WorldWideScience

Sample records for below-ground vertebrate herbivory

  1. Root herbivory indirectly affects above- and below-ground community members and directly reduces plant performance

    NARCIS (Netherlands)

    Barber, N.A.; Milano, N.J.; Kiers, E.T.; Theis, N.; Bartolo, V.; Hazzard, R.V.; Adler, L.S.

    2015-01-01

    There is a widespread recognition that above- and below-ground organisms are linked through their interactions with host plants that span terrestrial subsystems. In addition to direct effects on plants, soil organisms such as root herbivores can indirectly alter interactions between plants and other

  2. Insect herbivory and vertebrate grazing impact food limitation and grasshopper populations during a severe outbreak

    Science.gov (United States)

    Interspecific competition between distantly related herbivores, as well as between large vertebrate herbivores and phytophagous insects, has received little attention. Livestock grazing is the dominant land use in western North American grasslands, where phytophagous insects can be the dominant herb...

  3. Equivalence in the strength of deer herbivory on above and below ground communities

    DEFF Research Database (Denmark)

    Lessard, Jean-Philippe; Reynolds, W. Nicholas; Bunn, Windy A.

    2012-01-01

    Herbivores exert a strong influence on the species composition and richness of plant communities, but the magnitude of their effect on belowground communities remains poorly understood. While an increasing number of studies acknowledge the importance of documenting belowground effects of herbivor...

  4. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Science.gov (United States)

    Vannette, Rachel L.; Hunter, Mark D.; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)—which all produce toxic cardenolides—with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense. PMID:24065971

  5. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species.

    Science.gov (United States)

    Vannette, Rachel L; Hunter, Mark D; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.

  6. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    Directory of Open Access Journals (Sweden)

    Rachel L Vannette

    2013-09-01

    Full Text Available Belowground symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above and belowground herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed--which all produce toxic cardenolides--with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in above- and below-ground plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and

  7. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation

    International Nuclear Information System (INIS)

    Cunniff, Jennifer; Purdy, Sarah J.; Barraclough, Tim J.P.; Castle, March; Maddison, Anne L.; Jones, Laurence E.; Shield, Ian F.; Gregory, Andrew S.; Karp, Angela

    2015-01-01

    Willows (Salix spp.) grown as short rotation coppice (SRC) are viewed as a sustainable source of biomass with a positive greenhouse gas (GHG) balance due to their potential to fix and accumulate carbon (C) below ground. However, exploiting this potential has been limited by the paucity of data available on below ground biomass allocation and the extent to which it varies between genotypes. Furthermore, it is likely that allocation can be altered considerably by environment. To investigate the role of genotype and environment on allocation, four willow genotypes were grown at two replicated field sites in southeast England and west Wales, UK. Above and below ground biomass was intensively measured over two two-year rotations. Significant genotypic differences in biomass allocation were identified, with below ground allocation differing by up to 10% between genotypes. Importantly, the genotype with the highest below ground biomass also had the highest above ground yield. Furthermore, leaf area was found to be a good predictor of below ground biomass. Growth environment significantly impacted allocation; the willow genotypes grown in west Wales had up to 94% more biomass below ground by the end of the second rotation. A single investigation into fine roots showed the same pattern with double the volume of fine roots present. This greater below ground allocation may be attributed primarily to higher wind speeds, plus differences in humidity and soil characteristics. These results demonstrate that the capacity exists to breed plants with both high yields and high potential for C accumulation. - Highlights: • SRC willows are a source of biomass and act as carbon (C) sinks. • Biomass allocation was measured in 4 willow genotypes grown in two UK field sites. • The greatest yielding genotype had the greatest below ground biomass at both sites. • Below ground biomass allocation differed by up to 10% between genotypes and 94% between sites. • Environment e.g. wind

  8. EnviroAtlas - Below Ground Live Tree Biomass Carbon Storage for the Conterminous United States- Forested

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset includes the average below ground live tree root dry biomass estimate for the Watershed Boundary Dataset (WBD) 12-digit Hydrologic Unit...

  9. A below-ground herbivore shapes root defensive chemistry in natural plant populations

    OpenAIRE

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Th?o; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-01-01

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root ...

  10. Modelling man-made ground to link the above- and below- ground urban domains

    NARCIS (Netherlands)

    Schokker, J.

    2017-01-01

    This report describes the results of STSM TU1206-36204. During a visit to GEUS (DK) between 23 and 27 January 2017, Jeroen Schokker (TNO-GSN, NL) has focussed on the modelling of man-made ground as a linking pin between the above- and below-ground urban domains. Key results include: • Man-made

  11. THE EFFECT OF OZONE ON BELOW-GROUND CARBON ALLOCATION IN WHEAT

    Science.gov (United States)

    Short term 14CO2 pulse and chase experiments were conducted in order to investigate the effect ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivumL. ?ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone ...

  12. POLICY FRAMEWORK FOR UTILIZATION AND CONSERVATION OF BELOW-GROUND BIODIVERSITY IN KENYA

    Directory of Open Access Journals (Sweden)

    Celline Achieng

    2009-10-01

    Full Text Available The reasons for the lack of inclusion of below-ground biodiversity in the Kenyan policy and legal framework were sought. Gaps were identified in the relevant sectoral policies and laws in regard to the domestication of the Convention on Biological Diversity (CBD. Below -ground biodiversity had no specific schedule in any of the sectoral laws. Most sectoral laws were particular about the larger biodiversity and soils but had no mention of below-ground biodiversity. Material Transfer Agreements and Material Acquisition Agreements that are regarded as tools of domestication of the CBD to guide transfers, exchanges and acquisition of soil organisms lacked a regulating policy. The lack of regulating policy could be attributed to the delay in approval of draft regulations by the Ministry of Environment while the lack of inclusion of below-ground biodiversity in Kenya’s legal and policy framework could be as a result of lack of awareness and appreciation among stakeholders.

  13. A below-ground herbivore shapes root defensive chemistry in natural plant populations.

    Science.gov (United States)

    Huber, Meret; Bont, Zoe; Fricke, Julia; Brillatz, Théo; Aziz, Zohra; Gershenzon, Jonathan; Erb, Matthias

    2016-03-30

    Plants display extensive intraspecific variation in secondary metabolites. However, the selective forces shaping this diversity remain often unknown, especially below ground. Using Taraxacum officinale and its major native insect root herbivore Melolontha melolontha, we tested whether below-ground herbivores drive intraspecific variation in root secondary metabolites. We found that high M. melolontha infestation levels over recent decades are associated with high concentrations of major root latex secondary metabolites across 21 central European T. officinale field populations. By cultivating offspring of these populations, we show that both heritable variation and phenotypic plasticity contribute to the observed differences. Furthermore, we demonstrate that the production of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) is costly in the absence, but beneficial in the presence of M. melolontha, resulting in divergent selection of TA-G. Our results highlight the role of soil-dwelling insects for the evolution of plant defences in nature. © 2016 The Author(s).

  14. EPN Chemical ecology and new techniques for below ground sampling and analyses of volatile semiochemicals

    Science.gov (United States)

    It is well established that herbivory induced plant volatiles (HIPVs) attract natural enemies of the herbivores. Utilizing this plant response has become a fundamental part of above ground IPM programs. We now know that also roots can release HIPVs and that these compounds attract beneficial organis...

  15. Space sequestration below ground in old-growth spruce-beech forests-signs for facilitation?

    Science.gov (United States)

    Bolte, Andreas; Kampf, Friederike; Hilbrig, Lutz

    2013-01-01

    Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

  16. Space sequestration below ground in old-growth spruce-beech forests – signs for facilitation?

    Directory of Open Access Journals (Sweden)

    Andreas eBolte

    2013-08-01

    Full Text Available Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤ 2 mm by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1 spruce as a central tree, (2 spruce as competitor, (3 beech as a central tree, and (4 beech as competitor. Mean values of life fine root attributes like biomass (FRB, length (FRL, and root area index (RAI were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA, asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

  17. Interactive effect of herbivory and competition on the invasive plant Mikania micrantha.

    Science.gov (United States)

    Li, Junmin; Xiao, Tao; Zhang, Qiong; Dong, Ming

    2013-01-01

    A considerable number of host-specific biological control agents fail to control invasive plants in the field, and exploring the mechanism underlying this phenomenon is important and helpful for the management of invasive plants. Herbivory and competition are two of the most common biotic stressors encountered by invasive plants in their recipient communities. We predicted that the antagonistic interactive effect between herbivory and competition would weaken the effect of herbivory on invasive plants and result in the failure of herbivory to control invasive plants. To examine this prediction, thus, we conducted an experiment in which both invasive Mikania micrantha and native Coix lacryma-job i were grown together and subjected to herbivory-mimicking defoliation. Both defoliation and competition had significantly negative effects on the growth of the invader. However, the negative effect of 75% respective defoliation on the above- and below-ground biomass of Mikania micrantha was alleviated by presence of Coix lacryma-jobi. The negative effect of competition on the above- and below-ground biomass was equally compensated at 25%, 50% and 100% defoliation and overcompensated at 75% defoliation. The interactive effect was antagonistic and dependent on the defoliation intensity, with the maximum effect at 75% defoliation. The antagonistic interaction between defoliation and competition appears to be able to release the invader from competition, thus facilitating the invasiveness of Mikania, a situation that might make herbivory fail to inhibit the growth of invasive Mikania in the invaded community.

  18. Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield

    Science.gov (United States)

    Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.

    2017-12-01

    Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at the whole-plant level, improving final yield predictions.

  19. ABOVE AND BELOW GROUND INTERACTIONS IN THE AGROFORESTAL ASSOCIATION 'RED CEDAR-PERSIAN LIME-CHAYA'

    Directory of Open Access Journals (Sweden)

    Jesús Mao Estanislao Aguilar-Luna

    2011-05-01

    Full Text Available Above and below ground interactions were analyzed in the agroforestal association 'red cedar-Persian lime-chaya', to know the initial optimum planting density (PD, in Quintana Roo, Mexico. Red cedar and Persian lime were placed in a 'Nelder' circle of 3154 m2 which consisted of 20 concentric circles alternating red cedars and Persian limes to 1.50 m apart and 10 plants per circle; chaya rectangular frame was set at 1.50 x 3.00 m, superimposed on the 'Nelder' circle. Defined eight PD 2602 to 3772 pl·ha-1 with 10 repetitions, to evaluate the length of main root (LMR, radical exploration range (RER, below ground interaction (BGI, plant height (PH, crown diameter (CD, above ground interaction (AGI and soil fertility (SF. The growth intraspecific he present statistical difference (P≤0.05 when moving from one PD to another PD, while the growth interespecific manifested different growth habit. The agroforestal association propitious in soil decreased phosphorous ±2 %, and increases organic matter ±14 % and nitrogen ±10 % on all PD. The BGI was increased in direct relation with the PD, reaching its highest value (64±5.8 % to 3772 pl·ha-1; the AGI also increased in direct relation with the PD, its highest value (52±3.1 % went to 3772 pl·ha-1; therefore, to higher PD increased BGI and AGI, at 20 months after planting.

  20. Successful range-expanding plants experience less above-ground and below-ground enemy impact.

    Science.gov (United States)

    Engelkes, Tim; Morriën, Elly; Verhoeven, Koen J F; Bezemer, T Martijn; Biere, Arjen; Harvey, Jeffrey A; McIntyre, Lauren M; Tamis, Wil L M; van der Putten, Wim H

    2008-12-18

    Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.

  1. A global Fine-Root Ecology Database to address below-ground challenges in plant ecology.

    Science.gov (United States)

    Iversen, Colleen M; McCormack, M Luke; Powell, A Shafer; Blackwood, Christopher B; Freschet, Grégoire T; Kattge, Jens; Roumet, Catherine; Stover, Daniel B; Soudzilovskaia, Nadejda A; Valverde-Barrantes, Oscar J; van Bodegom, Peter M; Violle, Cyrille

    2017-07-01

    Variation and tradeoffs within and among plant traits are increasingly being harnessed by empiricists and modelers to understand and predict ecosystem processes under changing environmental conditions. While fine roots play an important role in ecosystem functioning, fine-root traits are underrepresented in global trait databases. This has hindered efforts to analyze fine-root trait variation and link it with plant function and environmental conditions at a global scale. This Viewpoint addresses the need for a centralized fine-root trait database, and introduces the Fine-Root Ecology Database (FRED, http://roots.ornl.gov) which so far includes > 70 000 observations encompassing a broad range of root traits and also includes associated environmental data. FRED represents a critical step toward improving our understanding of below-ground plant ecology. For example, FRED facilitates the quantification of variation in fine-root traits across root orders, species, biomes, and environmental gradients while also providing a platform for assessments of covariation among root, leaf, and wood traits, the role of fine roots in ecosystem functioning, and the representation of fine roots in terrestrial biosphere models. Continued input of observations into FRED to fill gaps in trait coverage will improve our understanding of changes in fine-root traits across space and time. © 2017 UT-Battelle LLC. New Phytologist © 2017 New Phytologist Trust.

  2. Links between plant litter chemistry, species diversity, and below-ground ecosystem function.

    Science.gov (United States)

    Meier, Courtney L; Bowman, William D

    2008-12-16

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics of plant species diversity. We amended native soils with litter mixtures containing up to 4 alpine plant species, and we used 9 litter chemical traits to evaluate the chemical composition (i.e., the identity and quantity of compounds) and chemical diversity of the litter mixtures. The chemical composition of the litter mixtures was the strongest predictor of soil respiration, net N mineralization, and microbial biomass N. Soil respiration and net N mineralization rates were also significantly correlated with the chemical diversity of the litter mixtures. In contrast, soil C and N cycling rates were poorly correlated with plant species richness, and there was no relationship between species richness and the chemical diversity of the litter mixtures. These results indicate that the composition and diversity of chemical compounds in litter are potentially important functional traits affecting decomposition, and simple metrics like plant species richness may fail to capture variation in these traits. Litter chemical traits therefore provide a mechanistic link between organisms, species diversity, and key components of below-ground ecosystem function.

  3. Assessment of erecting nuclear power plants below ground in an open building pit

    International Nuclear Information System (INIS)

    Kroeger, W.; Altes, J.; Bongartz, R.; David, P.H.; Escherich, K.H.; Kasper, K.; Koschmieder, D.; Roethig, K.D.; Schwarzer, K.; Wolters, J.

    1978-01-01

    The technical feasibility, costs and safety potential of siting a nuclear power plant below ground level have been assessed. The reference plant was a 1,300 MWsub(e) PWR and the siting was based on a 'cut-and-cover' design in soil. The 'cut-and-cover' design enhances the safety potential of the site both with regard to extreme internal accidents and to external impacts inclusive of hostile attack. The measures required to 'harden' the site against these extreme conditions do not cancel each other. The realization of the safety potential is strongly dependent on the reliability of the closure equipment on routes to the atmosphere. These closures represent the remaining vulnerable feature of the design, as all other release paths are through soil which prevents any immediate danger to the public. The concepts considered include partial or complete lowering of the reactor. The thickness of the coverage depends on the degree of protection required and is typically between 8 and 13 m. The essential systems of the above-ground design are unchanged and therefore prior experience and existing designs can be applied. The concepts appear to be technically feasible including, in particular, the large pits and the additional closures; the technical difficulties, however, should not be underestimated. The depth of lowering does not determine the gain in safety because a well designed coverage can act as natural soil. Partial lowering, in fact, appears to be the more economic method. According to the degree of protection and the variations of design, the concepts would cost between 8 and 14% more than the capital cost of an equivalent above-ground plant. The construction time would be extended by 1.4 years for the concepts investigated. (orig./HP) [de

  4. A stable isotopic view on lianas' and trees' below ground competition for water

    Science.gov (United States)

    De Deurwaerder, Hannes; Hervé-Fernández, Pedro; Stahl, Clément; Bonal, Damien; Burban, Benoît; Petronelli, Pascal; Boeckx, Pascal; Verbeeck, Hans

    2017-04-01

    Various studies highlight an increase in liana abundance and biomass in the neotropics in the last decades. To date, the reason why this growth form expresses this trend is still unclear. One of the proposed hypotheses ascribes tropical lianas, in comparison to tropical trees, of being able to adapt better to increased drought conditions resulting from climate change. Moreover, lianas presumably have a deeper root system, providing access to deeper soil layers less susceptible for dehydration during drought events. A dual stable water isotopic approach (δ18O and δ2H) enables studying vegetation below ground competition and in combination with Bayesian mixing models can provide insight in the fractional contribution of distinct soil layer depths. In this perspective, precipitation (bulk and through fall), bulk soil (at different depths), stream and xylem water of both lianas and trees were sampled between October 7-13, 2015. The study focusses on two distinct plots differing in soil texture (sand and clay), localized in close vicinity of the Guyana flux tower at Paracou (French Guyana). Our study highlights the erroneous of the deep tap root hypothesis and provides new insights in water and nutrient competition between tropical lianas and trees during dry season. Lianas isotopic signature is enriched compared to those of trees. This can be linked to water source depth and soil seasonal replenishment. Moreover, liana displaying a very active soil surface root activity, efficiently capturing the low amount of dry season precipitation, while trees show to tap the deeper and less drought susceptible soil layers. A strategy, which not only results in a spatial niche separation in the underground competition for water, but it also provides lianas with a definite advantage in nutrient competition.

  5. Speciation below ground: Tempo and mode of diversification in a radiation of endogean ground beetles.

    Science.gov (United States)

    Andújar, Carmelo; Pérez-González, Sergio; Arribas, Paula; Zaballos, Juan P; Vogler, Alfried P; Ribera, Ignacio

    2017-11-01

    Dispersal is a critical factor determining the spatial scale of speciation, which is constrained by the ecological characteristics and distribution of a species' habitat and the intrinsic traits of species. Endogean taxa are strongly affected by the unique qualities of the below-ground environment and its effect on dispersal, and contrasting reports indicate either high dispersal capabilities favoured by small body size and mediated by passive mechanisms, or low dispersal due to restricted movement and confinement inside the soil. We studied a species-rich endogean ground beetle lineage, Typhlocharina, including three genera and more than 60 species, as a model for the evolutionary biology of dispersal and speciation in the deep soil. A time-calibrated molecular phylogeny generated from >400 individuals was used to delimit candidate species, to study the accumulation of lineages through space and time by species-area-age relationships and to determine the geographical structure of the diversification using the relationship between phylogenetic and geographic distances across the phylogeny. Our results indicated a small spatial scale of speciation in Typhlocharina and low dispersal capacity combined with sporadic long distance, presumably passive dispersal events that fuelled the speciation process. Analysis of lineage growth within Typhlocharina revealed a richness plateau correlated with the range of distribution of lineages, suggesting a long-term species richness equilibrium mediated by density dependence through limits of habitat availability. The interplay of area- and age-dependent processes ruling the lineage diversification in Typhlocharina may serve as a general model for the evolution of high species diversity in endogean mesofauna. © 2017 John Wiley & Sons Ltd.

  6. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    Science.gov (United States)

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  7. Above- and below-ground competition in high and low irradiance: tree seedling responses to a competing liana Byttneria grandifolia

    NARCIS (Netherlands)

    Chen, J.Y.; Bongers, F.; Cao, K.F.; Cai, Z.Q.

    2008-01-01

    Abstract: In tropical forests, trees compete not only with other trees, but also with lianas, which may limit tree growth and regeneration. Liana effects may depend on the availability of above- and below-ground resources and differ between tree species. We conducted a shade house experiment to test

  8. Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models

    Science.gov (United States)

    Elise Pendall; Scott Bridgham; Paul J. Hanson; Bruce Hungate; David W. Kicklighter; Dale W. Johnson; Beverly E. Law; Yiqi Luo; J. Patrick Megonigal; Maria Olsrud; Michael G. Ryan; Shiqiang Wan

    2004-01-01

    Rising atmospheric CO2 and temperatures are probably altering ecosystem carbon cycling, causing both positive and negative feedbacks to climate. Below-ground processes play a key role in the global carbon (C) cycle because they regulate storage of large quantities of C, and are potentially very sensitive to direct and indirect effects of elevated...

  9. Competitive responses of seedlings and understory plants in longleaf pine woodlands: separating canopy influences above and below ground

    Science.gov (United States)

    Stephen D. Pecot; Robert J. Mitchell; Brian J. Palik; Barry Moser; J. Kevin Hiers

    2007-01-01

    A trenching study was used to investigate above- and below-ground competition in a longleaf pine (Pinus palustris P. Mill.) woodland. Trenched and nontrenched plots were replicated in the woodland matrix, at gap edges, and in gap centers representing a range of overstory stocking. One-half of each plot received a herbicide treatment to remove the...

  10. Examination of Below-Ground Structure and Soil Respiration Rates of Stable and Deteriorating Salt Marshes in Jamaica Bay (NY)

    Science.gov (United States)

    CAT scan imaging is currently being used to examine below-ground peat and root structure in cores collected from salt marshes of Jamaica Bay, part of the Gateway National Recreation Area (NY). CAT scans or Computer-Aided Tomography scans use X-ray equipment to produce multiple i...

  11. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Science.gov (United States)

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  12. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling.

    Science.gov (United States)

    Cosme, Marco; Lu, Jing; Erb, Matthias; Stout, Michael Joseph; Franken, Philipp; Wurst, Susanne

    2016-08-01

    Plant-microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water weevil (RWW; Lissorhoptrus oryzophilus), and how plant jasmonic acid (JA) and GA regulate this tripartite interaction. Glasshouse experiments with wild-type rice and coi1-18 and Eui1-OX mutants combined with nutrient, jasmonate and gene expression analyses were used to test: whether RWW adult herbivory above ground influences subsequent damage caused by larval herbivory below ground; whether P. indica protects plants against RWW; and whether GA and JA signaling mediate these interactions. The endophyte induced plant tolerance to root herbivory. RWW adults and larvae acted synergistically via JA signaling to reduce root growth, while endophyte-elicited GA biosynthesis suppressed the herbivore-induced JA in roots and recovered plant growth. Our study shows for the first time the impact of a root endophyte on plant defense against below-ground herbivores, adds to growing evidence that induced tolerance may be an important root defense, and implicates GA as a signal component of inducible plant tolerance against biotic stress. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. UV-B-mediated changes on below-ground communities associated with the roots of Acer saccharum

    International Nuclear Information System (INIS)

    Klironomos, J.N.; Allen, M.F.

    1995-01-01

    1. Little is known about how exposure to UV-B radiation affects rhizosphere microbes. Rhizosphere organisms are fed primarily by root-derived substrates and fulfil functions such as mineralization, immobilization, decomposition, pathogeneity and improvement of plant nutrition; they form the base of the below-ground food web. 2. In this study, we exposed Sugar Maple (Acer saccharum) seedlings to UV-B radiation in order to determine if UV-B influences the activities of mycorrhizal and non-mycorrhizal fungi, bacteria and microbe-feeding arthropods in the rhizosphere. 3. Below-ground organisms are greatly affected by UV-B radiation. Overall, carbon-flow in the plant soil system was shifted from a mutualistic-closed, mycorrhizal-dominated system to an opportunist-open, saprobe/pathogen-dominated one. (author)

  14. Impacts of Jatropha-based biodiesel production on above and below-ground carbon stocks: A case study from Mozambique

    International Nuclear Information System (INIS)

    Vang Rasmussen, Laura; Rasmussen, Kjeld; Bech Bruun, Thilde

    2012-01-01

    The need to mitigate climate change makes production of liquid biofuels a high priority. Substituting fossil fuels by biodiesel produced from Jatropha curcas has gained widespread attention as Jatropha cultivation is claimed to offer green house gas emission reductions. Farmers respond worldwide to this increasing demand by converting forests into Jatropha, but whether Jatropha-based biodiesel offers carbon savings depends on the carbon emissions that occur when land use is changed to Jatropha. This paper provides an impact assessment of a small-scale Jatropha project in Cabo Delgado, Mozambique. The paper outlines the estimated impacts on above and below-ground carbon stocks when land use is changed to increase Jatropha production. The results show that expansion of Jatropha production will most likely lead to the conversion of miombo forest areas to Jatropha, which implies a reduction in above and below-ground carbon stocks. The carbon debts created by the land use change can be repaid by replacing fossil fuels with Jatropha-based biodiesel. A repayment time of almost two centuries is found with optimistic estimates of the carbon debt, while the use of pessimistic values results in a repayment time that approaches the millennium. - Highlights: ► Demands for biofuels make production of Jatropha-based biodiesel a priority. ► Farmers in Northern Mozambique are likely to convert un-logged miombo to Jatropha. ► Converting miombo to Jatropha creates reductions in above and below-ground carbon. ► It takes 187–966 years to repay emissions from above and below-ground carbon stocks.

  15. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities.

    Science.gov (United States)

    Legay, N; Baxendale, C; Grigulis, K; Krainer, U; Kastl, E; Schloter, M; Bardgett, R D; Arnoldi, C; Bahn, M; Dumont, M; Poly, F; Pommier, T; Clément, J C; Lavorel, S

    2014-10-01

    Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Herbivory by Thrips tabaci

    Science.gov (United States)

    Deborah M. Kendall

    1991-01-01

    Herbivory by Thrips tabaci (Lindeman) affects both the bulb yield and phytohormone balance in its major host plant, the onion (Alium cepa L.). Seasonal changes in the susceptibility of onion yield to T. tabaci feeding were examined during the three growth stages of onion; prebulbing, bulbing and sizing (Kendall...

  17. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests.

    Science.gov (United States)

    Lin, Guigang; McCormack, M Luke; Ma, Chengen; Guo, Dali

    2017-02-01

    Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  18. Nitrogen mediates above-ground effects of ozone but not below-ground effects in a rhizomatous sedge

    International Nuclear Information System (INIS)

    Jones, M.L.M.; Hodges, G.; Mills, G.

    2010-01-01

    Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha -1 yr -1 . Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen x ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation. - Nitrogen alters threshold of ozone-induced senescence, but not below-ground resource allocation.

  19. Below-ground biomass production and allometric relationships of eucalyptus coppice plantation in the central highlands of Madagascar

    International Nuclear Information System (INIS)

    Razakamanarivo, Ramarson H.; Razakavololona, Ando; Razafindrakoto, Marie-Antoinette; Vieilledent, Ghislain; Albrecht, Alain

    2012-01-01

    Short rotations of Eucalyptus plantations under coppice regime are extensively managed for wood production in Madagascar. Nevertheless, little is known about their biomass production and partitioning and their potential in terms of carbon sequestration. If above-ground biomass (AGB) can be estimated based on established allometric relations, below-ground (BGB) estimates are much less common. The aim of this work was to develop allometric equations to estimate biomass of these plantations, mainly for the root components. Data from 9 Eucalyptus robusta stands (47–87 years of plantation age, 3–5 years of coppice-shoot age) were collected and analyzed. Biomass of 3 sampled trees per stand was determined destructively. Dry weight of AGB components (leaves, branches and stems) were estimated as a function of basal area of all shoots per stump and dry weight for BGB components (mainly stump, coarse root (CR) and medium root (MR)) were estimated as a function of stump circumference. Biomass was then computed using allometric equations from stand inventory data. Stand biomass ranged from 102 to 130 Mg ha −1 with more than 77% contained in the BGB components. The highest dry weight was allocated in the stump and in the CR (51% and 42% respectively) for BGB parts and in the stem (69%) for AGB part. Allometric relationships developed herein could be applied to other Eucalyptus plantations which present similar stand density and growing conditions; anyhow, more is needed to be investigated in understanding biomass production and partitioning over time for this kind of forest ecosystem. -- Highlights: ► We studied the potential of old eucalyptus coppices in Madagascar to mitigate global warming. ► Biomass measurement, mainly for below-ground BGB (stump, coarse-medium-and fine roots) was provided. ► BGB allometry relationships for short rotation forestry under coppice were established. ► BGB were found to be important with their 102-130MgC ha -1 (<77% of the C in

  20. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities.

    Science.gov (United States)

    Birkhofer, Klaus; Gossner, Martin M; Diekötter, Tim; Drees, Claudia; Ferlian, Olga; Maraun, Mark; Scheu, Stefan; Weisser, Wolfgang W; Wolters, Volkmar; Wurst, Susanne; Zaitsev, Andrey S; Smith, Henrik G

    2017-05-01

    Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within

  1. Disentangling above- and below-ground facilitation drivers in arid environments: the role of soil microorganisms, soil properties and microhabitat.

    Science.gov (United States)

    Lozano, Yudi M; Armas, Cristina; Hortal, Sara; Casanoves, Fernando; Pugnaire, Francisco I

    2017-12-01

    Nurse plants promote establishment of other plant species by buffering climate extremes and improving soil properties. Soil biota plays an important role, but an analysis to disentangle the effects of soil microorganisms, soil properties and microclimate on facilitation is lacking. In three microhabitats (gaps, small and large Retama shrubs), we placed six microcosms with sterilized soil, two per soil origin (i.e. from each microhabitat). One in every pair received an alive, and the other a sterile, inoculum from its own soil. Seeds of annual plants were sown into the microcosms. Germination, survival and biomass were monitored. Soil bacterial communities were characterized by pyrosequencing. Germination in living Retama inoculum was nearly double that of germination in sterile inoculum. Germination was greater under Retama canopies than in gaps. Biomass was up to three times higher in nurse than in gap soils. Soil microorganisms, soil properties and microclimate showed a range of positive to negative effects on understory plants depending on species identity and life stage. Nurse soil microorganisms promoted germination, but the effect was smaller than the positive effects of soil properties and microclimate under nurses. Nurse below-ground environment (soil properties and microorganisms) promoted plant growth and survival more than nurse microhabitat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  2. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    Science.gov (United States)

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. © 2015 The Author(s).

  3. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions

    Science.gov (United States)

    Tao, Leiling; Gowler, Camden D.; Ahmad, Aamina; Hunter, Mark D.; de Roode, Jacobus C.

    2015-01-01

    Host–parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host–parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host–parasite systems. PMID:26468247

  4. Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment

    DEFF Research Database (Denmark)

    Engelkes, Tim; Meisner, Annelein; Morriën, Elly

    2016-01-01

    in a riparian ecosystem during early establishment of invaded communities. We planted ten plant communities each consisting of three individuals of each of six exotic plant species as well as six phylogenetically related natives. Exotic plant species were selected based on a rapid recent increase in regional...... abundance, the presence of a congeneric native species, and their co-occurrence in the riparian ecosystem. All plant communities were covered by tents with insect mesh. Five tents were open on the leeward side to allow herbivory. The other five tents were completely closed in order to exclude insects...... and vertebrates. Herbivory reduced aboveground biomass by half and influenced which of the plant species dominated the establishing communities. Exposure to herbivory did not reduce the total biomass of natives more than that of exotics, so aboveground herbivory did not selectively enhance exotics during...

  5. Mesozoic plants and dinosaur herbivory

    OpenAIRE

    Sander, P M; Gee, C T; Hummel, J; Clauss, Marcus

    2010-01-01

    For most of their existence, herbivorous dinosaurs fed on a gymnospermdominated flora. Starting from a simple reptilian herbivory, ornithischian dinosaurs evolved complex chewing dentitions and mechanisms, while sauropodomorph dinosaurs retained the primitive condition of not chewing. Some advanced theropod dinosaurs evolved a bird-type herbivory with a toothless beak and a gastric mill. Dinosaur digestive tract remains, coprolites, and other trace fossils offer little evidence for dinosaur f...

  6. Beaver herbivory on aquatic plants.

    Science.gov (United States)

    Parker, John D; Caudill, Christopher C; Hay, Mark E

    2007-04-01

    Herbivores have strong impacts on marine and terrestrial plant communities, but their impact is less well studied in benthic freshwater systems. For example, North American beavers (Castor canadensis) eat both woody and non-woody plants and focus almost exclusively on the latter in summer months, yet their impacts on non-woody plants are generally attributed to ecosystem engineering rather than herbivory. Here, we excluded beavers from areas of two beaver wetlands for over 2 years and demonstrated that beaver herbivory reduced aquatic plant biomass by 60%, plant litter by 75%, and dramatically shifted plant species composition. The perennial forb lizard's tail (Saururus cernuus) comprised less than 5% of plant biomass in areas open to beaver grazing but greater than 50% of plant biomass in beaver exclusions. This shift was likely due to direct herbivory, as beavers preferentially consumed lizard's tail over other plants in a field feeding assay. Beaver herbivory also reduced the abundance of the invasive aquatic plant Myriophyllum aquaticum by nearly 90%, consistent with recent evidence that native generalist herbivores provide biotic resistance against exotic plant invasions. Beaver herbivory also had indirect effects on plant interactions in this community. The palatable plant lizard's tail was 3 times more frequent and 10 times more abundant inside woolgrass (Scirpus cyperinus) tussocks than in spatially paired locations lacking tussocks. When the protective foliage of the woolgrass was removed without exclusion cages, beavers consumed nearly half of the lizard's tail leaves within 2 weeks. In contrast, leaf abundance increased by 73-93% in the treatments retaining woolgrass or protected by a cage. Thus, woolgrass tussocks were as effective as cages at excluding beaver foraging and provided lizard's tail plants an associational refuge from beaver herbivory. These results suggest that beaver herbivory has strong direct and indirect impacts on populations and

  7. Production dynamics of fine roots in beech forests: possible mechanism of resource allocation between above- and below-ground production

    Science.gov (United States)

    Nakahata, R.; Osawa, A.; Naramoto, M.; Mizunaga, H.; Sato, M.

    2017-12-01

    The masting phenomenon that seed production has large annual variation with spatial synchrony appears generally in beeches. Therefore, net primary production and carbon allocation mechanism in beech forests may differ among several years in relation to annual variation of seed production. On the other hand, fine roots play key roles in carbon dynamics and nutrient and water acquisition of an ecosystem. Evaluation of fine root dynamics is essential to understand long-term dynamics of production in forest ecosystems. Moreover, the influence of mast seeding on resource allocation should be clarified in such beech forests. The aim of this study is to clarify possible relationships between the patterns of above- and below-ground production in relation to the masting events using observation data of litter fall and fine root dynamics. We applied the litter trap method and a minirhizotron method in a cool-temperate natural forest dominated by beech (Fagus crenata Blume). Ten litter traps were set from 2008 to 2016, then annual leaf and seed production were estimated. Four minirhizotron tubes were buried in Aug. 2008 and soil profiles were scanned monthly until Nov. 2016 during the periods of no snow covering. The scanned soil profiles were analyzed for calculating fine root production using the WinRHIZO Tron software. In the present study site, rich production of mast seeding occurred biennially and fine root production showed various seasonal patterns. There was no significant correlation between seed production and annual fine root production in the same year. However, seed production had a positive correlation with fine root production in autumn in the previous year and indicated a negative correlation with that in autumn in the current year. These results indicate that higher fine root production has led to increased nutrient acquisition, which resulted in rich seed production in the next year. It is also suppressed after the masting events due to shortage in

  8. Allometry and partitioning of above- and below-ground biomass in farmed eucalyptus species dominant in Western Kenyan agricultural landscapes

    International Nuclear Information System (INIS)

    Kuyah, Shem; Dietz, Johannes; Muthuri, Catherine; Noordwijk, Meine van; Neufeldt, Henry

    2013-01-01

    Farmers in developing countries are one of the world's largest and most efficient producers of sequestered carbon. However, measuring, monitoring and verifying how much carbon trees in smallholder farms are removing from the atmosphere has remained a great challenge in developing nations. Devising a reliable way for measuring carbon associated with trees in agricultural landscapes is essential for helping smallholder farmers benefit from emerging carbon markets. This study aimed to develop biomass equations specific to dominant eucalyptus species found in agricultural landscapes in Western Kenya. Allometric relationships were developed by regressing diameter at breast height (DBH) alone or DBH in combination with height, wood density or crown area against the biomass of 48 trees destructively sampled from a 100 km 2 site. DBH alone was a significant predictor variable and estimated aboveground biomass (AGB) with over 95% accuracy. The stems, branches and leaves formed up to 74, 22 and 4% of AGB, respectively, while belowground biomass (BGB) of the harvested trees accounted for 21% of the total tree biomass, yielding an overall root-to-shoot ratio (RS) of 0.27, which varied across tree size. Total tree biomass held in live Eucalyptus trees was estimated to be 24.4 ± 0.01 Mg ha −1 , equivalent to 11.7 ± 0.01 Mg of carbon per hectare. The equations presented provide useful tools for estimating tree carbon stocks of Eucalyptus in agricultural landscapes for bio-energy and carbon accounting. These equations can be applied to Eucalyptus in most agricultural systems with similar agro-ecological settings where tree growth parameters would fall within ranges comparable to the sampled population. -- Highlights: ► Equation with DBH alone estimated aboveground biomass with about 95% accuracy. ► Local generic equations overestimated above- and below-ground biomass by 10 and 48%. ► Height, wood density and crown area data did not improve model accuracy. ► Stems

  9. Recognition of Orobanche cumana Below-Ground Parasitism Through Physiological and Hyper Spectral Measurements in Sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Cochavi, Amnon; Rapaport, Tal; Gendler, Tania; Karnieli, Arnon; Eizenberg, Hanan; Rachmilevitch, Shimon; Ephrath, Jhonathan E

    2017-01-01

    Broomrape ( Orobanche and Phelipanche spp.) parasitism is a severe problem in many crops worldwide, including in the Mediterranean basin. Most of the damage occurs during the sub-soil developmental stage of the parasite, by the time the parasite emerges from the ground, damage to the crop has already been done. One feasible method for sensing early, below-ground parasitism is through physiological measurements, which provide preliminary indications of slight changes in plant vitality and productivity. However, a complete physiological field survey is slow, costly and requires skilled manpower. In recent decades, visible to-shortwave infrared (VIS-SWIR) hyperspectral tools have exhibited great potential for faster, cheaper, simpler and non-destructive tracking of physiological changes. The advantage of VIS-SWIR is even greater when narrow-band signatures are analyzed with an advanced statistical technique, like a partial least squares regression (PLS-R). The technique can pinpoint the most physiologically sensitive wavebands across an entire spectrum, even in the presence of high levels of noise and collinearity. The current study evaluated a method for early detection of Orobanche cumana parasitism in sunflower that combines plant physiology, hyperspectral readings and PLS-R. Seeds of susceptible and resistant O. cumana sunflower varieties were planted in infested (15 mg kg -1 seeds) and non-infested soil. The plants were examined weekly to detect any physiological or structural changes; the examinations were accompanied by hyperspectral readings. During the early stage of the parasitism, significant differences between infected and non-infected sunflower plants were found in the reflectance of near and shortwave infrared areas. Physiological measurements revealed no differences between treatments until O. cumana inflorescences emerged. However, levels of several macro- and microelements tended to decrease during the early stage of O. cumana parasitism. Analysis of

  10. Recognition of Orobanche cumana Below-Ground Parasitism Through Physiological and Hyper Spectral Measurements in Sunflower (Helianthus annuus L.

    Directory of Open Access Journals (Sweden)

    Amnon Cochavi

    2017-06-01

    Full Text Available Broomrape (Orobanche and Phelipanche spp. parasitism is a severe problem in many crops worldwide, including in the Mediterranean basin. Most of the damage occurs during the sub-soil developmental stage of the parasite, by the time the parasite emerges from the ground, damage to the crop has already been done. One feasible method for sensing early, below-ground parasitism is through physiological measurements, which provide preliminary indications of slight changes in plant vitality and productivity. However, a complete physiological field survey is slow, costly and requires skilled manpower. In recent decades, visible to-shortwave infrared (VIS-SWIR hyperspectral tools have exhibited great potential for faster, cheaper, simpler and non-destructive tracking of physiological changes. The advantage of VIS-SWIR is even greater when narrow-band signatures are analyzed with an advanced statistical technique, like a partial least squares regression (PLS-R. The technique can pinpoint the most physiologically sensitive wavebands across an entire spectrum, even in the presence of high levels of noise and collinearity. The current study evaluated a method for early detection of Orobanche cumana parasitism in sunflower that combines plant physiology, hyperspectral readings and PLS-R. Seeds of susceptible and resistant O. cumana sunflower varieties were planted in infested (15 mg kg-1 seeds and non-infested soil. The plants were examined weekly to detect any physiological or structural changes; the examinations were accompanied by hyperspectral readings. During the early stage of the parasitism, significant differences between infected and non-infected sunflower plants were found in the reflectance of near and shortwave infrared areas. Physiological measurements revealed no differences between treatments until O. cumana inflorescences emerged. However, levels of several macro- and microelements tended to decrease during the early stage of O. cumana

  11. Luxury consumption of soil nutrients: a possible competitive strategy in above-ground and below-ground biomass allocation and root morphology for slow-growing arctic vegetation?

    NARCIS (Netherlands)

    Wijk, van M.T.; Williams, M.; Gough, L.; Hobbie, S.E.; Shaver, G.R.

    2003-01-01

    1 A field-experiment was used to determine how plant species might retain dominance in an arctic ecosystem receiving added nutrients. We both measured and modelled the above-ground and below-ground biomass allocation and root morphology of non-acidic tussock tundra near Toolik Lake, Alaska, after 4

  12. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta Forests.

    Directory of Open Access Journals (Sweden)

    Anne C S McIntosh

    Full Text Available Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs and multiple carbon-source substrate-induced respiration (MSIR of the forest floor microbial community environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis showed that two above-ground (mean tree diameter, litter cover and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs properties were associated with variation in understory plant community composition. These results provide

  13. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests.

    Science.gov (United States)

    McIntosh, Anne C S; Macdonald, S Ellen; Quideau, Sylvie A

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  14. Understory Plant Community Composition Is Associated with Fine-Scale Above- and Below-Ground Resource Heterogeneity in Mature Lodgepole Pine (Pinus contorta) Forests

    Science.gov (United States)

    McIntosh, Anne C. S.; Macdonald, S. Ellen; Quideau, Sylvie A.

    2016-01-01

    Understory plant communities play critical ecological roles in forest ecosystems. Both above- and below-ground ecosystem properties and processes influence these communities but relatively little is known about such effects at fine (i.e., one to several meters within-stand) scales, particularly for forests in which the canopy is dominated by a single species. An improved understanding of these effects is critical for understanding how understory biodiversity is regulated in such forests and for anticipating impacts of changing disturbance regimes. Our primary objective was to examine the patterns of fine-scale variation in understory plant communities and their relationships to above- and below-ground resource and environmental heterogeneity within mature lodgepole pine forests. We assessed composition and diversity of understory vegetation in relation to heterogeneity of both the above-ground (canopy tree density, canopy and tall shrub basal area and cover, downed wood biomass, litter cover) and below-ground (soil nutrient availability, decomposition, forest floor thickness, pH, and phospholipid fatty acids (PLFAs) and multiple carbon-source substrate-induced respiration (MSIR) of the forest floor microbial community) environment. There was notable variation in fine-scale plant community composition; cluster and indicator species analyses of the 24 most commonly occurring understory species distinguished four assemblages, one for which a pioneer forb species had the highest cover levels, and three others that were characterized by different bryophyte species having the highest cover. Constrained ordination (distance-based redundancy analysis) showed that two above-ground (mean tree diameter, litter cover) and eight below-ground (forest floor pH, plant available boron, microbial community composition and function as indicated by MSIR and PLFAs) properties were associated with variation in understory plant community composition. These results provide novel insights

  15. Epiphyte-cover on seagrass (Zostera marina L. leaves impedes plant performance and radial O2 loss from the below-ground tissue

    Directory of Open Access Journals (Sweden)

    Kasper Elgetti Brodersen

    2015-08-01

    Full Text Available The O2 budget of seagrasses is a complex interaction between several sources and sinks, which is strongly regulated by light availability and mass transfer over the diffusive boundary layer (DBL surrounding the plant. Epiphyte growth on leaves may thus strongly affect the O2 availability of the seagrass plant and its capability to aerate its rhizosphere as a defence against plant toxins.We used electrochemical and fiber-optic microsensors to quantify the O2 flux, DBL and light microclimate around leaves with and without filamentous algal epiphytes. We also quantified the below-ground radial O2 loss from roots (~1 mm from the root-apex to elucidate how this below-ground oxic microzone was affected by the presence of epiphytes.Epiphyte-cover on seagrass leaves (~21% areal cover resulted in reduced light quality and quantity for photosynthesis, thus leading to reduced plant fitness. A ~4 times thicker diffusive boundary layer around leaves with epiphyte-cover impeded gas (and nutrient exchange with the surrounding water-column and thus the amount of O2 passively diffusing into the leaves in darkness. During light exposure of the leaves, radial oxygen loss from the below-ground tissue was ~2 times higher from plants without epiphyte-cover. In contrast, no O2 was detectable at the surface of the root-cap tissue of plants with epiphyte-cover during darkness, leaving the plants more susceptible to sulphide intrusion.Epiphyte growth on seagrass leaves thus negatively affects the light climate and O2 uptake in darkness, hampering the plants performance and thereby reducing the oxidation capability of its below-ground tissue.

  16. Herbivory increases diversification across insect clades.

    Science.gov (United States)

    Wiens, John J; Lapoint, Richard T; Whiteman, Noah K

    2015-09-24

    Insects contain more than half of all living species, but the causes of their remarkable diversity remain poorly understood. Many authors have suggested that herbivory has accelerated diversification in many insect clades. However, others have questioned the role of herbivory in insect diversification. Here, we test the relationships between herbivory and insect diversification across multiple scales. We find a strong, positive relationship between herbivory and diversification among insect orders. However, herbivory explains less variation in diversification within some orders (Diptera, Hemiptera) or shows no significant relationship with diversification in others (Coleoptera, Hymenoptera, Orthoptera). Thus, we support the overall importance of herbivory for insect diversification, but also show that its impacts can vary across scales and clades. In summary, our results illuminate the causes of species richness patterns in a group containing most living species, and show the importance of ecological impacts on diversification in explaining the diversity of life.

  17. Above- and below-ground responses of Calamagrostis purpurea to UV-B radiation and elevated CO{sub 2} under phosphorus limitation

    Energy Technology Data Exchange (ETDEWEB)

    Bussell, J.S.; Gwynn-Jones, D.; Griffith, G.W.; Scullion, J. (Aberystwyth Univ., IBERS, Wales (United Kingdom))

    2012-08-15

    UV-B radiation and elevated CO{sub 2} may impact rhizosphere processes through altered below-ground plant resource allocation and root exudation, changes that may have implications for nutrient acquisition. As nutrients limit plant growth in many habitats, their supply may dictate plant response under elevated CO{sub 2}. This study investigated UV-B exposure and elevated CO{sub 2} effects, including interactions, on plant growth, tissue chemistry and rooting responses relating to P acquisition. The sub-arctic grass Calamagrostis purpurea was subjected to UV-B (0 or 3.04 kJ m-2day-1) and CO{sub 2} (ambient 380 or 650 ppmv) treatments in a factorial glasshouse experiment, with sparingly soluble P (0 or 0.152 mg P per plant as FePO{sub 4}) a further factor. It was hypothesized that UV-B exposure and elevated CO{sub 2} would change plant resource allocation, with CO{sub 2} mitigating adverse responses to UV-B exposure and aiding P uptake. Plant biomass and morphology, tissue composition and rhizosphere leachate properties were measured. UV-B directly affected chemical composition of shoots and interacted with CO{sub 2} to give a greater root biomass. Elevated CO{sub 2} altered the composition of both shoots and roots and increased shoot biomass and secondary root length, while leachate pH decreased. Below-ground responses to CO{sub 2} did not affect P acquisition although P limitation progressively reduced leachate pH and increased secondary root length. Although direct plant growth, foliar composition and below-ground nutrient acquisition responses were dominated by CO{sub 2} treatments, UV-B modified these CO{sub 2} responses significantly. These interactions have implications for plant responses to future atmospheric conditions. (Author)

  18. Development and Validation of a SPME-GC-MS Method for In situ Passive Sampling of Root Volatiles from Glasshouse-Grown Broccoli Plants Undergoing Below-Ground Herbivory by Larvae of Cabbage Root Fly, Delia radicum L.

    Science.gov (United States)

    Deasy, William; Shepherd, Tom; Alexander, Colin J; Birch, A Nicholas E; Evans, K Andrew

    2016-11-01

    Research on plant root chemical ecology has benefited greatly from recent developments in analytical chemistry. Numerous reports document techniques for sampling root volatiles, although only a limited number describe in situ collection. To demonstrate a new method for non-invasive in situ passive sampling using solid phase micro extraction (SPME), from the immediate vicinity of growing roots. SPME fibres inserted into polyfluorotetrafluoroethylene (PTFE) sampling tubes located in situ which were either perforated, covered with stainless steel mesh or with microporous PTFE tubing, were used for non-invasive sub-surface sampling of root volatiles from glasshouse-grown broccoli. Sampling methods were compared with above surface headspace collection using Tenax TA. The roots were either mechanically damaged or infested with Delia radicum larvae. Principal component analysis (PCA) was used to investigate the effect of damage on the composition of volatiles released by broccoli roots. Analyses by gas chromatography-mass spectrometry (GC-MS) with SPME and automated thermal desorption (ATD) confirmed that sulphur compounds, showing characteristic temporal emission patterns, were the principal volatiles released by roots following insect larval damage. Use of SPME with in situ perforated PTFE sampling tubes was the most robust method for out-of-lab sampling. This study describes a new method for non-invasive passive sampling of volatiles in situ from intact and insect damaged roots using SPME. The method is highly suitable for remote sampling and has potential for wide application in chemical ecology/root/soil research. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Contrasting land uses in Mediterranean agro-silvo-pastoral systems generated patchy diversity patterns of vascular plants and below-ground microorganisms.

    Science.gov (United States)

    Bagella, Simonetta; Filigheddu, Rossella; Caria, Maria Carmela; Girlanda, Mariangela; Roggero, Pier Paolo

    2014-12-01

    The aims of this paper were (i) to define how contrasting land uses affected plant biodiversity in Mediterranean agro-silvo-pastoral-systems across a gradient of disturbance regimes: cork oak forests, secondary grasslands, hay crops, grass covered vineyards, tilled vineyards; (ii) to determine whether these patterns mirrored those of below-ground microorganisms and whether the components of γ-diversity followed a similar model. The disturbance regimes affected plant assemblage composition. Species richness decreased with increasing land use intensity, the Shannon index showed the highest values in grasslands and hay crops. Plant assemblage composition patterns mirrored those of Basidiomycota and Ascomycota. Richness in Basidiomycota, denitrifying bacteria and microbial biomass showed the same trend as that observed for vascular plant richness. The Shannon index pattern of below-ground microorganisms was different from that of plants. The plant γ-diversity component model weakly mirrored those of Ascomycota. Patchy diversity patterns suggest that the maintenance of contrasting land uses associated with different productions typical of agro-silvo-pastoral-systems can guarantee the conservation of biodiversity. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  20. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2a, Below-ground vaults

    International Nuclear Information System (INIS)

    Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

    1987-12-01

    The US Army Engineer Waterways Experiment Station (WES) and the US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the below-ground vault (BGV) alternative method of low-level radioactive waste (LLW) disposal. A BGV is a reinforced concrete vault (floor, walls, and roof) placed underground below the frost line, and above the water table, surrounded by filter blanket and drainage zones and covered with a low permeability earth layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the BGV structure through material quality and durability considerations. Specific design review criteria have been developed in detail for seven of the eight major categories. 59 refs., 14 figs., 2 tabs

  1. The roots of diversity: below ground species richness and rooting distributions in a tropical forest revealed by DNA barcodes and inverse modeling.

    Directory of Open Access Journals (Sweden)

    F Andrew Jones

    Full Text Available Plants interact with each other, nutrients, and microbial communities in soils through extensive root networks. Understanding these below ground interactions has been difficult in natural systems, particularly those with high plant species diversity where morphological identification of fine roots is difficult. We combine DNA-based root identification with a DNA barcode database and above ground stem locations in a floristically diverse lowland tropical wet forest on Barro Colorado Island, Panama, where all trees and lianas >1 cm diameter have been mapped to investigate richness patterns below ground and model rooting distributions.DNA barcode loci, particularly the cpDNA locus trnH-psba, can be used to identify fine and small coarse roots to species. We recovered 33 species of roots from 117 fragments sequenced from 12 soil cores. Despite limited sampling, we recovered a high proportion of the known species in the focal hectare, representing approximately 14% of the measured woody plant richness. This high value is emphasized by the fact that we would need to sample on average 13 m(2 at the seedling layer and 45 m(2 for woody plants >1 cm diameter to obtain the same number of species above ground. Results from inverse models parameterized with the locations and sizes of adults and the species identifications of roots and sampling locations indicates a high potential for distal underground interactions among plants.DNA barcoding techniques coupled with modeling approaches should be broadly applicable to studying root distributions in any mapped vegetation plot. We discuss the implications of our results and outline how second-generation sequencing technology and environmental sampling can be combined to increase our understanding of how root distributions influence the potential for plant interactions in natural ecosystems.

  2. Simulated herbivory and vegetation dynamics in coal slurry ponds reclaimed as wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Mathis, M.J.; Middleton, B.A. [Southern Illinois University, Carbondale, IL (USA). Dept. of Plant Biology

    1999-12-01

    The biodiversity of coal slurry ponds can be inhibited at least in part, by dense stands of Phragmites australis. In this study, it is demonstrated that species richness can be increased in coal slurry ponds if the dominant species (P. Australis and Typha latifolia) are removed and that underwater herbivory simulated by cutting will kill emergents. The study was conducted in the greenhouse and the field in both flooded and drawndown conditions. In a reclaimed coal pond at Pyramid State Park, Illinois, neither P. australis nor T. Latifolia survived cutting underwater, but all of the uncut plants survived. Regrowth measured as total biomass of stems was less among flooded versus freely drained plants (0.3 and 2.6 g biomass, respectively). Cut versus uncut plants, combining freely drained and flooded, had less below-ground biomass (99.4 and 254.4 g, respectively). In an unreclaimed coal slurry pond with monospecific stands of P. Australis, plant species richness increased in cut plots as compared to uncut plots (29 vs 2 species, respectively) between March and September, 1995. This study demonstrated that species richness can be increased in coal ponds by mechanical cutting and this potentially by herbivory; however, the additional species were mostly exotics.

  3. Top-down control of herbivory by birds and bats in the canopy of temperate broad-leaved oaks (Quercus robur.

    Directory of Open Access Journals (Sweden)

    Stefan M Böhm

    2011-04-01

    Full Text Available The intensive foraging of insectivorous birds and bats is well known to reduce the density of arboreal herbivorous arthropods but quantification of collateral leaf damage remains limited for temperate forest canopies. We conducted exclusion experiments with nets in the crowns of young and mature oaks, Quercus robur, in south and central Germany to investigate the extent to which aerial vertebrates reduce herbivory through predation. We repeatedly estimated leaf damage throughout the vegetation period. Exclusion of birds and bats led to a distinct increase in arthropod herbivory, emphasizing the prominent role of vertebrate predators in controlling arthropods. Leaf damage (e.g., number of holes differed strongly between sites and was 59% higher in south Germany, where species richness of vertebrate predators and relative oak density were lower compared with our other study site in central Germany. The effects of bird and bat exclusion on herbivory were 19% greater on young than on mature trees in south Germany. Our results support previous studies that have demonstrated clear effects of insectivorous vertebrates on leaf damage through the control of herbivorous arthropods. Moreover, our comparative approach on quantification of leaf damage highlights the importance of local attributes such as tree age, forest composition and species richness of vertebrate predators for control of arthropod herbivory.

  4. Carbon transfer from photosynthesis to below ground fine root/hyphae respiration in Quercus serrata using stable carbon isotope pulse labeling

    Science.gov (United States)

    Dannoura, M.; Kominami, Y.; Takanashi, S.; Takahashi, K.

    2013-12-01

    Studying carbon allocation in trees is a key to better understand belowground carbon cycle and its response to climate change. Tracing 13C in tree and soil compartments after pulse labeling is one of powerful tool to study the fate of carbon in forest ecosystems. This experiment was conducted in Yamashiro experimental forest, Kyoto, Japan. Annual mean temperature and precipitation from 1994 to 2009 are 15.5 ° C and 1,388 mm respectively. The branch pulse labeling were done 7 times in 2011 using same branch of Quercus serrata (H:11.7 m, DBH; 33.7 cm) to see seasonal variations of carbon velocity. Whole crown labeling of Quercus serrata (H:9 m, DBH; 13.7 cm) was done in 2012 to study carbon allocation and to especially focus on belowground carbon flux until to the hyphae respiration. Pure 13CO2 (99.9%) was injected to the labeling chamber which was set to branch or crown. Then, after one hour of branch labeling and 3.5 hour for crown labeling, the chamber was opened. Trunk respiration chambers, fine root chambers and hyphae chambers were set to the target tree to trace labeled carbon in the CO2 efflux. 41 μm mesh was used to exclude ingrowth of roots into hyphae chambers. The results show that the velocity of carbon through the tree varied seasonally, with higher velocity in summer than autumn, averaging 0.47 m h-1. Half-lives of labeled carbon in autotrophic respiration were similar above and below ground during the growing season, but they were twice longer in trunk than in root in autumn. From the whole crown labeling done end of growing season, the 13CO2 signal was observed 25 hours after labeling in trunk chamber and 34-37.7 hours after labeling in fine root and hyphae respiration almost simultaneously. Half-lives of 13 was longer in trunk than below ground. Trunk respiration was still using labelled carbon during winter suggesting that winter trunk respiration is partly fueled by carbon stored in the trunk at the end of the growing season.

  5. Assessment of Above- and Below-ground Competition between Sesame (Sesamume indicum L. and Pigweed (Amaranthus retroflexus and Its Effects on Sesame Yield and Yield Components

    Directory of Open Access Journals (Sweden)

    A.J Yanegh

    2013-08-01

    Full Text Available This study carried out in a factorial layout on completely randomaized block design with three replications, to evaluate the above- and below- ground competition between sesame (Sesamum indicum and pigweed (Amaranthus retroflexus, and their impacts on sesame yield and yield component. The experimental treatments were all combination of crop-weed competition (shoot competition, root competition and root-shoot competition and sesame plant densitys (1, 2 and 4 plant per pot. Plants were sown in plastic pots (24 cm diameter and 28 cm height in year 2010, at feild of Ferdowsi University of Mashhad. For study the shoot competition of sesame-pigweed, the roots were separated by plastic when the pots were filled with soil before sowing the seeds. Three weeks after emerging, shoots of plants were separated vertical barrier (30 x 70 cm for studing root competition. Results showed that competition treatments had a significant effect on seed weight per plant and yield components except 1000 seed weight. Among competition produced higher yield and yield components compared to othere treatments. However, sesame and pigweed biological weight in root-shoot competition was 2.6 and 13.7 respectively, that was higher than other competition treatments and was significant. Capsule number in main and sub branches, capsule number in plant, seed number in capsule and seed number in plant in complete competition treatment was 15, 2.58, 17.5, 43.7 and 693.89 respectively, that was higher than other treatments and differences among them was significant. Sesame density also had a significant effect on seed weight per plant and yield components. When low density were used (one plant, yield and yield components was more, therefore in one plant per pot density biological weight of sesame was 3.82 gr, and in higher densities the mentioned traits decreased significantly.

  6. Uprooting force balance for pioneer woody plants: A quantification of the relative contribution of above- and below-ground plant architecture to uprooting susceptibility

    Science.gov (United States)

    Bywater-Reyes, S.; Wilcox, A. C.; Lightbody, A.; Skorko, K.; Stella, J. C.

    2012-12-01

    Cottonwood (Populus), willow (Salix), and tamarisk (Tamarix) populate riparian areas in many dryland regions, and their recruitment depends heavily on hydrogeomorphic conditions. The survival of pioneer woody seedlings depends in part on the establishment of root systems capable of anchoring plants in subsequent floods, and this root system development in turn influences the cohesion that plants provide to bars. The factors influencing the anchoring ability and resistance to scour of woody seedlings include plant frontal area and flexibility, root structure, and water table elevation. This study aims to quantify the factors comprising the force balance to uproot woody seedlings and saplings in two field sites characterized by different hydrologic conditions. The Bill Williams River (AZ) is an impounded river with elevated water table elevations produced by dam-released base flows. The Bitterroot River (MT) is an unimpounded river with a snowmelt hydrograph and seasonal fluctuations in river and water table elevation. We simulate uprooting from flooding events by saturating substrates and applying force near the base of the plant in a lateral, downstream direction until uprooting occurs, for a range of plant sizes but with a focus on small (plants, with cottonwood and tamarisk seedlings showing greater variability than willow. In contrast, root length and stem diameter are only weakly correlated with pull-out force. By combining pull test results with measurements of geomorphic and groundwater conditions, this study provides insights into the relative contribution of a plant's above-ground and below-ground architecture to uprooting potential and into the feedbacks between vegetation and morphodynamics on river bars.

  7. Quantifying above- and below-ground growth responses of the western Australian oil mallee, Eucalyptus kochii subsp. plenissima, to contrasting decapitation regimes.

    Science.gov (United States)

    Wildy, Dan T; Pate, John S

    2002-08-01

    Resprouting in the oil mallee, Eucalyptus kochii Maiden & Blakely subsp. plenissima Gardner (Brooker), involves generation of new shoots from preformed meristematic foci on the lignotuber. Numbers of such foci escalated from 200 per lignotuber in trees aged 1 year to 3,000 on 4- to 5-year-old trees. Removal of shoot biomass by decapitation 5 cm above ground in summer (February) or spring (October) resulted in initiation of 140-170 new shoots, but approx. 400 shoots were induced to form if crops of new shoots were successively removed until sprouting ceased and rootstocks senesced. Initially, the new shoot biomass of regenerating coppices increased slowly and the root biomass failed to increase appreciably until 1.7-2.5 years after cutting. Newly cut trees showed loss of fine root biomass, and structural roots failed to secondarily thicken to the extent shown by uncut trees. After 2 years, the biomass of shoots of coppiced plants was only one-third that of uncut control trees and shoot:root dry mass ratios of coppiced plants were still low (1.5-2.0) compared with those of the controls (average ratio of 3.1). Spring cutting promoted quicker and greater biomass recovery than summer cutting. Starch in below-ground biomass fell quickly following decapitation and remained low for a 12-18 month period. Utilization of starch reserves in naturally regenerating coppices was estimated to provide only a small proportion of the dry matter accumulated in new shoots. Results are discussed in relation to their impact on coppicing ability of the species under natural conditions or when successively coppiced for shoot biomass production.

