with roots of the ectomycorrhizal perennial herb Bistorta vivipara on the Arctic archipelago of Svalbard and investigate whether spatial separation and bioclimatic variation are important structuring factors of fungal community composition. We sampled 160 plants of B. vivipara from 32 localities across Svalbard. DNA was extracted from entire root systems, and 454 pyrosequencing of ITS1 amplicons was used to profile the fungal communities. The fungal communities were predominantly composed of Basidiomycota (55% of reads) and Ascomycota (35%), with the orders Thelephorales (24%), Agaricales (13.8%), Pezizales (12.6%) and Sebacinales (11.3%) accounting for most of the reads. Plants from the same site or region had more similar fungal communities to one another than plants from other sites or regions, and sites clustered together along a weak latitudinal gradient. Furthermore, a decrease in per-plant OTU richness with increasing latitude was observed. However, no statistically significant spatial autocorrelation between sites was detected, suggesting that environmental filtering, not dispersal limitation, causes the observed patterns. Our analyses suggest that while latitudinal patterns in community composition and richness might reflect bioclimatic influences at global spatial scales, at the smaller spatial scale of the Svalbard archipelago, these changes more likely reflect varied bedrock composition and associated edaphic factors. The need for further studies focusing on identifying those specific bioclimatic and edaphic factors structuring root-associated fungal community composition at both global and local scales is emphasized.

  9. Mechanisms of below-ground carbon cycling in subarctic ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Olsrud, Maria

    2004-10-01

    Some components of the below-ground carbon cycle in terrestrial ecosystems are still poorly understood. A better understanding will be necessary to predict adequately the impacts of global change factors on C cycling and storage, especially in high-latitude ecosystems, where much of the C is stored below-ground. In this work some of the mechanisms of the below-ground C cycle in subarctic ecosystems were studied and responses to present and potential future environmental conditions assessed. Using {sup 14}C pulse-labelling, C allocation to above-ground biomass, rhizomes, coarse roots, fine roots, hair roots, ericoid mycorrhizas, microbes and dissolved organic C (DOC) was determined repeatedly over the growing season in four of the most common vegetation types of the Scandinavian subarctic: (1) Dry dwarf shrub tundra; (2) Semi-wet mire; (3) Wet mire; and (4) the understorey of subarctic birch forest. Effects of increased temperatures, increased atmospheric CO{sub 2} concentrations and both factors in combination on below-ground C allocation, ericoid mycorrhizal colonisation and functioning were studied in an full-factorial open-top chamber experiment. Furthermore, responses of ericoid mycorrhizal colonisation rates to environmental variation during the growing season were investigated. Ecosystem C partitioning varied temporally in all studied ecosystems, possibly indicating changes in growth, nutrient uptake or C storage by vegetation. The relative importance of C pools with 'fast' versus 'slow' turnover rates varied spatially, among vegetation types. Therefore it is important for global change studies to consider the possible effects of vegetation changes on ecosystem C dynamics. Allocation of recent assimilates to fast-turnover C pools such as hair roots and DOC was particularly high in a dwarf shrub tundra making them quantitatively interesting pools to consider in studies of ecosystem C dynamics. Furthermore, a significant proportion of

  10. Below-ground competitiveness of adult beech and spruce trees

    OpenAIRE

    Nikolova, Petia Simeonova

    2007-01-01

    The aim of the field study was to quantify the below-ground competitiveness of 50 to 60-year-old beech (Fagus sylvatica) and spruce (Picea abies) trees by means of space-related cost/benefit relationships. The study was conducted at the experimental site “Kranzberger Forst” within the framework of the interdisciplinary research program Sonderforschungsbereich 607 (SFB 607; Project B4) “Growth and Parasite Defence – Competition for Resources in Economical Plants from Agronomy and Forestry”. It...

  11. Belowground environmental effects of transgenic crops: a soil microbial perspective.

    Science.gov (United States)

    Turrini, Alessandra; Sbrana, Cristiana; Giovannetti, Manuela

    2015-04-01

    Experimental studies investigated the effects of transgenic crops on the structure, function and diversity of soil and rhizosphere microbial communities playing key roles in belowground environments. Here we review available data on direct, indirect and pleiotropic effects of engineered plants on soil microbiota, considering both the technology and the genetic construct utilized. Plants modified to express phytopathogen/phytoparasite resistance, or traits beneficial to food industries and consumers, differentially affected soil microorganisms depending on transformation events, experimental conditions and taxa analyzed. Future studies should address the development of harmonized methodologies by taking into account the complex interactions governing soil life. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  12. Greenhouse seedlings of Alnus showed low host intrageneric specificity and a strong preference for some Tomentella ectomycorrhizal associates.

    Science.gov (United States)

    Nouhra, Eduardo; Pastor, Nicolás; Becerra, Alejandra; Sarrionandia Areitio, Estibaliz; Geml, József

    2015-05-01

    Ectomycorrhizal (ECM) fungal associates of Alnus are relatively few in comparison with those associated with other tree hosts. The composition of ECM assemblages associated with Alnus seems to change very little across the Northern Hemisphere. However, Alnus-associated ECM assemblages from the Western United States, Mexico, and Argentina tend to differ from those in eastern North America and Europe, presumably due to their different biogeographic histories. Alnus glutinosa is a northern European species subjected to diverse environmental conditions. To address intrageneric host preference within two distantly related Alnus species (Alnus acuminata and A. glutinosa), we tested the ECM colonization on seedlings of both species inoculated with natural soil from A. acuminata forests. Two tomentelloid ECM fungi from A. acuminata natural soils were determined from the anatomotyping and molecular analysis. Both species colonized A. glutinosa seedlings and presented similar relative abundances. Additional soil sequence data from A. acuminata sites suggest that a variety of tomentelloid taxa occur, including several unidentified Tomentella lineages. Maximum-likelihood and Bayesian inference analyses based on internal transcribed spacer (ITS) sequences from various locations do not reflect associations of taxa based on their biogeographic origin, and clades are in general constituted by sequences from diverse regions, including South America, Mexico, USA, and Europe. Results illustrate the probable role of specific tomentelloid fungi in the early colonization of seedlings in A. acuminata forests as well as their importance in the structure of the ECM propagule community at the sites.

  13. Tracing metabolic pathways of lipid biosynthesis in ectomycorrhizal fungi from position-specific 13C-labelling in glucose.

    Science.gov (United States)

    Scandellari, Francesca; Hobbie, Erik A; Ouimette, Andrew P; Stucker, Valerie K

    2009-12-01

    Six position-specific (13)C-labelled isotopomers of glucose were supplied to the ectomycorrhizal fungi Suillus pungens and Tricholoma flavovirens. From the resulting distribution of (13)C among fungal PLFAs, the overall order and contribution of each glucose atom to fatty acid (13)C enrichment was: C6 (approximately 31%) > C5 (approximately 25%) > C1 (approximately 18%) > C2 (approximately 18%) > C3 (approximately 8%) > C4 (approximately 1%). These data were used to parameterize a metabolic model of the relative fluxes from glucose degradation to lipid synthesis. Our data revealed that a higher amount of carbon is directed to glycolysis than to the oxidative pentose phosphate pathway (60% and 40% respectively) and that a significant part flows through these pathways more than once (73%) due to the reversibility of some glycolysis reactions. Surprisingly, 95% of carbon cycled through glyoxylate prior to incorporation into lipids, possibly to consume the excess of acetyl-CoA produced during fatty acid turnover. Our approach provides a rigorous framework for analysing lipid biosynthesis in fungi. In addition, this approach could ultimately improve the interpretation of isotopic patterns at natural abundance in field studies.

  14. Ectomycorrhizal diversity and community structure in stands of Quercus oleoides in the seasonally dry tropical forests of Costa Rica

    Science.gov (United States)

    Desai, Nikhilesh S.; Wilson, Andrew W.; Powers, Jennifer S.; Mueller, Gregory M.; Egerton-Warburton, Louise M.

    2016-12-01

    Most conservation efforts in seasonally dry tropical forests have overlooked less obvious targets for conservation, such as mycorrhizal fungi, that are critical to plant growth and ecosystem structure. We documented the diversity of ectomycorrhizal (EMF) and arbuscular mycorrhizal (AMF) fungal communities in Quercus oleoides (Fagaceae) in Guanacaste province, Costa Rica. Soil cores and sporocarps were collected from regenerating Q. oleoides plots differing in stand age (early vs late regeneration) during the wet season. Sequencing of the nuclear ribosomal ITS region in EMF root tips and sporocarps identified 37 taxa in the Basidiomycota; EMF Ascomycota were uncommon. The EMF community was dominated by one species (Thelephora sp. 1; 70% of soil cores), more than half of all EMF species were found only once in an individual soil core, and there were few conspecific taxa. Most EMF taxa were also restricted to either Early or Late plots. Levels of EMF species richness and diversity, and AMF root colonization were similar between plots. Our results highlight the need for comprehensive spatiotemporal samplings of EMF communities in Q. oleoides to identify and prioritize rare EMF for conservation, and document their genetic and functional diversity.

  15. The ectomycorrhizal status of a tropical black bolete, Phlebopus portentosus, assessed using mycorrhizal synthesis and isotopic analysis.

    Science.gov (United States)

    Kumla, Jaturong; Hobbie, Erik A; Suwannarach, Nakarin; Lumyong, Saisamorn

    2016-05-01

    Phlebopus portentosus is one of the most popular wild edible mushrooms in Thailand and can produce sporocarps in the culture without a host plant. However, it is still unclear whether Phlebopus portentosus is a saprotrophic, parasitic, or ectomycorrhizal (ECM) fungus. In this study, Phlebopus portentosus sporocarps were collected from northern Thailand and identified based on morphological and molecular characteristics. We combined mycorrhizal synthesis and stable isotopic analysis to investigate the trophic status of this fungus. In a greenhouse experiment, ECM-like structures were observed in Pinus kesiya at 1 year after inoculation with fungal mycelium, and the association of Phlebopus portentosus and other plant species showed superficial growth over the root surface. Fungus-colonized root tips were described morphologically and colonization confirmed by molecular methods. In stable isotope measurements, the δ(13)C and δ(15)N of natural samples of Phlebopus portentosus differed from saprotrophic fungi. Based on the isotopic patterns of Phlebopus portentosus and its ability to form ECM-like structures in greenhouse experiments, we conclude that Phlebopus portentosus could be an ECM fungus.

  16. The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N.

    Science.gov (United States)

    Deveau, A; Palin, B; Delaruelle, C; Peter, M; Kohler, A; Pierrat, J C; Sarniguet, A; Garbaye, J; Martin, F; Frey-Klett, P

    2007-01-01

    The mycorrhiza helper Pseudomonas fluorescens BBc6R8 promotes the presymbiotic survival and growth of the ectomycorrhizal fungus Laccaria bicolor S238N in the soil. An in vitro fungal-bacterial confrontation bioassay mimicking the promoting effects of the bacteria on fungal growth was set up to analyse the fungal morphological and transcriptional changes induced by the helper bacteria at three successive stages of the interaction. The specificity of the P. fluorescens BBc6R8 effect was assessed in comparison with six other rhizobacterial strains possessing mycorrhiza helper or pathogen antagonistic abilities. The helper BBc6R8 strain was the only strain to induce increases in the radial growth of the colony, hyphal apex density and branching angle. These morphological modifications were coupled with pleiotropic alterations of the fungal transcriptome, which varied throughout the interaction. Early stage-responsive genes were presumably involved in recognition processes and transcription regulation, while late stage-responsive genes encoded proteins of primary metabolism. Some of the responsive genes were partly specific to the interaction with P. fluorescens BBc6R8, whereas others were mutually regulated by different rhizobacteria. The results highlight the fact that the helper BBc6R8 strain has a specific priming effect on growth, morphology and gene expression of its fungal associate L. bicolor S238N.

  17. Fungal specificity bottlenecks during orchid germination and development.

    Science.gov (United States)

    Bidartondo, Martin I; Read, David J

    2008-08-01

    Fungus-subsidized growth through the seedling stage is the most critical feature of the life history for the thousands of mycorrhizal plant species that propagate by means of 'dust seeds.' We investigated the extent of specificity towards fungi shown by orchids in the genera Cephalanthera and Epipactis at three stages of their life cycle: (i) initiation of germination, (ii) during seedling development, and (iii) in the mature photosynthetic plant. It is known that in the mature phase, plants of these genera can be mycorrhizal with a number of fungi that are simultaneously ectomycorrhizal with the roots of neighbouring forest trees. The extent to which earlier developmental stages use the same or a distinctive suite of fungi was unclear. To address this question, a total of 1500 packets containing orchid seeds were buried for up to 3 years in diverse European forest sites which either supported or lacked populations of helleborine orchids. After harvest, the fungi associated with the three developmental stages, and with tree roots, were identified via cultivation-independent molecular methods. While our results show that most fungal symbionts are ectomycorrhizal, differences were observed between orchids in the representation of fungi at the three life stages. In Cephalanthera damasonium and C. longifolia, the fungi detected in seedlings were only a subset of the wider range seen in germinating seeds and mature plants. In Epipactis atrorubens, the fungi detected were similar at all three life stages, but different fungal lineages produced a difference in seedling germination performance. Our results demonstrate that there can be a narrow checkpoint for mycorrhizal range during seedling growth relative to the more promiscuous germination and mature stages of these plants' life cycle.

  18. Below-ground carbon flux and partitioning: global patterns and response to temperature

    Science.gov (United States)

    C.M. Litton; C.P. Giardina

    2008-01-01

    1. The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the...

  19. Belowground competition from overstory trees influences Douglas-fir sapling morphology in thinned stands

    Science.gov (United States)

    Warren D. Devine; Timothy B. Harrington

    2009-01-01

    We evaluated effects of belowground competition on morphology of naturally established coast Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco) saplings in 60- to 80-year-old thinned Douglas-fir stands in southwestern Washington. We separately quantified belowground competition from overstory and understory sources...

  20. Plant neighbour identity matters to belowground interactions under controlled conditions.

    Directory of Open Access Journals (Sweden)

    Cristina Armas

    Full Text Available BACKGROUND: Root competition is an almost ubiquitous feature of plant communities with profound effects on their structure and composition. Far beyond the traditional view that plants interact mainly through resource depletion (exploitation competition, roots are known to be able to interact with their environment using a large variety of mechanisms that may inhibit or enhance access of other roots to the resource or affect plant growth (contest interactions. However, an extensive analysis on how these contest root interactions may affect species interaction abilities is almost lacking. METHODOLOGY/PRINCIPAL FINDINGS: In a common garden experiment with ten perennial plant species we forced pairs of plants of the same or different species to overlap their roots and analyzed how belowground contest interactions affected plant performance, biomass allocation patterns, and competitive abilities under abundant resource supply. Our results showed that net interaction outcome ranged from negative to positive, affecting total plant mass and allocation patterns. A species could be a strong competitor against one species, weaker against another one, and even facilitator to a third species. This leads to sets of species where competitive hierarchies may be clear but also to groups where such rankings are not, suggesting that intransitive root interactions may be crucial for species coexistence. CONCLUSIONS/SIGNIFICANCE: The outcome of belowground contest interactions is strongly dependent on neighbours' identity. In natural plant communities this conditional outcome may hypothetically help species to interact in non-hierarchical and intransitive networks, which in turn might promote coexistence.

  1. Aboveground overyielding in grassland mixtures is associated with reduced biomass partitioning to belowground organs.

    Science.gov (United States)

    Bessler, Holger; Temperton, Vicky M; Roscher, Christiane; Buchmann, Nina; Schmid, Bernhard; Schulze, Ernst-Detlef; Weisser, Wolfgang W; Engels, Christof

    2009-06-01

    We investigated effects of plant species richness in experimental grassland plots on annual above- and belowground biomass production estimated from repeated harvests and ingrowth cores, respectively. Aboveground and total biomass production increased with increasing plant species richness while belowground production remained constant. Root to shoot biomass production ratios (R/S) in mixtures were lower than expected from monoculture performance of the species present in the mixtures, showing that interactions among species led to reduced biomass partitioning to belowground organs. This change in partitioning to belowground organs was not confined to mixtures with legumes, but also measured in mixtures without legumes, and correlated with aboveground overyielding in mixtures. It is suggested that species-rich communities invest less in belowground biomass than do monocultures to extract soil resources, thus leading to increased investment into aboveground organs and overyielding.

  2. Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma.

    Science.gov (United States)

    Mucha, Joanna

    2011-06-01

    Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.

  3. Entomopathogenic fungal endophytes

    Science.gov (United States)

    Fungal endophytes are quite common in nature and some of them have been shown to have adverse effects against insects, nematodes, and plant pathogens. An introduction to fungal endophytes will be presented, followed by a discussion of research aimed at introducing Beauveria bassiana as a fungal endo...

  4. Limited transfer of nitrogen between wood decomposing and ectomycorrhizal mycelia when studied in the field

    DEFF Research Database (Denmark)

    Wallander, Håkan; Lindahl, Björn D.; Nilsson, Lars Ola

    2006-01-01

    Transfer of 15N between interacting mycelia of a wood-decomposing fungus (Hypholoma fasciculare) and an ectomycorrhizal fungus (Tomentellopsis submollis) was studied in a mature beech (Fagus sylvatica) forest. The amount of 15N transferred from the wood decomposer to the ectomycorrhizal fungus...... was compared to the amount of 15N released from the wood-decomposing mycelia into the soil solution as 15N-NH4. The study was performed in peat-filled plastic containers placed in forest soil in the field. The wood-decomposing mycelium was growing from an inoculated wood piece and the ectomycorrhizal mycelium...... from an introduced root from a mature tree. The containers were harvested after 41 weeks when physical contact between the two foraging mycelia was established. At harvest, 15N content was analyzed in the peat (total N and 15NH4+) and in the mycorrhizal roots. A limited amount of 15N was transferred...

  5. Growth response of Pinus densiflora seedlings inoculated with three indigenous ectomycorrhizal fungi in combination

    Directory of Open Access Journals (Sweden)

    M Dalong

    2011-09-01

    Full Text Available Pinus densiflora seedlings were inoculated with three indigenous ectomycorrhizal fungi (Cenococcum geophilum, Rhizopogon roseolus and Russula densifolia in single-, two-, and three-species treatments. After 8 months, the colonization rates of each ectomycorrhizal species, seedling growth and the nutrition were assessed in each treatment. P. densiflora seedlings inoculated with different ECM species composition showed an increase in height and basal diameter and improved seedling root and shoot nutrition concentrations compared to control treatment. Generally, combined inoculation had a more positive influence on the seedlings than the single inoculation. The three-species inoculation presented the highest growth and basal diameter and concentration of most nutrients except potassium. In conclusion, the results provided strong evidence for benefits of combined inoculation with the indigenous ectomycorrhizal fungi on P. densiflora seedlings under controlled conditions.

  6. Growth response of Pinus densiflora seedlings inoculated with three indigenous ectomycorrhizal fungi in combination.

    Science.gov (United States)

    Dalong, M; Luhe, W; Guoting, Y; Liqiang, M; Chun, L

    2011-07-01

    Pinus densiflora seedlings were inoculated with three indigenous ectomycorrhizal fungi (Cenococcum geophilum, Rhizopogon roseolus and Russula densifolia) in single-, two-, and three-species treatments. After 8 months, the colonization rates of each ectomycorrhizal species, seedling growth and the nutrition were assessed in each treatment. P. densiflora seedlings inoculated with different ECM species composition showed an increase in height and basal diameter and improved seedling root and shoot nutrition concentrations compared to control treatment. Generally, combined inoculation had a more positive influence on the seedlings than the single inoculation. The three-species inoculation presented the highest growth and basal diameter and concentration of most nutrients except potassium. In conclusion, the results provided strong evidence for benefits of combined inoculation with the indigenous ectomycorrhizal fungi on P. densiflora seedlings under controlled conditions.

  7. Characterization of Transposable Elements in the Ectomycorrhizal Fungus Laccaria bicolor

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Murat, Claude [INRA, Nancy, France; Morin, Emmanuelle [INRA, Nancy, France; Tuskan, Gerald A [ORNL; Le Tacon, F [UMR, France; Martin, Francis [INRA, Nancy, France

    2012-01-01

    Background: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs) in this symbiotic ectomycorrhizal fungus. Using a TEspecific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. Methodology/Principal Findings: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS), long terminal repeats (LTRs) and a large retrotransposon derivative (LARD) element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. Conclusions: This analysis 1) represents an initial characterization of TEs in the L. bicolor genome, 2) contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3) provides a valuable resource for future research on the genome evolution within the Laccaria genus.

  8. Characterization of transposable elements in the ectomycorrhizal fungus Laccaria bicolor.

    Directory of Open Access Journals (Sweden)

    Jessy Labbé

    Full Text Available BACKGROUND: The publicly available Laccaria bicolor genome sequence has provided a considerable genomic resource allowing systematic identification of transposable elements (TEs in this symbiotic ectomycorrhizal fungus. Using a TE-specific annotation pipeline we have characterized and analyzed TEs in the L. bicolor S238N-H82 genome. METHODOLOGY/PRINCIPAL FINDINGS: TEs occupy 24% of the 60 Mb L. bicolor genome and represent 25,787 full-length and partial copy elements distributed within 171 families. The most abundant elements were the Copia-like. TEs are not randomly distributed across the genome, but are tightly nested or clustered. The majority of TEs exhibits signs of ancient transposition except some intact copies of terminal inverted repeats (TIRS, long terminal repeats (LTRs and a large retrotransposon derivative (LARD element. There were three main periods of TE expansion in L. bicolor: the first from 57 to 10 Mya, the second from 5 to 1 Mya and the most recent from 0.5 Mya ago until now. LTR retrotransposons are closely related to retrotransposons found in another basidiomycete, Coprinopsis cinerea. CONCLUSIONS: This analysis 1 represents an initial characterization of TEs in the L. bicolor genome, 2 contributes to improve genome annotation and a greater understanding of the role TEs played in genome organization and evolution and 3 provides a valuable resource for future research on the genome evolution within the Laccaria genus.

  9. Visualizing carbon and nitrogen transfer in the tripartite symbiosis of Fagus sylvatica, ectomycorrhizal fungi and soil microorganisms using NanoSIMS

    Science.gov (United States)

    Mayerhofer, Werner; Dietrich, Marlies; Schintlmeister, Arno; Gabriel, Raphael; Gorka, Stefan; Wiesenbauer, Julia; Martin, Victoria; Schweiger, Peter; Reipert, Siegfried; Weidinger, Marieluise; Richter, Andreas; Woebken, Dagmar; Kaiser, Christina

    2016-04-01

    Translocation of recently photoassimilated plant carbon (C) into soil via root exudates or mycorrhizal fungi is key to understand global carbon cycling. Plants support symbiotic fungi and soil microorganisms with recent photosynthates to get access to essential elements, such as nitrogen (N) and phosphorus. While a 'reciprocal reward strategy' (plants trade C in exchange for nutrients from the fungus) has been shown for certain types of mycorrhizal associations, only little is known about the mechanisms of C and N exchange between mycorrhizal fungal hyphae and soil bacteria. Our understanding of the underlying mechanisms is hampered by the fact that C and N transfer between plants, mycorrhizal fungi and soil bacteria takes place at the micrometer scale, which makes it difficult to explore at the macro scale. In this project we intended to analyse carbon and nitrogen flows between roots of beech trees (Fagus sylvatica), their associated ectomycorrhizal fungi and bacterial community. In order to visualize this nutrient flow at a single cell level, we used a stable isotope double labelling (13C and 15N) approach. Young mycorrhizal beech trees were transferred from a forest to split-root boxes, consisting of two compartments separated by a membrane (35 μm mesh size) which was penetrable for hyphae but not for plant roots. After trees and mycorrhizal fungi were allowed to grow for one year in these boxes, 15N-labelled nitrogen solution was added only to the root-free compartment to allow labelled nitrogen supply only through the fungal network. 13C- labelled carbon was applied by exposing the plants to a 13CO2 gas atmosphere for 8 hours. Spatial distribution of the isotopic label was visualised at the microscale in cross sections of mycorrhizal root-tips (the plant/mycorrhizal fungi interface) and within and on the surface of external mycorrhizal hyphae (the fungi/soil bacteria interface) using nanoscale secondary ion mass spectrometry (NanoSIMS). Corresponding

  10. Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication.

    Science.gov (United States)

    van Dam, Nicole M; Bouwmeester, Harro J

    2016-03-01

    The rhizosphere is densely populated with a variety of organisms. Interactions between roots and rhizosphere community members are mostly achieved via chemical communication. Root exudates contain an array of primary and secondary plant metabolites that can attract, deter, or kill belowground insect herbivores, nematodes, and microbes, and inhibit competing plants. Metabolomics of root exudates can potentially help us to better understand this chemical dialogue. The main limitations are the proper sampling of the exudate, the sensitivity of the metabolomics platforms, and the multivariate data analysis to identify causal relations. Novel technologies may help to generate a spatially explicit metabolome of the root and its exudates at a scale that is relevant for the rhizosphere community.

  11. Biodiversity of ectomycorrhizal fungi in surface mine spoil restoration stands in Poland – first time recorded, rare, and red-listed species

    Directory of Open Access Journals (Sweden)

    Izabela Lidia Kałucka

    2016-10-01

    Full Text Available Results of mycological research conducted in the years 2001–2013 in the restoration stands growing on reclaimed mine spoils are presented. Four opencast lignite mine spoil heaps in Poland were examined: Pątnów-Jóźwin, Adamów, Mt Kamieńsk, and Turów. The paper focuses on 71 species of ectomycorrhizal fungi: recorded for the first time in the country (16 taxa, currently red-listed (23 taxa, known from few localities only (32 taxa. Notes on their ecology and habitats are provided, as well as their distribution in Europe and in Poland. Restoration tree stands, established as part of the reclamation process of mine spoils, form a unique habitat for many rare and interesting fungal taxa. Among them are pioneer species, species known mainly from Northern Europe or mountainous locations, highly specialized and narrow-niche taxa, and many threatened species. Afforested mine spoils contribute significantly to the fungal biodiversity, both at a local and at a larger scale.

  12. Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature

    Science.gov (United States)

    Wang, Peng; Heijmans, Monique M. P. D.; Mommer, Liesje; van Ruijven, Jasper; Maximov, Trofim C.; Berendse, Frank

    2016-05-01

    Climate warming is known to increase the aboveground productivity of tundra ecosystems. Recently, belowground biomass is receiving more attention, but the effects of climate warming on belowground productivity remain unclear. Enhanced understanding of the belowground component of the tundra is important in the context of climate warming, since most carbon is sequestered belowground in these ecosystems. In this study we synthesized published tundra belowground biomass data from 36 field studies spanning a mean annual temperature (MAT) gradient from -20 °C to 0 °C across the tundra biome, and determined the relationships between different plant biomass pools and MAT. Our results show that the plant community biomass-temperature relationships are significantly different between above and belowground. Aboveground biomass clearly increased with MAT, whereas total belowground biomass and fine root biomass did not show a significant increase over the broad MAT gradient. Our results suggest that biomass allocation of tundra vegetation shifts towards aboveground in warmer conditions, which could impact on the carbon cycling in tundra ecosystems through altered litter input and distribution in the soil, as well as possible changes in root turnover.

  13. Fungal transcript pattern during the preinfection stage (12 h) of ectomycorrhiza formed between Pisolithus tinctorius and Castanea sativa roots, identified using cDNA microarrays.

    Science.gov (United States)

    Acioli-Santos, Bartolomeu; Sebastiana, Mónica; Pessoa, Fernando; Sousa, Lisete; Figueiredo, Andreia; Fortes, Ana Margarida; Baldé, Aladje; Maia, Leonor C; Pais, Maria S

    2008-12-01

    Transcriptional changes in Pisolithus tinctorius leading to ectomycorrhizal formation in P. tinctorius- Castanea sativa were investigated using a 12-h fungal interaction in vitro system. Using a 3107-cDNA clone microarray, 34 unique expressed sequence tags (ESTs) were found to be differentially expressed. These ESTs represent 14 known genes, 5 upregulated and 9 downregulated, and 20 orphan sequences. Some transcripts of upregulated genes (with unknown function) were previously identified in other mycorrhizal Pisolithus spp. associations. ESTs for S-adenosyl-L-homocysteine hydrolase and several orphan sequences were identified in our system. The identified transcript of downregulated genes involved hydrophobins, 5S, 18S, and 28S ribosomal RNA genes, large subunits of ribosomal RNA (mitochondrial gene), and two types of heat shock proteins. This study demonstrates the high complexity of molecular events involved in the preinfection steps and suggests the utilization of different fungal gene repertories before ectomycorrhizal formation. These data constitute a first contribution for the molecular understanding of early signaling events between P. tinctorius and C. sativa roots during ectomycorrhizal formation.

  14. Experimental soil warming at the treeline shifts fungal communities species

    Science.gov (United States)

    Solly, Emily; Lindahl, Björn; Dawes, Melissa; Peter, Martina; Rixen, Christian; Hagedorn, Frank

    2016-04-01

    In terrestrial ecosystems, fungi play a major role in decomposition processes, plant nutrient uptake and nutrient cycling. In high elevation ecosystems in Alpine and Arctic regions, the fungal community may be particularly sensitive to climate warming due to the removal of temperature limitation in the plant and soil system, faster nutrient cycling and changes in plant carbon allocation to maintain roots systems and sustain the rhizosphere. In our study, we estimated the effects of 9 years CO2 enrichment and three years of experimental soil warming on the community structure of fungal microorganisms in an alpine treeline ecosystem. In the Swiss Alps, we worked on a total of 40 plots, with c. 40-year-old Larix decidua and Pinus mugo ssp. uncinata trees (20 plots for each tree species). Half of the plots with each tree species were randomly assigned to an elevated CO2 treatment (ambient concentration +200 ppm), whereas the remaining plots received no supplementary CO2. Five individual plots for each combination of CO2 concentration and tree species were heated by an average of 4°C during the growing season with heating cables at the soil surface. At the treeline, the fungal diversity analyzed by high-throughput 454-sequencing of genetic markers, was generally low as compared to low altitude systems and mycorrhizal species made a particularly small contribution to the total fungal DNA. Soil warming led to a shift in the structure and composition of the fungal microbial community, with an increase of litter degraders and ectomycorrhizal fungi. We further observed changes in the productivity of specific fungal fruiting bodies (i.e. more Lactarius rufus sporocarps and less Hygrophorus lucorum sporocarps) during the course of the experiment, that were consistent with the 454-sequencing data. The warming effect was more pronounced in the Larix plots. These shifts were accompanied by an increased soil CO2 efflux (+40%), evidence of increased N availability and a

  15. How can we exploit above-belowground interactions to assist in addressing the challenges of food security?

    Science.gov (United States)

    Orrell, Peter; Bennett, Alison E

    2013-10-30

    Can above-belowground interactions help address issues of food security? We address this question in this manuscript, and review the intersection of above-belowground interactions and food security. We propose that above-belowground interactions could address two strategies identified by Godfray etal. (2010): reducing the Yield Gap, and Increasing Production Limits. In particular, to minimize the difference between potential and realized production (The Yield Gap) above-belowground interactions could be manipulated to reduce losses to pests and increase crop growth (and therefore yields). To Increase Production Limits we propose two mechanisms: utilizing intercropping (which uses multiple aspects of above-belowground interactions) and breeding for traits that promote beneficial above-belowground interactions, as well as breeding mutualistic organisms to improve their provided benefit. As a result, if they are managed correctly, there is great potential for above-belowground interactions to contribute to food security.

  16. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests.

    Science.gov (United States)

    Carrino-Kyker, Sarah R; Kluber, Laurel A; Petersen, Sheryl M; Coyle, Kaitlin P; Hewins, Charlotte R; DeForest, Jared L; Smemo, Kurt A; Burke, David J

    2016-03-01

    Many forests are affected by chronic acid deposition, which can lower soil pH and limit the availability of nutrients such as phosphorus (P), but the response of mycorrhizal fungi to changes in soil pH and P availability and how this affects tree acquisition of nutrients is not well understood. Here, we describe an ecosystem-level manipulation in 72 plots, which increased pH and/or P availability across six forests in Ohio, USA. Two years after treatment initiation, mycorrhizal fungi on roots were examined with molecular techniques, including 454-pyrosequencing. Elevating pH significantly increased arbuscular mycorrhizal (AM) fungal colonization and total fungal biomass, and affected community structure of AM and ectomycorrhizal (EcM) fungi, suggesting that raising soil pH altered both mycorrhizal fungal communities and fungal growth. AM fungal taxa were generally negatively correlated with recalcitrant P pools and soil enzyme activity, whereas EcM fungal taxa displayed variable responses, suggesting that these groups respond differently to P availability. Additionally, the production of extracellular phosphatase enzymes in soil decreased under elevated pH, suggesting a shift in functional activity of soil microbes with pH alteration. Thus, our findings suggest that elevating pH increased soil P availability, which may partly underlie the mycorrhizal fungal responses we observed.