  8. No consistent effect of plant species richness on resistance to simulated climate change for above- or below-ground processes in managed grasslands.

    Science.gov (United States)

    Dormann, Carsten F; von Riedmatten, Lars; Scherer-Lorenzen, Michael

    2017-06-17

    Species richness affects processes and functions in many ecosystems. Since management of temperate grasslands is directly affecting species composition and richness, it can indirectly govern how systems respond to fluctuations in environmental conditions. Our aim in this study was to investigate whether species richness in managed grasslands can buffer the effects of drought and warming manipulations and hence increase the resistance to climate change. We established 45 plots in three regions across Germany, each with three different management regimes (pasture, meadow and mown pasture). We manipulated spring warming using open-top chambers and summer drought using rain-out shelters for 4 weeks. Measurements of species richness, above- and below-ground biomass and soil carbon and nitrogen concentrations showed significant but inconsistent differences among regions, managements and manipulations. We detected a three-way interaction between species richness, management and region, indicating that our study design was sensitive enough to detect even intricate effects. We could not detect a pervasive effect of species richness on biomass differences between treatments and controls, indicating that a combination of spring warming and summer drought effects on grassland systems are not consistently moderated by species richness. We attribute this to the relatively high number of species even at low richness levels, which already provides the complementarity required for positive biodiversity-ecosystem functioning relationships. A review of the literature also indicates that climate manipulations largely fail to show richness-buffering, while natural experiments do, suggesting that such manipulations are milder than reality or incur treatment artefacts.

  9. Isometric scaling of above- and below-ground biomass at the individual and community levels in the understorey of a sub-tropical forest.

    Science.gov (United States)

    Cheng, Dongliang; Zhong, Quanlin; Niklas, Karl J; Ma, Yuzhu; Yang, Yusheng; Zhang, Jianhua

    2015-02-01

    Empirical studies and allometric partitioning (AP) theory indicate that plant above-ground biomass (MA) scales, on average, one-to-one (isometrically) with below-ground biomass (MR) at the level of individual trees and at the level of entire forest communities. However, the ability of the AP theory to predict the biomass allocation patterns of understorey plants has not been established because most previous empirical tests have focused on canopy tree species or very large shrubs. In order to test the AP theory further, 1586 understorey sub-tropical forest plants from 30 sites in south-east China were harvested and examined. The numerical values of the scaling exponents and normalization constants (i.e. slopes and y-intercepts, respectively) of log-log linear MA vs. MR relationships were determined for all individual plants, for each site, across the entire data set, and for data sorted into a total of 19 sub-sets of forest types and successional stages. Similar comparisons of MA/MR were also made. The data revealed that the mean MA/MR of understorey plants was 2·44 and 1·57 across all 1586 plants and for all communities, respectively, and MA scaled nearly isometrically with respect to MR, with scaling exponents of 1·01 for all individual plants and 0·99 for all communities. The scaling exponents did not differ significantly among different forest types or successional stages, but the normalization constants did, and were positively correlated with MA/MR and negatively correlated with scaling exponents across all 1586 plants. The results support the AP theory's prediction that MA scales nearly one-to-one with MR (i.e. MA ∝ MR (≈1·0)) and that plant biomass partitioning for individual plants and at the community level share a strikingly similar pattern, at least for the understorey plants examined in this study. Furthermore, variation in environmental conditions appears to affect the numerical values of normalization constants, but not the scaling exponents

  10. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe

    Science.gov (United States)

    Chen, Dima; Lan, Zhichun; Bai, Xue; Grace, James B.; Bai, Yongfei

    2013-01-01

    Anthropogenic acid deposition–induced soil acidification is one of the major threats to biodiversity, ecosystem functioning and services. Few studies, however, have explored in detail how above-ground changes in plant species richness and productivity resulting from soil acidification are mediated by effects on below-ground biota and soil properties.

  11. Cowpea N rhizodeposition and its below-ground transfer to a co-existing and to a subsequent millet crop on a sandy soil of the Sudano-Sahelian eco-zone

    DEFF Research Database (Denmark)

    Laberge, Guillaume; Haussmann, Bettina I.G.; Ambus, Per

    2011-01-01

    Nitrogen (N) rhizodeposition by cowpea (Vigna unguiculata (L.) Walp) is potentially a large N source in cropping systems of Sub-Saharan Africa. A field experiment was conducted to measure cowpea N rhizodeposition under the conditions of the Sudano-Sahelian zone using direct 15N labelling techniques...... to trace the amount of deposition and its transfer to associated and subsequent crops. Half of the total cowpea crop N was located below-ground at plant maturity, which exceeded 20 kg N ha−1 when intercropped with millet. Only 15% of the below-ground cowpea N was recovered in roots, while 85% was found...... in the rhizodeposited pools. The experiment demonstrated that direct below-ground N transfer occurred from cowpea to millet in intercrop at a rate of 2 kg N ha−1 over the growing season. Forty percent of the 25 kg below-ground N that the cowpea crop left at harvest were identifiable in the top 0.30 m soil...

  12. Comparing macrophyte herbivory by introduced Louisiana crayfish ...

    African Journals Online (AJOL)

    The omnivorous Louisiana crayfish, Procambarus clarkii, has caused significant changes to macrophyte communities worldwide and may have similar negative effects in Kenya if used as a biological control agent for snails harbouring human schistosomes. Here we examine how herbivory by the introduced Louisiana ...

  13. Herbivory on freshwater and marine macrophytes

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Wood, Kevin A.; Pagès, Jordi F.; Veen, G.F.; Christianen, Marjolijn J.A.; Santamaría, Luis; Nolet, Bart A.; Hilt, Sabine

    2016-01-01

    Until the 1990s, herbivory on aquatic vascular plants was considered to be of minor importance, and the predominant view was that freshwater and marine macrophytes did not take part in the food web: their primary fate was the detritivorous pathway. In the last 25 years, a substantial body of

  14. Vertebral chondroblastoma

    International Nuclear Information System (INIS)

    Ilaslan, Hakan; Sundaram, Murali; Unni, Krishnan K.

    2003-01-01

    To determine the age distribution, gender, incidence, and imaging findings of vertebral chondroblastoma, and to compare our series with findings from case reports in the world literature.Design and patients Case records and imaging findings of nine histologically documented vertebral chondroblastomas were retrospectively reviewed for patient age, gender, vertebral column location and level, morphology, matrix, edema, soft tissue mass, spinal canal invasion, and metastases. Our findings were compared with a total of nine patients identified from previous publications in the world literature. The histologic findings in our cases was re-reviewed for diagnosis and specifically for features of calcification and secondary aneurysmal bone cyst (ABC). Clinical follow-up was requested from referring institutions. Nine of 856 chondroblastomas arose in vertebrae (incidence 1.4%; thoracic 5, lumbar 1, cervical 2, sacral 1). There were six males and three females ranging in age from 5 to 41 years (mean 28 years). Satisfactory imaging from seven patients revealed the tumor to arise from the posterior elements in four and the body in three. All tumors were expansive, six of seven were aggressive, and the spinal canal was significantly narrowed by bone or soft tissue mass in six. In one patient canal invasion was minimal. Calcification was pronounced in two and subtle in four. The sole nonaggressive-appearing tumor was heavily mineralized. Bony edema and secondary ABC were not seen on MR imaging. None of the cases had microscopic features of significant secondary ABC. Calcification, and specifically ''chicken wire'' calcification, was identified in two patients. Pulmonary metastases occurred in none. Vertebral chondroblastoma is a rare neoplasm that presents later in life than its appendicular counterpart. On imaging it is aggressive in appearance with bone destruction, soft tissue mass, and spinal canal invasion. The lesions contain variable amounts of mineral. Secondary

  15. Vertebral chondroblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Ilaslan, Hakan; Sundaram, Murali [Department of Radiology, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905 (United States); Unni, Krishnan K. [Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, SW, Rochester, MN 55905 (United States)

    2003-02-01

    To determine the age distribution, gender, incidence, and imaging findings of vertebral chondroblastoma, and to compare our series with findings from case reports in the world literature.Design and patients Case records and imaging findings of nine histologically documented vertebral chondroblastomas were retrospectively reviewed for patient age, gender, vertebral column location and level, morphology, matrix, edema, soft tissue mass, spinal canal invasion, and metastases. Our findings were compared with a total of nine patients identified from previous publications in the world literature. The histologic findings in our cases was re-reviewed for diagnosis and specifically for features of calcification and secondary aneurysmal bone cyst (ABC). Clinical follow-up was requested from referring institutions. Nine of 856 chondroblastomas arose in vertebrae (incidence 1.4%; thoracic 5, lumbar 1, cervical 2, sacral 1). There were six males and three females ranging in age from 5 to 41 years (mean 28 years). Satisfactory imaging from seven patients revealed the tumor to arise from the posterior elements in four and the body in three. All tumors were expansive, six of seven were aggressive, and the spinal canal was significantly narrowed by bone or soft tissue mass in six. In one patient canal invasion was minimal. Calcification was pronounced in two and subtle in four. The sole nonaggressive-appearing tumor was heavily mineralized. Bony edema and secondary ABC were not seen on MR imaging. None of the cases had microscopic features of significant secondary ABC. Calcification, and specifically ''chicken wire'' calcification, was identified in two patients. Pulmonary metastases occurred in none. Vertebral chondroblastoma is a rare neoplasm that presents later in life than its appendicular counterpart. On imaging it is aggressive in appearance with bone destruction, soft tissue mass, and spinal canal invasion. The lesions contain variable amounts of mineral

  16. Dynamics of forest herbivory: quest for pattern and principle.

    Science.gov (United States)

    William J. Mattson; Pekka Niemila; Matti Rossi

    1996-01-01

    Herbivory on woody plants is highly variable in both space and time. This proceedings addresses one of its root causes, the highly intricate and dynamic relationships that exist between most herbivores and their host plants. It emphasizes that the consequences of herbivory both to the consumer and to the producer plant often balance on a razor`s edge--depending on...

  17. The 'Herbivory Uncertainty Principle': application in a cerrado site

    Directory of Open Access Journals (Sweden)

    CA Gadotti

    Full Text Available Researchers may alter the ecology of their studied organisms, even carrying out apparently beneficial activities, as in herbivory studies, when they may alter herbivory damage. We tested whether visit frequency altered herbivory damage, as predicted by the 'Herbivory Uncertainty Principle'. In a cerrado site, we established 80 quadrats, in which we sampled all woody individuals. We used four visit frequencies (high, medium, low, and control, quantifying, at the end of three months, herbivory damage for each species in each treatment. We did not corroborate the 'Herbivory Uncertainty Principle', since visiting frequency did not alter herbivory damage, at least when the whole plant community was taken into account. However, when we analysed each species separately, four out of 11 species presented significant differences in herbivory damage, suggesting that the researcher is not independent of its measurements. The principle could be tested in other ecological studies in which it may occur, such as those on animal behaviour, human ecology, population dynamics, and conservation.

  18. Variable effects of temperature on insect herbivory

    Directory of Open Access Journals (Sweden)

    Nathan P. Lemoine

    2014-05-01

    Full Text Available Rising temperatures can influence the top-down control of plant biomass by increasing herbivore metabolic demands. Unfortunately, we know relatively little about the effects of temperature on herbivory rates for most insect herbivores in a given community. Evolutionary history, adaptation to local environments, and dietary factors may lead to variable thermal response curves across different species. Here we characterized the effect of temperature on herbivory rates for 21 herbivore-plant pairs, encompassing 14 herbivore and 12 plant species. We show that overall consumption rates increase with temperature between 20 and 30 °C but do not increase further with increasing temperature. However, there is substantial variation in thermal responses among individual herbivore-plant pairs at the highest temperatures. Over one third of the herbivore-plant pairs showed declining consumption rates at high temperatures, while an approximately equal number showed increasing consumption rates. Such variation existed even within herbivore species, as some species exhibited idiosyncratic thermal response curves on different host plants. Thus, rising temperatures, particularly with respect to climate change, may have highly variable effects on plant-herbivore interactions and, ultimately, top-down control of plant biomass.

  19. Herbivory eliminates fitness costs of mutualism exploiters.

    Science.gov (United States)

    Simonsen, Anna K; Stinchcombe, John R

    2014-04-01

    A common empirical observation in mutualistic interactions is the persistence of variation in partner quality and, in particular, the persistence of exploitative phenotypes. For mutualisms between hosts and symbionts, most mutualism theory assumes that exploiters always impose fitness costs on their host. We exposed legume hosts to mutualistic (nitrogen-fixing) and exploitative (non-nitrogen-fixing) symbiotic rhizobia in field conditions, and manipulated the presence or absence of insect herbivory to determine if the costly fitness effects of exploitative rhizobia are context-dependent. Exploitative rhizobia predictably reduced host fitness when herbivores were excluded. However, insects caused greater damage on hosts associating with mutualistic rhizobia, as a consequence of feeding preferences related to leaf nitrogen content, resulting in the elimination of fitness costs imposed on hosts by exploitative rhizobia. Our experiment shows that herbivory is potentially an important factor in influencing the evolutionary dynamic between legumes and rhizobia. Partner choice and host sanctioning are theoretically predicted to stabilize mutualisms by reducing the frequency of exploitative symbionts. We argue that herbivore pressure may actually weaken selection on choice and sanction mechanisms, thus providing one explanation of why host-based discrimination mechanisms may not be completely effective in eliminating nonbeneficial partners. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. Antagonistic interactions between plant competition and insect herbivory.

    Science.gov (United States)

    Schädler, Martin; Brandl, Roland; Haase, Josephine

    2007-06-01

    Interspecific competition between plants and herbivory by specialized insects can have synergistic effects on the growth and performance of the attacked host plant. We tested the hypothesis that competition between plants may also negatively affect the performance of herbivores as well as their top-down effect on the host plant. In such a case, the combined effects of competition and herbivory may be less than expected from a simple multiplicative response. In other words, competition and herbivory may interact antagonistically. In a greenhouse experiment, Poa annua was grown in the presence or absence of a competitor (either Plantago lanceolata or Trifolium repens), as well as with or without a Poa-specialist aphid herbivore. Both competition and herbivory negatively affected Poa growth. Competition also reduced aphid density on Poa. This effect could in part be explained by changes in the biomass and the nitrogen content of Poa shoots. In treatments with competitors, reduced aphid densities alleviated the negative effect of herbivory on above- and belowground Poa biomass. Hence, we were able to demonstrate an antagonistic interaction between plant-plant interspecific competition and herbivory. However, response indices suggested that antagonistic interactions between competition and herbivory were contingent on the identity of the competitor. We found the antagonistic effect only in treatments with T. repens as the competitor. We conclude that both competitor identity and the herbivore's ability to respond with changes in its density or activity to plant competition affect the magnitude and direction (synergistic vs. antagonistic) of the interaction between competition and herbivory on plant growth.

  1. The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.)

    DEFF Research Database (Denmark)

    Mahieu, S.; Germont, Florent; Aveline, A.

    2009-01-01

    are estimated. Moreover, grain legume crops are largely influenced by water stress while the world area exposed to drought periods may increase in the coming years due to global warming. This work aims to quantify biomass and N accumulation, N partitioning between above and below ground parts and N...... rhizodeposition by a pea (Pisum sativum L.) when influenced by water stress. In a controlled environment, pea plants were exposed to a severe drought or not stressed, either at flowering or during pod filling. N rhizodeposition was measured using the split root method and plants were harvested at the end...... of flowering (59 days after sowing, DAS 59), at the end of the drought period applied during pod filling (DAS 74) and at maturity (DAS 101). Water stress strongly affected pea dry weight and N accumulation. In both stressed treatments, nodule biomass and N content were reduced by about 65% in the absence...

  2. Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants.

    Science.gov (United States)

    Turcotte, Martin M; Davies, T Jonathan; Thomsen, Christina J M; Johnson, Marc T J

    2014-07-22

    The consumption of plants by animals underlies important evolutionary and ecological processes in nature. Arthropod herbivory evolved approximately 415 Ma and the ensuing coevolution between plants and herbivores is credited with generating much of the macroscopic diversity on the Earth. In contemporary ecosystems, herbivory provides the major conduit of energy from primary producers to consumers. Here, we show that when averaged across all major lineages of vascular plants, herbivores consume 5.3% of the leaf tissue produced annually by plants, whereas previous estimates are up to 3.8× higher. This result suggests that for many plant species, leaf herbivory may play a smaller role in energy and nutrient flow than currently thought. Comparative analyses of a diverse global sample of 1058 species across 2085 populations reveal that models of stabilizing selection best describe rates of leaf consumption, and that rates vary substantially within and among major plant lineages. A key determinant of this variation is plant growth form, where woody plant species experience 64% higher leaf herbivory than non-woody plants. Higher leaf herbivory in woody species supports a key prediction of the plant apparency theory. Our study provides insight into how a long history of coevolution has shaped the ecological and evolutionary relationships between plants and herbivores. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  3. The indirect effects of cheatgrass invasion: Grasshopper herbivory on native grasses determined by neighboring cheatgrass abundance

    Science.gov (United States)

    Julie Beckstead; Susan E. Meyer; Carol K. Augsperger

    2008-01-01

    Invasion biology has focused on the direct effects of plant invasion and has generally overlooked indirect interactions. Here we link theories of invasion biology and herbivory to explore an indirect effect of one invading species on associational herbivory (the effect of neighboring plants on herbivory) of native species. We studied a Great Basin shadscale (...

  4. Interactive effects of above- and belowground herbivory and plant competition on plant growth and defence

    NARCIS (Netherlands)

    Jing, Y.; Raaijmakers, C.; Kostenko, O.; Kos, M.; Mulder, P.P.J.; Bezemer, T.M.

    2015-01-01

    Competition and herbivory are two major factors that can influence plant growth and plant defence. Although these two factors are often studied separately, they do not operate independently. We examined how aboveground herbivory by beet armyworm larvae (Spodoptera exigua) and belowground herbivory

  5. Coral Reef Resilience, Tipping Points and the Strength of Herbivory.

    Science.gov (United States)

    Holbrook, Sally J; Schmitt, Russell J; Adam, Thomas C; Brooks, Andrew J

    2016-11-02

    Coral reefs increasingly are undergoing transitions from coral to macroalgal dominance. Although the functional roles of reef herbivores in controlling algae are becoming better understood, identifying possible tipping points in the herbivory-macroalgae relationships has remained a challenge. Assessment of where any coral reef ecosystem lies in relation to the coral-to-macroalgae tipping point is fundamental to understanding resilience properties, forecasting state shifts, and developing effective management practices. We conducted a multi-year field experiment in Moorea, French Polynesia to estimate these properties. While we found a sharp herbivory threshold where macroalgae escape control, ambient levels of herbivory by reef fishes were well above that needed to prevent proliferation of macroalgae. These findings are consistent with previously observed high resilience of the fore reef in Moorea. Our approach can identify vulnerable coral reef systems in urgent need of management action to both forestall shifts to macroalgae and preserve properties essential for resilience.

  6. V. Terrestrial vertebrates

    Science.gov (United States)

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  7. Facing herbivory on the climb up: Lost opportunities as the main cost of herbivory in the wild yam Dioscorea praehensilis.

    Science.gov (United States)

    Di Giusto, Bruno; Dounias, Edmond; McKey, Doyle B

    2017-08-01

    Plants with simple architecture and strong constraints on their growth may offer critical insights into how growth strategies affect the tolerance of plants to herbivory. Although Dioscorea praehensilis, a wild yam of African forests, is perennial, both aerial apparatus and tuber are annually renewed. Each year, the tuber produces a single stem that climbs from the ground to the forest canopy. This stem bears no leaves and no branches until it reaches optimal light conditions. Once in the canopy, the plant's production fuels the filling of a new tuber before the plant dies back to the ground. We hypothesized that if deprived of ant defense, the leafless growth phase is a vulnerable part of the cycle, during which a small amount of herbivory entails a high cost in terms of loss of opportunity. We compared the growth of stems bearing ants or not as well as of intact stems and stems subjected to simulated or natural herbivory. Ants reduce herbivory; herbivory delays arrival to the canopy and shortens the season of production. Artificially prolonging the stem growth to the canopy increased plant mortality in the following year and, in surviving plants, reduced the stem diameter and likely the underground reserves produced. Tuber size is a key variable in plant performance as it affects both the size of the aerial apparatus and the duration of its single season of production. Aerial apparatus and tuber are thus locked into a cycle of reciprocal annual renewal. Costs due to loss of opportunity may play a major role in plant tolerance to herbivory, especially when architectural constraints interact with ecological conditions to shape the plant's growth strategy.

  8. Plant toxicity, adaptive herbivory, and plant community dynamics

    Science.gov (United States)

    Feng, Z.; Liu, R.; DeAngelis, D.L.; Bryant, J.P.; Kielland, K.; Stuart, Chapin F.; Swihart, R.K.

    2009-01-01

    We model effects of interspecific plant competition, herbivory, and a plant's toxic defenses against herbivores on vegetation dynamics. The model predicts that, when a generalist herbivore feeds in the absence of plant toxins, adaptive foraging generally increases the probability of coexistence of plant species populations, because the herbivore switches more of its effort to whichever plant species is more common and accessible. In contrast, toxin-determined selective herbivory can drive plant succession toward dominance by the more toxic species, as previously documented in boreal forests and prairies. When the toxin concentrations in different plant species are similar, but species have different toxins with nonadditive effects, herbivores tend to diversify foraging efforts to avoid high intakes of any one toxin. This diversification leads the herbivore to focus more feeding on the less common plant species. Thus, uncommon plants may experience depensatory mortality from herbivory, reducing local species diversity. The depensatory effect of herbivory may inhibit the invasion of other plant species that are more palatable or have different toxins. These predictions were tested and confirmed in the Alaskan boreal forest. ?? 2009 Springer Science+Business Media, LLC.

  9. Tolerance of Brassica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, M.; Loon, van J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  10. Tolerence of Braccica nigra to Pieris brassicae herbivory

    NARCIS (Netherlands)

    Blatt, S.E.; Smallegange, R.C.; Hess, L.; Harvey, J.A.; Dicke, D.; van Loon, J.J.A.

    2008-01-01

    Black mustard, Brassica nigra (L.) Koch, is a wild annual species found throughout Europe and fed on by larvae of the large cabbage-white butterfly, Pieris brassicae L. We examined the impact of herbivory from P. brassicae, a gregarious herbivore, on B. nigra grown from wild seed collected locally.

  11. Tropical forest loss and its multitrophic effects on insect herbivory

    NARCIS (Netherlands)

    Morante-Filho, José Carlos; Arroyo-Rodríguez, Víctor; Lohbeck, Madelon; Tscharntke, Teja; Faria, Deborah

    2016-01-01

    Forest loss threatens biodiversity, but its potential effects on multitrophic ecological interactions are poorly understood. Insect herbivory depends on complex bottom-up (e.g., resource availability and plant antiherbivore defenses) and top-down forces (e.g., abundance of predators and

  12. Field-based Evaluation of a Novel SPME-GC-MS Method for Investigation of Below-ground Interaction between Brassica Roots and Larvae of Cabbage Root Fly, Delia radicum L.

    Science.gov (United States)

    Deasy, William; Shepherd, Tom; Alexander, Colin J; Birch, A Nicholas E; Evans, K Andrew

    2016-11-01

    Collection of volatiles from plant roots poses technical challenges due to difficulties accessing the soil environment without damaging the roots. To validate a new non-invasive method for passive sampling of root volatiles in situ, from plants grown under field conditions, using solid phase micro-extraction (SPME). SPME fibres were inserted into perforated polytetrafluoroethene (PTFE) tubes positioned in the soil next to broccoli plants for collection of root volatiles pre- and post-infestation with Delia radicum larvae. After sample analysis by gas chromatography-mass spectrometry (GC-MS), principal component analysis (PCA) was applied to determine differences in the profiles of volatiles between samples. GC-MS analysis revealed that this method can detect temporal changes in root volatiles emitted before and after Delia radicum damage. PCA showed that samples collected pre- and post-infestation were compositionally different due to the presence of root volatiles induced by D. radicum feeding. Sulphur containing compounds, in particular, accounted for the differences observed. Root volatiles emission patterns post-infestation are thought to follow the feeding and developmental progress of larvae. This study shows that volatiles released by broccoli roots can be collected in situ using SPME fibres within perforated PTFE tubes under field conditions. Plants damaged by Delia radicum larvae could be distinguished from plants sampled pre-infestation and soil controls on the basis of larval feeding-induced sulphur-containing volatiles. These results show that this new method is a powerful tool for non-invasive sampling of root volatiles below-ground. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Imaging the vertebral artery

    Energy Technology Data Exchange (ETDEWEB)

    Tay, Keng Yeow; U-King-Im, Jean Marie; Trivedi, Rikin A.; Higgins, Nicholas J.; Cross, Justin J.; Antoun, Nagui M. [Addenbrooke' s Hospital and University of Cambridge, Department of Radiology, Cambridge (United Kingdom); Davies, John R.; Weissberg, Peter L. [Addenbrooke' s Hospital and University of Cambridge, Division of Cardiovascular Medicine, Cambridge (United Kingdom); Gillard, Jonathan H. [Addenbrooke' s Hospital and University of Cambridge, Department of Radiology, Cambridge (United Kingdom); Addenbrooke' s Hospitald, University Department of Radiology, Cambridge (United Kingdom)

    2005-07-01

    Although conventional intraarterial digital subtraction angiography remains the gold standard method for imaging the vertebral artery, noninvasive modalities such as ultrasound, multislice computed tomographic angiography and magnetic resonance angiography are constantly improving and are playing an increasingly important role in diagnosing vertebral artery pathology in clinical practice. This paper reviews the current state of vertebral artery imaging from an evidence-based perspective. Normal anatomy, normal variants and a number of pathological entities such as vertebral atherosclerosis, arterial dissection, arteriovenous fistula, subclavian steal syndrome and vertebrobasilar dolichoectasia are discussed. (orig.)

  14. Imaging the vertebral artery

    International Nuclear Information System (INIS)

    Tay, Keng Yeow; U-King-Im, Jean Marie; Trivedi, Rikin A.; Higgins, Nicholas J.; Cross, Justin J.; Antoun, Nagui M.; Davies, John R.; Weissberg, Peter L.; Gillard, Jonathan H.

    2005-01-01

    Although conventional intraarterial digital subtraction angiography remains the gold standard method for imaging the vertebral artery, noninvasive modalities such as ultrasound, multislice computed tomographic angiography and magnetic resonance angiography are constantly improving and are playing an increasingly important role in diagnosing vertebral artery pathology in clinical practice. This paper reviews the current state of vertebral artery imaging from an evidence-based perspective. Normal anatomy, normal variants and a number of pathological entities such as vertebral atherosclerosis, arterial dissection, arteriovenous fistula, subclavian steal syndrome and vertebrobasilar dolichoectasia are discussed. (orig.)

  15. Simulated herbivory advances autumn phenology in Acer rubrum.

    Science.gov (United States)

    Forkner, Rebecca E

    2014-05-01

    To determine the degree to which herbivory contributes to phenotypic variation in autumn phenology for deciduous trees, red maple (Acer rubrum) branches were subjected to low and high levels of simulated herbivory and surveyed at the end of the season to assess abscission and degree of autumn coloration. Overall, branches with simulated herbivory abscised ∼7 % more leaves at each autumn survey date than did control branches within trees. While branches subjected to high levels of damage showed advanced phenology, abscission rates did not differ from those of undamaged branches within trees because heavy damage induced earlier leaf loss on adjacent branch nodes in this treatment. Damaged branches had greater proportions of leaf area colored than undamaged branches within trees, having twice the amount of leaf area colored at the onset of autumn and having ~16 % greater leaf area colored in late October when nearly all leaves were colored. When senescence was scored as the percent of all leaves abscised and/or colored, branches in both treatments reached peak senescence earlier than did control branches within trees: dates of 50 % senescence occurred 2.5 days earlier for low herbivory branches and 9.7 days earlier for branches with high levels of simulated damage. These advanced rates are of the same time length as reported delays in autumn senescence and advances in spring onset due to climate warming. Thus, results suggest that should insect damage increase as a consequence of climate change, it may offset a lengthening of leaf life spans in some tree species.

  16. Herbivory enhances the resistance of mangrove forest to cordgrass invasion.

    Science.gov (United States)

    Zhang, Yihui; Meng, Hanyu; Wang, Yi; He, Qiang

    2018-06-01

    The biotic resistance hypothesis proposes that biotic interactions, such as competition and herbivory, resist the establishment and spread of non-native species. The relative and interactive role of competition and herbivory in resisting plant invasions, however, remains poorly understood. We investigated the interactive role of competition and herbivory (by the native rodent Rattus losea) in resisting Spartina alterniflora (cordgrass) invasions into mangrove forests. In southern China, although exotic cordgrass numerically dominates intertidal mudflats and open gaps in mangrove forests, intact forests appear to be highly resistant to cordgrass invasion. A field transplant and rodent exclusion experiment showed that while the impact of rodent grazing on cordgrass was weak on mangrove forest edges and open mudflats, rodent grazing strongly suppressed cordgrass in mangrove understory habitats. A greenhouse experiment confirmed a synergistic interaction between grazing and light availability (a proxy for mangrove shading and light competition) in suppressing cordgrass establishment, with the strongest impacts of grazing in low light conditions that likely weakened cordgrass to survive and resprout. When both were present, as in mangrove understory habitats, grazing and low light acted in concert to eliminate cordgrass establishment, resulting in resistance of mangrove forests to cordgrass invasion. Our results reveal that grazing by native herbivores can enhance the resistance of mangrove forests to cordgrass invasion in southern China, and suggest that investigating multifactor interactions may be critical to understanding community resistance to exotic invasions. © 2018 by the Ecological Society of America.

  17. Insect herbivory and plant adaptation in an early successional community.

    Science.gov (United States)

    Agrawal, Anurag A; Hastings, Amy P; Fines, Daniel M; Bogdanowicz, Steve; Huber, Meret

    2018-05-01

    To address the role of insect herbivores in adaptation of plant populations and the persistence of selection through succession, we manipulated herbivory in a long-term field experiment. We suppressed insects in half of 16 plots over nine years and examined the genotypic structure and chemical defense of common dandelion (Taraxacum officinale), a naturally colonizing perennial apomictic plant. Insect suppression doubled dandelion abundance in the first few years, but had negligible effects thereafter. Using microsatellite DNA markers, we genotyped >2500 plants and demonstrate that insect suppression altered the genotypic composition of plots in both sampling years. Phenotypic and genotypic estimates of defensive terpenes and phenolics from the field plots allowed us to infer phenotypic plasticity and the response of dandelion populations to insect-mediated natural selection. The effects of insect suppression on plant chemistry were, indeed, driven both by plasticity and plant genotypic identity. In particular, di-phenolic inositol esters were more abundant in plots exposed to herbivory (due to the genotypic composition of the plots) and were also induced in response to herbivory. This field experiment thus demonstrates evolutionary sorting of plant genotypes in response to insect herbivores that was in same direction as the plastic defensive response within genotypes. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  18. Inducible defenses against herbivory and fouling in seaweeds

    Science.gov (United States)

    Pereira, Renato Crespo; Costa, Erica da Silva; Sudatti, Daniela Bueno; da Gama, Bernardo Antonio Perez

    2017-04-01

    Secondary metabolites play an important ecological role as a defense mechanism in seaweeds. Chemical defenses are well known to change in response to herbivory, but other driving factors, either biotic or abiotic, are often neglected. Epibiosis may not only reduce seaweed fitness, but also increase attractiveness to consumers, and thus defense production should also be triggered by epibionts. In this study, three Southwestern Atlantic seaweeds, Gracilaria cearensis, Pterocladiella capillacea (Rhodophyceae) and Codium decorticatum (Chlorophyceae) were investigated in laboratory bioassays designed to test whether the action of herbivory or simulated epibiosis influences chemical defenses. Crossed induction experiments were also performed in order to assess whether herbivore induction influences antifouling chemical defense, as well as whether epibiont induction would affect defense against herbivores. The effect of laboratory conditions on seaweeds in the absence of field stimuli was also investigated by comparing consumption of artificial food with extracts from acclimatized and non-acclimatized seaweeds (i.e., natural defense levels). Only the green seaweed C. decorticatum exhibited inducible antifouling defenses triggered by simulated epibiosis, but not by herbivores. In the other seaweeds there was no induction either by herbivory or simulated epibiosis. Acclimatization did not affect C. decorticatum defenses. However, non-acclimatized G. cearensis artificial foods were preferred over acclimatized ones, while extracts from acclimatized P. capillacea increased herbivore consumption, highlighting the need to acclimatize seaweeds before the main induction experiments. This is the first report of inducible defenses due to simulated fouling in seaweeds.

  19. Head segmentation in vertebrates

    OpenAIRE

    Kuratani, Shigeru; Schilling, Thomas

    2008-01-01

    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Her...

  20. Vertebral osteomyelitis without disc involvement

    Energy Technology Data Exchange (ETDEWEB)

    Kamani, I.; Syed, I.; Saifuddin, A. E-mail: asaifuddin@aol.com; Green, R.; MacSweeney, F

    2004-10-01

    Vertebral osteomyelitis is most commonly due to pyogenic or granulomatous infection and typically results in the combined involvement of the intervertebral disc and adjacent vertebral bodies. Non-infective causes include the related conditions of chronic recurrent multifocal osteomyelitis (CRMO) and SAPHO (synovitis, acne, pustulosis, hyperostosis, and osteitis) syndrome. Occasionally, these conditions may present purely within the vertebral body, resulting in various combinations of vertebral marrow oedema and sclerosis, destructive lesions of the vertebral body and pathological vertebral collapse, thus mimicking neoplastic disease. This review illustrates the imaging features of vertebral osteomyelitis without disc involvement, with emphasis on magnetic resonance imaging (MRI) findings.

  1. Divergent responses of leaf herbivory to simulated hurricane effects in a rainforest understory

    Science.gov (United States)

    Chelse Prather

    2014-01-01

    Hurricanes are major disturbances in many forests, but studies showing effects of natural hurricanes on herbivory rates have yielded mixed results. Forest managers could benefit from a better understanding of the effects of disturbances on herbivory to manage for particular recovery or restoration goals after anthropogenic or natural disturbances, such as logging and...

  2. Responses of vegetation and soil microbial communities to warming and simulated herbivory in a subarctic heath

    DEFF Research Database (Denmark)

    Rinnan, Riikka; Stark, Sari; Tolvanen, Anne

    2009-01-01

    Climate warming increases the cover of deciduous shrubs in arctic ecosystems and herbivory is also known to have a strong influence on the biomass and composition of vegetation. However, research combining herbivory with warming is largely lacking. Our study describes how warming and simulated...... setup of the International Tundra Experiment (ITEX). Wounding of the dominant deciduous dwarf shrub Vaccinium myrtillus L. to simulate herbivory was carried out annually. We measured vegetation cover in 2003 and 2007, soil nutrient concentrations in 2003 and 2006, soil microbial respiration in 2003...... and herbivory. 6 Synthesis. Our results show that warming increases the cover of V. myrtillus, which seems to enhance the nutrient sink strength of vegetation in the studied ecosystem. However, herbivory partially negates the effect of warming on plant N uptake and interacts with the effect of warming...

  3. Arabidopsis redox status in response to caterpillar herbivory

    Directory of Open Access Journals (Sweden)

    Jamuna ePaudel

    2013-05-01

    Full Text Available Plant responses to insect herbivory are regulated through complex, hormone-mediated interactions. Some caterpillar species have evolved strategies to manipulate this system by inducing specific pathways that suppress plant defense responses. Effectors in the labial saliva (LS secretions of Spodoptera exigua caterpillars are believed to induce the salicylic acid (SA pathway to interfere with the jasmonic acid (JA defense pathway; however, the mechanism underlying this subversion is unknown. Since Noctuid caterpillar LS contains enzymes that may affect cellular redox balance, this study investigated rapid changes in cellular redox metabolites within 45 min after herbivory. Caterpillar LS is involved in suppressing the increase in oxidative stress that was observed in plants fed upon by caterpillars with impaired LS secretions. To further understand the link between cellular redox balance and plant defense responses, marker genes of SA, JA and ethylene (ET pathways were compared in wildtype, the glutathione-compromised pad2-1 mutant and the tga2/5/6 triple mutant plants. AtPR1 and AtPDF1.2 showed LS-dependent expression that was alleviated in the pad2-1 and tga2/5/6 triple mutants. In comparison, the ET-dependent genes ERF1 expression showed LS-associated changes in both wildtype and pad2-1 mutant plants and the ORA 59 marker AtHEL had increased expression in response to herbivory, but a LS-dependent difference was not noted. These data support the model that there are SA/NPR1-, glutathione-dependent and ET-, glutathione-independent mechanisms leading to LS-associated suppression of plant induced defences.

  4. Herbivory drives the spread of salt marsh die-off.

    Directory of Open Access Journals (Sweden)

    Mark D Bertness

    Full Text Available Salt marsh die-off is a Western Atlantic conservation problem that has recently spread into Narragansett Bay, Rhode Island, USA. It has been hypothesized to be driven by: 1 eutrophication decreasing plant investment into belowground biomass causing plant collapse, 2 boat wakes eroding creek banks, 3 pollution or disease affecting plant health, 4 substrate hardness controlling herbivorous crab distributions and 5 trophic dysfunction releasing herbivorous crabs from predator control. To distinguish between these hypotheses we quantified these variables at 14 Narragansett Bay salt marshes where die-off intensity ranged from <5% to nearly 98%. Nitrogen availability, wave intensity and plant growth did not explain any variation in die-off. Herbivory explained 73% of inter-site variation in die-off and predator control of herbivores and substrate hardness also varied significantly with die-off. This suggests that salt marsh die-off is being largely driven by intense herbivory via the release of herbivorous crabs from predator control. Our results and those from other marsh systems suggest that consumer control may not simply be a factor to consider in marsh conservation, but with widespread predator depletion impacting near shore habitats globally, trophic dysfunction and runaway consumption may be the largest and most urgent management challenge for salt marsh conservation.

  5. Imaging of vertebral trauma

    International Nuclear Information System (INIS)

    Daffner, R.H.

    1999-01-01

    This translation of the toolbook published in the 'US-ART' series, offers invaluable help to medical radiologists in the diagnostic imaging and evaluation of complex vertebral traumas which are on the rise, inter alia due to increasingly dangerous leisure sports. (orig./CB) [de

  6. Recruitment dynamics mediated by ungulate herbivory can affect species coexistence for tree seedling assemblages

    Directory of Open Access Journals (Sweden)

    Chi-Yu Weng

    2017-08-01

    Full Text Available The best-known mechanism that herbivory affects species coexistence of tree seedlings is negative density-dependency driven by specialist natural enemies. However, in a forest with intense herbivory by non-specialists, what causes a diversifying seedling bank if rare species do not benefit from negative density-dependency in dominant species? We hypothesize that generalist herbivores can cause unevenly distributed species-specific mortality, which mediates recruitment dynamics and therefore affects species coexistence. To answer this question, we conducted a fence-control experiment in a montane cloud forest, Taiwan, and found that herbivorous damages were mainly caused by ungulates, which are generalists. We explored ungulate herbivory effects on recruitment dynamics by censusing tree seedling dynamics for three years. We found that herbivorous damages by ungulates significantly cause seedling death, mostly at their early stage of establishment. The percentage of death caused by herbivory varied among species. In particular, nurse plants and seedling initial height help shade-tolerant species to persist under such intense herbivory. Whereas, deaths caused by other factors occurred more often in older seedlings, with a consistent low percentage among species. We then tested species coexistence maintenance by dynamic modelling under different scenarios of ungulate herbivory. Raising percentages of death by herbivory changes relative species abundances by suppressing light-demanding species and increasing shade-tolerant species. Density-dependent mortality immediately after bursts of recruitments can suppress dominance of abundant species. With ungulate herbivory, fluctuating recruitment further prevent rare species from apparent competition induced by abundant species. Such bio-processes can interact with ungulate herbivory so that long-term coexistence can be facilitated.

  7. Management of osteoporotic vertebral fractures

    OpenAIRE

    Dionyssiotis, Yannis

    2010-01-01

    Yannis DionyssiotisRhodes General Hospital, Rhodes, GreeceAbstract: Osteoporotic vertebral fractures are associated with considerable reduction of quality of life, morbidity, and mortality. The management of patients with vertebral fractures should include treatment for osteoporosis and measures to reduce pain and improve mobility. This article provides information for management and rehabilitation of vertebral fractures based on clinical experience and literature.Keywords: vertebral fracture...

  8. Predicting vertebral bone strength by vertebral static histomorphometry

    DEFF Research Database (Denmark)

    Thomsen, Jesper Skovhus; Ebbesen, Ebbe Nils; Mosekilde, Lis

    2002-01-01

    of the entire vertebral bodies (L-2) were used for histomorphometry. The other iliac crest biopsies and the L-3 were destructively tested by compression. High correlation was found between BV/TV or Tb.Sp and vertebral bone strength (absolute value of r = 0.86 in both cases). Addition of Tb.Th significantly....... No gender-related differences were found in any of the relationships. Neither static histomorphometry nor biomechanical testing of iliac crest bone biopsies is a good predictor of vertebral bone strength.......The study investigates the relationship between static histomorphometry and bone strength of human lumbar vertebral bone. The ability of vertebral histomorphometry to predict vertebral bone strength was compared with that of vertebral densitometry, and also with histomorphometry and bone strength...

  9. Sex reversal in vertebrates

    OpenAIRE

    2016-01-01

    This special topic issue of Sexual Development gives an overview of sex reversal in vertebrates, from fishes naturally changing their sex, to rodents escaping the mammalian SRY-determining system. It offers eight up-to-date reviews on specific subjects in sex reversal, considering fishes, amphibians, reptiles, birds, marsupials, and placental mammals, including humans. The broad scope of represented animals makes this ideal for students and researchers, especially those interested in the...

  10. Selective Herbivory by an Invasive Cyprinid, the Rudd Scardinius erythrophthalmus

    Energy Technology Data Exchange (ETDEWEB)

    Kapuscinski, Kevin L [SUNY-ESF, SUNY College of Environmental Science and Forestry; John, Farrell M [SUNY-ESF, SUNY College of Environmental Science and Forestry; Stehman, Stephen V [SUNY-ESF, SUNY College of Environmental Science and Forestry; Boyer, Gregory L [SUNY-ESF, SUNY College of Environmental Science and Forestry; Fernando, Danilo D [SUNY-ESF, SUNY College of Environmental Science and Forestry; Teece, Mark A [SUNY-ESF, SUNY College of Environmental Science and Forestry; Tschaplinski, Timothy J [ORNL

    2014-01-01

    1. Herbivory by non-native animals is a problem of growing concern globally, especially for ecosystems where significant native herbivores did not previously exist or have been replaced by non-natives. The rudd (Scardinius erythrophthalmus) is an omnivorous cyprinid that has a nearly global longitudinal distribution due to human translocations, yet it is unknown whether the rudd feeds selectively among aquatic macrophyte species common to North American waters. 2. We tested a null hypothesis of non-selective feeding by rudds using five species of aquatic macrophytes: Ceratophyllum demersum, Elodea canadensis, Najas flexilis, Stuckenia pectinata, and Vallisneria americana. Four rudds were placed in 15 different 890-L tanks and presented with known quantities of each macrophyte species (each tank serving as a block in a randomized complete block design). Each macrophyte bundle was weighed on six dates during a 13 d experiment. Differences in mean percent weight remaining among macrophyte species were tested using repeated measures analysis of variance. We also quantified differences among chemical attributes of the five macrophyte species and qualitatively determined if selective feeding by rudds was related to dry matter content (DMC), percent C by dry weight (%C), percent N by dry weight (%N), and the concentrations of total soluble proteins, two organic acids (aconitic and oxalic acid), total soluble phenolic compounds (<1,000 Da), nine soluble phenolic metabolites, and total phenolic compounds. 3. Selective feeding by rudds was evident, with the order of macrophyte removal (from highest to lowest) being: N. flexilis > E. canadensis > S. pectinata > V. americana > C. demersum. Selection was positively related to %C and atomic C:N, but not DMC, %N, or concentration of total soluble proteins, contrary to the expectation that rudds would select the most nutritious plants available. The concentration of aconitic acid was greatest in N. flexilis, a preferred macrophyte

  11. Independent Effects of Invasive Shrubs and Deer Herbivory on Plant Community Dynamics

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Ward

    2016-12-01

    Full Text Available Both invasive species and deer herbivory are recognized as locally important drivers of plant community dynamics. However, few studies have examined whether their effects are synergistic, additive, or antagonistic. At three study areas in southern New England, we examined the interaction of white-tailed deer (Odocoileus virginianus Zimmermann herbivory and three levels of invasive shrub control over seven growing seasons on the dynamics of nine herbaceous and shrub guilds. Although evidence of synergistic interactions was minimal, the separate effects of invasive shrub control and deer herbivory on plant community composition and dynamics were profound. Plant communities remained relatively unchanged where invasive shrubs were not treated, regardless if deer herbivory was excluded or not. With increasing intensity of invasive shrub control, native shrubs and forbs became more dominant where deer herbivory was excluded, and native graminoids became progressively more dominant where deer herbivory remained severe. While deer exclusion and intensive invasive shrub control increased native shrubs and forbs, it also increased invasive vines. Restoring native plant communities in areas with both established invasive shrub thickets and severe deer browsing will require an integrated management plan to eliminate recalcitrant invasive shrubs, reduce deer browsing intensity, and quickly treat other opportunistic invasive species.

  12. Combined effects of plant competition and insect herbivory hinder invasiveness of an introduced thistle.

    Science.gov (United States)

    Suwa, Tomomi; Louda, Svata M

    2012-06-01

    The biotic resistance hypothesis is a dominant paradigm for why some introduced species fail to become invasive in novel environments. However, predictions of this hypothesis require further empirical field tests. Here, we focus on evaluating two biotic factors known to severely limit plants, interspecific competition and insect herbivory, as mechanisms of biotic resistance. We experimentally evaluated the independent and combined effects of three levels of competition by tallgrass prairie vegetation and two levels of herbivory by native insects on seedling regeneration, size, and subsequent flowering of the Eurasian Cirsium vulgare, a known invasive species elsewhere, and compared its responses to those of the ecologically similar and co-occurring native congener C. altissimum. Seedling emergence of C. vulgare was greater than that of C. altissimum, and that emergence was reduced by the highest level of interspecific competition. Insect leaf herbivory was also greater on C. vulgare than on C. altissimum at all levels of competition. Herbivory on seedlings dramatically decreased the proportion of C. vulgare producing flower heads at all competition levels, but especially at the high competition level. Competition and herbivory interacted to significantly decrease plant survival and biomass, especially for C. vulgare. Thus, both competition and herbivory limited regeneration of both thistles, but their effects on seedling emergence, survival, size and subsequent reproduction were greater for C. vulgare than for C. altissimum. These results help explain the unexpectedly low abundance recorded for C. vulgare in western tallgrass prairie, and also provide strong support for the biotic resistance hypothesis.

  13. Radiotherapy of vertebral hemangiomas

    International Nuclear Information System (INIS)

    Sakata, Kohichi; Hareyama, Masato; Oouchi, Atushi; Sido, Mitsuo; Nagakura, Hisayasu; Tamakawa, Mituharu; Akiba, Hidenari; Morita, Kazuo

    1997-01-01

    Between 1975 and 1996, 14 patients (11 females, 3 males) with vertebral hemangioma received treatment with radiotherapy. Thirteen patients had a history of back pain or lumbago and 2 patients had neurological symptoms such as sensory impairment or paraplegia. The standard dose administered was 36 Gy in 18 fractions (five treatments per week). In the 13 patients with pain, this was completely or partially relieved. The condition of a man with hypesthesia of the legs deteriorated and a woman with paraplegia who was treated with decompressive laminectomy followed by radiotherapy recovered completely after irradiation. CT scan before irradiation showed thickened trabeculae as small punctate areas of sclerosis in all patients. At MR imaging before irradiation, T2-weighted MR images showed areas of high intensity in all patients and MR images demonstrated lesion enhancement. However, none of the patients who were treated successfully with radiation demonstrated any changes of the affected vertebra in the conventional radiographic films, CT scan or MR imaging, even 5 years after irradiation. Radiological imaging is indispensable for the diagnosis of vertebral hemangiomas but does not appear to be useful for evaluating the effects of radiotherapy. (orig.)

  14. Macroalgal herbivory on recovering versus degrading coral reefs

    Science.gov (United States)

    Chong-Seng, K. M.; Nash, K. L.; Bellwood, D. R.; Graham, N. A. J.

    2014-06-01

    Macroalgal-feeding fishes are considered to be a key functional group on coral reefs due to their role in preventing phase shifts from coral to macroalgal dominance, and potentially reversing the shift should it occur. However, assessments of macroalgal herbivory using bioassay experiments are primarily from systems with relatively high coral cover. This raises the question of whether continued functionality can be ensured in degraded systems. It is clearly important to determine whether the species that remove macroalgae on coral-dominated reefs will still be present and performing significant algal removal on macroalgal-dominated reefs. We compared the identity and effectiveness of macroalgal-feeding fishes on reefs in two conditions post-disturbance—those regenerating with high live coral cover (20-46 %) and those degrading with high macroalgal cover (57-82 %). Using filmed Sargassum bioassays, we found significantly different Sargassum biomass loss between the two conditions; mean assay weight loss due to herbivory was 27.9 ± 4.9 % on coral-dominated reefs and 2.2 ± 1.1 % on reefs with high macroalgal cover. However, once standardised for the availability of macroalgae on the reefs, the rates of removal were similar between the two reef conditions (4.8 ± 4.1 g m-2 h-1 on coral-dominated and 5.3 ± 2.1 g m-2 h-1 on macroalgal-dominated reefs). Interestingly, the Sargassum-assay consumer assemblages differed between reef conditions; nominally grazing herbivores, Siganus puelloides and Chlorurus sordidus, and the browser , Siganus sutor, dominated feeding on high coral cover reefs, whereas browsing herbivores, Naso elegans, Naso unicornis, and Leptoscarus vaigiensis, prevailed on macroalgal-dominated reefs. It appeared that macroalgal density in the surrounding habitat had a strong influence on the species driving the process of macroalgal removal. This suggests that although the function of macroalgal removal may continue, the species responsible may change

  15. Tree diversity promotes insect herbivory in subtropical forests of south-east China.

    Science.gov (United States)

    Schuldt, Andreas; Baruffol, Martin; Böhnke, Martin; Bruelheide, Helge; Härdtle, Werner; Lang, Anne C; Nadrowski, Karin; von Oheimb, Goddert; Voigt, Winfried; Zhou, Hongzhang; Assmann, Thorsten; Fridley, Jason

    2010-07-01

    1.Insect herbivory can strongly affect ecosystem processes, and its relationship with plant diversity is a central topic in biodiversity-functioning research. However, very little is known about this relationship from complex ecosystems dominated by long-lived individuals, such as forests, especially over gradients of high plant diversity.2.We analysed insect herbivory on saplings of 10 tree and shrub species across 27 forest stands differing in age and tree species richness in an extraordinarily diverse subtropical forest ecosystem in China. We tested whether plant species richness significantly influences folivory in these highly diverse forests or whether other factors play a more important role at such high levels of phytodiversity.3.Leaf damage was assessed on 58 297 leaves of 1284 saplings at the end of the rainy season in 2008, together with structural and abiotic stand characteristics.4.Species-specific mean damage of leaf area ranged from 3% to 16%. Herbivory increased with plant species richness even after accounting for potentially confounding effects of stand characteristics, of which stand age-related aspects most clearly covaried with herbivory. Intraspecific density dependence or other abiotic factors did not significantly influence overall herbivory across forest stands.5.Synthesis.The positive herbivory-plant diversity relationship indicates that effects related to hypotheses of resource concentration, according to which a reduction in damage by specialized herbivores might be expected as host plant concentration decreases with increasing plant diversity, do not seem to be major determinants for overall herbivory levels in our phytodiverse subtropical forest ecosystem. We discuss the potential role of host specificity of dominant herbivores, which are often expected to show a high degree of specialization in many (sub)tropical forests. In the forest system we studied, a much higher impact of polyphagous species than traditionally assumed might

  16. A fungal endophyte helps plants to tolerate root herbivory through changes in gibberellin and jasmonate signaling

    NARCIS (Netherlands)

    Rebeca Cosme, M.P.

    2016-01-01

    Plant–microbe mutualisms can improve plant defense, but the impact of root endophytes on below-ground herbivore interactions remains unknown. We investigated the effects of the root endophyte Piriformospora indica on interactions between rice (Oryza sativa) plants and its root herbivore rice water

  17. Systematic analysis of rice (Oryza sativa) metabolic responses to herbivory.

    Science.gov (United States)

    Alamgir, Kabir Md; Hojo, Yuko; Christeller, John T; Fukumoto, Kaori; Isshiki, Ryutaro; Shinya, Tomonori; Baldwin, Ian T; Galis, Ivan

    2016-02-01

    Plants defend against attack from herbivores by direct and indirect defence mechanisms mediated by the accumulation of phytoalexins and release of volatile signals, respectively. While the defensive arsenals of some plants, such as tobacco and Arabidopsis are well known, most of rice's (Oryza sativa) defence metabolites and their effectiveness against herbivores remain uncharacterized. Here, we used a non-biassed metabolomics approach to identify many novel herbivory-regulated metabolic signatures in rice. Most were up-regulated by herbivore attack while only a few were suppressed. Two of the most prominent up-regulated signatures were characterized as phenolamides (PAs), p-coumaroylputrescine and feruloylputrescine. PAs accumulated in response to attack by both chewing insects, i.e. feeding of the lawn armyworm (Spodoptera mauritia) and the rice skipper (Parnara guttata) larvae, and the attack of the sucking insect, the brown planthopper (Nilaparvata lugens, BPH). In bioassays, BPH insects feeding on 15% sugar solution containing p-coumaroylputrescine or feruloylputrescine, at concentrations similar to those elicited by heavy BPH attack in rice, had a higher mortality compared to those feeding on sugar diet alone. Our results highlight PAs as a rapidly expanding new group of plant defence metabolites that are elicited by herbivore attack, and deter herbivores in rice and other plants. © 2015 John Wiley & Sons Ltd.

  18. Horizontal Gene Transfer Contributes to the Evolution of Arthropod Herbivory.

    Science.gov (United States)

    Wybouw, Nicky; Pauchet, Yannick; Heckel, David G; Van Leeuwen, Thomas

    2016-06-27

    Within animals, evolutionary transition toward herbivory is severely limited by the hostile characteristics of plants. Arthropods have nonetheless counteracted many nutritional and defensive barriers imposed by plants and are currently considered as the most successful animal herbivores in terrestrial ecosystems. We gather a body of evidence showing that genomes of various plant feeding insects and mites possess genes whose presence can only be explained by horizontal gene transfer (HGT). HGT is the asexual transmission of genetic information between reproductively isolated species. Although HGT is known to have great adaptive significance in prokaryotes, its impact on eukaryotic evolution remains obscure. Here, we show that laterally transferred genes into arthropods underpin many adaptations to phytophagy, including efficient assimilation and detoxification of plant produced metabolites. Horizontally acquired genes and the traits they encode often functionally diversify within arthropod recipients, enabling the colonization of more host plant species and organs. We demonstrate that HGT can drive metazoan evolution by uncovering its prominent role in the adaptations of arthropods to exploit plants. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  19. Vertebral basilar artery dissections

    International Nuclear Information System (INIS)

    Zimmerman, R.A.; Bilaniuk, L.T.; Hackney, D.B.; Grossman, R.I.; Goldberg, H.I.; Atlas, S.W.

    1988-01-01

    Eleven patients (ten male, one female; range, 2-56 years) presented with posterior circulation ischemic symptoms and were evaluated with computed tomography (CT) (eta=11), arteriography (eta=11), and magnetic resonance (MR) imaging (eta=6). Angiography showed dissection of a vertebral artery (eta=8), a basilar artery (eta=1), or a combination of both (eta=2). On CT and/or MR images, infarctions were demonstrated in ten of 11 cases. Most frequently involved were the thalmus (eta=7), cerebellum (eta=6), occipital lobes (eta=4), and pons (eta=3). The site of infarction did not correlate with the side or site of angiographic abnormality. In six cases evaluated by all modalities, MR imaging showed more extensive and widespread infarction than did CT and also showed whether or not the infarcts were hemorrhagic. MR imaging was able to demonstrate the presence of intramural dissecting hematoma prior to angiography and to indicate whether or not flow was reconstituted on follow-up examination

  20. Dynamics of radon-222 near below ground surface

    International Nuclear Information System (INIS)

    Fukui, Masami; Katsurayama, Kousuke; Nishimura, Susumu.

    1986-01-01

    The concentrations and variation of 222 Rn were investigated both in unconfined groundwater and in the aerated zone to obtain information as to the behavior of Rn close to ground surface. The Rn concentrations in unconfined groundwater near the surface were depletive by the extent of about 50 % compared with that of lower part in a borehole, then the continuous extraction of groundwater causes pronounced increase of the concentration. The method, which monitors continuously the Rn concentration in such surroundings, was developed, where the unconfined groundwater extracted was injected into another borehole and sprayed gas was measured using an ionization chamber. The read-out values of this system well followed the variation of concentrations caused by the meteorological parameter, especially infiltrating water. The increase of 222 Rn concentration in the aerated zone above the water level was clearly observed following the ascendant of groundwater level caused by the infiltrating water, whereas the change of concentration in soil air just below the ground surface obeyed mainly to the wetness of soil and unconfined groundwater level rather than atmospheric pressure. (author)

  1. Matrix metalloproteinases outside vertebrates.

    Science.gov (United States)

    Marino-Puertas, Laura; Goulas, Theodoros; Gomis-Rüth, F Xavier

    2017-11-01

    The matrix metalloproteinase (MMP) family belongs to the metzincin clan of zinc-dependent metallopeptidases. Due to their enormous implications in physiology and disease, MMPs have mainly been studied in vertebrates. They are engaged in extracellular protein processing and degradation, and present extensive paralogy, with 23 forms in humans. One characteristic of MMPs is a ~165-residue catalytic domain (CD), which has been structurally studied for 14 MMPs from human, mouse, rat, pig and the oral-microbiome bacterium Tannerella forsythia. These studies revealed close overall coincidence and characteristic structural features, which distinguish MMPs from other metzincins and give rise to a sequence pattern for their identification. Here, we reviewed the literature available on MMPs outside vertebrates and performed database searches for potential MMP CDs in invertebrates, plants, fungi, viruses, protists, archaea and bacteria. These and previous results revealed that MMPs are widely present in several copies in Eumetazoa and higher plants (Tracheophyta), but have just token presence in eukaryotic algae. A few dozen sequences were found in Ascomycota (within fungi) and in double-stranded DNA viruses infecting invertebrates (within viruses). In contrast, a few hundred sequences were found in archaea and >1000 in bacteria, with several copies for some species. Most of the archaeal and bacterial phyla containing potential MMPs are present in human oral and gut microbiomes. Overall, MMP-like sequences are present across all kingdoms of life, but their asymmetric distribution contradicts the vertical descent model from a eubacterial or archaeal ancestor. This article is part of a Special Issue entitled: Matrix Metalloproteinases edited by Rafael Fridman. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ontogenetic differences of herbivory on woody and herbaceous plants: a meta-analysis demonstrating unique effects of herbivory on the young and the old, the slow and the fast.

    Science.gov (United States)

    Massad, Tara Joy

    2013-05-01

    The effect of herbivory on plant performance is the subject of a large number of ecological studies, and plant responses to herbivory range from reduced reproduction to overcompensation. Because plant defenses, stored resources, and allocation demands change throughout a plant's lifetime, it can be hypothesized the effects of herbivory also vary with development. The present work extends previous analyses to incorporate hundreds of studies in a new meta-analysis addressing this topic. Herbivores had an overall negative effect on plant growth and reproduction, and, in contrast to a previous meta-analysis, this work shows the timing of herbivory is relevant. Differences in the effects of herbivory between life stages existed for woody plant reproduction and perennial herb growth. In addition, tree and shrub growth was reduced by herbivore damage at early ontogenetic stages, and perennial herb reproduction was limited by adult stage herbivory. These results partially support the continuum of an ontogenetic response model. Finally, consideration of this synthesis in conjunction with other work led to the conclusion that different plant groups optimize their defense investments in unique ways. Slow-growing plants may strongly chemically defend young tissues, supporting the plant-age hypothesis, because early herbivory is detrimental to growth. Faster-growing herbs may invest more in antiherbivore defense when they are older, supporting the growth-differentiation balance hypothesis, because later herbivory limits their reproduction.

  3. Rapid onset aggressive vertebral haemangioma.

    Science.gov (United States)

    Cheung, Nicholas K; Doorenbosch, Xenia; Christie, John G

    2011-03-01

    Vertebral haemangiomas are generally benign asymptomatic vascular tumours seen commonly in the adult population. Presentations in paediatric populations are extremely rare, which can result in rapid onset of neurological symptoms. We present a highly unusual case of an aggressive paediatric vertebral haemangioma causing significant cord compression. A 13-year-old boy presented with only 2 weeks duration of progressive gait disturbance, truncal ataxia and loss of bladder control. Magnetic resonance imaging (MRI) of the spine revealed a large vascular epidural mass extending between T6 and T8 vertebral bodies. Associated displacement and compression of the spinal cord was present. A highly vascular bony lesion was found during surgery. Histopathology identified this tumour to be a vertebral haemangioma. We present an extremely unusual acute presentation of a paediatric vertebral haemangioma. This study highlights the need for early diagnosis, MRI for investigation and urgent surgical management. © Springer-Verlag 2011

  4. Modeling the compensatory response of an invasive tree to specialist insect herbivory

    Science.gov (United States)

    Zhang, Bo; Liu, Xin; DeAngelis, Donald L.; Zhai, Lu; Rayamajhi, Min B.; Ju, Shu

    2018-01-01

    The severity of the effects of herbivory on plant fitness can be moderated by the ability of plants to compensate for biomass loss. Compensation is an important component of the ecological fitness in many plants, and has been shown to reduce the effects of pests on agricultural plant yields. It can also reduce the effectiveness of biocontrol through introduced herbivores in controlling weedy invasive plants. This study used a modeling approach to predict the effect of different levels of foliage herbivory by biological control agents introduced to control the invasive tree Melaleuca quinquennervia (melaleuca) in Florida. It is assumed in the model that melaleuca can optimally change its carbon and nitrogen allocation strategies in order to compensate for the effects of herbivory. The model includes reallocation of more resources to production and maintenance of photosynthetic tissues at the expense of roots. This compensation is shown to buffer the severity of the defoliation effect, but the model predicts a limit on the maximum herbivory that melaleuca can tolerate and survive. The model also shows that the level of available limiting nutrient (e.g., soil nitrogen) may play an important role in a melaleuca’s ability to compensate for herbivory. This study has management implications for the best ways to maximize the level of damage using biological control or other means of defoliation.

  5. Genotype-environment interactions affect flower and fruit herbivory and plant chemistry of Arabidopsis thaliana in a transplant experiment

    NARCIS (Netherlands)

    Mosleh Arany, A.; de Jong, T.; Kim, H.K.; Van Dam, N.M.; Choi, Y.L.; van Mil, H.G.J.; Verpoorte, R.; van der Meijden, E.

    2009-01-01

    Large differences exist in flower and fruit herbivory between dune and inland populations of plants of Arabidopsis thaliana (Brassicaceae). Two specialist weevils Ceutorhynchus atomus and C. contractus (Curculionidae) and their larvae are responsible for this pattern in herbivory. We test, by means

  6. Termites, vertebrate herbivores, and the fruiting success of Acacia drepanolobium.

    Science.gov (United States)

    Brody, Alison K; Palmer, Todd M; Fox-Dobbs, Kena; Doak, Dan F

    2010-02-01

    In African savannas, vertebrate herbivores are often identified as key determinants of plant growth, survivorship, and reproduction. However, plant reproduction is likely to be the product of responses to a suite of abiotic and biotic factors, including nutrient availability and interactions with antagonists and mutualists. In a relatively simple system, we examined the role of termites (which act as ecosystem engineers--modifying physical habitat and creating islands of high soil fertility), vertebrate herbivores, and symbiotic ants, on the fruiting success of a dominant plant, Acacia drepanolobium, in East African savannas. Using observational data, large-scale experimental manipulations, and analysis of foliar N, we found that Acacia drepanolobium trees growing at the edge of termite mounds were more likely to reproduce than those growing farther away, in off-mound soils. Although vertebrate herbivores preferentially used termite mounds as demonstrated by dung deposits, long-term exclusion of mammalian grazers did not significantly reduce A. drepanolobium fruit production. Leaf N was significantly greater in trees growing next to mounds than in those growing farther away, and this pattern was unaffected by exclusion of vertebrates. Thus, soil enrichment by termites, rather than through dung and urine deposition by large herbivores, is of primary importance to fruit production near mounds. Across all mound-herbivore treatment combinations, trees that harbored Crematogaster sjostedti were more likely to fruit than those that harbored one of the other three ant species. Although C. sjostedti is less aggressive than the other ants, it tends to inhabit large, old trees near termite mounds which are more likely to fruit than smaller ones. Termites play a key role in generating patches of nutrient-rich habitat important to the reproductive success of A. drepanolobium in East African savannas. Enhanced nutrient acquisition from termite mounds appears to allow plants to

  7. Primary extracranial vertebral artery aneurysms.

    Science.gov (United States)

    Morasch, Mark D; Phade, Sachin V; Naughton, Peter; Garcia-Toca, Manuel; Escobar, Guillermo; Berguer, Ramon

    2013-05-01

    Extracranial vertebral artery aneurysms are uncommon and are usually associated with trauma or dissection. Primary cervical vertebral aneurysms are even rarer and are not well described. The presentation and natural history are unknown and operative management can be difficult. Accessing aneurysms at the skull base can be difficult and, because the frail arteries are often afflicted with connective tissue abnormalities, direct repair can be particularly challenging. We describe the presentation and surgical management of patients with primary extracranial vertebral artery aneurysms. In this study we performed a retrospective, multi-institutional review of patients with primary aneurysms within the extracranial vertebral artery. Between January 2000 and January 2011, 7 patients, aged 12-56 years, were noted to have 9 primary extracranial vertebral artery aneurysms. All had underlying connective tissue or another hereditary disorder, including Ehler-Danlos syndrome (n=3), Marfan's disease (n=2), neurofibromatosis (n=1), and an unspecified connective tissue abnormality (n=1). Eight of 9 aneurysms were managed operatively, including an attempted bypass that ultimately required vertebral ligation; the contralateral aneurysm on this patient has not been treated. Open interventions included vertebral bypass with vein, external carotid autograft, and vertebral transposition to the internal carotid artery. Special techniques were used for handling the anastomoses in patients with Ehler-Danlos syndrome. Although endovascular exclusion was not performed in isolation, 2 hybrid procedures were performed. There were no instances of perioperative stroke or death. Primary extracranial vertebral artery aneurysms are rare and occur in patients with hereditary disorders. Operative intervention is warranted in symptomatic patients. Exclusion and reconstruction may be performed with open and hybrid techniques with low morbidity and mortality. Copyright © 2013 Elsevier Inc. All rights

  8. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G

    2008-10-01

    Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.

  9. Predicting intensity of white-tailed deer herbivory in the Central Appalachian Mountains

    Science.gov (United States)

    Kniowski, Andrew B.; Ford, W. Mark

    2018-01-01

    In eastern North America, white-tailed deer (Odocoileus virginianus) can have profound influences on forest biodiversity and forest successional processes. Moderate to high deer populations in the central Appalachians have resulted in lower forest biodiversity. Legacy effects in some areas persist even following deer population reductions or declines. This has prompted managers to consider deer population management goals in light of policies designed to support conservation of biodiversity and forest regeneration while continuing to support ample recreational hunting opportunities. However, despite known relationships between herbivory intensity and biodiversity impact, little information exists on the predictability of herbivory intensity across the varied and spatially diverse habitat conditions of the central Appalachians. We examined the predictability of browsing rates across central Appalachian landscapes at four environmental scales: vegetative community characteristics, physical environment, habitat configuration, and local human and deer population demographics. In an information-theoretic approach, we found that a model fitting the number of stems browsed relative to local vegetation characteristics received most (62%) of the overall support of all tested models assessing herbivory impact. Our data suggest that deer herbivory responded most predictably to differences in vegetation quantity and type. No other spatial factors or demographic factors consistently affected browsing intensity. Because herbivory, vegetation communities, and productivity vary spatially, we suggest that effective broad-scale herbivory impact assessment should include spatially-balanced vegetation monitoring that accounts for regional differences in deer forage preference. Effective monitoring is necessary to avoid biodiversity impacts and deleterious changes in vegetation community composition that are difficult to reverse and/or may not be detected using traditional deer

  10. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    Science.gov (United States)

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  11. The roots of defense: plant resistance and tolerance to belowground herbivory.

    Directory of Open Access Journals (Sweden)

    Sean M Watts

    2011-04-01

    Full Text Available There is conclusive evidence that there are fitness costs of plant defense and that herbivores can drive selection for defense. However, most work has focused on above-ground interactions, even though belowground herbivory may have greater impacts on individual plants than above-ground herbivory. Given the role of belowground plant structures in resource acquisition and storage, research on belowground herbivores has much to contribute to theories on the evolution of plant defense. Pocket gophers (Geomyidae provide an excellent opportunity to study root herbivory. These subterranean rodents spend their entire lives belowground and specialize on consuming belowground plant parts.We compared the root defenses of native forbs from mainland populations (with a history of gopher herbivory to island populations (free from gophers for up to 500,000 years. Defense includes both resistance against herbivores and tolerance of herbivore damage. We used three approaches to compare these traits in island and mainland populations of two native California forbs: 1 Eschscholzia californica populations were assayed to compare alkaloid deterrents, 2 captive gophers were used to test the palatability of E. californica roots and 3 simulated root herbivory assessed tolerance to root damage in Deinandra fasciculata and E. californica. Mainland forms of E. californica contained 2.5 times greater concentration of alkaloids and were less palatable to gophers than island forms. Mainland forms of D. fasciculata and, to a lesser extent, E. californica were also more tolerant of root damage than island conspecifics. Interestingly, undamaged island individuals of D. fasciculata produced significantly more fruit than either damaged or undamaged mainland individuals.These results suggest that mainland plants are effective at deterring and tolerating pocket gopher herbivory. Results also suggest that both forms of defense are costly to fitness and thus reduced in the absence of

  12. Associational resistance protects mangrove leaves from crab herbivory

    Science.gov (United States)

    Erickson, Amy A.; Bell, Susan S.; Dawes, Clinton J.

    2012-05-01

    While associational defenses have been well documented in many plant and algal ecosystems, this study is the first to document associational resistance in mangroves. Mangrove tree crab (Aratus pisonii) density and herbivory on three life-stages of the red mangrove (Rhizophora mangle) were documented in pure red versus mixed-species and predominantly non-red mangrove stands containing black (Avicennia germinans) and white (Laguncularia racemosa) mangroves in 1999-2000 in Tampa Bay, Florida. This study first established that R. mangle is the focal species in the context of associational resistance because it is damaged more than either of the other mangrove species. Next, it was hypothesized that crab density and leaf damage on R. mangle would be lower when in mixed-species and predominantly non-red versus red mangrove stands. A non-significant trend suggested that crab density varies among stands, and crab damage on R. mangle leaves was significantly lower in mixed-species and non-red stands. Mechanisms to explain associational resistance were examined. Positive Pearson correlations between the percent of adult R. mangle in a stand and both crab density and R. mangle leaf damage provided support for the resource concentration hypothesis. Limited support was found for the attractant-decoy hypothesis because the total amount of damaged leaves of all mangrove species combined typically differed among stands, suggesting that crabs were not shifting to alternative mangrove species to offset reduced availability of R. mangle leaves. Finally, while R. mangle seedlings were shorter in non-red stands compared to others, intra-specific differences in R. mangle leaf chemistry and sclerophylly among stands failed to explain associational patterns. These combined results argue for the need for additional experiments to elucidate mechanisms responsible for defensive plant associations in mangrove ecosystems and to determine whether such associations could be of use in mangrove

  13. Gut microbes may facilitate insect herbivory of chemically defended plants.

    Science.gov (United States)

    Hammer, Tobin J; Bowers, M Deane

    2015-09-01

    The majority of insect species consume plants, many of which produce chemical toxins that defend their tissues from attack. How then are herbivorous insects able to develop on a potentially poisonous diet? While numerous studies have focused on the biochemical counter-adaptations to plant toxins rooted in the insect genome, a separate body of research has recently emphasized the role of microbial symbionts, particularly those inhabiting the gut, in plant-insect interactions. Here we outline the "gut microbial facilitation hypothesis," which proposes that variation among herbivores in their ability to consume chemically defended plants can be due, in part, to variation in their associated microbial communities. More specifically, different microbes may be differentially able to detoxify compounds toxic to the insect, or be differentially resistant to the potential antimicrobial effects of some compounds. Studies directly addressing this hypothesis are relatively few, but microbe-plant allelochemical interactions have been frequently documented from non-insect systems-such as soil and the human gut-and thus illustrate their potential importance for insect herbivory. We discuss the implications of this hypothesis for insect diversification and coevolution with plants; for example, evolutionary transitions to host plant groups with novel allelochemicals could be initiated by heritable changes to the insect microbiome. Furthermore, the ecological implications extend beyond the plant and insect herbivore to higher trophic levels. Although the hidden nature of microbes and plant allelochemicals make their interactions difficult to detect, recent molecular and experimental techniques should enable research on this neglected, but likely important, aspect of insect-plant biology.

  14. Rehabilitation in osteoporotic vertebral fractures

    OpenAIRE

    Pratelli, Elisa; Cinotti, Irene; Pasquetti, Pietro

    2010-01-01

    Vertebral fractures occur particularly in osteoporotic patients due to an increased bone fragility. Vertebral fractures influence the quality of life, mobility and mortality. Preventive training exercises and proprioception reeducation can be utilised for improving posture, balance and level of daily function and for decreasing pain. Quality of life is improved even beyond the active training period. This mini review provides information based on the literature for the rehabilitation of osteo...

  15. Within-population variation in response of red oak seedlings to herbivory by gypsy moth larvae

    Science.gov (United States)

    T. Scott Byington; Kurt W. Gottschalk; James B. McGraw

    1994-01-01

    The potential for an evolutionary response to gypsy moth (Lymantna dispar L.) herbivory was investigated in red oak (Quercus rubra L.), a preferred host. Seedlings of nine open-pollinated families were grown in a greenhouse and experimentally defoliated by fourth instar larvae in the summer of 1991 to assay for intraspecific...

  16. Shrub biomass production following simulated herbivory: A test of the compensatory growth hypothesis

    Science.gov (United States)

    Terri B. Teaschner; Timothy E. Fulbright

    2007-01-01

    The objective of this experiment was to test the hypotheses that 1) simulated herbivory stimulates increased biomass production in spiny hackberry (Celtis pallida), but decreases biomass production in blackbrush acacia (Acacia rigidula) compared to unbrowsed plants and 2) thorn density and length increase in blackbrush acacia to a...

  17. Ungulate herbivory modifies the effects of climate change on mountain forests

    NARCIS (Netherlands)

    Didion, M.P.; Kupferschmid, A.D.; Wolf, A.; Bugmann, H.

    2011-01-01

    Recent temperature observations suggest a general warming trend that may be causing the range of tree species to shift to higher latitudes and altitudes. Since biotic interactions such as herbivory can change tree species composition, it is important to understand their contribution to vegetation

  18. Evidence of an evolutionary hourglass pattern in herbivory-induced transcriptomic responses.

    Science.gov (United States)

    Durrant, Matthew; Boyer, Justin; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing

    2017-08-01

    Herbivory-induced defenses are specific and activated in plants when elicitors, frequently found in the herbivores' oral secretions, are introduced into wounds during attack. While complex signaling cascades are known to be involved, it remains largely unclear how natural selection has shaped the evolution of these induced defenses. We analyzed herbivory-induced transcriptomic responses in wild tobacco, Nicotiana attenuata, using a phylotranscriptomic approach that measures the origin and sequence divergence of herbivory-induced genes. Highly conserved and evolutionarily ancient genes of primary metabolism were activated at intermediate time points (2-6 h) after elicitation, while less constrained and young genes associated with defense signaling and biosynthesis of specialized metabolites were activated at early (before 2 h) and late (after 6 h) stages of the induced response, respectively - a pattern resembling the evolutionary hourglass pattern observed during embryogenesis in animals and the developmental process in plants and fungi. The hourglass patterns found in herbivory-induced defense responses and developmental process are both likely to be a result of signaling modularization and differential evolutionary constraints on the modules involved in the signaling cascade. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  19. Dealing with double trouble: consequences of single and double herbivory in Brassica juncea

    NARCIS (Netherlands)

    Mathur, V.; Tytgat, T.O.G.; Graaf, de R.M.; Kalia, V.; Reddy, A.S.; Vet, L.E.M.; Dam, van N.M.

    2013-01-01

    In their natural environment, plants are often attacked simultaneously by many insect species. The specificity of induced plant responses that is reported after single herbivore attacks may be compromised under double herbivory and this may influence later arriving herbivores. The present study

  20. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality

    Science.gov (United States)

    Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.

    2014-01-01

    The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.

  1. Aboveground herbivory by the brown planthopper (Nilaparvata lugens) affects soil nematode communities under different rice varieties

    NARCIS (Netherlands)

    Liu, M.; Huang, J.; Chen, X.; Wang, F.; Ge, C.; Su, Y.; Shao, B.; Tang, Y.; Li, H.

    2009-01-01

    Interactions between aboveground–belowground communities play an important role in regulating terrestrial ecological processes; however, the interactions between rice varieties, herbivory and the soil community are often ignored. A pot experiment with a full 2×2 factorial design was conducted to

  2. The ghost of herbivory past: slow defence relaxation in the chlorophyte Scenedesmus obliquus

    Directory of Open Access Journals (Sweden)

    Jacobus VIJVERBERG

    2009-08-01

    Full Text Available The freshwater chlorophyte Scenedesmus obliquus (Turpin Kützing produces colonies as an inducible defence against herbivores. We investigated the dynamics of Scenedesmus colony formation and disintegration in response to the density of the herbivorous rotifer Brachionus calyciflorus in large-scale mesocosms. Additional bioassays were performed to investigate Scenedesmus colony disintegration under different light regimes. In the mesocosm experiment, colony formation took place rapidly, but relaxation towards the initial size took relatively long (>10 d after cessation of herbivory. In the bioassays, in the absence of infochemicals, colonies disintegrated almost immediately in the dark (1-1.5 d, within 4 d under a photoperiod of 16:8 (L:D and between 8 and 12 days under full light. Colony disintegration times in the mesocosm experiment were substantially longer as compared to treatments with the same photoperiod (L:D 16:8 in the bioassays. So after a peak of herbivory, the 'ghost of herbivory past', i.e. the remaining infochemicals, may continue to induce colony formation, causing an additional lengthening of colony disintegration times and associated fitness costs (higher sedimentation loss rates. This indicates that costs of colony formation are not only important during the induction phase, but may be even more important during the relaxation phase. We compared these sedimentation costs to the costs of herbivory for differently sized Scenedesmus, and found a clear trade-off pattern for these costs.

  3. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Directory of Open Access Journals (Sweden)

    Martin Pareja

    Full Text Available There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  4. Herbivory by a Phloem-feeding insect inhibits floral volatile production.

    Science.gov (United States)

    Pareja, Martin; Qvarfordt, Erika; Webster, Ben; Mayon, Patrick; Pickett, John; Birkett, Michael; Glinwood, Robert

    2012-01-01

    There is extensive knowledge on the effects of insect herbivory on volatile emission from vegetative tissue, but little is known about its impact on floral volatiles. We show that herbivory by phloem-feeding aphids inhibits floral volatile emission in white mustard Sinapis alba measured by gas chromatographic analysis of headspace volatiles. The effect of the Brassica specialist aphid Lipaphis erysimi was stronger than the generalist aphid Myzus persicae and feeding by chewing larvae of the moth Plutella xylostella caused no reduction in floral volatile emission. Field observations showed no effect of L. erysimi-mediated floral volatile emission on the total number of flower visits by pollinators. Olfactory bioassays suggested that although two aphid natural enemies could detect aphid inhibition of floral volatiles, their olfactory orientation to infested plants was not disrupted. This is the first demonstration that phloem-feeding herbivory can affect floral volatile emission, and that the outcome of interaction between herbivory and floral chemistry may differ depending on the herbivore's feeding mode and degree of specialisation. The findings provide new insights into interactions between insect herbivores and plant chemistry.

  5. Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age

    NARCIS (Netherlands)

    Wang, Minggang; Bezemer, T. Martijn; van der Putten, W.H.; Brinkman, Pella; Biere, Arjen

    2017-01-01

    Aims Plants use different types of responses such as tolerance and induced defense to mitigate the effects of herbivores. The direction and magnitude of both these plant responses can vary with plant age. However, most studies have focused on aboveground herbivory, whereas important feeding occurs

  6. Herbivory on the seagrass Cymodocea nodosa (Ucria) Ascherson in contrasting Spanish Mediterranean habitats

    NARCIS (Netherlands)

    Cebrian, J.; Duarte, C.M.; Marbà, N.

    1996-01-01

    We assess the magnitude and variability of herbivory (i.e. leaf consumption and sloughing caused by herbivore bites) on the seagrass Cymodocea nodosa along the Spanish Mediterranean coast and test the hypothesis that this is higher in meadows growing in sheltered bays than in exposed, open zones.

  7. Herbivory alters plant carbon assimilation, patterns of biomass allocation and nitrogen use efficiency

    Science.gov (United States)

    Peschiutta, María Laura; Scholz, Fabián Gustavo; Goldstein, Guillermo; Bucci, Sandra Janet

    2018-01-01

    Herbivory can trigger physiological processes resulting in leaf and whole plant functional changes. The effects of chronic infestation by an insect on leaf traits related to carbon and nitrogen economy in three Prunus avium cultivars were assessed. Leaves from non-infested trees (control) and damaged leaves from infested trees were selected. The insect larvae produce skeletonization of the leaves leaving relatively intact the vein network of the eaten leaves and the abaxial epidermal tissue. At the leaf level, nitrogen content per mass (Nmass) and per area (Narea), net photosynthesis per mass (Amass) and per area (Aarea), photosynthetic nitrogen-use efficiency (PNUE), leaf mass per area (LMA) and total leaf phenols content were measured in the three cultivars. All cultivars responded to herbivory in a similar fashion. The Nmass, Amass, and PNUE decreased, while LMA and total content of phenols increased in partially damaged leaves. Increases in herbivore pressure resulted in lower leaf size and total leaf area per plant across cultivars. Despite this, stem cumulative growth tended to increase in infected plants suggesting a change in the patterns of biomass allocation and in resources sequestration elicited by herbivory. A larger N investment in defenses instead of photosynthetic structures may explain the lower PNUE and Amass observed in damaged leaves. Some physiological changes due to herbivory partially compensate for the cost of leaf removal buffering the carbon economy at the whole plant level.

  8. Knowledge of Arthropod Carnivory and Herbivory: Factors Influencing Preservice Elementary Teacher's Attitudes and Beliefs toward Arthropods

    Science.gov (United States)

    Wagler, Ron; Wagler, Amy

    2013-01-01

    Human negativity toward arthropods has been well documented but the factors that contribute to this negativity have been elusive. This study explored knowledge of arthropod carnivory and herbivory as possible casual factors that contribute to the negative tendencies preservice elementary teachers have toward most arthropods. Specifically, this…

  9. Experiments with duckweed-moth systems suggest global warming may reduce rather than promote herbivory

    NARCIS (Netherlands)

    Heide, van Tj.; Roijackers, R.M.M.; Peeters, E.T.H.M.; Nes, van E.H.

    2006-01-01

    1. Wilf & Labandeira (1999)suggested that increased temperatures because of global warming will cause an increase in herbivory by insects. This conclusion was based on the supposed effect of temperature on herbivores but did not consider an effect of temperature on plant growth. 2. We studied

  10. Canopy gap replacement failure in a Pennsylvania forest preserve subject to extreme deer herbivory

    Science.gov (United States)

    Brian S. Pedersen; Angela M. Wallis

    2003-01-01

    While research has demonstrated the adverse effects of deer herbivory on forest regeneration in forests managed for timber production, less study has been devoted to the long term effects of deer on the dynamics of forests set aside as natural areas. At sufficiently high population densities, deer could interrupt the typical cycle of canopy gap formation and...

  11. Effect of long-term exclusion of fire and herbivory on the soils and ...

    African Journals Online (AJOL)

    The wettest grassland, Piet Retief Sourveld on a southern aspect, was transformed to a shrubland matrix (mainly Helichrysum splendidum) with tree clumps of forest precursor species (Rhus dentata, Halleria lucida, Myrsine africana, Buddleja salviifolia, Leucosidea ... Ferns benefitted from exclusion of fire and herbivory.

  12. Effects of herbivory on the reproductive effort of 4 prairie perennials

    Directory of Open Access Journals (Sweden)

    Bradley Kate L

    2002-02-01

    Full Text Available Abstract Background Herbivory can affect every aspect of a plant's life. Damaged individuals may show decreased survivorship and reproductive output. Additionally, specific plant species (legumes and tissues (flowers are often selectively targeted by herbivores, like deer. These types of herbivory influence a plant's growth and abundance. The objective of this study was to identify the effects of leaf and meristem removal (simulated herbivory within an exclosure on fruit and flower production in four species (Rhus glabra, Rosa arkansana, Lathyrus venosus, and Phlox pilosa which are known targets of deer herbivory. Results Lathyrus never flowered or went to seed, so we were unable to detect any treatment effects. Leaf removal did not affect flower number in the other three species. However, Phlox, Rosa, and Rhus all showed significant negative correlations between seed mass and leaf removal. Meristem removal had a more negative effect than leaf removal on flower number in Phlox and on both flower number and seed mass in Rosa. Conclusions Meristem removal caused a greater response than defoliation alone in both Phlox and Rosa, which suggests that meristem loss has a greater effect on reproduction. The combination of leaf and meristem removal as well as recruitment limitation by deer, which selectively browse for these species, is likely to be one factor contributing to their low abundance in prairies.

  13. Herbivory more limiting than competition on early and established native plants in an invaded meadow.

    Science.gov (United States)

    Gonzales, Emily K; Arcese, Peter

    2008-12-01

    The dominance of nonnative plants coupled with declines of native plants suggests that competitive displacement drives extinctions, yet empirical examples are rare. Herbivores, however, can alter vegetation structure and reduce diversity when abundant. Herbivores may act on mature, reproductive life stages whereas some of the strongest competitive effects might occur at early life stages that are difficult to observe. For example, competition by perennial nonnative grasses can interfere with the establishment of native seeds. We contrasted the effects of ungulate herbivory and competition by neighboring plants on the performance of native plant species at early and established life stages in invaded oak meadows. We recorded growth, survival, and flowering in two native species transplanted as established plants, six native species grown from seed, and five extant lily species as part of two 2 x 2 factorial experiments that manipulated herbivory and competition. Herbivory reduced the performance of nearly all focal native species at early and established life stages, whereas competition had few measurable effects. Our results suggest that herbivory has a greater local influence on native plant species than competition and that reducing herbivore impacts will be required to successfully restore endangered oak meadows where ungulates are now abundant.

  14. Pathogen-triggered ethylene signaling mediates systemic-induced susceptibility to herbivory in Arabidopsis.

    Science.gov (United States)

    Groen, Simon C; Whiteman, Noah K; Bahrami, Adam K; Wilczek, Amity M; Cui, Jianping; Russell, Jacob A; Cibrian-Jaramillo, Angelica; Butler, Ian A; Rana, Jignasha D; Huang, Guo-Hua; Bush, Jenifer; Ausubel, Frederick M; Pierce, Naomi E

    2013-11-01

    Multicellular eukaryotic organisms are attacked by numerous parasites from diverse phyla, often simultaneously or sequentially. An outstanding question in these interactions is how hosts integrate signals induced by the attack of different parasites. We used a model system comprised of the plant host Arabidopsis thaliana, the hemibiotrophic bacterial phytopathogen Pseudomonas syringae, and herbivorous larvae of the moth Trichoplusia ni (cabbage looper) to characterize mechanisms involved in systemic-induced susceptibility (SIS) to T. ni herbivory caused by prior infection by virulent P. syringae. We uncovered a complex multilayered induction mechanism for SIS to herbivory. In this mechanism, antiherbivore defenses that depend on signaling via (1) the jasmonic acid-isoleucine conjugate (JA-Ile) and (2) other octadecanoids are suppressed by microbe-associated molecular pattern-triggered salicylic acid (SA) signaling and infection-triggered ethylene signaling, respectively. SIS to herbivory is, in turn, counteracted by a combination of the bacterial JA-Ile mimic coronatine and type III virulence-associated effectors. Our results show that SIS to herbivory involves more than antagonistic signaling between SA and JA-Ile and provide insight into the unexpectedly complex mechanisms behind a seemingly simple trade-off in plant defense against multiple enemies.

  15. Resource allocation in Copaifera langsdorffii (Fabaceae): how supra-annual fruiting affects plant traits and herbivory?

    Science.gov (United States)

    da Costa, Fernanda Vieira; de Queiroz, Antônio César Medeiros; Maia, Maria Luiza Bicalho; Júnior, Ronaldo Reis; Fagundes, Marcilio

    2016-06-01

    Plants have limited resources to invest in reproduction, vegetative growth and defense against herbivorous. Trade-off in resources allocation promotes changes in plant traits that may affect higher trophic levels. In this study, we evaluated the trade-off effect between years of high and low fruiting on the investment of resources for growth and defense, and their indirect effects on herbivory in Copaifera langsdorffii. Our questions were: (i) does the resource investment on reproduction causes a depletion in vegetative growth as predicted by the Carbon/Nutrient Balance hypothesis (CNBH), resulting in more availability of resources to be allocated for defense?, (ii) does the variation in resource allocation for growth and defense between years of high and low fruiting leads to indirect changes in herbivory? Thirty-five trees located in a Cerrado area were monitored during 2008 (year of high fruiting) and 2009 (year of no fruiting) to evaluate the differential investment in vegetative traits (biomass, growth and number of ramifications), plant defense (tannin concentration and plant hypersensitivity) and herbivory (galling attack and folivory). According to our first question, we observed that in the fruiting year, woody biomass negatively affected tannin concentration, indicating that fruit production restricted the resources that could be invested both in growth as in defense. In the same way, we observed an inter-annual variation in herbivorous attack, and found that plants with higher leaf biomass and tannin concentration, experienced higher galling attack and hypersensitive reaction, regardless years. These findings suggested that plants’ resistance to herbivory is a good proxy of plant defense and an effective defense strategy for C. langsdorffii, besides the evidence of indirect responses of the third trophic level, as postulated by the second question. In summary, the supra-annual fruiting pattern promoted several changes on plant development

  16. Indirect effects of ecosystem engineering combine with consumer behaviour to determine the spatial distribution of herbivory.

    Science.gov (United States)

    Griffen, Blaine D; Riley, Megan E; Cannizzo, Zachary J; Feller, Ilka C

    2017-10-01

    Ecosystem engineers alter environments by creating, modifying or destroying habitats. The indirect impacts of ecosystem engineering on trophic interactions should depend on the combination of the spatial distribution of engineered structures and the foraging behaviour of consumers that use these structures as refuges. In this study, we assessed the indirect effects of ecosystem engineering by a wood-boring beetle in a neotropical mangrove forest system. We identified herbivory patterns in a dwarf mangrove forest on the archipelago of Twin Cays, Belize. Past wood-boring activity impacted more than one-third of trees through the creation of tree holes that are now used, presumably as predation or thermal refuge, by the herbivorous mangrove tree crab Aratus pisonii. The presence of these refuges had a significant impact on plant-animal interactions; herbivory was more than fivefold higher on trees influenced by tree holes relative to those that were completely isolated from these refuges. Additionally, herbivory decreased exponentially with increasing distance from tree holes. We use individual-based simulation modelling to demonstrate that the creation of these herbivory patterns depends on a combination of the use of engineered tree holes for refuge by tree crabs, and the use of two behaviour patterns in this species-site fidelity to a "home tree," and more frequent foraging near their home tree. We demonstrate that understanding the spatial distribution of herbivory in this system depends on combining both the use of ecosystem engineering structures with individual behavioural patterns of herbivores. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  17. Ontogenetic stage, plant vigor and sex mediate herbivory loads in a dioecious understory herb

    Science.gov (United States)

    Selaković, Sara; Vujić, Vukica; Stanisavljević, Nemanja; Jovanović, Živko; Radović, Svetlana; Cvetković, Dragana

    2017-11-01

    Plant-herbivore interactions can be mediated by plant apparency, defensive and nutritional quality traits that change through plant ontogeny, resulting in age-specific herbivory. In dioecious species, opposing allocation patterns in defense may lead to sex-biased herbivory. Here, we examine how onto stage and plant sex determine levels of herbivore damage in understory herb Mercurialis perennis under field conditions. We analyzed variation in plant size (height, total leaf area), physical (specific leaf area) and chemical (total phenolic and condensed tannins contents) defense, and nutritional quality (total water, soluble protein and nonstructural carbohydrate contents) during the shift from reproductive to post-reproductive stage. Furthermore, we explored correlations between the analyzed traits and levels of foliar damage. Post-reproductive plants had lower levels of chemical defense, and larger leaf area removed, in spite of having lower nutritive quality. Opposing patterns of intersexual differences were detected in protein and phenolic contents during reproductive stage, while in post-reproductive stage total leaf area was sexually dimorphic. Female-biased herbivory was apparent only after reproduction. Plant size parameters combined with condensed tannins content determined levels of foliar damage during post-reproductive stage, while the only trait covarying with herbivory in reproductive stage was total nonstructural carbohydrate content. Our results support claims of optimal defense theory - sensitive stage of reproduction was better defended. We conclude that different combinations of plant traits mediated interactions with herbivores in mature stages. Differences in reproductive allocation between the sexes may not immediately translate into different levels of damage, stressing the need for considering different ontogenetic stages when exploring sex bias in herbivory.

  18. Recovering more than tree cover: herbivores and herbivory in a restored tropical dry forest.

    Directory of Open Access Journals (Sweden)

    Iris Juan-Baeza

    Full Text Available Intense and chronic disturbance may arrest natural succession, reduce environmental quality and lead to ecological interaction losses. Where natural succession does not occur, ecological restoration aims to accelerate this process. While plant establishment and diversity is promoted by restoration, few studies have evaluated the effect of restoration activities on ecological processes and animal diversity. This study assessed herbivory and lepidopteran diversity associated with two pioneer tree species growing in 4-year-old experimental restoration plots in a tropical dry forest at Sierra de Huautla, in Morelos, Mexico. The study was carried out during the rainy season of 2010 (July-October in eleven 50 x 50 m plots in three different habitats: cattle-excluded, cattle-excluded with restoration plantings, and cattle grazing plots. At the beginning of the rainy season, 10 juveniles of Heliocarpus pallidus (Malvaceae and Ipomoea pauciflora (Convolvulaceae were selected in each plot (N = 110 trees. Herbivory was measured in 10 leaves per plant at the end of the rainy season. To evaluate richness and abundance of lepidopteran larvae, all plants were surveyed monthly. Herbivory was similar among habitats and I. pauciflora showed a higher percentage of herbivory. A total of 868 lepidopteran larvae from 65 morphospecies were recorded. The family with the highest number of morphospecies (9 sp. was Geometridae, while the most abundant family was Saturnidae, with 427 individuals. Lepidopteran richness and abundance were significantly higher in H. pallidus than in I. pauciflora. Lepidopteran richness was significantly higher in the cattle-excluded plots, while abundance was significantly higher in the non-excluded plots. After four years of cattle exclusion and the establishment of plantings, lepidopteran richness increased 20 -fold in the excluded plots compared to the disturbed areas, whereas herbivory levels were equally high in both restored and

  19. Vertebrate pressure-gradient receivers

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob

    2011-01-01

    The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum and stro......The eardrums of all terrestrial vertebrates (tetrapods) are connected through Eustachian tubes or interaural canals. In some of the animals, these connections create pressure-gradient directionality, an enhanced directionality by interaction of sound arriving at both sides of the eardrum....... Recent vertebrates form a continuum from perfect interaural transmission (0 dB in a certain frequency band) and pronounced eardrum directionality (30-40 dB) in the lizards, over somewhat attenuated transmission and limited directionality in birds and frogs, to the strongly attenuated interaural...

  20. Intermediate herbivory intensity of an aboveground pest promotes soil labile resources and microbial biomass via modifying rice growth

    NARCIS (Netherlands)

    Huang, J.; Liu, M.; Chen, X.; Chen, J.; Chen, F.; Li, H.; Hu, F.

    2013-01-01

    The importance of aboveground herbivores for modifying belowground ecosystems has prompted numerous studies; however, studies can be biased by context dependent conditions which lead to extremely inconsistent results. So far, the impacts of herbivory inte

  1. Untangling individual variation in natural populations: ecological, genetic and epigenetic correlates of long-term inequality in herbivory.

    Science.gov (United States)

    Herrera, C M; Bazaga, P

    2011-04-01

    Individual variation in ecologically important features of organisms is a crucial element in ecology and evolution, yet disentangling its underlying causes is difficult in natural populations. We applied a genomic scan approach using amplified fragment length polymorphism (AFLP) markers to quantify the genetic basis of long-term individual differences in herbivory by mammals at a wild population of the violet Viola cazorlensis monitored for two decades. In addition, methylation-sensitive amplified polymorphism (MSAP) analyses were used to investigate the association between browsing damage and epigenetic characteristics of individuals, an aspect that has been not previously explored for any wild plant. Structural equation modelling was used to identify likely causal structures linking genotypes, epigenotypes and herbivory. Individuals of V. cazorlensis differed widely in the incidence of browsing mammals over the 20-year study period. Six AFLP markers (1.6% of total) were significantly related to herbivory, accounting altogether for 44% of population-wide variance in herbivory levels. MSAP analyses revealed considerable epigenetic variation among individuals, and differential browsing damage was significantly related to variation in multilocus epigenotypes. In addition, variation across plants in epigenetic characteristics was related to variation in several herbivory-related AFLP markers. Statistical comparison of alternative causal models suggested that individual differences in herbivory are the outcome of a complex causal structure where genotypes and epigenotypes are interconnected and have direct and indirect effects on herbivory. Insofar as methylation states of MSAP markers influential on herbivory are transgenerationally heritable, herbivore-driven evolutionary changes at the study population will involve correlated changes in genotypic and epigenotypic distributions. © 2011 Blackwell Publishing Ltd.

  2. Spatial Patterns in Herbivory on a Coral Reef Are Influenced by Structural Complexity but Not by Algal Traits

    Science.gov (United States)

    Vergés, Adriana; Vanderklift, Mathew A.; Doropoulos, Christopher; Hyndes, Glenn A.

    2011-01-01

    Background Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs. Methodology and Principal Findings We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia). We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae), and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae. Significance This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the

  3. The effect of chronic seaweed subsidies on herbivory: plant-mediated fertilization pathway overshadows lizard-mediated predator pathways.

    Science.gov (United States)

    Piovia-Scott, Jonah; Spiller, David A; Takimoto, Gaku; Yang, Louie H; Wright, Amber N; Schoener, Thomas W

    2013-08-01

    Flows of energy and materials link ecosystems worldwide and have important consequences for the structure of ecological communities. While these resource subsidies typically enter recipient food webs through multiple channels, most previous studies focussed on a single pathway of resource input. We used path analysis to evaluate multiple pathways connecting chronic marine resource inputs (in the form of seaweed deposits) and herbivory in a shoreline terrestrial ecosystem. We found statistical support for a fertilization effect (seaweed increased foliar nitrogen content, leading to greater herbivory) and a lizard numerical response effect (seaweed increased lizard densities, leading to reduced herbivory), but not for a lizard diet-shift effect (seaweed increased the proportion of marine-derived prey in lizard diets, but lizard diet was not strongly associated with herbivory). Greater seaweed abundance was associated with greater herbivory, and the fertilization effect was larger than the combined lizard effects. Thus, the bottom-up, plant-mediated effect of fertilization on herbivory overshadowed the top-down effects of lizard predators. These results, from unmanipulated shoreline plots with persistent differences in chronic seaweed deposition, differ from those of a previous experimental study of the short-term effects of a pulse of seaweed deposition: while the increase in herbivory in response to chronic seaweed deposition was due to the fertilization effect, the short-term increase in herbivory in response to a pulse of seaweed deposition was due to the lizard diet-shift effect. This contrast highlights the importance of the temporal pattern of resource inputs in determining the mechanism of community response to resource subsidies.

  4. Spatial patterns in herbivory on a coral reef are influenced by structural complexity but not by algal traits.

    Directory of Open Access Journals (Sweden)

    Adriana Vergés

    2011-02-01

    Full Text Available Patterns of herbivory can alter the spatial structure of ecosystems, with important consequences for ecosystem functions and biodiversity. While the factors that drive spatial patterns in herbivory in terrestrial systems are well established, comparatively less is known about what influences the distribution of herbivory in coral reefs.We quantified spatial patterns of macroalgal consumption in a cross-section of Ningaloo Reef (Western Australia. We used a combination of descriptive and experimental approaches to assess the influence of multiple macroalgal traits and structural complexity in establishing the observed spatial patterns in macroalgal herbivory, and to identify potential feedback mechanisms between herbivory and macroalgal nutritional quality. Spatial patterns in macroalgal consumption were best explained by differences in structural complexity among habitats. The biomass of herbivorous fish, and rates of herbivory were always greater in the structurally-complex coral-dominated outer reef and reef flat habitats, which were also characterised by high biomass of herbivorous fish, low cover and biomass of macroalgae and the presence of unpalatable algae species. Macroalgal consumption decreased to undetectable levels within 75 m of structurally-complex reef habitat, and algae were most abundant in the structurally-simple lagoon habitats, which were also characterised by the presence of the most palatable algae species. In contrast to terrestrial ecosystems, herbivory patterns were not influenced by the distribution, productivity or nutritional quality of resources (macroalgae, and we found no evidence of a positive feedback between macroalgal consumption and the nitrogen content of algae.This study highlights the importance of seascape-scale patterns in structural complexity in determining spatial patterns of macroalgal consumption by fish. Given the importance of herbivory in maintaining the ability of coral reefs to reorganise and

  5. Herbivory and climate interact serially to control monoterpene emissions from pinyon pine forests.

    Science.gov (United States)

    Trowbridge, Amy M; Daly, Ryan W; Helmig, Detlev; Stoy, Paul C; Monson, Russell K

    2014-06-01

    The emission of volatile monoterpenes from coniferous trees impacts the oxidative state of the troposphere and multi-trophic signaling between plants and animals. Previous laboratory studies have revealed that climate anomalies and herbivory alter the rate of tree monoterpene emissions. However, no studies to date have been conducted to test these relations in situ. We conducted a two-year field experiment at two semiarid sites dominated by pinyon pine (Pinus edulis) during outbreaks of a specialist herbivore, the southwestern tiger moth (Lophocampa ingens: Arctiidae). We discovered that during the early spring, when herbivory rates were highest, monoterpene emission rates were approximately two to six times higher from undamaged needles on damaged trees, with this increase in emissions due to alpha-pinene, beta-pinene, and camphene at both sites. During mid-summer, emission rates did not differ between previously damaged and undamaged trees at the site on the Western Slope of the Rocky Mountains, but rather tracked changes in the temperature and precipitation regime characteristic of the region. As the mid-summer drought progressed at the Eastern Slope site, emission rates were low, but differences between previously damaged and undamaged trees were not statistically significant. Despite no difference in emissions, mid-summer tissue monoterpene concentrations were significantly lower in previously damaged trees at both sites. With the onset of monsoon rains during late summer, emission rates from previously damaged trees increased to levels higher than those of undamaged trees despite the lack of herbivory. We conclude that (1) herbivory systemically increases the flux of terpenes to the atmosphere during the spring, (2) drought overrides the effect of past herbivory as the primary control over emissions during the mid-summer, and (3) a release from drought and the onset of late-summer rains is correlated with a secondary increase in emissions, particularly from

  6. Herbivory and pollen limitation at the upper elevational range limit of two forest understory plants of eastern North America.

    Science.gov (United States)

    Rivest, Sébastien; Vellend, Mark

    2018-01-01

    Studies of species' range limits focus most often on abiotic factors, although the strength of biotic interactions might also vary along environmental gradients and have strong demographic effects. For example, pollinator abundance might decrease at range limits due to harsh environmental conditions, and reduced plant density can reduce attractiveness to pollinators and increase or decrease herbivory. We tested for variation in the strength of pollen limitation and herbivory by ungulates along a gradient leading to the upper elevational range limits of Trillium erectum (Melanthiaceae) and Erythronium americanum (Liliaceae) in Mont Mégantic National Park, Québec, Canada. In T. erectum, pollen limitation was higher at the range limit, but seed set decreased only slightly with elevation and only in one of two years. In contrast, herbivory of T. erectum increased from 60% at the upper elevational range limit. In E. americanum , we found no evidence of pollen limitation despite a significant decrease in seed set with elevation, and herbivory was low across the entire gradient. Overall, our results demonstrate the potential for relatively strong negative interactions (herbivory) and weak positive interactions (pollination) at plant range edges, although this was clearly species specific. To the extent that these interactions have important demographic consequences-highly likely for herbivory on Trillium , based on previous studies-such interactions might play a role in determining plant species' range limits along putatively climatic gradients.

  7. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  8. Learning about Vertebrate Limb Development

    Science.gov (United States)

    Liang, Jennifer O.; Noll, Matthew; Olsen, Shayna

    2014-01-01

    We have developed an upper-level undergraduate laboratory exercise that enables students to replicate a key experiment in developmental biology. In this exercise, students have the opportunity to observe live chick embryos and stain the apical ectodermal ridge, a key tissue required for development of the vertebrate limb. Impressively, every…

  9. Evolution of endothelin receptors in vertebrates.

    Science.gov (United States)

    Braasch, Ingo; Schartl, Manfred

    2014-12-01

    Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of

  10. Constrained vertebrate evolution by pleiotropic genes

    DEFF Research Database (Denmark)

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song

    2017-01-01

    applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality...... for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates....

  11. Herbivory by resident geese: The loss and recovery of wild rice along the tidal Patuxent River

    Science.gov (United States)

    Haramis, G.M.; Kearns, G.D.

    2007-01-01

    Well known for a fall spectacle of maturing wild rice (Zizania aquatica) and migrant waterbirds, the tidal freshwater marshes of the Patuxent River, Maryland, USA, experienced a major decline in wild rice during the 1990s. We conducted experiments in 1999 and 2000 with fenced exclosures and discovered herbivory by resident Canada geese (Branta canadensis). Grazing by geese eliminated rice outside exclosures, whereas protected plants achieved greater size, density, and produced more panicles than rice occurring in natural stands. The observed loss of rice on the Patuxent River reflects both the sensitivity of this annual plant to herbivory and the destructive nature of an overabundance of resident geese on natural marsh vegetation. Recovery of rice followed 2 management actions: hunting removal of approximately 1,700 geese during a 4-year period and reestablishment of rice through a large-scale fencing and planting program.

  12. Macro-grazer herbivory regulates seagrass response to pulse and press nutrient loading.

    Science.gov (United States)

    Ravaglioli, Chiara; Capocchi, Antonella; Fontanini, Debora; Mori, Giovanna; Nuccio, Caterina; Bulleri, Fabio

    2018-05-01

    Coastal ecosystems are exposed to multiple stressors. Predicting their outcomes is complicated by variations in their temporal regimes. Here, by means of a 16-month experiment, we investigated tolerance and resistance traits of Posidonia oceanica to herbivore damage under different regimes of nutrient loading. Chronic and pulse nutrient supply were combined with simulated fish herbivory, treated as a pulse stressor. At ambient nutrient levels, P. oceanica could cope with severe herbivory, likely through an increase in photosynthetic activity. Elevated nutrient levels, regardless of the temporal regime, negatively affected plant growth and increased leaf nutritional quality. This ultimately resulted in a reduction of plant biomass that was particularly severe under chronic fertilization. Our results suggest that both chronic and pulse nutrient loadings increase plant palatability to macro-grazers. Strategies for seagrass management should not be exclusively applied in areas exposed to chronic fertilization since even short-term nutrient pulses could alter seagrass meadows. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts

    Science.gov (United States)

    Vergés, Adriana; Steinberg, Peter D.; Hay, Mark E.; Poore, Alistair G. B.; Campbell, Alexandra H.; Ballesteros, Enric; Heck, Kenneth L.; Booth, David J.; Coleman, Melinda A.; Feary, David A.; Figueira, Will; Langlois, Tim; Marzinelli, Ezequiel M.; Mizerek, Toni; Mumby, Peter J.; Nakamura, Yohei; Roughan, Moninya; van Sebille, Erik; Gupta, Alex Sen; Smale, Dan A.; Tomas, Fiona; Wernberg, Thomas; Wilson, Shaun K.

    2014-01-01

    Climate-driven changes in biotic interactions can profoundly alter ecological communities, particularly when they impact foundation species. In marine systems, changes in herbivory and the consequent loss of dominant habitat forming species can result in dramatic community phase shifts, such as from coral to macroalgal dominance when tropical fish herbivory decreases, and from algal forests to ‘barrens’ when temperate urchin grazing increases. Here, we propose a novel phase-shift away from macroalgal dominance caused by tropical herbivores extending their range into temperate regions. We argue that this phase shift is facilitated by poleward-flowing boundary currents that are creating ocean warming hotspots around the globe, enabling the range expansion of tropical species and increasing their grazing rates in temperate areas. Overgrazing of temperate macroalgae by tropical herbivorous fishes has already occurred in Japan and the Mediterranean. Emerging evidence suggests similar phenomena are occurring in other temperate regions, with increasing occurrence of tropical fishes on temperate reefs. PMID:25009065

  14. An invertebrate stomach's view on vertebrate ecology

    DEFF Research Database (Denmark)

    Calvignac-Spencer, Sébastien; Leendertz, Fabian H.; Gilbert, Tom

    2013-01-01

    Recent studies suggest that vertebrate genetic material ingested by invertebrates (iDNA) can be used to investigate vertebrate ecology. Given the ubiquity of invertebrates that feed on vertebrates across the globe, iDNA might qualify as a very powerful tool for 21st century population...

  15. Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato

    Science.gov (United States)

    Tjiurutue, Muvari Connie; Palmer-Young, Evan C.; Adler, Lynn S.

    2016-01-01

    Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp.) preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum). In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua) and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics. PMID:27529694

  16. Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato.

    Directory of Open Access Journals (Sweden)

    Muvari Connie Tjiurutue

    Full Text Available Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp. preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum. In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics.

  17. Herbivory of tropical rain forest tree seedlings correlates with future mortality.

    Science.gov (United States)

    Eichhorn, Markus P; Nilus, Reuben; Compton, Stephen G; Hartley, Sue E; Burslem, David F R P

    2010-04-01

    Tree seedlings in tropical rain forests are subject to both damage from natural enemies and intense interspecific competition. This leads to a trade-off in investment between defense and growth, and it is likely that tree species specialized to particular habitats tailor this balance to correspond with local resource availability. It has also been suggested that differential herbivore impacts among tree species may drive habitat segregation, favoring species adapted to particular resource conditions. In order to test these predictions, a reciprocal transplant experiment in Sabah, Malaysia, was established with seedlings of five species of Dipterocarpaceae. These were specialized to either alluvial (Hopea nervosa, Parashorea tomentella) or sandstone soils (Shorea multiflora, H. beccariana), or were locally absent (S. fallax). A total of 3000 seedlings were planted in paired gap and understory plots in five sites on alluvial and sandstone soils. Half of all seedlings were fertilized. Seedling growth and mortality were recorded in regular samples over 3.5 years, and rates of insect herbivore damage were estimated from censuses of foliar tissue loss on marked mature leaves and available young leaves. Greater herbivory rates on mature leaves had no measurable effects on seedling growth but were associated with a significantly increased likelihood of mortality during the following year. In contrast, new-leaf herbivory rates correlated with neither growth nor mortality. There were no indications of differential impacts of herbivory among the five species, nor between experimental treatments. Herbivory was not shown to influence segregation of species between soil types, although it may contribute toward differential survival among light habitats. Natural rates of damage were substantially lower than have been shown to influence tree seedling growth and mortality in previous manipulative studies.

  18. ML3: a novel regulator of herbivory-induced responses in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Fridborg, I.; Johansson, A.; Lagensjo, J.; Leelarasamee, N.; Floková, Kristýna; Tarkowská, Danuše; Meijer, J.; Bejai, S.

    2013-01-01

    Roč. 64, č. 4 (2013), s. 935-948 ISSN 0022-0957 R&D Projects: GA AV ČR KAN200380801 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Arabidopsis thaliana * herbivory * jasmonic acid Subject RIV: EC - Immunology Impact factor: 5.794, year: 2013

  19. Geographic variation in alkaloid production in Conium maculatum populations experiencing differential herbivory by Agonopterix alstroemeriana.

    Science.gov (United States)

    Castells, Eva; Berhow, Mark A; Vaughn, Steven F; Berenbaum, May R

    2005-08-01

    Conium maculatum, a Eurasian weed naturalized in North America, contains high concentrations of piperidine alkaloids that act as chemical defenses against herbivores. C. maculatum was largely free from herbivory in the United States, until approximately 30 yr ago, when it was reassociated via accidental introduction with a monophagous European herbivore, the oecophorid caterpillar Agonopterix alstroemeriana. At present, A. alstroemeriana is found in a continuum of reassociation time and intensities with C. maculatum across the continent; in the Pacific Northwest, A. alstroemeriana can cause severe damage, resulting in some cases in complete defoliation. Studies in biological control and invasion biology have yet to determine whether plants reassociated with a significant herbivore from the area of indigeneity increase their chemical defense investment in areas of introduction. In this study, we compared three locations in the United States (New York, Washington, and Illinois) where C. maculatum experiences different levels of herbivory by A. alstroemeriana to determine the association between the intensity of the interaction, as measured by damage, and chemical defense production. Total alkaloid production in C. maculatum was positively correlated with A. alstroemeriana herbivory levels: plants from New York and Washington, with higher herbivory levels, invested two and four times more N to alkaloid synthesis than did plants from Illinois. Individual plants with lower concentrations of alkaloids from a single location in Illinois experienced more damage by A. alstroemeriana, indicative of a preference on the part of the insect for plants with less chemical defense. These results suggest that A. alstroemeriana may act either as a selective agent or inducing agent for C. maculatum and increase its toxicity in its introduced range.

  20. Interactive effects of plant-available soil silicon and herbivory on competition between two grass species

    Science.gov (United States)

    Garbuzov, Mihail; Reidinger, Stefan; Hartley, Susan E.

    2011-01-01

    Background and Aims The herbivore defence system of true grasses (Poaceae) is predominantly based on silicon that is taken up from the soil and deposited in the leaves in the form of abrasive phytoliths. Silicon uptake mechanisms can be both passive and active, with the latter suggesting that there is an energetic cost to silicon uptake. This study assessed the effects of plant-available soil silicon and herbivory on the competitive interactions between the grasses Poa annua, a species that has previously been reported to accumulate only small amounts of silicon, and Lolium perenne, a high silicon accumulator. Methods Plants were grown in mono- and mixed cultures under greenhouse conditions. Plant-available soil silicon levels were manipulated by adding silicon to the soil in the form of sodium silicate. Subsets of mixed culture pots were exposed to above-ground herbivory by desert locusts (Schistocerca gregaria). Key Results In the absence of herbivory, silicon addition increased biomass of P. annua but decreased biomass of L. perenne. Silicon addition increased foliar silicon concentrations of both grass species >4-fold. Under low soil-silicon availability the herbivores removed more leaf biomass from L. perenne than from P. annua, whereas under high silicon availability the reverse was true. Consequently, herbivory shifted the competitive balance between the two grass species, with the outcome depending on the availability of soil silicon. Conclusions It is concluded that a complex interplay between herbivore abundance, growth–defence trade-offs and the availability of soil silicon in the grasses' local environment affects the outcome of inter-specific competition, and so has the potential to impact on plant community structure. PMID:21868406

  1. Early recruitment responses to interactions between frequent fires, nutrients, and herbivory in the southern Amazon.

    Science.gov (United States)

    Massad, Tara Joy; Balch, Jennifer K; Mews, Cândida Lahís; Porto, Pábio; Marimon Junior, Ben Hur; Quintino, Raimundo Mota; Brando, P M; Vieira, Simone A; Trumbore, Susan E

    2015-07-01

    Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.

  2. How plants connect pollination and herbivory networks and their contribution to community stability.

    Science.gov (United States)

    Sauve, Alix M C; Thébault, Elisa; Pocock, Michael J O; Fontaine, Colin

    2016-04-01

    Pollination and herbivory networks have mainly been studied separately, highlighting their distinct structural characteristics and the related processes and dynamics. However, most plants interact with both pollinators and herbivores, and there is evidence that both types of interaction affect each other. Here we investigated the way plants connect these mutualistic and antagonistic networks together, and the consequences for community stability. Using an empirical data set, we show that the way plants connect pollination and herbivory networks is not random and promotes community stability. Analyses of the structure of binary and quantitative networks show different results: the plants' generalism with regard to pollinators is positively correlated to their generalism with regard to herbivores when considering binary interactions, but not when considering quantitative interactions. We also show that plants that share the same pollinators do not share the same herbivores. However, the way plants connect pollination and herbivory networks promotes stability for both binary and quantitative networks. Our results highlight the relevance of considering the diversity of interaction types in ecological communities, and stress the need to better quantify the costs and benefits of interactions, as well as to develop new metrics characterizing the way different interaction types are combined within ecological networks.

  3. Vegetation shift from deciduous to evergreen dwarf shrubs in response to selective herbivory offsets carbon losses: evidence from 19 years of warming and simulated herbivory in the subarctic tundra.

    Science.gov (United States)

    Ylänne, Henni; Stark, Sari; Tolvanen, Anne

    2015-10-01

    Selective herbivory of palatable plant species provides a competitive advantage for unpalatable plant species, which often have slow growth rates and produce slowly decomposable litter. We hypothesized that through a shift in the vegetation community from palatable, deciduous dwarf shrubs to unpalatable, evergreen dwarf shrubs, selective herbivory may counteract the increased shrub abundance that is otherwise found in tundra ecosystems, in turn interacting with the responses of ecosystem carbon (C) stocks and CO2 balance to climatic warming. We tested this hypothesis in a 19-year field experiment with factorial treatments of warming and simulated herbivory on the dominant deciduous dwarf shrub Vaccinium myrtillus. Warming was associated with a significantly increased vegetation abundance, with the strongest effect on deciduous dwarf shrubs, resulting in greater rates of both gross ecosystem production (GEP) and ecosystem respiration (ER) as well as increased C stocks. Simulated herbivory increased the abundance of evergreen dwarf shrubs, most importantly Empetrum nigrum ssp. hermaphroditum, which led to a recent shift in the dominant vegetation from deciduous to evergreen dwarf shrubs. Simulated herbivory caused no effect on GEP and ER or the total ecosystem C stocks, indicating that the vegetation shift counteracted the herbivore-induced C loss from the system. A larger proportion of the total ecosystem C stock was found aboveground, rather than belowground, in plots treated with simulated herbivory. We conclude that by providing a competitive advantage to unpalatable plant species with slow growth rates and long life spans, selective herbivory may promote aboveground C stocks in a warming tundra ecosystem and, through this mechanism, counteract C losses that result from plant biomass consumption. © 2015 John Wiley & Sons Ltd.

  4. Zygotic Genome Activation in Vertebrates.

    Science.gov (United States)

    Jukam, David; Shariati, S Ali M; Skotheim, Jan M

    2017-08-21

    The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. The origin of vertebrate limbs.

    Science.gov (United States)

    Coates, M I

    1994-01-01

    The earliest tetrapod limbs are polydactylous, morphologically varied and do not conform to an archetypal pattern. These discoveries, combined with the unravelling of limb developmental morphogenetic and regulatory mechanisms, have prompted a re-examination of vertebrate limb evolution. The rich fossil record of vertebrate fins/limbs, although restricted to skeletal tissues, exceeds the morphological diversity of the extant biota, and a systematic approach to limb evolution produces an informative picture of evolutionary change. A composite framework of several phylogenetic hypotheses is presented incorporating living and fossil taxa, including the first report of an acanthodian metapterygium and a new reconstruction of the axial skeleton and caudal fin of Acanthostega gunnari. Although significant nodes in vertebrate phylogeny remain poorly resolved, clear patterns of morphogenetic evolution emerge: median fin origination and elaboration initially precedes that of paired fins; pectoral fins initially precede pelvic fin development; evolving patterns of fin distribution, skeletal tissue diversity and structural complexity become decoupled with increased taxonomic divergence. Transformational sequences apparent from the fish-tetrapod transition are reiterated among extant lungfishes, indicating further directions for comparative experimental research. The evolutionary diversification of vertebrate fin and limb patterns challenges a simple linkage between Hox gene conservation, expression and morphology. A phylogenetic framework is necessary in order to distinguish shared from derived characters in experimental model regulatory systems. Hox and related genomic evolution may include convergent patterns underlying functional and morphological diversification. Brachydanio is suggested as an example where tail-drive patterning demands may have converged with the regulation of highly differentiated limbs in tetrapods.

  6. Contaminant exposure in terrestrial vertebrates

    International Nuclear Information System (INIS)

    Smith, Philip N.; Cobb, George P.; Godard-Codding, Celine; Hoff, Dale; McMurry, Scott T.; Rainwater, Thomas R.; Reynolds, Kevin D.

    2007-01-01

    Here we review mechanisms and factors influencing contaminant exposure among terrestrial vertebrate wildlife. There exists a complex mixture of biotic and abiotic factors that dictate potential for contaminant exposure among terrestrial and semi-terrestrial vertebrates. Chemical fate and transport in the environment determine contaminant bioaccessibility. Species-specific natural history characteristics and behavioral traits then play significant roles in the likelihood that exposure pathways, from source to receptor, are complete. Detailed knowledge of natural history traits of receptors considered in conjunction with the knowledge of contaminant behavior and distribution on a site are critical when assessing and quantifying exposure. We review limitations in our understanding of elements of exposure and the unique aspects of exposure associated with terrestrial and semi-terrestrial taxa. We provide insight on taxa-specific traits that contribute, or limit exposure to, transport phenomenon that influence exposure throughout terrestrial systems, novel contaminants, bioavailability, exposure data analysis, and uncertainty associated with exposure in wildlife risk assessments. Lastly, we identify areas related to exposure among terrestrial and semi-terrestrial organisms that warrant additional research. - Both biotic and abiotic factors determine chemical exposure for terrestrial vertebrates

  7. Corolla herbivory, pollination success and fruit predation in complex flowers: an experimental study with Linaria lilacina (Scrophulariaceae).