  17. Implication of evolution and diversity in arbuscular and ectomycorrhizal symbioses.

    Science.gov (United States)

    Buscot, François

    2015-01-01

    Being highly sensitive to ecological variations, symbiotic associations should inherently have a limited occurrence in nature. To circumvent this sensitivity and reach their universal distribution, symbioses used three strategies during their evolution, which all generated high biodiversity levels: (i) specialization to a specific environment, (ii) protection of one partner via its internalization into the other, (iii) frequent partner exchange. Mycorrhizal associations follow the 3rd strategy, but also present traits of internalization. As most ancient type, arbuscular mycorrhiza (AM) formed by a monophyletic fungal group with reduced species richness did constantly support the mineral nutrition of terrestrial plants and enabled their ecological radiation and actual biodiversity level. In contrast ectomycorrhiza (EM) evolved later and independently within different taxa of fungi able to degrade complex organic plant residues, and the diversity levels of EM fungal and tree partners are balanced. Despite their different origins and diversity levels, AM and EM fungi display similar patterns of diversity dynamics in ecosystems. At each time or succession interval, a few dominant and many rare fungi are recruited by plants roots from a wide reservoir of propagules. However, the dominant fungal partners are frequently replaced in relation to changes in the vegetation or ecological conditions. While the initial establishment of AM and EM fungal communities corresponds to a neutral recruitment, their further succession is rather driven by niche differentiation dynamics.

  18. Vertical and seasonal dynamics of fungal communities in boreal Scots pine forest soil.

    Science.gov (United States)

    Santalahti, Minna; Sun, Hui; Jumpponen, Ari; Pennanen, Taina; Heinonsalo, Jussi

    2016-11-01

    Fungal communities are important for carbon (C) transformations in boreal forests that are one of the largest C pools in terrestrial ecosystems, warranting thus further investigation of fungal community dynamics in time and space. We investigated fungal diversity and community composition seasonally and across defined soil horizons in boreal Scots pine forest in Finland using 454 pyrosequencing. We collected a total of 120 samples from five vertical soil horizons monthly from March to October; in March, under snow. Boreal forest soil generally harbored diverse fungal communities across soil horizons. The communities shifted drastically and rapidly over time. In late winter, saprotrophs dominated the community and were replaced by ectomycorrhizal fungi during the growing season. Our studies are among the first to dissect the spatial and temporal dynamics in boreal forest ecosystems and highlights the ecological importance of vertically distinct communities and their rapid seasonal dynamics. As climate change is predicted to result in warmer and longer snow-free winter seasons, as well as increase the rooting depth of trees in boreal forest, the seasonal and vertical distribution of fungal communities may change. These changes are likely to affect the organic matter decomposition by the soil-inhabiting fungi and thus alter organic C pools. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Maintenance and preservation of ectomycorrhizal and arbuscular mycorrhizal fungi.

    Science.gov (United States)

    Lalaymia, Ismahen; Cranenbrouck, Sylvie; Declerck, Stéphane

    2014-07-01

    Short- to long-term preservation of mycorrhizal fungi is essential for their in-depth study and, in the case of culture collections, for safeguarding their biodiversity. Many different maintenance/preservation methods have been developed in the last decades, from soil- and substrate-based maintenance to preservation methods that reduce (e.g., storage under water) or arrest (e.g., cryopreservation) growth and metabolism; all have advantages and disadvantages. In this review, the principal methods developed so far for ectomycorrhizal and arbuscular mycorrhizal fungi are reported and described given their distinct biology/ecology/evolutionary history. Factors that are the most important for their storage are presented and a protocol proposed which is applicable, although not generalizable, for the long-term preservation at ultra-low temperature of a large panel of these organisms. For ECM fungi, isolates should be grown on membranes or directly in cryovials until the late stationary growth phase. The recommended cryopreservation conditions are: a cryoprotectant of 10% glycerol, applied 1-2 h prior to cryopreservation, a slow cooling rate (1 °C min(-1)) until storage below -130 °C, and fast thawing by direct plunging in a water bath at 35-37 °C. For AMF, propagules (i.e., spores/colonized root pieces) isolated from cultures in the late or stationary phase of growth should be used and incorporated in a carrier (i.e., soil or alginate beads), preferably dried, before cryopreservation. For in vitro-cultured isolates, 0.5 M trehalose should be used as cryoprotectant, while isolates produced in vivo can be preserved in dried soil without cryoprotectant. A fast cryopreservation cooling rate should be used (direct immersion in liquid nitrogen or freezing at temperatures below -130 °C), as well as fast thawing by direct immersion in a water bath at 35 °C.

  20. Effect of an IAA overproducer mutant of the fungus hebeloma Cylindrosporum romagnesi on the early stages of ectomycorrhizal infection and carbohydrate content in seedlings of Pinus pinaster (ait. SOL.

    Directory of Open Access Journals (Sweden)

    Maria Rudawska

    2014-01-01

    Full Text Available Ectomycorrhizal and control seedlings of Pinus pinaster were cultured on a synthetic Melin-Norkrans medium in Petri dishes. Seedlings were inoculated with a mycelial slurry of an indole-3-acetic acid (IAA overproducer Hebeloma cylindrosporum mutant 331. The wild strain H. cylindrosporum hl was used as a reference. Medium was supplemented or not with glucose. The mycelial slurry appeared to be very effective for mycorrhizal inoculation even on the medium without glucose. In such culture conditions ectomycorrhizal ability of the IAA overproducer mutant 331 was significantly higher than of the comparable wild type. The highest content of soluble sugars was found in stems and roots of plants mycorrhizal with the mutant followed by mycorrhizal plants with the wild type and then by the uninoculated control. Sucrose practically disappeared from roots of mycorrhizal plants. Starch content in roots of mycorrhizal plants with the IAA overproducer mutant was lower as compared with other treatments. Fungal auxin in mycorrhizal symbiosis seems to be responsible for maintaining the source-sink relationship. This is revealed by higher sugar level in the host's photosynthetic tissue (source and the rise of soluble sugar content in roots (sink due to enhanced translocation of sugars to the roots and auxin stimulated conversion of carbohydrates (sucrose, starch of the host.

  1. Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae

    Science.gov (United States)

    P. Brandon Matheny; M. Catherine Aime; Neale L. Bougher; Bart Buyck; Dennis E. Desjardin; Egon Horak; Bradley R. Kropp; D. Jean Lodge; Kasem Soytong; James M. Trappe; David S. Hibbett

    2009-01-01

    The ectomycorrhizal (ECM) mushroom family Inocybaceae is widespread in north temperate regions, but more than 150 species are encountered in the tropics and the Southern Hemisphere. The relative roles of recent and ancient biogeographical processes, relationships with plant hosts, and the timing of divergences that have shaped the current geographic distribution of the...

  2. The influence of inoculated and native ectomycorrhizal fungi on morphology, physiology and survival of American chestnut

    Science.gov (United States)

    Jenise M. Bauman; Carolyn H. Keiffer; Shiv. Hiremath

    2011-01-01

    The objective of this study was to evaluate the influence of five different species of ectomycorrhizal (ECM) fungi on root colonization of native fungi on putatively blight resistant chestnut hybrids (Castanea dentata x C. mollissima) in a reclaimed mine site in central Ohio. The five species were Hebeloma crustuliniforme, Laccaria bicolor,...

  3. Ectomycorrhizal Fungi of Conifers and Their Economic Value From Xinjiang China

    Institute of Scientific and Technical Information of China (English)

    WANG Jun-yan; Ayinuer

    2004-01-01

    91 noteworthy ectomycorrhizal fungi associated with Larix sibirica Ledeb. etc. from Xing jiang are discussed. Hydnellum caeruleum(Horn. :Pers. )Karst. ,H. peckii Banker apud Peck,Cortinarius azureovelatus Orton,C. pinicola Orton, C. rickenianus Maire are new record to China. Among which 66 species are edible, 14 species are poisonous, 13 species are pharmaceutical, 22 species are probably anticancer.

  4. Habitat and diversity of ectomycorrhizal fungi in forests of South Cameroon

    NARCIS (Netherlands)

    Onguene, N.A.; Kuyper, T.W.

    2012-01-01

    Information is lacking on habitat and diversity of ectomycorrhizal (ECM) fungi of African humid forests. For three years, mushroom excursions were carried out in four sites with contrasted soil and altitude characteristics of South Cameroon, during wet seasons. Collected fungi were described in fres

  5. Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content

    Science.gov (United States)

    Matt D. Busse; Gary O. p Fiddler; Alice W. Ratcliff

    2004-01-01

    Herbicides are commonly used on private timberlands in the western United States for site preparation and control of competing vegetation. How non-target soil biota respond to herbicide applications, however, is not thoroughly understood. We tested the effects of triclorpyr, imazapyr, and sulfometuron methyl on ectomycorrhizal formation in a greenhouse study. Ponderosa...

  6. Secretome discovery reveals lignocellulose degradation capacity of the ectomycorrhizal fungus Paxillus involutus

    DEFF Research Database (Denmark)

    Roth, Doris; Rineau, Francois; Olsen, Peter B.;

    2011-01-01

    To improve our understanding of the role ectomycorrhizal fungi play in biomass conversion, we studied the transcriptome of P. involutus grown on glass beads in extract of soil organic matter. The mycelium was used for a cDNA library screened by Transposon-Assisted Signal Trapping (TAST*) for genes...

  7. Interactions between above- and belowground organisms modified in climate change experiments

    DEFF Research Database (Denmark)

    Stevnsbak, Karen; Scherber, Christoph; Gladbach, David;

    2012-01-01

    to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through......Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate4 can be expected to influence above–belowground interactions. Here, we use...... a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms.We use an insect herbivore...

  8. Freshwater Fungal Infections

    Directory of Open Access Journals (Sweden)

    Dennis J. Baumgardner

    2017-01-01

    Full Text Available Fungal infections as a result of freshwater exposure or trauma are fortunately rare. Etiologic agents are varied, but commonly include filamentous fungi and Candida. This narrative review describes various sources of potential freshwater fungal exposure and the diseases that may result, including fungal keratitis, acute otitis externa and tinea pedis, as well as rare deep soft tissue or bone infections and pulmonary or central nervous system infections following traumatic freshwater exposure during natural disasters or near-drowning episodes. Fungal etiology should be suspected in appropriate scenarios when bacterial cultures or molecular tests are normal or when the infection worsens or fails to resolve with appropriate antibacterial therapy.

  9. Links between plant and fungal communities across a deforestation chronosequence in the Amazon rainforest.

    Science.gov (United States)

    Mueller, Rebecca C; Paula, Fabiana S; Mirza, Babur S; Rodrigues, Jorge L M; Nüsslein, Klaus; Bohannan, Brendan J M

    2014-07-01

    Understanding the interactions among microbial communities, plant communities and soil properties following deforestation could provide insights into the long-term effects of land-use change on ecosystem functions, and may help identify approaches that promote the recovery of degraded sites. We combined high-throughput sequencing of fungal rDNA and molecular barcoding of plant roots to estimate fungal and plant community composition in soil sampled across a chronosequence of deforestation. We found significant effects of land-use change on fungal community composition, which was more closely correlated to plant community composition than to changes in soil properties or geographic distance, providing evidence for strong links between above- and below-ground communities in tropical forests.

  10. Evaluation of aboveground and belowground biomass recovery in physically disturbed seagrass beds.

    Science.gov (United States)

    Di Carlo, Giuseppe; Kenworthy, W Judson

    2008-11-01

    Several studies addressed aboveground biomass recovery in tropical and subtropical seagrass systems following physical disturbance. However, there are few studies documenting belowground biomass recovery despite the important functional and ecological role of roots and rhizomes for seagrass ecosystems. In this study, we compared the recovery of biomass (g dry weight m(-2)) as well as the biomass recovery rates in ten severely disturbed multi-species seagrass meadows, after the sediments were excavated and the seagrasses removed. Three sites were located in the tropics (Puerto Rico) and seven in the subtropics (Florida Keys), and all were originally dominated by Thalassia testudinum. Total aboveground biomass reached reference values at four out of ten sites studied, two in the Florida Keys and two in Puerto Rico. Total belowground biomass was lower at the disturbed locations compared to the references at all sites, apart from two sites in the Florida Keys where the compensatory effect of opportunistic species (Syringodium filiforme and Halodule wrightii) was observed. The results revealed large variation among sites in aboveground and belowground biomass for all species, with higher aboveground recovery than belowground for T. testudinum. Recovery rates for T. testudinum were highly variable across sites, but a general trend of faster aboveground than belowground recovery was observed. Equal rates between aboveground and belowground biomass were found for opportunistic species at several sites in the Florida Keys. These results indicate the importance of belowground biomass when assessing seagrass recovery and suggest that the appropriate metric to assess seagrass recovery should address belowground biomass as well as aboveground biomass in order to evaluate the full recovery of ecological services and functions performed by seagrasses. We point out regional differences in species composition and species shifts following severe disturbance events and discuss

  11. Evaluating, predicting and mapping belowground carbon stores in Kenyan mangroves.

    Science.gov (United States)

    Gress, Selena K; Huxham, Mark; Kairo, James G; Mugi, Lilian M; Briers, Robert A

    2017-01-01

    Despite covering only approximately 138 000 km(2) , mangroves are globally important carbon sinks with carbon density values three to four times that of terrestrial forests. A key challenge in evaluating the carbon benefits from mangrove forest conservation is the lack of rigorous spatially resolved estimates of mangrove sediment carbon stocks; most mangrove carbon is stored belowground. Previous work has focused on detailed estimations of carbon stores over relatively small areas, which has obvious limitations in terms of generality and scope of application. Most studies have focused only on quantifying the top 1 m of belowground carbon (BGC). Carbon stored at depths beyond 1 m, and the effects of mangrove species, location and environmental context on these stores, are poorly studied. This study investigated these variables at two sites (Gazi and Vanga in the south of Kenya) and used the data to produce a country-specific BGC predictive model for Kenya and map BGC store estimates throughout Kenya at spatial scales relevant for climate change research, forest management and REDD+ (reduced emissions from deforestation and degradation). The results revealed that mangrove species was the most reliable predictor of BGC; Rhizophora muronata had the highest mean BGC with 1485.5 t C ha(-1) . Applying the species-based predictive model to a base map of species distribution in Kenya for the year 2010 with a 2.5 m(2) resolution produced an estimate of 69.41 Mt C [±9.15 95% confidence interval (C.I.)] for BGC in Kenyan mangroves. When applied to a 1992 mangrove distribution map, the BGC estimate was 75.65 Mt C (±12.21 95% C.I.), an 8.3% loss in BGC stores between 1992 and 2010 in Kenya. The country-level mangrove map provides a valuable tool for assessing carbon stocks and visualizing the distribution of BGC. Estimates at the 2.5 m(2) resolution provide sufficient details for highlighting and prioritizing areas for mangrove conservation and restoration.

  12. Effects of litter addition on ectomycorrhizal associates of a lodgepole pine (Pinus contorta) stand in Yellowstone National Park

    Science.gov (United States)

    Cullings, Kenneth W.; New, Michael H.; Makhija, Shilpa; Parker, V. Thomas

    2003-01-01

    Increasing soil nutrients through litter manipulation, pollution, or fertilization can adversely affect ectomycorrhizal (EM) communities by inhibiting fungal growth. In this study, we used molecular genetic methods to determine the effects of litter addition on the EM community of a Pinus contorta stand in Yellowstone National Park that regenerated after a stand-replacing fire. Two controls were used; in unmodified control plots nothing was added to the soil, and in perlite plots perlite, a chemically neutral substance, was added to maintain soil moisture and temperature at levels similar to those under litter. We found that (i) species richness did not change significantly following perlite addition (2.6 +/- 0.3 species/core in control plots, compared with 2.3 +/- 0.3 species/core in perlite plots) but decreased significantly (P litter addition (1.8 +/- 0.3 species/core); (ii) EM infection was not affected by the addition of perlite but increased significantly (P litter addition, and the increase occurred only in the upper soil layer, directly adjacent to the added litter; and (iii) Suillus granulatus, Wilcoxina mikolae, and agaricoid DD were the dominant organisms in controls, but the levels of W. mikolae and agaricoid DD decreased significantly in response to both perlite and litter addition. The relative levels of S. granulatus and a fourth fungus, Cortinariaceae species 2, increased significantly (P litter addition. Thus, litter addition resulted in some negative effects that may be attributable to moisture-temperature relationships rather than to the increased nutrients associated with litter. Some species respond positively to litter addition, indicating that there are differences in their physiologies. Hence, changes in the EM community induced by litter accumulation also may affect ecosystem function.

  13. Ectomycorrhizal fungi in Mexican Alnus forests support the host co-migration hypothesis and continental-scale patterns in phylogeography.

    Science.gov (United States)

    Kennedy, Peter G; Garibay-Orijel, Roberto; Higgins, Logan M; Angeles-Arguiz, Rodolfo

    2011-08-01

    To examine the geographic patterns in Alnus-associated ectomycorrhizal (ECM) fungal assemblages and determine how they may relate to host plant biogeography, we studied ECM assemblages associated with two Alnus species (Alnus acuminata and Alnus jorullensis) in montane Mexico and compared them with Alnus-associated ECM assemblages located elsewhere in the Americas. ECM root samples were collected from four sites in Mexico (two per host species), identified with ITS and LSU rRNA gene sequences, and assessed using both taxon- (richness, diversity, evenness indices) and sequence divergence-based (UniFrac clustering and significance) analyses. Only 23 ECM taxa were encountered. Clavulina, an ECM lineage never before reported with Alnus, contained the dominant taxon overall. ECM assemblage structure varied between hosts, but UniFrac significance tests indicated that both associated with similar ECM lineage diversity. There was a strikingly high sequence similarity among a diverse array of the ECM taxa in Mexico and those in Alnus forests in Argentina, the United States, and Europe. The Mexican and United States assemblages had greater overlap than those present in Argentina, supporting the host-ECM fungi co-migration hypothesis from a common north temperate origin. Our results indicate that Alnus-associated ECM assemblages have clear patterns in richness and composition across a wide range of geographic locations. Additional data from boreal western North America as well as the eastern United States and Canada will be particularly informative in further understanding the co-biogeographic patterns of Alnus and ECM fungi in the Americas.

  14. Little evidence for niche partitioning among ectomycorrhizal fungi on spruce seedlings planted in decayed wood versus mineral soil microsites.

    Science.gov (United States)

    Walker, Jennifer K M; Jones, Melanie D

    2013-12-01

    Ectomycorrhizal fungal (EMF) communities vary among microhabitats, supporting a dominant role for deterministic processes in EMF community assemblage. EMF communities also differ between forest and clearcut environments, responding to this disturbance in a directional manner over time by returning to the species composition of the original forest. Accordingly, we examined EMF community composition on roots of spruce seedlings planted in three different microhabitats in forest and clearcut plots: decayed wood, mineral soil adjacent to downed wood, or control mineral soil, to determine the effect of retained downed wood on EMF communities over the medium and long term. If downed and decayed wood provide refuge habitat distinct from that of mineral soil, we would expect EMF communities on seedlings in woody habitats in clearcuts to be similar to those on seedlings planted in the adjacent forest. As expected, we found EMF species richness to be higher in forests than clearcuts (P ≤ 0.01), even though soil nutrient status did not differ greatly between the two plot types (P ≥ 0.05). Communities on forest seedlings were dominated by Tylospora spp., whereas those in clearcuts were dominated by Amphinema byssoides and Thelephora terrestris. Surprisingly, while substrate conditions varied among microsites (P ≤ 0.03), especially between decayed wood and mineral soil, EMF communities were not distinctly different among microhabitats. Our data suggest that niche partitioning by substrate does not occur among EMF species on very young seedlings in high elevation spruce-fir forests. Further, dispersal limitations shape EMF community assembly in clearcuts in these forests.

  15. Trace elements in fruiting bodies of ectomycorrhizal fungi growing in Scots pine (Pinus sylvestris L.) stands in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Rudawska, Maria [Institute of Dendrology, Polish Academy of Sciences, 5 Parkowa Str., 62-035 Kornik (Poland)]. E-mail: mariarud@man.poznan.pl; Leski, Tomasz [Institute of Dendrology, Polish Academy of Sciences, 5 Parkowa Str., 62-035 Kornik (Poland)

    2005-03-01

    The trace metal contents in fruiting bodies of ectomycorrhizal (ECM) fungi, symbiotic partners of Scots pine, were studied on three sites situated in west-central Poland. Elements were determined by atomic absorption spectrometry in 123 samples of 16 species. The study explored the differences in metal accumulation in relation to site, fungal species, age and part of the fruiting body and results were related to metal content in soil and plant material (roots and needles). Soil analysis revealed that results were obtained under environmental conditions not subject to strong anthropogenic pressure. Median metal concentrations did not differ disparately between sites, although the concentrations of each of the tested metals in the individual species varied to a large extent. Extremely high levels of Al with a large bioconcentration factor (BCF) were found in sporocarps of Thelephora terrestris. The spread between the highest and the lowest concentration (max/min) was very wide in Al, Cd and Pb and these elements may be considered to be absorbed preferentially by fruiting bodies of some species whereas Fe, Mn and Zn, with relatively low values of max/min, are normally absorbed by the majority of fungi. There was no clear relationship between caps and stipes in metal content. However, a tendency to higher metal concentration in the caps was observed. The metal content in young and older fruiting bodies of five different fungi was species dependent. In order to estimate the degree of accumulation of each element by plant and mushrooms, bioconcentration factors (BCFs) were calculated. In plant material (roots and needles), highest values of BCFs were noted for essential metals, like Zn and Mn. Lead showed a definite exclusion pattern (BCF below 1). In fruiting bodies of tested fungi, especially in Amanita muscaria, cadmium was the most intensively accumulated metal. Lead was excluded by plants but was accumulated or excluded by fungi depending on the species. The

  16. Depression of belowground respiration rates at simulated high moose population densities in boreal forests.

    Science.gov (United States)

    Persson, Inga-Lill; Nilsson, Mats B; Pastor, John; Eriksson, Tobias; Bergström, Roger; Danell, Kjell

    2009-10-01

    Large herbivores can affect the carbon cycle in boreal forests by changing productivity and plant species composition, which in turn could ultimately alter litter production, nutrient cycling, and the partitioning between aboveground and belowground allocation of carbon. Here we experimentally tested how moose (Alces alces) at different simulated population densities affected belowground respiration rates (estimated as CO2 flux) in young boreal forest stands situated along a site productivity gradient. At high simulated population density, moose browsing considerably depressed belowground respiration rates (24-56% below that of no-moose controls) except during June, where the difference only was 10%. Moose browsing depressed belowground respiration the most on low-productivity sites. Soil moisture and temperature did not affect respiration rates. Impact of moose on belowground respiration was closely linked to litter production and followed Michaelis-Menten dynamics. The main mechanism by which moose decrease belowground respiration rates is likely their effect on photosynthetic biomass (especially decreased productivity of deciduous trees) and total litter production. An increased productivity of deciduous trees along the site productivity gradient causes an unequal effect of moose along the same gradient. The rapid growth of deciduous trees may offer higher resilience against negative effects of moose browsing on litter production and photosynthate allocation to roots.

  17. Intermediate coupling between aboveground and belowground biomass maximises the persistence of grasslands.

    Science.gov (United States)

    Scheiter, Simon; Higgins, Steven I

    2013-01-01

    Aboveground and belowground biomass compartments of vegetation fulfil different functions and they are coupled by complex interactions. These compartments exchange water, carbon and nutrients and the belowground biomass compartment has the capacity to buffer vegetation dynamics when aboveground biomass is removed by disturbances such as herbivory or fire. However, despite their importance, root-shoot interactions are often ignored in more heuristic vegetation models. Here, we present a simple two-compartment grassland model that couples aboveground and belowground biomass. In this model, the growth of belowground biomass is influenced by aboveground biomass and the growth of aboveground biomass is influenced by belowground biomass. We used the model to explore how the dynamics of a grassland ecosystem are influenced by fire and grazing. We show that the grassland system is most persistent at intermediate levels of aboveground-belowground coupling. In this situation, the system can sustain more extreme fire or grazing regimes than in the case of strong coupling. In contrast, the productivity of the system is maximised at high levels of coupling. Our analysis suggests that the yield of a grassland ecosystem is maximised when coupling is strong, however, the intensity of disturbance that can be sustained increases dramatically when coupling is intermediate. Hence, the model predicts that intermediate coupling should be selected for as it maximises the chances of persistence in disturbance driven ecosystems.

  18. Above- and Belowground Biomass Allocation in Shrub Biomes across the Northeast Tibetan Plateau.

    Science.gov (United States)

    Nie, Xiuqing; Yang, Yuanhe; Yang, Lucun; Zhou, Guoying

    2016-01-01

    Biomass partitioning has been explored across various biomes. However, the strategies of allocation in plants still remain contentious. This study investigated allocation patterns of above- and belowground biomass at the community level, using biomass survey from the Tibetan Plateau. We explored above- and belowground biomass by conducting three consecutive sampling campaigns across shrub biomes on the northeast Tibetan Plateau during 2011-2013. We then documented the above-ground biomass (AGB), below-ground biomass (BGB) and root: shoot ratio (R/S) and the relationships between R/S and environment factors using data from 201 plots surveyed from 67 sites. We further examined relationships between above-ground and below-ground biomass across various shrub types. Our results indicated that the median values of AGB, BGB, and R/S in Tibetan shrub were 1102.55, 874.91 g m-2, and 0.85, respectively. R/S showed significant trend with mean annual precipitation (MAP), while decreased with mean annual temperature (MAT). Reduced major axis analysis indicated that the slope of the log-log relationship between above- and belowground biomass revealed a significant difference from 1.0 over space, supporting the optimal hypothesis. Interestingly, the slopes of the allometric relationship between log AGB and log BGB differed significantly between alpine and desert shrub. Our findings supported the optimal theory of above- and belowground biomass partitioning in Tibetan shrub, while the isometric hypothesis for alpine shrub at the community level.

  19. Interactions between above- and belowground organisms modified in climate change experiments

    Science.gov (United States)

    Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren

    2012-11-01

    Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.

  20. Are above- and below-ground phenology in sync?

    Science.gov (United States)

    Abramoff, Rose Z; Finzi, Adrien C

    2015-02-01

    Globally, root production accounts for 33-67% of terrestrial net primary productivity and influences decomposition via root production and turnover, carbon (C) allocation to mycorrhizal fungi and root exudation. As recognized above ground, the timing of phenological events affects terrestrial C balance, yet there is no parallel understanding for below-ground phenology. In this paper we examine the phenology of root production and its relationship to temperature, soil moisture, and above-ground phenology. Synthesizing 87 observations of whole-plant phenology from 40 studies, we found that, on average, root growth occurs 25 ± 8 d after shoot growth but that the offset between the peak in root and shoot growth varies > 200 d across biomes (boreal, temperate, Mediterranean, and subtropical). Root and shoot growth are positively correlated with median monthly temperature and mean monthly precipitation in boreal, temperate, and subtropical biomes. However, a temperature hysteresis in these biomes leads to the hypothesis that internal controls over C allocation to roots are an equally, if not more, important driver of phenology. The specific mechanisms are as yet unclear but they are likely mediated by some combination of photoassimilate supply, hormonal signaling, and growth form.

  1. Aboveground to belowground herbivore defense signaling in maize

    Science.gov (United States)

    Gill, Torrence; Zhu, Lixue; Lopéz, Lorena; Pechanova, Olga; Shivaji, Renuka; Ankala, Arunkanth; Williams, W. Paul

    2011-01-01

    Insect pests that attempt to feed on the caterpillar-resistant maize genotype Mp708 encounter a potent, multipronged defense system that thwarts their invasion. First, these plants are on “constant alert” due to constitutively elevated levels of the phytohormone jasmonic acid that signals the plant to activate its defenses. The higher jasmonic acid levels trigger the expression of defense genes prior to herbivore attack so the plants are “primed” and respond with a faster and stronger defense. The second defense is the rapid accumulation of a toxic cysteine protease called Mir1-CP in the maize whorl in response to caterpillar feeding. When caterpillars ingest Mir1-CP, it damages the insect's midgut and retards their growth. In this article, we discuss a third possible defense strategy employed by Mp708. We have shown that foliar caterpillar feeding causes Mir1-CP and defense gene transcripts to accumulate in its roots. We propose that caterpillar feeding aboveground sends a signal belowground via the phloem that results in Mir1-CP accumulation in the roots. We also postulate that the roots serve as a reservoir of Mir1-CP that can be mobilized to the whorl in response to caterpillar assault. PMID:21270535

  2. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    Science.gov (United States)

    Kerfahi, Dorsaf; Tripathi, Binu M; Lee, Junghoon; Edwards, David P; Adams, Jonathan M

    2014-01-01

    Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  3. [Effects of aboveground and belowground competition between grass and tree on elm seedlings growth in Horqin Sandy Land].

    Science.gov (United States)

    Tang, Yi; Jiang, De-ming; Chen, Zhuo; Toshio, Oshida

    2011-08-01

    Elm sparse woodland steppe plays an important role in vegetation restoration and landscape protection in Horqin Sandy Land. In this paper, a two-factor and two-level field experiment was conducted to explore the effects of aboveground and belowground competition between grass and tree on the growth of elm seedlings in the Sandy Land. Five aspects were considered, i.e., seedling biomass, belowground biomass/aboveground biomass, stem height, ratio of root to stem, and leaf number. For the one-year-old elm seedlings, their biomass showed a trend of no competition > aboveground competition > full competition > belowground competition, belowground biomass / aboveground biomass showed a trend of belowground competition > full competition > no competition > aboveground competition, stem height showed a trend of aboveground competition > no competition > full competition > belowground competition, root/stem ratio showed a trend of belowground competition > full competition > no competition > aboveground competition, and leaf number showed a trend of aboveground competition > no competition > belowground competition > full competition. Belowground competition had significant effects on the growth of one-year-old elm seedlings, while aboveground competition did not have. Neither belowground competition nor aboveground competition had significant effects on the growth of two-year-old elm seedlings. It was suggested that in Horqin Sandy Land, grass affected the growth of elm seedlings mainly via below-ground competition, but the belowground competition didn' t affect the resource allocation of elm seedlings. With the age increase of elm seedlings, the effects of grass competition on the growth of elm seedlings became weaker.

  4. Aboveground and belowground effects of single-tree removals in New Zealand rain forest.

    Science.gov (United States)

    Wardle, David A; Wiser, Susan K; Allen, Robert B; Doherty, James E; Bonner, Karen I; Williamson, Wendy M

    2008-05-01

    There has been considerable recent interest in how human-induced species loss affects community and ecosystem properties. These effects are particularly apparent when a commercially valuable species is harvested from an ecosystem, such as occurs through single-tree harvesting or selective logging of desired timber species in natural forests. In New Zealand mixed-species rain forests, single-tree harvesting of the emergent gymnosperm Dacrydium cupressinum, or rimu, has been widespread. This harvesting has been contentious in part because of possible ecological impacts of Dacrydium removal on the remainder of the forest, but many of these effects remain unexplored. We identified an area where an unintended 40-year "removal experiment" had been set up that involved selective extraction of individual Dacrydium trees. We measured aboveground and belowground variables at set distances from both individual live trees and stumps of trees harvested 40 years ago. Live trees had effects both above and below ground by affecting diversity and cover of several components of the vegetation (usually negatively), promoting soil C sequestration, enhancing ratios of soil C:P and N:P, and affecting community structure of soil microflora. These effects extended to 8 m from the tree base and were likely caused by poor-quality litter and humus produced by the trees. Measurements for the stumps revealed strong legacy effects of prior presence of trees on some properties (e.g., cover by understory herbs and ferns, soil C sequestration, soil C:P and N:P ratios), but not others (e.g., soil fungal biomass, soil N concentration). These results suggest that the legacy of prior presence of Dacrydium may remain for several decades or centuries, and certainly well over 40 years. They also demonstrate that, while large Dacrydium individuals (and their removal) may have important effects in their immediate proximity, within a forest, these effects should only be important in localized patches

  5. Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor

    2012-03-12

    The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scale genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.

  6. Fungal DNA barcoding.

    Science.gov (United States)

    Xu, Jianping

    2016-11-01

    Fungi are ubiquitous in both natural and human-made environments. They play important roles in the health of plants, animals, and humans, and in broad ecosystem functions. Thus, having an efficient species-level identification system could significantly enhance our ability to treat fungal diseases and to monitor the spatial and temporal patterns of fungal distributions and migrations. DNA barcoding is a potent approach for rapid identification of fungal specimens, generating novel species hypothesis, and guiding biodiversity and ecological studies. In this mini-review, I briefly summarize (i) the history of DNA sequence-based fungal identification; (ii) the emergence of the ITS region as the consensus primary fungal barcode; (iii) the use of the ITS barcodes to address a variety of issues on fungal diversity from local to global scales, including generating a large number of species hypothesis; and (iv) the problems with the ITS barcode region and the approaches to overcome these problems. Similar to DNA barcoding research on plants and animals, significant progress has been achieved over the last few years in terms of both the questions being addressed and the foundations being laid for future research endeavors. However, significant challenges remain. I suggest three broad areas of research to enhance the usefulness of fungal DNA barcoding to meet the current and future challenges: (i) develop a common set of primers and technologies that allow the amplification and sequencing of all fungi at both the primary and secondary barcode loci; (ii) compile a centralized reference database that includes all recognized fungal species as well as species hypothesis, and allows regular updates from the research community; and (iii) establish a consensus set of new species recognition criteria based on barcode DNA sequences that can be applied across the fungal kingdom.

  7. Fungal arthritis and osteomyelitis.

    Science.gov (United States)

    Kohli, Rakhi; Hadley, Susan

    2005-12-01

    Fungal arthritis and osteomyelitis are uncommon diseases and generally present in an indolent fashion. The incidence of fungal bone and joint dis-ease is increasing with an increase in the prevalence of factors predisposing to invasive fungal disease, such as the use of central venous catheters, broad spectrum antibiotics, immunosuppression, and abdominal surgery. Definitive diagnosis relies on bone or synovial culture or biopsy. Successful management has traditionally consisted of amphotericin B in combination with surgical debridement. Given the rarity of this disease, treatment is not well defined, but reports of success with the use of azole antifungal agents, including itraconazole, fluconazole, voriconazole, and posaconazole, are promising.

  8. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi.

    Science.gov (United States)

    Lindahl, Björn D; de Boer, Wietse; Finlay, Roger D

    2010-07-01

    Ectomycorrhizal fungi dominate the humus layers of boreal forests. They depend on carbohydrates that are translocated through roots, via fungal mycelium to microsites in the soil, wherein they forage for nutrients. Mycorrhizal fungi are therefore sensitive to disruptive disturbances that may restrict their carbon supply. By disrupting root connections, we induced a sudden decline in mycorrhizal mycelial abundance and studied the consequent effects on growth and activity of free living, saprotrophic fungi and bacteria in pine forest humus, using molecular community analyses in combination with enzyme activity measurements. Ectomycorrhizal fungi had decreased in abundance 14 days after root severing, but the abundance of certain free-living ascomycetes was three times higher within 5 days of the disturbance compared with undisturbed controls. Root disruption also increased laccase production by an order of magnitude and cellulase production by a factor of 5. In contrast, bacterial populations seemed little affected. The results indicate that access to an external carbon source enables mycorrhizal fungi to monopolise the humus, but disturbances may induce rapid growth of opportunistic saprotrophic fungi that presumably use the dying mycorrhizal mycelium. Studies of such functional shifts in fungal communities, induced by disturbance, may shed light on mechanisms behind nutrient retention and release in boreal forests. The results also highlight the fundamental problems associated with methods that study microbial processes in soil samples that have been isolated from living roots.

  9. Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation.

    Science.gov (United States)

    Kaiser, Christina; Fuchslueger, Lucia; Koranda, Marianne; Gorfer, Markus; Stange, Claus F; Kitzler, Barbara; Rasche, Frank; Strauss, Joseph; Sessitsch, Angela; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2011-05-01

    Soil microbes in temperate forest ecosystems are able to cycle several hundreds of kilograms of N per hectare per year and are therefore of paramount importance for N retention. Belowground C allocation by trees is an important driver of seasonal microbial dynamics and may thus directly affect N transformation processes over the course of the year. Our study aimed at unraveling plant controls on soil N cycling in a temperate beech forest at a high temporal resolution over a time period of two years, by investigating the effects of tree girdling on microbial N turnover. In both years of the experiment, we discovered (1) a summer N mineralization phase (between July and August) and (2) a winter N immobilization phase (November-February). The summer mineralization phase was characterized by a high N mineralization activity, low microbial N uptake, and a subsequent high N availability in the soil. During the autumn/winter N immobilization phase, gross N mineralization rates were low, and microbial N uptake exceeded microbial N mineralization, which led to high levels of N in the microbial biomass and low N availability in the soil. The observed immobilization phase during the winter may play a crucial role for ecosystem functioning, since it could protect dissolved N that is produced by autumn litter degradation from being lost from the ecosystem during the phase when plants are mostly inactive. The difference between microbial biomass N levels in winter and spring equals 38 kg N/ha and may thus account for almost one-third of the annual plant N demand. Tree girdling strongly affected annual N cycling: the winter N immobilization phase disappeared in girdled plots (microbial N uptake and microbial biomass N were significantly reduced, while the amount of available N in the soil solution was enhanced). This was correlated to a reduced fungal abundance in autumn in girdled plots. By releasing recently fixed photosynthates to the soil, plants may thus actively control the

  10. First Assessment of Carbon Stock in the Belowground Biomass of Brazilian Mangroves

    Directory of Open Access Journals (Sweden)

    DANIEL M.C. SANTOS

    2017-08-01

    Full Text Available ABSTRACT Studies on belowground roots biomass have increasingly reported the importance of the contribution of this compartment in carbon stock maintenance in mangrove forests. To date, there are no estimates of this contribution in Brazilian mangrove forests, although the country has the second largest area of mangroves worldwide. For this study, trenches dug in fringing forests in Guaratiba State Biological Reserve (Rio de Janeiro, Brazil were used to evaluate the contribution of the different classes of roots and the vertical stratification of carbon stock. The total carbon stock average in belowground roots biomass in these forests was 104.41 ± 20.73 tC.ha−1. From that, an average of 84.13 ± 21.34 tC.ha−1 corresponded to the carbon stock only in fine roots, which have diameters smaller than 5 mm and are responsible for over 80% of the total belowground biomass. Most of the belowground carbon stock is concentrated in the first 40 cm below the surface (about 70%. The root:shoot ratio in this study is 1.14. These estimates demonstrate that the belowground roots biomass significantly contributes, more than 50%, to the carbon stock in mangrove forests. And the mangrove root biomass can be greater than that of other Brazilian ecosystems.

  11. Radiocaesium in fruitbodies and mycorrhizae in ectomycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Nikolova, Ivanka [N. Pouskharov Inst. of Soil Sciences and Agroecology, Sofia (Bulgaria); Johanson, K.J. [Swedish Univ. of Agricultural Sciences, Radioecology Dept., Uppsala (Sweden); Dahlberg, Anders [Swedish Univ. of Agricultural Sciences, Forest Mycology and Pathology Dept., Uppsala (Sweden)

    1997-12-31

    Fruitbodies of Suillus variegatus and Lactarius rufus and, at a maximum distance of 50 cm, the corresponding mycorrhizae, were collected on a rocky area in a coniferous forest. The tuberculate mycorrhizae collected close to S. variegatus fruitbodies were identified by the RFLP pattern to be S. variegatus mycorrhizae. In contrast the smooth brown mycorrhizae collected close to fruitbodies of L. rufus were found to be of various species - L. rufus, but also Russula sp. The {sup 137}Cs activity concentrations in fruitbodies and the fungal part of the tuburculate mycorrhizae of S. variegatus were about the same. A local enrichment of {sup 137}Cs within fruitbodies was studied by collecting fruitbodies growing in clusters. Between 13 and 64% of the mean ground {sup 137}Cs deposition of the cluster area (400 or 625 cm{sup 2}) was found in the fruitbodies. This indicates that there might be an important fungal redistribution of {sup 137}Cs in the forest floor during the production of fruitbodies. The distribution of {sup 137}Cs within the fruitbodies was heterogenous. For example in Cortinarious armillatus, the {sup 137}Cs level in the cap was 2.7 times higher compared to in the stripe. (Author).

  12. Insect pathology and fungal entomopathogens

    Science.gov (United States)

    Fungi that occur inside asymptomatic plant tissues are known as fungal endophytes. Different genera of fungal entomopathogens have been reported as naturally occurring fungal endophytes, and it has been shown that it is possible to inoculate plants with fungal entomopathogens, making them endophytic...

  13. JGI Fungal Genomics Program

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor V.

    2011-03-14

    Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here

  14. Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric).

    Science.gov (United States)

    Schrey, Silvia D; Salo, Vanamo; Raudaskoski, Marjatta; Hampp, Rüdiger; Nehls, Uwe; Tarkka, Mika T

    2007-08-01

    The actin cytoskeleton (AC) of fungal hyphae is a major determinant of hyphal shape and morphogenesis, implicated in controlling tip structure and secretory vesicle delivery. Hyphal growth of the ectomycorrhizal fungus Amanita muscaria and symbiosis formation with spruce are promoted by the mycorrhiza helper bacterium Streptomyces sp. AcH 505 (AcH 505). To investigate structural requirements of growth promotion, the effect of AcH 505 on A. muscaria hyphal morphology, AC and actin gene expression were studied. Hyphal diameter and mycelial density decreased during dual culture (DC), and indirect immunofluorescence microscopy revealed that the dense and polarised actin cap in hyphal tips of axenic A. muscaria changes to a loosened and dispersed structure in DC. Supplementation of growth medium with cell-free bacterial supernatant confirmed that reduction in hyphal diameter and AC changes occurred at the same stage of growth. Transcript levels of both actin genes isolated from A. muscaria remained unaltered, indicating that AC changes are regulated by reorganisation of the existing actin pool. In conclusion, the AC reorganisation appears to result in altered hyphal morphology and faster apical extension. The thus improved spreading of hyphae and increased probability to encounter plant roots highlights a mechanism behind the mycorrhiza helper effect.

  15. Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan.

    Science.gov (United States)

    Ogura-Tsujita, Yuki; Yukawa, Tomohisa

    2008-09-01

    Epipactis helleborine (L.) Crantz, one of the most widespread orchid species, occurs in a broad range of habitats. This orchid is fully myco-heterotrophic in the germination stage and partially myco-heterotrophic in the adult stage, suggesting that a mycorrhizal partner is one of the key factors that determines whether E. helleborine successfully colonizes a specific environment. We focused on the coastal habitat of Japanese E. helleborine and surveyed the mycorrhizal fungi from geographically different coastal populations that grow in Japanese black pine (Pinus thunbergii Parl.) forests of coastal sand dunes. Mycorrhizal fungi and plant haplotypes were then compared with those from inland populations. Molecular phylogenetic analysis of large subunit rRNA sequences of fungi from its roots revealed that E. helleborine is mainly associated with several ectomycorrhizal taxa of the Pezizales, such as Wilcoxina, Tuber, and Hydnotrya. All individuals from coastal dunes were exclusively associated with a pezizalean fungus, Wilcoxina, which is ectomycorrhizal with pine trees growing on coastal dunes. Wilcoxina was not detected in inland forests. Coastal populations were indistinguishable from inland populations based on plant trnL intron haplotypes. Our results indicate that mycorrhizal association with geographically restricted pezizalean ectomycorrhizal fungi is a key control upon this orchid species' distribution across widely different forest habitats.

  16. Relationship between plant hormone level excreted by ectomycorrhizal fungi and growth of poplar NL-895

    Institute of Scientific and Technical Information of China (English)

    Lei MA; Xiaoqin WU; Ling ZHENG

    2009-01-01

    To explore the effects of plant hormones levels excreted by ectomycorrhizal (ECM) fungi on the growth of poplars, Populus x euramericana cv. NL-895 seedlings were inoculated with nine species of ECM fungi. We investigated the status of ectomycorrhizal formation and the effects of these fungi on poplar growth, and using the HPLC method, we measured the contents of four kinds of plant hormones, indole acetic acid (IAA), zeatin (Z), gibberellin (GA) and abscisic acid (ABA) in both the culture filtrate and the mycelium of these fungi. The results showed that the effects of nine ECM fungi on the growth of poplar NL-895 varied. The inoculated seedlings, whether or not obvious mycorrhizas were developed, grew better than those non-inoculated ones. All nine ectomycorrhizal fungi excreted the four plant hormones, but at different levels. The hormone contents in culture filtrate were higher than that in mycelium, which showed a definite relationship with poplar growth. Significantly, correlation analysis suggested the height and stem diameter of the poplar were positively correlated with zeatin contents in the mycelium, and were negatively correlated with the levels of ABA or IAA in the mycelium.

  17. Piracy in the high trees: ectomycorrhizal fungi from an aerial 'canopy soil' microhabitat.

    Science.gov (United States)

    Orlovich, David A; Draffin, Suzy J; Daly, Robert A; Stephenson, Steven L

    2013-01-01

    The mantle of dead organic material ("canopy soil") associated with the mats of vascular and nonvascular epiphytes found on the branches of trees in the temperate rainforests along the southwestern coast of the South Island of New Zealand were examined for evidence of ectomycorrhizal fungi. DNA sequencing and cluster analysis were used to identify the taxa of fungi present in 74 root tips collected from the canopy soil microhabitat of three old growth Nothofagus menziesii trees in the South West New Zealand World Heritage Area. A diverse assemblage of ectomycorrhizal fungi was found to infect an extensive network of adventitious canopy roots of Nothofagus menziesii in this forest, including 14 phylotypes from nine genera of putative ectomycorrhizal fungi. Seven of the genera identified previously were known to form ectomycorrhizas with terrestrial roots of Nothofagus: Cortinarius, Russula, Cenococcum, Thelephora/Tomentella, Lactarius and Laccaria; two, Clavulina and Leotia, previously have not been reported forming ectomycorrhizas with Nothofagus. Canopy ectomycorrhizas provide an unexpected means for increased host nutrition that may have functional significance in some forest ecosystems. Presumably, canopy ectomycorrhizas on host adventitious roots circumvent the tree-ground-soil nutrient cycle by accessing a wider range of nutrients directly in the canopy than would be possible for non-mycorrhizal or arbuscular mycorrhizal canopy roots. In this system, both host and epiphytes would seem to be in competition for the same pool of nutrients in canopy soil.

  18. [Pathogenesis of invasive fungal infections].

    Science.gov (United States)

    Garcia-Vidal, Carolina; Carratalà, Jordi

    2012-03-01

    Invasive fungal infections remain a life-threatening disease. The development of invasive fungal disease is dependent on multiple factors, such us colonization and efficient host immune response. We aimed to review the pathogenesis of invasive fungal infections, in particular, those caused by Candida and Aspergillus. For this we propose, to describe the fungal characteristics, to detail the host defence mechanisms against fungus and to analyse the host risk factors for invasive fungal infection.

  19. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland

    Science.gov (United States)

    Cassman, Noriko A.; Leite, Marcio F. A.; Pan, Yao; de Hollander, Mattias; van Veen, Johannes A.; Kuramae, Eiko E.

    2016-03-01

    Inorganic fertilization and mowing alter soil factors with subsequent effects-direct and indirect - on above- and below-ground communities. We explored direct and indirect effects of long-term fertilization (N, P, NPK, Liming) and twice yearly mowing on the plant, bacterial and fungal communities and soil factors. We analyzed co-variation using 16S and 18S rRNA genes surveys, and plant frequency and edaphic factors across treatments. The plant and fungal communities were distinct in the NPK and L treatments, while the bacterial communities and soil factors were distinct in the N and L treatments. Plant community diversity and evenness had low diversity in the NPK and high diversity in the liming treatment, while the diversity and evenness of the bacterial and fungal communities did not differ across treatments, except of higher diversity and evenness in the liming treatment for the bacteria. We found significant co-structures between communities based on plant and fungal comparisons but not between plant and bacterial nor bacterial and fungal comparisons. Our results suggested that the plant and fungal communities are more tightly linked than either community with the bacterial community in fertilized soils. We found co-varying plant, bacterial and fungal taxa in different treatments that may indicate ecological interactions.

  20. Fungal endocarditis: current challenges.

    Science.gov (United States)

    Tattevin, Pierre; Revest, Matthieu; Lefort, Agnès; Michelet, Christian; Lortholary, Olivier

    2014-10-01

    Whilst it used to affect mostly intravenous drug users and patients who underwent valvular surgery with suboptimal infection control procedures, fungal endocarditis is now mostly observed in patients with severe immunodeficiency (onco-haematology), in association with chronic central venous access and broad-spectrum antibiotic use. The incidence of fungal endocarditis has probably decreased in most developed countries with access to harm-reduction policies (i.e. needle exchange programmes) and with improved infection control procedures during cardiac surgery. Use of specific blood culture bottles for diagnosis of fungal endocarditis has decreased due to optimisation of media and automated culture systems. Meanwhile, the advent of rapid techniques, including fungal antigen detection (galactomannan, mannan/anti-mannan antibodies and β-1,3-d-glucans) and PCR (e.g. universal fungal PCR targeting 18S rRNA genes), shall improve sensitivity and reduce diagnostics delays, although limited data are available on their use for the diagnosis of fungal endocarditis. New antifungal agents available since the early 2000s may represent dramatic improvement for fungal endocarditis: (i) a new class, the echinocandins, has the potential to improve the management of Candida endocarditis owing to its fungicidal effect on yeasts as well as tolerability of increased dosages; and (ii) improved survival in patients with invasive aspergillosis with voriconazole compared with amphotericin B, and this may apply to Aspergillus sp. endocarditis as well, although its prognosis remains dismal. These achievements may allow selected patients to be cured with prolonged medical treatment alone when surgery is considered too risky.

  1. How do fungal partners affect the evolution and habitat preferences of mycoheterotrophic plants? A case study in Gastrodia.

    Science.gov (United States)

    Kinoshita, Akihiko; Ogura-Tsujita, Yuki; Umata, Hidetaka; Sato, Hiroki; Hashimoto, Toshimasa; Yukawa, Tomohisa

    2016-02-01

    Since mycoheterotrophic plants (MHPs) completely depend on their mycorrhizal fungi for carbon, selection of fungal partners has an important role in the speciation of MHPs. However, the causes and mechanisms of mycobiont changes during speciation are not clear. We tested fungal partner shifts and changes in mycorrhizal specificity during speciation of three closely related MHPs-Gastrodia confusa (Gc), G. pubilabiata (Gp), and G. nipponica (Gn) (Orchidaceae)-and correlations between these changes and the vegetation types where each species grows. We investigated the diversity of mycobionts of the three species by sequencing nrDNA ITS, and the sequence data were subjected to test changes in fungal specificity and fungal partner shifts among the three species. Furthermore, we conducted multivariate analysis to test for differences in mycobiont communities of vegetation types where each species grows. Two saprobic Basidiomycota, Marasmiaceae and Mycenaceae, were dominant fungal partners of the three species, and Gn was simultaneously associated with the ectomycorrhizal Russulaceae and Sebacinaceae. Although mycobiont composition differed among the three species, they also sometimes shared identical fungal species. Multivariate analysis revealed that mycobiont communities of the three species in bamboo thickets differed significantly from those in other vegetation types. Fungal partner shifts are not necessarily associated with the evolution of MHPs, and fungal specificity of Gc and Gp was significantly higher than that of Gn, implying that the specificity fluctuates during speciation. Further, Gc exclusively inhabits bamboo thickets, which suggests that adaptation to particular fungi specific to bamboo thickets triggered speciation of this species. © 2016 Botanical Society of America.

  2. Pairwise transcriptomic analysis of the interactions between the ectomycorrhizal fungus Laccaria bicolor S238N and three beneficial, neutral and antagonistic soil bacteria.

    Science.gov (United States)

    Deveau, Aurélie; Barret, Matthieu; Diedhiou, Abdala G; Leveau, Johan; de Boer, Wietse; Martin, Francis; Sarniguet, Alain; Frey-Klett, Pascale

    2015-01-01

    Ectomycorrhizal fungi are surrounded by bacterial communities with which they interact physically and metabolically during their life cycle. These bacteria can have positive or negative effects on the formation and the functioning of ectomycorrhizae. However, relatively little is known about the mechanisms by which ectomycorrhizal fungi and associated bacteria interact. To understand how ectomycorrhizal fungi perceive their biotic environment and the mechanisms supporting interactions between ectomycorrhizal fungi and soil bacteria, we analysed the pairwise transcriptomic responses of the ectomycorrhizal fungus Laccaria bicolor (Basidiomycota: Agaricales) when confronted with beneficial, neutral or detrimental soil bacteria. Comparative analyses of the three transcriptomes indicated that the fungus reacted differently to each bacterial strain. Similarly, each bacterial strain produced a specific and distinct response to the presence of the fungus. Despite these differences in responses observed at the gene level, we found common classes of genes linked to cell-cell interaction, stress response and metabolic processes to be involved in the interaction of the four microorganisms.

  3. The Paleozoic origin of enzymatic mechanisms for lignin degradation reconstructed using 31 fungal genomes

    Energy Technology Data Exchange (ETDEWEB)

    Floudas, Dimitrios; Binder, Manfred; Riley, Robert; Barry, Kerrie; Blanchette, Robert A; Henrissat, Bernard; Martinez, Angel T.; Otillar, Robert; Spatafora, Joseph W.; Yadav, Jagit S.; Aerts, Andrea; Benoit, Isabelle; Boyd, Alex; Carlson, Alexis; Copeland, Alex; Coutinho, Pedro M.; de Vries, Ronald P.; Ferreira, Patricia; Findley, Keisha; Foster, Brian; Gaskell, Jill; Glotzer, Dylan; Gorecki, Pawel; Heitman, Joseph; Hesse, Cedar; Hori, Chiaki; Igarashi, Kiyohiko; Jurgens, Joel A.; Kallen, Nathan; Kersten, Phil; Kohler, Annegret; Kues, Ursula; Kumar, T. K. Arun; Kuo, Alan; LaButti, Kurt; Larrondo, Luis F.; Lindquist, Erika; Ling, Albee; Lombard, Vincent; Lucas, Susan; Lundell, Taina; Martin, Rachael; McLaughlin, David J.; Morgenstern, Ingo; Morin, Emanuelle; Murat, Claude; Nagy, Laszlo G.; Nolan, Matt; Ohm, Robin A.; Patyshakuliyeva, Aleksandrina; Rokas, Antonis; Ruiz-Duenas, Francisco J.; Sabat, Grzegorz; Salamov, Asaf; Samejima, Masahiro; Schmutz, Jeremy; Slot, Jason C.; John, Franz; Stenlid, Jan; Sun, Hui; Sun, Sheng; Syed, Khajamohiddin; Tsang, Adrian; Wiebenga, Ad; Young, Darcy; Pisabarro, Antonio; Eastwood, Daniel C.; Martin, Francis; Cullen, Dan; Grigoriev, Igor V.; Hibbett, David S.

    2012-03-12

    Wood is a major pool of organic carbon that is highly resistant to decay, owing largely to the presence of lignin. The only organisms capable of substantial lignin decay are white rot fungi in the Agaricomycetes, which also contains non?lignin-degrading brown rot and ectomycorrhizal species. Comparative analyses of 31 fungal genomes (12 generated for this study) suggest that lignin-degrading peroxidases expanded in the lineage leading to the ancestor of the Agaricomycetes, which is reconstructed as a white rot species, and then contracted in parallel lineages leading to brown rot and mycorrhizal species. Molecular clock analyses suggest that the origin of lignin degradation might have coincided with the sharp decrease in the rate of organic carbon burial around the end of the Carboniferous period.

  4. Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations.

    Science.gov (United States)

    Jourand, Philippe; Ducousso, Marc; Reid, Robert; Majorel, Clarisse; Richert, Clément; Riss, Jennifer; Lebrun, Michel

    2010-10-01

    Ectomycorrhizal (ECM) Pisolithus albus (Cooke & Massee), belonging to the ultramafic ecotype isolated in nickel-rich serpentine soils from New Caledonia (a tropical hotspot of biodiversity) and showing in vitro adaptive nickel tolerance, were inoculated to Eucalyptus globulus Labill used as a Myrtaceae plant-host model to study ectomycorrhizal symbiosis. Plants were then exposed to a nickel (Ni) dose-response experiment with increased Ni treatments up to 60 mg kg( - )(1) soil as extractable Ni content in serpentine soils. Results showed that plants inoculated with ultramafic ECM P. albus were able to tolerate high and toxic concentrations of Ni (up to 60 μg g( - )(1)) while uninoculated controls were not. At the highest Ni concentration tested, root growth was more than 20-fold higher and shoot growth more than 30-fold higher in ECM plants compared with control plants. The improved growth in ECM plants was associated with a 2.4-fold reduction in root Ni concentration but a massive 60-fold reduction in transfer of Ni from root to shoots. In vitro, P. albus strains could withstand high Ni concentrations but accumulated very little Ni in its tissue. The lower Ni uptake by mycorrhizal plants could not be explained by increased release of metal-complexing chelates since these were 5- to 12-fold lower in mycorrhizal plants at high Ni concentrations. It is proposed that the fungal sheath covering the plant roots acts as an effective barrier to limit transfer of Ni from soil into the root tissue. The degree of tolerance conferred by the ultramafic P. albus isolates to growth of the host tree species is considerably greater than previously reported for other ECM. The primary mechanisms underlying this improved growth were identified as reduced Ni uptake into the roots and markedly reduced transfer from root to shoot in mycorrhizal plants. The fact that these positive responses were observed at Ni concentrations commonly observed in serpentinic soils suggests that

  5. Allergic Fungal Rhinosinusitis.

    Science.gov (United States)

    Hoyt, Alice E W; Borish, Larry; Gurrola, José; Payne, Spencer

    2016-01-01

    This article reviews the history of allergic fungal rhinosinusitis and the clinical, pathologic, and radiographic criteria necessary to establish its diagnosis and differentiate this disease from other types of chronic rhinosinusitis. Allergic fungal rhinosinusitis is a noninvasive fungal form of sinus inflammation characterized by an often times unilateral, expansile process in which the typical allergic "peanut-butter-like" mucin contributes to the formation of nasal polyps, hyposmia/anosmia, and structural changes of the face. IgE sensitization to fungi is a necessary, but not sufficient, pathophysiologic component of the disease process that is also defined by microscopic visualization of mucin-containing fungus and characteristic radiological imaging. This article expounds on these details and others including the key clinical and scientific distinctions of this diagnosis, the pathophysiologic mechanisms beyond IgE-mediated hypersensitivity that must be at play, and areas of current and future research.

  6. Belowground Competition Directs Spatial Patterns of Seedling Growth in Boreal Pine Forests in Fennoscandia

    Directory of Open Access Journals (Sweden)

    E. Petter Axelsson

    2014-09-01

    Full Text Available Aboveground competition is often argued to be the main process determining patterns of natural forest regeneration. However, the theory of multiple resource limitation suggests that seedling performance also depends on belowground competition and, thus, that their relative influence is of fundamental importance. Two approaches were used to address the relative importance of above- and below-ground competition on regeneration in a nutrient-poor pine (Pinus sylvestris boreal forest. Firstly, seedling establishment beneath trees stem-girdled 12 years ago show that a substantial proportion of the seedlings were established within two years after girdling, which corresponds to a time when nutrient uptake by tree roots was severely reduced without disrupting water transport to the tree canopy, which consequently was maintained. The establishment during these two years also corresponds to abundances high enough for normal stand replacement. Secondly, surveys of regeneration within forest gaps showed that surrounding forests depressed seedlings, so that satisfactory growth occurred only more than 5 m from forest edges and that higher solar radiation in south facing edges was not enough to mediate these effects. We conclude that disruption of belowground competitive interactions mediates regeneration and, thus, that belowground competition has a strong limiting influence on seedling establishment in these forests.

  7. Submerged vegetation complexity modifies benthic infauna communities: the hidden role of the belowground system

    NARCIS (Netherlands)

    González-Ortiz, V.; Gonzalo Egea, L.; Jiménez-Ramos, R.; Moreno-Mar, F; Pérez Lloréns, J.L.; Bouma, T.J; Bruno, F.

    2016-01-01

    Marine plants provide a variety of functions with high economic and ecologicalvalues in ecosystems. The above- (AG) and below-ground (BG) systems increasethe structural complexity of plants, which also enhance faunal abundance anddiversity. The ecological role of the AG compartment in structuring in

  8. NUTRIENT AVAILABILITY ALTERS BELOWGROUND RESPIRATION OF OZONE-EXPOSED PONDEROSE PINE

    Science.gov (United States)

    Exposure to ozone (0-3) and changes in soil fertility influence both the metabolism of plant roots and their interaction with rhizosphere organisms. Because one indication of altered root metabolism is a change in belowground respiratory activity, we used specially designed measu...

  9. Belowground heathland responses after 2 years of combined warming, elevated CO2 and summer drought

    DEFF Research Database (Denmark)

    Andresen, Louise C.; Michelsen, Anders; Ambus, Per

    2010-01-01

    scale experiment on temperate heathland, manipulation of precipitation and temperature was performed with retractable curtains, and atmospheric CO2 concentration was increased by FACE. The combination of elevated CO2 and warming was expected to affect belowground processes additively, through increased...

  10. Contenido de nutrientes e inoculación con hongos ectomicorrízicos comestibles en dos pinos neotropicales Nutrient contents and inoculation with edible ectomycorrhizal fungi on two neotropical pines

    Directory of Open Access Journals (Sweden)

    VIOLETA CARRASCO-HERNÁNDEZ

    2011-03-01

    stimulate their growth. Due to the ecological and physiological importance of the ectomycorrhizal fungi, this work evaluated the effect in terms of growth, dry weight, percentage of colonization and nutrient content as a result of the inoculation with six edible ectomycorrhizal fungi within the genera Laccaria and Hebeloma on Pinus patula Schiede ex Schltdl. & Cham. and P.pseudostrobus Lindl. under greenhouse conditions. 397 days after sowing, it was observed a beneficial effect in terms of growth and dry weight of aerial and radical parts, as well as a higher contents of N, P and K of both pines as a result of the inoculation. The percentage of mycorrhization in plants inoculated with the fungi species ranged from 57 % to 90 %. When combined inoculation of ectomycorrhizal species was carried out, dominance of one of the inoculated species, in terms of root colonization, was observed. In these treatments with simultaneous inoculation, the beneficial effects reported in the hosts were comparable with those observed in plants inoculated exclusively with the dominant fungal species. According to the results, the inoculation of P. patula and P. pseudostrobus with fungal species of the genera Laccaria and Hebeloma is recommended in the establishment of forest plantations.