    Science.gov (United States)

    Sánchez-Lafuente, Alfonso M

    2007-02-01

    Herbivory on floral structures has been postulated to influence the evolution of floral traits in some plant species, and may also be an important factor influencing the occurrence and outcome of subsequent biotic interactions related to floral display. In particular, corolla herbivory may affect structures differentially involved in flower selection by pollinators and fruit predators (specifically, those ovopositing in ovaries prior to fruit development); hence floral herbivores may influence the relationships between these mutualistic and antagonistic agents. The effects of corolla herbivory in Linaria lilacina (Scrophulariaceae), a plant species with complex flowers, were considered in relation to plant interactions with pollinators and fruit predators. Tests were made as to whether experimentally created differences in flower structure (resembling those occurring naturally) may translate into differences in reproductive output in terms of fruit or seed production. Flowers with modified corollas, particularly those with lower lips removed, were less likely to be selected by pollinators than control flowers, and were less likely to be successfully visited and pollinated. As a consequence, fruit production was also less likely in these modified flowers. However, none of the experimental treatments affected the likelihood of visitation by fruit predators. Since floral herbivory may affect pollinator visitation rates and reduce seed production, differences among plants in the proportion of flowers affected by herbivory and in the intensity of the damage inflicted on affected flowers may result in different opportunities for reproduction for plants in different seasons.

  8. Defense pattern of Chinese cork oak across latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients

    Science.gov (United States)

    Wang, Xiao-Fei; Liu, Jian-Feng; Gao, Wen-Qiang; Deng, Yun-Peng; Ni, Yan-Yan; Xiao, Yi-Hua; Kang, Feng-Feng; Wang, Qi; Lei, Jing-Pin; Jiang, Ze-Ping

    2016-06-01

    Knowledge of latitudinal patterns in plant defense and herbivory is crucial for understanding the mechanisms that govern ecosystem functioning and for predicting their responses to climate change. Using a widely distributed species in East Asia, Quercus variabilis, we aim to reveal defense patterns of trees with respect to ontogeny along latitudinal gradients. Six leaf chemical (total phenolics and total condensed tannin concentrations) and physical (cellulose, hemicellulose, lignin and dry mass concentration) defensive traits as well as leaf herbivory (% leaf area loss) were investigated in natural Chinese cork oak (Q. variabilis) forests across two ontogenetic stages (juvenile and mature trees) along a ~14°-latitudinal gradient. Our results showed that juveniles had higher herbivory values and a higher concentration of leaf chemical defense substances compared with mature trees across the latitudinal gradient. In addition, chemical defense and herbivory in both ontogenetic stages decreased with increasing latitude, which supports the latitudinal herbivory-defense hypothesis and optimal defense theory. The identified trade-offs between chemical and physical defense were primarily determined by environmental variation associated with the latitudinal gradient, with the climatic factors (annual precipitation, minimum temperature of the coldest month) largely contributing to the latitudinal defense pattern in both juvenile and mature oak trees.

  9. Pattern and Drivers of White-Tailed Deer (Odocoileus virginianus Herbivory on Tree Saplings across a Plateau Landscape

    Directory of Open Access Journals (Sweden)

    Jonathan P. Evans

    2016-05-01

    Full Text Available White-tailed deer (Odocoileus virginianus populations are impacting long-term regeneration across eastern United States forests. Deer distribution and resulting herbivory patterns are variable across a landscape due to habitat patchiness and topography. It is poorly understood how features associated with topography control deer herbivory. We examined the heterogeneity of deer herbivory as it affects sapling densities across a single forest-type landscape on the Cumberland Plateau. The 1242 hectare site represented a peninsula of tableland that transitioned from developed land to forest and was surrounded on three sides by a bluff, irregularly punctuated by drainages. We examined the spatial variability of deer impacts on sapling density and modeled the relative importance of plateau accessibility features related to topography, proximity to edge, and deer culling as predictors of sapling variation. We used a stratified random design to sample sapling density across the landscape in 2012 and 2015. The intensity of deer herbivory on saplings varied, with the fewest saplings in forests surrounded by residential development. Our model predicted that plateau accessibility measures best determined sapling densities, followed by distance from edge and deer culling measures. Our results suggest that herbivory impacts may not be homogeneous in a contiguous uniform landscape if there are topographic barriers.

  10. Signal transduction downstream of salicylic and jasmonic acid in herbivory-induced parasitoid attraction by Arabidopsis is independent of JAR1 and NPR1

    NARCIS (Netherlands)

    Poecke, van R.M.P.; Dicke, M.

    2003-01-01

    Plants can defend themselves indirectly against herbivores by emitting a volatile blend upon herbivory that attracts the natural enemies of these herbivores, either predators or parasitoids. Although signal transduction in plants from herbivory to induced volatile production depends on jasmonic acid

  11. Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies

    NARCIS (Netherlands)

    Kappers, I.F.; Hoogerbrugge, H.; Bouwmeester, H.J.; Dicke, M.

    2011-01-01

    In response to herbivory by arthropods, plants emit herbivory-induced volatiles that attract carnivorous enemies of the inducing herbivores. Here, we compared the attractiveness of eight cucumber varieties (Cucumis sativus L.) to Phytoseiulus persimilis predatory mites after infestation of the

  12. Osteomielitis vertebral piógena Pyogenic vertebral osteomyelitis

    Directory of Open Access Journals (Sweden)

    Pedro P. Perrotti

    2009-10-01

    Full Text Available La osteomielitis vertebral piógena (OVP es una localización poco frecuente (2-7% Se confirma con el aislamiento de un microorganismo de una vértebra, disco intervertebral, absceso epidural o paravertebral. Se describe una serie de casos por la infrecuente presentación de esta enfermedad, que puede ser consulta inicial en los servicios de clínica médica y por su sintomatología inespecífica que supone una dificultad diagnóstica. Tanto la columna lumbar como la dorsal fueron los sitios más afectados. El dolor dorsolumbar y la paraparesia fueron los síntomas más frecuentes de presentación. En ocho pacientes se aislaron Staphylococcus aureus, en uno Escherichia coli y en el restante Haemophylus sp. Se observó leucocitosis sólo en tres pacientes, y en dos velocidad de sedimentación globular mayor de 100 mm/h. Los diez pacientes presentaron imágenes características de osteomielitis vertebral piógena en la resonancia nuclear magnética. Dentro de las complicaciones, los abscesos paravertebrales y epidurales fueron los más frecuentes (en cinco enfermos. Además, un paciente presentó empiema pleural. De los diez pacientes de esta serie, siete recibieron inicialmente tratamiento médico empírico y luego específico para el germen aislado. En los restantes el tratamiento fue guiado de acuerdo al antibiograma. A dos enfermos fue necesario realizarles laminectomía descompresiva por compromiso de partes blandas y a otros dos estabilización quirúrgica por inestabilidad espinal, observándose buena evolución en todos los casos. Esta serie demuestra que, ante un paciente con dolor dorsolumbar y síntomas neurológicos se deberá tener en cuenta esta entidad para evitar un retraso en el tratamiento.Pyogenic osteomyelitis seldom affects the spine (2-7%. It is diagnosed by the isolation of a bacterial agent in the vertebral body, the intervertebral disks or from paravertebral or epidural abscesses. We report a retrospective study of ten

  13. CIRSE Guidelines on Percutaneous Vertebral Augmentation

    Energy Technology Data Exchange (ETDEWEB)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Too, Chow Wei, E-mail: spyder55@gmail.com; Koch, Guillaume, E-mail: guillaume.koch@gmail.com; Caudrelier, Jean, E-mail: jean.caudrelier@chru-strasbourg.fr; Cazzato, Roberto Luigi, E-mail: gigicazzato@hotmail.it; Garnon, Julien, E-mail: juliengarnon@gmail.com; Gangi, Afshin, E-mail: gangi@unistra.fr [Strasbourg University Hospital, Interventional Radiology Department (France)

    2017-03-15

    Vertebral compression fracture (VCF) is an important cause of severe debilitating back pain, adversely affecting quality of life, physical function, psychosocial performance, mental health and survival. Different vertebral augmentation procedures (VAPs) are used in order to consolidate the VCFs, relief pain,and whenever posible achieve vertebral body height restoration. In the present review we give the indications, contraindications, safety profile and outcomes of the existing percutaneous VAPs.

  14. Spatial patterning and floral synchrony among trillium populations with contrasting histories of herbivory

    Directory of Open Access Journals (Sweden)

    Christopher R. Webster

    2015-02-01

    Full Text Available We investigated the spatial patterning and floral synchrony within and among populations of a non-clonal, forest understory herb, Trillium catesbaei. Two populations of T. catesbaei within Great Smoky Mountains National Park were monitored for five years: Cades Cove (high deer abundance and Whiteoak Sink (low deer abundance. All individuals within each population were mapped during year one and five. Only flowering and single-leaf juveniles were mapped during intervening years. Greater distances between flowering plants (plants currently in flower and substantially lower population densities and smaller patch sizes were observed at Cades Cove versus Whiteoak Sink. However, with the exception of flowering plants, contrasting histories of herbivory did not appear to fundamentally alter the spatial patterning of the T. catesbaei population at Cades Cove, an area with a long and well-documented history of deer overabundance. Regardless of browse history, non-flowering life stages were significantly clustered at all spatial scales examined. Flowering plants were clustered in all years at Whiteoak Sink, but more often randomly distributed at Cades Cove, possibly as a result of their lower abundance. Between years, however, there was a positive spatial association between the locations of flowering plants at both sites. Flowering rate was synchronous between sites, but lagged a year behind favorable spring growing conditions, which likely allowed plants to allocate photosynthate from a favorable year towards flowering the subsequent year. Collectively, our results suggest that chronically high levels of herbivory may be associated with spatial patterning of flowering within populations of a non-clonal plant. They also highlight the persistence of underlying spatial patterns, as evidenced by high levels of spatial clustering among non-flowering individuals, and the pervasive, although muted in a population subjected to chronic herbivory, influence of

  15. Interactive effects of herbivory and competition intensity determine invasive plant performance.

    Science.gov (United States)

    Huang, Wei; Carrillo, Juli; Ding, Jianqing; Siemann, Evan

    2012-10-01

    Herbivory can reduce plant fitness, and its effects can be increased by competition. Though numerous studies have examined the joint effects of herbivores and competitors on plant performance, these interactive effects are seldom considered in the context of plant invasions. Here, we examined variation in plant performance within a competitive environment in response to both specialist and generalist herbivores using Chinese tallow as a model species. We combined tallow plants from native and invasive populations to form all possible pairwise combinations, and designated invasive populations as stronger neighbours and native populations as weaker neighbours. We found that when no herbivory was imposed, invasive populations always had higher total biomass than natives, regardless of their neighbours, which is consistent with our assumption of increased competitive ability. Defoliation by either generalist or specialist herbivores suppressed plant growth but the effects of specialists were generally stronger for invasive populations. Invasive populations had their lowest biomass when fed upon by specialists while simultaneously competing with stronger neighbours. The root/shoot ratios of invasive populations were lower than those of native populations under almost all conditions, and invasive plants were taller than native plants overall, especially when herbivores were present, suggesting that invasive populations may adopt an "aboveground first" strategy to cope with herbivory and competition. These results suggest that release from herbivores, especially specialists, improves an invader's performance and helps to increase its competitive ability. Therefore, increasing interspecific competition intensity by planting a stronger neighbour while simultaneously releasing a specialist herbivore may be an especially effective method of managing invasive plants.

  16. Tolerance to deer herbivory and resistance to insect herbivores in the common evening primrose (Oenothera biennis).

    Science.gov (United States)

    Puentes, A; Johnson, M T J

    2016-01-01

    The evolution of plant defence in response to herbivory will depend on the fitness effects of damage, availability of genetic variation and potential ecological and genetic constraints on defence. Here, we examine the potential for evolution of tolerance to deer herbivory in Oenothera biennis while simultaneously considering resistance to natural insect herbivores. We examined (i) the effects of deer damage on fitness, (ii) the presence of genetic variation in tolerance and resistance, (iii) selection on tolerance, (iv) genetic correlations with resistance that could constrain evolution of tolerance and (v) plant traits that might predict defence. In a field experiment, we simulated deer damage occurring early and late in the season, recorded arthropod abundances, flowering phenology and measured growth rate and lifetime reproduction. Our study showed that deer herbivory has a negative effect on fitness, with effects being more pronounced for late-season damage. Selection acted to increase tolerance to deer damage, yet there was low and nonsignificant genetic variation in this trait. In contrast, there was substantial genetic variation in resistance to insect herbivores. Resistance was genetically uncorrelated with tolerance, whereas positive genetic correlations in resistance to insect herbivores suggest there exists diffuse selection on resistance traits. In addition, growth rate and flowering time did not predict variation in tolerance, but flowering phenology was genetically correlated with resistance. Our results suggest that deer damage has the potential to exert selection because browsing reduces plant fitness, but limited standing genetic variation in tolerance is expected to constrain adaptive evolution in O. biennis. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  17. Evolution in an ancient detoxification pathway is coupled with a transition to herbivory in the drosophilidae.

    Science.gov (United States)

    Gloss, Andrew D; Vassão, Daniel G; Hailey, Alexander L; Nelson Dittrich, Anna C; Schramm, Katharina; Reichelt, Michael; Rast, Timothy J; Weichsel, Andrzej; Cravens, Matthew G; Gershenzon, Jonathan; Montfort, William R; Whiteman, Noah K

    2014-09-01

    Chemically defended plant tissues present formidable barriers to herbivores. Although mechanisms to resist plant defenses have been identified in ancient herbivorous lineages, adaptations to overcome plant defenses during transitions to herbivory remain relatively unexplored. The fly genus Scaptomyza is nested within the genus Drosophila and includes species that feed on the living tissue of mustard plants (Brassicaceae), yet this lineage is derived from microbe-feeding ancestors. We found that mustard-feeding Scaptomyza species and microbe-feeding Drosophila melanogaster detoxify mustard oils, the primary chemical defenses in the Brassicaceae, using the widely conserved mercapturic acid pathway. This detoxification strategy differs from other specialist herbivores of mustard plants, which possess derived mechanisms to obviate mustard oil formation. To investigate whether mustard feeding is coupled with evolution in the mercapturic acid pathway, we profiled functional and molecular evolutionary changes in the enzyme glutathione S-transferase D1 (GSTD1), which catalyzes the first step of the mercapturic acid pathway and is induced by mustard defense products in Scaptomyza. GSTD1 acquired elevated activity against mustard oils in one mustard-feeding Scaptomyza species in which GstD1 was duplicated. Structural analysis and mutagenesis revealed that substitutions at conserved residues within and near the substrate-binding cleft account for most of this increase in activity against mustard oils. Functional evolution of GSTD1 was coupled with signatures of episodic positive selection in GstD1 after the evolution of herbivory. Overall, we found that preexisting functions of generalized detoxification systems, and their refinement by natural selection, could play a central role in the evolution of herbivory. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e

  18. Delayed vertebral diagnosed L4 pincer vertebral fracture, L2-L3 ruptured vertebral lumbar disc hernia, L5 vertebral wedge fracture - Case report

    OpenAIRE

    Balasa D; Schiopu M; Tunas A; Baz R; Hancu Anca

    2016-01-01

    An association between delayed ruptured lumbar disc hernia, L5 vertebral wedge fracture and posttraumaticL4 pincer vertebral fracture (A2.3-AO clasification) at different levels is a very rare entity. We present the case of a 55 years old male who falled down from a bicycle. 2 months later because of intense and permanent vertebral lumbar and radicular L2 and L3 pain (Visual Scal Autologus of Pain7-8/10) the patient came to the hospital. He was diagnosed with pincer vertebral L4 fracture (A2....

  19. Hemifacial spasm; The value of vertebral angiography

    International Nuclear Information System (INIS)

    Yang, Hak Seok; Kim, Myung Soon; Han, Yong Pyo

    1992-01-01

    In order to evaluate the value of vertebral angiography in assesment of hemifacial spasm, We reviewed retrospectively the vertebral angiography of 28 patients (30 cases) with surgically proved hemifacial spasm but normal CT scans of posterior fossa. There were 9 males and 19 females. Angiography revealed vascular focus of hemifacial spasm located at anterior inferior cerebellar artery , posterior inferior cerebellar artery, and vertebral artery in 19, 9, and 2 cases respectively. Right side was involved in 20 cases. All involved vessels were elongated, tortuous, and dilated. In conclusion, vertebral angiography was valuable in evaluating hemifacial spasm of vascular origin in the posterior fossa

  20. Vertebrate Herbivore Browsing on Neighboring Forage Species Increases the Growth and Dominance of Siberian Alder Across a Latitudinal Transect in Northern Alaska.

    Science.gov (United States)

    McNeill, E. M.; Ruess, R. W.

    2017-12-01

    Vertebrate herbivores strongly influence plant growth and architecture, biogeochemical cycling, and successional dynamics in boreal and arctic ecosystems. One of the most notable impacts of vertebrate herbivory is on the growth and spread of alder, a chemically-defended, N-fixing shrub whose distribution in the Alaskan arctic has expanded dramatically over the past 60 years. Although herbivore effects on thin-leaf alder are well described for interior Alaskan floodplains, no work has been conducted on the effects of herbivores on Siberian alder (Alnus viridis spp fruticosa), despite the increasing importance of this species to high latitude ecosystems. We characterized browsing by snowshoe hares, moose, and willow ptarmigan on dominant shrub species across topo-edaphic sequences within 5 ecoregions along a 600 km latitudinal transect extending from interior Alaska to the North Slope. Ptarmigan browsed wind-blown lowland and alpine sites devoid of trees in all regions; moose browsed predominantly willow species in hardwood and mixed forests and were absent north of the Brooks Range; snowshoe hares selected habitats and forage based on their local density and vulnerability to predators. Browsing intensity on Siberian alder was either undetectable or low, limited primarily to hare browsing on young ramets in the northern boreal forest where hare density relative to forage availability is highest. Overall, alder height growth was positively correlated with levels of herbivory on competing shrub species. Our data support the hypothesis that vertebrate herbivore browsing is indirectly augmenting the growth, dominance, and possible spread of Siberian alder throughout its northern Alaskan range. Given the potential high rates of N-fixation inputs by Siberian alder, we believe herbivores are also having strong indirect effects on biogeochemical cycling and possibly C storage in these landscapes.

  1. Herbivory-induced mortality increases with radial growth in an invasive riparian phreatophyte

    Science.gov (United States)

    Hultine, K. R.; Dudley, T.; Leavitt, S.

    2012-12-01

    Under equal conditions, plants that allocate a larger proportion of resources to growth must do so at the expense of allocating fewer resources to storage. The critical balance between growth and storage leads to the hypothesis that in high-resource environments, plants that express high growth rates are more susceptible to episodic disturbance than plants that express lower growth rates. This hypothesis was tested by measuring the radial growth (RG), basal area increment (BAI) and carbon isotope ratios (δ13C) in tree-ring alpha-cellulose of mature tamarisk trees (Tamarix spp.) occurring at three sites in the western United States. All of the trees had been subjected to episodic foliage herbivory over three or more consecutive growing seasons by the recently released biological control agent, the tamarisk leaf beetle (Diorhabda carinulata) resulting in approximately 50% mortality in each stand (n = 31 live and killed trees, respectively). Mean annual BAI (measured from annual ring widths) in the 10 years prior to the onset of herbivory was on average 45% higher in killed trees compared to live trees (P tamarisk leaf beetle, they also expressed higher (less negative) δ13C ratios compared to live trees. In fact, at a site near Moab, UT, mean annual BAI was 100% higher in killed trees despite having about a 0.5‰ higher δ13C relative to live trees (P = 0.0008). These patterns suggest that the killed trees operated with a lower stomatal conductance despite the fact that they were more productive. Results from this investigation suggest that live trees allocated a relatively large proportion of resources to storage, thereby allowing these trees to produce new leaves after each subsequent herbivory event, whereas recently killed trees likely allocate a larger proportion of resources to growth at the expense of maintaining smaller storage reserves than living trees. Herbivory by the tamarisk leaf beetle therefore may be expected to reduce the overall net primary

  2. Environmental dependency in the expression of costs of tolerance to deer herbivory.

    Science.gov (United States)

    Stinchcombe, John R

    2002-05-01

    Plant tolerance to natural enemy damage is a defense strategy that minimizes the effects of damage on fitness. Despite the apparent benefits of tolerance, many populations exhibit intermediate levels of tolerance, indicating that constraints on the evolution of tolerance are likely. In a field experiment with the ivyleaf morning glory, costs of tolerance to deer herbivory in the form of negative genetic correlations between deer tolerance and fitness in the absence of damage were detected. However, these costs were detected only in the presence of insect herbivores. Such environmental dependency in the expression of costs of tolerance may facilitate the maintenance of tolerance at intermediate levels.

  3. Homenaje a la columna vertebral

    Directory of Open Access Journals (Sweden)

    Joseph Brodsky

    2011-01-01

    Full Text Available Exiliado en Estados Unidos desde comienzos de la década del setenta, el poeta ruso Joseph Brodsky (1940-1996, adquiere en 1977 la nacionalidad norteamericana. Al año siguiente, una década antes de recibir el Premio Nobel, asiste como miembro de la delegación de Estados Unidos a una reunión internacional del PEN Club, en Río de Janeiro, Brasil, reunión a la que asiste también Mario Vargas Llosa. "Homenaje a la columna vertebral" es la crónica de esa experiencia y de su primera y probablemente única visita a Latinoamérica.

  4. Vertebral architecture in the earliest stem tetrapods.

    Science.gov (United States)

    Pierce, Stephanie E; Ahlberg, Per E; Hutchinson, John R; Molnar, Julia L; Sanchez, Sophie; Tafforeau, Paul; Clack, Jennifer A

    2013-02-14

    The construction of the vertebral column has been used as a key anatomical character in defining and diagnosing early tetrapod groups. Rhachitomous vertebrae--in which there is a dorsally placed neural arch and spine, an anteroventrally placed intercentrum and paired, posterodorsally placed pleurocentra--have long been considered the ancestral morphology for tetrapods. Nonetheless, very little is known about vertebral anatomy in the earliest stem tetrapods, because most specimens remain trapped in surrounding matrix, obscuring important anatomical features. Here we describe the three-dimensional vertebral architecture of the Late Devonian stem tetrapod Ichthyostega using propagation phase-contrast X-ray synchrotron microtomography. Our scans reveal a diverse array of new morphological, and associated developmental and functional, characteristics, including a possible posterior-to-anterior vertebral ossification sequence and the first evolutionary appearance of ossified sternal elements. One of the most intriguing features relates to the positional relationships between the vertebral elements, with the pleurocentra being unexpectedly sutured or fused to the intercentra that directly succeed them, indicating a 'reverse' rhachitomous design. Comparison of Ichthyostega with two other stem tetrapods, Acanthostega and Pederpes, shows that reverse rhachitomous vertebrae may be the ancestral condition for limbed vertebrates. This study fundamentally revises our current understanding of vertebral column evolution in the earliest tetrapods and raises questions about the presumed vertebral architecture of tetrapodomorph fish and later, more crownward, tetrapods.

  5. High-altitude adaptations in vertebrate hemoglobins

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    Vertebrates at high altitude are subjected to hypoxic conditions that challenge aerobic metabolism. O2 transport from the respiratory surfaces to tissues requires matching between the O2 loading and unloading tensions and theO2-affinity of blood, which is an integrated function of hemoglobin......, birds and ectothermic vertebrates at high altitude....

  6. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory

    KAUST Repository

    Hernán, Gema

    2016-12-01

    Under future increased CO2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.

  7. The effect of leaf beetle herbivory on the fire behaviour of tamarisk (Tamarix ramosissima Lebed.)

    Science.gov (United States)

    Drus, Gail M.; Dudley, Tom L.; Brooks, Matthew L.; Matchett, John R.

    2012-01-01

    The non-native tree, Tamarix spp. has invaded desert riparian ecosystems in the south-western United States. Fire hazard has increased, as typically fire-resistant native vegetation is replaced by Tamarix. The tamarisk leaf beetle, Diorhabda carinulata Desbrochers, introduced for biological control, may affect fire behaviour by converting hydrated live Tamarix leaves and twigs into desiccated and dead fuels. This potentially increases fire hazard in the short term before native vegetation can be re-established. This study investigates how fire behaviour is altered in Tamarix fuels desiccated by Diorhabda herbivory at a Great Basin site, and by herbivory simulated by foliar herbicide at a Mojave Desert site. It also evaluates the influence of litter depth on fire intensity. Fire behaviour was measured with a fire intensity index that integrates temperature and duration (degree-minutes above 70°C), and with maximum temperature, duration, flame lengths, rates of spread and vegetation removal. Maximum temperature, flame length and rate of spread were enhanced by foliar desiccation of Tamarix at both sites. At only the Mojave site, there was a trend for desiccated trees to burn with greater fire intensity. At both sites, fire behaviour parameters were influenced to a greater degree by litter depth, vegetation density and drier and windier conditions than by foliar desiccation.

  8. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.)

    International Nuclear Information System (INIS)

    Hladun, Kristen R.; Parker, David R.; Tran, Khoa D.; Trumble, John T.

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator–plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8–9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se. - Highlights: ► Radish were exposed to selenate and pollination treatments to examine pollination ecology. ► Honey bees foraged on radish for both pollen and nectar despite high floral Se concentrations. ► Se treatment increased seed abortion and decreased plant biomass. ► Herbivory by birds and aphids was reduced in Se-treated plants. ► Pollutants such as Se can impact the pollination of a plant that accumulates even moderate amounts. - Radish accumulated the pollutant selenium in floral tissues, but this did not deter the pollinator (Apis mellifera) from foraging.

  9. Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa.

    Directory of Open Access Journals (Sweden)

    Peter Houk

    Full Text Available BACKGROUND: Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s of spatial variation in the recovery process. METHODOLOGY/PRINCIPAL FINDINGS: This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. CONCLUSIONS/SIGNIFICANCE: Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.

  10. The impacts of climate change and belowground herbivory on aphids via primary metabolites

    Science.gov (United States)

    Ryalls, James M. W.

    Global climate and atmospheric change (summarised as climate change for brevity) may alter patterns of crop damage by insect herbivores, but little is known about how multiple climate change factors, acting in tandem, shape such interactions. Crucially, the specific plant-mediated mechanisms underpinning these effects remain largely unknown. Moreover, research into the effects of climate change on leguminous plant species, which have the ability to fix atmospheric nitrogen (N2) via their association with root nodule-dwelling rhizobial bacteria, and their associated insect herbivores, is surprisingly scarce considering their increasing importance in terrestrial ecosystems worldwide. Using a model legume, lucerne, otherwise known as alfalfa, Medicago sativa (Fabaceae), and a model pest species, the pea aphid, Acyrthosiphon pisum (Hemiptera: Aphididae), this work addresses how predicted changes in carbon dioxide (CO2) concentrations, temperature and rainfall patterns as well as interactions with other organisms, including the root-feeding weevil Sitona discoideus (Coleoptera: Curculionidae), might shape legume-feeding aphid populations in the future. Recent literature on the impacts of climate change on aphids and the biology and trophic interactions of lucerne aphids specifically were synthesised in chapters one and two, respectively. These chapters highlighted the importance of the interactions between multiple abiotic and biotic variables in shaping aphid population dynamics. Empirical research chapters three to six, using up to five lucerne genotypes (i.e. cultivars) in glasshouse and field experiments, addressed how A. pisum responded to the isolated and combined effects of climate change and root herbivory. In particular, chapter three determined the effects of elevated temperatures (eT) and elevated atmospheric CO2 concentrations (eCO2) on root-feeding S. discoideus larvae and their interaction with A. pisum. Chapter four addressed whether the effects of eT, e

  11. Effects of endomycorrhizal infection, artificial herbivory, and parental cross on growth of Lotus corniculatus L.

    Science.gov (United States)

    Borowicz, V A; Fitter, A H

    1990-03-01

    We examined how combinations of parentage, fungicide application, and artificial herbivory influence growth and shoot phosphorus content in pre-reproductive Lotus corniculatus, using young offspring arising from three parental crosses, two of which had one parent in common. Soil with vesicular-arbuscular mycorrhizal (VAM) fungi was treated with either water or benomyl, an anti-VAM fungicide, and added to trays containing groups of four full siblings. There were two experiments; in the first no plants were clipped while in the second two of the four plants were clipped to simulate herbivory. In both experiments plants of the two related crosses accumulated more biomass and total shoot P than did plants of the third cross. Plants inoculated with watertreated soil had greater shoot mass and P concentration than did fungicide-treated replicates but the extent of increase in P concentration varied among crosses. In Experiment 2, clipping reduced root mass and resulted in higher shoot P concentration. In this experiment there was a significant interaction of fungicide application and clipping: both unclipped and clipped plants grew better in soil not treated with fungicide, but the increase in shoot mass, total mass, and total P was greater in unclipped plants. Significant interaction of fungicide treatment and clipping is most likely due to reduced availability of carbon to the roots of clipped plants, resulting in poorer symbiotic functioning.

  12. Seagrass (Posidonia oceanica) seedlings in a high-CO2 world: from physiology to herbivory.

    Science.gov (United States)

    Hernán, Gema; Ramajo, Laura; Basso, Lorena; Delgado, Antonio; Terrados, Jorge; Duarte, Carlos M; Tomas, Fiona

    2016-12-01

    Under future increased CO 2 concentrations, seagrasses are predicted to perform better as a result of increased photosynthesis, but the effects in carbon balance and growth are unclear and remain unexplored for early life stages such as seedlings, which allow plant dispersal and provide the potential for adaptation under changing environmental conditions. Furthermore, the outcome of the concomitant biochemical changes in plant-herbivore interactions has been poorly studied, yet may have important implications in plant communities. In this study we determined the effects of experimental exposure to current and future predicted CO 2 concentrations on the physiology, size and defense strategies against herbivory in the earliest life stage of the Mediterranean seagrass Posidonia oceanica. The photosynthetic performance of seedlings, assessed by fluorescence, improved under increased pCO 2 conditions after 60 days, although these differences disappeared after 90 days. Furthermore, these plants exhibited bigger seeds and higher carbon storage in belowground tissues, having thus more resources to tolerate and recover from stressors. Of the several herbivory resistance traits measured, plants under high pCO 2 conditions had a lower leaf N content but higher sucrose. These seedlings were preferred by herbivorous sea urchins in feeding trials, which could potentially counteract some of the positive effects observed.

  13. Risk of spider predation alters food web structure and reduces local herbivory in the field.

    Science.gov (United States)

    Bucher, Roman; Menzel, Florian; Entling, Martin H

    2015-06-01

    Predators can indirectly enhance plant performance via herbivore suppression, with both prey consumption and changes in prey traits (e.g. changes in foraging behaviour) contributing to the reduction in herbivory. We performed a field experiment to determine the extent of such non-consumptive effects which consisted of repeatedly placing spiders (Pisaura mirabilis) on enclosed plants (Urtica dioica) for cue deposition. Control plants were enclosed in the same way but without spiders. After cue deposition, the enclosures were removed to allow arthropods to colonize the plants and feed on them. Arthropods were removed from the plants before the subsequent spider deposition or control enclosure. During six cycles of enclosure, we quantified leaf damage on the plants. After a seventh cycle, the colonizing arthropods were sampled to determine community composition in relation to the presence/absence of spider cues. We found that the presence of chemotactile spider cues reduced leaf damage by 50 %. In addition, spider cues led to changes in the arthropod community: smaller spiders avoided plants with spider cues. In contrast, the aphid-tending ant Myrmica rubra showed higher recruitment of workers on cue-bearing plants, possibly to protect aphids. Our results show that the risk of spider predation can reduce herbivory on wild plants and also demonstrate that non-consumptive effects can be particularly strong within the predator guild.

  14. Imaging of vertebral fracture in osteoporosis

    International Nuclear Information System (INIS)

    Skowronska-Jozwiak, E.; Lewinski, A.; Bieganski, T.

    2008-01-01

    Vertebral collapses are the most frequent fractures in osteoporosis. They are often overlooked, although their presence is a strong risk factor for development of new fractures. Lateral radiographs of the spine are the accepted standard for assessment of fractures. Qualitative (visual), semiquantitative and quantitative (morphometric) techniques are useful in determining the compressive deformities of vertebral bodies. In the present paper, the advantages and the disadvantages of these methods are discussed. The improvement of scan quality allows to use DXA technique to diagnose the fractures, in both - the visual and the morphometric way. The vertebral morphologic assessment also seems to be an important diagnostic tool in pediatric osteoporosis. Application of multidetector CT and especially MR in vertebral imaging of osteoporosis, improves the sensitivity of fracture detection and enables the differentiation of benign from malignant vertebral body collapses. (author)

  15. Restoration of three forest herbs in the Liliaceae family by manipulating deer herbivory and overstorey and understorey vegetation

    Science.gov (United States)

    Cynthia D. Huebner; Kurt W. Gottschalk; Gary W. Miller; Patrick H. Brose

    2010-01-01

    Research on herbaceous vegetation restoration in forests characterised by overstorey tree harvests, excessive deer herbivory, and a dominant fern understorey is lacking. Most of the plant diversity found in Eastern hardwood forests in the United States is found in the herbaceous understorey layer. Loss of forest herbaceous species is an indicator of declining forest...

  16. The Influence of Herbivory on the net rate of Increase of Gypsy Moth Abundance: A Modeling Analysis

    Science.gov (United States)

     Harry T.  Valentine

    1983-01-01

    A differential equation model of gypsy moth abundance, average larval dry weight, and food abundance was used to analyze the effects of changes in foliar chemistry on the net per capita rate of increase in a gypsy moth population. If relative consumption rate per larva is unaffected by herbivory, a reduction in the nutritional value of foliage reduces the net rate of...

  17. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp.), or fungal infection (Fusarium spp.)

    Science.gov (United States)

    Herbivory, mechanical injury or pathogen infestation to vegetative tissues can induce volatile organic compounds (VOCs) production, which can provide defensive functions to injured and uninjured plants. In our studies with ‘McNeal’ wheat, ‘Otana’ oat, and ‘Harrington’ barley, plants that were mechan...

  18. Duplication of the Left Vertebral Artery Origin: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sang Wook; Park, Dong Woo; Park, Choong Ki; Lee, Young Jun [Dept. of Radiology, College of Medicine, Hanyang University, Hanyang University Guri Hospital, Guri (Korea, Republic of)

    2013-01-15

    Duplication of vertebral arteries is a very rare but clinically important condition. A duplicated vertebral artery origin can influence hemodynamics, pathogenesis of vascular lesions and treatment options. In cases of vertebral artery duplication, the vertebral arteries generally enter the transverse foramen higher up than normal. Awareness of these vertebral artery variants before procedures, such as neurointervention or surgery, may be beneficial. Here, we describe a case of a 51-year-old female patient with left vertebral artery duplication which was detected incidentally.

  19. Duplication of the Left Vertebral Artery Origin: A Case Report

    International Nuclear Information System (INIS)

    Shin, Sang Wook; Park, Dong Woo; Park, Choong Ki; Lee, Young Jun

    2013-01-01

    Duplication of vertebral arteries is a very rare but clinically important condition. A duplicated vertebral artery origin can influence hemodynamics, pathogenesis of vascular lesions and treatment options. In cases of vertebral artery duplication, the vertebral arteries generally enter the transverse foramen higher up than normal. Awareness of these vertebral artery variants before procedures, such as neurointervention or surgery, may be beneficial. Here, we describe a case of a 51-year-old female patient with left vertebral artery duplication which was detected incidentally.

  20. Prevalent Vertebral Fractures in Black Women and White Women

    OpenAIRE

    Cauley, Jane A; Palermo, Lisa; Vogt, Molly; Ensrud, Kristine E; Ewing, Susan; Hochberg, Marc; Nevitt, Michael C; Black, Dennis M

    2008-01-01

    Vertebral fractures are the most common osteoporotic fracture. Hip and clinical fractures are less common in black women, but there is little information on vertebral fractures. We studied 7860 white and 472 black women ≥65 yr of age enrolled in the Study of Osteoporotic Fractures. Prevalent vertebral fractures were identified from lateral spine radiographs using vertebral morphometry and defined if any vertebral height ratio was >3 SD below race-specific means for each vertebral level. Infor...

  1. Interactive effects of climate and nutrient enrichment on patterns of herbivory by different feeding guilds in mangrove forests

    KAUST Repository

    Feller, Ilka C.

    2017-09-28

    Aim Global warming and eutrophication are major threats to coastal environments worldwide. As a result of differences between temperate and tropical ecosystems in nutrient availability, nitrogen (N):phosphorus (P) coupling and carbon retention, primary productivity and biotic interactions in the tropics are predicted to have stronger responses to increased nutrients than in temperate ecosystems. Habitats that occur across broad climatic ranges, such as mangrove forests, provide an opportunity to test this hypothesis by investigating the responses of herbivores to nutrient enrichment in temperate versus tropical latitudes on the same species. Location Australia and New Zealand. Time period Fertilization experiments were established at Port Douglas and Cape Cleveland in October 2000; Batemans Bay and Waikopua in August 2001; Whangapoua in January 2003; Tinchi Tamba in September 2005; and Garalia in October 2007. Herbivory was measured in 2009. Major taxa studied Insect leaf miners; insect and fungal leaf gallers. Methods We used seven fertilization experiments in Australia and New Zealand across 20° of latitude to determine how increased nutrients affected herbivory and diversity of leaf miners and gallers of the mangrove Avicennia marina. Individual trees were fertilized annually with one of three treatments (Control, +N, +P); herbivory was measured in 2009. Results Fertilization did not significantly affect herbivory or herbivore diversity. Leaf N:P, latitude and rainfall contributed significantly to herbivory, accounting for > 56% of the variation. Latitude, temperature, %P and salinity differentiated herbivory by feeding guild in the tropical versus subtropical and temperate latitudes. The effect of N fertilization on folivory differed across climatic regions; relative to Control trees, N-fertilized trees in temperate areas had greater folivory than in tropical and subtropical latitudes. Species richness for leaf miners and gallers was correlated with latitude

  2. Among-population variation in tolerance to larval herbivory by Anthocharis cardamines in the polyploid herb Cardamine pratensis.

    Directory of Open Access Journals (Sweden)

    Malin A E König

    Full Text Available Plants have two principal defense mechanisms to decrease fitness losses to herbivory: tolerance, the ability to compensate fitness after damage, and resistance, the ability to avoid damage. Variation in intensity of herbivory among populations should result in variation in plant defense levels if tolerance and resistance are associated with costs. Yet little is known about how levels of tolerance are related to resistance and attack intensity in the field, and about the costs of tolerance. In this study, we used information about tolerance and resistance against larval herbivory by the butterfly Anthocharis cardamines under controlled conditions together with information about damage in the field for a large set of populations of the perennial plant Cardamine pratensis. Plant tolerance was estimated in a common garden experiment where plants were subjected to a combination of larval herbivory and clipping. We found no evidence of that the proportion of damage that was caused by larval feeding vs. clipping influenced plant responses. Damage treatments had a negative effect on the three measured fitness components and also resulted in an earlier flowering in the year after the attack. Tolerance was related to attack intensity in the population of origin, i.e. plants from populations with higher attack intensity were more likely to flower in the year following damage. However, we found no evidence of a relationship between tolerance and resistance. These results indicate that herbivory drives the evolution for increased tolerance, and that changes in tolerance are not linked to changes in resistance. We suggest that the simultaneous study of tolerance, attack intensity in the field and resistance constitutes a powerful tool to understand how plant strategies to avoid negative effects of herbivore damage evolve.

  3. Mitotic chromosome condensation in vertebrates

    International Nuclear Information System (INIS)

    Vagnarelli, Paola

    2012-01-01

    Work from several laboratories over the past 10–15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292–301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories—a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307–316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119–1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579–589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  4. Mitotic chromosome condensation in vertebrates

    Energy Technology Data Exchange (ETDEWEB)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes

  5. Imaging assessment of vertebral burst fracture

    International Nuclear Information System (INIS)

    Ding Jianlin; Liang Lihua; Wang Yujia

    2006-01-01

    Objective: To investigate the diagnostic value of radiography, CT and MRI in diagnosis of vertebral burst fracture. Methods: 51 patients with vertebral burst fracture were evaluated with X-ray, CT and MRI, including 3 cases in cervical vertebra, 18 cases in thoracic vertebra, and 30 cases in lumbar vertebra. The imaging features were comparatively studied. Results: Radiography showed decreased height of the vertebral body, increased antero-posterior diameter and the transverse diameter, and/or the widened interpedicle distance, the inter-spinous distance, as well as the bony fragment inserted into the vertebral canal in 28 cases(54.90%). X-ray findings similar to the compression fracture were revealed in 20 cases(39.21%). And missed diagnosis was made in 3 cases (5.88%). CT clearly demon-strated the vertebral body vertically or transversely burst crack in 49 cases (96.07%); bony fragment inserted into the vertebral canal and narrowed vertebral canal in 35 cases(68. 62% ); fracture of spinal appendix in 22 cases(43.14%). Meanwhile MRI showed abnormal signals within the spinal cord in 35 cases (68.62%),injured intervertebral disk in 29 cases(56.86% ), extradural hematoma in 12 cases(23.52% ) and torn posterior longitudinal ligament in 6 cases (11.76%). Conclusions: Radiography is the routine examination, while with limited diagnostic value in vertebral burst fracture. These patients who have nervous symptoms with simple compression fracture or unremarkable on X-ray should receive the CT or MRI examination. CT is better than MRI in demonstrating the fracture and the displaced bony fragment, while MRI is superior to CT in showing nervous injuries. CT and MRI will provide comprehensive information guiding clinical treatment of vertebral burst fracture. (authors)

  6. Effects of excluding goat herbivory on Acacia tortilis woodland around pastoralist settlements in northwest Kenya

    Science.gov (United States)

    Oba, Gufu

    1998-08-01

    Browsing by goats is considered to cause poor tree regeneration and reduced tree growth around settlements throughout the arid zones of sub-Saharan Africa. This study investigated whether excluding goats from Acacia tortilis woodlands increased tree regeneration, current season's shoot growth rates and browse production over a period of 52 months between 1986 and 1990. The study also investigated the effects of climatic variability on tree growth and browse production. Excluding goat herbivory provided no advantage over continuous browsing for juvenile A. tortilis. Trees on the unbrowsed and on browsed transects increased by 22.2 (standard error [SE] ± 0.53) cm·yr -1 and 25.0 (SE ± 0.58) cm·yr -1, respectively. Fewer but longer shoots were produced by trees on the unbrowsed transects, while trees on the browsed transects invested more in shorter shoots. Net total browse production was lower on unbrowsed (1.73 [standard deviation (SD) ± 4.3] t·ha -1·yr -1) than on the browsed (3.03 [SD ± 3.6] t·ha -1 ·yr -1) transects. Biomass production on unbrowsed and browsed transects was closely correlated with rainfall and presumably soil moisture during wet seasons. Relative growth rates (RGR) of current season's shoots in the two treatments did not differ, implying goat herbivory at moderate stocking density (i.e. 13.0 tropical livestock units [TLU]·km -2) stimulated shoot growth. RGR remained positive except on the browsed transects during 1990, a dry year. Goat browsing pressure was moderate. Total biomass loss on unbrowsed transects was 15.5 %·yr -1 compared with 27.7 %·yr -1 on the browsed transects. These findings do not support the notion that goats always destroy young trees around settlements. Goat herbivory at moderate intensity stimulated shoot productivity. However, the results should not be used to generalize all conditions throughout sub-Saharan Africa, let alone the arid zones of northern Kenya. Rather, there is a need to emphasize individual case

  7. Organizational heterogeneity of vertebrate genomes.

    Science.gov (United States)

    Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham

    2012-01-01

    Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  8. Organizational heterogeneity of vertebrate genomes.

    Directory of Open Access Journals (Sweden)

    Svetlana Frenkel

    Full Text Available Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.

  9. Melatonin Receptor Genes in Vertebrates

    Directory of Open Access Journals (Sweden)

    Hua Dong Yin

    2013-05-01

    Full Text Available Melatonin receptors are members of the G protein-coupled receptor (GPCR family. Three genes for melatonin receptors have been cloned. The MT1 (or Mel1a or MTNR1A and MT2 (or Mel1b or MTNR1B receptor subtypes are present in humans and other mammals, while an additional melatonin receptor subtype, Mel1c (or MTNR1C, has been identified in fish, amphibians and birds. Another melatonin related orphan receptor, GPR50, which does not bind melatonin, is found exclusively in mammals. The hormone melatonin is secreted primarily by the pineal gland, with highest levels occurring during the dark period of a circadian cycle. This hormone acts systemically in numerous organs. In the brain, it is involved in the regulation of various neural and endocrine processes, and it readjusts the circadian pacemaker, the suprachiasmatic nucleus. This article reviews recent studies of gene organization, expression, evolution and mutations of melatonin receptor genes of vertebrates. Gene polymorphisms reveal that numerous mutations are associated with diseases and disorders. The phylogenetic analysis of receptor genes indicates that GPR50 is an outgroup to all other melatonin receptor sequences. GPR50 may have separated from a melatonin receptor ancestor before the split between MTNR1C and the MTNR1A/B ancestor.

  10. Rotations in a Vertebrate Setting

    Science.gov (United States)

    McCollum, Gin

    2003-05-01

    Rotational movements of the head are often considered to be measured in a single three dimensional coordinate system implemented by the semicircular canals of the vestibular system of the inner ear. However, the vertebrate body -- including the nervous system -- obeys rectangular symmetries alien to rotation groups. At best, nervous systems mimic the physical rotation group in a fragmented way, only partially reintegrating physical movements in whole organism responses. The vestibular canal reference frame is widely used in nervous systems, for example by eye movements. It is used to some extent even in the cerebrum, as evidenced by the remission of hemineglect -- in which half of space is ignored -- when the vestibular system is stimulated. However, reintegration of space by the organism remains incomplete. For example, compensatory eye movements (which in most cases aid visual fixation) may disagree with conscious self-motion perception. In addition, movement-induced nausea, illusions, and cue-free perceptions demonstrate symmetry breaking or incomplete spatial symmetries. As part of a long-term project to investigate rotation groups in nervous systems, we have analyzed the symmetry group of a primary vestibulo-spinal projection.

  11. Innate immunity in vertebrates: an overview.

    Science.gov (United States)

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  12. Tetanus with multiple wedge vertebral collapses

    African Journals Online (AJOL)

    owner

    2012-07-06

    Jul 6, 2012 ... associated with traumatic injury, often a penetrating wound inflicted by dirty ... multiple vertebral collapses and the management chal- .... back pains and swelling as in our patient.9 There are usually no ... The cervical and.

  13. Delayed vertebral diagnosed L4 pincer vertebral fracture, L2-L3 ruptured vertebral lumbar disc hernia, L5 vertebral wedge fracture - Case report

    Directory of Open Access Journals (Sweden)

    Balasa D

    2016-08-01

    Full Text Available An association between delayed ruptured lumbar disc hernia, L5 vertebral wedge fracture and posttraumaticL4 pincer vertebral fracture (A2.3-AO clasification at different levels is a very rare entity. We present the case of a 55 years old male who falled down from a bicycle. 2 months later because of intense and permanent vertebral lumbar and radicular L2 and L3 pain (Visual Scal Autologus of Pain7-8/10 the patient came to the hospital. He was diagnosed with pincer vertebral L4 fracture (A2.3-AO clasification and L2-L3 right ruptured lumbar disc hernia in lateral reces. The patient was operated (L2-L3 right fenestration, and resection of lumbar disc hernia, bilateral stabilisation, L3-L4-L5 with titan screws and postero-lateral bone graft L4 bilateral harvested from iliac crest.

  14. Constrained vertebrate evolution by pleiotropic genes.

    Science.gov (United States)

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song; Shimai, Kotaro; Lu, Tsai-Ming; Li, Fang; Fujimoto, Satoko; Ishikawa, Masato; Liu, Shiping; Sasagawa, Yohei; Zhang, Guojie; Kuratani, Shigeru; Yu, Jr-Kai; Kusakabe, Takehiro G; Khaitovich, Philipp; Irie, Naoki

    2017-11-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.

  15. Effects of selenium accumulation on phytotoxicity, herbivory, and pollination ecology in radish (Raphanus sativus L.).

    Science.gov (United States)

    Hladun, Kristen R; Parker, David R; Tran, Khoa D; Trumble, John T

    2013-01-01

    Selenium (Se) has contaminated areas in the western USA where pollination is critical to the functioning of both agricultural and natural ecosystems, yet we know little about how Se can impact pollinators. In a two-year semi-field study, the weedy plant Raphanus sativus (radish) was exposed to three selenate treatments and two pollination treatments to evaluate the effects on pollinator-plant interactions. Honey bee (Apis mellifera L.) pollinators were observed to readily forage on R. sativus for both pollen and nectar despite high floral Se concentrations. Se treatment increased both seed abortion (14%) and decreased plant biomass (8-9%). Herbivory by birds and aphids was reduced on Se-treated plants, indicating a potential reproductive advantage for the plant. Our study sheds light on how pollutants such as Se can impact the pollination ecology of a plant that accumulates even moderate amounts of Se. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Ants visit nectaries of Epidendrum denticulatum (Orchidaceae in a Brazilian rainforest: effects on herbivory and pollination

    Directory of Open Access Journals (Sweden)

    Almeida A. M.

    2003-01-01

    Full Text Available Epidendrum denticulatum (Orchidaceae produces nectar on the petioles of buds, flowers, and fruits (extrafloral nectaries but no nectar is found on its flowers, and it is probably a deceptive species. In the Brazilian Atlantic rainforest, some aspects of both the ecology and behavior of Camponotus sericeiventris (Formicinae and Ectatomma tuberculatum (Ponerinae, two ant species foraging on E. denticulatum extrafloral nectaries, were investigated. Both experiments, using termites as baits and field observations, suggest that these ant species are able to prevent reproductive organ herbivory, without affecting pollinator behaviour. Since a low fruit set is often cited as a characteristic of the family, especially for deceptive species, ants attracted to orchid inflorescences protect reproductive structures and increase the probability of pollination success. Epidendrum denticulatum flowers were visited and probably pollinated by Heliconius erato (Nymphalidae and Euphyes leptosema (Hesperiidae.

  17. The evolution of tolerance to deer herbivory: modifications caused by the abundance of insect herbivores.

    Science.gov (United States)

    Stinchcombe, John R; Rausher, Mark D

    2002-01-01

    Although recent evidence indicates that coevolutionary interactions between species often vary on a biogeographical scale, little consideration has been given to the processes responsible for producing this pattern. One potential explanation is that changes in the community composition alter the coevolutionary interactions between species, but little evidence exists regarding the occurrence of such changes. Here we present evidence that the pattern of natural selection on plant defence traits, and the probable response to that selection, are critically dependent on the composition of the biotic community. The evolutionary trajectory of defence traits against mammalian herbivory in the Ivyleaf morning glory (Ipomoea hederacea), and which defence traits are likely to respond to selection, are both dependent on the presence or absence of insect herbivores. These results indicate that variation in community composition may be a driving force in generating geographical mosaics. PMID:12065040

  18. Can genetically based clines in plant defence explain greater herbivory at higher latitudes?

    Science.gov (United States)

    Anstett, Daniel N; Ahern, Jeffrey R; Glinos, Julia; Nawar, Nabanita; Salminen, Juha-Pekka; Johnson, Marc T J

    2015-12-01

    Greater plant defence is predicted to evolve at lower latitudes in response to increased herbivore pressure. However, recent studies question the generality of this pattern. In this study, we tested for genetically based latitudinal clines in resistance to herbivores and underlying defence traits of Oenothera biennis. We grew plants from 137 populations from across the entire native range of O. biennis. Populations from lower latitudes showed greater resistance to multiple specialist and generalist herbivores. These patterns were associated with an increase in total phenolics at lower latitudes. A significant proportion of the phenolics were driven by the concentrations of two major ellagitannins, which exhibited opposing latitudinal clines. Our analyses suggest that these findings are unlikely to be explained by local adaptation of herbivore populations or genetic variation in phenology. Rather greater herbivory at high latitudes can be explained by latitudinal clines in the evolution of plant defences. © 2015 John Wiley & Sons Ltd/CNRS.

  19. Herbivory and growth in terrestrial and aquatic populations of amphibious stream plants

    DEFF Research Database (Denmark)

    Sand-Jensen, Kaj; Jacobsen, Dean

    2002-01-01

    1. Many amphibious plant species grow in the transition between terrestrial and submerged vegetation in small lowland streams. We determined biomass development, leaf turnover rate and invertebrate herbivory during summer in terrestrial and aquatic populations of three amphibious species...... production (average 1.2-5.1%) than aquatic populations (2.9-17.3%), while the same plant dry mass was consumed per unit ground area. 3. Grazing loss increased linearly with leaf age apart from the youngest leaf stages. Grazing loss during the lifetime of leaves was therefore 2.4-3.1 times higher than mean...... apparent loss to standing leaves of all ages. The results imply that variation in density of grazers relative to plant production can account for differences in grazing impact between terrestrial and aquatic populations, and that fast leaf turnover keeps apparent grazing damage down. 4. We conclude...

  20. Ants visit nectaries of Epidendrum denticulatum (Orchidaceae in a Brazilian rainforest: effects on herbivory and pollination

    Directory of Open Access Journals (Sweden)

    A. M. Almeida

    Full Text Available Epidendrum denticulatum (Orchidaceae produces nectar on the petioles of buds, flowers, and fruits (extrafloral nectaries but no nectar is found on its flowers, and it is probably a deceptive species. In the Brazilian Atlantic rainforest, some aspects of both the ecology and behavior of Camponotus sericeiventris (Formicinae and Ectatomma tuberculatum (Ponerinae, two ant species foraging on E. denticulatum extrafloral nectaries, were investigated. Both experiments, using termites as baits and field observations, suggest that these ant species are able to prevent reproductive organ herbivory, without affecting pollinator behaviour. Since a low fruit set is often cited as a characteristic of the family, especially for deceptive species, ants attracted to orchid inflorescences protect reproductive structures and increase the probability of pollination success. Epidendrum denticulatum flowers were visited and probably pollinated by Heliconius erato (Nymphalidae and Euphyes leptosema (Hesperiidae.

  1. Data compilations for primary production, herbivory, decomposition, and export for different types of marine communities, 1962-2002 (NODC Accession 0054500)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset is a compilation of published data on primary production, herbivory, and nutrient content of primary producers in pristine communities of...

  2. An aeroponic culture system for the study of root herbivory on Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Vaughan Martha M

    2011-03-01

    Full Text Available Abstract Background Plant defense against herbivory has been studied primarily in aerial tissues. However, complex defense mechanisms have evolved in all parts of the plant to combat herbivore attack and these mechanisms are likely to differ in the aerial and subterranean environment. Research investigating defense responses belowground has been hindered by experimental difficulties associated with the accessibility and quality of root tissue and the lack of bioassays using model plants with altered defense profiles. Results We have developed an aeroponic culture system based on a calcined clay substrate that allows insect herbivores to feed on plant roots while providing easy recovery of the root tissue. The culture method was validated by a root-herbivore system developed for Arabidopsis thaliana and the herbivore Bradysia spp. (fungus gnat. Arabidopsis root mass obtained from aeroponically grown plants was comparable to that from other culture systems, and the plants were morphologically normal. Bradysia larvae caused considerable root damage resulting in reduced root biomass and water absorption. After feeding on the aeroponically grown root tissue, the larvae pupated and emerged as adults. Root damage of mature plants cultivated in aeroponic substrate was compared to that of Arabidopsis seedlings grown in potting mix. Seedlings were notably more susceptible to Bradysia feeding than mature plants and showed decreased overall growth and survival rates. Conclusions A root-herbivore system consisting of Arabidopsis thaliana and larvae of the opportunistic herbivore Bradysia spp. has been established that mimics herbivory in the rhizosphere. Bradysia infestation of Arabidopsis grown in this culture system significantly affects plant performance. The culture method will allow simple profiling and in vivo functional analysis of root defenses such as chemical defense metabolites that are released in response to belowground insect attack.

  3. Comparison of perimeter trap crop varieties: effects on herbivory, pollination, and yield in butternut squash.

    Science.gov (United States)

    Adler, L S; Hazzard, R V

    2009-02-01

    Perimeter trap cropping (PTC) is a method of integrated pest management (IPM) in which the main crop is surrounded with a perimeter trap crop that is more attractive to pests. Blue Hubbard (Cucurbita maxima Duch.) is a highly effective trap crop for butternut squash (C. moschata Duch. ex Poir) attacked by striped cucumber beetles (Acalymma vittatum Fabricius), but its limited marketability may reduce adoption of PTC by growers. Research comparing border crop varieties is necessary to provide options for growers. Furthermore, pollinators are critical for cucurbit yield, and the effect of PTC on pollination to main crops is unknown. We examined the effect of five border treatments on herbivory, pollination, and yield in butternut squash and manipulated herbivory and pollination to compare their importance for main crop yield. Blue Hubbard, buttercup squash (C. maxima Duch.), and zucchini (C. pepo L.) were equally attractive to cucumber beetles. Border treatments did not affect butternut leaf damage, but butternut flowers had the fewest beetles when surrounded by Blue Hubbard or buttercup squash. Yield was highest in the Blue Hubbard and buttercup treatments, but this effect was not statistically significant. Native bees accounted for 87% of pollinator visits, and pollination did not limit yield. There was no evidence that border crops competed with the main crop for pollinators. Our results suggest that both buttercup squash and zucchini may be viable alternatives to Blue Hubbard as borders for the main crop of butternut squash. Thus, growers may have multiple border options that reduce pesticide use, effectively manage pests, and do not disturb mutualist interactions with pollinators.

  4. Low Herbivory among Targeted Reforestation Sites in the Andean Highlands of Southern Ecuador.

    Directory of Open Access Journals (Sweden)

    Marc-Oliver Adams

    Full Text Available Insect herbivory constitutes an important constraint in the viability and management of targeted reforestation sites. Focusing on young experimental stands at about 2000 m elevation in southern Ecuador, we examined foliar damage over one season as a function of tree species and habitat. Native tree species (Successional hardwood: Cedrela montana and Tabebuia chrysantha; fast-growing pioneer: Heliocarpus americanus have been planted among prevailing local landcover types (abandoned pasture, secondary shrub vegetation, and a Pinus patula plantation in 2003/4. Plantation trees were compared to conspecifics in the spontaneous undergrowth of adjacent undisturbed rainforest matched for height and foliar volume. Specifically, we tested the hypotheses that H. americanus as a pioneer species suffers more herbivory compared to the two successional tree species, and that damage is inversely related to habitat complexity. Overall leaf damage caused by folivorous insects (excluding leafcutter ants was low. Average leaf loss was highest among T. chrysantha (7.50% ± 0.19 SE of leaf area, followed by H. americanus (4.67% ± 0.18 SE and C. montana (3.18% ± 0.15 SE. Contrary to expectations, leaf area loss was highest among trees in closed-canopy natural rainforest, followed by pine plantation, pasture, and secondary shrub sites. Harvesting activity of leafcutter ants (Acromyrmex sp. was strongly biased towards T. chrysantha growing in open habitat (mean pasture: 2.5%; shrub: 10.5% where it could result in considerable damage (> 90.0%. Insect folivory is unlikely to pose a barrier for reforestation in the tropical Andean mountain forest zone at present, but leafcutter ants may become problematic if local temperatures increase in the wake of global warming.

  5. Seaweed richness and herbivory increase rate of community recovery from disturbance.

    Science.gov (United States)

    Aquilino, Kristin M; Stachowicz, John J

    2012-04-01

    The importance of herbivores and of plant diversity for community succession and recovery from disturbance is well documented. However, few studies have assessed the relative magnitude of, or potential interactions between, these factors. To determine the combined effect of herbivory and surrounding algal species richness on the recovery of a rocky intertidal community, we conducted a 27-month field experiment assessing algal recruitment and succession in cleared patches that mimic naturally forming gaps in the ambient community. We crossed two herbivore treatments, ambient and reduced abundance, with monocultures and polycultures of the four most common algal species in a mid-high rocky intertidal zone of northern California. We found that both the presence of herbivores and high surrounding algal richness increased recovery rates, and the effect of algal richness was twice the magnitude of that of herbivores. The increased recovery rate of patches containing herbivores was due to the consumption of fast-growing, early colonist species that preempt space from perennial, late-successional species. Mechanisms linking algal richness and recovery are more numerous. In polycultures, herbivore abundance and species composition is altered, desiccation rates are lower, and propagule recruitment, survival, and growth are higher compared to monocultures, all of which could contribute the observed effect of surrounding species richness. Herbivory and species richness should jointly accelerate recovery wherever palatable species inhibit late-successional, herbivore-resistant species and recruitment and survival of new colonists is promoted by local species richness. These appear to be common features of rocky-shore seaweed, and perhaps other, communities.

  6. Hormonally active phytochemicals and vertebrate evolution.

    Science.gov (United States)

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  7. CT study of vertebral metastasis: re-realization of the diagnostic role of the vertebral pedicle sign

    International Nuclear Information System (INIS)

    Meng Quanfei; Jiang Bo; Chen Yingming; Zhang Chaohui

    2000-01-01

    Objective: To investigate the essence of the vertebral pedicle sign of vertebral metastasis on plain film, and to explore the useful CT signs for the diagnosis and differential diagnosis of this tumor. Methods: The CT scans of the spine obtained in 48 patients with vertebral metastases, 19 patients with vertebral tuberculosis, and 11 with vertebral myeloma, were analyzed. The CT findings were correlated with the abnormalities seen on plain films in 34 of the 48 patients (66 vertebrae involved) with vertebral metastasis. Results: 66 vertebrae were involved in the group of metastasis. Of the 28 vertebrae whose vertebral body were completely destroyed, 15 were seen bilateral pedicles destruction; Of the 22 vertebrae with lateral destruction of the body, 16 were noticed unilateral pedicle destruction which located posterior to the involved side of the body. Of the 62 micro-metastatic foci, 56 were scattered in the vertebral body. In the 19 para-spinal soft-tissue masses of vertebral tuberculosis, 5 were noticed calcifications and 12 with postcontrast rings enhancement. The rates of vertebral pedicle destruction of vertebral metastasis and myeloma were not statistically different (X 2 = 0.03, P > 0.50). The locations of destruction of vertebral body in vertebral metastasis and myeloma had no statistical difference (X 2 = 3.52, P > 0.10), but they differed from that in tuberculosis (X 2 = 39.32, P < 0.001). The distribution of lesions within the vertebrae of metastasis and tuberculosis was similar, but was quite different from myeloma. Conclusion: The vertebral metastasis initially occurs in the vertebral body. The vertebral pedicle sign on plain film of vertebral metastasis is the outcome of the posterior invasion of the tumor in the vertebral body, which is of no differential significance for vertebral metastasis and myeloma. Para-spinal soft tissue mass, location of destruction of vertebral body, and the distribution of lesions within the vertebrae may help

  8. The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in ‘devil's gardens’ is increased herbivory on Duroia hirsuta trees

    OpenAIRE

    Frederickson, Megan E; Gordon, Deborah M

    2007-01-01

    ‘Devil's gardens’ are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant–plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher...