  11. The roots of defense: plant resistance and tolerance to belowground herbivory.

    Directory of Open Access Journals (Sweden)

    Sean M Watts

    Full Text Available BACKGROUND: There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts. METHODOLOGY AND PRINCIPAL FINDINGS: We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory to island populations (free from gophers for up to 500,000 years. Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1 Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2 captive gophers were used to test the palatability of E. californica roots and 3 simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals. CONCLUSIONS AND SIGNIFICANCE: These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest

  12. A native plant competitor mediates the impact of above- and belowground damage on an invasive tree.

    Science.gov (United States)

    Carrillo, Juli; Siemann, Evan

    2016-10-01

    Plant competition may mediate the impacts of herbivory on invasive plant species through effects on plant growth and defense. This may predictably depend on whether herbivory occurs above or below ground and on relative plant competitive ability. We simulated the potential impact of above- or belowground damage by biocontrol agents on the growth of a woody invader (Chinese tallow tree, Triadica sebifera) through artificial herbivory, with or without competition with a native grass, little bluestem (Schizachyrium scoparium). We measured two defense responses of Triadica through quantifying constitutive and induced extrafloral nectar production and tolerance of above- and belowground damage (root and shoot biomass regrowth). We examined genetic variation in plant growth and defense across native (China) and invasive (United States) Triadica populations. Without competition, aboveground damage had a greater impact than belowground damage on Triadica performance, whereas with competition and above- and belowground damage impacted Triadica similarly. Whole plant tolerance to damage below ground was negatively associated with tolerance to grass competitors indicating tradeoffs in the ability to tolerate herbivory vs. compete. Competition reduced investment in defensive extrafloral nectar (EFN) production. Aboveground damage inhibited rather than induced EFN production while belowground plant damage did not impact aboveground nectar production. We found some support for the evolution of increased competitive ability hypothesis for invasive plants as United States plants were larger than native China plants and were more plastic in their response to biotic stressors than China plants (they altered their root to shoot ratios dependent on herbivory and competition treatments). Our results indicate that habitat type and the presence of competitors may be a larger determinant of herbivory impact than feeding mode and suggest that integrated pest management strategies including

  13. Aboveground vs. Belowground Carbon Stocks in African Tropical Lowland Rainforest: Drivers and Implications.

    Directory of Open Access Journals (Sweden)

    Sebastian Doetterl

    Full Text Available African tropical rainforests are one of the most important hotspots to look for changes in the upcoming decades when it comes to C storage and release. The focus of studying C dynamics in these systems lies traditionally on living aboveground biomass. Belowground soil organic carbon stocks have received little attention and estimates of the size, controls and distribution of soil organic carbon stocks are highly uncertain. In our study on lowland rainforest in the central Congo basin, we combine both an assessment of the aboveground C stock with an assessment of the belowground C stock and analyze the latter in terms of functional pools and controlling factors.Our study shows that despite similar vegetation, soil and climatic conditions, soil organic carbon stocks in an area with greater tree height (= larger aboveground carbon stock were only half compared to an area with lower tree height (= smaller aboveground carbon stock. This suggests that substantial variability in the aboveground vs. belowground C allocation strategy and/or C turnover in two similar tropical forest systems can lead to significant differences in total soil organic C content and C fractions with important consequences for the assessment of the total C stock of the system.We suggest nutrient limitation, especially potassium, as the driver for aboveground versus belowground C allocation. However, other drivers such as C turnover, tree functional traits or demographic considerations cannot be excluded. We argue that large and unaccounted variability in C stocks is to be expected in African tropical rain-forests. Currently, these differences in aboveground and belowground C stocks are not adequately verified and implemented mechanistically into Earth System Models. This will, hence, introduce additional uncertainty to models and predictions of the response of C storage of the Congo basin forest to climate change and its contribution to the terrestrial C budget.

  14. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest

    Science.gov (United States)

    Keller, Adrienne B.; Reed, Sasha C.; Townsend, Alan R.; Cleveland, Cory C.

    2013-01-01

    Tropical rain forests are known for their high biological diversity, but the effects of plant diversity on important ecosystem processes in this biome remain unclear. Interspecies differences in both the demand for nutrients and in foliar and litter nutrient concentrations could drive variations in both the pool sizes and fluxes of important belowground resources, yet our understanding of the effects and importance of aboveground heterogeneity on belowground biogeochemistry is poor, especially in the species-rich forests of the wet tropics. To investigate the effects of individual tree species on belowground biogeochemical processes, we used both field and laboratory studies to examine how carbon (C), nitrogen (N), and phosphorus (P) cycles vary under nine different canopy tree species – including three legume and six non-legume species – that vary in foliar nutrient concentrations in a wet tropical forest in southwestern Costa Rica. We found significant differences in belowground C, N and P cycling under different canopy tree species: total C, N and P pools in standing litter varied by species, as did total soil and microbial C and N pools. Rates of soil extracellular acid phosphatase activity also varied significantly among species and functional groups, with higher rates of phosphatase activity under legumes. In addition, across all tree species, phosphatase activity was significantly positively correlated with litter N/P ratios, suggesting a tight coupling between relative N and P inputs and resource allocation to P acquisition. Overall, our results suggest the importance of aboveground plant community composition in promoting belowground biogeochemical heterogeneity at relatively small spatial scales.

  15. Fungal Wound Infection

    Centers for Disease Control (CDC) Podcasts

    2016-01-28

    Dr. David Tribble, acting director of the infectious disease clinical research program at Uniformed Services University of the Health Sciences, discusses fungal wound infections after combat trauma.  Created: 1/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 1/28/2016.

  16. Fungal pathogens of Proteaceae

    NARCIS (Netherlands)

    Crous, P.W.; Summerell, B.A.; Swart, L.; Denman, S.; Taylor, J.E.; Bezuidenhout, C.M.; Palm, M.E.; Marincowitz, S.; Groenewald, J.Z.

    2011-01-01

    Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the international floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, create a serious problem in cultivating flawless blooms. The aim of the present study

  17. Fungal pathogens of Proteaceae

    NARCIS (Netherlands)

    Crous, P.W.; Summerell, B.A.; Swart, L.; Denman, S.; Taylor, J.E.; Bezuidenhout, C.M.; Palm, M.E.; Marincowitz, S.; Groenewald, J.Z.

    2012-01-01

    Species of Leucadendron, Leucospermum and Protea (Proteaceae) are in high demand for the international floriculture market due to their brightly coloured and textured flowers or bracts. Fungal pathogens, however, create a serious problem in cultivating flawless blooms. The aim of the present study

  18. Effects of sugar beet chitinase IV on root-associated fungal community of transgenic silver birch in a field trial.

    Science.gov (United States)

    Pasonen, Hanna-Leena; Lu, Jinrong; Niskanen, Anna-Maija; Seppänen, Sanna-Kaisa; Rytkönen, Anna; Raunio, Janne; Pappinen, Ari; Kasanen, Risto; Timonen, Sari

    2009-10-01

    Heterogenous chitinases have been introduced in many plant species with the aim to increase the resistance of plants to fungal diseases. We studied the effects of the heterologous expression of sugar beet chitinase IV on the intensity of ectomycorrhizal (ECM) colonization and the structure of fungal communities in the field trial of 15 transgenic and 8 wild-type silver birch (Betula pendula Roth) genotypes. Fungal sequences were separated in denaturing gradient gel electrophoresis and identified by sequencing the ITS1 region to reveal the operational taxonomic units. ECM colonization was less intense in 7 out of 15 transgenic lines than in the corresponding non-transgenic control plants, but the slight decrease in overall ECM colonization in transgenic lines could not be related to sugar beet chitinase IV expression or total endochitinase activity. One transgenic line showing fairly weak sugar beet chitinase IV expression without significantly increased total endochitinase activity differed significantly from the non-transgenic controls in the structure of fungal community. Five sequences belonging to three different fungal genera (Hebeloma, Inocybe, Laccaria) were indicative of wild-type genotypes, and one sequence (Lactarius) indicated one transgenic line. In cluster analysis, the non-transgenic control grouped together with the transgenic lines indicating that genotype was a more important factor determining the structure of fungal communities than the transgenic status of the plants. With the tested birch lines, no clear evidence for the effect of the heterologous expression of sugar beet chitinase IV on ECM colonization or the structure of fungal community was found.

  19. Drought as a modifier of interaction between adult beech and spruce - impacts on tree water use, C budgets and biotic interactions above- and belowground

    Science.gov (United States)

    Grams, Thorsten

    2017-04-01

    Understanding biotic interactions among tree species with their microbial associates under drought will be crucial for silviculture in meeting ecological challenges of the future. This contribution gives an overview on a project integrating a throughfall-exclusion experiment (TEE) on adult trees with a natural precipitation gradient (PGR) in central European forests. Focus is on drought affecting species interaction above and belowground, including associated ectomycorrhizal (ECM) communities. Study objects are pure and mixed forests dominated by adult European beech and Norway spruce trees (c. 70-years old). At the throughfall-exclusion experiment (TEE), trees are readily accessible via scaffolding and canopy crane (Kranzberg Forest, southern Germany). Effects of experimentally induced, repeated summer drought are assessed with roughly 100 trees assigned to a total of 12 plots (Kranzberg forest ROOF experiment, kroof.wzw.tum.de). The summer drought treatment started in 2014 and was repeated in 2015 and 2106. The focus on species interaction is intensified by a parallel study along a natural precipitation gradient with plot triplets of monocultures and mixed cultures of European beech and Norway spruce at each of the five study sites. Complementary resource use, effects of competitive vs. facilitation and related changes in ECM communities are exemplified for the two tree species of contrasting foliage (i.e. deciduous vs. evergreen) and stomatal sensitivity to drought (i.e. an-isohydric vs. isohydric behavior). At the TEE site, precipitation throughfall was completely excluded from early spring to late fall (i.e. March to November), resulting in pre-dawn leaf water potentials of both beech and spruce as low as -2.5 MPa. Despite significant reductions in growth and rate of photosynthesis by up to 80% under drought, NSC budget of trees was hardly affected. Moreover, phloem functionality, tested as phloem transport velocity through 13C-labeling of recent

  20. Ectomycorrhizal symbiosis in vitro between Tricholoma matsutake and Pinus densiflora seedlings that resembles naturally occurring 'shiro'.

    Science.gov (United States)

    Yamada, Akiyoshi; Maeda, Ken; Kobayashi, Hisayasu; Murata, Hitoshi

    2006-03-01

    We established an in vitro ectomycorrhizal symbiosis between Tricholoma matsutake and Pinus densiflora. Mycorrhiza formed in a substrate of Modified Norkrans' C medium and granite-based soil had features similar to those observed previously only in naturally occurring mycorrhizal system called 'shiro,' and promoted the growth of plants with smaller root/shoot ratios. The in vitro formation of 'shiro' is essential for the development of T. matsutake system to produce mushrooms and is useful for the propagation and plantation of the mycorrhizal seedlings.

  1. Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don.

    Science.gov (United States)

    Duñabeitia, Miren K; Hormilla, Susana; Garcia-Plazaola, Jose I; Txarterina, Kepa; Arteche, Unai; Becerril, Jose M

    2004-02-01

    Three ectomycorrhizal (ECM) isolates of Rhizopogon luteolus, R. roseolus and Scleroderma citrinum were found to differ markedly in their in vitro tolerance to adverse conditions limiting fungal growth, i.e. water availability, pH and heavy metal pollution. S. citrinum was the most sensitive, R. luteolus intermediate and R. roseolus the most tolerant species. Pinus radiata D. Don seedlings were inoculated in the laboratory and in a containerised seedling nursery with spore suspensions of the three ECM species. Colonisation percentage was considerably lower under nursery conditions, probably due to competition by native fungi. The effects of nursery ECM inoculation on seedling growth depended on the fungal species. Only R. roseolus-colonised plants showed a significantly higher shoot growth than non-mycorrhizal plants. All three fungi induced significantly higher root dry weights relative to control plants. Despite the low mycorrhizal colonisation, mycorrhization with all three species improved the physiological status of nursery-grown seedlings, e.g. enhanced root enzyme activity, shoot nutrient and pigment content, net photosynthesis rate and water use efficiency. Of the three fungal species, R. roseolus was the most effective; this species was also the most adaptable and showed the greatest range of tolerance to adverse environmental conditions in pure culture. It is, therefore, proposed as a promising fungal species for ECM inoculation of P. radiata in the nursery.

  2. Plant species richness and productivity determine the diversity of soil fungal guilds in temperate coniferous forest and bog habitats.

    Science.gov (United States)

    Hiiesalu, Indrek; Bahram, Mohammad; Tedersoo, Leho

    2017-09-01

    Fungi have important roles as decomposers, mycorrhizal root symbionts and pathogens in forest ecosystems, but there is limited information about their diversity and composition at the landscape scale. This work aimed to disentangle the factors underlying fungal richness and composition along the landscape-scale moisture, organic matter and productivity gradients. Using high-throughput sequencing, we identified soil fungi from 54 low-productivity Pinus sylvestris-dominated plots across three study areas in Estonia and determined the main predictors of fungal richness based on edaphic, floristic and spatial variables. Fungal richness displayed unimodal relationship with organic matter and deduced soil moisture. Plant richness and productivity constituted the key predictors for taxonomic richness of functional guilds. Composition of fungi and the main ectomycorrhizal fungal lineages and hyphal exploration types was segregated by moisture availability and soil nitrogen. We conclude that plant productivity and diversity determine the richness and proportion of most functional groups of soil fungi in low-productive pine forests on a landscape scale. Adjacent stands of pine forest may differ greatly in the dominance of functional guilds that have marked effects on soil carbon and nitrogen cycling in these forest ecosystems. © 2017 John Wiley & Sons Ltd.

  3. Quantification of Calcium Isotope Fractionation in Ectomycorrhizal Trees

    Science.gov (United States)

    Hoff, C. J.; Bryce, J. G.; Hobbie, E. A.; Colpaert, J. V.; Bullen, T. D.

    2005-12-01

    Calcium plays a significant role in many forest ecosystem processes and is required for plant growth. Within plants, calcium is a critical component of cell walls and membranes, signaling processes, and charge balances (1). Current efforts to quantify Ca cycling in ecosystems rely on large-scale ecosystem manipulations (e.g., 2) or mass balances (e.g., 3) and indirect chemical proxies, Ca/Sr or Sr isotopic systems (e.g., 4). The measurement of Ca isotopes may provide more direct information about the calcium sources and fluxes within and between the geological (mineral and soil) and biological (fungi and plants) components of terrestrial ecosystems. To examine calcium isotopic variability systematically, we measured the fractionation between roots and needles in cultured Scots pine ( Pinus sylvestris) seedlings. Our samples include roots and needles from trees grown at low or high nutrient supply rates (3% or 5% per day). Because mycorrhizal fungi are intimately involved in plant nutrient supply, we also tested whether mycorrhizal colonization by Suillus bovinus affected calcium isotopic fractionation. Initial results demonstrate that at a low nutrient supply rate there is a small but measurable fractionation (averaging 0.58 ‰) between the roots and needles of individual trees; the needles are enriched in 40Ca compared to the roots. The root-needle fractionation is unaffected by mycorrhizal colonization. Ongoing analyses will address both the consistency of the root-needle fractionation and the impacts of nutrient supply rate on fractionation. Preliminary results suggest that higher nutrient supply rates lead to decreased root-needle fractionation. Analyses underway will also address whether different fungal species ( Thelephora terrestris) affect the documented root-needle fractionation. Isotope signatures of calcium source materials will complete our sample suite and will be used to assess fractionation during uptake. Ultimately, the results of this study will

  4. Phosphate absorption and efflux of three ectomycorrhizal fungi as affected by external phosphate, cation and carbohydrate concentrations.

    Science.gov (United States)

    Bücking, Heike

    2004-06-01

    A prerequisite for symbiotic phosphate transfer in an ectomycorrhizal (ECM) association is hypothesized to be conditions in the interface between both symbiotic partners, that either promote the release of inorganic phosphate (P) from the Hartig net into the interfacial apoplast and/or decrease the fungal reabsorption from this location. To get more information about conditions, which might be involved in the regulation of P efflux or P reabsorption, the effect of various external conditions on 33P-orthophosphate (33P) uptake or efflux by axenic cultures of the ECM basidiomycetes Hebeloma crustliniforme, Amanita muscaria and Laccaria laccata was analysed. In short-time experiments the following external conditions were analysed: an external supply of (1) P in the preculture, (2) cations (0.1-100 mM K, 0.1-50 mM Na, Mg and Ca), and (3) carbohydrates (0.5-50 mM glucose, fructose or sucrose). The P absorption was generally reduced in cultures previously supplied with an abundant P supply and with increased P concentrations in their tissues. The P uptake was also affected by an external supply of cations, whereas carbohydrates had only a slight effect. Compared to Na, Mg and Ca, the P absorption by H. crustuliniforme and L. laccata was increased by 0.1 mM K in the labelling solution but decreased after a supply of 100 mM K and then did not differ from the other cation treatments. Compared to other cations, an addition of 50 mM Ca led to a decrease of P absorption by A. muscaria, whereas 50 mM Mg increased the P uptake by H. crustuliniforme. The P efflux from the fungi was affected by both the cation and carbohydrate concentration of the bathing solution. High concentrations of the monovalent cations K and Na (5 mM or 50 mM) in the bathing solution increased the P efflux by H. crustuliniforme (only Na) and L. laccata (K and Na), but had little effects on A. muscaria. By contrast, the same concentrations of the divalent cation Mg reduced the P efflux from all fungal

  5. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    Directory of Open Access Journals (Sweden)

    L. E. O. C. Aragão

    2009-12-01

    Full Text Available The net primary productivity (NPP of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1 How do Amazonian forests allocate productivity among its above- and below-ground components? (2 How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error, at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  6. Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils

    Directory of Open Access Journals (Sweden)

    L. E. O. C. Aragão

    2009-02-01

    Full Text Available The net primary productivity (NPP of tropical forests is one of the most important and least quantified components of the global carbon cycle. Most relevant studies have focused particularly on the quantification of the above-ground coarse wood productivity, and little is known about the carbon fluxes involved in other elements of the NPP, the partitioning of total NPP between its above- and below-ground components and the main environmental drivers of these patterns. In this study we quantify the above- and below-ground NPP of ten Amazonian forests to address two questions: (1 How do Amazonian forests allocate productivity among its above- and below-ground components? (2 How do soil and leaf nutrient status and soil texture affect the productivity of Amazonian forests? Using a standardized methodology to measure the major elements of productivity, we show that NPP varies between 9.3±1.3 Mg C ha−1 yr−1 (mean±standard error, at a white sand plot, and 17.0±1.4 Mg C ha−1 yr−1 at a very fertile Terra Preta site, with an overall average of 12.8±0.9 Mg C ha−1 yr−1. The studied forests allocate on average 64±3% and 36±3% of the total NPP to the above- and below-ground components, respectively. The ratio of above-ground and below-ground NPP is almost invariant with total NPP. Litterfall and fine root production both increase with total NPP, while stem production shows no overall trend. Total NPP tends to increase with soil phosphorus and leaf nitrogen status. However, allocation of NPP to below-ground shows no relationship to soil fertility, but appears to decrease with the increase of soil clay content.

  7. [Clinically documented fungal infections].

    Science.gov (United States)

    Kakeya, Hiroshi; Kohno, Shigeru

    2008-12-01

    Proven fungal infections are diagnosed by histological/microbiological evidence of fungi at the site of infection and positive blood culture (fungemia). However, invasive diagnosing examinations are not always applied for all of immunocompromised patients. Clinically documented invasive fungal infections are diagnosed by typical radiological findings such as halo sign on chest CT plus positive serological/molecular evidence of fungi. Serological tests of Aspergillus galactomannan antigen and beta-glucan for aspergillosis and cryptococcal glucuronoxylomannan antigen for cryptococcosis are useful. Hence, none of reliable serological tests for zygomycosis are available so far. In this article, risk factors, sign and symptoms, and diagnostic methods for clinically documented cases of invasive aspergillosis, pulmonary cryptococcosis, and zygomycosis with diabates, are reviewed.

  8. Integrated long-term responses of an arctic-alpine willow and associated ectomycorrhizal fungi to an altered environment

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders

    2006-01-01

    We evaluated ectomycorrhizal (ECM) colonization and morphotype community composition together with growth response and biomass distribution in the arctic-alpine, prostrate willow Salix herbacea L. x Salix polaris Wahlenb. after 11 seasons of shading, warming, and fertilization at a fellfield...

  9. Low ectomycorrhizal inoculum potential and diversity from soils in and near ancient forests of bristlecone pine (Pinus longaeva)

    NARCIS (Netherlands)

    Bidartondo, M.I.; Baar, J.; Bruns, T.D.

    2001-01-01

    Intersite variation in ectomycorrhizal (ECM) inoculum potential in soils from 16 sites located in arid subalpine areas of the White Mountains of California was quantified. The study sites included valleys dominated by big sagebrush (Artemisia tridentata Nutt.) and mountainsides dominated by ancient

  10. Integrated long-term responses of an arctic-alpine willow and associated ectomycorrhizal fungi to an altered environment

    DEFF Research Database (Denmark)

    Clemmensen, Karina Engelbrecht; Michelsen, Anders

    2006-01-01

    We evaluated ectomycorrhizal (ECM) colonization and morphotype community composition together with growth response and biomass distribution in the arctic-alpine, prostrate willow Salix herbacea L. x Salix polaris Wahlenb. after 11 seasons of shading, warming, and fertilization at a fellfield in s...

  11. ECTOMYCORRHIZAL FUNGI IDENTIFICATION IN SINGLE AND POOLED ROOT SAMPLES: TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM (TRFLP) AND MORPHOTYPING COMPARED

    Science.gov (United States)

    PCR-TRFLP methodology targeting rRNA genes has effectively been used to discriminate between microbial communities but to date has not been used specifically for the analysis of ectomycorrhizal communities colonizing plant roots. We describe here results of a study conducted to a...

  12. Strong linkage between plant and soil fungal communities along a successional coastal dune system.

    Science.gov (United States)

    Roy-Bolduc, Alice; Laliberté, Etienne; Boudreau, Stéphane; Hijri, Mohamed

    2016-10-01

    Complex interactions between plants and soil microorganisms drive key ecosystem and community properties such as productivity and diversity. In nutrient-poor systems such as sand dunes, plant traits and fungal symbioses related to nutrient acquisition can strongly influence vegetation dynamics. We investigated plant and fungal communities in a relic foredune plain located on an archipelago in Québec, Canada. We detected distinct communities across the edaphic and successional gradient. Our results showed a clear increase in plant species richness, as well as in the diversity of nutrient-acquisition strategies. We also found a strong correlation between aboveground vegetation and soil fungal communities, and both responded similarly to soil physicochemical properties. Soil pH influenced the composition of plant and fungal communities, and could act as an important environmental filter along this relic foredune plain. The increasing functional diversity in plant nutrient-acquisition strategies across the gradient might favor resource partitioning and facilitation among co-occurring plant species. The coordinated changes in soil microbial and plant communities highlight the importance of aboveground-belowground linkages and positive biotic interactions during ecological succession in nutrient-poor environments.

  13. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants.

    Science.gov (United States)

    Bonito, Gregory; Reynolds, Hannah; Robeson, Michael S; Nelson, Jessica; Hodkinson, Brendan P; Tuskan, Gerald; Schadt, Christopher W; Vilgalys, Rytas

    2014-07-01

    Microbial communities in plant roots provide critical links between above- and belowground processes in terrestrial ecosystems. Variation in root communities has been attributed to plant host effects and microbial host preferences, as well as to factors pertaining to soil conditions, microbial biogeography and the presence of viable microbial propagules. To address hypotheses regarding the influence of plant host and soil biogeography on root fungal and bacterial communities, we designed a trap-plant bioassay experiment. Replicate Populus, Quercus and Pinus plants were grown in three soils originating from alternate field sites. Fungal and bacterial community profiles in the root of each replicate were assessed through multiplex 454 amplicon sequencing of four loci (i.e., 16S, SSU, ITS, LSU rDNA). Soil origin had a larger effect on fungal community composition than did host species, but the opposite was true for bacterial communities. Populus hosted the highest diversity of rhizospheric fungi and bacteria. Root communities on Quercus and Pinus were more similar to each other than to Populus. Overall, fungal root symbionts appear to be more constrained by dispersal and biogeography than by host availability.

  14. From soil to plant, the outward journey of P through trophic relationships and ectomycorrhizal association

    Directory of Open Access Journals (Sweden)

    Adeline eBecquer

    2014-10-01

    Full Text Available Phosphorus (P is essential for plant growth and productivity. It is one of the most limiting macronutrients in soil because it is mainly present as unavailable, bound P whereas plants can only use unbound, inorganic phosphate (iP, which is found in very low concentrations in soil solution. Some ectomycorrhizal fungi are able to release organic compounds (organic anions or phosphatases to mobilize unavailable P. Recent studies suggest that bacteria play a major role in the mineralization of nutrients such as P through trophic relationships as they can produce specific phosphatases such as phytases to degrade phytate, the main form of soil organic P. Bacteria are also more effective than other microorganisms or plants at immobilizing free iP. Therefore, bacterial grazing by predators, such as nematodes, could release iP locked in bacterial biomass. Free iP may be taken up by ectomycorrhizal fungus by specific phosphate transporters and transferred to the plant by mechanisms that have not yet been identified. This mini-review aims to follow the phosphate pathway to understand the ecological and molecular mechanisms responsible for transfer of phosphate from the soil to the plant, to improve plant P nutrition.

  15. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association.

    Science.gov (United States)

    Becquer, Adeline; Trap, Jean; Irshad, Usman; Ali, Muhammad A; Claude, Plassard

    2014-01-01

    Phosphorus (P) is essential for plant growth and productivity. It is one of the most limiting macronutrients in soil because it is mainly present as unavailable, bound P whereas plants can only use unbound, inorganic phosphate (Pi), which is found in very low concentrations in soil solution. Some ectomycorrhizal fungi are able to release organic compounds (organic anions or phosphatases) to mobilize unavailable P. Recent studies suggest that bacteria play a major role in the mineralization of nutrients such as P through trophic relationships as they can produce specific phosphatases such as phytases to degrade phytate, the main form of soil organic P. Bacteria are also more effective than other microorganisms or plants at immobilizing free Pi. Therefore, bacterial grazing by grazers, such as nematodes, could release Pi locked in bacterial biomass. Free Pi may be taken up by ectomycorrhizal fungus by specific phosphate transporters and transferred to the plant by mechanisms that have not yet been identified. This mini-review aims to follow the phosphate pathway to understand the ecological and molecular mechanisms responsible for transfer of phosphate from the soil to the plant, to improve plant P nutrition.

  16. Linking biodiversity to mutualistic networks – woody species and ectomycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    Ecaterina Fodor

    2013-05-01

    Full Text Available Mutualistic interactions are currently mapped by bipartite networkswith particular architecture and properties. The mycorrhizae connectthe trees and permit them to share resources, therefore relaxing thecompetition. Ectomycorrhizal macrofungi associated with woody species(Quercus robur, Q. cerris, Q. petraea, Tilia tomentosa, Carpinus betulus, Corylus avellana, and Q. pubescens growing in a temperate, broadleaved mixed forest, from a hilly area near the city of Cluj–Napoca, central Romania were included in a bipartite mutualistic network. Community structure was investigated using several network metrics, modularity and nestedness algorithms in conjunction with C-score index cluster analysis and nonmetric multidimensional scaling (the Kulczynski similarity was index used as most appropriate metric selected by minimal stress criterion. The results indicate that the network presents high asymmetry (hosts are outnumbered by mycobionts at a great extent, high connectance, low modularity, andhigh nestedness, competition playing a secondary role in community assemblage (non significant difference between simulated and observed Cscore.The nestedness pattern is non-random and is comparable to previouslypublished results for other similar interactions containing plants. Inthe proposed network, woody species function exclusively as generalists. Modularity analysis is a finer tool were identifying species roles than centrality measures, however, the two types of algorithms permit the separation of species according to their roles as for example connectors (generalist species and ultraperipheral species (specialists. Supergeneralist woody species function as hubs for the diverse ectomycorrhizal community while supergeneralistectomycorrhizal fungi glue the hubs into a coherent aggregate.

  17. Divergence of above- and belowground C and N pool within predominant plant species along two precipitation gradients in north China

    Directory of Open Access Journals (Sweden)

    X. H. Ye

    2014-10-01

    Full Text Available The coupling of carbon cycle and nutrient cycle drives food web structure and biogeochemistry of an ecosystem. However, across precipitation gradients, there may be a shift in C pool and N pool from above- to belowground because of shifting plant stoichiometry and allocation. Based on previous evidence, biomass allocation to roots should increase with aridity, while leaf [N] should increase. If their effect sizes are equal, they should cancel each other out, and the above- and belowground proportions of the N would remain constant. Here, we present the first study to explicitly compare above- and belowground pool sizes of N and C within predominant plant species along precipitation gradients. Biomass and nutrient concentrations of leaves, stems and roots of three predominant species were measured along two major precipitation gradients in Inner Mongolia, China. Along the two gradients, the effect sizes of the biomass shifts were remarkably consistent among three predominant species. However, the size of the shift in aboveground [N] was not, leading to a species-specific pattern in above- and belowground pool size. In two species (Stipa grandis and Artemisia ordosica the effect sizes of biomass allocation and [N] were equal and the proportion of N of above- and belowground did not change with aridity, but in S. bungeana the increase in leaf [N] with aridity was much weaker than the biomass shift, leading to a decrease in the proportion of N belowground at dry sites. We have found examples of consistent N pool sizes above- and belowground and a shift to a greater proportion of belowground N in drier sites depending on the species. We suggest that precipitation gradients do potentially decouple the C and N pool, but the exact nature of the decoupling depends on the dominant species' capacity for intraspecific variation.

  18. Evaluation of factors for rapid development of Culex quinquefasciatus in belowground stormwater treatment devices.

    Science.gov (United States)

    Harbison, Justin E; Metzger, Marco E; Walton, William E; Hu, Renjie

    2009-12-01

    Water samples from 11 belowground stormwater treatment Best Management Practices (BMPs) were evaluated for their capacity to support rapid development of the West Nile virus (WNV) mosquito vector, Culex quinquefasciatus. The observed minimum development time from egg to pupa ranged from six to over 30 days. Concentrations of potential food resources (total suspended solids and the particulate organic matter in water samples) were significantly correlated to development times. In addition, the rate of immature mosquito development was both site-dependent and variable in time, suggesting that factors favorable to rapid development were strongly influenced by watershed characteristics and seasonal changes in temperature. Measured temperatures in belowground BMPs suggest that these structures may remain amenable to WNV virus activity longer each year than sites aboveground.

  19. Crop rotational diversity enhances belowground communities and functions in an agroecosystem.

    Science.gov (United States)

    Tiemann, L K; Grandy, A S; Atkinson, E E; Marin-Spiotta, E; McDaniel, M D

    2015-08-01

    Biodiversity loss, an important consequence of agricultural intensification, can lead to reductions in agroecosystem functions and services. Increasing crop diversity through rotation may alleviate these negative consequences by restoring positive aboveground-belowground interactions. Positive impacts of aboveground biodiversity on belowground communities and processes have primarily been observed in natural systems. Here, we test for the effects of increased diversity in an agroecosystem, where plant diversity is increased over time through crop rotation. As crop diversity increased from one to five species, distinct soil microbial communities were related to increases in soil aggregation, organic carbon, total nitrogen, microbial activity and decreases in the carbon-to-nitrogen acquiring enzyme activity ratio. This study indicates positive biodiversity-function relationships in agroecosystems, driven by interactions between rotational and microbial diversity. By increasing the quantity, quality and chemical diversity of residues, high diversity rotations can sustain soil biological communities, with positive effects on soil organic matter and soil fertility.

  20. Above-belowground interactions govern the course and impact of biological invasions

    DEFF Research Database (Denmark)

    Vestergård, Mette; Rønn, Regin; Ekelund, Flemming

    2015-01-01

    in an evolutionary and ecological context; in the case of invasive plants, we must have a major focus on above-belowground interactions. Thus, we discuss different theories that have been proposed to explain the course of invasions through interactions between plants and soil organisms. Further, a thorough analysis......, declines or its negative impact decreases. If the fundamental ecosystem structure and flows of energy and matter have not been changed, the system will return to a state not principally different from the original....

  1. Linking belowground and aboveground phenology in two boreal forests in Northeast China.

    Science.gov (United States)

    Du, Enzai; Fang, Jingyun

    2014-11-01

    The functional equilibrium between roots and shoots suggests an intrinsic linkage between belowground and aboveground phenology. However, much less understanding of belowground phenology hinders integrating belowground and aboveground phenology. We measured root respiration (Ra) as a surrogate for root phenology and integrated it with observed leaf phenology and radial growth in a birch (Betula platyphylla)-aspen (Populus davidiana) forest and an adjacent larch (Larix gmelinii) forest in Northeast China. A log-normal model successfully described the seasonal variations of Ra and indicated the initiation, termination and peak date of root phenology. Both root phenology and leaf phenology were highly specific, with a later onset, earlier termination, and shorter period of growing season for the pioneer tree species (birch and aspen) than the dominant tree species (larch). Root phenology showed later initiation, later peak and later termination dates than leaf phenology. An asynchronous correlation of Ra and radial growth was identified with a time lag of approximately 1 month, indicating aprioritization of shoot growth. Furthermore, we found that Ra was strongly correlated with soil temperature and air temperature, while radial growth was only significantly correlated with air temperature, implying a down-regulating effect of temperature. Our results indicate different phenologies between pioneer and dominant species and support a down-regulation hypothesis of plant phenology which can be helpful in understanding forest dynamics in the context of climate change.

  2. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales.