  9. Environment vs. Plant Ontogeny: Arthropod Herbivory Patterns on European Beech Leaves along the Vertical Gradient of Temperate Forests in Central Germany

    Directory of Open Access Journals (Sweden)

    Stephanie Stiegel

    2018-01-01

    Full Text Available Environmental and leaf trait effects on herbivory are supposed to vary among different feeding guilds. Herbivores also show variability in their preferences for plant ontogenetic stages. Along the vertical forest gradient, environmental conditions change, and trees represent juvenile and adult individuals in the understorey and canopy, respectively. This study was conducted in ten forests sites in Central Germany for the enrichment of canopy research in temperate forests. Arthropod herbivory of different feeding traces was surveyed on leaves of Fagus sylvatica Linnaeus (European beech; Fagaceae in three strata. Effects of microclimate, leaf traits, and plant ontogenetic stage were analyzed as determining parameters for herbivory. The highest herbivory was caused by exophagous feeding traces. Herbivore attack levels varied along the vertical forest gradient for most feeding traces with distinct patterns. If differences of herbivory levels were present, they only occurred between juvenile and adult F. sylvatica individuals, but not between the lower and upper canopy. In contrast, differences of microclimate and important leaf traits were present between the lower and upper canopy. In conclusion, the plant ontogenetic stage had a stronger effect on herbivory than microclimate or leaf traits along the vertical forest gradient.

  10. The devil to pay: a cost of mutualism with Myrmelachista schumanni ants in ‘devil's gardens’ is increased herbivory on Duroia hirsuta trees

    Science.gov (United States)

    Frederickson, Megan E; Gordon, Deborah M

    2007-01-01

    ‘Devil's gardens’ are nearly pure stands of the myrmecophyte, Duroia hirsuta, that occur in Amazonian rainforests. Devil's gardens are created by Myrmelachista schumanni ants, which nest in D. hirsuta trees and kill other plants using formic acid as an herbicide. Here, we show that this ant–plant mutualism has an associated cost; by making devil's gardens, M. schumanni increases herbivory on D. hirsuta. We measured standing leaf herbivory on D. hirsuta trees and found that they sustain higher herbivory inside than outside devil's gardens. We also measured the rate of herbivory on nursery-grown D. hirsuta saplings planted inside and outside devil's gardens in ant-exclusion and control treatments. We found that when we excluded ants, herbivory on D. hirsuta was higher inside than outside devil's gardens. These results suggest that devil's gardens are a concentrated resource for herbivores. Myrmelachista schumanni workers defend D. hirsuta against herbivores, but do not fully counterbalance the high herbivore pressure in devil's gardens. We suggest that high herbivory may limit the spread of devil's gardens, possibly explaining why devil's gardens do not overrun Amazonian rainforests. PMID:17301016

  11. Kyphoplasty for severe osteoporotic vertebral compression fractures

    International Nuclear Information System (INIS)

    Bao Zhaohua; Wang Genlin; Yang Huilin; Meng Bin; Chen Kangwu; Jiang Weimin

    2010-01-01

    Objective: To evaluate the clininal efficacy of kyphoplasty for severe osteoporotic vertebral compression fractures. Methods: Forty-five patients with severe osteoporotic compressive fractures were treated by kyphoplasty from Jan 2005 to Jan 2009. The compressive rate of the fractured vertebral bodies was more than 75%. According to the morphology of the vertebral compression fracture bodies the unilateral or bilateral balloon kyphoplasty were selected. The anterior vertebral height was measured on a standing lateral radiograph at pre-operative, post-operative (one day after operation) and final follow-up time. A visual analog scale(VAS) and the Oswestry disability index (ODI) were chosen to evaluate pain status and functional activity. Results: The mean follow-up was for 21.7 months (in range from 18 to 48 months). The anterior vertebral body height of fracture vertebra was restored from preoperative (18.7 ± 3.1)% to postoperative (51.4 ± 2.3)%, the follow-up period (50.2 ± 2.7)%. There was a significant improvement between preoperative and postoperative values (P 0.05). The VAS was 8.1 ± 1.4 at preoperative, 2.6 ± 0.9 at postoperative, 2.1 ± 0.5 at final follow-up time; and the ODI was preoperative 91.1 ± 2.3, postoperative 30.7 ± 7.1, follow-up period 26.1 ± 5.1. There was statistically significant improvement in the VAS and ODI in the post-operative assessment compared with the pre-operative assessment (P 0.05). Asymptomatic cement leakage occurred in three cases. New vertebral fracture occurred in one case. Conclusion: The study suggests that balloon kyphoplasty is a safe and effective procedure in the treatment of severe osteoporotic vertebral compression fractures. (authors)

  12. Evolution of circadian organization in vertebrates

    Directory of Open Access Journals (Sweden)

    M. Menaker

    1997-03-01

    Full Text Available Circadian organization means the way in which the entire circadian system above the cellular level is put together physically and the principles and rules that determine the interactions among its component parts which produce overt rhythms of physiology and behavior. Understanding this organization and its evolution is of practical importance as well as of basic interest. The first major problem that we face is the difficulty of making sense of the apparently great diversity that we observe in circadian organization of diverse vertebrates. Some of this diversity falls neatly into place along phylogenetic lines leading to firm generalizations: i in all vertebrates there is a "circadian axis" consisting of the retinas, the pineal gland and the suprachiasmatic nucleus (SCN, ii in many non-mammalian vertebrates of all classes (but not in any mammals the pineal gland is both a photoreceptor and a circadian oscillator, and iii in all non-mammalian vertebrates (but not in any mammals there are extraretinal (and extrapineal circadian photoreceptors. An interesting explanation of some of these facts, especially the differences between mammals and other vertebrates, can be constructed on the assumption that early in their evolution mammals passed through a "nocturnal bottleneck". On the other hand, a good deal of the diversity among the circadian systems of vertebrates does not fall neatly into place along phylogenetic lines. In the present review we will consider how we might better understand such "phylogenetically incoherent" diversity and what sorts of new information may help to further our understanding of the evolution of circadian organization in vertebrates

  13. Herbivory on macro-algae affects colonization of beach-cast algal wrack by detritivores but not its decomposition

    Directory of Open Access Journals (Sweden)

    Philip Eereveld

    2013-05-01

    Full Text Available Spatial subsidies have increasingly been considered significant sources of matter and energy to unproductive ecosystems. However, subsidy quality may both differ between subsidizing sources and vary over time. In our studies, sub-littoral herbivory by snails or isopods on red or brown macro-algae induced changes in algal tissues that affected colonization of beach-cast algal wrack by supra-littoral detritivores (amphipods. However, microbial decay and decomposition through the joint action of detritivores and microbes of algal wrack in the supra-littoral remained unaffected by whether or not red or brown algae had been fed upon by snails or isopods. Thus, herbivory on marine macro-algae affects the cross-system connection of sub-littoral and supra-littoral food webs transiently, but these effects diminish upon ageing of macro-algal wrack in the supra-littoral zone.

  14. Specificity of induced defenses, growth, and reproduction in lima bean (Phaseolus lunatus) in response to multispecies herbivory.

    Science.gov (United States)

    Moreira, Xoaquín; Abdala-Roberts, Luis; Hernández-Cumplido, Johnattan; Cuny, Maximilien A C; Glauser, Gaetan; Benrey, Betty

    2015-08-01

    • Following herbivore attack, plants can either reduce damage by inducing defenses or mitigate herbivory effects through compensatory growth and reproduction. It is increasingly recognized that such induced defenses in plants are herbivore-specific, but less is known about the specificity of compensatory responses. Damage by multiple herbivores may also lead to synergistic effects on induction and plant fitness that differ from those caused by a single herbivore species. Although largely unstudied, the order of arrival and damage by different herbivore species might also play an important role in the impacts of herbivory on plants.• We investigated the specificity of defense induction (phenolics) and effects on growth (number of stems and leaves) and reproduction (number of seeds, seed mass, and germination rate) from feeding by two generalist leaf-chewing herbivores (Spodoptera eridania and Diabrotica balteata) on Phaseolus lunatus plants and evaluated whether simultaneous attack by both herbivores and their order of arrival influenced such dynamics.• Herbivory increased levels of leaf phenolics, but such effects were not herbivore-specific. In contrast, herbivory enhanced seed germination in an herbivore-specific manner. For all variables measured, the combined effects of both herbivore species did not differ from their individual effects. Finally, the order of herbivore arrival did not influence defense induction, plant growth, or seed number but did influence seed mass and germination.• Overall, this study highlights novel aspects of the specificity of plant responses induced by damage from multiple species of herbivores and uniquely associates such effects with plant lifetime fitness. © 2015 Botanical Society of America, Inc.

  15. Vegetation - Herbivory Dynamics in Rangeland Ecosystems: Geospatial Modeling for Savanna and Wildlife Conservation in California and Namibia

    OpenAIRE

    Tsalyuk, Miriam

    2014-01-01

    Rangelands cover about half of Earth's land surface, encompass considerable biodiversity, and provide pivotal ecosystem services. However, rangelands across the globe face degradation due to changes in climate, land use, and management. Moreover, since herbivory is fundamental to rangeland ecosystem dynamics, shifts in the distribution of herbivores lead to overgrazing and desertification. To better understand, predict, and prevent changes on rangelands it is important to monitor these landsc...

  16. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    DEFF Research Database (Denmark)

    Naeem, S.; Prager, Case; Weeks, Brian

    2016-01-01

    on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional...... approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we...

  17. Efficacy of plastic mesh tubes in reducing herbivory damage by the invasive nutria (Myocastor coypus) in an urban restoration site

    Science.gov (United States)

    Sheffels, Trevor R.; Systma, Mark D.; Carter, Jacoby; Taylor, Jimmy D.

    2014-01-01

    The restoration of stream corridors is becoming an increasingly important component of urban landscape planning, and the high cost of these projects necessitates the need to understand and address potential ecological obstacles to project success. The nutria(Myocastor coypus) is an invasive, semi-aquatic rodent native to South America that causes detrimental ecological impacts in riparian and wetland habitats throughout its introduced range, and techniques are needed to reduce nutria herbivory damage to urban stream restoration projects. We assessed the efficacy of standard Vexar® plastic mesh tubes in reducing nutria herbivory damage to newly established woody plants. The study was conducted in winter-spring 2009 at Delta Ponds, a 60-ha urban waterway in Eugene, Oregon. Woody plants protected by Vexar® tubes demonstrated 100% survival over the 3-month initial establishment period, while only 17% of unprotected plantings survived. Nutria demonstrated a preference for black cottonwood (Populus balsamifera ssp trichocarpa) over red osier dogwood (Cornussericea) and willow (Salix spp). Camera surveillance showed that nutria were more active in unprotected rather than protected treatments. Our results suggest that Vexar® plastic mesh tubing can be an effective short-term herbivory mitigation tool when habitat use by nutria is low. Additionally, planting functionally equivalent woody plant species that are less preferred by nutria, and other herbivores, may be another method for reducing herbivory and improving revegetation success. This study highlights the need to address potential wildlife damage conflicts in the planning process for stream restoration in urban landscapes.

  18. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    DEFF Research Database (Denmark)

    Naeem, S.; Prager, Case; Weeks, Brian

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity...... on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional...

  19. The responses of crop - wild Brassica hybrids to simulated herbivory and interspecific competition: implications for transgene introgression.

    Science.gov (United States)

    Sutherland, Jamie P; Justinova, Lenka; Poppy, Guy M

    2006-01-01

    Brassica rapa grows as a wild and weedy species throughout the world and is the most likely recipient of transgenes from GM oilseed rape. For transgene introgression to occur, the critical step which must be realized, is the formation of an F1 hybrid. Concerns exist that hybrid populations could be more vigorous and competitive compared to the parental species. This study examines the effect of simulated herbivory and interspecific competition on the vegetative and reproductive performance of non-transgenic F1 hybrids and their parental lines. Several vegetative and reproductive performance measures were used to determine the effect of simulated herbivory and competition on the Brassica lines, including leaf length and biomass for herbivory and seedling height and biomass for competition. For defoliation experiments, B. rapa showed little response in terms of leaf length but B. napus and the F1 hybrid responded negatively. Brassica rapa showed elevated biomass responses, but B. napus and the hybrid demonstrated negative responses to defoliation. Defoliation at the cotyledon stage had a slight effect upon final biomass with the F1 hybrid performing significantly worse than B. napus, although seed counts were not significantly different. For the series of competition experiments, hybrids seemed to be more similar to B. rapa in terms of early seedling growth and reproductive measures. The underperformance of hybrid plants when challenged by herbivory and competition, could potentially decrease survivorship and explain the rarity of hybrids in field surveys. However, should transgene introgression occur, the dynamics of hybrids could change radically thus increasing the risk of gene flow from a transgenic oilseed rape crop to the wild recipient.

  20. Height gain of vertebral bodies and stabilization of vertebral geometry over one year after vertebroplasty of osteoporotic vertebral fractures

    International Nuclear Information System (INIS)

    Pitton, Michael B.; Morgen, Nadine; Herber, Sascha; Dueber, Christoph; Drees, Philipp; Boehm, Bertram

    2008-01-01

    The height gain of vertebral bodies after vertebroplasty and geometrical stability was evaluated over a one-year period. Osteoporotic fractures were treated with vertebroplasty. The vertebral geometry and disc spaces were analysed using reformatted computed tomography (CT) images: heights of the anterior, posterior, and lateral vertebral walls, disc spaces, endplate angles, and minimal endplate distances. Vertebrae were assigned to group I [severe compression (anterior height/posterior height) 0.75). A total of 102 vertebral bodies in 40 patients (12 men, 28 women, age 70.3 ± 9.5) were treated with vertebroplasty and prospectively followed for 12 months. Group I showed a greater benefit compared with group II with respect to anterior height gain (+2.1 ± 1.9 vs +0.7 ± 1.6 mm, P < 0.001), reduction of endplate angle (-3.6 ± 4.2 vs -0.8 ± 2.3 , P < 0.001), and compression index (+0.09 ± 0.11 vs +0.01 ± 0.06, P < 0.001). At one-year follow-up, group I demonstrated preserved anterior height gain (+1.5 ± 2.8 mm, P < 0.015) and improved endplate angle (-3.4 ± 4.9 , P < 0.001). In group II, the vertebral heights returned to and were fixed at the pre-interventional levels. Vertebroplasty provided vertebral height gain over one year, particularly in cases with severe compression. Vertebrae with moderate compression were fixed and stabilized at the pre-treatment level over one year. (orig.)

  1. Vertebral Column Resection for Rigid Spinal Deformity.

    Science.gov (United States)

    Saifi, Comron; Laratta, Joseph L; Petridis, Petros; Shillingford, Jamal N; Lehman, Ronald A; Lenke, Lawrence G

    2017-05-01

    Broad narrative review. To review the evolution, operative technique, outcomes, and complications associated with posterior vertebral column resection. A literature review of posterior vertebral column resection was performed. The authors' surgical technique is outlined in detail. The authors' experience and the literature regarding vertebral column resection are discussed at length. Treatment of severe, rigid coronal and/or sagittal malalignment with posterior vertebral column resection results in approximately 50-70% correction depending on the type of deformity. Surgical site infection rates range from 2.9% to 9.7%. Transient and permanent neurologic injury rates range from 0% to 13.8% and 0% to 6.3%, respectively. Although there are significant variations in EBL throughout the literature, it can be minimized by utilizing tranexamic acid intraoperatively. The ability to correct a rigid deformity in the spine relies on osteotomies. Each osteotomy is associated with a particular magnitude of correction at a single level. Posterior vertebral column resection is the most powerful posterior osteotomy method providing a successful correction of fixed complex deformities. Despite meticulous surgical technique and precision, this robust osteotomy technique can be associated with significant morbidity even in the most experienced hands.

  2. A Case of Duplicated Right Vertebral Artery.

    Science.gov (United States)

    Motomura, Mayuko; Watanabe, Koichi; Tabira, Yoko; Iwanaga, Joe; Matsuuchi, Wakako; Yoshida, Daichi; Saga, Tsuyoshi; Yamaki, Koh-Ichi

    2018-04-27

    We encountered a case of duplicated right vertebral artery during an anatomical dissection course for medical students in 2015. Two vertebral arteries were found in the right neck of a 91-year-old female cadaver. The proximal leg of the arteries arose from the area between the right subclavian artery and the right common carotid artery that diverged from the brachiocephalic artery. The distal leg arose from the right subclavian artery as expected. The proximal leg entered the transverse foramen of the fourth cervical vertebra and the distal leg entered the transverse foramen of the sixth cervical vertebra. The two right vertebral arteries joined to form one artery just after the origin of the right vertebral artery of the brachiocephalic artery entered the transverse foramen of the fourth cervical vertebra. This artery then traveled up in the transverse foramina and became the basilar artery, joining with the left vertebral artery. We discuss the embryological origin of this case and review previously reported cases.

  3. Reproducibility of central lumbar vertebral BMD

    International Nuclear Information System (INIS)

    Chan, F.; Pocock, N.; Griffiths, M.; Majerovic, Y.; Freund, J.

    1997-01-01

    Full text: Lumbar vertebral bone mineral density (BMD) using dual X-ray absorptiometry (DXA) has generally been calculated from a region of interest which includes the entire vertebral body. Although this region excludes part of the transverse processes, it does include the outer cortical shell of the vertebra. Recent software has been devised to calculate BMD in a central vertebral region of interest which excludes the outer cortical envelope. Theoretically this area may be more sensitive to detecting osteoporosis which affects trabecular bone to a greater extent than cortical bone. Apart from the sensitivity of BMD estimation, the reproducibility of any measurement is important owing to the slow rate of change of bone mass. We have evaluated the reproducibility of this new vertebral region of interest in 23 women who had duplicate lumbar spine DXA scans performed on the same day. The patients were repositioned between each measurement. Central vertebral analysis was performed for L2-L4 and the reproducibility of area, bone mineral content (BMC) and BMD calculated as the coefficient of variation; these values were compared with those from conventional analysis. Thus we have shown that the reproducibility of the central BMD is comparable to the conventional analysis which is essential if this technique is to provide any additional clinical data. The reasons for the decrease in reproducibility of the area and hence BMC requires further investigation

  4. Vertebrate herbivores influence soil nematodes by modifying plant communities

    NARCIS (Netherlands)

    Veen, G. F. (Ciska); Olff, Han; Duyts, Henk; van der Putten, Wim H.

    Abiotic soil properties, plant community composition, and herbivory all have been reported as important factors influencing the composition of soil communities. However, most studies thus far have considered these factors in isolation, whereas they strongly interact in the field. Here, we study how

  5. Vertebral Fractures After Discontinuation of Denosumab

    DEFF Research Database (Denmark)

    Cummings, Steven R; Ferrari, Serge; Eastell, Richard

    2018-01-01

    . We analyzed the risk of new or worsening vertebral fractures, especially multiple vertebral fractures, in participants who discontinued denosumab during the FREEDOM study or its Extension. Participants received ≥2 doses of denosumab or placebo Q6M, discontinued treatment, and stayed in the study ≥7...... months after the last dose. Of 1001 participants who discontinued denosumab during FREEDOM or Extension, the vertebral fracture rate increased from 1.2 per 100 participant-years during the on-treatment period to 7.1, similar to participants who received and then discontinued placebo (n = 470; 8.5 per 100....... Therefore, patients who discontinue denosumab should rapidly transition to an alternative antiresorptive treatment. Clinicaltrails.gov: NCT00089791 (FREEDOM) and NCT00523341 (Extension). © 2017 American Society for Bone and Mineral Research....

  6. Cochlear vertebral entrapment syndrome: a case report

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chinghsiung; Lin Shinnkuang E-mail: sk1943@adm.cgmh.org.tw; Chang Yeujhy

    2001-11-01

    The authors describe a patient with isolated involvement of vestibulocochlear nerve by a huge vascular loop from vertebral dolichoectasia. No other neurological deficit was found except for unilateral hearing loss. Abnormal brainstem auditory evoked potential study indicated a retrocochlear lesion. The brain computed tomography (CT) and magnetic resonance imaging (MRI) studies demonstrated an abnormally enhanced vascular lesion impinged on the left porus acusticus with a displacement of the brainstem to the right. There was no infarction in the brainstem. A cerebral angiography demonstrated a megadolichoectatic horizontal loop at the intracranial portion of the left vertebral artery. There was no thrombus or atherosclerosis in the vertebrobasilar system. A mechanical compression by a vascular loop is the only possible pathogenesis for hearing loss. The authors diagnose this condition as cochlear vertebral entrapment syndrome.

  7. The origin of the vertebrate skeleton

    Science.gov (United States)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  8. Vertebral body osteomyelitis in the horse

    International Nuclear Information System (INIS)

    Markel, M.D.; Madigan, J.E.; Lichtensteiger, C.A.; Large, S.M.; Hornof, W.J.

    1986-01-01

    The clinical signs, laboratory data, results of nuclear scintigraphy and radiographic examination of five horses with vertebral body osteomyelitis are described together with response to treatment. Three horses were less than five months of age. Four horses demonstrated hindlimb paresis and in three a focus of pain in the thoracolumbar region could be identified. An umbilical abscess, a caudal lobe lung abscess and a patent urachus were considered primary niduses of infection in each of three horses. Leucocytosis, neutrophilia, anaemia and elevated fibrinogen were the most consistent laboratory abnormalities. Nuclear scintigraphy was performed in three horses and identified the site of the vertebral lesion which was subsequently evaluated radiographically. In the other two horses radiographic examination in the region of areas of focal pain identified a lesion. Radiographic abnormalities included compression fractures of vertebral bodies (two), proliferative new bone (three) and soft tissue swelling ventral to a vertebral body (one). Two horses, including one with a compression fracture of the second lumbar vertebra, received parenteral antimicrobial therapy for 40 and 74 days, respectively. When re-examined six months later they showed no neurological abnormalities. The other three horses failed to respond to antimicrobial treatment and were humanely destroyed. The horse with a lung abscess also had an abscess cranial to the right tuber coxae which extended into the vertebral bodies of the third and fourth lumbar vertebrae from which Streptococcus zooepidemicus was cultured. A horse with proliferative new bone on the ventral aspect of the fifth and sixth thoracic vertebrae had a mediastinal mass associated with these vertebrae and fungal granulomas, from which Aspergillus species was cultured, in the heart and aorta, trachea, spleen and kidney. The horse with a patent urachus and soft tissue swelling ventral to the vertebral body of the 12th thoracic vertebra

  9. Herbivory of an invasive slug is affected by earthworms and the composition of plant communities.

    Science.gov (United States)

    Zaller, Johann G; Parth, Myriam; Szunyogh, Ilona; Semmelrock, Ines; Sochurek, Susanne; Pinheiro, Marcia; Frank, Thomas; Drapela, Thomas

    2013-05-13

    Biodiversity loss and species invasions are among the most important human-induced global changes. Moreover, these two processes are interlinked as ecosystem invasibility is considered to increase with decreasing biodiversity. In temperate grasslands, earthworms serve as important ecosystem engineers making up the majority of soil faunal biomass. Herbivore behaviour has been shown to be affected by earthworms, however it is unclear whether these effects differ with the composition of plant communities. To test this we conducted a mesocosm experiment where we added earthworms (Annelida: Lumbricidae) to planted grassland communities with different plant species composition (3 vs. 12 plant spp.). Plant communities had equal plant densities and ratios of the functional groups grasses, non-leguminous forbs and legumes. Later, Arion vulgaris slugs (formerly known as A. lusitanicus; Gastropoda: Arionidae) were added and allowed to freely choose among the available plant species. This slug species is listed among the 100 worst alien species in Europe. We hypothesized that (i) the food choice of slugs would be altered by earthworms' specific effects on the growth and nutrient content of plant species, (ii) slug herbivory will be less affected by earthworms in plant communities containing more plant species than in those with fewer plant species because of a more readily utilization of plant resources making the impacts of earthworms less pronounced. Slug herbivory was significantly affected by both earthworms and plant species composition. Slugs damaged 60% less leaves when earthworms were present, regardless of the species composition of the plant communities. Percent leaf area consumed by slugs was 40% lower in communities containing 12 plant species; in communities containing only three species earthworms increased slug leaf area consumption. Grasses were generally avoided by slugs. Leaf length and number of tillers was increased in mesocosms containing more plant

  10. Interaction Effect Between Herbivory and Plant Fertilization on Extrafloral Nectar Production and on Seed Traits: An Experimental Study With Ricinus communis (Euphorbiaceae).

    Science.gov (United States)

    De Sibio, P R; Rossi, M N

    2016-08-01

    It is known that the release of volatile chemicals by many plants can attract the natural enemies of herbivorous insects. Such indirect interactions are likely when plants produce nectar from their extrafloral nectaries, and particularly when the production of extrafloral nectar (EFN) is induced by herbivory. In the present study, we conducted experiments to test whether foliar herbivory inflicted by Spodoptera frugiperda Smith (Noctuidae) increases nectar production by extrafloral nectaries on one of its host plants, Ricinus communis L. (Euphorbiaceae). Due to the current economic importance of R. communis, we also investigated whether the following seed traits-water content, dry mass, and essential oil production-are negatively affected by herbivory. Finally, we tested whether or not nectar production and seed traits are influenced by plant fertilization (plant quality). We found that nectar production was increased after herbivory, but it was not affected by the type of fertilization. Seed dry mass was higher in plants that were subjected to full fertilization, without herbivory; plants maintained in low fertilization conditions, however, had higher seed mass when subjected to herbivory. The same inverted pattern was observed for oil production. Therefore, our results suggest that EFN production in R. communis may act as an indirect defense strategy against herbivores, and that there is a trade-off between reproduction and plant growth when low-fertilized plants are subjected to herbivory. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Slipped vertebral epiphysis (report of 2 cases

    Directory of Open Access Journals (Sweden)

    Majid Reza Farrokhi

    2009-02-01

    Full Text Available

    • Avulsion or fracture of posterior ring apophysis of lumbar vertebra is an uncommon cause of radicular low back pain in pediatric age group, adolescents and athletes. This lesion is one of differential diagnosis of disc herniation. We reported two teenage boys with sever low back pain and sciatica during soccer play that ultimately treated with diagnosis of lipped vertebral apophysis.
    • KEY WORDS: Ring Apophysis, vertebral fracture, sciatica, low back pain, disc herniation.

  12. Nocardia brasiliensis vertebral osteomyelitis and epidural abscess.

    Science.gov (United States)

    Johnson, Philip; Ammar, Hussam

    2013-04-11

    Nocardia species exist in the environment as a saprophyte; it is found worldwide in soil and decaying plant matter. They often infect patients with underlying immune compromise, pulmonary disease or history of trauma or surgery. The diagnosis of nocardiosis can be easily missed as it mimics many other granulomatous and neoplastic disease. We report a 69-year-old man who presented with chronic back pain and paraparesis. He was found to have Nocardial brasiliensis vertebral osteomyelitis and epidural abscess. Laminectomy and epidural wash out was performed but with no neurological recovery. This is the second reported case of N brasiliensis vertebral osteomyelitis in the literature.

  13. Pediatric congenital vertebral artery arteriovenous malformation

    International Nuclear Information System (INIS)

    Shownkeen, Harish; Chenelle, Andrew G.; Origitano, Thomas C.; Bova, Davide

    2003-01-01

    Vertebral arteriovenous fistulas are rare in children and the congenital form has been seldom reported in the literature. Prior to using endovascular therapy techniques, only surgery was the main treatment. The most common endovascular treatment is through the use of detachable balloons. This report describes the clinical and radiological findings of a congenital vertebral artery fistula in a 20-month-old child. Balloons could not be safely employed; therefore, embolization was performed with Guglielmi detachable microcoils. We review the history and treatment of these lesions, their clinical presentation, and imaging features, including their outcome, with particular attention to the pediatric population. (orig.)

  14. Population-level consequences of herbivory, changing climate, and source-sink dynamics on a long-lived invasive shrub.

    Science.gov (United States)

    van Klinken, R D; Pichancourt, J B

    2015-12-01

    Long-lived plant species are highly valued environmentally, economically, and socially, but can also cause substantial harm as invaders. Realistic demographic predictions can guide management decisions, and are particularly valuable for long-lived species where population response times can be long. Long-lived species are also challenging, given population dynamics can be affected by factors as diverse as herbivory, climate, and dispersal. We developed a matrix model to evaluate the effects of herbivory by a leaf-feeding biological control agent released in Australia against a long-lived invasive shrub (mesquite, Leguminoseae: Prosopis spp.). The stage-structured, density-dependent model used an annual time step and 10 climatically diverse years of field data. Mesquite population demography is sensitive to source-sink dynamics as most seeds are consumed and redistributed spatially by livestock. In addition, individual mesquite plants, because they are long lived, experience natural climate variation that cycles over decadal scales, as well as anthropogenic climate change. The model therefore explicitly considered the effects of both net dispersal and climate variation. Herbivory strongly regulated mesquite populations through reduced growth and fertility, but additional mortality of older plants will be required to reach management goals within a reasonable time frame. Growth and survival of seeds and seedlings were correlated with daily soil moisture. As a result, population dynamics were sensitive to rainfall scenario, but population response times were typically slow (20-800 years to reach equilibrium or extinction) due to adult longevity. Equilibrium population densities were expected to remain 5% higher, and be more dynamic, if historical multi-decadal climate patterns persist, the effect being dampened by herbivory suppressing seed production irrespective of preceding rainfall. Dense infestations were unlikely to form under a drier climate, and required net

  15. The shape of the human lumbar vertebral canal A forma do canal vertebral lombar humano

    Directory of Open Access Journals (Sweden)

    Edmundo Zarzur

    1996-09-01

    Full Text Available Literature on the anatomy of the human vertebral column characterizes the shape of the lumbar vertebral canal as triangular. The purpose of the present study was to determine the precise shape of the lumbar vertebral canal. Ten lumbar vertebral columns of adult male cadavers were dissected. Two transverse sections were performed in the third lumbar vertebra. One section was performed at the level of the lower border of the ligamenta flava, and the other section was performed at the level of the pedicles. The shape of the lumbar vertebral canal at the level of the pedicles tends to be oval or circular, whereas the shape of the lumbar vertebral canal at the level of the lower border of the ligamenta flava is triangular. Thus, the shape of the human lumbar vertebral canal is not exclusively triangular, as reported in the literature. It is related to the level of the transversal section performed on the lumbar vertebra. This finding should be taken into consideration among factors involved in the spread of solutions introduced into the epidural space.A literatura sobre a anatomia da coluna vertebral descreve como sendo triangular o formato do canal vertebral na região lombar. O objetivo deste estudo é determinar a real forma do canal da coluna vertebral lombar.Dez colunas vertebrais de cadáveres de homens adultos foram dissecadas. Dois cortes transversais foram executados na terceira vértebra lombar. Um corte foi feito no nível das bordas inferiores de dois ligamentos amarelos vizinhos e o outro corte foi transversal, no nível dos pedículos. A forma do canal vertebral variou: no nível dos pedículos ela tende a ser oval ou circular e junto às bordas inferiores dos ligamentos amarelos passa a ser triangular. Portanto, a forma do canal vertebral lombar não é somente triangular; ela depende do nível em que se faz o corte transversal da vértebra. Estes achados devem ser levados em consideração entre os fatores envolvidos na difusão das

  16. Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants.

    Science.gov (United States)

    Hettenhausen, Christian; Li, Juan; Zhuang, Huifu; Sun, Huanhuan; Xu, Yuxing; Qi, Jinfeng; Zhang, Jingxiong; Lei, Yunting; Qin, Yan; Sun, Guiling; Wang, Lei; Baldwin, Ian T; Wu, Jianqiang

    2017-08-08

    Cuscuta spp. (i.e., dodders) are stem parasites that naturally graft to their host plants to extract water and nutrients; multiple adjacent hosts are often parasitized by one or more Cuscuta plants simultaneously, forming connected plant clusters. Metabolites, proteins, and mRNAs are known to be transferred from hosts to Cuscuta , and Cuscuta bridges even facilitate host-to-host virus movement. Whether Cuscuta bridges transmit ecologically meaningful signals remains unknown. Here we show that, when host plants are connected by Cuscuta bridges, systemic herbivory signals are transmitted from attacked plants to unattacked plants, as revealed by the large transcriptomic changes in the attacked local leaves, undamaged systemic leaves of the attacked plants, and leaves of unattacked but connected hosts. The interplant signaling is largely dependent on the jasmonic acid pathway of the damaged local plants, and can be found among conspecific or heterospecific hosts of different families. Importantly, herbivore attack of one host plant elevates defensive metabolites in the other systemic Cuscuta bridge-connected hosts, resulting in enhanced resistance against insects even in several consecutively Cuscuta -connected host plants over long distances (> 100 cm). By facilitating plant-to-plant signaling, Cuscuta provides an information-based means of countering the resource-based fitness costs to their hosts.

  17. Direct and Pollinator-Mediated Effects of Herbivory on Strawberry and the Potential for Improved Resistance

    Directory of Open Access Journals (Sweden)

    Anne Muola

    2017-05-01

    Full Text Available The global decline in pollinators has partly been blamed on pesticides, leading some to propose pesticide-free farming as an option to improve pollination. However, herbivores are likely to be more prevalent in pesticide-free environments, requiring knowledge of their effects on pollinators, and alternative crop protection strategies to mitigate any potential pollination reduction. Strawberry leaf beetles (SLB Galerucella spp. are important strawberry pests in Northern Europe and Russia. Given that SLB attack both leaf and flower tissue, we hypothesized pollinators would discriminate against SLB-damaged strawberry plants (Fragaria vesca, cultivar ‘Rügen’, leading to lower pollination success and yield. In addition we screened the most common commercial cultivar ‘Rügen’ and wild Swedish F. vesca genotypes for SLB resistance to assess the potential for inverse breeding to restore high SLB resistance in cultivated strawberry. Behavioral observations in a controlled experiment revealed that the local pollinator fauna avoided strawberry flowers with SLB-damaged petals. Low pollination, in turn, resulted in smaller more deformed fruits. Furthermore, SLB-damaged flowers produced smaller fruits even when they were hand pollinated, showing herbivore damage also had direct effects on yield, independent of indirect effects on pollination. We found variable resistance in wild woodland strawberry to SLB and more resistant plant genotypes than the cultivar ‘Rügen’ were identified. Efficient integrated pest management strategies should be employed to mitigate both direct and indirect effects of herbivory for cultivated strawberry, including high intrinsic plant resistance.

  18. A mechanical perspective on vertebral segmentation

    NARCIS (Netherlands)

    Truskinovsky, L.; Vitale, G.; Smit, T.H.

    2014-01-01

    Segmentation is a characteristic feature of the vertebrate body plan. The prevailing paradigm explaining its origin is the 'clock and wave-front' model, which assumes that the interaction of a molecular oscillator (clock) with a traveling gradient of morphogens (wave) pre-defines spatial

  19. Pleistocene vertebrates of the Yukon Territory

    Science.gov (United States)

    Harington, C. R.

    2011-08-01

    Unglaciated parts of the Yukon constitute one of the most important areas in North America for yielding Pleistocene vertebrate fossils. Nearly 30 vertebrate faunal localities are reviewed spanning a period of about 1.6 Ma (million years ago) to the close of the Pleistocene some 10 000 BP (radiocarbon years before present, taken as 1950). The vertebrate fossils represent at least 8 species of fishes, 1 amphibian, 41 species of birds and 83 species of mammals. Dominant among the large mammals are: steppe bison ( Bison priscus), horse ( Equus sp.), woolly mammoth ( Mammuthus primigenius), and caribou ( Rangifer tarandus) - signature species of the Mammoth Steppe fauna ( Fig. 1), which was widespread from the British Isles, through northern Europe, and Siberia to Alaska, Yukon and adjacent Northwest Territories. The Yukon faunas extend from Herschel Island in the north to Revenue Creek in the south and from the Alaskan border in the west to Ketza River in the east. The Yukon holds evidence of the earliest-known people in North America. Artifacts made from bison, mammoth and caribou bones from Bluefish Caves, Old Crow Basin and Dawson City areas show that people had a substantial knowledge of making and using bone tools at least by 25 000 BP, and possibly as early as 40 000 BP. A suggested chronological sequence of Yukon Pleistocene vertebrates ( Table 1) facilitates comparison of selected faunas and indicates the known duration of various taxa.

  20. Vertebrate Pest Control. Sale Publication 4077.

    Science.gov (United States)

    Stimmann, M. W.; Clark, Dell O.

    This guide gives descriptions of common vertebrate pests and guidelines for using some common pesticides. The pests discussed are rats, mice, bats, moles, muskrats, ground squirrels, and gophers. Information is given for each pest on the type of damage the pest can do, the habitat and biology of the pest, and the most effective control methods.…

  1. Biomechanical aspects of bone microstructure in vertebrates

    Indian Academy of Sciences (India)

    2009-10-29

    Oct 29, 2009 ... Biomechanical or biophysical principles can be applied to study biological structures in their modern or fossil form. Bone is an important tissue in paleontological studies as it is a commonly preserved element in most fossil vertebrates, and can often allow its microstructures such as lacuna and canaliculi to ...

  2. Control of Vertebrate Pests of Agricultural Crops.

    Science.gov (United States)

    Wingard, Robert G.; Studholme, Clinton R.

    This agriculture extension service publication of Pennsylvania State University discusses the damage from and control of vertebrate pests. Specific discussions describe the habits, habitat, and various control measures for blackbirds and crows, deer, meadow and pine mice, European starlings, and woodchucks. Where confusion with non-harmful species…

  3. Did Language Evolve Like the Vertebrate Eye?

    Science.gov (United States)

    Botha, Rudolf P.

    2002-01-01

    Offers a critical appraisal of the way in which the idea that human language or some of its features evolved like the vertebrate eye by natural selection is articulated in Pinker and Bloom's (1990) selectionist account of language evolution. Argues that this account is less than insightful because it fails to draw some of the conceptual…

  4. VerSeDa: vertebrate secretome database.

    Science.gov (United States)

    Cortazar, Ana R; Oguiza, José A; Aransay, Ana M; Lavín, José L

    2017-01-01

    Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php. © The Author(s) 2017. Published by Oxford University Press.

  5. Interconnections between the Ears in Nonmammalian Vertebrates

    DEFF Research Database (Denmark)

    Feng, Albert S.; Christensen-Dalsgaard, J.

    2010-01-01

    Many of the nonmammalian vertebrates (anurans, lizards, crocodiles, and some bird species) have large, continuous air spaces connecting the middle ears and acoustically coupling the eardrums. Acoustical coupling leads to strongly enhanced directionality of the ear at frequencies where diffraction...... cues are negligible in small-sized animals. The chapter reviews the peripheral basis of directionality in these animal groups....

  6. Neogene vertebrates from the Gargano Peninsula, Italy

    NARCIS (Netherlands)

    Freudenthal, M.

    1971-01-01

    Fissure-fillings in Mesozoic limestones in the Gargano Peninsula yield rich collections of fossil vertebrates, which are characterized by gigantism and aberrant morphology. Their age is considered to be Vallesian or Turolian. The special features of the fauna are probably due to isolation on an

  7. Vertebral Hemangiomas - Aggressive Forms | Allali | African Journal ...

    African Journals Online (AJOL)

    Medical imaging allows both diagnosis and evaluation of their aggressivity. Objective To assess the role of radiology, embolisation, percutaneous vertebroplasty, radiotherapy and surgery in the diagnosis and treatment of vertebral hemangiomas. Methods We report our experience of five patients who had an average age of ...

  8. Impacts of underwater noise on marine vertebrates

    NARCIS (Netherlands)

    Liebschner, Alexander; Seibel, Henrike; Teilmann, Jonas; Wittekind, Dietrich; Parmentier, Eric; Dähne, Michael; Dietz, Rune; Driver, Jörg; Elk, van Cornelis; Everaarts, Eligius; Findeisen, Henning; Kristensen, Jacob; Lehnert, Kristina; Lucke, Klaus; Merck, Thomas; Müller, Sabine; Pawliczka, Iwona; Ronnenberg, Katrin; Rosenberger, Tanja; Ruser, Andreas; Tougaard, Jakob; Schuster, Max; Sundermeyer, Janne; Sveegaard, Signe; Siebert, Ursula

    2016-01-01

    The project conducts application-oriented research on impacts of underwater noise on marine vertebrates in the North and Baltic Seas. In distinct subprojects, the hearing sensitivity of harbor porpoises and gray seals as well as the acoustic tolerance limit of harbor porpoises to impulsive noise

  9. Methods to score vertebral deformities in patients with rheumatoid arthritis

    NARCIS (Netherlands)

    Lems, W. F.; Jahangier, Z. N.; Raymakers, J. A.; Jacobs, J. W.; Bijlsma, J. W.

    1997-01-01

    The objective was to compare four different scoring methods for vertebral deformities: the semiquantitative Kleerekoper score and three quantitative scores (according to Minne, Melton and Raymakers) in patients with rheumatoid arthritis (RA). Lateral radiographs of the thoracic and lumbar vertebral

  10. Varied overstrain injuries of the vertebral column conditioned by evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kohlbach, W

    1983-08-01

    During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components.

  11. Varied overstrain injuries of the vertebral column conditioned by evolution

    International Nuclear Information System (INIS)

    Kohlbach, W.

    1983-01-01

    During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components. (orig.) [de

  12. Varied overstrain injuries of the vertebral column conditioned by evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kohlbach, W.

    1983-08-01

    During physiological growth of the juvenile vertebral column, various stages of stability occur which are characterized by the condition of the marginal rim of the vertebral bodies. If the vertebral juvenile column is overstrained, these variations in stability results in a variety of damage to vertebral bodies and vertebral disks. One of these lesions corresponds to Scheuermann's disease (osteochondrosis of vertebral epiphyses in juveniles). Damage of the vertebral column due to overstrain can occur only if the overstrain is applied in upright position. Since Man alone can damage his vertebral column in upright position (as a result of his evolutionary development), Scheuermann's thesis is confirmed that Scheuermann's disease is confined to Man. Spondylolysis/spondylolisthesis is also a damage caused by overstrain. Here, too, the damage can occur only if the load is exercised in upright position, with the exception of a slanted positioning of the intervertebral components.

  13. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    Science.gov (United States)

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (Pcement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are independent risk factors associated with bone cement leakage.

  14. MR imaging of tuberculous vertebral osteomyelitis: pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    Gouliamos, A.D.; Kehagias, D.T.; Lahanis, S.; Moulopoulou, E.S.; Kalovidouris, A.A.; Trakadas, S.J.; Vlahos, L.j. [Dept. of Radiology, University of Athens (Greece); Athanassopoulou, A.A. [Dept. of Radiology, Asklipiion Hospital, Athens (Greece)

    2001-04-01

    Vertebral osteomyelitis is one of the most common manifestations of tuberculosis. Magnetic resonance imaging is considered the main imaging modality for the diagnosis, the demonstration of the extent of the disease, and follow-up studies. Vertebral destruction involving two consecutive levels with sparing of the intervertebral disc, disc herniation into the vertebral body, epidural involvement, and paraspinal abscess are the most common MRI findings suggestive of tuberculous vertebral osteomyelitis. (orig.)

  15. The shape of the human lumbar vertebral canal

    OpenAIRE

    Zarzur,Edmundo

    1996-01-01

    Literature on the anatomy of the human vertebral column characterizes the shape of the lumbar vertebral canal as triangular. The purpose of the present study was to determine the precise shape of the lumbar vertebral canal. Ten lumbar vertebral columns of adult male cadavers were dissected. Two transverse sections were performed in the third lumbar vertebra. One section was performed at the level of the lower border of the ligamenta flava, and the other section was performed at the level of t...

  16. Metamerism in cephalochordates and the problem of the vertebrate head.

    Science.gov (United States)

    Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru

    2017-01-01

    The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.

  17. Vertebrate richness and biogeography in the Big Thicket of Texas

    Science.gov (United States)

    Michael H MacRoberts; Barbara R. MacRoberts; D. Craig Rudolph

    2010-01-01

    The Big Thicket of Texas has been described as rich in species and a “crossroads:” a place where organisms from many different regions meet. We examine the species richness and regional affiliations of Big Thicket vertebrates. We found that the Big Thicket is neither exceptionally rich in vertebrates nor is it a crossroads for vertebrates. Its vertebrate fauna is...

  18. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.

    Science.gov (United States)

    Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V

    2016-01-01

    Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.

  19. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    Science.gov (United States)

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  20. Lumbar Vertebral Canal Diameters in Adult Ugandan Skeletons ...

    African Journals Online (AJOL)

    Background: Normal values of lumbar vertebral canal diameters are useful in facilitating diagnosis of lumbar vertebral canal stenosis. Various studies have established variation on values between different populations, gender, age, and ethnic groups. Objectives: To determine the lumbar vertebral canal diameters in adult ...

  1. Closure of the vertebral canal in human embryos and fetuses

    NARCIS (Netherlands)

    Mekonen, Hayelom K.; Hikspoors, Jill P. J. M.; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S. Eleonore; Lamers, Wouter H.

    2017-01-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10weeks of

  2. Factors for vertebral artery injury accompanied by cervical trauma

    International Nuclear Information System (INIS)

    Murata, Masaaki; Shingu, Hikosuke; Kimura, Isao; Nasu, Yoshiro; Shiotani, Akihide

    2001-01-01

    Injury of the vertebral artery with cerebellar and brain stem infarction is a complication of cervical vertebral trauma. However, the pathogenesis and etiological factors remain to be clarified. In this study, we investigated patients with cervical vertebral and cord injury. This study included 51 patients with cervical vertebral and cord injury who were treated in our department. In these patients, plain X-ray, CT, MRI, and MRA findings were examined. The incidence of vertebral arterial injury was 33.3% (17 of 51 patients with cervical vertebral trauma). In 11 of the 17 patients, dislocation fracture was noted, comprising a markedly high percentage (64.7%). Particularly, vertebral arterial injury was commonly observed in patients with a large dislocation distance and severe paralysis. Cerebellar and brain stem infarction related to vertebral arterial injury was observed in 5 of the 17 patients (29.4%). No infarction developed in patients 50 years old or younger. Infarction was detected in relatively elderly patients. Vertebral arterial injury and cerebellar/brain stem infarction related to cervical vertebral trauma were frequently observed in patients with high energy injury. However, these disorders commonly occurred in elderly patients. Therefore, age-related factors such as arteriosclerosis may also be closely involved. In the acute stage, the state of the vertebral artery should be evaluated by MRA and MRI. Among patients with vertebral arterial injury, caution is needed during follow-up those with risk factors such as high energy injury and advanced age. (author)

  3. Factors for vertebral artery injury accompanied by cervical trauma

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Masaaki; Shingu, Hikosuke; Kimura, Isao; Nasu, Yoshiro; Shiotani, Akihide [San-in Rosai Hospital, Yonago, Tottori (Japan). Spine and Low Back Pain Center

    2001-09-01

    Injury of the vertebral artery with cerebellar and brain stem infarction is a complication of cervical vertebral trauma. However, the pathogenesis and etiological factors remain to be clarified. In this study, we investigated patients with cervical vertebral and cord injury. This study included 51 patients with cervical vertebral and cord injury who were treated in our department. In these patients, plain X-ray, CT, MRI, and MRA findings were examined. The incidence of vertebral arterial injury was 33.3% (17 of 51 patients with cervical vertebral trauma). In 11 of the 17 patients, dislocation fracture was noted, comprising a markedly high percentage (64.7%). Particularly, vertebral arterial injury was commonly observed in patients with a large dislocation distance and severe paralysis. Cerebellar and brain stem infarction related to vertebral arterial injury was observed in 5 of the 17 patients (29.4%). No infarction developed in patients 50 years old or younger. Infarction was detected in relatively elderly patients. Vertebral arterial injury and cerebellar/brain stem infarction related to cervical vertebral trauma were frequently observed in patients with high energy injury. However, these disorders commonly occurred in elderly patients. Therefore, age-related factors such as arteriosclerosis may also be closely involved. In the acute stage, the state of the vertebral artery should be evaluated by MRA and MRI. Among patients with vertebral arterial injury, caution is needed during follow-up those with risk factors such as high energy injury and advanced age. (author)

  4. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis.

    Science.gov (United States)

    2016-01-01

    Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. The base case considered each of kyphoplasty and vertebroplasty

  5. Effects of simulated root herbivory and fertilizer application on growth and biomass allocation in the clonal perennialSolidago canadensis.

    Science.gov (United States)

    Schmid, B; Miao, S L; Bazzaz, F A

    1990-08-01

    Compensatory growth in response to simulated belowground herbivory was studied in the old-field clonal perennialSolidago canadensis. We grew rootpruned plants and plants with intact root systems in soil with or without fertilizer. For individual current shoots (aerial shoot with rhizome and roots) and for whole clones the following predictions were tested: a) root removal is compensated by increased root growth, b) fertilizer application leads to increased allocation to aboveground plant organs and increased leaf turnover, c) effects of fertilizer application are reduced in rootpruned plants. When most roots (90%) were removed current shoots quickly restored equilibrium between above-and belowground parts by compensatory belowground growth whereas the whole clone responded with reduced aboveground growth. This suggests that parts of a clone which are shared by actively growing shoots act as a buffer that can be used as source of material for compensatory growth in response to herbivory. Current shoots increased aboveground mass and whole clones reduced belowground mass in response to fertilizer application, both leading to increased allocation to aboverground parts. Also with fertilizer application both root-pruned and not root-pruned plants increased leaf and shoot turnover. Unfertilized plants, whether rootpruned or not, showed practically no aboveground growth and very little leaf and shoot turnover. Effects of root removal were as severe or more severe under conditions of high as under conditions of low nutrients, suggesting that negative effects of belowground herbivory are not ameliorated by abundant nutrients. Root removal may negate some effects of fertilizer application on the growth of current shoots and whole clones.

  6. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment.

    Directory of Open Access Journals (Sweden)

    Annika Wein

    Full Text Available Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2. The species pool consists of six congeneric species pairs of European and North American origin (12 species in total planted in monocultures and mixtures (1, 2, 4, 6 species. We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.

  7. Impact of warming, moderate nitrogen addition and bark herbivory on BVOC emissions and growth of Scots pine (Pinus sylvestris L.) seedlings.

    Science.gov (United States)

    Tiiva, Päivi; Häikiö, Elina; Kasurinen, Anne

    2018-04-10

    The changing climate will expose boreal forests to rising temperatures, increasing soil nitrogen (N) levels and an increasing risk of herbivory. The single and interaction effects of warming (+2 °C increase), moderate N addition (30 kg ha-1 year-1) and bark herbivory by large pine weevil (Hylobius abietis L.) on growth and emissions of biogenic volatile organic compounds (BVOCs) from shoots of Scots pine (Pinus sylvestris L.) seedlings were studied in growth chambers over 175 days. In addition, warming and N addition effects on shoot net photosynthesis (Pn) were measured. Nitrogen addition increased both shoot and root dry weights, whereas warming, in combination with herbivory, reduced stem height growth. Warming together with N addition increased current-year shoot Pn, whereas N effects on previous-year shoot Pn were variable over time. Warming decreased non-oxygenated monoterpene (MT) emissions in June and increased them in July. Of individual MT compounds, α-pinene, δ-3-carene, γ-terpinene and terpinolene were among the most frequently responsive compounds in warming treatments in the May-July period. Sesquiterpene emissions were observed only from warming treatments in July. Moderate N addition increased oxygenated monoterpenes in May, and MTs in June and September. However, N addition effect on MTs in June was clearer without warming than with warming. Bark herbivory tended to increase MT emissions in combination with warming and N addition 3 weeks after the damage caused by weevils. Of individual compounds in other BVOC blends, herbivory increased the emissions of methyl-benzene, benzene and hexanal in July. Hence, though both warming and N addition have a potential to change BVOC emissions from Scots pines, the N effect may also be partly cancelled by warming. Furthermore, herbivory pressure in combination with climate warming and N addition may, at least periodically, increase BVOC release to the atmosphere from young Scots pine seedlings.

  8. Herbivory versus corallivory: are parrotfish good or bad for Caribbean coral reefs?

    Science.gov (United States)

    Mumby, Peter J.

    2009-09-01

    With coral cover in decline on many Caribbean reefs, any process of coral mortality is of potential concern. While sparisomid parrotfishes are major grazers of Caribbean reefs and help control algal blooms, the fact that they also undertake corallivory has prompted some to question the rationale for their conservation. Here the weight of evidence for beneficial effects of parrotfishes, in terms of reducing algal cover and facilitating demographic processes in corals, and the deleterious effects of parrotfishes in terms of causing coral mortality and chronic stress, are reviewed. While elevated parrotfish density will likely increase the predation rate upon juvenile corals, the net effect appears to be positive in enhancing coral recruitment through removal of macroalgal competitors. Parrotfish corallivory can cause modest partial colony mortality in the most intensively grazed species of Montastraea but the generation and healing of bite scars appear to be in near equilibrium, even when coral cover is low. Whole colony mortality in adult corals can lead to complete exclusion of some delicate, lagoonal species of Porites from forereef environments but is only reported for one reef species ( Porites astreoides), for one habitat (backreef), and with uncertain incidence (though likely zooxanthellae after bleaching events may be retarded. The balance of evidence to date finds strong support for the herbivory role of parrotfishes in facilitating coral recruitment, growth, and fecundity. In contrast, no net deleterious effects of corallivory have been reported for reef corals. Corallivory is unlikely to constrain overall coral cover but contraints upon dwindling populations of the Montastraea annularis species complex are feasible and the role of parrotfishes as a vector of coral disease requires evaluation. However, any assertion that conservation practices should guard against protecting corallivorous parrotfishes appears to be unwarranted at this stage.

  9. Biochar amendment changes jasmonic acid levels in two rice varieties and alters their resistance to herbivory.

    Science.gov (United States)

    Waqas, Muhammad; Shahzad, Raheem; Hamayun, Muhammad; Asaf, Sajjad; Khan, Abdul Latif; Kang, Sang-Mo; Yun, Sopheap; Kim, Kyung-Min; Lee, In-Jung

    2018-01-01

    Biochar addition to soil not only sequesters carbon for the long-term but enhances agricultural productivity. Several well-known benefits arise from biochar amendment, including constant provision of nutrients, increased soil moisture retention, decreased soil bulk density, and sometimes the induction of systemic resistance against foliar and soil borne plant pathogens. However, no research has investigated the potential of biochar to increase resistance against herbivory. The white-backed plant hopper (WBPH) (Sogatella furcifera Horváth) is a serious agricultural pest that targets rice (Oryza sativa L.), a staple crop that feeds half of the world's human population. Therefore, we investigated the (1) optimization of biochar amendment levels for two rice varieties ('Cheongcheong' and 'Nagdong') and (2) subsequent effects of different biochar amendments on resistance and susceptibility of these two varieties to WBPH infestation. Initial screening results for the optimization level revealed that the application of biochar 10% (w/w) to the rooting media significantly improved plant physiological characteristics of both rice varieties. However, levels of biochar amendment, mainly 1, 2, 3, and 20%, resulted in negative effects on plant growth characteristics. Cheongcheong and Nagdong rice plants grown with the optimum biochar level showed contrasting reactions to WBPH infestation. Specifically, biochar application significantly increased plant growth characteristics of Nagdong when exposed to WBPH infestation and significantly decreased these characteristics in Cheongcheong. The amount of WBPH-induced damage to plants was significantly lower and higher in Nagdong and Cheongcheong, respectively, compared to that in the controls. Higher levels of jasmonic acid caused by the biochar priming effect could have accumulated in response to WBPH infestation, resulting in a maladaptive response to stress, negatively affecting growth and resistance to WBPH in Cheongcheong. This

  10. Regulation of a chemical defense against herbivory produced by symbiotic fungi in grass plants.

    Science.gov (United States)

    Zhang, Dong-Xiu; Nagabhyru, Padmaja; Schardl, Christopher L

    2009-06-01

    Neotyphodium uncinatum and Neotyphodium siegelii are fungal symbionts (endophytes) of meadow fescue (MF; Lolium pratense), which they protect from insects by producing loline alkaloids. High levels of lolines are produced following insect damage or mock herbivory (clipping). Although loline alkaloid levels were greatly elevated in regrowth after clipping, loline-alkaloid biosynthesis (LOL) gene expression in regrowth and basal tissues was similar to unclipped controls. The dramatic increase of lolines in regrowth reflected the much higher concentrations in young (center) versus older (outer) leaf blades, so LOL gene expression was compared in these tissues. In MF-N. siegelii, LOL gene expression was similar in younger and older leaf blades, whereas expression of N. uncinatum LOL genes and some associated biosynthesis genes was higher in younger than older leaf blades. Because lolines are derived from amino acids that are mobilized to new growth, we tested the amino acid levels in center and outer leaf blades. Younger leaf blades of aposymbiotic plants (no endophyte present) had significantly higher levels of asparagine and sometimes glutamine compared to older leaf blades. The amino acid levels were much lower in MF-N. siegelii and MF-N. uncinatum compared to aposymbiotic plants and MF with Epichloë festucae (a closely related symbiont), which lacked lolines. We conclude that loline alkaloid production in young tissue depleted these amino acid pools and was apparently regulated by availability of the amino acid substrates. As a result, lolines maximally protect young host tissues in a fashion similar to endogenous plant metabolites that conform to optimal defense theory.

  11. The importance of ecological costs for the evolution of plant defense against herbivory.

    Science.gov (United States)

    van Velzen, Ellen; Etienne, Rampal S

    2015-05-07

    Plant defense against herbivory comes at a cost, which can be either direct (reducing resources available for growth and reproduction) or indirect (through reducing ecological performance, for example intraspecific competitiveness). While direct costs have been well studied in theoretical models, ecological costs have received almost no attention. In this study we compare models with a direct trade-off (reduced growth rate) to models with an ecological trade-off (reduced competitive ability), using a combination of adaptive dynamics and simulations. In addition, we study the dependence of the level of defense that can evolve on the type of defense (directly by reducing consumption, or indirectly by inducing herbivore mortality (toxicity)), and on the type of herbivore against which the plant is defending itself (generalists or specialists). We find three major results: First, for both direct and ecological costs, defense only evolves if the benefit to the plant is direct (through reducing consumption). Second, the type of cost has a major effect on the evolutionary dynamics: direct costs always lead to a single optimal strategy against herbivores, but ecological costs can lead to branching and the coexistence of non-defending and defending plants; however, coexistence is only possible when defending against generalist herbivores. Finally, we find that fast-growing plants invest less than slow-growing plants when defending against generalist herbivores, as predicted by the Resource Availability Hypothesis, but invest more than slow-growing plants when defending against specialists. Our results clearly show that assumptions about ecological interactions are crucial for understanding the evolution of defense against herbivores. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of herbivory by Diaprepes abbreviatus (Coleoptera: Curculionidae) larvae on four woody ornamental plant species.

    Science.gov (United States)

    Martin, Cliff G; Mannion, Catharine; Schaffer, Bruce

    2009-06-01

    The hypothesis that herbivory by Diaprepes root weevil larvae reduces leaf gas exchange and biomass was tested on buttonwood (Conocarpus erectus L.), Surinam cherry (Eugenia uniflora L.), mahogany (Swietenia mahagoni Jacq.), and pond apple (Annona glabra L). For Surinam cherry, net CO2 assimilation, transpiration, and stomatal conductance, but not internal CO2 concentration (collectively referred to as leaf gas exchange values), were 7-32% higher in noninfested than infested plants. For buttonwood, all four gas exchange values were 10-54% higher for noninfested than infested plants 3 h after infestation with large, seventh-instar larvae. However, by 4 wk after this infestation, net CO2 assimilation, transpiration, and stomatal conductance, but not internal CO2 concentration, were 11-37% higher for infested than for noninfested plants. For mahogany and pond apple, there were few or no significant differences in leaf gas exchange values between infested and noninfested plants. For all species, mean shoot and root fresh and dry weights were higher for noninfested than infested plants, with the differences most significant for buttonwood (37-85% higher), followed by Surinam cherry (37-143% higher), mahogany (49-84% higher), and pond apple (24-46% higher), which had no significant differences. There were significant differences among plant species in mean head capsule widths, thus larval instars, of larvae recovered from soil with the largest larvae from Surinam cherry (2.59 +/- 0.19 mm) and the smallest from mahogany (2.29 +/- 0.06 mm). Based on differences in leaf gas exchange and plant biomass between infested and noninfested plants of the four species tested, buttonwood and Surinam cherry are the most vulnerable to feeding by Diaprepes larvae followed by mahogany then pond apple.

  13. Seagrass Herbivory Levels Sustain Site-Fidelity in a Remnant Dugong Population.

    Directory of Open Access Journals (Sweden)

    Elrika D'Souza

    Full Text Available Herds of dugong, a largely tropical marine megaherbivore, are known to undertake long-distance movements, sequentially overgrazing seagrass meadows in their path. Given their drastic declines in many regions, it is unclear whether at lower densities, their grazing is less intense, reducing their need to travel between meadows. We studied the effect of the feeding behaviour of a small dugong population in the Andaman and Nicobar archipelago, India to understand how small isolated populations graze seagrasses. In the seven years of our observation, all recorded dugongs travelled either solitarily or in pairs, and their use of seagrasses was limited to 8 meadows, some of which were persistently grazed. These meadows were relatively large, contiguous and dominated by short-lived seagrasses species. Dugongs consumed approximately 15% of meadow primary production, but there was a large variation (3-40% of total meadow production in consumption patterns between meadows. The impact of herbivory was relatively high, with shoot densities c. 50% higher inside herbivore exclosures than in areas exposed to repeated grazing. Our results indicate that dugongs in the study area repeatedly graze the same meadows probably because the proportion of primary production consumed reduces shoot density to levels that are still above values that can trigger meadow abandonment. This ability of seagrasses to cope perhaps explains the long-term site fidelity shown by individual dugongs in these meadows. The fact that seagrass meadows in the archipelago are able to support dugong foraging requirements allows us to clearly identify locations where this remnant population persists, and where urgent management efforts can be directed.

  14. The Role of Herbivory in Structuring Tropical Seagrass Ecosystem Service Delivery

    Science.gov (United States)

    Scott, Abigail L.; York, Paul H.; Duncan, Clare; Macreadie, Peter I.; Connolly, Rod M.; Ellis, Megan T.; Jarvis, Jessie C.; Jinks, Kristin I.; Marsh, Helene; Rasheed, Michael A.

    2018-01-01

    Seagrass meadows support key ecosystem services, via provision of food directly for herbivores, and indirectly to their predators. The importance of herbivores in seagrass meadows has been well-documented, but the links between food webs and ecosystem services in seagrass meadows have not previously been made explicit. Herbivores interact with ecosystem services – including carbon sequestration, cultural values, and coastal protection. Interactions can be positive or negative and depend on a range of factors including the herbivore identity and the grazing type and intensity. There can be unintended consequences from management actions based on a poor understanding of trade-offs that occur with complex seagrass-herbivore interactions. Tropical seagrass meadows support a diversity of grazers spanning the meso-, macro-, and megaherbivore scales. We present a conceptual model to describe how multiple ecosystem services are influenced by herbivore pressure in tropical seagrass meadows. Our model suggests that a balanced ecosystem, incorporating both seagrass and herbivore diversity, is likely to sustain the broadest range of ecosystem services. Our framework suggests the pathway to achieve desired ecosystem services outcomes requires knowledge on four key areas: (1) how size classes of herbivores interact to structure seagrass; (2) desired community and management values; (3) seagrass responses to top–down and bottom–up controls; (4) the pathway from intermediate to final ecosystem services and human benefits. We suggest research should be directed to these areas. Herbivory is a major structuring influence in tropical seagrass systems and needs to be considered for effective management of these critical habitats and their services. PMID:29487606

  15. Dual-guild herbivory disrupts predator-prey interactions in the field.

    Science.gov (United States)

    Blubaugh, Carmen K; Asplund, Jacob S; Eigenbrode, Sanford D; Morra, Matthew J; Philips, Christopher R; Popova, Inna E; Reganold, John P; Snyder, William E

    2018-05-01

    Plant defenses often mediate whether competing chewing and sucking herbivores indirectly benefit or harm one another. Dual-guild herbivory also can muddle plant signals used by specialist natural enemies to locate prey, further complicating the net impact of herbivore-herbivore interactions in naturally diverse settings. While dual-guild herbivore communities are common in nature, consequences for top-down processes are unclear, as chemically mediated tri-trophic interactions are rarely evaluated in field environments. Combining observational and experimental approaches in the open field, we test a prediction that chewing herbivores interfere with top-down suppression of phloem feeders on Brassica oleracea across broad landscapes. In a two-year survey of 52 working farm sites, we found that parasitoid and aphid densities on broccoli plants positively correlated at farms where aphids and caterpillars rarely co-occurred, but this relationship disappeared at farms where caterpillars commonly co-occurred. In a follow-up experiment, we compared single and dual-guild herbivore communities at four local farm sites and found that caterpillars (P. rapae) caused a 30% reduction in aphid parasitism (primarily by Diaeretiella rapae), and increased aphid colony (Brevicoryne brassicae) growth at some sites. Notably, in the absence of predators, caterpillars indirectly suppressed, rather than enhanced, aphid growth. Amid considerable ecological noise, our study reveals a pattern of apparent commensalism: herbivore-herbivore facilitation via relaxed top-down suppression. This work suggests that enemy-mediated apparent commensalism may override constraints to growth induced by competing herbivores in field environments, and emphasizes the value of placing chemically mediated interactions within their broader environmental and community contexts. © 2018 by the Ecological Society of America.

  16. Testing for the effects and consequences of mid paleogene climate change on insect herbivory.

    Directory of Open Access Journals (Sweden)

    Torsten Wappler

    Full Text Available The Eocene, a time of fluctuating environmental change and biome evolution, was generally driven by exceptionally warm temperatures. The Messel (47.8 Ma and Eckfeld (44.3 Ma deposits offer a rare opportunity to take a census of two, deep-time ecosystems occurring during a greenhouse system. An understanding of the long-term consequences of extreme warming and cooling events during this interval, particularly on angiosperms and insects that dominate terrestrial biodiversity, can provide insights into the biotic consequences of current global climatic warming.We compare insect-feeding damage within two middle Eocene fossil floras, Messel and Eckfeld, in Germany. From these small lake deposits, we studied 16,082 angiosperm leaves and scored each specimen for the presence or absence of 89 distinctive and diagnosable insect damage types (DTs, each of which was allocated to a major functional feeding group, including four varieties of external foliage feeding, piercing- and-sucking, leaf mining, galling, seed predation, and oviposition. Methods used for treatment of presence-absence data included general linear models and standard univariate, bivariate and multivariate statistical techniques.Our results show an unexpectedly high diversity and level of insect feeding than comparable, penecontemporaneous floras from North and South America. In addition, we found a higher level of herbivory on evergreen, rather than deciduous taxa at Messel. This pattern is explained by a ca. 2.5-fold increase in atmospheric CO(2 that overwhelmed evergreen antiherbivore defenses, subsequently lessened during the more ameliorated levels of Eckfeld times. These patterns reveal important, previously undocumented features of plant-host and insect-herbivore diversification during the European mid Eocene.

  17. Testing for the effects and consequences of mid paleogene climate change on insect herbivory.

    Science.gov (United States)

    Wappler, Torsten; Labandeira, Conrad C; Rust, Jes; Frankenhäuser, Herbert; Wilde, Volker

    2012-01-01

    The Eocene, a time of fluctuating environmental change and biome evolution, was generally driven by exceptionally warm temperatures. The Messel (47.8 Ma) and Eckfeld (44.3 Ma) deposits offer a rare opportunity to take a census of two, deep-time ecosystems occurring during a greenhouse system. An understanding of the long-term consequences of extreme warming and cooling events during this interval, particularly on angiosperms and insects that dominate terrestrial biodiversity, can provide insights into the biotic consequences of current global climatic warming. We compare insect-feeding damage within two middle Eocene fossil floras, Messel and Eckfeld, in Germany. From these small lake deposits, we studied 16,082 angiosperm leaves and scored each specimen for the presence or absence of 89 distinctive and diagnosable insect damage types (DTs), each of which was allocated to a major functional feeding group, including four varieties of external foliage feeding, piercing- and-sucking, leaf mining, galling, seed predation, and oviposition. Methods used for treatment of presence-absence data included general linear models and standard univariate, bivariate and multivariate statistical techniques. Our results show an unexpectedly high diversity and level of insect feeding than comparable, penecontemporaneous floras from North and South America. In addition, we found a higher level of herbivory on evergreen, rather than deciduous taxa at Messel. This pattern is explained by a ca. 2.5-fold increase in atmospheric CO(2) that overwhelmed evergreen antiherbivore defenses, subsequently lessened during the more ameliorated levels of Eckfeld times. These patterns reveal important, previously undocumented features of plant-host and insect-herbivore diversification during the European mid Eocene.

  18. Algal growth and species composition under experimental control of herbivory, phosphorus and coral abundance in Glovers Reef, Belize.

    Science.gov (United States)

    McClanahan, T R; Cokos, B A; Sala, E

    2002-06-01

    The proliferation of algae on disturbed coral reefs has often been attributed to (1) a loss of large-bodied herbivorous fishes, (2) increases in sea water nutrient concentrations, particularly phosphorus, and (3) a loss of hard coral cover or a combination of these and other factors. We performed replicated small-scale caging experiments in the offshore lagoon of Glovers Reef atoll, Belize where three treatments had closed-top (no large-bodied herbivores) and one treatment had open-top cages (grazing by large-bodied herbivores). Closed-top treatments simulated a reduced-herbivory situation, excluding large fishes but including small herbivorous fishes such as damselfishes and small parrotfishes. Treatments in the closed-top cages included the addition of high phosphorus fertilizer, live branches of Acropora cervicornis and a third unmanipulated control treatment. Colonization, algal biomass and species composition on dead A. palmata "plates" were studied weekly for 50 days in each of the four treatments. Fertilization doubled the concentration of phosphorus from 0.35 to 0.77 microM. Closed-top cages, particularly the fertilizer and A. cervicornis additions, attracted more small-bodied parrotfish and damselfish than the open-top cages such that there was moderate levels of herbivory in closed-top cages. The open-top cages did, however, have a higher abundance of the chemically and morphologically defended erect algal species including Caulerpa cupressoides, Laurencia obtusa, Dictyota menstrualis and Lobophora variegata. The most herbivore-resistant calcareous green algae (i.e. Halimeda) were, however, uncommon in all treatments. Algal biomass increased and fluctuated simultaneously in all treatments over time, but algal biomass, as measured by wet, dry and decalcified weight, did not differ greatly between the treatments with only marginally higher biomass (p reefs except for creating space. In contrast, A. cervicornis appears to attract aggressive damselfish that

  19. Leaf quality and insect herbivory in model tropical plant communities after long-term exposure to elevated atmospheric CO2.

    Science.gov (United States)

    Arnone, J A; Zaller, J G; Körner, Ch; Ziegler, C; Zandt, H

    1995-09-01

    Results from laboratory feeding experiments have shown that elevated atmospheric carbon dioxide can affect interactions between plants and insect herbivores, primarily through changes in leaf nutritional quality occurring at elevated CO 2 . Very few data are available on insect herbivory in plant communities where insects can choose among species and positions in the canopy in which to feed. Our objectives were to determine the extent to which CO 2 -induced changes in plant communities and leaf nutritional quality may affect herbivory at the level of the entire canopy. We introduced equivalent populations of fourth instar Spodoptera eridania, a lepidopteran generalist, to complex model ecosystems containing seven species of moist tropical plants maintained under low mineral nutrient supply. Larvae were allowed to feed freely for 14 days, by which time they had reached the seventh instar. Prior to larval introductions, plant communities had been continuously exposed to either 340 μl CO 2 l -1 or to 610 μl CO 2 l -1 for 1.5 years. No major shifts in leaf nutritional quality [concentrations of N, total non-structural carbohydrates (TNC), sugar, and starch; ratios of: C/N, TNC/N, sugar/N, starch/N; leaf toughness] were observed between CO 2 treatments for any of the species. Furthermore, no correlations were observed between these measures of leaf quality and leaf biomass consumption. Total leaf area and biomass of all plant communities were similar when caterpillars were introduced. However, leaf biomass of some species was slightly greater-and for other species slightly less (e.g. Cecropia peltata)-in communities exposed to elevated CO 2 . Larvae showed the strongest preference for C. peltata leaves, the plant species that was least abundant in all communites, and fed relatively little on plants species which were more abundant. Thus, our results indicate that leaf tissue quality, as described by these parameters, is not necessarily affected by elevated CO 2 under

  20. The differential effects of herbivory by first and fourth instars of Trichoplusia ni (Lepidoptera: Noctuidae) on photosynthesis in Arabidopsis thaliana.

    Science.gov (United States)

    Tang, Jennie Y; Zielinski, Raymond E; Zangerl, Arthur R; Crofts, Antony R; Berenbaum, May R; Delucia, Evan H

    2006-01-01

    The effect of different feeding behaviours of 1st and 4th instar Trichoplusia ni on photosynthesis of Arabidopsis thaliana var. Columbia was characterized using spatially resolved measurements of fluorescence and leaf temperature, as well as leaf gas exchange,. First instars made small holes with a large perimeter-to-area ratio and avoided veins, while 4th instars made large holes with a low perimeter-to-area ratio and consumed veins. Herbivory by 1st instars reduced photosynthesis more strongly in the remaining leaf tissue than that by 4th instars. Photosystem II operating efficiency (PhiPSII) was correlated with the rate of CO2 exchange, and reductions in PhiPSII in areas around the missing tissues contributed to a 15.6% reduction in CO2 assimilation on the first day following removal of 1st instars. The corresponding increases in non-photochemical quenching and greater rates of non-stomatal water loss from these regions, as well as the partial reversal of low PhiPSII by increasing the ambient CO2 concentration, suggests that localized water stress and reduced stomatal conductance contributed to the inhibition of photosynthesis. Damage by 1st but not 4th instars reduced the maximum quantum efficiency of photosystem II photochemistry (Fv/Fm) by 4-8%. While herbivory by both 1st and 4th instars increased dark respiration rates, the rates were too low to have contributed to the observed reductions in CO2 exchange. The small holes produced by 1st instars may have isolated patches of tissue from the vascular system thereby contributing to localized water stress. Since neither 1st nor 4th instar herbivory had a detectable effect on the expression of the Rubisco small subunit gene, the observed differences cannot be attributed to changes in expression of this gene. The mode of feeding by different instars of T. ni determined the photosynthetic response to herbivory, which appeared to be mediated by the level of water stress associated with herbivore damage.

  1. The Sarmatian vertebrates from Draxeni (Moldavian Platform

    Directory of Open Access Journals (Sweden)

    Vlad Codrea

    2007-10-01

    Full Text Available Middle Miocene (Sarmatian vertebrates had been unearthed at Draxeni (Vaslui district. The site is located in the northern area of the Moldavian Platform. There, the sand belonging to Şcheia Formation (Bessarabian is mined in a restricted open pit. This sand is related to a littoral environment (shoreface and foreshore. Some of its levels are rich in mollusc debris. Vertebrate remains, carried into the Bessarabian brackish basin are present too, but in smaller amounts. Mastodon, rhinoceros, hipparionine, tortoise remains had been collected there over several years. All teeth and bones are isolated and bear the marks of intensive rolling by waves and currents. This assemblage is typical for the top of Bessarabian in Moldavia, i.e. soon after the first hipparionine invasion in this part of the Europe. This assemblage can be related to the base of MN 9 unit.

  2. Patterns and Processes of Vertebrate Evolution

    Science.gov (United States)

    Carroll, Robert Lynn

    1997-04-01

    This new text provides an integrated view of the forces that influence the patterns and rates of vertebrate evolution from the level of living populations and species to those that resulted in the origin of the major vertebrate groups. The evolutionary roles of behavior, development, continental drift, and mass extinctions are compared with the importance of variation and natural selection that were emphasized by Darwin. It is extensively illustrated, showing major transitions between fish and amphibians, dinosaurs and birds, and land mammals to whales. No book since Simpson's Major Features of Evolution has attempted such a broad study of the patterns and forces of evolutionary change. Undergraduate students taking a general or advanced course on evolution, and graduate students and professionals in evolutionary biology and paleontology will find the book of great interest.

  3. Population momentum across vertebrate life histories

    Science.gov (United States)

    Koons, D.N.; Grand, J.B.; Arnold, J.M.

    2006-01-01

    Population abundance is critically important in conservation, management, and demographic theory. Thus, to better understand how perturbations to the life history affect long-term population size, we examined population momentum for four vertebrate classes with different life history strategies. In a series of demographic experiments we show that population momentum generally has a larger effect on long-term population size for organisms with long generation times than for organisms with short generation times. However, patterns between population momentum and generation time varied across taxonomic groups and according to the life history parameter that was changed. Our findings indicate that momentum may be an especially important aspect of population dynamics for long-lived vertebrates, and deserves greater attention in life history studies. Further, we discuss the importance of population momentum in natural resource management, pest control, and conservation arenas. ?? 2006 Elsevier B.V. All rights reserved.

  4. CT and MRI of vertebral haemangiomas

    International Nuclear Information System (INIS)

    Braitinger, S.; Weigert, F.; Held, P.; Obletter, N.; Breit, A.

    1989-01-01

    A retrospective comparative study of CT and MRI was carried out involving 38 vertebral haemangiomas; this revealed a typical signal pattern on MRI from benign lesions. It consists of a hyper-intense signal from the bone marrow affecting the T 1 /T 2 sequences; this may be focal or involve the entire vertebral body. These characteristic signals were compared with CT images of the spine. The areas of bone that produce the high intensity signals on MRI appear on CT as spongey patterns with hypertrophic trabeculae surrounding mostly areas with negative absorption values. An analysis of the changes in the spongiosa has revealed three clearly defined types. The signals derived from haemangiomas extending beyond the bone have an intensity of normal spongiosa; this corresponds with an absence of fat, as demonstrated by CT. Extra-osseous components have low intensity T 1 signals that increase in T 2 sequences. (orig.) [de

  5. Vertebral involvement in SAPHO syndrome: MRI findings

    Energy Technology Data Exchange (ETDEWEB)

    Nachtigal, A.; Cardinal, E.; Bureau, N.J. [Dept. of Radiology, Univ. de Montreal, QC (Canada); Sainte-Marie, L.G. [Dept. of Internal Medicine, Univ. de Montreal, QC (Canada); Milette, F. [Department of Pathology, Univ. de Montreal, QC (Canada)

    1999-03-01

    We report on the MRI findings in the vertebrae and surrounding soft tissues in two patients with the SAPHO syndrome (Synovitis, Acne, Pustulosis, Hyperostosis, Osteitis). The MRI findings include abnormal bone marrow signal, either focal or diffuse, of the vertebral bodies and posterior elements; hyperintense paravertebral soft tissue swelling and abnormal signal of the intervertebral discs. These changes are consistent with discitis and osteitis. (orig.) With 6 figs., 17 refs.

  6. Vertebrate ecology at the Los Medanos site

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    October and November 1980 vertebrate ecology study accomplishments are outlined in this report. The report provides a listing of food items found in the crops of Mourning Doves collected at the WIPP Site during 1979 and a listing of small mammal digestive tracts and reproductive tracts that have been removed, labeled and preserved. Scaled Quail collection results are also reported. Each specimen was weighed and sexed and the crop contents of each specimen was removed for analysis

  7. Transmission of Ranavirus between Ectothermic Vertebrate Hosts

    Science.gov (United States)

    Brenes, Roberto; Gray, Matthew J.; Waltzek, Thomas B.; Wilkes, Rebecca P.; Miller, Debra L.

    2014-01-01

    Transmission is an essential process that contributes to the survival of pathogens. Ranaviruses are known to infect different classes of lower vertebrates including amphibians, fishes and reptiles. Differences in the likelihood of infection among ectothermic vertebrate hosts could explain the successful yearlong persistence of ranaviruses in aquatic environments. The goal of this study was to determine if transmission of a Frog Virus 3 (FV3)-like ranavirus was possible among three species from different ectothermic vertebrate classes: Cope’s gray treefrog (Hyla chrysoscelis) larvae, mosquito fish (Gambusia affinis), and red-eared slider (Trachemys scripta elegans). We housed individuals previously exposed to the FV3-like ranavirus with naïve (unexposed) individuals in containers divided by plastic mesh screen to permit water flow between subjects. Our results showed that infected gray treefrog larvae were capable of transmitting ranavirus to naïve larval conspecifics and turtles (60% and 30% infection, respectively), but not to fish. Also, infected turtles and fish transmitted ranavirus to 50% and 10% of the naïve gray treefrog larvae, respectively. Nearly all infected amphibians experienced mortality, whereas infected turtles and fish did not die. Our results demonstrate that ranavirus can be transmitted through water among ectothermic vertebrate classes, which has not been reported previously. Moreover, fish and reptiles might serve as reservoirs for ranavirus given their ability to live with subclinical infections. Subclinical infections of ranavirus in fish and aquatic turtles could contribute to the pathogen’s persistence, especially when highly susceptible hosts like amphibians are absent as a result of seasonal fluctuations in relative abundance. PMID:24667325

  8. Transmission of ranavirus between ectothermic vertebrate hosts.

    Directory of Open Access Journals (Sweden)

    Roberto Brenes

    Full Text Available Transmission is an essential process that contributes to the survival of pathogens. Ranaviruses are known to infect different classes of lower vertebrates including amphibians, fishes and reptiles. Differences in the likelihood of infection among ectothermic vertebrate hosts could explain the successful yearlong persistence of ranaviruses in aquatic environments. The goal of this study was to determine if transmission of a Frog Virus 3 (FV3-like ranavirus was possible among three species from different ectothermic vertebrate classes: Cope's gray treefrog (Hyla chrysoscelis larvae, mosquito fish (Gambusia affinis, and red-eared slider (Trachemys scripta elegans. We housed individuals previously exposed to the FV3-like ranavirus with naïve (unexposed individuals in containers divided by plastic mesh screen to permit water flow between subjects. Our results showed that infected gray treefrog larvae were capable of transmitting ranavirus to naïve larval conspecifics and turtles (60% and 30% infection, respectively, but not to fish. Also, infected turtles and fish transmitted ranavirus to 50% and 10% of the naïve gray treefrog larvae, respectively. Nearly all infected amphibians experienced mortality, whereas infected turtles and fish did not die. Our results demonstrate that ranavirus can be transmitted through water among ectothermic vertebrate classes, which has not been reported previously. Moreover, fish and reptiles might serve as reservoirs for ranavirus given their ability to live with subclinical infections. Subclinical infections of ranavirus in fish and aquatic turtles could contribute to the pathogen's persistence, especially when highly susceptible hosts like amphibians are absent as a result of seasonal fluctuations in relative abundance.

  9. Globally threatened vertebrates on islands with invasive species.

    Science.gov (United States)

    Spatz, Dena R; Zilliacus, Kelly M; Holmes, Nick D; Butchart, Stuart H M; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R; Croll, Donald A

    2017-10-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth's terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth's highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss.

  10. Nestedness of ectoparasite-vertebrate host networks.

    Directory of Open Access Journals (Sweden)

    Sean P Graham

    2009-11-01

    Full Text Available Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networks--including three derived from molecular bloodmeal analysis of mosquito feeding patterns--using measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same "generalized" hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks.

  11. Orientation-Selective Retinal Circuits in Vertebrates.

    Science.gov (United States)

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.

  12. Fungal osteomyelitis with vertebral re-ossification.

    Science.gov (United States)

    O Guinn, Devon J; Serletis, Demitre; Kazemi, Noojan

    2016-01-01

    We present a rare case of thoracic vertebral osteomyelitis secondary to pulmonary Blastomyces dermatitides. A 27-year-old male presented with three months of chest pains and non-productive cough. Examination revealed diminished breath sounds on the right. CT/MR imaging confirmed a right-sided pre-/paravertebral soft tissue mass and destructive lytic lesions from T2 to T6. CT-guided needle biopsy confirmed granulomatous pulmonary Blastomycosis. Conservative management with antifungal therapy was initiated. Neurosurgical review confirmed no clinical or profound radiographic instability, and the patient was stabilized with TLSO bracing. Serial imaging 3 months later revealed near-resolution of the thoracic soft tissue mass, with vertebral re-ossification from T2 to T6. Fungal osteomyelitis presents a rare entity in the spectrum of spinal infections. In such cases, lytic spinal lesions are classically seen in association with a large paraspinous mass. Fungal infections of the spinal column may be treated conservatively, with surgical intervention reserved for progressive cases manifesting with neurological compromise and/or spinal column instability. Here, we found unexpected evidence for vertebral re-ossification across the affected thoracic levels (T2-6) in response to IV antibiotic therapy and conservative bracing, nearly 3 months later. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Epidemiologia do traumatismo da coluna vertebral

    Directory of Open Access Journals (Sweden)

    Marcelo Ferraz de Campos

    Full Text Available OBJETIVO: Avaliação epidemiológica retrospectiva de 100 casos de traumatismo da coluna vertebral. MÉTODO: Estudo transversal de dados colhidos por levantamento de prontuário, segundo protocolo de decodificação local. RESULTADOS: Predomínio etário de 20 a 40 anos em 64% dos casos; sexo masculino em 86%; segmento toracolombar mais comumente atingido 64% e 36% para o segmento cervical; principais causas foram às quedas em 40%, seguidas de acidentes automobilísticos em 25% e quedas da laje 23%. A prevalência dos ferimentos por arma de fogo foi de 7%, mergulho em águas rasas 3% e agressões 2%. Houve análise complementar com cruzamentos entre idade, sexo, causa e segmento da coluna vertebral acometido, observando que o segmento cervical teve grande predomínio nas mulheres em relação aos homens em 85,7% X 14,3%. CONCLUSÃO: O traumatismo da coluna vertebral ocorreu predominantemente em homens entre 20 e 40 anos e o segmento cervical foi o mais acometido nas mulheres em relação aos homens na proporção de 6:1.

  14. Effect of fertilization on below-ground plant mass of submontane Polygono-Cirsietum meadow

    Czech Academy of Sciences Publication Activity Database

    Holub, Petr; Tůma, I.; Fiala, Karel

    2013-01-01

    Roč. 6, č. 1 (2013), s. 33-42 ISSN 1803-2451 R&D Projects: GA ČR(CZ) GA526/06/0556; GA MZe QJ1220007; GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 ; RVO:67985939 Keywords : biomass partitioning * grassland * fertilization * primary productivity Subject RIV: EH - Ecology, Behaviour; EF - Botanics (BU-J)

  15. Disentangling above- and below-ground competition between lianas and trees in a tropical forest

    NARCIS (Netherlands)

    Schnitzer, S.A.; Kuzee, M.E.; Bongers, F.J.J.M.

    2005-01-01

    1 Light is thought to be the most limiting resource in tropical forests, and thus aboveground competition is commonly accepted as the mechanism that structures these communities. In many tropical forests, trees compete not only with other trees, but also with lianas, which compete aggressively for

  16. Information indices as a tool for quantifying development of below-ground terrestrial ecosystems

    NARCIS (Netherlands)

    Holtkamp, R.; Tobor-Kaplon, M.A.

    2007-01-01

    Information indices from ecosystem network analysis (ENA) describe the size and organization of an ecosystem and are claimed to quantify ecosystem development [Ulanowicz, R.E., 1986, Growth and Development, Springler-Verslag, New York, 203 pp.]. To date, these indices were not used to describe a

  17. Non-invasive monitoring of below ground cassava storage root bulking by ground penetrating radar technology

    Science.gov (United States)

    Ruiz Vera, U. M.; Larson, T. H.; Mwakanyamale, K. E.; Grennan, A. K.; Souza, A. P.; Ort, D. R.; Balikian, R. J.

    2017-12-01

    Agriculture needs a new technological revolution to be able to meet the food demands, to overcome weather and natural hazards events, and to monitor better crop productivity. Advanced technologies used in other fields have recently been applied in agriculture. Thus, imagine instrumentation has been applied to phenotype above-ground biomass and predict yield. However, the capability to monitor belowground biomass is still limited. There are some existing technologies available, for example the ground penetrating radar (GPR) which has been used widely in the area of geology and civil engineering to detect different kind of formations under the ground without the disruption of the soil. GPR technology has been used also to monitor tree roots but as yet not crop roots. Some limitation are that the GPR cannot discern roots smaller than 2 cm in diameter, but it make it feasible for application in tuber crops like Cassava since harvest diameter is greater than 4 cm. The objective of this research is to test the availability to use GPR technology to monitor the growth of cassava roots by testing this technique in the greenhouse and in the field. So far, results from the greenhouse suggest that GPR can detect mature roots of cassava and this data could be used to predict biomass.

  18. Dosimetry of Rn-222 in the air in environments located above and below ground level

    International Nuclear Information System (INIS)

    Cazula, Camila Dias

    2015-01-01

    Exposure of the general population to ionizing radiation comes mainly from natural sources. The main contribution is due to inhalation of radon (Rn-222), a gas that occurs naturally (UNSCEAR, 2000). The Rn-222 concentration in the environment is controlled by factors such as soil permeability and water content, the weather variability, materials used in the foundation and the usual positive pressure differential between the soil and the internal environment. Studies indicate that the concentration of radon shows a wide variation in the basement, ground floor and upper floors of buildings. The objective of this study is to determine radon levels in basements, ground floor and floors above ground level, at a university in the city of Sao Paulo and in one residential building in the city of Peruibe. Rn-222 measurements were performed using the method with nuclear track of solid state detectors (CR-39). The studied environments present Rn-222 concentration well below the values recommended by the International Commission on Radiological Protection, published in the 2009 document, of 300 Bq/m 3 for homes and 1000 Bq/m 3 for the workplace. In the residential building, the concentration of Ra-266, Th-232 and K-40 in the materials used in the building construction was also analyzed, by gamma spectrometry. The effective total dose for the resident due to external exposure was 0.8 mSv y -1 , lower than the annual dose limit for the general public of 1 mSv y -1 . (author)

  19. Above- and below-ground effects of plant diversity depend on species origin

    DEFF Research Database (Denmark)

    Kuebbing, Sara E.; Classen, Aimee Taylor; Sanders, Nate

    2015-01-01

    -interaction models to describe how species' interactions influenced diversity-productivity relationships. Communities with more species had higher total biomass than did monoculture communities, but native and nonnative communities diverged in root : shoot ratios and the mechanism responsible for increased......Although many plant communities are invaded by multiple nonnative species, we have limited information on how a species' origin affects ecosystem function. We tested how differences in species richness and origin affect productivity and seedling establishment. We created phylogenetically paired...... native and nonnative plant communities in a glasshouse experiment to test diversity-productivity relationships and responsible mechanisms (i.e. selection or complementarity effects). Additionally, we tested how productivity and associated mechanisms influenced seedling establishment. We used diversity...

  20. Tracing {sup 13}C reveals the below ground connection between trees and fungi

    Energy Technology Data Exchange (ETDEWEB)

    Siegwolf, R.T.W.; Steinmann, K.; Saurer, M.; Koerner, Ch.

    2003-03-01

    Freshly assimilated atmospheric CO{sub 2} is transferred as sugars from the leaves into the whole organism. Since mycorrhiza fungi and tree roots are in an intensive symbiosis, the fungi provide important information about the tree internal carbon distribution. (author)

  1. Picturing Adoption of Below-Ground Biodiversity Technologies among Smallholder Farmers around Mabira Forest, Uganda

    Directory of Open Access Journals (Sweden)

    Isabirye, BE.

    2010-01-01

    Full Text Available Faced with a multitude of soil and water amendment technologies, farmers have the task of choosing the technologies to adopt for ensuring subsistence and income sustainability. In 2008, a study to characterize the farmers was conducted around Mabira Forest, to assess the adoption of soil technologies fostering Belowground Biodiversity (BGBD. Eighty-four households (38 participating and 46 non-participants from four villages were randomly selected and interviewed. Results showed that the adoption pattern was significantly driven by farm size, labor, household size, age and wealth status of the house. Also important were farm location, gender of household head, primary occupation, soil and water conservation technologies training, land tenure, and social capital. For the few current adopters, there was a perceived increase in labor demand but overall productivity was higher, partly resulting from increased crop productivity due to soil fertility enhancement and soil structure modification. It is therefore concluded that, around Mabira forest, BGBD technologies will be adopted by farming households with sufficient land, labor and social capital.

  2. Hot Cell Liners Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Robert Wesley [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-01

    A large wildfire called the Las Conchas Fire burned large areas near Los Alamos National Laboratory (LANL) in 2011 and heightened public concern and news media attention over transuranic (TRU) waste stored at LANL’s Technical Area 54 (TA-54) Area G waste management facility. The removal of TRU waste from Area G had been placed at a lower priority in budget decisions for environmental cleanup at LANL because TRU waste removal is not included in the March 2005 Compliance Order on Consent (Reference 1) that is the primary regulatory driver for environmental cleanup at LANL. The Consent Order is an agreement between LANL and the New Mexico Environment Department (NMED) that contains specific requirements and schedules for cleaning up historical contamination at the LANL site. After the Las Conchas Fire, discussions were held by the U.S. Department of Energy (DOE) with the NMED on accelerating TRU waste removal from LANL and disposing it at the Waste Isolation Pilot Plant (WIPP). This report summarizes available information on the origin, configuration, and composition of the waste containers within the Hot Cell Liners category; their physical and radiological characteristics; the results of the radioassays; and the justification to reclassify the five containers as LLW rather than TRU waste.

  3. Distribution of 'Candidatus Liberibacter asiaticus' Above and Below Ground in Texas Citrus.

    Science.gov (United States)

    Louzada, Eliezer S; Vazquez, Omar Ed; Braswell, W Evan; Yanev, George; Devanaboina, Madhavi; Kunta, Madhurababu

    2016-07-01

    Detection of 'Candidatus Liberibacter asiaticus' represents one of the most difficult, yet critical, steps of controlling Huanglongbing disease. Efficient detection relies on understanding the underlying distribution of bacteria within trees. To that end, we studied the distribution of 'Ca. L. asiaticus' in leaves of 'Rio Red' grapefruit trees and in roots of 'Valencia' sweet orange trees grafted onto sour orange rootstock. We performed two sets of leaf collection on grapefruit trees; the first a selective sampling targeting symptomatic leaves and their neighbors and the second a systematic collection disregarding symptomology. From uprooted orange trees, we exhaustively sampled fibrous roots. In this study, the presence of 'Ca. L. asiaticus' was detected in leaves using real-time polymerase chain reaction (PCR) targeting the 16S ribosomal gene and in roots using the rpIJ/rpIL ribosomal protein genes and was confirmed with conventional PCR and sequencing of the rpIJ/rpIL gene in both tissues. Among randomly collected leaves, 'Ca. L. asiaticus' was distributed in a patchy fashion. Detection of 'Ca. L. asiaticus' varied with leaf symptomology with symptomatic leaves showing the highest frequency (74%) followed by their neighboring asymptomatic leaves (30%), while randomly distributed asymptomatic leaves had the lowest frequency (20%). Among symptomatic leaves, we found statistically significant differences in mean number of bacterial cells with respect to both increasing distance of the leaf from the trunk and cardinal direction. The titer of 'Ca. L. asiaticus' cells was significantly greater on the north side of trees than on the south and west sides. Moreover, these directions showed different spatial distributions of 'Ca. L. asiaticus' with higher titers near the trunk on the south and west sides as opposed to further from the trunk on the north side. Similarly, we found spatial variation in 'Ca. L. asiaticus' distribution among root samples. 'Ca. L. asiaticus' was detected more frequently and bacterial abundances were higher among horizontally growing roots just under the soil surface (96%) than among deeper vertically growing roots (78%). Bacterial abundance declined slightly with distance from the trunk. These results point to paths of research that will likely prove useful to combating this devastating disease.

  4. 33 Shafts Category of Transuranic Waste Stored Below Ground within Area G

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Kenneth Marshall [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Monk, Thomas H [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-05-22

    This report compiles information to support the evaluation of alternatives and analysis of regulatory paths forward for the 33 shafts. The historical information includes a form completed by waste generators for each waste package (Reference 6) that included a waste description, estimates of Pu-239 and uranium-235 (U-235) based on an accounting technique, and calculations of mixed fission products (MFP) based on radiation measurements. A 1979 letter and questionnaire (Reference 7) provides information on waste packaging of hot cell waste and the configuration of disposal shafts as storage in the 33 Shafts was initiated. Tables of data by waste package were developed during a review of historical documents that was performed in 2005 (Reference 8). Radiological data was coupled with material-type data to estimate the initial isotopic content of each waste package and an Oak Ridge National Laboratory computer code was used to calculate 2009 decay levels. Other sources of information include a waste disposal logbook for the 33 shafts (Reference 9), reports that summarize remote-handled waste generated at the CMR facility (Reference 10) and placement of waste in the 33 shafts (Reference 11), a report on decommissioning of the LAMPRE reactor (Reference 12), interviews with an employee and manager involved in placing waste in the 33 shafts (References 13 and 14), an interview with a long-time LANL employee involved in waste operations (Reference 15), a 2002 plan for disposition of remote-handled TRU waste (Reference 16), and photographs obtained during field surveys of several shafts in 2007. The WIPP Central Characterization Project (CCP) completed an Acceptable Knowledge (AK) summary report for 16 canisters of remote-handled waste from the CMR Facility that contains information relevant to the 33 Shafts on hot-cell operations and timeline (Reference 17).

  5. Links between plant litter chemistry, species diversity, and below-ground ecosystem function

    OpenAIRE

    Meier, Courtney L.; Bowman, William D.

    2008-01-01

    Decomposition is a critical source of plant nutrients, and drives the largest flux of terrestrial C to the atmosphere. Decomposing soil organic matter typically contains litter from multiple plant species, yet we lack a mechanistic understanding of how species diversity influences decomposition processes. Here, we show that soil C and N cycling during decomposition are controlled by the composition and diversity of chemical compounds within plant litter mixtures, rather than by simple metrics...

  6. Repeated vertebral augmentation for new vertebral compression fractures of postvertebral augmentation patients: a nationwide cohort study

    Directory of Open Access Journals (Sweden)

    Liang CL

    2015-03-01

    Full Text Available Cheng-Loong Liang,1 Hao-Kwan Wang,1 Fei-Kai Syu,2 Kuo-Wei Wang,1 Kang Lu,1 Po-Chou Liliang1 1Department of Neurosurgery, E-Da Hospital, I-Shou University, Kaohsiung City, Taiwan; 2Department of Pharmacy, China Medical University Hospital, Taichung City, Taiwan Purpose: Postvertebral augmentation vertebral compression fractures are common; repeated vertebral augmentation is usually performed for prompt pain relief. This study aimed to evaluate the incidence and risk factors of repeat vertebral augmentation.Methods: We performed a retrospective, nationwide, population-based longitudinal observation study, using the National Health Insurance Research Database (NHIRD of Taiwan. All patients who received vertebral augmentation for vertebral compression fractures were evaluated. The collected data included patient characteristics (demographics, comorbidities, and medication exposure and repeat vertebral augmentation. Kaplan–Meier and stratified Cox proportional hazard regressions were performed for analyses.Results: The overall incidence of repeat vertebral augmentation was 11.3% during the follow-up until 2010. Patients with the following characteristics were at greater risk for repeat vertebral augmentation: female sex (AOR=1.24; 95% confidence interval [CI]: 1.10–2.36, advanced age (AOR=1.60; 95% CI: 1.32–2.08, diabetes mellitus (AOR=4.31; 95% CI: 4.05–5.88, cerebrovascular disease (AOR=4.09; 95% CI: 3.44–5.76, dementia (AOR=1.97; 95% CI: 1.69–2.33, blindness or low vision (AOR=3.72; 95% CI: 2.32–3.95, hypertension (AOR=2.58; 95% CI: 2.35–3.47, and hyperlipidemia (AOR=2.09; 95% CI: 1.67–2.22. Patients taking calcium/ vitamin D (AOR=2.98; 95% CI: 1.83–3.93, bisphosphonates (AOR=2.11; 95% CI: 1.26–2.61, or calcitonin (AOR=4.59; 95% CI: 3.40–5.77 were less likely to undergo repeat vertebral augmentation; however, those taking steroids (AOR=7.28; 95% CI: 6.32–8.08, acetaminophen (AOR=3.54; 95% CI: 2.75–4.83, or nonsteroidal

  7. Food choice effects on herbivory: Intra-specific seagrass palatability and inter-specific macrophyte palatability in seagrass communities

    Science.gov (United States)

    Jiménez-Ramos, Rocío; Brun, Fernando G.; Egea, Luis G.; Vergara, Juan J.

    2018-05-01

    Interactions between the palatability and abundance of different food sources may influence herbivory patterns in seagrass-dominated communities. In addition, intra-specific differences in nutrient and structural quality of leaves may also alter seagrass palatability and generate different rates of consumption within these communities. We offered two temperate seagrasses species, (Cymodocea nodosa and Zostera noltei) from two different locations to look at intraspecific differences, and two other macrophytes, both of which occur at the same location as seagrasses but represent the extremes of palatability, to a generalist herbivore Paracentrotus lividus (purple sea urchin). Using feeding assays, we compared the consumption rates in individual (single plant species) and combined diets at different food availabilities. Intra-specific differences between seagrass species growing at different locations (inner and outer bay) were indeed found to significantly modify the consumption rate for one species. Structural traits such as carbon content were linked to the low consumption found in Cymodocea nodosa from the inner bay location. In addition, we found that the co-occurrence of different macrophyte species can result in preferential consumption of the more palatable macrophyte with high nutritional content and low structural defence over seagrasses, especially when P. lividus has an abundant food supply. Overall, our findings suggest that intra- and inter-specific differences in seagrass traits and the relative abundance of other macrophytes may explain the variability in patterns of herbivory found within seagrass communities.

  8. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity

    Science.gov (United States)

    Naeem, S.; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F. B.; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-01-01

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. PMID:27928041

  9. Biodiversity as a multidimensional construct: a review, framework and case study of herbivory's impact on plant biodiversity.

    Science.gov (United States)

    Naeem, S; Prager, Case; Weeks, Brian; Varga, Alex; Flynn, Dan F B; Griffin, Kevin; Muscarella, Robert; Palmer, Matthew; Wood, Stephen; Schuster, William

    2016-12-14

    Biodiversity is inherently multidimensional, encompassing taxonomic, functional, phylogenetic, genetic, landscape and many other elements of variability of life on the Earth. However, this fundamental principle of multidimensionality is rarely applied in research aimed at understanding biodiversity's value to ecosystem functions and the services they provide. This oversight means that our current understanding of the ecological and environmental consequences of biodiversity loss is limited primarily to what unidimensional studies have revealed. To address this issue, we review the literature, develop a conceptual framework for multidimensional biodiversity research based on this review and provide a case study to explore the framework. Our case study specifically examines how herbivory by whitetail deer (Odocoileus virginianus) alters the multidimensional influence of biodiversity on understory plant cover at Black Rock Forest, New York. Using three biodiversity dimensions (taxonomic, functional and phylogenetic diversity) to explore our framework, we found that herbivory alters biodiversity's multidimensional influence on plant cover; an effect not observable through a unidimensional approach. Although our review, framework and case study illustrate the advantages of multidimensional over unidimensional approaches, they also illustrate the statistical and empirical challenges such work entails. Meeting these challenges, however, where data and resources permit, will be important if we are to better understand and manage the consequences we face as biodiversity continues to decline in the foreseeable future. © 2016 The Authors.

  10. Effects of herbivory and flooding on reforestation of baldcypress (Taxodium distichum [L.]) saplings planted in Caddo Lake, Texas

    Science.gov (United States)

    Keeland, Bobby D.; Dale, Rassa O.; Darville, Roy; McCoy, John W.

    2011-01-01

    The effects of herbivory and flooding were examined on survival and growth of planted baldcypress (Taxodium distichum (L.) Rich.) saplings at three sites in Caddo Lake, TX, over a 4-yr period. There were two flood regimes (shallow periodic and deep continuous), where half of the saplings in each flood regime were protected by tree shelters to prevent herbivory. By the end of the first year, over 80% of saplings survived with half of saplings classified as healthy. By the end of the fourth year, only half of the saplings were alive and one-third were healthy. At all three sites, the combination of no protection and continuous flooding resulted in a significant number of missing saplings. Likewise, most unprotected saplings in periodic flooding were missing by the end of the study. Saplings clipped by herbivores showed about 50% chance of recovery, but many of the sprouts were of poor quality. Protected saplings in tree shelters achieved significantly greater survival and height growth.

  11. Nerium oleander indirect leaf photosynthesis and light harvesting reductions after clipping injury or Spodoptera eridania herbivory: high sensitivity to injury.

    Science.gov (United States)

    Delaney, Kevin J

    2012-04-01

    Variable indirect photosynthetic rate (P(n)) responses occur on injured leaves after insect herbivory. It is important to understand factors that influence indirect P(n) reductions after injury. The current study examines the relationship between gas exchange and chlorophyll a fluorescence parameters with injury intensity (% single leaf tissue removal) from clipping or Spodoptera eridania Stoll (Noctuidae) herbivory on Nerium oleander L. (Apocynaceae). Two experiments showed intercellular [CO(2)] increases but P(n) and stomatal conductance reductions with increasing injury intensity, suggesting non-stomatal P(n) limitation. Also, P(n) recovery was incomplete at 3d post-injury. This is the first report of a negative exponential P(n) impairment function with leaf injury intensity to suggest high N. oleander leaf sensitivity to indirect P(n) impairment. Negative linear functions occurred between most other gas exchange and chlorophyll a fluorescence parameters with injury intensity. The degree of light harvesting impairment increased with injury intensity via lower (1) photochemical efficiency indicated lower energy transfer efficiency from reaction centers to PSII, (2) photochemical quenching indicated reaction center closure, and (3) electron transport rates indicated less energy traveling through PSII. Future studies can examine additional mechanisms (mesophyll conductance, carbon fixation, and cardenolide induction) to cause N. oleander indirect leaf P(n) reductions after injury. Published by Elsevier Ireland Ltd.

  12. Transformation of leaf litter by insect herbivory in the Subarctic: Consequences for soil biogeochemistry under global change

    Science.gov (United States)

    Kristensen, J. A.; Metcalfe, D. B.; Rousk, J.

    2017-12-01

    Climate warming may increase insect herbivore ranges and outbreak intensities in arctic ecosystems. Thorough understanding of the implications of these changes for ecosystem processes is essential to make accurate predictions of surface-atmosphere carbon (C) feedbacks. Yet, we lack a comprehensive understanding of the impacts of herbivore outbreaks on soil microbial underpinnings of C and nitrogen (N) fluxes. Here, we investigate the growth responses of heterotrophic soil decomposers and C and N mineralisation to simulated defoliator outbreaks in Subarctic birch forests. In microcosms, topsoil was incubated with leaf litter, insect frass, mineral N and combinations of the three; all was added in equal amounts of N. A higher fraction of added C and N was mineralised during outbreaks (frass addition) relative to non-outbreak years (litter addition). However, under high mineral N-availability in the soil of the kind likely under longer periods of enhanced insect herbivory (litter+mineral N), the mineralised fraction of added C decreased while the mineralised fraction of N increased substantially, which suggest a shift towards more N-mining of the organic substrates. This shift was accompanied by higher fungal dominance, and may facilitate soil C-accumulation assuming constant quality of C-inputs. Thus, long-term increases of insect herbivory, of the kind observed in some areas and projected by some models, may facilitate higher ecosystem C-sink capacity in this Subarctic ecosystem.

  13. Anthropometric measurements and vertebral deformities. European Vertebral Osteoporosis Study (EVOS) Group.

    Science.gov (United States)

    Johnell, O; O'Neill, T; Felsenberg, D; Kanis, J; Cooper, C; Silman, A J

    1997-08-15

    To investigate the association between anthropometric indices and morphometrically determined vertebral deformity, the authors carried out a cross-sectional study using data from the European Vertebral Osteoporosis Study (EVOS), a population-based study of vertebral osteoporosis in 36 European centers from 19 countries. A total of 16,047 EVOS subjects were included in this analysis, of whom 1,973 subjects (915 males, 1,058 females) (12.3%) aged 50 years or over had one or more vertebral deformities ("cases"). The cases were compared with the 14,074 subjects (6,539 males, 7,535 females) with morphometrically normal spines ("controls"). Data were collected on self-reported height at age 25 years and minimum weight after age 25 years, as well as on current measured height and weight. Body mass index (BMI) and height and weight change were calculated from these data. The relations between these variables and vertebral deformity were examined separately by sex with logistic regression adjusting for age, smoking, and physical activity. In females, there was a significant trend of decreasing risk with increasing quintile of current weight, current BMI, and weight gain since age 25 years. In males, subjects in the lightest quintile for these measures were at increased risk but there was no evidence of a trend. An ecologic analysis by country revealed a negative correlation between mean BMI and the prevalence of deformity in females but not in males. The authors conclude that low body weight is associated with presence of vertebral deformity.

  14. Assisted techniques for vertebral cementoplasty: Why should we do it?

    International Nuclear Information System (INIS)

    Muto, M.; Marcia, S.; Guarnieri, G.; Pereira, V.

    2015-01-01

    Assisted techniques (AT) for vertebral cementoplasty include multiple mini-invasive percutaneous systems in which vertebral augmentation is obtained through mechanical devices with the aim to reach the best vertebral height restoration. As an evolution of the vertebroplasty, the rationale of the AT-treatment is to combine the analgesic and stability effect of cement injection with the restoration of a physiological height for the collapsed vertebral body. Reduction of the vertebral body kyphotic deformity, considering the target of normal spine biomechanics, could improve all systemic potential complications evident in patient with vertebral compression fracture (VCF). Main indications for AT are related to fractures in fragile vertebral osseous matrix and non-osteoporotic vertebral lesions due to spine metastasis or trauma. Many companies developed different systems for AT having the same target but different working cannula, different vertebral height restoration system and costs. Aim of this review is to discuss about vertebral cementoplasty procedures and techniques, considering patient inclusion and exclusion criteria as well as all related minor and/or major interventional complications

  15. Assisted techniques for vertebral cementoplasty: Why should we do it?

    Energy Technology Data Exchange (ETDEWEB)

    Muto, M., E-mail: mutomar@tiscali.it [Department of Diagnostic Imaging, Section of Neuroradiology—“A. Cardarelli” Hospital, Naples (Italy); Marcia, S. [Section of Radiology—Santissima Trinità Hospital, Cagliari (Italy); Guarnieri, G. [Department of Diagnostic Imaging, Section of Neuroradiology—“A. Cardarelli” Hospital, Naples (Italy); Pereira, V. [Unit of Interventional Neuroradiology–HUG, Geneva (Switzerland)

    2015-05-15

    Assisted techniques (AT) for vertebral cementoplasty include multiple mini-invasive percutaneous systems in which vertebral augmentation is obtained through mechanical devices with the aim to reach the best vertebral height restoration. As an evolution of the vertebroplasty, the rationale of the AT-treatment is to combine the analgesic and stability effect of cement injection with the restoration of a physiological height for the collapsed vertebral body. Reduction of the vertebral body kyphotic deformity, considering the target of normal spine biomechanics, could improve all systemic potential complications evident in patient with vertebral compression fracture (VCF). Main indications for AT are related to fractures in fragile vertebral osseous matrix and non-osteoporotic vertebral lesions due to spine metastasis or trauma. Many companies developed different systems for AT having the same target but different working cannula, different vertebral height restoration system and costs. Aim of this review is to discuss about vertebral cementoplasty procedures and techniques, considering patient inclusion and exclusion criteria as well as all related minor and/or major interventional complications.

  16. Evaluation on vertebral endplate injury and adjacent intervertebral disk injury of patients with osteoporotic vertebral compression fractures by MRI and its clinical significance

    International Nuclear Information System (INIS)

    Shen Yu; Shen Huiliang; Fang Xiutong; Zhang Wenbo

    2012-01-01

    Objective: To investigate the relationship between vertebral endplate injury and adjacent intervertebral disk injury of patients with acute or sub-acute osteoporotic vertebral compression fractures (OVC-F) by MRI, and to provide basis for diagnosis of OVCF. Methods: The clinical data of a total of 66 patients with OVCF underwent vertebroplasty (76 fracture of vertebral bodies) were selected. The vertebral endplate injury and adjacent intervertebral disk injury of OVCF patients were detected by MRI. Results: There were 57 vertebral endplate injury in 76 fracture vertebral bodies (75% ). There were only 27 vertebral bodies with vertebral endplate injury in 57 fracture vertebral bodies with endplate injury (47% ), and 22 vertebral with superior and inferior vertebral endplate injury (39% ), and 8 vertebral bodies with inferior vertebral endplate injury (14% ). There were 48 vertebral bodies with intervertebral disc injury in 76 fracture vertebral bodies (63% ). There were 22 intervertebral disc injury located above the fracture of the lumbar spine in 48 vertebral bodies with intervertebral disc injury (45% ), and 19 fracture vertebral bodies with upper and lower intervertebral disc injury (40% ), and 7 intervertebral injuries located below the fracture of the lumbar spine (15% ). Conclusion: Vertebral endplate injury is frequently associated with the adjacent intervertebral disk injury. The clinical diagnosis and treatment should be emphasized in the fracture vertebral endplate damage and adjacent intervertebral disc injury. (authors)

  17. Modulación del crecimiento vertebral mediante electrocoagulación hemicircunferencial vertebral asistida

    OpenAIRE

    Caballero García, Alberto

    2011-01-01

    Nuestro trabajo está basado en la posibilidad de controlar el desarrollo asimétrico de los cartílagos de crecimiento vertebral, mediante la realización de una fisiodesis hemivertebral, con electrocoagulación, videoasistida por toracoscópica. Se realizará en cinco niveles torácicos, con un abordaje anterior mínimamente invasivo. Por lo tanto, planteamos como hipótesis de trabajo que La destrucción de las fisis de crecimiento vertebral mediante electrocoagulación, videoasistida por vía toracosc...

  18. Influence of physical activity on vertebral strength during late adolescence.

    Science.gov (United States)

    Junno, Juho-Antti; Paananen, Markus; Karppinen, Jaro; Tammelin, Tuija; Niinimäki, Jaakko; Lammentausta, Eveliina; Niskanen, Markku; Nieminen, Miika T; Järvelin, Marjo-Riitta; Takatalo, Jani; Tervonen, Osmo; Tuukkanen, Juha

    2013-02-01

    Reduced vertebral strength is a clear risk factor for vertebral fractures. Men and women with vertebral fractures often have reduced vertebral size and bone mineral density (BMD). Vertebral strength is controlled by both genetic and developmental factors. Malnutrition and low levels of physical activity are commonly considered to result in reduced bone size during growth. Several studies have also demonstrated the general relationship between BMD and physical activity in the appendicular skeleton. In this study, we wanted to clarify the role of physical activity on vertebral bodies. Vertebral dimensions appear to generally be less pliant than long bones when lifetime changes occur. We wanted to explore the association between physical activity during late adolescence and vertebral strength parameters such as cross-sectional size and BMD. The association between physical activity and vertebral strength was explored by measuring vertebral strength parameters and defining the level of physical activity during adolescence. The study population consisted of 6,928 males and females who, at 15 to 16 and 19 years of age, responded to a mailed questionnaire inquiring about their physical activity. A total of 558 individuals at the mean age of 21 years underwent magnetic resonance imaging (MRI) scans. We measured the dimensions of the fourth lumbar vertebra from the MRI scans of the Northern Finland Birth Cohort 1986 and performed T2* relaxation time mapping, reflective of BMD. Vertebral strength was based on these two parameters. We analyzed the association of physical activity on vertebral strength using the analysis of variance. We observed no association between the level of physical activity during late adolescence and vertebral strength at 21 years. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Herbivory of sympatric elk and cattle on Lincoln National Forest, south-central New Mexico

    Directory of Open Access Journals (Sweden)

    Heather H. Halbritter

    2015-09-01

    Full Text Available Background Wildlife and livestock grazing are important products of forest ecosystems, but can be controversial. Herbivory by North American elk and domestic cattle is a contentious management issue throughout western North America, often driving management proposals to decrease cattle and elk numbers based on perceived overutilization of forages. Such observations are often site level rather than landscape, and may confuse ecological sustainability with desired conditions. Methods We used line transects to document vegetation composition, structure, and grazing and browsing utilization for 4 key habitat types: mountain meadows, aspen, thinned conifer, and burned conifer on Lincoln National Forest, New Mexico, USA. We documented relative habitat use of these types by elk, mule deer, and cattle and modeled relative use on residual grass biomass of mountain meadows and browse utilization of forested types. We determined diets and diet quality of elk and cattle to assess degree of competition. Results Use of grasses in meadows was below management thresholds, and combined elk, cattle, and deer relative habitat use accounted for < 14 % of the variance in residual stubble height of Poa pratensis, the most abundant grass. Palatable browse was limited in habitat types (< 107 stems·ha -1 , use was generally high, and elk presence was correlated with the majority of browsing. Elk and cattle diets did not significantly overlap (Schoener’s index 0.54–0.57; elk fed primarily on deciduous shrubs (34 %–55 % of annual diets and cattle on grass (72 %–77 %. Digestibility and crude protein levels of cattle diets and body condition of elk indicated high quality diets for cattle and marginal–good quality diets for elk. Conclusions At observed stocking levels and densities, cattle and elk were not competing for forage based on diet similarity, nor were key habitat types being used beyond sustainable levels. Low browse availability indicates that

  20. Vegetation change (1988–2010 in Camdeboo National Park (South Africa, using fixed-point photo monitoring: The role of herbivory and climate

    Directory of Open Access Journals (Sweden)

    Mmoto L. Masubelele

    2013-10-01

    Conservation implications: We provided an historical assessment of the pattern of vegetation and climatic trends that can help evaluate many of South African National Parks’ biodiversity monitoring programmes, especially relating to habitat change. It will help arid parks in assessing the trajectories of vegetation in response to herbivory, climate and management interventions.

  1. The Effect of Herbivory by White-Tailed Deer and Additionally Swamp Rabbits in an Old-Growth Bottomland Hardwood Forest

    Science.gov (United States)

    Margaret S. Devall; Bernard R. Parresol; Winston P. Smith

    2001-01-01

    Forest openings create internal patchiness and offer different habitat qualities that attract wildlife, especially herbivores, that flourish along forest edges. But intense herbivory in these openings can reduce or eliminate herbaceous and woody species and thus influence local species composition and structure of the forest. This study in an old-growth bottomland...

  2. Exploring the potential for climatic factors, herbivory, and co-occuring vegetation to shape performance in native and introduced populations of Verbascum thapsus

    Czech Academy of Sciences Publication Activity Database

    Alba, Christina; Hufbauer, R.

    2012-01-01

    Roč. 14, č. 12 (2012), s. 2505-2518 ISSN 1387-3547 Institutional research plan: CEZ:AV0Z60050516 Institutional support: RVO:67985939 Keywords : competition * enemy escape * herbivory Subject RIV: EF - Botanics Impact factor: 2.509, year: 2012

  3. Health economic aspects of vertebral augmentation procedures.

    Science.gov (United States)

    Borgström, F; Beall, D P; Berven, S; Boonen, S; Christie, S; Kallmes, D F; Kanis, J A; Olafsson, G; Singer, A J; Åkesson, K

    2015-04-01

    We reviewed all peer-reviewed papers analysing the cost-effectiveness of vertebroplasty and balloon kyphoplasty for osteoporotic vertebral compression fractures. In general, the procedures appear to be cost effective but are very dependent upon model input details. Better data, rather than new models, are needed to answer outstanding questions. Vertebral augmentation procedures (VAPs), including vertebroplasty (VP) and balloon kyphoplasty (BKP), seek to stabilise fractured vertebral bodies and reduce pain. The aim of this paper is to review current literature on the cost-effectiveness of VAPs as well as to discuss the challenges for economic evaluation in this research area. A systematic literature search was conducted to identify existing published studies on the cost-effectiveness of VAPs in patients with osteoporosis. Only peer-reviewed published articles that fulfilled the criteria of being regarded as full economic evaluations including both morbidity and mortality in the outcome measure in the form of quality-adjusted life years (QALYs) were included. The search identified 949 studies, of which four (0.4 %) were identified as relevant with one study added later. The reviewed studies differed widely in terms of study design, modelling framework and data used, yielding different results and conclusions regarding the cost-effectiveness of VAPs. Three out of five studies indicated in the base case results that VAPs were cost effective compared to non-surgical management (NSM). The five main factors that drove the variations in the cost-effectiveness between the studies were time horizon, quality of life effect of treatment, offset time of the treatment effect, reduced number of bed days associated with VAPs and mortality benefit with treatment. The cost-effectiveness of VAPs is uncertain. In answering the remaining questions, new cost-effectiveness analysis will yield limited benefit. Rather, studies that can reduce the uncertainty in the underlying data

  4. [Development and application of artificial vertebral body].

    Science.gov (United States)

    Liu, Jian-Tao; Zhang, Feng; Gao, Zheng-Chao; Niu, Bin-Bin; Li, Yu-Huan; He, Xi-Jing

    2017-12-25

    Artificial vertebral body has achieved good results in treating spinal tumors, tuberculosis, fracture and other diseases. Currently, artificial vertebral body with variety of kinds and pros and cons, is generally divided into two types: fusion type and movable type. The former according to whether the height could be adjusted and strength of self-stability is divided into three types: support-fixed type, adjust-fixed type and self-fixed type. Whether the height of self-fixed type could be adjusted is dependent on structure of collar thread rotation. The latter is due to mobile device of ball-and-socket joints or hollow structures instead of the disc which retains the activity of the spine to some extent. Materials of artificial vertebral body include metals, ceramics, biomaterials, polymer composites and other materials. Titanium with a dominant role in the metal has developed to the third generation, but there are still defects such as poor surface bioactivity; ceramics with the representative of hydroxyapatite composite, magnetic bioceramics, polycrystalline alumina ceramics and so on, which have the defects of processing complex and uneven mechanical properties; biological material is mainly dominated by xenogeneic bone, which is closest to human bone in structure and properties, but has defects of low toughness and complex production; polymer composites according to biological characteristics in general consists of biodegradable type and non-biodegradable type which are respectively represented by poly-lactide and polyethylene, each with advantages and disadvantages. Although the design and materials of prosthesis have made great progress, it is difficult to fully meet requirements of spinal implants and they need be further optimized. 3D printing technology makes process of the complex structure of prosthesis and individual customization possible and has broad development prospects. However, long production cycles and high cost of defect should be overcome

  5. Vertebrate gravity sensors as dynamic systems

    Science.gov (United States)

    Ross, M. D.

    1985-01-01

    This paper considers verterbrate gravity receptors as dynamic sensors. That is, it is hypothesized that gravity is a constant force to which an acceleration-sensing system would readily adapt. Premises are considered in light of the presence of kinocilia on hair cells of vertebrate gravity sensors; differences in loading of the sensors among species; and of possible reduction in loading by inclusion of much organic material in otoconia. Moreover, organic-inorganic interfaces may confer a piezoelectric property upon otoconia, which increase the sensitivity of the sensory system to small accelerations. Comparisons with man-made accelerometers are briefly taken up.