    Science.gov (United States)

    Madritch, Michael D; Kingdon, Clayton C; Singh, Aditya; Mock, Karen E; Lindroth, Richard L; Townsend, Philip A

    2014-01-01

    Fine-scale biodiversity is increasingly recognized as important to ecosystem-level processes. Remote sensing technologies have great potential to estimate both biodiversity and ecosystem function over large spatial scales. Here, we demonstrate the capacity of imaging spectroscopy to discriminate among genotypes of Populus tremuloides (trembling aspen), one of the most genetically diverse and widespread forest species in North America. We combine imaging spectroscopy (AVIRIS) data with genetic, phytochemical, microbial and biogeochemical data to determine how intraspecific plant genetic variation influences below-ground processes at landscape scales. We demonstrate that both canopy chemistry and below-ground processes vary over large spatial scales (continental) according to aspen genotype. Imaging spectrometer data distinguish aspen genotypes through variation in canopy spectral signature. In addition, foliar spectral variation correlates well with variation in canopy chemistry, especially condensed tannins. Variation in aspen canopy chemistry, in turn, is correlated with variation in below-ground processes. Variation in spectra also correlates well with variation in soil traits. These findings indicate that forest tree species can create spatial mosaics of ecosystem functioning across large spatial scales and that these patterns can be quantified via remote sensing techniques. Moreover, they demonstrate the utility of using optical properties as proxies for fine-scale measurements of biodiversity over large spatial scales.

  3. Above- and belowground herbivory jointly impact defense and seed dispersal traits in Taraxacum officinale.

    Science.gov (United States)

    de la Peña, Eduardo; Bonte, Dries

    2014-08-01

    Plants are able to cope with herbivores by inducing defensive traits or growth responses that allow them to reduce or avoid the impact of herbivores. Since above- and belowground herbivores differ substantially in life-history traits, for example feeding types, and their spatial distribution, it is likely that they induce different responses in plants. Moreover, strong interactive effects on defense and plant growth are expected when above- and belowground herbivores are jointly present. The strengths and directions of these responses have been scarcely addressed in the literature. Using Taraxacum officinale, the root-feeding nematode Meloidogyne hapla and the locust Schistocerca gregaria as a model species, we examined to what degree above- and belowground herbivory affect (1) plant growth responses, (2) the induction of plant defensive traits, that is, leaf trichomes, and (3) changes in dispersal-related seed traits and seed germination. We compared the performance of plants originating from different populations to address whether plant responses are conserved across putative different genotypes. Overall, aboveground herbivory resulted in increased plant biomass. Root herbivory had no effect on plant growth. Plants exposed to the two herbivores showed fewer leaf trichomes than plants challenged only by one herbivore and consequently experienced greater aboveground herbivory. In addition, herbivory had effects that reached beyond the individual plant by modifying seed morphology, producing seeds with longer pappus, and germination success.

  4. Below-ground carbon transfer among Betula nana may increase with warming in Arctic tundra.

    Science.gov (United States)

    Deslippe, Julie R; Simard, Suzanne W

    2011-11-01

    • Shrubs are expanding in Arctic tundra, but the role of mycorrhizal fungi in this process is unknown. We tested the hypothesis that mycorrhizal networks are involved in interplant carbon (C) transfer within a tundra plant community. • Here, we installed below-ground treatments to control for C transfer pathways and conducted a (13)CO(2)-pulse-chase labelling experiment to examine C transfer among and within plant species. • We showed that mycorrhizal networks exist in tundra, and facilitate below-ground transfer of C among Betula nana individuals, but not between or within the other tundra species examined. Total C transfer among conspecific B. nana pairs was 10.7 ± 2.4% of photosynthesis, with the majority of C transferred through rhizomes or root grafts (5.2 ± 5.3%) and mycorrhizal network pathways (4.1 ± 3.3%) and very little through soil pathways (1.4 ± 0.35%). • Below-ground C transfer was of sufficient magnitude to potentially alter plant interactions in Arctic tundra, increasing the competitive ability and mono-dominance of B. nana. C transfer was significantly positively related to ambient temperatures, suggesting that it may act as a positive feedback to ecosystem change as climate warms.

  5. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale.

    Science.gov (United States)

    Gill, Allison L; Finzi, Adrien C

    2016-12-01

    Nutrient limitation is pervasive in the terrestrial biosphere, although the relationship between global carbon (C) nitrogen (N) and phosphorus (P) cycles remains uncertain. Using meta-analysis we show that gross primary production (GPP) partitioning belowground is inversely related to soil-available N : P, increasing with latitude from tropical to boreal forests. N-use efficiency is highest in boreal forests, and P-use efficiency in tropical forests. High C partitioning belowground in boreal forests reflects a 13-fold greater C cost of N acquisition compared to the tropics. By contrast, the C cost of P acquisition varies only 2-fold among biomes. This analysis suggests a new hypothesis that the primary limitation on productivity in forested ecosystems transitions from belowground resources at high latitudes to aboveground resources at low latitudes as C-intensive root- and mycorrhizal-mediated nutrient capture is progressively replaced by rapidly cycling, enzyme-derived nutrient fluxes when temperatures approach the thermal optimum for biogeochemical transformations. © 2016 John Wiley & Sons Ltd/CNRS.

  6. Belowground rhizomes in paleosols: The hidden half of an Early Devonian vascular plant

    Science.gov (United States)

    Xue, Jinzhuang; Deng, Zhenzhen; Huang, Pu; Huang, Kangjun; Benton, Michael J.; Cui, Ying; Wang, Deming; Liu, Jianbo; Shen, Bing; Basinger, James F.; Hao, Shougang

    2016-08-01

    The colonization of terrestrial environments by rooted vascular plants had far-reaching impacts on the Earth system. However, the belowground structures of early vascular plants are rarely documented, and thus the plant-soil interactions in early terrestrial ecosystems are poorly understood. Here we report the earliest rooted paleosols (fossil soils) in Asia from Early Devonian deposits of Yunnan, China. Plant traces are extensive within the soil and occur as complex network-like structures, which are interpreted as representing long-lived, belowground rhizomes of the basal lycopsid Drepanophycus. The rhizomes produced large clones and helped the plant survive frequent sediment burial in well-drained soils within a seasonal wet-dry climate zone. Rhizome networks contributed to the accumulation and pedogenesis of floodplain sediments and increased the soil stabilizing effects of early plants. Predating the appearance of trees with deep roots in the Middle Devonian, plant rhizomes have long functioned in the belowground soil ecosystem. This study presents strong, direct evidence for plant-soil interactions at an early stage of vascular plant radiation. Soil stabilization by complex rhizome systems was apparently widespread, and contributed to landscape modification at an earlier time than had been appreciated.

  7. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass.

    Science.gov (United States)

    Yu, Qiang; Wu, Honghui; He, Nianpeng; Lü, Xiaotao; Wang, Zhiping; Elser, James J; Wu, Jianguo; Han, Xingguo

    2012-01-01

    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C:P and N:P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N:C under N limitation and positively correlated with P:C under P limitation. However, the N:P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C:N:P stoichiometry. Furthermore, μ and C:N:P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.

  8. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass.

    Directory of Open Access Journals (Sweden)

    Qiang Yu

    Full Text Available The growth rate hypothesis (GRH proposes that higher growth rate (the rate of change in biomass per unit biomass, μ is associated with higher P concentration and lower C:P and N:P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N:C under N limitation and positively correlated with P:C under P limitation. However, the N:P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C:N:P stoichiometry. Furthermore, μ and C:N:P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.

  9. Above- and belowground competition from longleaf pine plantations limits performance of reintroduced herbaceous species.

    Energy Technology Data Exchange (ETDEWEB)

    T.B. Harrington; C.M. Dagley; M.B. Edwards.

    2003-10-01

    Although overstory trees limit the abundance and species richness of herbaceous vegetation in longleaf pine (Pinus palustris Mill.) plantations, the responsible mechanisms are poorly understood because of confounding among limiting factors. In fall 1998, research was initiated to determine the separate effects of above- and belowground competition and needlefall from overstory pines on understory plant performance. Three 13- to 15-yr-old plantations near Aiken, SC, were thinned to 0, 25, 50, or 100% of nonthinned basal area (19.5 m2 ha-1). Combinations of trenching (to eliminate root competition) and needlefall were applied to areas within each plot, and containerized seedlings of 14 perennial herbaceous species and longleaf pine were planted within each. Overstory crown closure ranged from 0 to 81%, and soil water and available nitrogen varied consistently with pine stocking, trenching, or their combination. Cover of planted species decreased an average of 16.5 and 14.1% as a result of above- and below-ground competition, respectively. Depending on species, needlefall effects were positive, negative, or negligible. Results indicate that understory restoration will be most successful when herbaceous species are established within canopy openings (0.1-0.2 ha) managed to minimize negative effects from above- and belowground competition and needlefall.

  10. Aboveground tree growth varies with belowground carbon allocation in a tropical rainforest environment.

    Directory of Open Access Journals (Sweden)

    James W Raich

    Full Text Available Young secondary forests and plantations in the moist tropics often have rapid rates of biomass accumulation and thus sequester large amounts of carbon. Here, we compare results from mature forest and nearby 15-20 year old tree plantations in lowland Costa Rica to evaluate differences in allocation of carbon to aboveground production and root systems. We found that the tree plantations, which had fully developed, closed canopies, allocated more carbon belowground - to their root systems - than did mature forest. This increase in belowground carbon allocation correlated significantly with aboveground tree growth but not with canopy production (i.e., leaf fall or fine litter production. In contrast, there were no correlations between canopy production and either tree growth or belowground carbon allocation. Enhanced allocation of carbon to root systems can enhance plant nutrient uptake, providing nutrients beyond those required for the production of short-lived tissues such as leaves and fine roots, and thus enabling biomass accumulation. Our analyses support this deduction at our site, showing that enhanced allocation of carbon to root systems can be an important mechanism promoting biomass accumulation during forest growth in the moist tropics. Identifying factors that control when, where and for how long this occurs would help us to improve models of forest growth and nutrient cycling, and to ascertain the role that young forests play in mitigating increased atmospheric carbon dioxide.

  11. The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo.

    Directory of Open Access Journals (Sweden)

    Dorsaf Kerfahi

    Full Text Available Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.

  12. Fungal osteomyelitis and septic arthritis.

    Science.gov (United States)

    Bariteau, Jason T; Waryasz, Gregory R; McDonnell, Matthew; Fischer, Staci A; Hayda, Roman A; Born, Christopher T

    2014-06-01

    Management of fungal osteomyelitis and fungal septic arthritis is challenging, especially in the setting of immunodeficiency and conditions that require immunosuppression. Because fungal osteomyelitis and fungal septic arthritis are rare conditions, study of their pathophysiology and treatment has been limited. In the literature, evidence-based treatment is lacking and, historically, outcomes have been poor. The most common offending organisms are Candida and Aspergillus, which are widely distributed in humans and soil. However, some fungal pathogens, such as Histoplasma, Blastomyces, Coccidioides, Cryptococcus, and Sporothrix, have more focal areas of endemicity. Fungal bone and joint infections result from direct inoculation, contiguous infection spread, or hematogenous seeding of organisms. These infections may be difficult to diagnose and eradicate, especially in the setting of total joint arthroplasty. Although there is no clear consensus on treatment, guidelines are available for management of many of these pathogens.

  13. Dissolution and Release of Inorganic Phosphorus from Soil by Ectomycorrhizal Fungi under Aluminum Stress%铝胁迫下外生菌根真菌对土壤无机磷的溶解释放

    Institute of Scientific and Technical Information of China (English)

    夏蓉蓉; 陈梅玲; 张瑞秋; 柯许彬; 张亮

    2016-01-01

    Objective] To study the dissolution and release of inorganic phosphorus from soil by ectomycorrhizal fungi under aluminum stress. [ Method] Pisolithus tinctorius ( Pt) and Lactarius delicious ( Ld) were cultured in liquid Pachlewsk medium with soil as the source of phos-phorus (P) under aluminum stress to study the fungal growth, and changes of soil inorganic P were measured to study P mobilization from soil by ectomycorrhizal fungi ( ECMF) .[ Result] The fungal growth first increased and then decreased with the increase of aluminum concentra-tion.When aluminum concentration varied from 0 to 2.0 mmol/L, the biomass of Pt was higher than that of Ld, showing that the resistance of Pt to aluminum toxicity was stronger than that of Ld.In addition, the pH of culture mediums decreased significantly, and the soil inorganic P was mobilized by ECMF at different levels.[ Conclusion] The ability of ECMF to resist aluminum and mobilize P is related to hydrogen ions and organic acids secreted by ECMF.%[目的]研究铝胁迫下外生菌根真菌对土壤无机磷的溶解释放。[方法]铝胁迫下,以彩色豆马勃( Pisolithus tinctorius,编号Pt)和松乳菇(Lactarius delicious,编号Ld)为供试菌株,土壤为唯一磷源,采用液体培养试验研究菌丝生长情况,以及对土壤无机磷的活化。[结果]在铝胁迫下,2株外生菌根真菌的生物量随着铝离子浓度的升高,表现为先增高后降低的趋势,其中,在0~2.0 mmol/L铝离子浓度下,Pt的生物量均大于Ld,说明Pt的抗铝毒能力强于Ld。此外,pH在铝离子胁迫下显著下降,2株外生菌根真菌不同程度地活化土壤中无机磷。[结论]外生菌根真菌的抗铝和溶磷能力与其分泌的氢离子和有机酸有关。

  14. Paxillus involutus-Facilitated Cd2+ Influx through Plasma Membrane Ca2+-Permeable Channels Is Stimulated by H2O2 and H+-ATPase in Ectomycorrhizal Populus × canescens under Cadmium Stress

    Science.gov (United States)

    Zhang, Yuhong; Sa, Gang; Zhang, Yinan; Zhu, Zhimei; Deng, Shurong; Sun, Jian; Li, Nianfei; Li, Jing; Yao, Jun; Zhao, Nan; Zhao, Rui; Ma, Xujun; Polle, Andrea; Chen, Shaoliang

    2017-01-01

    Using a Non-invasive Micro-test Technique, flux profiles of Cd2+, Ca2+, and H+ were investigated in axenically grown cultures of two strains of Paxillus involutus (MAJ and NAU), ectomycorrhizae formed by these fungi with the woody Cd2+-hyperaccumulator, Populus × canescens, and non-mycorrhizal (NM) roots. The influx of Cd2+ increased in fungal mycelia, NM and ectomycorrhizal (EM) roots upon a 40-min shock, after short-term (ST, 24 h), or long-term (LT, 7 days) exposure to a hydroponic environment of 50 μM CdCl2. Cd2+ treatments (shock, ST, and LT) decreased Ca2+ influx in NM and EM roots but led to an enhanced influx of Ca2+ in axenically grown EM cultures of the two P. involutus isolates. The susceptibility of Cd2+ flux to typical Ca2+ channel blockers (LaCl3, GdCl3, verapamil, and TEA) in fungal mycelia and poplar roots indicated that the Cd2+ entry occurred mainly through Ca2+-permeable channels in the plasma membrane (PM). Cd2+ treatment resulted in H2O2 production. H2O2 exposure accelerated the entry of Cd2+ and Ca2+ in NM and EM roots. Cd2+ further stimulated H+ pumping activity benefiting NM and EM roots to maintain an acidic environment, which favored the entry of Cd2+ across the PM. A scavenger of reactive oxygen species, DMTU, and an inhibitor of PM H+-ATPase, orthovanadate, decreased Ca2+ and Cd2+ influx in NM and EM roots, suggesting that the entry of Cd2+ through Ca2+-permeable channels is stimulated by H2O2 and H+ pumps. Compared to NM roots, EM roots exhibited higher Cd2+-fluxes under shock, ST, and LT Cd2+ treatments. We conclude that ectomycorrhizal P. × canescens roots retained a pronounced H2O2 production and a high H+-pumping activity, which activated PM Ca2+ channels and thus facilitated a high influx of Cd2+ under Cd2+ stress. PMID:28111579

  15. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory

    DEFF Research Database (Denmark)

    Olsrud, Maria; Carlsson, Bengt Å.; Svensson, Brita M.

    2010-01-01

    Responses of the mycorrhizal fungal community in terrestrial ecosystems to global change factors are not well understood. However, virtually all land plants form symbiotic associations with mycorrhizal fungi, with approximately 20% of the plants' net primary production transported down....... To place the belowground results into an ecosystem context we also investigated how plant cover and nutrient concentrations in leaves responded to elevated atmospheric CO2 concentrations and warming. The ErM colonization in ericaceous dwarf shrubs increased under elevated atmospheric CO2 concentrations......, but did not respond to warming following 6 years of treatment. This suggests that the higher ErM colonization under elevated CO2 might be due to increased transport of carbon belowground to acquire limiting resources such as N, which was diluted in leaves of ericaceous plants under enhanced CO2...

  16. Reducing the infectivity and richness of ectomycorrhizal fungi in a calcareous Quercus ilex forest through soil preparations for truffle plantation establishment: A bioassay study.

    Science.gov (United States)

    Garcia-Barreda, Sergi; Molina-Grau, Sara; Reyna, Santiago

    2015-11-01

    In the early years of a black truffle plantation, the field proliferation of the nursery-inoculated fungi can be hampered by native ectomycorrhizal fungi colonising the seedling roots. Reducing the soil ectomycorrhizal infectivity in the planting hole before introducing the inoculated seedling could be an effective strategy to reduce this problem. Three bioassays were conducted to evaluate the impact of several soil preparations on the ectomycorrhizal infectivity and richness of a Quercus ilex soil in a truffle-producing region. Microwaves, quicklime, and acetic acid significantly decreased the percent root colonisation and morphotype richness of the native ectomycorrhizal fungi. However, they also decreased seedling survival or growth. Peracetic acid, hydrogen peroxide, and sodium hypochlorite did not show a significant negative effect on the soil ectomycorrhizal community. The results support the potential of soil preparation for reducing the ectomycorrhizal infectivity of forest soils, thus being a promising strategy to reduce the early colonisation by native fungi in truffle plantations. However, the indications of damage to the seedling development must be addressed.

  17. Above and belowground connections and species interactions: Controls over ecosystem fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, Amy Marie [Montana State Univ., Bozeman, MT (United States); Phillips, Richard [Indiana Univ., Bloomington, IN (United States); Stoy, Paul Christopher [Montana State Univ., Bozeman, MT (United States)

    2016-11-01

    The ultimate goal of this work was to quantify soil and volatile organic compound fluxes as a function of tree species and associated mycorrhizal associations in an intact forest, but also to describe the physical and biological factors that control these emissions. The results of this research lay the foundation toward an improved mechanistic understanding of carbon pathways, fluxes, and ecosystem function, ultimately improving the representation of forest ecosystems in Earth System models. To this end, a multidisciplinary approach was necessary to fill a critical gap in our understanding of how soil and root processes may influence whole-ecosystem carbon-based volatile fluxes in the face of a rapidly changing climate. We developed a series of novel sampling protocols and coupled a variety of advanced analytical techniques, resulting in findings relevant across disciplines. Furthermore, we leveraged existing infrastructure, research sites, and datasets to design a low-cost exploratory project that links belowground processes, soil volatile emissions, and total ecosystem carbon budgets. Measurements from soil collars installed across a species/mycorrhizal gradient at the DOE-supported Moran Monroe State Forest Ameriflux tower site suggest that leaf litter is the primary source of belowground and forest floor volatile emissions, but the strength of this source is significantly affected not only by leaf litter type, but the strength of the soil as a sink. Results suggest that the strength of the sink is influenced by tree species-specific associated microbial communities that change throughout the season as a function of temperature, soil moisture, leaf litter inputs, and phenology. The magnitude of the observed volatile fluxes from the forest floor is small relative to total aboveground ecosystem flux, but the contribution of these emissions to volatile-mediated ecological interactions and soil processes (e.g. nitrification) varies substantially across the growing

  18. Fungal biodiversity to biotechnology.

    Science.gov (United States)

    Chambergo, Felipe S; Valencia, Estela Y

    2016-03-01

    Fungal habitats include soil, water, and extreme environments. With around 100,000 fungus species already described, it is estimated that 5.1 million fungus species exist on our planet, making fungi one of the largest and most diverse kingdoms of eukaryotes. Fungi show remarkable metabolic features due to a sophisticated genomic network and are important for the production of biotechnological compounds that greatly impact our society in many ways. In this review, we present the current state of knowledge on fungal biodiversity, with special emphasis on filamentous fungi and the most recent discoveries in the field of identification and production of biotechnological compounds. More than 250 fungus species have been studied to produce these biotechnological compounds. This review focuses on three of the branches generally accepted in biotechnological applications, which have been identified by a color code: red, green, and white for pharmaceutical, agricultural, and industrial biotechnology, respectively. We also discuss future prospects for the use of filamentous fungi in biotechnology application.

  19. Divergence of above- and belowground C and N pool within predominant plant species along two precipitation gradients in North China

    Science.gov (United States)

    Ye, X. H.; Pan, X.; Cornwell, W. K.; Gao, S. Q.; Dong, M.; Cornelissen, J. H. C.

    2015-01-01

    The coupling of carbon cycle and nitrogen cycle drives the food web structure and biogeochemistry of an ecosystem. However, across precipitation gradients, there may be a shift in C pool and N pool from above- to belowground because of shifting plant stoichiometry and allocation. Based on previous evidence, biomass allocation to roots should increase with aridity, while leaf [N] should increase. If their effect sizes are equal, they should cancel each other out, and the above- and belowground proportions of the N would remain constant. Here, we present the first study to explicitly compare above- and belowground pool sizes of N and C within predominant plant species along precipitation gradients. Biomass and nutrient concentrations of leaves, stems and roots of three predominant species were measured along two major precipitation gradients in Inner Mongolia, China. Along the two gradients, the effect sizes of the biomass shifts were remarkably consistent among three predominant species. However, the size of the shift in aboveground [N] was not, leading to a species-specific pattern in above- and belowground pool size. In two species (Stipa grandis and Artemisia ordosica) the effect sizes of biomass allocation and [N] were equal and the proportion of N of above- and belowground did not change with aridity, but in S. bungeana the increase in leaf [N] with aridity was much weaker than the biomass shift, leading to a decrease in the proportion of N aboveground at dry sites. We have found examples of consistent N pool sizes above- and belowground and a shift to a greater proportion of belowground N in drier sites depending on the species. We suggest that precipitation gradients do potentially decouple the C and N pool, but the exact nature of the decoupling depends on the dominant species' capacity for intraspecific variation.

  20. Quantification of ectomycorrhizal mycelium in soil by real time PCR compared to conventional quantification techniques

    NARCIS (Netherlands)

    Landeweert, R.; Veenman, C.; Kuyper, T.W.; Fritze, H.; Wernars, K.; Smit, E.

    2003-01-01

    Mycelial biomass estimates in soils are usually obtained by measuring total hyphal length or by measuring the amount of fungal-specific biomarkers such as ergosterol and phospholipid fatty acids (PLFAs). These methods determine the biomass of the fungal community as a whole and do not allow species-

  1. Mycorrhizal colonization and phenolic compounds accumulation on roots of Eucalyptus dunnii maiden inoculated with ectomycorrhizal fungi

    Directory of Open Access Journals (Sweden)

    VOIGT EDUARDO LUIZ

    2000-01-01

    Full Text Available Compatibility between Eucalyptus dunnii and the ectomycorrhizal fungi Hysterangium gardneri and Pisolithus sp. - from Eucalyptus spp. -, Rhizopogon nigrescens and Suillus cothurnatus - from Pinus spp.-, was studied in vitro. Pisolithus sp., H. gardneri and S. cothurnatus colonized the roots. Pisolithus sp. mycorrhizas presented mantle and Hartig net, while H. gardneri and S. cothurnatus mycorrhizas presented only mantle. S. cothurnatus increased phenolics level on roots. Pisolithus sp. and R. nigrescens decreased the level of these substances. The isolates from Eucalyptus seem to be more compatible towards E. dunnii than those from Pinus. The mechanisms involved could be related, at least in the cases of Pisolithus and Suillus, to the concentration of phenolics in roots.

  2. Managing acute invasive fungal sinusitis.

    Science.gov (United States)

    Dwyhalo, Kristina M; Donald, Carrlene; Mendez, Anthony; Hoxworth, Joseph

    2016-01-01

    Acute invasive fungal sinusitis is the most aggressive form of fungal sinusitis and can be fatal, especially in patients who are immunosuppressed. Early diagnosis and intervention are crucial and potentially lifesaving, so primary care providers must maintain a high index of suspicion for this disease. Patients may need to be admitted to the hospital for IV antifungal therapy and surgical debridement.

  3. Current management of fungal infections.

    NARCIS (Netherlands)

    Meis, J.F.G.M.; Verweij, P.E.

    2001-01-01

    The management of superficial fungal infections differs significantly from the management of systemic fungal infections. Most superficial infections are treated with topical antifungal agents, the choice of agent being determined by the site and extent of the infection and by the causative organism,

  4. The evolution of fungal epiphytes

    NARCIS (Netherlands)

    Hongsanan, S.; Sánchez-Ramírez, S.; Crous, P.W.; Ariyawansa, H.A.; Zhao, R.L.; Hyde, K.D.

    2016-01-01

    Fungal epiphytes are a polyphyletic group found on the surface of plants, particularly on leaves, with a worldwide distribution. They belong in the phylum Ascomycota, which contains the largest known number of fungal genera. There has been little research dating the origins of the common ancestors o

  5. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    Science.gov (United States)

    Sweet, M. J.; Singleton, I.

    2015-11-01

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.

  6. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. J., E-mail: m.sweet@derby.ac.uk [University of Derby, Environmental Sustainability Research Centre, College of Life and Natural Sciences (United Kingdom); Singleton, I. [Newcastle University, School of Biology (United Kingdom)

    2015-11-15

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.

  7. Advanced remote sensing to quantify temperate peatland capacity for belowground carbon capture

    Science.gov (United States)

    Byrd, K. B.; Blanchard, S.; Schile, L. M.; Kolding, S.; Kelly, M.; Windham-Myers, L.; Miller, R.

    2011-12-01

    Temperate peatlands typically dominated by grasses and sedges generate among the greatest annual rates of net primary productivity (NPP, up to 4 kg C m-2) and soil carbon storage (up to 1 kg C m-2) for natural ecosystems. Belowground tissues represent 20-80% of total NPP, thus understanding the controls on belowground NPP (BNPP) in these wetland ecosystems is particularly important to quantifying peatland carbon balances. In addition, there is a growing need to quantify large-scale belowground C sequestration rates in wetlands to better understand marsh resilience to sea level rise and to help define eligibility for carbon offset credits. Since plant productivity influences wetland C budgets, combining field and remote sensing techniques for estimating above and belowground productivity of wetland vegetation over a large spatial extent will help to address these needs. We are working in a USGS long-term experimental wetland restoration site on drained peatland in the Sacramento-San Joaquin River Delta. Using the spatial variability in water depth and residence time across the 7 ha wetland, our goal is to develop practical methods to quantify and map BNPP of emergent marsh vegetation from remotely sensed estimates of aboveground plant characteristics and aboveground NPP. Field data collected on wetland plants hardstem bulrush (Schoenoplectus acutus) and cattail (Typha spp.) were coupled with reflectance data from a field spectrometer (range 350-2500 nm) every two to three weeks during the summer of 2011. We are analyzing reflectance data to develop hyperspectral indices that predict the biophysical characteristics of wetland vegetation - biomass, leaf area index (LAI), and the fraction of absorbed photosynthetically active radiation (fAPAR) - which may be used to infer belowground biomass and productivity. Soil cores and root in-growth bags were used to calculate root biomass and productivity rates. Existing allometric relationships were used to calculate

  8. Woody plant encroachment, and its removal, impact bacterial and fungal communities across stream and terrestrial habitats in a tallgrass prairie ecosystem.

    Science.gov (United States)

    Veach, Allison M; Dodds, Walter K; Jumpponen, Ari

    2015-10-01

    Woody plant encroachment has become a global threat to grasslands and has caused declines in aboveground richness and changes in ecosystem function; yet we have a limited understanding on the effects of these phenomena on belowground microbial communities. We completed riparian woody plant removals at Konza Prairie Biological Station, Kansas and collected soils spanning land-water interfaces in removal and woody vegetation impacted areas. We measured stream sediments and soils for edaphic variables (C and N pools, soil water content, pH) and bacterial (16S rRNA genes) and fungal (ITS2 rRNA gene repeat) communities using Illumina MiSeq metabarcoding. Bacterial richness and diversity decreased with distance from streams. Fungal richness decreased with distance from the stream in wooded areas, but was similar across landscape position while Planctomycetes and Basidiomycota relative abundance was lower in removal areas. Cyanobacteria, Ascomycota, Chytridiomycota and Glomeromycota relative abundance was greater in removal areas. Ordination analyses indicated that bacterial community composition shifted more across land-water interfaces than fungi yet both were marginally influenced by treatment. This study highlights the impacts of woody encroachment restoration on grassland bacterial and fungal communities which likely subsequently affects belowground processes and plant health in this ecosystem. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Linking above and belowground responses to global change at community and ecosystem scales.

    Energy Technology Data Exchange (ETDEWEB)

    Antoninka, Anita [Northern Arizona University; Wolf, Julie [Northern Arizona University; Bowker, Matt [Northern Arizona University; Classen, Aimee T [ORNL; JohnsonPhD, Dr Nancy C [Northern Arizona University

    2009-01-01

    Cryptic belowground organisms are difficult to observe and their responses to global changes are not well understood. Nevertheless, there is reason to believe that interactions among above- and belowground communities may mediate ecosystem responses to global change. We used grassland mesocosms to manipulate the abundance of one important group of soil organisms, arbuscular mycorrhizal (AM) fungi, and to study community and ecosystem responses to CO2 and N enrichment. After two growing seasons, biomass responses of plant communities were recorded, and soil community responses were measured using microscopy, phospholipid fatty acids (PLFA) and community-level physiological profiles (CLPP). Ecosystem responses were examined by measuring net primary production (NPP), evapotranspiration, total soil organic matter (SOM), and extractable mineral N. Structural equation modeling was used to examine the causal relationships among treatments and response variables. We found that while CO2 and N tended to directly impact ecosystem functions (evapotranspiration and NPP, respectively), AM fungi indirectly impacted ecosystem functions by strongly influencing the composition of plant and soil communities. For example, the presence of AM fungi had a strong influence on other root and soil fungi and soil bacteria. We found that the mycotrophic status of the dominant plant species in the mesocosms determined whether the presence of AM fungi increased or decreased NPP. Mycotrophic grasses dominated the mesocosm communities during the first growing season, and thus, the mycorrhizal treatments had the highest NPP. In contrast, non-mycotrophic forbs were dominant during the second growing season and thus, the mycorrhizal treatments had the lowest NPP. The composition of the plant community strongly influenced soil N; and the composition of the soil organisms strongly influenced SOM accumulation in the mesocosms. These results show how linkages between above- and belowground communities

  10. Allometric scaling relationship between above- and below-ground biomass within and across five woody seedlings.

    Science.gov (United States)

    Cheng, Dongliang; Ma, Yuzhu; Zhong, Quanling; Xu, Weifeng

    2014-10-01

    Allometric biomass allocation theory predicts that leaf biomass (M L ) scaled isometrically with stem (M S ) and root (M R ) biomass, and thus above-ground biomass (leaf and stem) (M A ) and root (M R ) scaled nearly isometrically with below-ground biomass (root) for tree seedlings across a wide diversity of taxa. Furthermore, prior studies also imply that scaling constant should vary with species. However, litter is known about whether such invariant isometric scaling exponents hold for intraspecific biomass allocation, and how variation in scaling constants influences the interspecific scaling relationship between above- and below-ground biomass. Biomass data of seedlings from five evergreen species were examined to test scaling relationships among biomass components across and within species. Model Type II regression was used to compare the numerical values of scaling exponents and constants among leaf, stem, root, and above- to below-ground biomass. The results indicated that M L and M S scaled in an isometric or a nearly isometric manner with M R , as well as M A to M R for five woody species. Significant variation was observed in the Y-intercepts of the biomass scaling curves, resulting in the divergence for intraspecific scaling and interspecific scaling relationships for M L versus M S and M L versus M R , but not for M S versus M R and M A versus M R . We conclude, therefore, that a nearly isometric scaling relationship of M A versus M R holds true within each of the studied woody species and across them irrespective the negative scaling relationship between leaf and stem.

  11. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms.

    Directory of Open Access Journals (Sweden)

    Kristina A Stinson

    2006-05-01

    Full Text Available The impact of exotic species on native organisms is widely acknowledged, but poorly understood. Very few studies have empirically investigated how invading plants may alter delicate ecological interactions among resident species in the invaded range. We present novel evidence that antifungal phytochemistry of the invasive plant, Alliaria petiolata, a European invader of North American forests, suppresses native plant growth by disrupting mutualistic associations between native canopy tree seedlings and belowground arbuscular mycorrhizal fungi. Our results elucidate an indirect mechanism by which invasive plants can impact native flora, and may help explain how this plant successfully invades relatively undisturbed forest habitat.

  12. Variability in above- and belowground carbon stocks in a Siberian larch watershed

    Science.gov (United States)

    Webb, Elizabeth E.; Heard, Kathryn; Natali, Susan M.; Bunn, Andrew G.; Alexander, Heather D.; Berner, Logan T.; Kholodov, Alexander; Loranty, Michael M.; Schade, John D.; Spektor, Valentin; Zimov, Nikita

    2017-09-01

    Permafrost soils store between 1330 and 1580 Pg carbon (C), which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above- and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %), with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV) = 0.35 between stands) than in the top 30 cm (CV = 0.14) or soil profile to 1 m (CV = 0.20). Combined active-layer and deep frozen deposits (surface - 15 m) contained 205 kg C m-2 (yedoma, non-ice wedge) and 331 kg C m-2 (alas), which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 %) but also included understory vegetation (30 %), woody debris (11 %) and snag (6 %) biomass. While aboveground biomass contained relatively little (8 %) of the C stocks in the watershed, aboveground processes were linked to thaw depth and belowground C storage. Thaw depth was negatively related to stand age, and soil C density

  13. Variability in above- and belowground carbon stocks in a Siberian larch watershed

    Directory of Open Access Journals (Sweden)

    E. E. Webb

    2017-09-01

    Full Text Available Permafrost soils store between 1330 and 1580 Pg carbon (C, which is 3 times the amount of C in global vegetation, almost twice the amount of C in the atmosphere, and half of the global soil organic C pool. Despite the massive amount of C in permafrost, estimates of soil C storage in the high-latitude permafrost region are highly uncertain, primarily due to undersampling at all spatial scales; circumpolar soil C estimates lack sufficient continental spatial diversity, regional intensity, and replication at the field-site level. Siberian forests are particularly undersampled, yet the larch forests that dominate this region may store more than twice as much soil C as all other boreal forest types in the continuous permafrost zone combined. Here we present above- and belowground C stocks from 20 sites representing a gradient of stand age and structure in a larch watershed of the Kolyma River, near Chersky, Sakha Republic, Russia. We found that the majority of C stored in the top 1 m of the watershed was stored belowground (92 %, with 19 % in the top 10 cm of soil and 40 % in the top 30 cm. Carbon was more variable in surface soils (10 cm; coefficient of variation (CV  =  0.35 between stands than in the top 30 cm (CV  =  0.14 or soil profile to 1 m (CV  =  0.20. Combined active-layer and deep frozen deposits (surface – 15 m contained 205 kg C m−2 (yedoma, non-ice wedge and 331 kg C m−2 (alas, which, even when accounting for landscape-level ice content, is an order of magnitude more C than that stored in the top meter of soil and 2 orders of magnitude more C than in aboveground biomass. Aboveground biomass was composed of primarily larch (53 % but also included understory vegetation (30 %, woody debris (11 % and snag (6 % biomass. While aboveground biomass contained relatively little (8 % of the C stocks in the watershed, aboveground processes were linked to thaw depth and

  14. Elevated atmospheric CO2 stimulates soil fungal diversity through increased fine root production in a semiarid shrubland ecosystem.

    Science.gov (United States)

    Lipson, David A; Kuske, Cheryl R; Gallegos-Graves, La Verne; Oechel, Walter C

    2014-08-01

    Soil fungal communities are likely to be central in mediating microbial feedbacks to climate change through their effects on soil carbon (C) storage, nutrient cycling, and plant health. Plants often produce increased fine root biomass in response to elevated atmospheric carbon dioxide (CO2 ), but the responses of soil microbial communities are variable and uncertain, particularly in terms of species diversity. In this study, we describe the responses of the soil fungal community to free air CO2 enrichment (FACE) in a semiarid chaparral shrubland in Southern California (dominated by Adenomstoma fasciculatum) using large subunit rRNA gene sequencing. Community composition varied greatly over the landscape and responses to FACE were subtle, involving a few specific groups. Increased frequency of Sordariomycetes and Leotiomycetes, the latter including the Helotiales, a group that includes many dark septate endophytes known to associate positively with roots, was observed in the FACE plots. Fungal diversity, both in terms of richness and evenness, increased consistently in the FACE treatment, and was relatively high compared to other studies that used similar methods. Increases in diversity were observed across multiple phylogenetic levels, from genus to class, and were distributed broadly across fungal lineages. Diversity was also higher in samples collected close to (5 cm) plants compared to samples in canopy gaps (30 cm away from plants). Fungal biomass correlated well with soil organic matter (SOM) content, but patterns of diversity were correlated with fine root production rather than SOM. We conclude that the fungal community in this ecosystem is tightly linked to plant fine root production, and that future changes in the fungal community in response to elevated CO2 and other climatic changes will be primarily driven by changes in plant belowground allocation. Potential feedbacks mediated by soil fungi, such as soil C sequestration, nutrient cycling, and

  15. Use of innovative groundcovers in Mediterranean afforestations: aerial and belowground effects in hybrid walnut.

    Directory of Open Access Journals (Sweden)

    Angelo Vitone

    2016-11-01

    Full Text Available Forest restoration in the Mediterranean area is particularly limited by water scarcity in summer and by weed competition, especially during the first years after establishment. The negative impact of these factors can be mitigated through environmentally friendly and cost-effective techniques which favour root development. This study describes the results of innovative weeding techniques in a reforestation carried out in a former agricultural field in Solsona, NE Spain, under Continental Mediterranean Sub-humid climate conditions. The tested weeding techniques included both novel groundcovers (based on prototypes built on a new biodegradable biopolymer, jute treated with resin and recycled rubber and reference techniques, i.e. herbicide application and polyethylene and commercial biofilm groundcovers. We studied the response of hybrid walnut (Juglans x intermedia to the application of these techniques during the first vegetative period in terms of survival, aerial growth and aboveground and belowground biomass allocation. The innovative groundcovers resulted generally in similar outcomes as the reference techniques with regard to tree survival and growth, and to better results in the case of belowground and, to a lesser extent, total tree biomass. Although preliminary, our results suggest that the tested novel groundcovers, notably the model based on treated jute, represent a promising alternative to plastic mulching and herbicide application in afforestation of agricultural lands in Mediterranean continental conditions. Besides these promising productive results, the novel groundcovers bring together relevant technical and environmental benefits, related to their use (not requiring removal or being reusable and composition, based on biodegradable or recycled materials.

  16. Above- and belowground biomass in relation to envi- ronmental factors in temperate grasslands, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Above- and belowground biomasses of grasslands are important parameters for characterizing re- gional and global carbon cycles in grassland ecosystems. Compared with the relatively detailed in- formation for aboveground biomass (AGB), belowground biomass (BGB) is poorly reported at the re- gional scales. The present study, based on a total of 113 sampling sites in temperate grassland of the Inner Mongolia, investigated regional distribution patterns of AGB, BGB, vertical distribution of roots, and their relationships with environmental factors. AGB and BGB increased from the southwest to the northeast of the study region. The largest biomass occurred in meadow steppe, with mean AGB and BGB of 196.7 and 1385.2 g/m2, respectively; while the lowest biomass occurred in desert steppe, with an AGB of 56.6 g/m2 and a BGB of 301.0 g/m2. In addition, about 47% of root biomass was distributed in the top 10 cm soil. Further statistical analysis indicated that precipitation was the primary determinant factor in shaping these distribution patterns. Vertical distribution of roots was significantly affected by precipitation, while the effects of soil texture and grassland types were weak.

  17. Soil abiotic factors influence interactions between belowground herbivores and plant roots.

    Science.gov (United States)

    Erb, Matthias; Lu, Jing

    2013-03-01

    Root herbivores are important ecosystem drivers and agricultural pests, and, possibly as a consequence, plants protect their roots using a variety of defensive strategies. One aspect that distinguishes belowground from aboveground plant-insect interactions is that roots are constantly exposed to a set of soil-specific abiotic factors. These factors can profoundly influence root resistance, and, consequently, the outcome of the interaction with belowground feeders. In this review, we synthesize the current literature on the impact of soil moisture, nutrients, and texture on root-herbivore interactions. We show that soil abiotic factors influence the interaction by modulating herbivore abundance and behaviour, root growth and resistance, beneficial microorganisms, as well as natural enemies of the herbivores. We suggest that abiotic heterogeneity may explain the high variability that is often encountered in root-herbivore systems. We also propose that under abiotic stress, the relative fitness value of the roots and the potential negative impact of herbivory increases, which may lead to a higher defensive investment and an increased recruitment of beneficial microorganisms by the plant. At the same time, both root-feeding herbivores and natural enemies are likely to decrease in abundance under extreme environmental conditions, leading to a context- and species-specific impact on plant fitness. Only by using tightly controlled experiments that include soil abiotic heterogeneity will it be possible to understand the impact of root feeders on an ecosystem scale and to develop predictive models for pest occurrence and impact.

  18. Problems in the inventory of the belowground forest biomass carbon stocks

    Directory of Open Access Journals (Sweden)

    Lasserre B

    2006-01-01

    Full Text Available Signatory countries of Kyoto Protocol are engaged in carrying out national inventories to quantify greenhouse gas emission and potentiality of C sinks. Forests represent the terrestrial ecosystem with the highest C sequestration capacity taking up CO2 from the atmosphere and fixing it in vegetal biomass through photosynthesis process; C stocks can be divided in aboveground and belowground ones. In inventorial processes, root biomass is empirically extrapolated from aboveground biomass using a 0.2 factor, which underestimate the real value. Some authors suggest that total underground C allocation can be assessed from the difference between annual respiration rate and litter fall. Belowground biomass can be divided in permanent biomass (structural roots and temporary one (fine roots. Models allow a valuation of structural roots biomass from stand dendrometrical characteristics. Literature reveals that underground biomass, as fine roots than structural ones, highly varies with local conditions. The development of models that take into account these station parameters and therefore able to reproduce this variability seems to be obligatory to deal with inventory processes with an acceptable precision.

  19. Restoration and management for plant diversity enhances the rate of belowground ecosystem recovery.

    Science.gov (United States)

    Klopf, Ryan P; Baer, Sara G; Bach, Elizabeth M; Six, Johan

    2017-03-01

    The positive relationship between plant diversity and ecosystem functioning has been criticized for its applicability at large scales and in less controlled environments that are relevant to land management. To inform this gap between ecological theory and application, we compared recovery rates of belowground properties using two chronosequences consisting of continuously cultivated and independently restored fields with contrasting diversity management strategies: grasslands restored with high plant richness and managed for diversity with frequent burning (n = 20) and grasslands restored with fewer species that were infrequently burned (n = 15). Restoration and management for plant diversity resulted in 250% higher plant richness. Greater recovery of roots and more predictable recovery of the active microbial biomass across the high diversity management strategy chronosequence corresponded with faster recovery of soil structure. The high diversity grasslands also had greater nutrient conservation indicated by lower available inorganic nitrogen. Thus, mesic grasslands restored with more species and managed for high plant diversity with frequent burning enhances the rate of belowground ecosystem recovery from long-term disturbance at a scale relevant to conservation practices on the landscape.

  20. Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia

    Institute of Scientific and Technical Information of China (English)

    MA WenHong; YANG YuanHe; HE JinSheng; ZENG Hui; FANG JingYun

    2008-01-01

    Above- and belowground biomasses of grasslands are important parameters for characterizing regional and global carbon cycles in grassland ecosystems. Compared with the relatively detailed information for aboveground biomass (AGB), belowground biomass (BGB) Is poorly reported at the regional scales. The present study, based on a total of 113 sampling sites in temperate grassland of the Inner Mongolia, investigated regional distribution patterns of AGB, BGB, vertical distribution of roots,and their relationships with environmental factors. AGB and BGB increased from the southwest to the northeast of the study region. The largest biomass occurred in meadow steppe, with mean AGB and BGB of 196.7 and 1385.2 g/m2, respectively; while the lowest biomass occurred in desert steppe, with an AGB of 56.6 g/m2 and a BGB of 301.0 g/m2. In addition, about 47% of root biomass was distributed in the top 10 cm soil. Further statistical analysis indicated that precipitation was the primary determinant factor in shaping these distribution patterns. Vertical distribution of roots was significantly affected by precipitation, while the effects of soil texture and grassland types were weak.

  1. Hospitalized Patients and Fungal Infections

    Science.gov (United States)

    ... These types of infections are called healthcare-associated infections (HAIs). Hospital staff and healthcare providers do everything they can ... IV tube) can increase your risk for fungal infection. During your hospital stay you may need a central venous catheter, ...

  2. Fungal Entomopathogens in the Rhizosphere

    Science.gov (United States)

    Entomopathogenic fungi are found in a wide variety of fungal groups. The order Hypocreales contains the largest number of entomogenous fungi, including two of the most widely studied, Beauveria bassiana (Balsamo) Vuillemin (Hypocreales: Clavicipitaceae) and Metarhizium anisopliae (Metchnikoff) Sorok...

  3. Fungal genomics beyond Saccharomyces cerevisiae?

    DEFF Research Database (Denmark)

    Hofmann, Gerald; Mcintyre, Mhairi; Nielsen, Jens

    2003-01-01

    Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious that the a......Fungi are used extensively in both fundamental research and industrial applications. Saccharomyces cerevisiae has been the model organism for fungal research for many years, particularly in functional genomics. However, considering the diversity within the fungal kingdom, it is obvious...... that the application of the existing methods of genome, transcriptome, proteome and metabolome analysis to other fungi has enormous potential, especially for the production of food and food ingredients. The developments in the past year demonstrate that we have only just started to exploit this potential....

  4. Ribosomal DNA and Plastid Markers Used to Sample Fungal and Plant Communities from Wetland Soils Reveals Complementary Biotas

    Science.gov (United States)

    Porter, Teresita M.; Shokralla, Shadi; Baird, Donald; Golding, G. Brian; Hajibabaei, Mehrdad

    2016-01-01

    Though the use of metagenomic methods to sample below-ground fungal communities is common, the use of similar methods to sample plants from their underground structures is not. In this study we use high throughput sequencing of the ribulose-bisphosphate carboxylase large subunit (rbcL) plastid marker to study the plant community as well as the internal transcribed spacer and large subunit ribosomal DNA (rDNA) markers to investigate the fungal community from two wetland sites. Observed community richness and composition varied by marker. The two rDNA markers detected complementary sets of fungal taxa and total fungal composition clustered according to primer rather than by site. The composition of the most abundant plants, however, clustered according to sites as expected. We suggest that future studies consider using multiple genetic markers, ideally generated from different primer sets, to detect a more taxonomically diverse suite of taxa compared with what can be detected by any single marker alone. Conclusions drawn from the presence of even the most frequently observed taxa should be made with caution without corroborating lines of evidence. PMID:26731732

  5. Fungal microbiota dysbiosis in IBD

    Science.gov (United States)

    Sokol, Harry; Leducq, Valentin; Aschard, Hugues; Pham, Hang-Phuong; Jegou, Sarah; Landman, Cecilia; Cohen, David; Liguori, Giuseppina; Bourrier, Anne; Nion-Larmurier, Isabelle; Cosnes, Jacques; Seksik, Philippe; Langella, Philippe; Skurnik, David; Richard, Mathias L; Beaugerie, Laurent

    2017-01-01

    Objective The bacterial intestinal microbiota plays major roles in human physiology and IBDs. Although some data suggest a role of the fungal microbiota in IBD pathogenesis, the available data are scarce. The aim of our study was to characterise the faecal fungal microbiota in patients with IBD. Design Bacterial and fungal composition of the faecal microbiota of 235 patients with IBD and 38 healthy subjects (HS) was determined using 16S and ITS2 sequencing, respectively. The obtained sequences were analysed using the Qiime pipeline to assess composition and diversity. Bacterial and fungal taxa associated with clinical parameters were identified using multivariate association with linear models. Correlation between bacterial and fungal microbiota was investigated using Spearman's test and distance correlation. Results We observed that fungal microbiota is skewed in IBD, with an increased Basidiomycota/Ascomycota ratio, a decreased proportion of Saccharomyces cerevisiae and an increased proportion of Candida albicans compared with HS. We also identified disease-specific alterations in diversity, indicating that a Crohn's disease-specific gut environment may favour fungi at the expense of bacteria. The concomitant analysis of bacterial and fungal microbiota showed a dense and homogenous correlation network in HS but a dramatically unbalanced network in IBD, suggesting the existence of disease-specific inter-kingdom alterations. Conclusions Besides bacterial dysbiosis, our study identifies a distinct fungal microbiota dysbiosis in IBD characterised by alterations in biodiversity and composition. Moreover, we unravel here disease-specific inter-kingdom network alterations in IBD, suggesting that, beyond bacteria, fungi might also play a role in IBD pathogenesis. PMID:26843508

  6. Efeito do óleo essencial de Eucalyptus grandis no crescimento de isolados de fungos ectomicorrízicos em diferentes concentrações de cobre, zinco e níquel Essential oil of Eucalyptus grandis effect on the growth of ectomycorrhizal isolates in different copper, zinc and nickel concentrations

    Directory of Open Access Journals (Sweden)

    Ricardo Bemfica Steffen

    2011-09-01

    of increasing concentrations of copper, zinc and nickel and essential oil of Eucalyptus grandis at a concentration of 20 μL L-1. After an incubation period of 25 days, we estimated the dry mass of mycelium and concentration that inhibited fungal growth by 50%. At concentrations of copper, zinc and nickel above of 3.94, 1.57 and 0.85 mmol L-1 respectively, no increase was observed in the growth of ectomycorrhizal isolates evaluated by the addition of essential oil. The presence of essential oil of E. grandis at a concentration of 20 μL L-1 in liquid culture medium increased the tolerance of ectomycorrhizal isolates UFSC Pt 116 and Pt 24 UFSC to the heavy metals copper, zinc and nickel.

    doi: 10.4336/2011.pfb.31.67.227

  7. Fungal-Fungal Interactions in Leaf-Cutting Ant Agriculture

    Directory of Open Access Journals (Sweden)

    Sunshine A. Van Bael

    2011-01-01

    Full Text Available Many organisms participate in symbiotic relationships with other organisms, yet studies of symbioses typically have focused on the reciprocal costs and benefits within a particular host-symbiont pair. Recent studies indicate that many ecological interactions involve alliances of symbionts acting together as mutualistic consortia against other consortia. Such interacting consortia are likely to be widespread in nature, even if the interactions often occur in a cryptic fashion. Little theory and empirical data exist concerning how these complex interactions shape ecological outcomes in nature. Here, we review recent work on fungal-fungal interactions between two consortia: (i leaf-cutting ants and their symbiotic fungi (the latter grown as a food crop by the former and (ii tropical plants and their foliar endophytes (the cryptic symbiotic fungi within leaves of the former. Plant characteristics (e.g., secondary compounds or leaf physical properties of leaves are involved in leaf-cutting ant preferences, and a synthesis of published information suggests that these plant traits could be modified by fungal presence. We discuss potential mechanisms for how fungal-fungal interactions proceed in the leaf-cutting ant agriculture and suggest themes for future research.

  8. 4种外生菌根真菌吸收氮素营养的特性%Nitrogenous Nutrition Absorption by Four Ectomycorrhizal Fungi

    Institute of Scientific and Technical Information of China (English)

    张小燕

    2013-01-01

    该试验利用从我国西南林区分离获得的外生菌根真菌彩色豆马勃(Pisolithus tinct,rius 715)、松乳菇(Lactarius deliciosus)的3个株系为供试菌种,研究它们在离体培养条件下的氮营养吸收特性.结果表明,供试菌株均能较好地吸收3种氮源,其中Pisolithus tinctorius 715的优势氮源为NO3--N,Lactarius delicious-1、Lactarius delicious-2和Lactarius delicious-3的优势氮源为NH4+-N.Lactarius delicious-3吸收NH4+-N和Glu-N的Km和Cmin值最小,能适应低养分的土壤环境,是供试松乳菇株系中吸收NH4+-N和Glu-N效率最高的菌株,因此该菌株对在贫瘠土壤上植树造林可能有一定的应用前景.%Ectomycorrhizal fungal strains used in this experiment were Pisolithus tinctorius 715, Lactarius delicious-1, L. delicious-2, and L. delicious-3. They were cultured in Pachlewski liquid mediums with three kinds of nitrogen sources. The results showed NH4 + -N, NO3 - -N and Glu-N could be well absorbed by the tested fungi. NO3- -N was the dominant nitrogen source for Pt715, while NH4 +-N for Ld-1 , Ld-2, and Ld-3; and Km and Cmin values of Ld-3 was the lowest in NH4 + -N and Clu-N absorption, suggesting it could adapt low nutrition soil environment, it was the strain that had the highest efficiency in NH4 + -N and Glu-N absorption, therefore, it had a certain possibilities in application outlook in forestation on barren lands.

  9. Influence of resting and pine sawdust application on chemical changes in post-agricultural soil and the ectomycorrhizal community of growing Scots pine saplings

    Directory of Open Access Journals (Sweden)

    Małecka Monika

    2015-09-01

    Full Text Available Changes in chemical compounds and in ectomycorrhizal structure were determined for Scots pine growing on post agricultural soil lying fallow for 3, 6 and 15 years, after amendment with pine sawdust. Soil without any amendments was used as the control treatment. Comparing the ectomycorrhizal structure 15 years after the application of pine sawdust revealed no significant differences in abundance or species richness between soil with and without organic enrichment. The results showed that the ectomycorrhizal status depends on soil conditions (soil pH, nitrogen content, which remain unaffected by saw dust application. In all treatments, the most frequently occurring ectomycorrhizae genera were Dermocybe, Hebeloma, Suillus, Tomentella and Tricholoma. Two species (Paxillus involutus, Amanita muscaria were specific to the control plots that lay fallow for 15 years.

  10. Serious fungal infections in Ecuador.

    Science.gov (United States)

    Zurita, J; Denning, D W; Paz-Y-Miño, A; Solís, M B; Arias, L M

    2017-06-01

    There is a dearth of data from Ecuador on the burden of life-threatening fungal disease entities; therefore, we estimated the burden of serious fungal infections in Ecuador based on the populations at risk and available epidemiological databases and publications. A full literature search was done to identify all epidemiology papers reporting fungal infection rates. WHO, ONU-AIDS, Index Mundi, Global Asthma Report, Globocan, and national data [Instituto Nacional de Estadística y Censos (INEC), Ministerio de Salud Pública (MSP), Sociedad de Lucha Contra el Cáncer (SOLCA), Instituto Nacional de Donación y Trasplante de Órganos, Tejidos y Células (INDOT)] were reviewed. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology by LIFE. Ecuador has a variety of climates from the cold of the Andes through temperate to humid hot weather at the coast and in the Amazon basin. Ecuador has a population of 15,223,680 people and an average life expectancy of 76 years. The median estimate of the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) population at risk for fungal disease (<200 CD4 cell counts) is ∼10,000, with a rate of 11.1% (1100) of histoplasma, 7% (700) of cryptococcal meningitis, and 11% (1070) of Pneumocystis pneumonia. The burden of candidemia is 1037. Recurrent Candida vaginitis (≥4 episodes per year) affects 307,593 women aged 15-50 years. Chronic pulmonary aspergillosis probably affects ∼476 patients following tuberculosis (TB). Invasive aspergillosis is estimated to affect 748 patients (∼5.5/100,000). In addition, allergic bronchopulmonary aspergillosis (ABPA) in asthma and severe asthma with fungal sensitization (SAFS) were estimated to affect 26,642 and 45,013 people, respectively. Our estimates indicate that 433,856 (3%) of the population in Ecuador is affected by serious fungal infection.

  11. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia).

    Science.gov (United States)

    Kotowska, Martyna M; Leuschner, Christoph; Triadiati, Triadiati; Meriem, Selis; Hertel, Dietrich

    2015-10-01

    Natural forests in South-East Asia have been extensively converted into other land-use systems in the past decades and still show high deforestation rates. Historically, lowland forests have been converted into rubber forests, but more recently, the dominant conversion is into oil palm plantations. While it is expected that the large-scale conversion has strong effects on the carbon cycle, detailed studies quantifying carbon pools and total net primary production (NPPtotal ) in above- and belowground tree biomass in land-use systems replacing rainforest (incl. oil palm plantations) are rare so far. We measured above- and belowground carbon pools in tree biomass together with NPPtotal in natural old-growth forests, 'jungle rubber' agroforests under natural tree cover, and rubber and oil palm monocultures in Sumatra. In total, 32 stands (eight plot replicates per land-use system) were studied in two different regions. Total tree biomass in the natural forest (mean: 384 Mg ha(-1) ) was more than two times higher than in jungle rubber stands (147 Mg ha(-1) ) and >four times higher than in monoculture rubber and oil palm plantations (78 and 50 Mg ha(-1) ). NPPtotal was higher in the natural forest (24 Mg ha(-1)  yr(-1) ) than in the rubber systems (20 and 15 Mg ha(-1)  yr(-1) ), but was highest in the oil palm system (33 Mg ha(-1)  yr(-1) ) due to very high fruit production (15-20 Mg ha(-1)  yr(-1) ). NPPtotal was dominated in all systems by aboveground production, but belowground productivity was significantly higher in the natural forest and jungle rubber than in plantations. We conclude that conversion of natural lowland forest into different agricultural systems leads to a strong reduction not only in the biomass carbon pool (up to 166 Mg C ha(-1) ) but also in carbon sequestration as carbon residence time (i.e. biomass-C:NPP-C) was 3-10 times higher in the natural forest than in rubber and oil palm plantations. © 2015 John Wiley & Sons Ltd.

  12. Changes in Soil Carbon Stocks and Fluxes in Response to Altered Above- and Belowground Vegetation Inputs

    Science.gov (United States)

    Marañón-Jiménez, S.; Schuetze, C.; Cuntz, M.; García-Quirós, I.; Dienstbach, L.; Schrumpf, M.; Rebmann, C.

    2016-12-01

    The stimulation of vegetation productivity in response to rising atmospheric CO2 concentrations can potentially compensate climate change feedbacks. However, this will depend on the allocation of C resources of vegetation into biomass production versus root exudates and on the feedbacks with soil microorganisms. These dynamic adjustments of vegetation will result on changes in above- and belowground productivity and on the amount of C exported to root exudates. Consequent alteration of litter and rhizosphere detritus inputs to the soil and their interaction on controlling soil C sequestration capacity has been, however, rarely assessed. We hypothesize that above- and belowground vegetation exert a synergistic control of soil CO2 emissions, and that the activation of soil organic matter mineralization by the addition of labile organic substrates (i.e.: the priming effect) is altered by changes in the amount and in the quality of the carbon inputs. In order to elucidate these questions, different levels of litter addition were implemented on trenched (root exclusion) and non-trenched plots (with roots) in a temperate deciduous forest. Changes in the sensitivity of soil respiration to temperature and moisture were detected by measuring CO2 fluxes continuously at high temporal resolution with automatic chambers, whereas the spatial and seasonal variability was determined using portable chambers. Annual changes in soil carbon and nitrogen stocks provide additional information on the soil carbon sequestration in response to above- and belowground inputs. Both roots and litter inputs significantly enhanced soil CO2 effluxes soon after the implementation of the experiment. We detected synergistic effects between roots and litter inputs on soil CO2 emissions: When roots were present, carbon mineralized in response to litter addition was much higher than the total amount of carbon added in litter (ca. 170 g C m-2 y-1). Preliminary results of this study suggest that labile

  13. Above- and belowground responses of Arctic tundra ecosystems to altered soil nutrients and mammalian herbivory.

    Science.gov (United States)

    Gough, Laura; Moore, John C; Shaver, Gauis R; Simpson, Rodney T; Johnson, David R

    2012-07-01

    Theory and observation indicate that changes in the rate of primary production can alter the balance between the bottom-up influences of plants and resources and the top-down regulation of herbivores and predators on ecosystem structure and function. The exploitation ecosystem hypothesis (EEH) posited that as aboveground net primary productivity (ANPP) increases, the additional biomass should support higher trophic levels. We developed an extension of EEH to include the impacts of increases in ANPP on belowground consumers in a similar manner as aboveground, but indirectly through changes in the allocation of photosynthate to roots. We tested our predictions for plants aboveground and for phytophagous nematodes and their predators belowground in two common arctic tundra plant communities subjected to 11 years of increased soil nutrient availability and/or exclusion of mammalian herbivores. The less productive dry heath (DH) community met the predictions of EEH aboveground, with the greatest ANPP and plant biomass in the fertilized plots protected from herbivory. A palatable grass increased in fertilized plots while dwarf evergreen shrubs and lichens declined. Belowground, phytophagous nematodes also responded as predicted, achieving greater biomass in the higher ANPP plots, whereas predator biomass tended to be lower in those same plots (although not significantly). In the higher productivity moist acidic tussock (MAT) community, aboveground responses were quite different. Herbivores stimulated ANPP and biomass in both ambient and enriched soil nutrient plots; maximum ANPP occurred in fertilized plots exposed to herbivory. Fertilized plots became dominated by dwarf birch (a deciduous shrub) and cloudberry (a perennial forb); under ambient conditions these two species coexist with sedges, evergreen dwarf shrubs, and Sphagnum mosses. Phytophagous nematodes did not respond significantly to changes in ANPP, although predator biomass was greatest in control plots. The

  14. Interactions between above- and belowground biota : importance for small-scale vegetation mosaics in a grassland ecosystem

    NARCIS (Netherlands)

    Blomqvist, M.M.; Olff, H.; Blaauw, M.B.; Bongers, T.; Putten, W.H. van der

    2000-01-01

    Grasslands are often characterised by small-scale mosaics in plant community composition that contribute to their diversity. Although above- and belowground biota can both cause such mosaics, few studies have addressed their interacting effects. We studied multi-trophic interactions between abovegro

  15. Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem

    NARCIS (Netherlands)

    Blomqvist, M.M.; Olff, H.; Blaauw, M.B.; Bongers, T.; Van der Putten, W.H.

    2000-01-01

    Grasslands are often characterised by small-scale mosaics in plant community composition that contribute to their diversity. Although above- and belowground biota can both cause such mosaics, few studies have addressed their interacting effects. We studied multi-trophic interactions between abovegro

  16. Interactions between above- and belowground biota : importance for small-scale vegetation mosaics in a grassland ecosystem

    NARCIS (Netherlands)

    Blomqvist, N.M.; Olff, H.; Blaauw, M.B.; Bongers, T.; Putten, van der W.H.

    2000-01-01

    Grasslands are often characterised by small-scale mosaics in plant community composition that contribute to their diversity. Although above- and belowground biota can both cause such mosaics, few studies have addressed their interacting effects. We studied multi-trophic interactions between abovegro

  17. Disentangling above- and belowground neighbor effects on the growth, chemistry and arthropod community on a focal plant

    NARCIS (Netherlands)

    Kos, M.; Bukovinszky, T.; Mulder, P.P.J.; Bezemer, T.M.

    2015-01-01

    Neighboring plants can influence arthropods on a focal plant and this can result in associational resistance or associational susceptibility. These effects can be mediated by above- and belowground interactions between the neighbor and focal plant, but determining the relative contribution of the ab

  18. Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models

    Science.gov (United States)

    Elise Pendall; Scott Bridgham; Paul J. Hanson; Bruce Hungate; David W. Kicklighter; Dale W. Johnson; Beverly E. Law; Yiqi Luo; J. Patrick Megonigal; Maria Olsrud; Michael G. Ryan; Shiqiang Wan

    2004-01-01

    Rising atmospheric CO2 and temperatures are probably altering ecosystem carbon cycling, causing both positive and negative feedbacks to climate. Below-ground processes play a key role in the global carbon (C) cycle because they regulate storage of large quantities of C, and are potentially very sensitive to direct and indirect effects of elevated...

  19. Impacts of mangrove density on surface sediment accretion, belowground biomass and biogeochemistry in Puttalam Lagoon, Sri Lanka

    Science.gov (United States)

    Phillips, D.H.; Kumara, M.P.; Jayatissa, L.P.; Krauss, Ken W.; Huxham, M.