  6. Homology in vertebrates bone mineral structure

    International Nuclear Information System (INIS)

    Batdehmbehrehl, G.; Chultehm, D.; Sangaa, D.

    1999-01-01

    Using the neutron diffraction method a domination of low crystal syngonic (sp. gr. P63/m) phase Ca 5 [PO 4 ] 3 (OH, F, Cl) in bull and sheep bones as well as in the fossil dinosaur bone has been established and crystal phases in all the bones have identical structure (homology). The result becomes to be an important contribution to fundamental science such as biological evolution and to be useful in medical practice and solution of radiobiological problems connected with vertebrates and man. (author)

  7. Endplates Changes Related to Age and Vertebral Segment

    Directory of Open Access Journals (Sweden)

    Carlos Fernando P. S. Herrero

    2014-01-01

    Full Text Available Endplate separations are defined as the presence of a space between the hyaline cartilage and the cortical bone of the adjacent vertebral body. This study evaluates endplate separations from the vertebral body and intervertebral discs and verifies if endplate separation is related to age and the spinal level. Groups were formed based on age (20–40 and 41–85 years old and the vertebral segment (T7-T8 and L4-L5 segments. Histological analysis included assessment of the length of the vertebral endplates, the number and dimensions of the separations, and orientation of the collagen fibers, in the mid-sagittal slice. Two indexes were created: the separation index (number of separations/vertebral length and separation extension index (sum of all separations/vertebral length. The results of the study demonstrated a direct relationship between the density of separations in the endplate and two variables: age and spinal level.

  8. Vertebral morphometry by dual-energy X-ray absorptiometry

    International Nuclear Information System (INIS)

    Boyanov, M.

    2002-01-01

    Vertebral fractures are a key feature of overt osteoporosis. Different X-ray morphometric techniques have been developed for quantification of changes in vertebral body shape. In recent years, a new method was implemented based on dual-energy X-ray absorptiometry. Morphometric X-ray absorptiometry, MXA, is a source of lower radiation and there is no image distortion. Several aspects of its application are under heavy discussion: image quality, accuracy and precision, reference databases, age changes in vertebral shape. The differential diagnosis of vertebral fracture/deformity is difficult. MXA has prove its value in large epidemiological studies on prevalence of vertebral deformities, as well in assessing the effects of different diseases and medications on vertebral body architecture. MXA is a promising method for future research and clinical work. (author)

  9. CT and MRI characteristics of vertebral tuberculosis (34 cases)

    International Nuclear Information System (INIS)

    Lu Wenbing; Liao Qinghou; Wu Shiqiang; Huang Tao; Deng Yufang; Liu Jianming

    2007-01-01

    Objective: To explore CT and MRI characteristics of vertebral tuberculosis. Methods: 34 patients with vertebral tuberculosis proved by clinic or pathology were analyzed retrospectively. Of these patients, 20 were performed with CT examination and 24 with MRI, 10 with both CT and MRI. The results were compared mutually. Results: The CT features of vertebral tuberculosis were bone destruction, paraspinal abscess, spinal canal involvement. The MRI features of vertebral tuberculosis were bone destruction, intervertebral disc destruction, paraspinal abscess, spinal canal involvement, sub-ligamental spread. Conclusion: Vertebral tuberculosis showed multiple characteristics on CT and MRI. CT is useful in showing sequester and calcification, and MRI is useful in showing sub-ligamental spread, epidural and spinal cord involvement. Combining CT with and MRI is helpful for the diagnosis and differential diagnosis of vertebral tuberculosis. (authors)

  10. Vascular complications of prosthetic inter-vertebral discs

    OpenAIRE

    Daly, Kevin J.; Ross, E. Raymond S.; Norris, Heather; McCollum, Charles N.

    2006-01-01

    Five consecutive cases of prosthetic inter-vertebral disc displacement with severe vascular complications on revisional surgery are described. The objective of this case report is to warn spinal surgeons that major vascular complications are likely with anterior displacement of inter-vertebral discs. We have not been able to find a previous report on vascular complications associated with anterior displacement of prosthetic inter-vertebral discs. In all five patients the prosthetic disc had e...

  11. Low interannual precipitation has a greater negative effect than seedling herbivory on the population dynamics of a short-lived shrub, Schiedea obovata.

    Science.gov (United States)

    Bialic-Murphy, Lalasia; Gaoue, Orou G

    2018-01-01

    Climate projections forecast more extreme interannual climate variability over time, with an increase in the severity and duration of extreme drought and rainfall events. Based on bioclimatic envelope models, it is projected that changing precipitation patterns will drastically alter the spatial distributions and density of plants and be a primary driver of biodiversity loss. However, many other underlying mechanisms can impact plant vital rates (i.e., survival, growth, and reproduction) and population dynamics. In this study, we developed a size-dependent integral projection model (IPM) to evaluate how interannual precipitation and mollusk herbivory influence the dynamics of a Hawaii endemic short-lived shrub, Schiedea obovata (Caryophyllaceae). Assessing how wet season precipitation effects population dynamics it critical, as it is the timeframe when most of the foliar growth occurs, plants flower and fruit, and seedlings establish. Temporal variation in wet season precipitation had a greater effect than mollusk herbivory on S . obovata population growth rate λ, and the impact of interannual precipitation on vital rates shifted across plant ontogeny. Furthermore, wet season precipitation influenced multiple vital rates in contrasting ways and the effect of precipitation on the survival of larger vegetative and reproductively mature individuals contributed the most to variation in the population growth rate. Among all combination of wet season precipitation and herbivory intensities, the only scenario that led to a growing population was when high wet precipitation was associated with low herbivory. Our study highlights the importance of evaluating how abiotic factors and plant-consumer interactions influence an organism across its life cycle to fully understand the underpinning mechanisms that structure its spatial and temporal distribution and abundance. Our results also illustrate that for short-lived species, like S. obovata , seedling herbivory can have

  12. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    Science.gov (United States)

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  13. Vertebral metastases: characteristic MRI findings due to epidural carcinomatous inflitration

    International Nuclear Information System (INIS)

    Hutzelmann, A.; Palmie, S.; Freund, M.

    1997-01-01

    Purpose: In cases of lumbar vertebral metastasis associated with anterior epidural carcinomatous infiltration, we have observed that infiltrations tend to respect the midline. This study led to the systematic recognition of these phenomena in vertebral metastases. Materials and Methods: 11 Patients with 17 vertebral metastases and adjacent anterior epidural infiltration were reviewed retrospectively. All cases were studied by MRI. The routinely used imaging technique included spin echo (SE) T 1 and T 2 weighted sequences in the sagittal plane native and T 1 -SE without and with Gd-DTPA in the axial planes. The radiological findings of these phenomena and the anatomy were studied. Results: We observed these phenomena to be uni- or bilateral in 88.3% of all cases with intraspinal anterior epidural carcinomatous infiltration, especially in that part of the vertebral body where the basal vertebral venous plexus was located. Conclusion: We conclude that vertebral metastases respect the midline. We interpret this fact as being due the anatomy of the vertebral body and especially its stabilization by the posterior longitudinal ligament. These findings may be helpful in the differential diagnosis of vertebral body metastases with epidural infiltration in contrast to intraspinal processes which proceed with the destruction of the vertebral body. (orig.) [de

  14. Use of cervical vertebral dimensions for assessment of children growth.

    Science.gov (United States)

    Caldas, Maria de Paula; Ambrosano, Gláucia Maria Bovi; Haiter-Neto, Francisco

    2007-04-01

    The purpose of this study was to investigate whether skeletal maturation using cephalometric radiographs could be used in a Brazilian population. The study population was selected from the files of the Oral Radiological Clinic of the Dental School of Piracicaba, Brazil and consisted of 128 girls and 110 boys (7.0 to 15.9 years old) who had cephalometric and hand-wrist radiographs taken on the same day. Cervical vertebral bone age was evaluated using the method described by Mito and colleagues in 2002. Bone age was assessed by the Tanner-Whitehouse (TW3) method and was used as a gold standard to determine the reliability of cervical vertebral bone age. An analysis of variance and Tukey's post-hoc test were used to compare cervical vertebral bone age, bone age and chronological age at 5% significance level. The analysis of the Brazilian female children data showed that there was a statistically significant difference (pcervical vertebral bone age and chronological age and between bone age and chronological age. However no statistically significant difference (p>0.05) was found between cervical vertebral bone age and bone age. Differently, the analysis of the male children data revealed a statistically significant difference (pcervical vertebral bone age and bone age and between cervical vertebral bone age and chronological age (pmaturation on cephalometric radiographs by determination of vertebral bone age can be applied to Brazilian females only. The development of a new method to objectively evaluate cervical vertebral bone age in males is needed.

  15. Establishment of the Vertebrate Germ Layers.

    Science.gov (United States)

    Tseng, Wei-Chia; Munisha, Mumingjiang; Gutierrez, Juan B; Dougan, Scott T

    2017-01-01

    The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.

  16. [A vertebral arteriovenous fistula diagnosed by auscultation].

    Science.gov (United States)

    Iglesias Escalera, G; Diaz-Delgado Peñas, R; Carrasco Marina, M Ll; Maraña Perez, A; Ialeggio, D

    2015-01-01

    Cervical artery fistulas are rare arteriovenous malformations. The etiology of the vertebral arteriovenous fistulas (AVF) can be traumatic or spontaneous. They tend to be asymptomatic or palpation or continuous vibration in the cervical region. An arteriography is necessary for a definitive diagnosis. The treatment is complete embolization of the fistula. We present the case of a two year-old male, where the mother described it «like a washing machine in his head». On palpation during the physical examination, there was a continuous vibration, and a continuous murmur in left cervical region. A vascular malformation in vertebral region was clinically suspected, and confirmed with angio-MRI and arteriography. AVF are rare in childhood. They should be suspected in the presence of noises, palpation or continuous vibration in the cervical region. Early diagnosis can prevent severe complications in asymptomatic children. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  17. Permo-Triassic vertebrate extinctions: A program

    Science.gov (United States)

    Olson, E. C.

    1988-01-01

    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed.

  18. Tandemly Arrayed Genes in Vertebrate Genomes

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2008-01-01

    Full Text Available Tandemly arrayed genes (TAGs are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72–94% have parallel transcription orientation (i.e., they are encoded on the same strand in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.

  19. A membrane-bound vertebrate globin.

    Directory of Open Access Journals (Sweden)

    Miriam Blank

    Full Text Available The family of vertebrate globins includes hemoglobin, myoglobin, and other O(2-binding proteins of yet unclear functions. Among these, globin X is restricted to fish and amphibians. Zebrafish (Danio rerio globin X is expressed at low levels in neurons of the central nervous system and appears to be associated with the sensory system. The protein harbors a unique N-terminal extension with putative N-myristoylation and S-palmitoylation sites, suggesting membrane-association. Intracellular localization and transport of globin X was studied in 3T3 cells employing green fluorescence protein fusion constructs. Both myristoylation and palmitoylation sites are required for correct targeting and membrane localization of globin X. To the best of our knowledge, this is the first time that a vertebrate globin has been identified as component of the cell membrane. Globin X has a hexacoordinate binding scheme and displays cooperative O(2 binding with a variable affinity (P(50∼1.3-12.5 torr, depending on buffer conditions. A respiratory function of globin X is unlikely, but analogous to some prokaryotic membrane-globins it may either protect the lipids in cell membrane from oxidation or may act as a redox-sensing or signaling protein.

  20. Evolution of vertebrate interferon inducible transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Hickford Danielle

    2012-04-01

    Full Text Available Abstract Background Interferon inducible transmembrane proteins (IFITMs have diverse roles, including the control of cell proliferation, promotion of homotypic cell adhesion, protection against viral infection, promotion of bone matrix maturation and mineralisation, and mediating germ cell development. Most IFITMs have been well characterised in human and mouse but little published data exists for other animals. This study characterised IFITMs in two distantly related marsupial species, the Australian tammar wallaby and the South American grey short-tailed opossum, and analysed the phylogeny of the IFITM family in vertebrates. Results Five IFITM paralogues were identified in both the tammar and opossum. As in eutherians, most marsupial IFITM genes exist within a cluster, contain two exons and encode proteins with two transmembrane domains. Only two IFITM genes, IFITM5 and IFITM10, have orthologues in both marsupials and eutherians. IFITM5 arose in bony fish and IFITM10 in tetrapods. The bone-specific expression of IFITM5 appears to be restricted to therian mammals, suggesting that its specialised role in bone production is a recent adaptation specific to mammals. IFITM10 is the most highly conserved IFITM, sharing at least 85% amino acid identity between birds, reptiles and mammals and suggesting an important role for this presently uncharacterised protein. Conclusions Like eutherians, marsupials also have multiple IFITM genes that exist in a gene cluster. The differing expression patterns for many of the paralogues, together with poor sequence conservation between species, suggests that IFITM genes have acquired many different roles during vertebrate evolution.

  1. Primary bone lymphoma with multiple vertebral involvement

    Directory of Open Access Journals (Sweden)

    Showkat Hussain Dar

    2013-01-01

    Full Text Available A 20-year-old student presented with 2 months history of fever and night sweats, 15 days history of low backache, progressive weakness of both limbs of 7 days duration, and urinary retention for last 24 h. Examination revealed a sensory level at D 10 dermatome and grade two power in both the lower limbs with absent reflexes. Examination of spine revealed a knuckle at T8 level, which was tender on palpation. MRI spine showed erosion of D11-12 and L1 in vertebral bodies with destruction of left pedicles, transverse processes and lamina, and a prominent psoas abscess. Post gadolinium study revealed ring-enhancing lesions in the D11-12 and L1 vertebrae as well as the dural sac. Fine needle aspiration cytology (FNAC and bone biopsy demonstrated a non-Hodgkin′s lymphoma (NHL, large cell high-grade of the spine (primary, which as per age is the youngest case of NHL ever reported in literature with multiple vertebral involvement.

  2. Reliability of cervical vertebral maturation staging.

    Science.gov (United States)

    Rainey, Billie-Jean; Burnside, Girvan; Harrison, Jayne E

    2016-07-01

    Growth and its prediction are important for the success of many orthodontic treatments. The aim of this study was to determine the reliability of the cervical vertebral maturation (CVM) method for the assessment of mandibular growth. A group of 20 orthodontic clinicians, inexperienced in CVM staging, was trained to use the improved version of the CVM method for the assessment of mandibular growth with a teaching program. They independently assessed 72 consecutive lateral cephalograms, taken at Liverpool University Dental Hospital, on 2 occasions. The cephalograms were presented in 2 different random orders and interspersed with 11 additional images for standardization. The intraobserver and interobserver agreement values were evaluated using the weighted kappa statistic. The intraobserver and interobserver agreement values were substantial (weighted kappa, 0.6-0.8). The overall intraobserver agreement was 0.70 (SE, 0.01), with average agreement of 89%. The interobserver agreement values were 0.68 (SE, 0.03) for phase 1 and 0.66 (SE, 0.03) for phase 2, with average interobserver agreement of 88%. The intraobserver and interobserver agreement values of classifying the vertebral stages with the CVM method were substantial. These findings demonstrate that this method of CVM classification is reproducible and reliable. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  3. Midterm Follow-Up of Vertebral Geometry and Remodeling of the Vertebral Bidisk Unit (VDU) After Percutaneous Vertebroplasty of Osteoporotic Vertebral Fractures

    International Nuclear Information System (INIS)

    Pitton, Michael Bernhard; Koch, Ulrike; Drees, Philip; Dueber, Christoph

    2009-01-01

    The purpose of this study was to investigate geometrical stability and preservation of height gain of vertebral bodies after percutaneous vertebroplasty during 2 years' follow-up and to elucidate the geometric remodeling process of the vertebral bidisk unit (VDU) of the affected segment. Patients with osteoporotic vertebral compression fractures with pain resistant to analgetic drugs were treated with polymethylmethacrylate vertebroplasty. Mean ± standard error cement volume was 5.1 ± 2.0 ml. Vertebral geometry was documented by sagittal and coronal reformations from multidetector computed tomography data sets: anterior, posterior, and lateral vertebral heights, end plate angles, and compression index (CI = anterior/posterior height). Additionally, the VDU (vertebral bodies plus both adjacent disk spaces) was calculated from the multidetector computed tomography data sets: anterior, posterior, and both lateral aspects. Patients were assigned to two groups: moderate compression with CI of >0.75 (group 1) and severe compression with CI of o vs. -1.0 ± 2.7 o , P o , P < 0.01) and compression indices (+0.11 ± 0.15, P < 0.01). Thus, posterior height loss of vertebrae and adjacent intervertebral disk spaces contributed to a remodeling of the VDU, resulting in some compensation of the kyphotic malposition of the affected vertebral segment. Vertebroplasty improved vertebral geometry during midterm follow-up. In severe vertebral compression, significant height gain and improvement of end plate angles were achieved. The remodeling of the VDUs contributes to reduction of kyphosis and an overall improvement of the statics of the spine.

  4. Light adaptation and the evolution of vertebrate photoreceptors.

    Science.gov (United States)

    Morshedian, Ala; Fain, Gordon L

    2017-07-15

    Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease

  5. Imperfect isolation: factors and filters shaping Madagascar's extant vertebrate fauna.

    Science.gov (United States)

    Samonds, Karen E; Godfrey, Laurie R; Ali, Jason R; Goodman, Steven M; Vences, Miguel; Sutherland, Michael R; Irwin, Mitchell T; Krause, David W

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar's colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island's biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island's paleogeographical evolution to determine how particular events influenced the arrival of the island's extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar's tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island's isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar's extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar's unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of other, more

  6. Effects of foliar herbivory by insects on the fitness of Raphanus raphanistrum: damage can increase male fitness.

    Science.gov (United States)

    Strauss, S Y; Conner, J K; Lehtilä, K P

    2001-11-01

    Generally, effects of herbivory on plant fitness have been measured in terms of female reproductive success (seed production). However, male plant fitness, defined as the number of seeds sired by pollen, contributes half of the genes to the next generation and is therefore crucial to the evolution of natural plant populations. This is the first study to examine effects of insect herbivory on both male and female plant reproductive success. Through controlled field and greenhouse experiments and genetic paternity analysis, we found that foliar damage by insects caused a range of responses by plants. In one environment, damaged plants had greater success as male parents than undamaged plants. Neither effects on pollen competitive ability nor pollinator visitation patterns could explain the greater siring success of these damaged plants. Success of damaged plants as male parents appeared to be due primarily to changes in allocation to flowers versus seeds after damage. Damaged plants produced more flowers early in the season, but not more seeds, than undamaged plants. Based on total seed production, male fitness measures from the first third of the season, and flower production, we estimated that damaged and undamaged plants had equal total reproductive success at the end of the season in this environment. In a second, richer environment, damaged and undamaged plants had equal male and female plant fitness, and no traits differed significantly between the treatments. Equal total reproductive success may not be ecologically or evolutionarily equivalent if it is achieved differentially through male versus female fitness. Genes from damaged plants dispersed through pollen may escape attack from herbivores, if such attack is correlated spatially from year to year.

  7. Ischemic stroke: carotid and vertebral artery disease

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, P.; Goulao, A. [Hospital Garcia de Orta, Servico de Neurorradiologia, Almada (Portugal)

    2005-03-01

    Ischemic strokes may have distinct aetiologies, including several different intrinsic arterial pathological disorders. The diagnosis and understanding of these arterial diseases is critical for the correct management of stroke as different treatment approaches are undertaken according to the aetiology. Atherosclerosis is by far the most common arterial disease among adults, and other pathological processes include arterial dissection, small vessel disease, inflammatory and non-inflammatory vasculopathy and vasomotor disorders. In children, there are several vasculopathies responsible for vaso-occlusive disease such as sickle-cell anemia, acute regressive angiopathy and Moya-Moya disease, neurofibromatosis, dissections, vasculitis associated with intracranial and systemic infections. An overview of the major carotid and vertebral pathological diseases responsible for ischemic stroke in adults and children, highlighting the accuracy of the different imaging modalities for its diagnosis and the imaging appearance of these diseases, is given. (orig.)

  8. Ischemic stroke: carotid and vertebral artery disease

    International Nuclear Information System (INIS)

    Vilela, P.; Goulao, A.

    2005-01-01

    Ischemic strokes may have distinct aetiologies, including several different intrinsic arterial pathological disorders. The diagnosis and understanding of these arterial diseases is critical for the correct management of stroke as different treatment approaches are undertaken according to the aetiology. Atherosclerosis is by far the most common arterial disease among adults, and other pathological processes include arterial dissection, small vessel disease, inflammatory and non-inflammatory vasculopathy and vasomotor disorders. In children, there are several vasculopathies responsible for vaso-occlusive disease such as sickle-cell anemia, acute regressive angiopathy and Moya-Moya disease, neurofibromatosis, dissections, vasculitis associated with intracranial and systemic infections. An overview of the major carotid and vertebral pathological diseases responsible for ischemic stroke in adults and children, highlighting the accuracy of the different imaging modalities for its diagnosis and the imaging appearance of these diseases, is given. (orig.)

  9. Physiology of cell volume regulation in vertebrates

    DEFF Research Database (Denmark)

    Hoffmann, Else K; Lambert, Ian H; Pedersen, Stine F

    2009-01-01

    and their regulation by, e.g., membrane deformation, ionic strength, Ca(2+), protein kinases and phosphatases, cytoskeletal elements, GTP binding proteins, lipid mediators, and reactive oxygen species, upon changes in cell volume. We also discuss the nature of the upstream elements in volume sensing in vertebrate...... organisms. Importantly, cell volume impacts on a wide array of physiological processes, including transepithelial transport; cell migration, proliferation, and death; and changes in cell volume function as specific signals regulating these processes. A discussion of this issue concludes the review.......The ability to control cell volume is pivotal for cell function. Cell volume perturbation elicits a wide array of signaling events, leading to protective (e.g., cytoskeletal rearrangement) and adaptive (e.g., altered expression of osmolyte transporters and heat shock proteins) measures and, in most...

  10. Reconstruction techniques in the treatment of vertebral neoplasms.

    Science.gov (United States)

    Biagini, R; Boriani, S; Casadei, R; Bandiera, S; De Iure, F; Campanacci, L; Demitri, S; Orsini, U; Di Fiore, M

    1997-01-01

    The authors present a new system for the topographical description of vertebral neoplasms. The general criteria of reconstruction after curettage or vertebral resection are evaluated. The literature is reviewed in terms of the use of prostheses, bone grafts, cement and stabilization systems in the treatment of tumors of the spine. Indications for the different methods are discussed.

  11. Vertebral fractures in patients with rheumatoid arthritis treated with corticosteroids

    NARCIS (Netherlands)

    Lems, W. F.; Jahangier, Z. N.; Jacobs, J. W.; Bijlsma, J. W.

    1995-01-01

    To examine the relationship between roentgenological deformities of the vertebral column and clinical manifestations of vertebral fractures in patients with RA, treated with glucocorticosteroids (Cs). In all outpatients of Utrecht University Hospital with RA, who were currently using Cs (n = 52),

  12. Preoperative MRI evaluation of vertebral hemangiomas treated with percutaneous vertebroplasty

    International Nuclear Information System (INIS)

    Liu Xiaoping; Wu Chungen; Li Minghua; Li Yuehua; Gu Yifeng; Cheng Yongde

    2012-01-01

    Objective: To discuss the clinical value of preoperative magnetic resonance imaging examination in guiding the treatment of vertebral hemangiomas with percutaneous vertebroplasty (PVP). Methods: A total of 286 patients with vertebral hemangiomas detected on spine MRI in authors' Department were enrolled in this study. The patient's age, the lesion's size and location, the clinical symptoms, MRI findings, etc. were retrospectively analyzed. Results: A total of 336 vertebral bodies were affected in 286 patients. The lesions were mainly located at the lumbar spine (43.15%) and the thoracic spine (37.80%). The highest incidence of disease was seen in 50-59 years old patients (34.62%). The mean diameter of the lesions was 14.56 mm. Solitary lesion was seen in 85.66% of patients, while two vertebral bodies involved were seen in 10.14% of patients. Twelve cases (4.20%) simply presented as back pain at the related vertebral bodies. Two patients showed signs due to spinal cord compression. All aggressive vertebral hemangiomas were manifested as iso-lower signal on T1-weighted images and higher signal on T2-weighted images. Simple PVP was performed in 4 cases, and subtotal tumor excision together with PVP was carried out in two patients with aggressive vertebral hemangiomas. Conclusion: Evaluation of vertebral hemangiomas with MRI performed prior to percutaneous vertebroplasty is very helpful in guiding the selection of therapeutic scheme. (authors)

  13. Cooperative Learning as a Tool To Teach Vertebrate Anatomy.

    Science.gov (United States)

    Koprowski, John L.; Perigo, Nan

    2000-01-01

    Describes a method for teaching biology that includes more investigative exercises that foster an environment for cooperative learning in introductory laboratories that focus on vertebrates. Fosters collaborative learning by facilitating interaction between students as they become experts on their representative vertebrate structures. (SAH)

  14. Vertebrate Osmoregulation: A Student Laboratory Exercise Using Teleost Fish

    Science.gov (United States)

    Boily P.; Rees, B. B.; Williamson, L. A. C.

    2007-01-01

    Here, we describe a laboratory experiment as part of an upper-level vertebrate physiology course for biology majors to investigate the physiological response of vertebrates to osmoregulatory challenges. The experiment involves measuring plasma osmolality and Na[superscript +] -K[superscript +] -ATPase activity in gill tissue of teleost fish…

  15. 50 CFR 17.84 - Special rules-vertebrates.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 2 2010-10-01 2010-10-01 false Special rules-vertebrates. 17.84 Section 17.84 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE, DEPARTMENT OF THE INTERIOR....84 Special rules—vertebrates. (a) Delmarva Peninsula fox squirrel (Sciurus niger cinereus). (1) The...

  16. Closed cervical spine trauma associated with bilateral vertebral artery injuries

    NARCIS (Netherlands)

    Kloen, P.; Patterson, J. D.; Wintman, B. I.; Ozuna, R. M.; Brick, G. W.

    1999-01-01

    Bilateral vertebral artery injuries in closed cervical spine injuries are uncommon, but early recognition and treatment are important to prevent neurological deterioration. A case of bilateral vertebral injuries in a 35-year-old motor vehicle accident victim is presented, and the current literature

  17. Checklist of vertebrate animals of the Cascade Head Experimental Forest.

    Science.gov (United States)

    Chris Maser; Jerry F. Franklin

    1974-01-01

    Three months, April and August 1971 and August 1972, were spent studying the vertebrate fauna of Cascade Head Experimental Forest. The resulting annotated checklist includes 9 amphibians, 2 reptiles, 35 birds, and 40 mammals. A standardized animal habitat classification is presented in an effort to correlate the vertebrates in some meaningful way to their environment...

  18. ORIGINAL ARTICLE The pattern and prevalence of vertebral artery ...

    African Journals Online (AJOL)

    vertebral artery injury in all patients who have fractures involving the transverse foraminae of the cervical spine, those with facet joint dislocations, and those with fractures involving the first to the third cervical vertebrae. The aim of this study was to determine the pattern and prevalence of vertebral artery injury using CTA in ...

  19. Correlation between cervical vertebral and dental maturity in Iranian subjects.

    Science.gov (United States)

    Heravi, Farzin; Imanimoghaddam, Mahrokh; Rahimi, Hoda

    2011-12-01

    Determination of the skeletal maturation is extremely important in clinical orthodontics. Cervical vertebral maturation is an effective diagnostic tool for determining the adolescent growth spurt. The aim of this study was to investigate the correlation between the stages of calcification of teeth and the cervical vertebral maturity stages.

  20. Investigation of vertebral ''end plate sclerosis''

    International Nuclear Information System (INIS)

    Lee, S.W.; Mathie, A.G.; Jackson, J.E.; Hughes, S.P.F.

    2001-01-01

    To evaluate the association between vertebral ''end plate sclerosis'' and neck pain. A retrospective study was carried out of lateral cervical spine radiographs with a Picture Archive and Communication System (PACS). Two hundred patients' files were randomly assessed, comprising four equal groups, A to D. The mean ages of the patients were 62±7.4 years, 61±7.5 years, 40±5.6 years and 23±5.6 years respectively. In group A, all patients had symptoms of neck pain and a radiographic diagnosis of ''end plate sclerosis'' of the cervical spine. In groups B to D, asymptomatic patients were recruited and their age groups were 50-69, 30-49 and 10-29 years respectively. Using the PACS, the radiographic density and the sagittal diameter, thickness and area of the end plates at the C5 level were measured. Results and conclusions: No significant differences were found in the radiographic density of the end plates either between the symptomatic and asymptomatic groups (groups A and B), or between different age groups (groups B, C and D). A significant increase in end plate area and thickness was found, however, in both group B (P<0.005) and group C (P<0.01) in comparison with group D. This indicates that the extent of end plate sclerosis increases with age. Our results suggest that the radiographic density of cervical vertebral end plates correlates neither with neck pain nor with increasing age. The radiological sign of ''end plate sclerosis'' may be over-reported, further limiting its value in the assessment of patients with cervical spondylosis. (orig.)

  1. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    Science.gov (United States)

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P 0.05). The logistic regression analysis showed that the volume ratio of intravertebral bone cement to vertebral body (P

  2. Non-contiguous multifocal vertebral osteomyelitis caused by Serratia marcescens.

    Science.gov (United States)

    Lau, Jen Xin; Li, Jordan Yuanzhi; Yong, Tuck Yean

    2015-03-01

    Serratia marcescens is a common nosocomial infection but a rare cause of osteomyelitis and more so of vertebral osteomyelitis. Vertebral osteomyelitis caused by this organism has been reported in few studies. We report a case of S. marcescens vertebral discitis and osteomyelitis affecting multiple non-contiguous vertebras. Although Staphylococcus aureus is the most common cause of vertebral osteomyelitis, rare causes, such as S. marcescens, need to be considered, especially when risk factors such as intravenous heroin use, post-spinal surgery and immunosuppression are present. Therefore, blood culture and where necessary biopsy of the infected region should be undertaken to establish the causative organism and determine appropriate antibiotic susceptibility. Prompt diagnosis of S. marcescens vertebral osteomyelitis followed by the appropriate treatment can achieve successful outcomes.

  3. Prevalence of silent vertebral fractures detected by vertebral fracture assessment in young Portuguese men with hyperthyroidism.

    Science.gov (United States)

    Barbosa, Ana Paula; Rui Mascarenhas, Mário; Silva, Carlos Francisco; Távora, Isabel; Bicho, Manuel; do Carmo, Isabel; de Oliveira, António Gouveia

    2015-02-01

    Hyperthyroidism is a risk factor for reduced bone mineral density (BMD) and osteoporotic fractures. Vertebral fracture assessment (VFA) by dual-energy X-ray absorptiometry (DXA) is a radiological method of visualization of the spine, which enables patient comfort and reduced radiation exposure. This study was carried out to evaluate BMD and the prevalence of silent vertebral fractures in young men with hyperthyroidism. We conducted a cross-sectional study in a group of Portuguese men aged up to 50 years and matched in hyperthyroidism (n=24) and control (n=24) groups. A group of 48 Portuguese men aged up to 50 years was divided and matched in hyperthyroidism (n=24) and control (n=24) groups. BMD (g/cm(2)) at L1-L4, hip, radius 33%, and whole body as well as the total body masses (kg) were studied by DXA. VFA was used to detect fractures and those were classified by Genant's semiquantitative method. No patient had previously been treated for hyperthyroidism, osteoporosis, or low bone mass. Adequate statistical tests were used. The mean age, height, and total fat mass were similar in both groups (P≥0.05). The total lean body mass and the mean BMD at lumbar spine, hip, and whole body were significantly decreased in the hyperthyroidism group. In this group, there was also a trend for an increased prevalence of reduced BMD/osteoporosis and osteoporotic vertebral fractures. The results obtained using VFA technology (confirmed by X-ray) suggest that the BMD changes in young men with nontreated hyperthyroidism may lead to the development of osteoporosis and vertebral fractures. This supports the pertinence of using VFA in the routine of osteoporosis assessment to detect silent fractures precociously and consider early treatment. © 2015 European Society of Endocrinology.

  4. Origin and evolution of retinoid isomerization machinery in vertebrate visual cycle: hint from jawless vertebrates.

    Science.gov (United States)

    Poliakov, Eugenia; Gubin, Alexander N; Stearn, Olivia; Li, Yan; Campos, Maria Mercedes; Gentleman, Susan; Rogozin, Igor B; Redmond, T Michael

    2012-01-01

    In order to maintain visual sensitivity at all light levels, the vertebrate eye possesses a mechanism to regenerate the visual pigment chromophore 11-cis retinal in the dark enzymatically, unlike in all other taxa, which rely on photoisomerization. This mechanism is termed the visual cycle and is localized to the retinal pigment epithelium (RPE), a support layer of the neural retina. Speculation has long revolved around whether more primitive chordates, such as tunicates and cephalochordates, anticipated this feature. The two key enzymes of the visual cycle are RPE65, the visual cycle all-trans retinyl ester isomerohydrolase, and lecithin:retinol acyltransferase (LRAT), which generates RPE65's substrate. We hypothesized that the origin of the vertebrate visual cycle is directly connected to an ancestral carotenoid oxygenase acquiring a new retinyl ester isomerohydrolase function. Our phylogenetic analyses of the RPE65/BCMO and N1pC/P60 (LRAT) superfamilies show that neither RPE65 nor LRAT orthologs occur in tunicates (Ciona) or cephalochordates (Branchiostoma), but occur in Petromyzon marinus (Sea Lamprey), a jawless vertebrate. The closest homologs to RPE65 in Ciona and Branchiostoma lacked predicted functionally diverged residues found in all authentic RPE65s, but lamprey RPE65 contained all of them. We cloned RPE65 and LRATb cDNAs from lamprey RPE and demonstrated appropriate enzymatic activities. We show that Ciona ß-carotene monooxygenase a (BCMOa) (previously annotated as an RPE65) has carotenoid oxygenase cleavage activity but not RPE65 activity. We verified the presence of RPE65 in lamprey RPE by immunofluorescence microscopy, immunoblot and mass spectrometry. On the basis of these data we conclude that the crucial transition from the typical carotenoid double bond cleavage functionality (BCMO) to the isomerohydrolase functionality (RPE65), coupled with the origin of LRAT, occurred subsequent to divergence of the more primitive chordates (tunicates, etc

  5. Measurements of vertebral shape by radiographic morphometry: sex differences and relationships with vertebral level and lumbar lordosis

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, X G; Sun, Y; Boonen, S; Nicholson, P H.F.; Dequeker, J [Arthritis and Metabolic Bone Disease Research Unit, U.Z. Pellenberg, Division of Rheumatology, Pellenberg (Belgium); Brys, P [Radiology Department, University Hospitals, Katholieke Universiteit Leuven, Leuven (Belgium); Felsenberg, D [Radiology Department, Freie Univ. Berlin (Germany)

    1998-07-01

    Objective. To examine sex-related and vertebral-level-specific differences in vertebral shape and to investigate the relationships between the lumbar lordosis angle and vertebral morphology. Design and patients. Lateral thoracic and lumbar spine radiographs were obtained with a standardized protocol in 142 healthy men and 198 healthy women over 50 years old. Anterior (Ha), central (Hc) and posterior (Hp) heights of each vertebra from T4 to L4 were measured using a digitizing technique, and the Ha/Hp and Hc/Hp ratios were calculated. The lumbar lordosis angle was measured on the lateral lumbar spine radiographs. Results. Ha/Hp and Hc/Hp ratios were smaller in men than women by 1.8% and 0.7%, respectively, and these ratios varied with vertebral level. Significant correlations were found between vertebral shape and the lumbar lordosis angle. Conclusions. These results demonstrate that vertebral shape varies significantly with sex, vertebral level and lumbar lordosis angle. Awareness of these relationships may help prevent misdiagnosis in clinical vertebral morphometry. (orig.) With 4 figs., 2 tabs., 17 refs.

  6. Measurements of vertebral shape by r[iographic morphometry: sex differences and relationships with vertebral level and lumbar lordosis

    International Nuclear Information System (INIS)

    Cheng, X.G.; Sun, Y.; Boonen, S.; Nicholson, P.H.F.; Dequeker, J.; Brys, P.; Felsenberg, D.

    1998-01-01

    Objective. To examine sex-related and vertebral-level-specific differences in vertebral shape and to investigate the relationships between the lumbar lordosis angle and vertebral morphology. Design and patients. Lateral thoracic and lumbar spine r[iographs were obtained with a standardized protocol in 142 healthy men and 198 healthy women over 50 years old. Anterior (Ha), central (Hc) and posterior (Hp) heights of each vertebra from T4 to L4 were measured using a digitizing technique, and the Ha/Hp and Hc/Hp ratios were calculated. The lumbar lordosis angle was measured on the lateral lumbar spine r[iographs. Results. Ha/Hp and Hc/Hp ratios were smaller in men than women by 1.8% and 0.7%, respectively, and these ratios varied with vertebral level. Significant correlations were found between vertebral shape and the lumbar lordosis angle. Conclusions. These results demonstrate that vertebral shape varies significantly with sex, vertebral level and lumbar lordosis angle. Awareness of these relationships may help prevent misdiagnosis in clinical vertebral morphometry. (orig.)

  7. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    Science.gov (United States)

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  8. ANOMALOUS PREVERTEBRAL COURSE OF THE LEFT VERTEBRAL ARTERY. Recorrido prevertebral anómalo de la arteria vertebral izquierda

    Directory of Open Access Journals (Sweden)

    Prakash B Billakanti

    2016-03-01

    Full Text Available La arteria vertebral es una de las arterias que irriga el cerebro. El conocimiento de la anatomía normal y las variantes de la arteria vertebral adquiere importancia en la práctica clínica y la radiología vascular. El origen anómalo de la arteria vertebral del arco de la aorta o cualquiera de las arterias del cuello ha sido reportado por muchos autores. En este informe se presenta una variación del curso prevertebral de la arteria vertebral izquierda. La arteria vertebral tenía su origen habitual en la arteria subclavia con un largo curso prevertebral y entraba en el foramen transversarium de la vértebra CII. El origen y recorrido de la arteria vertebral en el lado derecho fue normal. Clínicamente es importante conocer el origen y curso del segmento prevertebral de la arteria vertebral y las posibles variaciones. El presente informe debería ser de interés para el médico vascular con respecto a las variaciones en el cuello y región torácica, y puede dar idea para dilucidar el mecanismo de desarrollo de la angiogénesis. Vertebral artery is one of the arteries supplying the brain. Knowledge of the normal and variant anatomy of the vertebral artery assumes importance in clinical practice and vascular radiology. Anomalous origins of the vertebral artery from the arch of the aorta or any one of the arteries of the neck have been reported by several authors. In this report a variation of the prevertebral course of the left vertebral artery is being presented. The Vertebral artery had usual origin from the subclavian artery and had a longer prevertebral course to enter the foramen transversarium of the CII vertebra. The origin and course of the vertebral artery on the right side was normal. It is clinically important to know the origin and course of the prevertebral segment of the vertebral artery and possible variations. The present report should be of interest for clinicians with regard to vascular variations in the neck and thoracic

  9. Herbivory and eutrophication mediate grassland plant nutrient responses across a global climatic gradient

    Science.gov (United States)

    Anderson, T. Michael; Griffith, Daniel M.; Grace, James B.; Lind, Eric M.; Adler, Peter B.; Biederman, Lori A.; Blumenthal, Dana M.; Daleo, Pedro; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; MacDougall, Andrew S.; McCulley, Rebecca L.; Prober, Suzanne M.; Risch, Anita C.; Sankaran, Mahesh; Schütz, Martin; Seabloom, Eric W.; Stevens, Carly J.; Sullivan, Lauren; Wragg, Peter; Borer, Elizabeth T.

    2018-01-01

    Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot‐level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water‐limited sites.

  10. A unified anatomy ontology of the vertebrate skeletal system.

    Directory of Open Access Journals (Sweden)

    Wasila M Dahdul

    Full Text Available The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO, to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish and multispecies (teleost, amphibian vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages, and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO, Gene Ontology (GO, Uberon, and Cell Ontology (CL, and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  11. A unified anatomy ontology of the vertebrate skeletal system.

    Science.gov (United States)

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  12. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    Science.gov (United States)

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  13. The role of the notochord in amniote vertebral column segmentation.

    Science.gov (United States)

    Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D

    2018-07-01

    The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Do lower vertebrates suffer from motion sickness?

    Science.gov (United States)

    Lychakov, Dmitri

    The poster presents literature data and results of the author’s studies with the goal to find out whether the lower animals are susceptible to motion sickness (Lychakov, 2012). In our studies, fish and amphibians were tested for 2 h and more by using a rotating device (f = 0.24 Hz, a _{centrifugal} = 0.144 g) and a parallel swing (f = 0.2 Hz, a _{horizontal} = 0.059 g). The performed studies did not revealed in 4 fish species and in toads any characteristic reactions of the motion sickness (sopite syndrome, prodromal preparatory behavior, vomiting). At the same time, in toads there appeared characteristic stress reactions (escape response, an increase of the number of urinations, inhibition of appetite), as well as some other reactions not associated with motion sickness (regular head movements, eye retractions). In trout fry the used stimulation promoted division of the individuals into the groups differing by locomotor reaction to stress, as well as the individuals with the well-expressed compensatory reaction that we called the otolithotropic reaction. Analysis of results obtained by other authors confirms our conclusions. Thus, the lower vertebrates, unlike mammals, are immune to motion sickness either under the land conditions or under conditions of weightlessness. On the basis of available experimental data and theoretical concepts of mechanisms of development the motion sickness, formulated in several hypotheses (mismatch hypothesis, Traisman‘ s hypothesis, resonance hypothesis), there presented the synthetic hypothesis of motion sickness that has the conceptual significance. According to the hypothesis, the unusual stimulation producing sensor-motor or sensor-sensor conflict or an action of vestibular and visual stimuli of frequency of about 0.2 Hz is perceived by CNS as poisoning and causes the corresponding reactions. The motion sickness actually is a byproduct of technical evolution. It is suggested that in the lower vertebrates, unlike mammals

  15. Conodonts, Calcichordates and the Origin of Vertebrates

    Directory of Open Access Journals (Sweden)

    J. Bergström

    1998-01-01

    Full Text Available Interpretation of early deuterostome evolution and relationships has been hampered by the lack of soft-part preservation in most groups. In addition, a recently revealed upside-down life orientation of vertebrates (the only real notoneuralians compared to other bilateral animals has been misinterpreted as evidence for a unique body design in all deuterostomes, misleading any search for relatives. Regarding echinoderms, the variety of body plans is confusing. The interpretation of some fossils with echinoderm-type calcite skeletons as “calcichordate” ancestors of chordates, however, involves a hypothetical reconstruction of an unusual body plan and a long series of hypothetical transitions. The number of necessary steps is much lower if cephalochordates (amphioxus or lancelet are derived directly from hemichordate enteropneusts. “Sensation interpretations” of fossils (Yunnanozoon, Cathaymyrus from Burgess Shale type deposits have added further confusion. Soft-part preservation of conodont animals, with V-shaped myomeres and a notochord, shows that they were segmented chordates, while probable eyes and teeth suggest that they were already on the vertebrate side. Die Interpretation früher Deuterostomia hinsichtlich ihrer Evolution und verwandtschaftlichen Beziehungen ist in den meisten Gruppen durch den Mangel an Weichkörpererhaltung sehr erschwert. Die kürzlich entdeckte Tatsache, daß Vertebraten, d. h. die einzigen echten Notoneuralia, im Gegensatz zu anderen bilateral symmetrischen Organismen eine mit ihrer ursprünglichen Oberseite nach unten gerichtete Lebensstellung einnehmen, hat zu der irrtümlichen Ansicht geführt, daß alle Deuostomia über einen im Tierreich einzigartigen Bauplan verfügen. Diese Interpretation brachte naturgemäß jede Suche nach Verwandtschaftsverhältnissen auf Abwege. Hinsichtlich der Echinodermata ist die bauplanmäßige Variation in der Tat verwirrend. Die Interpretation einiger Fossilien mit

  16. Testing for the induction of anti-herbivory defences in four Portuguese macroalgae by direct and water-borne cues of grazing amphipods

    OpenAIRE

    Yun, H. Y.; Cruz, J.; Treitschke, M.; Wahl, Martin; Molis, M.

    2007-01-01

    Herbivory is a key factor in regulating plant biomass, thereby driving ecosystem performance. Algae have developed multiple adaptations to cope with grazers, including morphological and chemical defences. In a series of experiments we investigated whether several species of macroalgae possess anti-herbivore defences and whether these could be regulated to demand, i.e. grazing events. The potential of direct grazing on defence induction was assessed for two brown (Dictyopteris membranacea, Fuc...

  17. Observer agreement in pediatric semiquantitative vertebral fracture diagnosis

    International Nuclear Information System (INIS)

    Siminoski, Kerry; Lentle, Brian; Matzinger, Mary Ann; Shenouda, Nazih; Ward, Leanne M.

    2014-01-01

    The Genant semiquantitative (GSQ) method has been a standard procedure for diagnosis of vertebral fractures in adults but has only recently been shown to be of clinical utility in children. Observer agreement using the GSQ method in this age group has not been described. To evaluate observer agreement on vertebral readability and vertebral fracture diagnosis using the GSQ method in pediatric vertebral morphometry. Spine radiographs of 186 children with acute lymphoblastic leukemia were evaluated independently by three radiologists using the same GSQ methodology as in adults. A subset of 100 radiographs was evaluated on two occasions. An average of 4.7% of vertebrae were unreadable for the three radiologists. Intraobserver Cohen's kappa (κ) on readability ranged from 0.434 to 0.648 at the vertebral level and from 0.416 to 0.611 at the patient level, while interobserver κ for readability had a range of 0.330 to 0.504 at the vertebral level and 0.295 to 0.467 at the patient level. Intraobserver κ for the presence of vertebral fracture had a range of 0.529 to 0.726 at the vertebral level and was 0.528 to 0.767 at the patient level. Interobserver κ for fracture at the vertebral level ranged from 0.455 to 0.548 and from 0.433 to 0.486 at the patient level. Most κ values for both intra- and interobserver agreement in applying the GSQ method to pediatric spine radiographs were in the moderate to substantial range, comparable to the performance of the technique in adult studies. The GSQ method should be considered for use in pediatric research and clinical practice. (orig.)

  18. Observer agreement in pediatric semiquantitative vertebral fracture diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Siminoski, Kerry [University of Alberta, Department of Radiology and Diagnostic Imaging and Division of Endocrinology and Metabolism, Department of Medicine, Edmonton (Canada); Lentle, Brian [University of British Columbia, Department of Radiology, Vancouver (Canada); BC Children' s Hospital, Department of Radiology, Vancouver (Canada); Matzinger, Mary Ann; Shenouda, Nazih [University of Ottawa, Department of Diagnostic Imaging, Ottawa (Canada); Children' s Hospital of Eastern Ontario, Department of Medical Imaging, Ottawa (Canada); Ward, Leanne M. [University of Ottawa, Department of Pediatrics, Children' s Hospital of Eastern Ontario, Ottawa (Canada); Children' s Hospital of Eastern Ontario, Research Institute, Ottawa (Canada); Collaboration: The Canadian STOPP Consortium

    2014-04-15

    The Genant semiquantitative (GSQ) method has been a standard procedure for diagnosis of vertebral fractures in adults but has only recently been shown to be of clinical utility in children. Observer agreement using the GSQ method in this age group has not been described. To evaluate observer agreement on vertebral readability and vertebral fracture diagnosis using the GSQ method in pediatric vertebral morphometry. Spine radiographs of 186 children with acute lymphoblastic leukemia were evaluated independently by three radiologists using the same GSQ methodology as in adults. A subset of 100 radiographs was evaluated on two occasions. An average of 4.7% of vertebrae were unreadable for the three radiologists. Intraobserver Cohen's kappa (κ) on readability ranged from 0.434 to 0.648 at the vertebral level and from 0.416 to 0.611 at the patient level, while interobserver κ for readability had a range of 0.330 to 0.504 at the vertebral level and 0.295 to 0.467 at the patient level. Intraobserver κ for the presence of vertebral fracture had a range of 0.529 to 0.726 at the vertebral level and was 0.528 to 0.767 at the patient level. Interobserver κ for fracture at the vertebral level ranged from 0.455 to 0.548 and from 0.433 to 0.486 at the patient level. Most κ values for both intra- and interobserver agreement in applying the GSQ method to pediatric spine radiographs were in the moderate to substantial range, comparable to the performance of the technique in adult studies. The GSQ method should be considered for use in pediatric research and clinical practice. (orig.)

  19. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    Science.gov (United States)

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Distal vertebral artery reconstruction when managing vertebrobasilar insufficiency

    Directory of Open Access Journals (Sweden)

    D. M. Galaktionov

    2017-11-01

    Full Text Available This article presents a literature review devoted to the reconstruction of the distal vertebral artery and a clinical case of successful surgical treatment of a patient suffering from vertebrobasilar insufficiency caused by occlusion of the vertebral artery in a proximal segment. The external carotid artery-distal vertebral artery bypass was performed by using the radial artery.Received 27 February 2017. Revised 25 July 2017. Accepted 3 August 2017.Funding: The study did not have sponsorship.Conflict of interest: The authors declare no conflict of interest. 

  1. Vertebral column aggressive osteoblastoma: two cases report and literature review

    International Nuclear Information System (INIS)

    Sabedotti, Ismail Fernando; Sabedotti, Valdir

    2007-01-01

    Osteoblastoma is a bone neoplasy that in most circumstances present a low aggressive aspect on radiographic studies, but in some cases may acquire an aggressive pattern, rupturing the bone cortex and invading nearby structures. Most cases occur on the vertebral column, especially at the posterior arch and occasionally involving the vertebral body. Differential diagnosis of the aggressive form is made with osteosarcomas. This review reports two cases of osteoblastomas involving vertebral column, with an aggressive pattern on radiologic studies, and their histologic confirmation. (author)

  2. Survival and development of reintroduced Cattleya intermedia plants related to abiotic factors and herbivory at the edge and in the interior of a forest fragment in South Brazil

    Directory of Open Access Journals (Sweden)

    Delio Endres Júnior

    2018-06-01

    Full Text Available ABSTRACT Biotic and abiotic factors, such as luminosity, temperature, air humidity, and herbivory, can affect the establishment of reintroduced plants in natural habitats. This study evaluated the effects of these factors on the survival and growth of Cattleya intermedia plants reintroduced into a forest fragment in South Brazil. Plants of C. intermedia were obtained from in vitro seed germination in asymbiotic culture. Eighty-eight plants were reintroduced at both the forest edge and forest interior. Plants with greater shoot heights and number of leaves and pseudobulbs suffered more damage from herbivores at the edge. There were no significant differences in morphometric parameters between damaged and non-damaged plants in the interior. Tenthecoris bicolor, Helionothrips errans, Ithomiola nepos, Molomea magna and Coleoptera larvae damaged C. intermedia. Luminosity was higher at the edge, while air humidity and temperature were the same in both environments. Herbivory associated with abiotic factors increased plant mortality in the interior, while abiotic factors were determinative of plant survival at the edge. Luminosity is important to the survival of reintroduced epiphytic orchids, and herbivory affects the success of reintroduction.

  3. Gut Melatonin in Vertebrates: Chronobiology and Physiology

    Directory of Open Access Journals (Sweden)

    Dr. Saumen Kumar Maitra

    2015-07-01

    Full Text Available Melatonin, following discovery in the bovine pineal gland, has been detected in several extra-pineal sources including gastrointestinal tract or gut. Arylalkylamine N-acetyltransferase (AANAT is the key regulator of its biosynthesis. Melatonin in pineal is rhythmically produced with a nocturnal peak in synchronization with environmental light-dark cycle. A recent study on carp reported first that melatonin levels and intensity of a ~23kDa AANAT protein in each gut segment also exhibit significant daily variations but, unlike pineal, show a peak at midday in all seasons. Extensive experimental studies ruled out direct role of light-dark conditions in determining temporal pattern of gut melatoninergic system in carp, and opened up possible role of environmental non-photic cue(s as its synchronizer. Based on mammalian findings, physiological significance of gut derived melatonin also appears unique because its actions at local levels sharing paracrine and/or autocrine functions have been emphasized. The purpose of this mini-review is to summarize existing data on the chronobiology and physiology of gut melatonin and to emphasize their relation with the same hormone derived in the pineal in vertebrates including fish.

  4. Extracellular matrix dynamics during vertebrate axis formation.

    Science.gov (United States)

    Czirók, András; Rongish, Brenda J; Little, Charles D

    2004-04-01

    The first evidence for the dynamics of in vivo extracellular matrix (ECM) pattern formation during embryogenesis is presented below. Fibrillin 2 filaments were tracked for 12 h throughout the avian intraembryonic mesoderm using automated light microscopy and algorithms of our design. The data show that these ECM filaments have a reproducible morphogenic destiny that is characterized by directed transport. Fibrillin 2 particles initially deposited in the segmental plate mesoderm are translocated along an unexpected trajectory where they eventually polymerize into an intricate scaffold of cables parallel to the anterior-posterior axis. The cables coalesce near the midline before the appearance of the next-formed somite. Moreover, the ECM filaments define global tissue movements with high precision because the filaments act as passive motion tracers. Quantification of individual and collective filament "behaviors" establish fate maps, trajectories, and velocities. These data reveal a caudally propagating traveling wave pattern in the morphogenetic movements of early axis formation. We conjecture that within vertebrate embryos, long-range mechanical tension fields are coupled to both large-scale patterning and local organization of the ECM. Thus, physical forces or stress fields are essential requirements for executing an emergent developmental pattern-in this case, paraxial fibrillin cable assembly.

  5. Medullar compression caused by vertebral hemangioma

    International Nuclear Information System (INIS)

    Jaramillo Catling, Eduardo

    2005-01-01

    This is case of a 41 years old feminine patient in whom a unique primary bone tumor injury was demonstrated, diagnosed as a bone hemangioma, located at T-7, with grew and compressed the spinal cord. These bone vascular and frequently observed in the radiological studies and autopsies, in a sporadic form are only symptomatic, growing and affecting the nervous roots and the spinal cord. The clinical history of the patient is described with the preoperative studies and magnetic resonance 6 years after the surgery: The medical literature of these primary bony injuries is reviewed and as they are treated. Objectives: to present the clinical history of a patient who consults having medullar compression syndrome caused by an unusual extra-medullar tumor injury, of bony origin, primary and benign, with clinical controls 8 years after the operation and without evidence of tumor recurrences. The medical literature of this bone pathology is reviewed. Methodology: the clinical history of the patient is described, who was treated surgically successfully, because spinal cord was decompressed without neurological sequels. Vertebral instability was not observed and nor diagnosed. The patient was periodically taken care of with last control of magnetic resonance 6 years after the surgery and last medical control 8 years later. Medical publications are extensively reviewed

  6. Vertebral bony tumor of giant cells

    International Nuclear Information System (INIS)

    Jaramillo Carling, Eduardo

    2005-01-01

    This is a report of a 37 years old, masculine patient, in whom a unique primary bone injury was demonstrated, located at T-11, diagnosed as a giant cells tumor (osteoclastoma). Location is described in the literature as unusual. The clinical presentation of the injury is described, as the initial radiological studies and magnetic resonance images 8 years after surgical treatment, with no neoplasic recurrences. The medical literature of these primary bone injuries and its treatment was also reviewed. Objectives: to present a patient with an unusual extramedullar tumor injury, of primary bone origin, benign, treated surgically and who has a post surgical follow-up of 8 years. Local tumor recurrence and not pulmonary metastasis was demonstrated. The medical literature of this bone pathology that affects the spine in an infrequent manner, was also reviewed, specially the related to medical, surgical and radio-therapeutic treatments. Methodology: the clinical history of the patient is described, who was successfully operated, because the expansive tumor was totally drawn out, without neurological injury; inter operating or post-operating vertebral instability was not observed or diagnosed. The patient was controlled in periodic form, with last medical checkup and of magnetic resonance 8 years after the surgery. The medical publications existing are reviewed

  7. Organotin Exposure and Vertebrate Reproduction: A Review

    Directory of Open Access Journals (Sweden)

    Julia Fernandez Puñal de Araújo

    2018-03-01

    Full Text Available Organotin (OTs compounds are organometallic compounds that are widely used in industry, such as in the manufacture of plastics, pesticides, paints, and others. OTs are released into the environment by anthropogenic actions, leading to contact with aquatic and terrestrial organisms that occur in animal feeding. Although OTs are degraded environmentally, reports have shown the effects of this contamination over the years because it can affect organisms of different trophic levels. OTs act as endocrine-disrupting chemicals (EDCs, which can lead to several abnormalities in organisms. In male animals, OTs decrease the weights of the testis and epididymis and reduce the spermatid count, among other dysfunctions. In female animals, OTs alter the weights of the ovaries and uteri and induce damage to the ovaries. In addition, OTs prevent fetal implantation and reduce mammalian pregnancy rates. OTs cross the placental barrier and accumulate in the placental and fetal tissues. Exposure to OTs in utero leads to the accumulation of lipid droplets in the Sertoli cells and gonocytes of male offspring in addition to inducing early puberty in females. In both genders, this damage is associated with the imbalance of sex hormones and the modulation of the hypothalamic–pituitary–gonadal axis. Here, we report that OTs act as reproductive disruptors in vertebrate studies; among the compounds are tetrabutyltin, tributyltin chloride, tributyltin acetate, triphenyltin chloride, triphenyltin hydroxide, dibutyltin chloride, dibutyltin dichloride, diphenyltin dichloride, monobutyltin, and azocyclotin.

  8. Mapping and Quantifying Terrestrial Vertebrate Biodiversity at ...

    Science.gov (United States)

    The ability to assess, report, map, and forecast functions of ecosystems is critical to our capacity to make informed decisions to maintain the sustainable nature of our environment. Because of the variability among living organisms and levels of organization (e.g. genetic, species, ecosystem), biodiversity has always been difficult to measure precisely, especially within a systematic manner and over multiple scales. In answer to this challenge, the U.S. Environmental Protection Agency has created a partnership with other Federal agencies, academic institutions, and Non-Governmental Organizations to develop the EnviroAtlas (https://www.epa.gov/enviroatlas), an online national Decision Support Tool that allows users to view and analyze the geographical description of the supply and demand for ecosystem services, as well as the drivers of change. As part of the EnviroAtlas, an approach has been developed that uses deductive habitat models for all terrestrial vertebrates of the conterminous United States and clusters them into biodiversity metrics that relate to ecosystem service-relevant categories. Metrics, such as species and taxon richness, have been developed and integrated with other measures of biodiversity. Collectively, these metrics provide a consistent scalable process from which to make geographic comparisons, provide thematic assessments, and to monitor status and trends in biodiversity. The national biodiversity component operates across approximatel

  9. Evolution and development of the vertebrate ear

    Science.gov (United States)

    Fritzsch, B.; Beisel, K. W.

    2001-01-01

    This review outlines major aspects of development and evolution of the ear, specifically addressing issues of cell fate commitment and the emerging molecular governance of these decisions. Available data support the notion of homology of subsets of mechanosensors across phyla (proprioreceptive mechanosensory neurons in insects, hair cells in vertebrates). It is argued that this conservation is primarily related to the specific transducing environment needed to achieve mechanosensation. Achieving this requires highly conserved transcription factors that regulate the expression of the relevant structural genes for mechanosensory transduction. While conserved at the level of some cell fate assignment genes (atonal and its mammalian homologue), the ear has also radically reorganized its development by implementing genes used for cell fate assignment in other parts of the developing nervous systems (e.g., neurogenin 1) and by evolving novel sets of genes specifically associated with the novel formation of sensory neurons that contact hair cells (neurotrophins and their receptors). Numerous genes have been identified that regulate morphogenesis, but there is only one common feature that emerges at the moment: the ear appears to have co-opted genes from a large variety of other parts of the developing body (forebrain, limbs, kidneys) and establishes, in combination with existing transcription factors, an environment in which those genes govern novel, ear-related morphogenetic aspects. The ear thus represents a unique mix of highly conserved developmental elements combined with co-opted and newly evolved developmental elements.

  10. Facultative parthenogenesis discovered in wild vertebrates.

    Science.gov (United States)

    Booth, Warren; Smith, Charles F; Eskridge, Pamela H; Hoss, Shannon K; Mendelson, Joseph R; Schuett, Gordon W

    2012-12-23

    Facultative parthenogenesis (FP)-asexual reproduction by bisexual species-has been documented in a variety of multi-cellular organisms but only recently in snakes, varanid lizards, birds and sharks. Unlike the approximately 80 taxa of unisexual reptiles, amphibians and fishes that exist in nature, FP has yet to be documented in the wild. Based on captive documentation, it appears that FP is widespread in squamate reptiles (snakes, lizards and amphisbaenians), and its occurrence in nature seems inevitable, yet the task of detecting FP in wild individuals has been deemed formidable. Here we show, using microsatellite DNA genotyping and litter characteristics, the first cases of FP in wild-collected pregnant females and their offspring of two closely related species of North American pitviper snakes-the copperhead (Agkistrodon contortrix) and cottonmouth (Agkistrodon piscivorus). Our findings support the view that non-hybrid origins of parthenogenesis, such as FP, are more common in squamates than previously thought. With this confirmation, FP can no longer be viewed as a rare curiosity outside the mainstream of vertebrate evolution. Future research on FP in squamate reptiles related to proximate control of induction, reproductive competence of parthenogens and population genetics modelling is warranted.