    2017-01-01

    Understanding the effects of seedling density on sediment accretion, biogeochemistry and belowground biomass in mangrove systems can help explain ecological functioning and inform appropriate planting densities during restoration or climate change mitigation programs. The objectives of this study were to examine: 1) impacts of mangrove seedling density on surface sediment accretion, texture, belowground biomass and biogeochemistry, and 2) origins of the carbon (C) supplied to the mangroves in Palakuda, Puttalam Lagoon, Sri Lanka. Rhizophora mucronata propagules were planted at densities of 6.96, 3.26, 1.93 and 0.95 seedlings m−2along with an unplanted control (0 seedlings m−2). The highest seedling density generally had higher sediment accretion rates, finer sediments, higher belowground biomass, greatest number of fine roots and highest concentrations of C and nitrogen (N) (and the lowest C/N ratio). Sediment accretion rates, belowground biomass (over 1370 days), and C and N concentrations differed significantly between seedling densities. Fine roots were significantly greater compared to medium and coarse roots across all plantation densities. Sulphur and carbon stable isotopes did not vary significantly between different density treatments. Isotope signatures suggest surface sediment C (to a depth of 1 cm) is not derived predominantly from the trees, but from seagrass adjacent to the site.

  20. Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia

    NARCIS (Netherlands)

    Chen, J.Y.; Bongers, F.; Cao, K.F.; Cai, Z.Q.

    2008-01-01

    Abstract: In tropical forests, trees compete not only with other trees, but also with lianas, which may limit tree growth and regeneration. Liana effects may depend on the availability of above- and below-ground resources and differ between tree species. We conducted a shade house experiment to test

  1. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Science.gov (United States)

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  2. Influence of presence and spatial arrangement of belowground insects on host-plant selection of aboveground insects: a field study

    NARCIS (Netherlands)

    Soler, R.; Schaper, S.V.; Bezemer, T.M.; Cortesero, A.M.; Hoffmeister, T.S.; Putten, van der W.H.; Vet, L.E.M.; Harvey, J.A.

    2009-01-01

    1. Several studies have shown that above- and belowground insects can interact by influencing each others growth, development, and survival when they feed on the same host-plant. In natural systems, however, insects can make choices on which plants to oviposit and feed. A field experiment was carrie

  3. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    NARCIS (Netherlands)

    Kerbiriou, P.J.; Stomph, T.J.; Lammerts Van Bueren, E.; Struik, P.C.

    2013-01-01

    Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grow

  4. Influence of transplant size on the above- and below-ground performance of four contrasting field-grown lettuce cultivars

    NARCIS (Netherlands)

    Kerbiriou, P.J.; Stomph, T.J.; Lammerts Van Bueren, E.; Struik, P.C.

    2013-01-01

    Background and aims: Modern lettuce cultivars underperform under conditions of variable temporal and spatial resource availability, common in organic or low-input production systems. Information is scarce on the impact of below-ground traits on such resource acquisition and performance of field-grow

  5. A meta-analysis approach for assessing the diversity and specificity of belowground root and microbial volatiles

    Directory of Open Access Journals (Sweden)

    Denis eSchenkel

    2015-09-01

    Full Text Available Volatile organic compounds are secondary metabolites emitted by all organisms, especially by plants and microbes. Their role as aboveground signals has been established for decades. Recent evidence suggests that they might have a non-negligible role belowground and might be involved in root-root and root-microbial/pest interactions. Our aim here was to make a comprehensive review of belowground volatile diversity using a meta-analysis approach. At first we synthesized current literature knowledge on plant root volatiles and classified them in terms of chemical diversity. In a second step, relying on the mVOC database of microbial volatiles, we classified volatiles based on their emitters (bacteria versus fungi and their specific ecological niche (i.e. rhizosphere, soil. Our results highlight similarities and differences among root and microbial volatiles and also suggest that some might be niche specific. We further explored the possibility that volatiles might be involved in intra- and inter-specific root-root communication and discuss the ecological implications of such scenario. Overall this work synthesizes current knowledge on the belowground volatilome and the potential signaling role of its constituents. It also highlights that the total diversity of belowground volatiles might be numerous orders of magnitude larger that the few hundreds of compounds described to date.

  6. Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic.

    Science.gov (United States)

    Timling, I; Walker, D A; Nusbaum, C; Lennon, N J; Taylor, D L

    2014-07-01

    Fungi are abundant and functionally important in the Arctic, yet comprehensive studies of their diversity in relation to geography and environment are not available. We sampled soils in paired plots along the North American Arctic Transect (NAAT), which spans all five bioclimatic subzones of the Arctic. Each pair of plots contrasted relatively bare, cryoturbated patterned-ground features (PGFs) and adjacent vegetated between patterned-ground features (bPGFs). Fungal communities were analysed via sequencing of 7834 ITS-LSU clones. We recorded 1834 OTUs - nearly half the fungal richness previously reported for the entire Arctic. These OTUs spanned eight phyla, 24 classes, 75 orders and 120 families, but were dominated by Ascomycota, with one-fifth belonging to lichens. Species richness did not decline with increasing latitude, although there was a decline in mycorrhizal taxa that was offset by an increase in lichen taxa. The dominant OTUs were widespread even beyond the Arctic, demonstrating no dispersal limitation. Yet fungal communities were distinct in each subzone and were correlated with soil pH, climate and vegetation. Communities in subzone E were distinct from the other subzones, but similar to those of the boreal forest. Fungal communities on disturbed PGFs differed significantly from those of paired stable areas in bPGFs. Indicator species for PGFs included lichens and saprotrophic fungi, while bPGFs were characterized by ectomycorrhizal and pathogenic fungi. Our results suggest that the Arctic does not host a unique mycoflora, while Arctic fungi are highly sensitive to climate and vegetation, with potential to migrate rapidly as global change unfolds.

  7. Into and out of the tropics: global diversification patterns in a hyperdiverse clade of ectomycorrhizal fungi.

    Science.gov (United States)

    Looney, Brian P; Ryberg, Martin; Hampe, Felix; Sánchez-García, Marisol; Matheny, P Brandon

    2016-01-01

    Ectomycorrhizal (ECM) fungi, symbiotic mutualists of many dominant tree and shrub species, exhibit a biogeographic pattern counter to the established latitudinal diversity gradient of most macroflora and fauna. However, an evolutionary basis for this pattern has not been explicitly tested in a diverse lineage. In this study, we reconstructed a mega-phylogeny of a cosmopolitan and hyperdiverse genus of ECM fungi, Russula, sampling from annotated collections and utilizing publically available sequences deposited in GenBank. Metadata from molecular operational taxonomic unit cluster sets were examined to infer the distribution and plant association of the genus. This allowed us to test for differences in patterns of diversification between tropical and extratropical taxa, as well as how their associations with different plant lineages may be a driver of diversification. Results show that Russula is most species-rich at temperate latitudes and ancestral state reconstruction shows that the genus initially diversified in temperate areas. Migration into and out of the tropics characterizes the early evolution of the genus, and these transitions have been frequent since this time. We propose the 'generalized diversification rate' hypothesis to explain the reversed latitudinal diversity gradient pattern in Russula as we detect a higher net diversification rate in extratropical lineages. Patterns of diversification with plant associates support host switching and host expansion as driving diversification, with a higher diversification rate in lineages associated with Pinaceae and frequent transitions to association with angiosperms. © 2015 John Wiley & Sons Ltd.

  8. Seletion of arbuscular mycorrhizal and ectomycorrhizal fungi for efficient symbiosis with Acacia mangium willd

    Directory of Open Access Journals (Sweden)

    Guilherme Augusto Robles Angelini

    2013-12-01

    Full Text Available Acacia mangium forms two kinds of mycorrhizal symbiosis, a arbuscular mycorrhizal fungi (AMFs type and another with ectomycorrhizal fungi (fECTOs. The present study aimed to select different AMFs species and fECTOs isolates for effective symbiosis with A. mangium, which provide seedlings well colonized, nodulated and developed. Experiments were conducted in a greenhouse at Embrapa Agrobiology, one for AMF species selection and another for fECTOs, using a randomized block design with five replicates. Treatments were species AMFs (Acaulospora laevis, Acaulospora morrowiae, Entrophospora colombiana, Entrophospora contigua, Gigaspora margarita, Glomus clarum, Scutellospora calospora, Scutellospora heterogama, Scutellospora gilmorei and Scutellospora pellucida or fECTOs isolated (UFSC Pt116; UFSC Pt24; UFSC Pt193; O 64–ITA6; UFSC Pt187 and O 40–ORS 7870. The AMFs species that promoted greater vegetative growth, mycorrhizal colonization and more effective symbioses were S. calospora, S. heterogama, S. gilmorei e A. morrowiae. The fECTOs not demonstrated effectiveness in promoting growth, but the isolate O64-ITA6 (Pisolithus tinctorius provided greater colonization. Seedlings of A. mangium have high responsiveness to inoculation with AMFs and depends on high root colonization, between 40 and 80%, to obtain relevant benefits from symbiose over nodule formation and growth.

  9. Transfer of 14C-photosynthate to the sporocarp of an ectomycorrhizal fungus Laccaria amethystina.

    Science.gov (United States)

    Teramoto, Munemasa; Wu, Bingyun; Hogetsu, Taizo

    2012-04-01

    Sporocarps of ectomycorrhizal fungi are strong carbon sinks for the source in host trees, but the details of carbon transfer from the host to the sporocarp are unknown. In this study, single seedlings of Japanese red pine (Pinus densiflora) colonised by Laccaria amethystina were grown on floral foam plates fitted in rhizoboxes, resulting in fruiting on the substrate. The seedlings were photosynthetically labelled with (14)CO(2); (14)C-labelled photosynthate transfer from leaves to sporocarps was then chased using a time-course autoradiography technique. (14)C was transferred to healthy, fresh sporocarps in a purple colour ranging from primordial to elongate sporocarps, but hardly to senesced ones that had faded to white or grey, or browned. This suggested that C is transferred only to physiologically active sporocarps. Two seedlings associated with a growing sporocarp were labelled again 7 and 16 days after the first labelling, respectively. (14)C accumulation in the sporocarps rose in a stepwise manner after the second labelling, indicating that sporocarps mainly used recently rather than previously photosynthesised C.

  10. Low diversity and high host preference of ectomycorrhizal fungi in western Amazonia, a neotropical biodiversity hotspot.

    Science.gov (United States)

    Tedersoo, Leho; Sadam, Ave; Zambrano, Milton; Valencia, Renato; Bahram, Mohammad

    2010-04-01

    Information about the diversity of tropical microbes, including fungi is relatively scarce. This study addresses the diversity, spatial distribution and host preference of ectomycorrhizal fungi (EcMF) in a neotropical rainforest site in North East Ecuador. DNA sequence analysis of both symbionts revealed relatively low richness of EcMF as compared with the richness of temperate regions that contrasts with high plant (including host) diversity. EcMF community was positively autocorrelated up to 8.5+/-1.0-m distance-roughly corresponding to the canopy and potentially rooting area of host individuals. Coccoloba (Polygonaceae), Guapira and Neea (Nyctaginaceae) differed by their most frequent EcMF. Two-thirds of these EcMF preferred one of the host genera, a feature uncommon in boreal forests. Scattered distribution of hosts probably accounts for the low EcMF richness. This study demonstrates that the diversity of plants and their mycorrhizal fungi is not always related and host preference among EcMF can be substantial outside the temperate zone.

  11. Molecular systematics of the Amazonian genus Aldina, a phylogenetically enigmatic ectomycorrhizal lineage of papilionoid legumes.

    Science.gov (United States)

    Ramos, Gustavo; de Lima, Haroldo Cavalcante; Prenner, Gerhard; de Queiroz, Luciano Paganucci; Zartman, Charles E; Cardoso, Domingos

    2016-04-01

    Aldina (Leguminosae) is among the very few ecologically successful ectomycorrhizal lineages in a family largely marked by the evolution of nodulating symbiosis. The genus comprises 20 species predominantly distributed in Amazonia and has been traditionally classified in the tribe Swartzieae because of its radial flowers with an entire calyx and numerous free stamens. The taxonomy of Aldina is complicated due to its poor representation in herbaria and the lack of a robust phylogenetic hypothesis of relationship. Recent phylogenetic analyses of matK and trnL sequences confirmed the placement of Aldina in the 50-kb inversion clade, although the genus remained phylogenetically isolated or unresolved in the context of the evolutionary history of the main early-branching papilionoid lineages. We performed maximum likelihood and Bayesian analyses of combined chloroplast datasets (matK, rbcL, and trnL) and explored the effect of incomplete taxa or missing data in order to shed light on the enigmatic phylogenetic position of Aldina. Unexpectedly, a sister relationship of Aldina with the Andira clade (Andira and Hymenolobium) is revealed. We suggest that a new tribal phylogenetic classification of the papilionoid legumes should place Aldina along with Andira and Hymenolobium. These results highlight yet another example of the independent evolution of radial floral symmetry within the early-branching Papilionoideae, a large collection of florally heterogeneous lineages dominated by papilionate or bilaterally symmetric flower morphology.

  12. Degradation and mineralization of DDT by the ectomycorrhizal fungi, Xerocomus chrysenteron.

    Science.gov (United States)

    Huang, Yi; Wang, Jie

    2013-08-01

    One strain of ectomycorrhizal fungi, Xerocomus chrysenteron, had been investigated for its ability to degrade 1,1,1-trichloro-2,2-bis(4-chlorophe-nyl) ethane (DDT) by measuring unlabeled DDT and identifying its metabolites, and determining the mineralization of [(13)C]DDT in pure cultures. After 45d incubation, about 55% of the added DDT disappeared from the culture system, less than 5% remained in the nutrient solution, and about 44% was retained in the mycelium. Inoculation with mycelium enhanced the degradation of DDT in soil, and alleviated enrichment of DDT in plants. The metabolites identified by gas chromatography-mass spectrometry were 1,1-dichloro-2,2-bis(4-chlorophenyl) ethane (DDD), 1,1-dichloro-2,2-bis(4-chlorophenyl)ethylene (DDE), and 4,4'-dichlorobenzophenone (DBP). There were significant differences in the δ(13)C of released CO2 between [(13)C]DDT and DDT cultures, which indicated X. chrysenteron was able to mineralize DDT to CO2.

  13. Genetic diversity of naturally established ectomycorrhizal fungi on Norway spruce seedlings under nursery conditions.

    Science.gov (United States)

    Trocha, L K; Rudawska, M; Leski, T; Dabert, M

    2006-10-01

    We have assessed ectomycorrhizal fungi colonizing Norway spruce (Picea abies L.) seedlings in nine forest nurseries using restriction fragment length polymorphism (RFLP) and sequencing analyses of the internal transcribed spacers (ITS1-5.8S-ITS2) amplicons. Restriction analysis of the amplified DNA fragments with HinfI, MboI, and TaqI enzymes allowed the definition of 17 RFLP genotypes; five of them could be unambiguously assigned to Thelephora terrestris, Hebeloma longicaudum, H. crustuliniforme, Tricharina ochroleuca, and Cenococcum geophilum species by comparison with the sporocarp RFLP-pattern database. The remaining genotypes have been sequenced and compared with sequences deposited in the GenBank database. The phylogenetic analysis of resulting sequences and their identified matches indicated that isolated genotypes have formed seven clades. The ascomycetes were predominant: we have determined eight species--Wilcoxina mikolae, Phialophora finlandia, Tuber sp., Cenococcum geophilum, Tricharina ochroleuca, Pulvinula constellatio, and two unidentified ascomycetes--whereas the basidiomycetes were less common (four species denoted: Amphinema byssoides, Hebeloma crustuliniforme, H. longicaudum, and Thelephora terrestris). Wilcoxina mikolae and Phialophora finlandia were the most frequent fungi. Analysis of variance revealed that ascomycetes abundance was higher in nurseries that used organic fertilizer.

  14. Ostryopsis davidiana seedlings inoculated with ectomycorrhizal fungi facilitate formation of mycorrhizae on Pinus tabulaeformis seedlings.

    Science.gov (United States)

    Bai, Shu-Lan; Li, Guo-Lei; Liu, Yong; Kasten Dumroese, R; Lv, Rui-Heng

    2009-08-01

    Reforestation in China is important for reversing anthropogenic activities that degrade the environment. Pinus tabulaeformis is desired for these activities, but survival and growth of seedlings can be hampered by lack of ectomycorrhizae. When outplanted in association with Ostryopsis davidiana plants on reforestation sites, P. tabulaeformis seedlings become mycorrhizal and survival and growth are enhanced; without O. davidiana, pines often remain without mycorrhizae and performance is poorer. To better understand this relationship, we initiated an experiment using rhizoboxes that restricted root and tested the hypothesis that O. davidiana seedlings facilitated ectomycorrhizae formation on P. tabulaeformis seedlings through hyphal contact. We found that without O. davidiana seedlings, inocula of five indigenous ectomycorrhizal fungi were unable to grow and associate with P. tabulaeformis seedlings. Inocula placed alongside O. davidiana seedlings, however, resulted in enhanced growth and nutritional status of O. davidiana and P. tabulaeformis seedlings, and also altered rhizosphere pH and phosphatase activity. We speculate that these species form a common mycorrhizal network and this association enhances outplanting performance of P. tabulaeformis seedlings used for forest restoration.

  15. Global biogeography of the ectomycorrhizal /sebacina lineage (Fungi, Sebacinales) as revealed from comparative phylogenetic analyses.

    Science.gov (United States)

    Tedersoo, Leho; Bahram, Mohammad; Ryberg, Martin; Otsing, Eveli; Kõljalg, Urmas; Abarenkov, Kessy

    2014-08-01

    Compared with plants and animals, large-scale biogeographic patterns of microbes including fungi are poorly understood. By the use of a comparative phylogenetic approach and ancestral state reconstructions, we addressed the global biogeography, rate of evolution and evolutionary origin of the widely distributed ectomycorrhizal (EcM) /sebacina lineage that forms a large proportion of the Sebacinales order. We downloaded all publicly available internal transcribed spacer (ITS) sequences and metadata and supplemented sequence information from three genes to construct dated phylogenies and test biogeographic hypotheses. The /sebacina lineage evolved 45-57 Myr ago that groups it with relatively young EcM taxa in other studies. The most parsimonious origin for /sebacina is inferred to be North American temperate coniferous forests. Among biogeographic traits, region and biome exhibited stronger phylogenetic signal than host family. Consistent with the resource availability (environmental energy) hypothesis, the ITS region is evolving at a faster rate in tropical than nontropical regions. Most biogeographic regions exhibited substantial phylogenetic clustering suggesting a strong impact of dispersal limitation over a large geographic scale. In northern Holarctic regions, however, phylogenetic distances and phylogenetic grouping of isolates indicate multiple recent dispersal events. © 2014 John Wiley & Sons Ltd.

  16. Microbiological diagnostics of fungal infections

    Directory of Open Access Journals (Sweden)

    Corrado Girmenia

    2013-07-01

    Full Text Available Laboratory tests for the detection of fungal infections are easy to perform. The main obstacle to a correct diagnosis is the correlation between the laboratory findings and the clinical diagnosis. Among pediatric patients, the most common fungal pathogen is Candida. The detection of fungal colonization may be performed through the use of chromogenic culture media, which allows also the identification of Candida subspecies, from which pathogenicity depends. In neonatology, thistest often drives the decision to begin a empiric therapy; in this regard, a close cooperation between microbiologists and clinicians is highly recommended. Blood culture, if positive, is a strong confirmation of fungal infection; however, its low sensitivity results in a high percentage of false negatives, thus decreasing its reliability. Molecular diagnostics is still under evaluation, whereas the detection of some fungal antigens, such as β-D-glucan, galactomannan, mannoprotein, and cryptococcal antigen in the serum is used for adults, but still under evaluations for pediatric patients.http://dx.doi.org/10.7175/rhc.v4i1S.862

  17. Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes.

    Science.gov (United States)

    Bagchi, Sumanta; Ritchie, Mark E

    2010-12-01

    Large mammalian herbivores may have positive, neutral, or negative effects on annual net aboveground plant production (NAP) in different ecosystems, depending on their indirect effects on availability of key nutrients such as soil N. In comparison, less is known about the corresponding influence of grazers, and nutrient dynamics, over annual net belowground plant production (NBP). In natural multi-species plant communities, it remains uncertain how grazing influences relative allocation in the above- and belowground compartments in relation to its effects on plant nutrients. We evaluated grazer impacts on NAP, NBP, and relative investment in the above- and belowground compartments, alongside their indirect effects on soil N availability in the multiple-use Trans-Himalayan grazing ecosystem with native grazers and livestock. Data show that a prevailing grazing intensity of 51% increases NAP (+61%), but reduces NBP (-35%). Grazing also reduced C:N ratio in shoots (-16%) and litter (-50%), but not in roots, and these changes coincided with increased plant-available inorganic soil N (+23%). Areas used by livestock and native grazers showed qualitatively similar responses since NAP was promoted, and NBP was reduced, in both cases. The preferential investment in the aboveground fraction, at the expense of the belowground fraction, was correlated positively with grazing intensity and with improvement in litter quality. These results are consistent with hypothesized herbivore-mediated positive feedbacks between soil nutrients and relative investment in above- and belowground compartments. Since potentially overlapping mechanisms, such as N mineralization rate, plant N uptake, compositional turnover, and soil microbial activity, may contribute towards these feedbacks, further studies may be able to discern their respective contributions.

  18. Fungal artificial chromosomes for mining of the fungal secondary metabolome

    OpenAIRE

    2015-01-01

    Background With thousands of fungal genomes being sequenced, each genome containing up to 70 secondary metabolite (SM) clusters 30–80 kb in size, breakthrough techniques are needed to characterize this SM wealth. Results Here we describe a novel system-level methodology for unbiased cloning of intact large SM clusters from a single fungal genome for one-step transformation and expression in a model host. All 56 intact SM clusters from Aspergillus terreus were individually captured in self-rep...

  19. Development of allometric models for above and belowground biomass in swidden cultivation fallows of Northern Laos

    DEFF Research Database (Denmark)

    McNicol, Iain M.; Berry, Nicholas J.; Bruun, Thilde Bech

    2015-01-01

    in this region, which we hypothesised would be a major carbon pool given that resprouting, and associated high root biomass, is a common physiological/morphological trait in regularly disturbed ecosystems. We found that a general model including tree diameter (DBH, cm) and height (H, m) was best for estimating...... models for the prediction of both above- and below-ground woody biomass in swidden systems based on a destructive harvest of 150 trees in Luang Prabang Province, Laos People's Democratic Republic (PDR). This study is the first to develop allometric models of root biomass for swidden landscapes...... height was less important for estimating root biomass, with models including only DBH performing best. Re-sprouting trees exhibited greater root biomass (BGB=0.355DBH1.732) compared to those growing from seed (0.016DBH2.597) meaning different root allometric models were developed...

  20. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  1. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    Science.gov (United States)

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.

  2. Early root overproduction not triggered by nutrients decisive for competitive success belowground.

    Directory of Open Access Journals (Sweden)

    Francisco M Padilla

    Full Text Available BACKGROUND: Theory predicts that plant species win competition for a shared resource by more quickly preempting the resource in hotspots and by depleting resource levels to lower concentrations than its competitors. Competition in natural grasslands largely occurs belowground, but information regarding root interactions is limited, as molecular methods quantifying species abundance belowground have only recently become available. PRINCIPAL FINDINGS: In monoculture, the grass Festuca rubra had higher root densities and a faster rate of soil nitrate depletion than Plantago lanceolata, projecting the first as a better competitor for nutrients. However, Festuca lost in competition with Plantago. Plantago not only replaced the lower root mass of its competitor, but strongly overproduced roots: with only half of the plants in mixture than in monoculture, Plantago root densities in mixture were similar or higher than those in its monocultures. These responses occurred equally in a nutrient-rich and nutrient-poor soil layer, and commenced immediately at the start of the experiment when root densities were still low and soil nutrient concentrations high. CONCLUSIONS/SIGNIFICANCE: Our results suggest that species may achieve competitive superiority for nutrients by root growth stimulation prior to nutrient depletion, induced by the presence of a competitor species, rather than by a better ability to compete for nutrients per se. The root overproduction by which interspecific neighbors are suppressed independent of nutrient acquisition is consistent with predictions from game theory. Our results emphasize that root competition may be driven by other mechanisms than is currently assumed. The long-term consequences of these mechanisms for community dynamics are discussed.

  3. Above- and belowground fluxes of CH4 from boreal shrubs and Scots pine

    Science.gov (United States)

    Halmeenmäki, Elisa; Heinonsalo, Jussi; Santalahti, Minna; Putkinen, Anuliina; Fritze, Hannu; Pihlatie, Mari

    2016-04-01

    Boreal upland forests are considered as an important sink for the greenhouse gas methane (CH4) due to CH4 oxidizing microbes in the soil. However, recent evidence suggests that vegetation can act as a significant source of CH4. Also, preliminary measurements indicate occasional emissions of CH4 above the tree canopies of a boreal forest. Nevertheless, the sources and the mechanisms of the observed CH4 emissions are still mostly unknown. Furthermore, the majority of CH4 flux studies have been conducted with the soil chamber method, thus not considering the role of the vegetation itself. We conducted a laboratory experiment to study separately the above- and belowground CH4 fluxes of bilberry (Vaccinium myrtillus), lingonberry (Vaccinium vitis-idaea), heather (Calluna vulgaris), and Scots pine (Pinus sylvestris), which were grown in microcosms. The above- and belowground fluxes of the plants were measured separately, and these fluxes were compared to fluxes of microcosms containing only humus soil. In addition to the flux measurements, we analysed the CH4 producing archaea (methanogens) and the CH4 consuming bacteria (methanotrophs) with the qPCR method to discover whether these microbes contribute to the CH4 exchange from the plant material and the soil. The results of the flux measurements indicate that the humus soil with roots of lingonberry, heather, and Scots pine consume CH4 compared to bare humus soil. Simultaneously, the shoots of heather and Scots pine emit small amounts of CH4. We did not find detectable amounts of methanogens from any of the samples, suggesting the produced CH4 could be of non-microbial origin, or produced by very small population of methanogens. Based on the first preliminary results, methanotrophs were present in all the studied plant species, and especially in high amounts in the rooted soils, thus implying that the methanotrophs could be responsible of the CH4 uptake in the root-soil systems.

  4. Cardenolides, induced responses, and interactions between above- and belowground herbivores of milkweed (Asclepias spp.).

    Science.gov (United States)

    Rasmann, Sergio; Agrawal, Anurag A; Cook, Susan C; Erwin, Alexis C

    2009-09-01

    Theory has long predicted allocation patterns for plant defense against herbivory, but only recently have both above- and belowground plant defenses been considered simultaneously. Milkweeds in the genus Asclepias are a classic chemically defended clade of plants with toxic cardenolides (cardiac glycosides) and pressurized latex employed as anti-herbivore weapons. Here we combine a comparative approach to investigate broadscale patterns in allocation to root vs. shoot defenses across species with a species-specific experimental approach to identify the consequences of defense allocational shifts on a specialist herbivore. Our results show phylogenetic conservatism for inducibility of shoot cardenolides by an aboveground herbivore, with only four closely related tropical species showing significant induction; the eight temperate species examined were not inducible. Allocation to root and shoot cardenolides was positively correlated across species, and this relationship was maintained after accounting for phylogenetic nonindependence. In contrast to long-standing theoretical predictions, we found no evidence for a trade-off between constitutive and induced cardenolides; indeed the two were positively correlated across species in both roots and shoots. Finally, specialist root and shoot herbivores of common milkweed (A. syriaca) had opposing effects on latex production, and these effects had consequences for caterpillar growth consistent with latex providing resistance. Although cardenolides were not affected by our treatments, A. syriaca allocated 40% more cardenolides to shoots over roots. We conclude that constitutive and inducible defenses are not trading off across plant species, and shoots of Asclepias are more inducible than roots. Phylogenetic conservatism cannot explain the observed patterns of cardenolide levels across species, but inducibility per se was conserved in a tropical clade. Finally, given that above- and belowground herbivores can systemically

  5. Fungal infection following renal transplantation.

    Science.gov (United States)

    Gallis, H A; Berman, R A; Cate, T R; Hamilton, J D; Gunnells, J C; Stickel, D L

    1975-09-01

    Twenty-seven deep fungal infections developed in 22 of 171 patients following renal transplantation. These infections included cryptococcosis (ten), nocardiosis (seven), candidiasis (four), aspergillosis (two), phycomycosis (two), chromomycosis (one), and subcutaneous infection with Phialophora gougeroti (one). Twelve infections occurred in living-related and ten in cadaveric recipients. Nineteen of the 22 patients were male. Infections occurred from 0 to 61 months after transplantation. Complicating non-fungal infections were present concomitantly in 15 patients. Thirteen patients died, eight probably as a result of fungal infection. Appropriate diagnostic procedures yielded a diagnosis in 20 of 27 infections, and therapy was begun in 18 patients. Serologic, culture, and biopsy procedures useful in making rapid diagnoses are advocated in the hope of increasing survival.

  6. The Fungal Defensin Family Enlarged

    Directory of Open Access Journals (Sweden)

    Jiajia Wu

    2014-08-01

    Full Text Available Fungi are an emerging source of peptide antibiotics. With the availability of a large number of model fungal genome sequences, we can expect that more and more fungal defensin-like peptides (fDLPs will be discovered by sequence similarity search. Here, we report a total of 69 new fDLPs encoded by 63 genes, in which a group of fDLPs derived from dermatophytes are defined as a new family (fDEF8 according to sequence and phylogenetic analyses. In the oleaginous fungus Mortierella alpine, fDLPs have undergone extensive gene expansion. Our work further enlarges the fungal defensin family and will help characterize new peptide antibiotics with therapeutic potential.

  7. Fungal laryngitis in immunocompetent patients.

    Science.gov (United States)

    Ravikumar, A; Prasanna Kumar, S; Somu, L; Sudhir, B

    2014-01-01

    The diagnosis of fungal laryngitis is often overlooked in immunocompetent patients because it is commonly considered a disease of the immunocompromised. Further confusion is caused by clinical and histological similarity to more common conditions like Leukoplakia. Demonstration of hyperkeratosis particularly if associated with intraepithelial neutrophils on biopsy should trigger a search for fungus using specialized stains. These patients usually present with hoarseness of voice. Pain is present inconsistently along with dysphagia and odynophagia. We present three cases of fungal laryngitis in immunocompetent patients out of which one underwent microlaryngeal surgery with excision biopsy. All these patients responded well with oral antifungal therapy.

  8. Influence of Aluminum and Manganese on the Growth, Nutrient Uptake and the Efflux by Ectomycorrhizal Fungi%铝和锰对外生菌根真菌生长、养分吸收及分泌作用的影响

    Institute of Scientific and Technical Information of China (English)

    李华; 黄建国; 袁玲

    2013-01-01

    在强酸性土壤和铝锰矿墟上,铝和锰是影响森林生长和植被恢复的主要限制因子,研究它们对外生菌根真菌的影响,筛选优良的抗性菌株,可为开展污染土壤生物修复提供技术支撑及理论依据.试验采用纯培养技术研究了Al3+、Mn2+单独或共存对褐环乳牛肝菌13(Suillus luteus 13,SI 13)、土生空团菌04(Cenococcum geophilum 04,Cg 04)、彩色豆马勃715(Pisolithus tinctorius 715,Pt 715)这3株外生菌根真菌生长、养分吸收、有机酸分泌的影响.结果表明,Mn2+使Sl 13、Cg 04、Pt 715的生物量分别降低了70.35%、52.44%和18.55%;Al3+使Sl 13的生物量下降50.74%,但增加Cg 04的生物量;Al3+和Mn2+共存对3种菌株生长均有协同抑制作用,但对Pt 715的抑制最小,表明Cg 04抗铝,Pt 715对铝、锰的单独污染和复合污染均有较强的抗性.Al3+和Mn2+抑制外生菌根真菌吸收养分,对Sl 13的抑制作用显著大于Pt 715和Cg 04;但提高3个菌株的草酸和H+分泌速率,增加其分泌量,两者共存对Cg 04草酸分泌速率具有协同促进效应,Pt 715不仅能分泌草酸而且还分泌丁二酸.因此,抗性强的外生菌根真菌可通过分泌较多的有机酸络合Al3和Mn2+而缓解其毒害.%Al3+ and Mn2+ limit forest growth and vegetation restoration in strongly acidic soils and mining areas of aluminum and manganese. The knowledge on the influence of these two elements on ectomycorrhizal fungi can provide theoretical and technical supports for the selection of powerful ectomycorrhizal fungal strains and the bioremediation of contaminated soil. Three ectomycorrhizal fungal strains, namely Suillus luleus 13 (Sl 13) , Cenococcum geophilum 04 ( Cg 04) and Pisolithus tinctorius 715 (Pt 715) , were grown in liquid culture mediums with Al3+ and Mn2+ added alone and together to investigate fungal growth, nutrient uptake and organic acid efflux. The results showed that the biomass of Sl 13, Cg 04 and Pt 715 was

  9. Ectomycorrhizal association of three Lactarius species with Carpinus and Quercus trees in a Mexican montane cloud forest.

    Science.gov (United States)

    Lamus, Valentina; Montoya, Leticia; Aguilar, Carlos J; Bandala, Victor M; Ramos, David

    2012-01-01

    Ectomycorrhizal (EM) fungi are being monitored in the Santuario del Bosque de Niebla in the central region of Veracruz (eastern Mexico). Based on the comparison of DNA sequences (ITS rDNA) of spatiotemporally co-occurring basidiomes and EM root tips, we discovered the EM symbiosis of Lactarius indigo, L. areolatus and L. strigosipes with Carpinus caroliniana, Quercus xalapensis and Quercus spp. The host of the EM tips was identified by comparison of the large subunit of the ribulose-bisphosphate carboxylase gene (rbcL). Descriptions coupled with photographs of ectomycorrhizas and basidiomes are presented.

  10. {sup 137}Cs in the fungal compartment of Swedish forest soils

    Energy Technology Data Exchange (ETDEWEB)

    Vinichuk, Mykhaylo M. [Department of General Ecology, University of Agriculture and Ecology, Stary Blvd. 7, Zhytomyr 10001 (Ukraine); Johanson, Karl J.; Taylor, Andy F.S. [Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, Uppsala S-750 07 (Sweden)

    2004-05-05

    The {sup 137}Cs activities in soil profiles and in the mycelia of four ectomycorrhizal fungi were studied in a Swedish forest in an attempt to understand the mechanisms governing the transfer and retention of {sup 137}Cs in forest soil. The biomass of four species of fungi was determined and estimated to be 16 g m{sup -2} in a peat soil and 47-189 g m{sup -2} in non-peat soil to the depth of 10 cm. The vertical distribution was rather homogeneous for two species (Tylospora spp. and Piloderma fallax) and very superficial for Hydnellum peckii. Most of the {sup 137}Cs activity in mycelium of non-peat soils was found in the upper 5 cm. Transfer factors were quite high even for those species producing resupinate sporocarps. In the peat soil only approximately 0.3% of the total {sup 137}Cs inventory in soil was found in the fungal mycelium. The corresponding values for non-peat soil were 1.3, 1.8 and 1.9%.

  11. Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan.

    Science.gov (United States)

    Jia, Shuzheng; Nakano, Takashi; Hattori, Masahira; Nara, Kazuhide

    2017-07-13

    Pyroleae species are perennial understory shrubs, many of which are partial mycoheterotrophs. Most fungi colonizing Pyroleae roots are ectomycorrhizal (ECM) and share common mycobionts with their Pyroleae hosts. However, such mycobiont sharing has neither been examined in depth before nor has the interspecific variation in sharing among Pyroleae species. Here, we examined root-associated fungal communities in three co-existing Pyroleae species, including Pyrola alpina, Pyrola incarnata, and Orthilia secunda, with reference to co-existing ECM fungi on the surrounding trees in the same soil blocks in subalpine coniferous forests. We identified 42, 75, and 18 fungal molecular operational taxonomic units in P. alpina, P. incarnata, and O. secunda roots, respectively. Mycobiont sharing with surrounding trees, which was defined as the occurrence of the same mycobiont between Pyroleae and surrounding trees in each soil block, was most frequent among P. incarnata (31 of 44 plants). In P. alpina, sharing was confirmed in 12 of 37 plants, and the fungal community was similar to that of P. incarnata. Mycobiont sharing was least common in O. secunda, found in only 5 of 32 plants. Root-associated fungi of O. secunda were dominated by Wilcoxina species, which were absent from the surrounding ECM roots in the same soil blocks. These results indicate that mycobiont sharing with surrounding trees does not equally occur among Pyroleae plants, some of which may develop independent mycorrhizal associations with ECM fungi, as suggested in O. secunda at our research sites.

  12. Protective immune responses to fungal infections.

    Science.gov (United States)

    Rivera, A

    2014-09-01

    The incidence of fungal infections has been on the rise over several decades. Fungal infections threaten animals, plants and humans alike and are thus of significant concern to scientists across disciplines. Over the last decade, significant advances on fungal immunology have lead to a better understanding of important mechanisms of host protection against fungi. In this article, I review recent advances of relevant mechanisms of immune-mediated protection to fungal infections.

  13. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi

    DEFF Research Database (Denmark)

    Tedersoo, Leho; Bahram, Mohammad; Toots, Märt

    2012-01-01

    nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting...

  14. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Directory of Open Access Journals (Sweden)

    Scott Ferrenberg

    2016-10-01

    Full Text Available Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species and belowground (species active in organic and mineral soil layers arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community and modified Winkler funnels (belowground community and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the

  15. Aboveground and belowground arthropods experience different relative influences of stochastic versus deterministic community assembly processes following disturbance

    Science.gov (United States)

    Martinez, Alexander S.; Faist, Akasha M.

    2016-01-01

    Background Understanding patterns of biodiversity is a longstanding challenge in ecology. Similar to other biotic groups, arthropod community structure can be shaped by deterministic and stochastic processes, with limited understanding of what moderates the relative influence of these processes. Disturbances have been noted to alter the relative influence of deterministic and stochastic processes on community assembly in various study systems, implicating ecological disturbances as a potential moderator of these forces. Methods Using a disturbance gradient along a 5-year chronosequence of insect-induced tree mortality in a subalpine forest of the southern Rocky Mountains, Colorado, USA, we examined changes in community structure and relative influences of deterministic and stochastic processes in the assembly of aboveground (surface and litter-active species) and belowground (species active in organic and mineral soil layers) arthropod communities. Arthropods were sampled for all years of the chronosequence via pitfall traps (aboveground community) and modified Winkler funnels (belowground community) and sorted to morphospecies. Community structure of both communities were assessed via comparisons of morphospecies abundance, diversity, and composition. Assembly processes were inferred from a mixture of linear models and matrix correlations testing for community associations with environmental properties, and from null-deviation models comparing observed vs. expected levels of species turnover (Beta diversity) among samples. Results Tree mortality altered community structure in both aboveground and belowground arthropod communities, but null models suggested that aboveground communities experienced greater relative influences of deterministic processes, while the relative influence of stochastic processes increased for belowground communities. Additionally, Mantel tests and linear regression models revealed significant associations between the aboveground arthropod

  16. Imaging fungal infections in children

    NARCIS (Netherlands)

    Ankrah, Alfred O.; Sathekge, Mike M; Dierckx, Rudi A.J.O.; Glaudemans, Andor W.J.M.

    2016-01-01

    Fungal infections in children rarely occur, but continue to have a high morbidity and mortality despite the development of newer antifungal agents. It is essential for these infections to be diagnosed at the earliest possible stage so appropriate treatment can be initiated promptly. The addition of

  17. Microbiology of systemic fungal infections

    Directory of Open Access Journals (Sweden)

    Chakrabarti A

    2005-01-01

    Full Text Available The increased incidence of systemic fungal infections in the past two decades has been overwhelming. Earlier, it was pathogenic dimorphic fungi, which were known to cause systemic infections. However, starting from the 1960s, opportunistic fungi started causing more number of infections, especially in the immunocompromised host. More recently, newer and less common fungal agents are being increasingly associated with infection in immunosuppressed hosts. Amongst dimorphic fungi, infections due to Histoplasma capsulatum and Penicillium marneffei are increasingly reported in patients with AIDS in India. H. capsulatum is found country wide, but P. marneffei remains restricted to Manipur state. Although both varieties of C. neoformans , C. neoformans var. neoformans (serotypes A & D, and C. neoformans var. gattii (serotypes B & C are reported in India, most of the cases reported are of serotype A. Increased incidence of cryptococcosis is reported from all centers with the emergence of AIDS. Systemic infection due to species under Candida , Aspergillus and zygomycetes is widely prevalent in nosocomial setting, and outbreaks due to unusual fungi are reported occasionally from tertiary care centers. This global change in systemic fungal infections has emphasized the need to develop good diagnostic mycology laboratories in this country and to recognize this increasingly large group of potential fungal pathogens.

  18. Fungal endophyte diversity in Sarracenia

    Science.gov (United States)

    Fungal endophytes were isolated from four species of the carnivorous pitcher plant genus Sarracenia: S. minor, S. oreophila, S. purpurea, and S. psittacina. Twelve taxa of fungi, eight within the Ascomycota and four within the Basidiomycota, were identified based on PCR amplification and sequencing ...

  19. (Post-)genomics approaches in fungal research

    NARCIS (Netherlands)

    Aguilar-Pontes, María Victoria; de Vries, Ronald P; Zhou, M.; van den Brink, J.

    2014-01-01

    To date, hundreds of fungal genomes have been sequenced and many more are in progress. This wealth of genomic information has provided new directions to study fungal biodiversity. However, to further dissect and understand the complicated biological mechanisms involved in fungal life styles, functio

  20. A novel plant-fungal mutualism associated with fire.

    Science.gov (United States)

    Baynes, Melissa; Newcombe, George; Dixon, Linley; Castlebury, Lisa; O'Donnell, Kerry

    2012-01-01

    Bromus tectorum, or cheatgrass, is native to Eurasia and widely invasive in western North America. By late spring, this annual plant has dispersed its seed and died; its aboveground biomass then becomes fine fuel that burns as frequently as once every 3-5 y in its invaded range. Cheatgrass has proven to be better adapted to fire there than many competing plants, but the contribution of its fungal symbionts to this adaptation had not previously been studied. In sampling cheatgrass endophytes, many fire-associated fungi were found, including Morchella in three western states (New Mexico, Idaho, and Washington). In greenhouse experiments, a New Mexico isolate of Morchella increased both the biomass and fecundity of its local cheatgrass population, thus simultaneously increasing both the probability of fire and survival of that event, via more fuel and a greater, belowground seed bank, respectively. Re-isolation efforts proved that Morchella could infect cheatgrass roots in a non-mycorrhizal manner and then grow up into aboveground tissues. The same Morchella isolate also increased survival of seed exposed to heat typical of that which develops in the seed bank during a cheatgrass fire. Phylogenetic analysis of Eurasian and North American Morchella revealed that this fire-associated mutualism was evolutionarily novel, in that cheatgrass isolates belonged to two phylogenetically distinct species, or phylotypes, designated Mel-6 and Mel-12 whose evolutionary origin appears to be within western North America. Mutualisms with fire-associated fungi may be contributing to the cheatgrass invasion of western North America. Copyright © 2011 British Mycological Society. All rights reserved.

  1. Spatiotemporal transfer of carbon-14-labelled photosynthate from ectomycorrhizal Pinus densiflora seedlings to extraradical mycelia.

    Science.gov (United States)

    Wu, Bingyun; Nara, Kazuhide; Hogetsu, Taizo

    2002-04-01

    Seedlings of Pinus densiflora colonized by an unidentified ectomycorrhizal fungus (T01) were labelled photosynthetically with 14C. Movement of 14C-labelled photosynthates within the underground part of the seedlings was investigated by temporal autoradiography using an imaging plate. Within 1 day, 14C was transferred from the shoot to the underground part that included roots, mycorrhizae, and the extraradical mycelium; within 3 days, the 14C in the underground part reached its maximum density. Mycorrhizae and actively growing root tips were large C sinks. Three days after 14C labelling, counts of 14C radioactivity in the underground part of the mycorrhizal seedlings were 2.6 times those of nonmycorrhizal seedlings. The mycorrhizae of mycorrhizal plants accumulated 5.2 times the 14C counts in the short-root tips of nonmycorrhizal plants. 14C counts in various areas of the extraradical mycelium demonstrated that all 14C-photosynthate transfer from the host root to the extraradical mycelium occurred within 3 days after 14C labelling, and that there was only a short lag of < 1 day between 14C accumulation in the basal and distal parts of the mycelium. Although more 14C accumulated in the distal than in the basal parts, 14C counts per unit hyphal biomass were similar between the two. These results suggest that 14C spread rapidly throughout the entire mycelium. Thirteen days after 14C labelling, we estimated 14C allocation to extraradical mycelia by taking autoradiographs after removing host roots. About 24% of 14C counts in the underground part of the mycorrhizal seedlings had been allocated to extraradical mycelia in this system, indicating that the fugal mycelium is an important sink for photosynthates.

  2. Relationship between Ectomycorrhizal Fruiting Bodies and Climatic and Environmental Factors in Naejangsan National Park.

    Science.gov (United States)

    Jang, Seog-Ki; Kim, Sang-Wook

    2015-06-01

    We collected and identified 5,721 ectomycorrhizal fruiting bodies (EcM) from Naejangsan National Park from June 2004 to 2013, belonging to 1 phylum, 1 class, 6 orders, 19 families, 40 genera, and 196 species. Of these, 2,249 individuals were identified as 89 species belonging to 11 genera in 7 families in the Agaricales; 1,511 were identified as 43 species belonging to 2 genera in 1 family in the Russulales; 1,132 were identified as 50 species belonging to 21 genera in 6 families in the Boletales; 793 were identified as 8 species belonging to 3 genera in 2 families in the Cantharellales; 29 were identified as 3 species belonging to 2 genera in 2 families in the Thelephorales; and 7 were identified as 3 species belonging to 1 genus in 1 family in the Gomphales. Thus, most of the EcMs identified belonged to the following 3 orders: Agaricales, Russulales, and Boletales. Russulaceae were most common (43 species), followed by Boletaceae (39 species), and Amanitaceae (27 species); most individuals were Russulaceae (1,511), followed by Hydnagiaceae (1,071) and Boletaceae (804). The monthly distribution showed that the greatest number of individuals and species of EcM, including the dominant ones, occur around July~September at an elevation of 200~299 m, diminishing markedly above 600 m. The greatest number of individuals and species, including the dominant ones, were collected in the period with average temperatures 25.0~26.9℃, lows of 21.0~22.9℃, and highs of 30.0~31.9℃, relative humidity > 76%, and rainfall > 400 mm.

  3. Boron and other elements in sporophores of ectomycorrhizal and saprotrophic fungi.

    Science.gov (United States)

    Lavola, Anu; Aphalo, Pedro J; Lehto, Tarja

    2011-04-01

    Fungi are usually thought not to have a boron (B) requirement. It is not known if mycorrhizas take up B from low concentrations that are common in forest soils, as fungi might also immobilise B. Here, we studied the B concentrations in sporophores of 49 ectomycorrhizal and 10 saprotrophic fungi to assess whether B is translocated in mycelium or not. Additionally, P and metal concentrations were measured for comparison. Variability both within species and between species was very large, as the lowest measured B concentration was 0.01 mg kg(-1) in Amanita muscaria, and the highest was 280 mg kg(-1) in Paxillus involutus. There was no clear difference between saprotrophic and mycorrhizal fungi. The majority of species did not accumulate B at more than 0.01-3 mg kg(-1), but there were some species that consistently had median concentration values higher than 5-6 mg kg(-1) and much higher maximum values, particularly Paxillus involutus, Lactarius necator and several Russula species. Most species increased their B concentration in B fertilised plots, but there were exceptions, particularly Rozites caperatus and Lactarius camphoratus. Boron concentrations did not correlate with those of other elements. In conclusion, B is translocated in the mycelia of most of the studied species. The differences between species may be due to differences in their water use, or carbohydrates used in translocation. It remains to be studied, if B concentrations in mycorrhizas or mycelia in soil are in the same order of magnitude as the larger ones found here, and if this has any effects on the host plants.

  4. Subseafloor basalts as fungal habitats

    Science.gov (United States)

    Ivarsson, M.

    2012-09-01

    The oceanic crust is believed to host the largest potential habitat for microbial life on Earth, yet, still we lack substantial information about the abundance, diversity, and consequence of its biosphere. The last two decades have involved major research accomplishments within this field and a change in view of the ocean crust and its potential to harbour life. Here fossilised fungal colonies in subseafloor basalts are reported from three different seamounts in the Pacific Ocean. The fungal colonies consist of various characteristic structures interpreted as fungal hyphae, fruit bodies and spores. The fungal hyphae are well preserved with morphological characteristics such as hyphal walls, septa, thallic conidiogenesis, and hyphal tips with hyphal vesicles within. The fruit bodies consist of large (∼50-200 µm in diameter) body-like structures with a defined outer membrane and an interior filled with calcite. The fruit bodies have at some stage been emptied of their contents of spores and filled by carbonate-forming fluids. A few fruit bodies not filled by calcite and with spores still within support this interpretation. Spore-like structures (ranging from a few µm to ∼20 µm in diameter) are also observed outside of the fruit bodies and in some cases concentrated to openings in the membrane of the fruit bodies. The hyphae, fruit bodies and spores are all closely associated with a crust lining the vein walls that probably represent a mineralized biofilm. The results support a fungal presence in deep subseafloor basalts and indicate that such habitats were vital between ∼81 and 48 Ma.

  5. Alnus acuminata in dual symbiosis with Frankia and two different ectomycorrhizal fungi (Alpova austroalnicola and Alpova diplophloeus) growing in soilless growth medium

    Science.gov (United States)

    Alejandra G. Becerra; Euginia Menoyo; Irene Lett; Ching Y. Li

    2009-01-01

    In this study we investigated the capacity of Andean alder (Alnus acuminata Kunth), inoculated with Frankia and two ectomycorrhizal fungi (Alpova austroalnicola Dominguez and Alpova diplophloeus [Zeller and Dodge] Trappe and Smith), for nodulation and growth in pots of a soilless medium...

  6. Mycorrhizal associations as Salix repens L. communities in succession of dune ecosystems II Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi

    NARCIS (Netherlands)

    Heijden, van der E.W.; Vosatka, M.

    2000-01-01

    Ectomycorrhizal (EcM) and arbuscular mycorrhizal (AM) associations of Salix repens were studied at 16 sites in different successional stages of dune ecosystems (calcareous-acidic, dry-wet) in the Netherlands. High EcM colonization, low AM colonization, and lack of differences between habitats

  7. An arctic community of symbiotic fungi assembled by long-distance dispersers: phylogenetic diversity of ectomycorrhizal basidiomycetes in Svalbard based on soil and sporocarp DNA

    Science.gov (United States)

    J. Geml; I. Timling; C.H. Robinson; N. Lennon; H.C. Nusbaum; C. Brochmann; M.E. Noordeloos; D.L. Taylor

    2011-01-01

    Current evidence from temperate studies suggests that ectomycorrhizal (ECM) fungi require overland routes for migration because of their obligate symbiotic associations with woody plants. Despite their key roles in arctic ecosystems, the phylogenetic diversity and phylogeography of arctic ECM fungi remains little known. Here we assess the phylogenetic diversity of ECM...

  8. Pairwise Transcriptomic Analysis of the Interactions Between the Ectomycorrhizal Fungus Laccaria bicolor S238N and Three Beneficial, Neutral and Antagonistic Soil Bacteria

    NARCIS (Netherlands)

    Deveau, A.; Barret, M.; Diedhiou, A.G.; Leveau, J.; Boer, de W.; Martin, F.; Frey-Klett, P.

    2015-01-01

    Ectomycorrhizal fungi are surrounded by bacterial communities with which they interact physically and metabolically during their life cycle. These bacteria can have positive or negative effects on the formation and the functioning of ectomycorrhizae. However, relatively little is known about the mec

  9. Molecular phylogenetic biodiversity assessment of arctic and boreal ectomycorrhizal Lactarius Pers. (Russulales; Basidiomycota) in Alaska, based on soil and sporocarp DNA

    Science.gov (United States)

    Jozsef Geml; Gary A. Laursen; Ina Timling; Jack M. McFarland; Michael G. Booth; Niall Lennon; Chad Nusbaum; D. Lee. Taylor

    2009-01-01

    Despite the critical roles fungi play in the functioning of ecosystems, especially as symbionts of plants and recyclers of organic matter, their biodiversity is poorly known in high-latitude regions. In this paper, we discuss the molecular diversity of one of the most diverse and abundant groups of ectomycorrhizal fungi: the genus Lactarius Pers....

  10. Morphological and molecular identification of the ectomycorrhizal association of Lactarius fumosibrunneus and Fagus grandifolia var. mexicana trees in eastern Mexico.

    Science.gov (United States)

    Garay-Serrano, Edith; Bandala, Victor Manuel; Montoya, Leticia

    2012-11-01

    A population of Fagus grandifolia var. mexicana (covering ca. 4.7 ha) is established in a montane cloud forest refuge at Acatlan Volcano in eastern Mexico (Veracruz State), and it represents one of only ten populations of this species known to occur in the country (each stand covers ca. 2-35 ha in extension) and one of the southernmost in the continent. Sporocarps of several ectomycorrhizal macrofungi have been observed in the area, and among them, individuals of the genus Lactarius are common in the forest. However, the morphological and molecular characterization of ectomycorrhizae is still in development. Currently, two species of Lactarius have been previously documented in the area. Through the phylogenetic analysis of the internal transcribed spacer (ITS) region from basidiomes and ectomycorrhizae, we identified the Lactarius fumosibrunneus ectomycorrhiza. The host, F. grandifolia var. mexicana, was determined comparing the amplified ITS sequence from ectomycorrhizal root tips in the GenBank database with Basic Local Alignment Search Tool. The mycorrhizal system of L. fumosibrunneus is monopodial-pyramidal, characterized by its shiny, white to silver and pruinose surface, secreting a white latex when damaged, composed of three plectenchymatous mantle layers, with diverticulated terminal elements at the outer mantle. It lacks emanating hyphae, rhizomorphs, and sclerotia. A detailed morphological and anatomical description, illustrations, and photographs of the ectomycorrhiza are presented. The comparison of L. fumosibrunneus and other Lactarius belonging to subgenus Plinthogalus is presented.

  11. Defoliation of interior Douglas-fir elicits carbon transfer and stress signalling to ponderosa pine neighbors through ectomycorrhizal networks.

    Science.gov (United States)

    Song, Yuan Yuan; Simard, Suzanne W; Carroll, Allan; Mohn, William W; Zeng, Ren Sen

    2015-02-16

    Extensive regions of interior Douglas-fir (Pseudotsuga menziesii var. glauca, IDF) forests in North America are being damaged by drought and western spruce budworm (Choristoneura occidentalis). This damage is resulting from warmer and drier summers associated with climate change. To test whether defoliated IDF can directly transfer resources to ponderosa pine (Pinus ponderosae) regenerating nearby, thus aiding in forest recovery, we examined photosynthetic carbon transfer and defense enzyme response. We grew pairs of ectomycorrhizal IDF 'donor' and ponderosa pine 'receiver' seedlings in pots and isolated transfer pathways by comparing 35 μm, 0.5 μm and no mesh treatments; we then stressed IDF donors either through manual defoliation or infestation by the budworm. We found that manual defoliation of IDF donors led to transfer of photosynthetic carbon to neighboring receivers through mycorrhizal networks, but not through soil or root pathways. Both manual and insect defoliation of donors led to increased activity of peroxidase, polyphenol oxidase and superoxide dismutase in the ponderosa pine receivers, via a mechanism primarily dependent on the mycorrhizal network. These findings indicate that IDF can transfer resources and stress signals to interspecific neighbors, suggesting ectomycorrhizal networks can serve as agents of interspecific communication facilitating recovery and succession of forests after disturbance.

  12. Prediction of the potential geographic distribution of the ectomycorrhizal mushroom Tricholoma matsutake under multiple climate change scenarios

    Science.gov (United States)

    Guo, Yanlong; Li, Xin; Zhao, Zefang; Wei, Haiyan; Gao, Bei; Gu, Wei

    2017-04-01

    Effective conservation and utilization strategies for natural biological resources require a clear understanding of the geographic distribution of the target species. Tricholoma matsutake is an ectomycorrhizal (ECM) mushroom with high ecological and economic value. In this study, the potential geographic distribution of T. matsutake under current conditions in China was simulated using MaxEnt software based on species presence data and 24 environmental variables. The future distributions of T. matsutake in the 2050s and 2070s were also projected under the RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 climate change emission scenarios described in the Special Report on Emissions Scenarios (SRES) by the Intergovernmental Panel on Climate Change (IPCC). The areas of marginally suitable, suitable and highly suitable habitats for T. matsutake in China were approximately 0.22 × 106 km2, 0.14 × 106 km2, and 0.11 × 106 km2, respectively. The model simulations indicated that the area of marginally suitable habitats would undergo a relatively small change under all four climate change scenarios; however, suitable habitats would significantly decrease, and highly suitable habitat would nearly disappear. Our results will be influential in the future ecological conservation and management of T. matsutake and can be used as a reference for studies on other ectomycorrhizal mushroom species.

  13. Effects of organic enrichment of mine spoil on growth and nutrient uptake in oak seedlings inoculated with selected ectomycorrhizal fungi

    Energy Technology Data Exchange (ETDEWEB)

    Lunt, P.H.; Hedger, J.N. [University of Wales, Aberystwyth (United Kingdom). Inst. of Biological Science

    2003-06-01

    Poor growth of Quercus robur L. (oak) trees has been reported on mine sites where overburden and subsoil have been used in the reinstatement of surface layers. This stunting has been attributed to a lack of macronutrients and to an adverse soil environment for root growth and mycorrhizal development. Growth, mineral nutrition, and ectomycorrhizal colonization of Q. robur seedlings were studied in an experiment carried out under controlled growing conditions in which mine spoil material was enriched with a leaf litter mulch. Enrichment of mine spoil material was found to produce a significant increase in growth and foliar N concentrations of oak seedlings. Inoculation with three taxa of ectomycorrhizal fungi did not benefit seedlings when mine spoil was the only substrate, possibly due to the poor physical properties of the unamended spoil and lack of nutrients. Inoculation with two taxa, Laccaria laccata and Hebeloma crustuliniforme, isolated from 3-year-old trees produced a significant stimulation of growth in the organically enriched treatment, which was believed to be due to greater uptake of mineralized N. However, Cortinarius anomalus isolated from fruit bodies associated with a 15-year-old tree did not increase biomass. The presence of organic matter was found to result in a significant stimulation of mycorrhizal infection by both inoculum and contaminant mycobionts. Recommendations are made for improving the establishment and growth of oak seedlings on reinstated sites.

  14. Transfer and consumption of oxygen during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens in an airlift bioreactor.

    Science.gov (United States)

    Rossi, Márcio José; Nascimento, Francisco Xavier; Giachini, Admir José; Oliveira, Vetúria Lopes; Furigo, Agenor

    2017-02-01

    The study had the objective of examining the aspects involved in the cultivation of ectomycorrhizal fungi for the production of commercially sustainable inoculant to attend the demands of the seedling nursery industry. It focused on certain parameters, such as the oxygen consumption levels, during the cultivation of the ectomycorrhizal fungus Rhizopogon nigrescens CBMAI 1472, which was performed in a 5-L airlift bioreactor. The dynamic method was employed to determine the volumetric coefficient for the oxygen transfer (k L a) and the specific oxygen uptake rate (Q O2 ). The results indicate that specific growth rates (μ X ) and oxygen consumption decline rapidly with time, affected mainly by increases in biomass concentration (X). Increases in X are obtained primarily by increases in the size of pellets that are formed, altering, consequently, the cultivation dynamics. This is the result of natural increases in transferring resistance that are observed in these environments. Therefore, to avoid critical conditions that affect viability and the productivity of the process, particular settings are discussed.

  15. Explorations of mechanisms regulating ectomycorrhizal colonization of boron-fertilized pine: Quarterly report, 8/20/86-3/31/87

    Energy Technology Data Exchange (ETDEWEB)

    Garrett, H.E.

    1987-01-01

    Shortleaf pine seedings were inoculated with Pisolithus tinctorius had extensive ectomycorrhizal development throughout the root system. Fructose, glucose, sucrose, pinitol, and myoinositol were extracted and quantitated from roots. Sucrose accounted for about one-third of the total sugar content. In general, mycorrhizal roots contained significantly higher concentrations of total carbohydrates than nonmycorrhizal roots. Amont individual sugars identified, the concentrations of pinitol, fructose, glucose and sucrose were especially affected by ectomycorrhizal development and/or boron(B) fertilization. Mycorrhizal root systems contained greater concentrations of fructose than nonmycorrhizal root systems irrespective of method of B fertilization. Similarly, pinitol, glucose, and sucrose were typically more prevalent in mycorrhizal root systems although exceptions were found. Within mycorrhizal treatments, significant interactions were observed between method of B application and the concentration of individual sugars. In mycorrhizal plants, foliar + soil and soil application treatments yielded the greatest increases in individual sugars. Individual sugars in nonmycorrhizal roots were affected less by B fertilization than in mycorrhizal roots. Significant increases were, however, observed in fructose with either foliar + soil or soil-applied B, in glucose with foliar-applied B, and in sucrose with soil-applied B. 23 refs., 1 fig., 1 tab.

  16. Allometric constraints on, and trade-offs in, belowground carbon allocation and their control of soil respiration across global forest ecosystems.

    Science.gov (United States)

    Chen, Guangshui; Yang, Yusheng; Robinson, David

    2014-05-01

    To fully understand how soil respiration is partitioned among its component fluxes and responds to climate, it is essential to relate it to belowground carbon allocation, the ultimate carbon source for soil respiration. This remains one of the largest gaps in knowledge of terrestrial carbon cycling. Here, we synthesize data on gross and net primary production and their components, and soil respiration and its components, from a global forest database, to determine mechanisms governing belowground carbon allocation and their relationship with soil respiration partitioning and soil respiration responses to climatic factors across global forest ecosystems. Our results revealed that there are three independent mechanisms controlling belowground carbon allocation and which influence soil respiration and its partitioning: an allometric constraint; a fine-root production vs. root respiration trade-off; and an above- vs. belowground trade-off in plant carbon. Global patterns in soil respiration and its partitioning are constrained primarily by the allometric allocation, which explains some of the previously ambiguous results reported in the literature. Responses of soil respiration and its components to mean annual temperature, precipitation, and nitrogen deposition can be mediated by changes in belowground carbon allocation. Soil respiration responds to mean annual temperature overwhelmingly through an increasing belowground carbon input as a result of extending total day length of growing season, but not by temperature-driven acceleration of soil carbon decomposition, which argues against the possibility of a strong positive feedback between global warming and soil carbon loss. Different nitrogen loads can trigger distinct belowground carbon allocation mechanisms, which are responsible for different responses of soil respiration to nitrogen addition that have been observed. These results provide new insights into belowground carbon allocation, partitioning of soil

  17. The Chemical Basis of Fungal Bioluminescence.

    Science.gov (United States)

    Purtov, Konstantin V; Petushkov, Valentin N; Baranov, Mikhail S; Mineev, Konstantin S; Rodionova, Natalja S; Kaskova, Zinaida M; Tsarkova, Aleksandra S; Petunin, Alexei I; Bondar, Vladimir S; Rodicheva, Emma K; Medvedeva, Svetlana E; Oba, Yuichi; Oba, Yumiko; Arseniev, Alexander S; Lukyanov, Sergey; Gitelson, Josef I; Yampolsky, Ilia V

    2015-07-06

    Many species of fungi naturally produce light, a phenomenon known as bioluminescence, however, the fungal substrates used in the chemical reactions that produce light have not been reported. We identified the fungal compound luciferin 3-hydroxyhispidin, which is biosynthesized by oxidation of the precursor hispidin, a known fungal and plant secondary metabolite. The fungal luciferin does not share structural similarity with the other eight known luciferins. Furthermore, it was shown that 3-hydroxyhispidin leads to bioluminescence in extracts from four diverse genera of luminous fungi, thus suggesting a common biochemical mechanism for fungal bioluminescence.

  18. Relating belowground microbial composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical forest.

    Science.gov (United States)

    Barberán, Albert; McGuire, Krista L; Wolf, Jeffrey A; Jones, F Andrew; Wright, Stuart Joseph; Turner, Benjamin L; Essene, Adam; Hubbell, Stephen P; Faircloth, Brant C; Fierer, Noah

    2015-12-01

    The complexities of the relationships between plant and soil microbial communities remain unresolved. We determined the associations between plant aboveground and belowground (root) distributions and the communities of soil fungi and bacteria found across a diverse tropical forest plot. Soil microbial community composition was correlated with the taxonomic and phylogenetic structure of the