  11. Comparative analyses of bidirectional promoters in vertebrates

    Directory of Open Access Journals (Sweden)

    Taylor James

    2008-05-01

    Full Text Available Abstract Background Orthologous genes with deep phylogenetic histories are likely to retain similar regulatory features. In this report we utilize orthology assignments for pairs of genes co-regulated by bidirectional promoters to map the ancestral history of the promoter regions. Results Our mapping of bidirectional promoters from humans to fish shows that many such promoters emerged after the divergence of chickens and fish. Furthermore, annotations of promoters in deep phylogenies enable detection of missing data or assembly problems present in higher vertebrates. The functional importance of bidirectional promoters is indicated by selective pressure to maintain the arrangement of genes regulated by the promoter over long evolutionary time spans. Characteristics unique to bidirectional promoters are further elucidated using a technique for unsupervised classification, known as ESPERR. Conclusion Results of these analyses will aid in our understanding of the evolution of bidirectional promoters, including whether the regulation of two genes evolved as a consequence of their proximity or if function dictated their co-regulation.

  12. Vascular development in the vertebrate pancreas

    Science.gov (United States)

    Azizoglu, D. Berfin; Chong, Diana C.; Villasenor, Alethia; Magenheim, Judith; Barry, David M.; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine

    2016-01-01

    The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. PMID:27789228

  13. Vascular development in the vertebrate pancreas.

    Science.gov (United States)

    Azizoglu, D Berfin; Chong, Diana C; Villasenor, Alethia; Magenheim, Judith; Barry, David M; Lee, Simon; Marty-Santos, Leilani; Fu, Stephen; Dor, Yuval; Cleaver, Ondine

    2016-12-01

    The vertebrate pancreas is comprised of a highly branched tubular epithelium, which is intimately associated with an extensive and specialized vasculature. While we know a great deal about basic vascular anatomy of the adult pancreas, as well as islet capillaries, surprisingly little is known about the ontogeny of its blood vessels. Here, we analyze development of the pancreatic vasculature in the mouse embryo. We show that pancreatic epithelial branches intercalate with the fine capillary plexus of the surrounding pancreatic mesenchyme. Endothelial cells (ECs) within this mesenchyme are heterogeneous from the onset of organogenesis. Pancreatic arteries take shape before veins, in a manner analogous to early embryonic vessels. The main central artery forms during mid-gestation, as a result of vessel coalescence and remodeling of a vascular plexus. In addition, we show that vessels in the forming pancreas display a predictable architecture that is dependent on VEGF signaling. Over-expression of VEGF disrupts vascular patterning and arteriovenous differentiation within the developing pancreas. This study constitutes a first-time in-depth cellular and molecular characterization of pancreatic blood vessels, as they coordinately grow along with the pancreatic epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Trunk muscle activity is modified in osteoporotic vertebral fracture and thoracic kyphosis with potential consequences for vertebral health.

    Directory of Open Access Journals (Sweden)

    Alison M Greig

    Full Text Available This study explored inter-relationships between vertebral fracture, thoracic kyphosis and trunk muscle control in elderly people with osteoporosis. Osteoporotic vertebral fractures are associated with increased risk of further vertebral fractures; but underlying mechanisms remain unclear. Several factors may explain this association, including changes in postural alignment (thoracic kyphosis and altered trunk muscle contraction patterns. Both factors may increase risk of further fracture because of increased vertebral loading and impaired balance, which may increase falls risk. This study compared postural adjustments in 24 individuals with osteoporosis with and without vertebral fracture and with varying degrees of thoracic kyphosis. Trunk muscle electromyographic activity (EMG associated with voluntary arm movements was recorded and compared between individuals with and without vertebral fracture, and between those with low and high thoracic kyphosis. Overall, elderly participants in the study demonstrated co-contraction of the trunk flexor and extensor muscles during forwards arm movements, but those with vertebral fractures demonstrated a more pronounced co-contraction than those without fracture. Individuals with high thoracic kyphosis demonstrated more pronounced alternating flexor and extensor EMG bursts than those with less kyphosis. Co-contraction of trunk flexor and extensor muscles in older individuals contrasts the alternating bursts of antagonist muscle activity in previous studies of young individuals. This may have several consequences, including altered balance efficacy and the potential for increased compressive loads through the spine. Both of these outcomes may have consequences in a population with fragile vertebrae who are susceptible to fracture.

  15. Diagnosis of vertebral fractures on lateral chest X-ray: Intraobserver agreement of semi-quantitative vertebral fracture assessment

    International Nuclear Information System (INIS)

    Jagt-Willems, H.C. van der; Munster, B.C. van; Leeflang, M.; Beuerle, E.; Tulner, C.R.; Lems, W.F.

    2014-01-01

    Highlights: • (Lateral) chest X-ray's are often performed in older individuals for various reasons. • Vertebral fractures are visualized on lateral chest X-ray, but the diagnosis of vertebral fractures is until now only validated on (lateral) spine X-ray's. • This study shows that a (lateral) chest X-ray is sufficient for the diagnosis of vertebral fractures. • Older individuals with a vertebral fracture on a (lateral) chest X-ray do not need further radiography with thoracic spine X-ray or vertebral fracture assessment with DXA. - Abstract: Background: In clinical practice lateral images of the chest are performed for various reasons. As these lateral chest X rays show the vertebrae of the thoracic and thoraco-lumbar region, we wondered if these X-rays can be used for evaluation of vertebral fractures instead of separate thoracic spine X-rays. Methods: To evaluate the agreement and intraobserver reliability of the semi-quantitative method for vertebral fractures on the lateral chest X-ray (X-chest) in comparison to the lateral thoracic spine X-ray (X-Tspine), two observers scored vertebral fractures on X-Tspine and twice on X-chest, separately, blinded and in different time periods. Agreement and Cohens’ kappa were calculated for a diagnosis of any fracture on patient level and on vertebral body level. The study was done in patients visiting an outpatient geriatric day clinic, with a high prevalence of vertebral fractures. Results: 109 patients were included. The intraobserver agreement for X-chest versus X-Tspine was 95–98% for the two levels of fracturing, with a Cohen's kappa of 0.88–0.91. The intraobserver agreement and reliability of the re-test on the X-chest showed an agreement between 91 and 98% with a Cohen's kappa of 0.81–0.93. More vertebrae were visible on the X-chest, mean 10.2, SD 0.66 versus mean 9.8, SD 0.73 on the X-Tspine (p < 0.001). Conclusion: The results show good agreement and intraobserver reliability on

  16. Diagnosis of vertebral fractures on lateral chest X-ray: Intraobserver agreement of semi-quantitative vertebral fracture assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jagt-Willems, H.C. van der, E-mail: Hvanderjagt@spaarneziekenhuis.nl [Department of Geriatrics, Slotervaart Hospital, Amsterdam (Netherlands); Department of Internal Medicine, Spaarne Hospital, Hoofddorp (Netherlands); Munster, B.C. van [Department of Internal Medicine, Academic Medical Center, Amsterdam (Netherlands); Department of Geriatrics, Gelre Hospitals, Apeldoorn (Netherlands); Leeflang, M. [Department of Geriatrics, Gelre Hospitals, Apeldoorn (Netherlands); Beuerle, E. [Department of Radiology, Slotervaart Hospital, Amsterdam (Netherlands); Tulner, C.R. [Department of Geriatrics, Slotervaart Hospital, Amsterdam (Netherlands); Lems, W.F. [Department of Rheumatology, VU Medical Center, Amsterdam (Netherlands)

    2014-12-15

    Highlights: • (Lateral) chest X-ray's are often performed in older individuals for various reasons. • Vertebral fractures are visualized on lateral chest X-ray, but the diagnosis of vertebral fractures is until now only validated on (lateral) spine X-ray's. • This study shows that a (lateral) chest X-ray is sufficient for the diagnosis of vertebral fractures. • Older individuals with a vertebral fracture on a (lateral) chest X-ray do not need further radiography with thoracic spine X-ray or vertebral fracture assessment with DXA. - Abstract: Background: In clinical practice lateral images of the chest are performed for various reasons. As these lateral chest X rays show the vertebrae of the thoracic and thoraco-lumbar region, we wondered if these X-rays can be used for evaluation of vertebral fractures instead of separate thoracic spine X-rays. Methods: To evaluate the agreement and intraobserver reliability of the semi-quantitative method for vertebral fractures on the lateral chest X-ray (X-chest) in comparison to the lateral thoracic spine X-ray (X-Tspine), two observers scored vertebral fractures on X-Tspine and twice on X-chest, separately, blinded and in different time periods. Agreement and Cohens’ kappa were calculated for a diagnosis of any fracture on patient level and on vertebral body level. The study was done in patients visiting an outpatient geriatric day clinic, with a high prevalence of vertebral fractures. Results: 109 patients were included. The intraobserver agreement for X-chest versus X-Tspine was 95–98% for the two levels of fracturing, with a Cohen's kappa of 0.88–0.91. The intraobserver agreement and reliability of the re-test on the X-chest showed an agreement between 91 and 98% with a Cohen's kappa of 0.81–0.93. More vertebrae were visible on the X-chest, mean 10.2, SD 0.66 versus mean 9.8, SD 0.73 on the X-Tspine (p < 0.001). Conclusion: The results show good agreement and intraobserver reliability on

  17. The silurian and devonian vertebrates of Bolivia

    Directory of Open Access Journals (Sweden)

    1986-01-01

    formas de amplia repartición (Rhenanidos, algunos Acanthodios, Actinopterygios de tipo Moythomasia, formas con afinidades transpacíficas (Acanthodios próximos de Sinacanthus y formas tal vez endémicas (Pucapampella, Zamponiopteron. Silurian and Devonian vertebrate remains are described from various localities in Bolivia. Most of the material occurs in concretions in the marine Devonian of the Altiplano and Subandean area, and some isolated specimens have been found in sandstones and lutites. The jawless vertebrates are known only from isolated thelodont scales which occur in the Uppermost Silurian or Lower Devonian of Seripona, Chuquisaca. All the other vertebrate remains belong to gnathosthomes, in particular to the acanthodians, placoderms, chondrichthyans and actinopterygians. The acanthodians are represented by some ischnacanthid dentigerous jaw bones and climatiid spines and shoulder girdles. They are fairly abundant and show no marked differences from acanthodian remains known elsewhere in the Siluro-Devonian of Europe and North America. However, some isolated spines are suggestive of the genus Sinacanthus, known from the Lower Devonian of China The placoderms are represented only by the rhenanid Bolivosteus chacomensis Goujet et al, known from two well preserved braincases. This genus closely resembles Gemuendina (Lower Devonian of Germany with respect to the overall shape of the braincase, but its shoulder girdle differs substantially. The chondrichthyans are the most abundant vertebrates in the Devonian of Bolivia They are represented by isolated spines and endoskeletal elements lined with prismatic calcified cartilage Among them, some peculiar occipital regions of braincases are referred here to Pucapampella rodrigae n.g , n sp. These brain-cases differ from all other known Devonian chondrichthyan braincases in showing a ventrally continuous occipital fissure which completely separates the occiput from the rest of the brain-case. The strongly vaulted

  18. The Vertebral Formula of the African Sideneck Turtle ( Pelusios ...

    African Journals Online (AJOL)

    Pelusios castaneus), was carried out with the view of deriving its vertebral formula which could be useful in the comparative systematic anatomy of sea and freshwater turtles as well as in paleontological and archaeological investigations. A total ...

  19. Associations between the Cervical Vertebral Column and Craniofacial Morphology

    DEFF Research Database (Denmark)

    Sonnesen, Ane Liselotte

    2010-01-01

    Aim. To summarize recent studies on morphological deviations of the cervical vertebral column and associations with craniofacial morphology and head posture in nonsyndromic patients and in patients with obstructive sleep apnoea (OSA). Design. In these recent studies, visual assessment of the cerv......Aim. To summarize recent studies on morphological deviations of the cervical vertebral column and associations with craniofacial morphology and head posture in nonsyndromic patients and in patients with obstructive sleep apnoea (OSA). Design. In these recent studies, visual assessment...... of the cervical vertebral column and cephalometric analysis of the craniofacial skeleton were performed on profile radiographs of subjects with neutral occlusion, patients with severe skeletal malocclusions and patients with OSA. Material from human triploid foetuses and mouse embryos was analysed histologically....... Results. Recent studies have documented associations between fusion of the cervical vertebral column and craniofacial morphology, including head posture in patients with severe skeletal malocclusions. Histological studies on prenatal material supported these findings. Conclusion. It is suggested...

  20. Evolution of vertebrate sex chromosomes and dosage compensation.

    Science.gov (United States)

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  1. Relevant signs of stable and unstable thoracolumbar vertebral column trauma

    International Nuclear Information System (INIS)

    Gehweiler, J.A.; Daffner, R.H.; Osborne, R.L.

    1981-01-01

    One-hundred and seventeen patients with acute thoracolumbar vertebral column fracture or fracture-dislocations were analyzed and classified into stable (36%) and unstable (64%). Eight helpful roentgen signs were observed that may serve to direct attention to serious underlying, often occult, fractures and dislocations. The changes fall into four principal groups: abnormal soft tissues, abnormal vertebral alignment, abnormal joints, and widened vertebral canal. All stable and unstable lesions showed abnormal soft tissues, while 70% demonstrated kyphosis and/or scoliosis, and an abnormal adjacent intervertebral disk space. All unstable lesions showed one or more of the following signs: displaced vertebra, widened interspinous space, abnormal apophyseal joint(s), and widened vertebral canal. (orig.)

  2. Global patterns of Leptospira prevalence in vertebrate reservoir hosts

    DEFF Research Database (Denmark)

    Andersen-Ranberg, Emilie U.; Pipper, Christian Bressen; Jensen, Per Moestrup

    2016-01-01

    leptospirosis requires more detailed information on animal reservoirs that are the source of human infection. We evaluated the prevalence of Leptospira in vertebrates worldwide and its association with taxonomy, geographic region, host biology, ambient temperature, and precipitation patterns. A multivariate...

  3. Trends in Medicinal Uses of Edible Wild Vertebrates in Brazil

    Directory of Open Access Journals (Sweden)

    Rômulo Romeu Nóbrega Alves

    2017-01-01

    Full Text Available The use of food medicines is a widespread practice worldwide. In Brazil, such use is often associated with wild animals, mostly focusing on vertebrate species. Here we assessed taxonomic and ecological trends in traditional uses of wild edible vertebrates in the country, through an extensive ethnobiological database analysis. Our results showed that at least 165 health conditions are reportedly treated by edible vertebrate species (n=204, mostly fishes and mammals. However, reptiles stand out presenting a higher plasticity in the treatment of multiple health conditions. Considering the 20 disease categories recorded, treatment prescriptions were similar within continental (i.e., terrestrial and freshwater and also within coastal and marine habitats, which may reflect locally related trends in occurrence and use of the medicinal fauna. The comprehension of the multiplicity and trends in the therapeutic uses of Brazilian vertebrates is of particular interest from a conservation perspective, as several threatened species were recorded.

  4. MR manifestations of vertebral artery injuries in cervical spine trauma

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jeong Sik; Chung, Tae Sub; Kim, Young Soo; Cho, Yong Eun; Kang, Byung Chul; Kim, Dong Ik [Yonsei Univ. College of Medicine, Seoul (Korea, Republic of)

    1996-11-01

    To assess the diagnostic efficacy of magnetic resonance (MR) imaging in the detection of a vertebral artery injury occurring from major cervical spine trauma. Conventional MR findings of 63 patients and 63 control subjects were compared to detect a possible change in the vertebral arteries resulted from trauma. Plain films, CT and clinical records were also reviewed to correlate the degree of cervical spine injury with vascular change. Nine cases of absent flow signals in vessel lumen were observed in eight patients and one was observed in the control group. Patients more frequently demonstrated other abnormalities such as intraluminal linear signals (n=3) or focal luminal narrowing (n=9) but there was no statistical significance. There was a close relationship between degree of cord damage and occlusion of the vertebral artery. Conventional MR imaging is useful in the detection of vertebral artery occlusion resulting from cervical spine trauma.

  5. Origins of the Vertebrate Erythro/Megakaryocytic System

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Ondřej; Bartůněk, Petr

    2015-01-01

    Roč. 2015, Oct 18 (2015) ISSN 2314-6141 R&D Projects: GA MŠk LO1419 Institutional support: RVO:68378050 Keywords : erythrocytes * thrombocytes * vertebrate Erythro/Megakaryocytic System * progenitors Subject RIV: EB - Genetics ; Molecular Biology

  6. Clinical and radiological evaluation in vertebral artery dissections

    Directory of Open Access Journals (Sweden)

    Murat Çabalar

    2013-04-01

    Full Text Available In recent years, vertebral artery dissection (VAD is reported more frequently as a cause of young cerebrovascular accidents. It can occur spontaneously or following a neck manipulation and trauma. The patients were 3 females (mean age: 35±26 years and 7 males (mean age: 37.71±4.96 years. Only 2 patients described neck trauma. Cerebellar findings were prominent in all cases. On radiological investigation, vascular changes of vertebral arteries were detected bilaterally in 2 cases, right in 5 and left in 3 cases. All the cases were treated with anticoagulant therapy and cured but 1 with sequela. Prognosis of vertebral artery dissection is generally good by early diagnosis and treatment. In this article, we reported clinical and radiological properties of 10 vertebral artery dissection cases.

  7. An interesting case report of vertebral artery dissection following polytrauma

    Directory of Open Access Journals (Sweden)

    Vikas Acharya

    2016-01-01

    Conclusion: Our report displays select images related to this case report and emphasizes the consideration of routine imaging in head and neck traumatic injuries to diagnose internal carotid and/or vertebral artery dissections much earlier.

  8. Synergistic, additive and antagonistic impacts of drought and herbivory on Pinus sylvestris: leaf, tissue and whole-plant responses and recovery.

    Science.gov (United States)

    Bansal, Sheel; Hallsby, Göran; Löfvenius, Mikael O; Nilsson, Marie-Charlotte

    2013-05-01

    Forests typically experience a mix of anthropogenic, natural and climate-induced stressors of different intensities, creating a mosaic of stressor combinations across the landscape. When multiple stressors co-occur, their combined impact on plant growth is often greater than expected based on single-factor studies (i.e., synergistic), potentially causing catastrophic dysfunction of physiological processes from an otherwise recoverable situation. Drought and herbivory are two stressors that commonly co-occur in forested ecosystems, and have the potential to 'overlap' in their impacts on various plant traits and processes. However, the combined impacts from these two stressors may not be predictable based on additive models from single-stressor studies. Moreover, the impacts and subsequent recovery may be strongly influenced by the relative intensities of each stressor. Here, we applied drought stress and simulated bark-feeding herbivory at three levels of intensity (control, moderate and severe) in a full factorial design on young Pinus sylvestris L. seedlings. We assessed if the combined effects from two stressors were additive (responses were equal to the sum of the single-factor effects), synergistic (greater than expected) or antagonistic (less than expected) on a suite of morphological and physiological traits at the leaf-, tissue- and whole-plant level. We additionally investigated whether recovery from herbivory was dependent on relief from drought. The two stressors had synergistic impacts on specific leaf area and water-use efficiency, additive effects on height and root-to-shoot ratios, but antagonistic effects on photosynthesis, conductance and, most notably, on root, shoot and whole-plant biomass. Nevertheless, the magnitude and direction of the combined impacts were often dependent on the relative intensities of each stressor, leading to many additive or synergistic responses from specific stressor combinations. Also, seedling recovery was far more

  9. Worldwide prevalence and incidence of osteoporotic vertebral fractures.

    Science.gov (United States)

    Ballane, G; Cauley, J A; Luckey, M M; El-Hajj Fuleihan, G

    2017-05-01

    We investigated the prevalence and incidence of vertebral fractures worldwide. We used a systematic Medline search current to 2015 and updated as per authors' libraries. A total of 62 articles of fair to good quality and comparable methods for vertebral fracture identification were considered. The prevalence of morphometric vertebral fractures in European women is highest in Scandinavia (26%) and lowest in Eastern Europe (18%). Prevalence rates in North America (NA) for White women ≥50 are 20-24%, with a White/Black ratio of 1.6. Rates in women ≥50 years in Latin America are overall lower than Europe and NA (11-19%). In Asia, rates in women above ≥65 are highest in Japan (24%), lowest in Indonesia (9%), and in the Middle East, Lebanon, rates are 20%. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Incidence data is less abundant and more heterogeneous. Age-standardized rates in studies combining hospitalized and ambulatory vertebral fractures are highest in South Korea, USA, and Hong Kong and lowest in the UK. Neither a North-South gradient nor a relation to urbanization is evident. Conversely, the incidence of hospitalized vertebral fractures in European patients ≥50 shows a North-South gradient with 3-3.7-fold variability. In the USA, rates in Whites are approximately 4-fold higher than in Blacks. Vertebral fractures variation worldwide is lower than observed with hip fractures, and some of highest rates are unexpectedly from Asia. Better quality representative studies are needed. We investigate the occurrence of vertebral fractures, worldwide, using published data current until the present. Worldwide, the variation in vertebral fractures is lower than observed for hip fractures. Some of the highest rates are from North America and unexpectedly Asia. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Better quality representative data is needed.

  10. Use of cervical vertebral dimensions for assessment of children growth

    Directory of Open Access Journals (Sweden)

    Maria de Paula Caldas

    2007-04-01

    Full Text Available OBJECTIVE: The purpose of this study was to investigate whether skeletal maturation using cephalometric radiographs could be used in a Brazilian population. MATERIAL AND METHODS: The study population was selected from the files of the Oral Radiological Clinic of the Dental School of Piracicaba, Brazil and consisted of 128 girls and 110 boys (7.0 to 15.9 years old who had cephalometric and hand-wrist radiographs taken on the same day. Cervical vertebral bone age was evaluated using the method described by Mito and colleagues in 2002. Bone age was assessed by the Tanner-Whitehouse (TW3 method and was used as a gold standard to determine the reliability of cervical vertebral bone age. An analysis of variance and Tukey's post-hoc test were used to compare cervical vertebral bone age, bone age and chronological age at 5% significance level. RESULTS: The analysis of the Brazilian female children data showed that there was a statistically significant difference (p0.05 was found between cervical vertebral bone age and bone age. Differently, the analysis of the male children data revealed a statistically significant difference (p<0.05 between cervical vertebral bone age and bone age and between cervical vertebral bone age and chronological age (p<0.05. CONCLUSIONS: The findings of the present study suggest that the method for objectively evaluating skeletal maturation on cephalometric radiographs by determination of vertebral bone age can be applied to Brazilian females only. The development of a new method to objectively evaluate cervical vertebral bone age in males is needed.

  11. Congenital abnormalities of the vertebral column in ferrets.

    Science.gov (United States)

    Proks, Pavel; Stehlik, Ladislav; Paninarova, Michaela; Irova, Katarina; Hauptman, Karel; Jekl, Vladimir

    2015-01-01

    Vertebral column pathologies requiring surgical intervention have been described in pet ferrets, however little information is available on the normal vertebral formula and congenital variants in this species. The purpose of this retrospective study was to describe vertebral formulas and prevalence of congenital vertebral anomalies in a sample of pet ferrets. Radiographs of 172 pet ferrets (96 males and 76 females) were included in this retrospective study. In 143 ferrets (83.14%), five different formulas of the vertebral column were recorded with normal morphology of vertebrae (rib attachment included) but with a variable number of thoracic (Th), lumbar (L), and sacral (S) vertebrae. The number of cervical (C) vertebrae was constant in all examined animals. Observed vertebral formulas were C7/Th14/L6/S3 (51.74%), C7/Th14/L6/S4 (22.10%), C7/Th14/L7/S3 (6.98%), C7/Th15/L6/S3 (1.74%), and C7/Th15/L6/S4 (0.58%). Formula C7/Th14/L6/S4 was significantly more common in males than in females (P < 0.05). Congenital spinal abnormalities were found in 29 ferrets (16.86%), mostly localized in the thoracolumbar and lumbosacral regions. The cervical region was affected in only one case. Transitional vertebrae represented the most common congenital abnormalities (26 ferrets) in the thoracolumbar (13 ferrets) and lumbosacral regions (10 ferrets) or simultaneously in both regions (three ferrets). Other vertebral anomalies included block (two ferrets) and wedge vertebra (one ferret). Spina bifida was not detected. Findings from the current study indicated that vertebral formulas may vary in ferrets and congenital abnormalities are common. This should be taken into consideration for surgical planning. © 2014 American College of Veterinary Radiology.

  12. Common mechanisms of synaptic plasticity in vertebrates and invertebrates

    Science.gov (United States)

    Glanzman, David L.

    2016-01-01

    Until recently, the literature on learning-related synaptic plasticity in invertebrates has been dominated by models assuming plasticity is mediated by presynaptic changes, whereas the vertebrate literature has been dominated by models assuming it is mediated by postsynaptic changes. Here I will argue that this situation does not reflect a biological reality and that, in fact, invertebrate and vertebrate nervous systems share a common set of mechanisms of synaptic plasticity. PMID:20152143

  13. Risk of vertebral compression fractures in multiple myeloma patients

    OpenAIRE

    Anitha, D.; Thomas, Baum; Jan, Kirschke S.; Subburaj, Karupppasamy

    2017-01-01

    Abstract The purpose of this study was to develop and validate a finite element (FE) model to predict vertebral bone strength in vitro using multidetector computed tomography (MDCT) images in multiple myeloma (MM) patients, to serve as a complementing tool to assess fracture risk. In addition, it also aims to differentiate MM patients with and without vertebral compression fractures (VCFs) by performing FE analysis on vertebra segments (T1?L5) obtained from in vivo routine MDCT imaging scans....

  14. Prevalence of thoracolumbar vertebral fractures on multidetector CT

    International Nuclear Information System (INIS)

    Bartalena, Tommaso; Giannelli, Giovanni; Rinaldi, Maria Francesca; Rimondi, Eugenio; Rinaldi, Giovanni; Sverzellati, Nicola; Gavelli, Giampaolo

    2009-01-01

    Objective: To evaluate the prevalence of osteoporotic vertebral fractures in patients undergoing multidetector computed tomography (MDCT) of the chest and/or abdomen. Materials and methods: 323 consecutive patients (196 males, 127 females) with a mean age of 62.6 years (range 20-88) who had undergone chest and/or abdominal MDCT were evaluated. Sagittal reformats of the spine obtained from thin section datasets were reviewed by two radiologists and assessed for vertebral fractures. Morphometric analysis using electronic calipers was performed on vertebral bodies which appeared abnormal upon visual inspection. A vertebral body height loss of 15% or more was considered a fracture and graded as mild (15-24%), moderate (25-49%) or severe (more than 50%). Official radiology reports were reviewed and whether the vertebral fractures had been reported or not was noted. Results: 31 out of 323 patients (9.5%) had at least 1 vertebral fracture and 7 of those patients had multiple fractures for a total of 41 fractures. Morphometric grading revealed 10 mild, 16 moderate and 15 severe fractures. Prevalence was higher in women (14.1%) than men (6.6%) and increased with patients age with a 17.1% prevalence in post-menopausal women. Only 6 out 41 vertebral fractures (14.6%) had been noted in the radiology final report while the remaining 35 (85.45) had not. Conclusion: although vertebral fractures represent frequent incidental findings on multidetector CT studies and may be easily identified on sagittal reformats, they are often underreported by radiologists, most likely because of unawareness of their clinical importance.

  15. Magnetic resonance angiography of the extracranial carotid and vertebral arteries

    International Nuclear Information System (INIS)

    Akimura, Tatsuo; Saito, Kenichi; Nakayama, Hisato; Kashiwagi, Shiro; Kato, Shoichi; Ito, Haruhide.

    1994-01-01

    To evaluate the contribution of magnetic resonance angiography (MRA) in the screening study of the extracranial carotid and vertebral arteries using the conventional head and neck coils, 500 consecutive MRAs of the cervical vessels were performed using 1.5 tesla magnetic resonance unit with circularly polarized head coil. The 5 cm-thick imaging plane was placed in coronal fashion including both carotid and vertebral arteries. The imaging sequence was three-dimensional (3D) fast imaging with steady precession (FISP). In 10 patients with failed head coil examination, 10 patients with possible carotid and vertebral diseases and 10 volunteers, the extracranial carotid and vertebral arteries were examined with the Helmholtz neck coil. Both 3D- and 2D-FISP were performed in each case. The imaging plane was placed in oblique sagittal fashion. In 458 out of 500 cases (91.6%), the extracranial carotid and vertebral arteries were successfully depicted using head coil. In 20 patients with high shoulders, the carotid bifurcations were out of range of the head coil. In these cases, carotid bifurcations and the origins of the carotid and vertebral arteries were successfully revealed using a neck coil. To evaluate the stenotic lesions and tortuous vessels, 2D-FISP sequence seemed to be more suitable than 3D-FISP. Compared with conventional angiography, MRA caused overestimation of the degree of stenotic lesions. For screening examination of the extracranial carotid and vertebral arteries, most cases can be evaluated only with the conventional head coil. If depiction of the carotid bifurcation fails and the examination of carotids or vertebrals down to the aortic arch is needed, neck coil examination is required. (author)

  16. Early prenatal diagnosis of a lumbo-costo-vertebral syndrome.

    Science.gov (United States)

    Pristavu, Anda Ioana; Furnica, Cristina; Ifrim, Mona Mihaela; Popovici, Razvan Mihai

    2018-04-01

    Lumbo-costo-vertebral syndrome (LCVS) is a rare type of lumbar hernia with associated abnormalities of the vertebral bodies, ribs, and trunk muscles. Only a few cases have been reported in the literature, all of which were diagnosed after birth. We present a case of LCVS diagnosed early in the second trimester of pregnancy using two- and three-dimensional ultrasound. In our case, the associated anomalies were: multiple costovertebral anomalies, lumbar hernia, anal imperforation, left hand supernumerary digit, and clubfoot.

  17. Osteoporosis with vertebral fractures associated with pregnancy: two case reports

    OpenAIRE

    Raffaetà, Gloria; Mazzantini, Maurizio; Menconi, Agnese; Bottai, Vanna; Falossi, Francesca; Celauro, Ilenia; Guido, Giulio

    2014-01-01

    Pregnancy and lactation-associated osteoporosis (PAO) is a rare condition characterized by the occurrence of fragility fractures, most commonly vertebral, in late pregnancy or the early postpartum period. The prevalence, etiology and pathogenesis of this osteoporosis are unknown, although there are several hypotheses attempting to explain the etiopathogenesis of pregnancy associated osteoporosis. In this paper we present two cases of young women who developed severe PAO with vertebral fractur...

  18. The amphioxus genome illuminates vertebrate origins and cephalochordate biology

    OpenAIRE

    Holland, Linda Z.; Albalat, Ricard; Azumi, Kaoru; Benito-Gutiérrez, Èlia; Blow, Matthew J.; Bronner-Fraser, Marianne; Brunet, Frederic; Butts, Thomas; Candiani, Simona; Dishaw, Larry J.; Ferrier, David E.K.; Garcia-Fernàndez, Jordi; Gibson-Brown, Jeremy J.; Gissi, Carmela; Godzik, Adam

    2008-01-01

    Cephalochordates, urochordates, and vertebrates evolved from a common ancestor over 520 million years ago. To improve our understanding of chordate evolution and the origin of vertebrates, we intensively searched for particular genes, gene families, and conserved noncoding elements in the sequenced genome of the cephalochordate Branchiostoma floridae, commonly called amphioxus or lancelets. Special attention was given to homeobox genes, opsin genes, genes involved in neural crest development,...

  19. How can mathematics help us explore vertebrate segmentation?

    OpenAIRE

    Baker, Ruth E.; Schnell, Santiago

    2009-01-01

    Since the discovery of gene products oscillating during the formation of vertebral segments, much attention has been directed toward eluciating the molecular basis of the so-called segmentation clock. What research has told us is, that even in the most simple vertebrates, enormously complicated gene networks act in each cell to give rise to oscillations, and that cell-cell communication synchronizes these oscillations between neighboring cells. A number of theories have been proposed to expla...

  20. Recent discoveries of Uruguayan Mesozoic vertebrates

    International Nuclear Information System (INIS)

    Soto, M.; Perea, D.; Rinderknetch, A.; Ubilla, M.; Da Silva, J.

    2007-01-01

    Recently, new discoveries of Uruguayan Mesozoic vertebrates have been made, as well as the reinterpretation of already known remains. Its taxonomical and biostratigraphical significance justifies this communication. Concerning the Tacuarembo Formation, on one hand a dipnoan prearticular tooth plate has been reinterpreted as belonging to Ceratodus africanus Haug 1905, a species typical of Late Jurassic-Late Cretaceous deposits of Saharan Africa. This is the second dipnoan taxon recorded in the Tacuarembo Formation, uncovering a previously unrecognized dipnoan diversity in the mid-Mesozoic of South America. On the other hand, a few theropod tooth were confidently identified at the familial level for the first time in our country. The remains include two striated premaxillary tooth crowns, the characters of which, close to Ceratosaurus Marsh 1884, allow to refer them to the family Ceratosauridae, this being the oldest South American record of the family. The striated teeth show strong affinities with those of Late Jurassic ceratosaurids from North America, Iberian Peninsula and Tanzania, which is in accordance with recent proposals about the age of the Lower Member of the Tacuarembo Formation. Concerning the Guichon Formation, we comunicate here in the most important discovery of dinosaur remains in Uruguay. It consist in spatially associated remains from several individuals, including fifty caudal vertebra and several epiphysis, metatarsals and astragali. These materials belong to a titanosaurid sauropod, the characters of which are similar to those of certain Campanian-Maastrichtian titanosaurids. Close to the bones, several eggshell fragments referable to Sphaerovum Mones 1980 - a typical Campanian-Maastrichtian oogenus- were found. This finding represents the first record of sauropod dinosaurs from the Guichon Formation, and suggests a younger age for this unit than early proposed

  1. The 'Tully monster' is a vertebrate.

    Science.gov (United States)

    McCoy, Victoria E; Saupe, Erin E; Lamsdell, James C; Tarhan, Lidya G; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G; Anderson, Ross P; Petermann, Holger; Locatelli, Emma R; Briggs, Derek E G

    2016-04-28

    Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.

  2. Opportunities and costs for preventing vertebrate extinctions.

    Science.gov (United States)

    Conde, Dalia A; Colchero, Fernando; Güneralp, Burak; Gusset, Markus; Skolnik, Ben; Parr, Michael; Byers, Onnie; Johnson, Kevin; Young, Glyn; Flesness, Nate; Possingham, Hugh; Fa, John E

    2015-03-16

    Despite an increase in policy and management responses to the global biodiversity crisis, implementation of the 20 Aichi Biodiversity Targets still shows insufficient progress [1]. These targets, strategic goals defined by the United Nations Convention on Biological Diversity (CBD), address major causes of biodiversity loss in part by establishing protected areas (Target 11) and preventing species extinctions (Target 12). To achieve this, increased interventions will be required for a large number of sites and species. The Alliance for Zero Extinction (AZE) [2], a consortium of conservation-oriented organisations that aims to protect Critically Endangered and Endangered species restricted to single sites, has identified 920 species of mammals, birds, amphibians, reptiles, conifers and reef-building corals in 588 'trigger' sites [3]. These are arguably the most irreplaceable category of important biodiversity conservation sites. Protected area coverage of AZE sites is a key indicator of progress towards Target 11 [1]. Moreover, effective conservation of AZE sites is essential to achieve Target 12, as the loss of any of these sites would certainly result in the global extinction of at least one species [2]. However, averting human-induced species extinctions within AZE sites requires enhanced planning tools to increase the chances of success [3]. Here, we assess the potential for ensuring the long-term conservation of AZE vertebrate species (157 mammals, 165 birds, 17 reptiles and 502 amphibians) by calculating a conservation opportunity index (COI) for each species. The COI encompasses a set of measurable indicators that quantify the possibility of achieving successful conservation of a species in its natural habitat (COIh) and by establishing insurance populations in zoos (COIc). Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Radiological evaluation of the cranio vertebral junction; Avaliacao radiologica da transicao cranio-vertebral

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Silvia Marcal Benicio de; Haetinger, Rainer Guilherme [Med Imagem - Beneficiencia Portuguesa de Sao Paulo, SP (Brazil). Setor de Cabeca e Pescoco]. E-mail: sbm@uol.com.br; Schettini, Marianna Cunha; Lima, Sergio Santos [Med Imagem - Beneficiencia Portuguesa de Sao Paulo, SP (Brazil); Mourao, Maria Lucia; Mendonca, Renato Adam [Med Imagem - Beneficiencia Portuguesa de Sao Paulo, SP (Brazil). Setor de Neuroradiologia

    2005-04-15

    The cranio vertebral junction (CVJ) comprises the occiput, atlas, their joints and ligaments. Besides conventional x-rays other imaging methods are need for the assessment of CVJ including high resolution computerized tomography (CT) and magnetic resonance imaging (MRI) which provide specific parameters such as field of view, slice thickness and incremental movement of the patient. A dynamic study is also important to assess the stability of the cranio vertebral junction and the effect upon the bulbomedullary junction. The aim of this study is to review the techniques used in the evaluation of the CVJ, the semiological parameters, and the most frequent disorders affecting this region. We review the literature and present conventional x-ray, CT and MRI images from the didactic file of the Radiology service 'Med Imagem - Beneficiencia Portuguesa de Sao Paulo, SP, Brazil, of cases with normal anatomy and the main congenital and acquired disorders of the CVJ. In daily practice, CVJ disorders are diagnoses using CT and MRI scans of the head and cervical spine. It is essential to be familiar with these conditions in order to preform specific tests which will allow a detailed study of the CVJ, thus providing the basis for the treatment, whenever indicated. (author)

  4. Automatic vertebral identification using surface-based registration

    Science.gov (United States)

    Herring, Jeannette L.; Dawant, Benoit M.

    2000-06-01

    This work introduces an enhancement to currently existing methods of intra-operative vertebral registration by allowing the portion of the spinal column surface that correctly matches a set of physical vertebral points to be automatically selected from several possible choices. Automatic selection is made possible by the shape variations that exist among lumbar vertebrae. In our experiments, we register vertebral points representing physical space to spinal column surfaces extracted from computed tomography images. The vertebral points are taken from the posterior elements of a single vertebra to represent the region of surgical interest. The surface is extracted using an improved version of the fully automatic marching cubes algorithm, which results in a triangulated surface that contains multiple vertebrae. We find the correct portion of the surface by registering the set of physical points to multiple surface areas, including all vertebral surfaces that potentially match the physical point set. We then compute the standard deviation of the surface error for the set of points registered to each vertebral surface that is a possible match, and the registration that corresponds to the lowest standard deviation designates the correct match. We have performed our current experiments on two plastic spine phantoms and one patient.

  5. Ancient deuterostome origins of vertebrate brain signalling centres.

    Science.gov (United States)

    Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan; Assimacopoulos, Stavroula; Grove, Elizabeth A; Lowe, Christopher J

    2012-03-14

    Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates. © 2012 Macmillan Publishers Limited. All rights reserved

  6. Evolution of the vertebrate phototransduction cascade activation steps.

    Science.gov (United States)

    Lamb, Trevor D; Hunt, David M

    2017-11-01

    We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. The pre-vertebrate origins of neurogenic placodes.

    Science.gov (United States)

    Abitua, Philip Barron; Gainous, T Blair; Kaczmarczyk, Angela N; Winchell, Christopher J; Hudson, Clare; Kamata, Kaori; Nakagawa, Masashi; Tsuda, Motoyuki; Kusakabe, Takehiro G; Levine, Michael

    2015-08-27

    The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.

  8. iDNA screening: Disease vectors as vertebrate samplers.

    Science.gov (United States)

    Kocher, Arthur; de Thoisy, Benoit; Catzeflis, François; Valière, Sophie; Bañuls, Anne-Laure; Murienne, Jérôme

    2017-11-01

    In the current context of global change and human-induced biodiversity decline, there is an urgent need for developing sampling approaches able to accurately describe the state of biodiversity. Traditional surveys of vertebrate fauna involve time-consuming and skill-demanding field methods. Recently, the use of DNA derived from invertebrate parasites (leeches and blowflies) was suggested as a new tool for vertebrate diversity assessment. Bloodmeal analyses of arthropod disease vectors have long been performed to describe their feeding behaviour, for epidemiological purposes. On the other hand, this existing expertise has not yet been applied to investigate vertebrate fauna per se. Here, we evaluate the usefulness of hematophagous dipterans as vertebrate samplers. Blood-fed sand flies and mosquitoes were collected in Amazonian forest sites and analysed using high-throughput sequencing of short mitochondrial markers. Bloodmeal identifications highlighted contrasting ecological features and feeding behaviour among dipteran species, which allowed unveiling arboreal and terrestrial mammals of various body size, as well as birds, lizards and amphibians. Additionally, lower vertebrate diversity was found in sites undergoing higher levels of human-induced perturbation. These results suggest that, in addition to providing precious information on disease vector host use, dipteran bloodmeal analyses may represent a useful tool in the study of vertebrate communities. Although further effort is required to validate the approach and consider its application to large-scale studies, this first work opens up promising perspectives for biodiversity monitoring and eco-epidemiology. © 2017 John Wiley & Sons Ltd.

  9. Differential preservation of vertebrates in Southeast Asian caves

    Directory of Open Access Journals (Sweden)

    Julien Louys

    2017-09-01

    Full Text Available Caves have been an important source of vertebrate fossils for much of Southeast Asia, particularly for the Quaternary. Despite this importance, the mechanisms by which vertebrate remains accumulate and preserve in Southeast Asian caves has never been systematically reviewed or examined. Here, we present the results of three years of cave surveys in Indonesia and Timor-Leste, describing cave systems and their attendant vertebrate accumulations in diverse geological, biogeographical, and environmental settings. While each cave system is unique, we find that the accumulation and preservation of vertebrate remains are highly dependent on local geology and environment. These factors notwithstanding, we find the dominant factor responsible for faunal deposition is the presence or absence of biological accumulating agents, a factor directly dictated by biogeographical history. In small, isolated, volcanic islands, the only significant accumulation occurs in archaeological settings, thereby limiting our understanding of the palaeontology of those islands prior to human arrival. In karstic landscapes on both oceanic and continental islands, our understanding of the long-term preservation of vertebrates is still in its infancy. The formation processes of vertebrate-bearing breccias, their taphonomic histories, and the criteria used to determine whether these represent syngenetic or multiple deposits remain critically understudied. The latter in particular has important implications for arguments on how breccia deposits from the region should be analysed and interpreted when reconstructing palaeoenvironments.

  10. Facultative parthenogenesis in vertebrates: reproductive error or chance?

    Science.gov (United States)

    Lampert, K P

    2008-01-01

    Parthenogenesis, the development of an embryo from a female gamete without any contribution of a male gamete, is very rare in vertebrates. Parthenogenetically reproducing species have, so far, only been found in the Squamate reptiles (lizards and snakes). Facultative parthenogenesis, switching between sexual and clonal reproduction, although quite common in invertebrates, e.g. Daphnia and aphids, seems to be even rarer in vertebrates. However, isolated cases of parthenogenetic development have been reported in all vertebrate groups. Facultative parthenogenesis in vertebrates has only been found in captive animals but might simply have been overlooked in natural populations. Even though its evolutionary impact is hard to determine and very likely varies depending on the ploidy restoration mechanisms and sex-determining mechanisms involved, facultative parthenogenesis is already discussed in conservation biology and medical research. To raise interest for facultative parthenogenesis especially in evolutionary biology, I summarize the current knowledge about facultative parthenogenesis in the different vertebrate groups, introduce mechanisms of diploid oocyte formation and discuss the genetic consequences and potential evolutionary impact of facultative parthenogenesis in vertebrates.

  11. X-ray image segmentation for vertebral mobility analysis

    International Nuclear Information System (INIS)

    Benjelloun, Mohammed; Mahmoudi, Said

    2008-01-01

    The goal of this work is to extract the parameters determining vertebral motion and its variation during flexion-extension movements using a computer vision tool for estimating and analyzing vertebral mobility. To compute vertebral body motion parameters we propose a comparative study between two segmentation methods proposed and applied to lateral X-ray images of the cervical spine. The two vertebra contour detection methods include (1) a discrete dynamic contour model (DDCM) and (2) a template matching process associated with a polar signature system. These two methods not only enable vertebra segmentation but also extract parameters that can be used to evaluate vertebral mobility. Lateral cervical spine views including 100 views in flexion, extension and neutral orientations were available for evaluation. Vertebral body motion was evaluated by human observers and using automatic methods. The results provided by the automated approaches were consistent with manual measures obtained by 15 human observers. The automated techniques provide acceptable results for the assessment of vertebral body mobility in flexion and extension on lateral views of the cervical spine. (orig.)

  12. Vertebral deformity arising from an accelerated "creep" mechanism.

    Science.gov (United States)

    Luo, Jin; Pollintine, Phillip; Gomm, Edward; Dolan, Patricia; Adams, Michael A

    2012-09-01

    Vertebral deformities often occur in patients who recall no trauma, and display no evident fracture on radiographs. We hypothesise that vertebral deformity can occur by a gradual creep mechanism which is accelerated following minor damage. "Creep" is continuous deformation under constant load. Forty-five thoracolumbar spine motion segments were tested from cadavers aged 42-92 years. Vertebral body areal BMD was measured using DXA. Specimens were compressed at 1 kN for 30 min, while creep in each vertebral body was measured using an optical MacReflex system. After 30 min recovery, each specimen was subjected to a controlled overload event which caused minor damage to one of its vertebrae. The creep test was then repeated. Vertebral body creep was measurable in specimens with BMD Creep was greater anteriorly than posteriorly (p creep by 800 % (anteriorly), 1,000 % (centrally) and 600 % (posteriorly). In 34 vertebrae with complete before-and-after data, anterior wedging occurring during the 1st creep test averaged 0.07° (STD 0.17°), and in the 2nd test (after minor damage) it averaged 0.79° (STD 1.03°). The increase was highly significant (P creep test was proportional to the severity of damage, as quantified by specimen height loss during the overload event (r (2) = 0.51, p creep to such an extent that it makes a substantial contribution to vertebral deformity.

  13. NMR imaging of the vertebral column and the spinal canal. 2. rev. and enl. ed.

    International Nuclear Information System (INIS)

    Forsting, Michael; Uhlenbrock, Detlev; Wanke, Isabel; Universitaetsklinikum Essen

    2009-01-01

    The book on the MRT (magnetic resonance tomography) of the vertebral cord and spinal canal covers the following topics: physics fundamentals and application; malformation of the spinal canal; degenerative vertebral column diseases; vertebral column and spinal canal carcinomas; inflammatory diseases of the vertebral column and the spinal canal; applicability of MRT in case of acute spinal cord traumata; vascular diseases of the spinal canal

  14. Percutaneous vertebroplasty in the treatment of vertebral body compression fracture secondary to osteogenesis imperfecta

    International Nuclear Information System (INIS)

    Rami, Parag M.; Heatwole, Eric V.; Boorstein, Jeffrey M.; McGraw, Kevin J.

    2002-01-01

    Percutaneous vertebroplasty, a minimally invasive interventional radiological procedure, has recently been used effectively for the treatment of symptomatic vertebral body compression fractures. Primary indications for vertebroplasty include osteoporotic compression fracture, osteolytic vertebral metastasis and myeloma, and vertebral hemangioma. We present a case and extend the indication of percutaneous vertebroplasty in a patient with a vertebral body compression fracture secondary to osteogenesis imperfecta. (orig.)

  15. Percutaneous vertebroplasty in the treatment of vertebral body compression fracture secondary to osteogenesis imperfecta

    Energy Technology Data Exchange (ETDEWEB)

    Rami, Parag M.; Heatwole, Eric V.; Boorstein, Jeffrey M. [Center for Vascular and Interventional Radiology, St. Vincent Mercy Medical Center, Toledo, OH (United States); McGraw, Kevin J. [Riverside Methodist Hospital, Columbus, OH (United States)

    2002-03-01

    Percutaneous vertebroplasty, a minimally invasive interventional radiological procedure, has recently been used effectively for the treatment of symptomatic vertebral body compression fractures. Primary indications for vertebroplasty include osteoporotic compression fracture, osteolytic vertebral metastasis and myeloma, and vertebral hemangioma. We present a case and extend the indication of percutaneous vertebroplasty in a patient with a vertebral body compression fracture secondary to osteogenesis imperfecta. (orig.)

  16. Benthic meiofaunal community response to the cascading effects of herbivory within an algal halo system of the Great Barrier Reef.

    Science.gov (United States)

    Ollivier, Quinn R; Hammill, Edward; Booth, David J; Madin, Elizabeth M P; Hinchliffe, Charles; Harborne, Alastair R; Lovelock, Catherine E; Macreadie, Peter I; Atwood, Trisha B

    2018-01-01

    Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.

  17. Elevated Levels of Herbivory in Urban Landscapes: Are Declines in Tree Health More Than an Edge Effect?

    Directory of Open Access Journals (Sweden)

    Fiona J. Christie

    2005-06-01

    Full Text Available Urbanization is one of the most extreme and rapidly growing anthropogenic pressures on the natural world. Urban development has led to substantial fragmentation of areas of natural habitat, resulting in significant impacts on biodiversity and disruptions to ecological processes. We investigated the levels of leaf damage caused by invertebrates in a dominant canopy species in urban remnants in a highly fragmented urban landscape in Sydney, Australia, by assessing the frequency and extent of chewing and surface damage of leaves in urban remnants compared to the edges and interiors of continuous areas of vegetation. Although no difference was detected in the frequency of leaves showing signs of damage at small, edge, and interior sites, small sites suffered significantly greater levels of leaf damage than did interior sites. Trees at edge sites showed intermediate levels of damage, suggesting that edge effects alone are not the cause of higher levels of herbivory. These findings are the first to demonstrate the effects of urbanization on invertebrate damage in dominant trees at coarse scales. This is consistent with hypotheses predicting that changes in species composition through urban fragmentation affect ecological interactions.

  18. Herbivory by an Outbreaking Moth Increases Emissions of Biogenic Volatiles and Leads to Enhanced Secondary Organic Aerosol Formation Capacity.

    Science.gov (United States)

    Yli-Pirilä, Pasi; Copolovici, Lucian; Kännaste, Astrid; Noe, Steffen; Blande, James D; Mikkonen, Santtu; Klemola, Tero; Pulkkinen, Juha; Virtanen, Annele; Laaksonen, Ari; Joutsensaari, Jorma; Niinemets, Ülo; Holopainen, Jarmo K

    2016-11-01

    In addition to climate warming, greater herbivore pressure is anticipated to enhance the emissions of climate-relevant biogenic volatile organic compounds (VOCs) from boreal and subarctic forests and promote the formation of secondary aerosols (SOA) in the atmosphere. We evaluated the effects of Epirrita autumnata, an outbreaking geometrid moth, feeding and larval density on herbivore-induced VOC emissions from mountain birch in laboratory experiments and assessed the impact of these emissions on SOA formation via ozonolysis in chamber experiments. The results show that herbivore-induced VOC emissions were strongly dependent on larval density. Compared to controls without larval feeding, clear new particle formation by nucleation in the reaction chamber was observed, and the SOA mass loadings in the insect-infested samples were significantly higher (up to 150-fold). To our knowledge, this study provides the first controlled documentation of SOA formation from direct VOC emission of deciduous trees damaged by known defoliating herbivores and suggests that chewing damage on mountain birch foliage could significantly increase reactive VOC emissions that can importantly contribute to SOA formation in subarctic forests. Additional feeding experiments on related silver birch confirmed the SOA results. Thus, herbivory-driven volatiles are likely to play a major role in future biosphere-vegetation feedbacks such as sun-screening under daily 24 h sunshine in the subarctic.

  19. Herbivory mitigation through increased water-use efficiency in a leaf-mining moth-apple tree relationship.

    Science.gov (United States)

    Pincebourde, Sylvain; Frak, Ela; Sinoquet, Hervé; Regnard, Jean Luc; Casas, Jérôme

    2006-12-01

    Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.

  20. Interactions and consequences of silicon, nitrogen, and Fusarium palustre on herbivory and DMSP levels of Spartina alterniflora

    Science.gov (United States)

    Bazzano, Magalí; Elmer, Wade

    2017-11-01

    Sudden Vegetation Dieback (SVD) has been associated with multiple factors affecting the health of Spartina alterniflora. These include altered nutrition (N, Si and various metals), herbivory from the purple marsh crab, and the association with a fungal pathogen (Fusarium palustre). A metabolite produced by Spartina alterniflora that has been associated with plant health is dimethylsulfoniopropionate (DMSP), but little information exist on how these biotic stressors and nutrition interact to affect DMSP levels. Understanding how these factors might be interrelated might provide insight into the etiology of SVD. Surveys of a marsh affected by SVD confirmed lower levels of DMSP and higher concentrations of Si and other metals were present in Sp. alterniflora when compared to plants from marsh that exhibited no signs of SVD. In repeated greenhouse experiments, the application of Si to Sp. alterniflora had no effect on DMSP concentrations. However, when plants were inoculated with the pathogenic fungus, Fusarium palustre, and then treated with Si, DMSP levels were elevated 27%. Inoculation alone had no effect on DMSP levels. Si application neither favor growth nor suppress the stunting effect of disease by F. palustre. Furthermore, grazing by Sesarma reticulatum, a herbivorous crab, was not affected by Si nutrition. Grazing was increased by nitrogen fertilization and inoculation with F. palustre. Deciphering the role of Si nutrition in Sp. alterniflora and dieback remains unresolved, but no evidence suggests enhancing Si nutrition would directly favor marsh health.

  1. Butterfly Larval Host Plant use in a Tropical Urban Context: Life History Associations, Herbivory, and Landscape Factors

    Science.gov (United States)

    Tiple, Ashish D.; Khurad, Arun M.; Dennis, Roger L. H.

    2011-01-01

    This study examines butterfly larval host plants, herbivory and related life history attributes within Nagpur City, India. The larval host plants of 120 butterfly species are identified and their host specificity, life form, biotope, abundance and perennation recorded; of the 126 larval host plants, most are trees (49), with fewer herbs (43), shrubs (22), climbers (7) and stem parasites (2). They include 89 wild, 23 cultivated, 11 wild/cultivated and 3 exotic plant species; 78 are perennials, 43 annuals and 5 biannuals. Plants belonging to Poaceae and Fabaceae are most widely used by butterfly larvae. In addition to distinctions in host plant family affiliation, a number of significant differences between butterfly families have been identified in host use patterns: for life forms, biotopes, landforms, perennation, host specificity, egg batch size and ant associations. These differences arising from the development of a butterfly resource database have important implications for conserving butterfly species within the city area. Differences in overall butterfly population sizes within the city relate mainly to the number of host plants used, but other influences, including egg batch size and host specificity are identified. Much of the variation in population size is unaccounted for and points to the need to investigate larval host plant life history and strategies as population size is not simply dependent on host plant abundance. PMID:21864159

  2. Clinical application of multislice spiral CT angiography in evaluation of anomalous vertebral artery

    International Nuclear Information System (INIS)

    Hua Rui; Liu Jun; Zhang Yu

    2008-01-01

    Objective: To evaluate the diagnostic value of 16-slice spiral computed tomography angiography (MSCTA) in evaluation of anomalous vertebral artery. Methods: MSCTA data from 32 patients with anomalous vertebral artery were retrospectively analyzed. Results: 22 cases had vertebral artery course variation (bended into the C 5 , C 4 or C 3 foramen transversarium), 7 cases had variation in the prevertebral segments of vertebral arteries, 15 patients had unilateral vertebral congenital stenosis, 1 case had double vertebral artery branch, 1 case had vertebral arterial fenestration, and 2 cases had vertebral artery in one side that did not converged upon basilar artery and unilateral vertebral artery formed basilar artery. Conclusion: MSCTA is a useful noninvasive imaging tool for the diagnosis of vertebral artery variations. (authors)

  3. Under-reporting of osteoporotic vertebral fractures on computed tomography

    International Nuclear Information System (INIS)

    Williams, Alexandra L.; Al-Busaidi, Aisha; Sparrow, Patrick J.; Adams, Judith E.; Whitehouse, Richard W.

    2009-01-01

    Purpose: Osteoporotic vertebral fractures are frequently asymptomatic. They are often not diagnosed clinically or radiologically. Despite this, prevalent osteoporotic vertebral fractures predict future osteoporotic fractures and are associated with increased mortality and morbidity. Appropriate management of osteoporosis can reduce future fracture risk. Fractures on lateral chest radiographs taken for other conditions are frequently overlooked by radiologists. Our aim was to assess the value of computed tomography (CT) in the diagnosis of vertebral fracture and identify the frequency with which significant fractures are missed. Materials and methods: The thoracic CT scans of 100 consecutive male and 100 consecutive female patients over 55 years were reviewed. CT images were acquired on General Electric Lightspeed multi-detector (MD) CT scanners (16 or 32 row) using 1.25 mm slice thickness. Midline sagittal images were reconstructed from the 3D volume images. The presence of moderate (25-40% height loss) or severe (>40% height loss) vertebral fractures between T1 and L1 was determined using an established semi-quantitative method and confirmed by morphological measurement. Results were compared with the formal CT report. Results: Scans of 192 patients were analysed (95 female; 97 male); mean age 70.1 years. Thirty-eight (19.8%) patients had one or more moderate to severe vertebral fractures. Only 5 (13%) were correctly reported as having osteoporotic fractures in the official report. The sensitivity of axial CT images to vertebral fracture was 0.35. Conclusion: Incidental osteoporotic vertebral fractures are under-reported on CT. The sensitivity of axial images in detecting these fractures is poor. Sagittal reformations are strongly recommended to improve the detection rate

  4. Initial non-weight-bearing therapy is important for preventing vertebral body collapse in elderly patients with clinical vertebral fractures

    Directory of Open Access Journals (Sweden)

    Kishikawa Y

    2012-04-01

    Full Text Available Yoichi KishikawaKishikawa Orthopaedic Clinic, Saga City, Saga, JapanPurpose: The aim of the present conventional observational study was to compare the clinical outcomes of initial non-weight-bearing therapy and conventional relative rest therapy among elderly patients with clinical vertebral fractures.Methods: In total, 196 consecutive patients with clinical vertebral fractures (mean age: 78 years who were hospitalized for treatment between January 1999 and March 2007 were analyzed. Initial non-weight-bearing therapy consisted of complete bed rest allowing rolling on the bed without any weight-bearing to the spine for 2 weeks, followed by rehabilitation wearing a soft brace. The indications for initial non-weight-bearing therapy were vertebral fracture involving the posterior portion of the vertebral body at the thoraco-lumbar spine, mild neurological deficit, instability of the fracture site, severe pain, multiple vertebral fractures arising from trauma, malalignment at the fracture site, and mild spinal canal stenosis caused by the fracture. Patients who met the indication criteria were treated with initial non-weight-bearing therapy (n = 103, while the other patients were treated with conventional relative rest (n = 93. All the patients were uniformly treated with intramuscular elcatonin to relieve pain. The primary endpoint was progression of the vertebral fracture. The secondary endpoints included bony union and subjective back pain. The follow-up period was 12 weeks.Results: Compared with the conventional relative rest group, the collapse rate of the anterior and posterior portions of the vertebral body was significantly smaller in the initial non-weight-bearing group. The bony union rate was 100% in the initial non-weight-bearing group and 97% in the conventional relative rest group. The number of patients who experienced back pain was significantly lower in the initial non-weight-bearing group than in the conventional relative rest

  5. Cervical vertebral stenosis associated with a vertebral arch anomaly in the Basset Hound.

    Science.gov (United States)

    De Decker, S; De Risio, L; Lowrie, M; Mauler, D; Beltran, E; Giedja, A; Kenny, P J; Gielen, I; Garosi, L; Volk, H

    2012-01-01

    To report the clinical presentation, imaging characteristics, treatment results, and histopathological findings of a previously undescribed vertebral malformation in the Basset Hound. Retrospective case series study. Eighteen Basset Hounds presented for evaluation of a suspected cervical spinal cord problem. All dogs underwent computed tomography myelography or magnetic resonance imaging of the cervical region. Thirteen male and 5 female Basset Hounds between 6 months and 10.8 years of age (median: 1.4 years) were studied. Clinical signs varied from cervical hyperesthesia to nonambulatory tetraparesis. Imaging demonstrated a well-defined and smooth hypertrophy of the dorsal lamina and spinous process of ≥ 2 adjacent vertebrae. Although this bony abnormality could decrease the ventrodorsal vertebral canal diameter, dorsal midline spinal cord compression was predominantly caused by ligamentum flavum hypertrophy. The articulation between C4 and C5 was most commonly affected. Three dogs were lost to follow-up, 10 dogs underwent dorsal laminectomy, and medical management was initiated in 5 dogs. Surgery resulted in a good outcome with short hospitalization times (median: 4.5 days) in all dogs, whereas medical management produced more variable results. Histopathology confirmed ligamentum flavum hypertrophy and demonstrated the fibrocartilaginous nature of this anomaly. Dorsal lamina and spinous process hypertrophy leading to ligamentum flavum hypertrophy should be included in the differential diagnosis of Basset Hounds with cervical hyperesthesia or myelopathy. Prognosis after decompressive surgery is favorable. Although a genetic component is suspected, additional studies are needed to determine the specific etiology of this disorder. Copyright © 2012 by the American College of Veterinary Internal Medicine.

  6. Vertebral column regionalisation in Chinook salmon, Oncorhynchus tshawytscha.

    Science.gov (United States)

    De Clercq, A; Perrott, M R; Davie, P S; Preece, M A; Wybourne, B; Ruff, N; Huysseune, A; Witten, P E

    2017-10-01

    Teleost vertebral centra are often similar in size and shape, but vertebral-associated elements, i.e. neural arches, haemal arches and ribs, show regional differences. Here we examine how the presence, absence and specific anatomical and histological characters of vertebral centra-associated elements can be used to define vertebral column regions in juvenile Chinook salmon (Oncorhynchus tshawytscha). To investigate if the presence of regions within the vertebral column is independent of temperature, animals raised at 8 and 12 °C were studied at 1400 and 1530 degreedays, in the freshwater phase of the life cycle. Anatomy and composition of the skeletal tissues of the vertebral column were analysed using Alizarin red S whole-mount staining and histological sections. Six regions, termed I-VI, are recognised in the vertebral column of specimens of both temperature groups. Postcranial vertebrae (region I) carry neural arches and parapophyses but lack ribs. Abdominal vertebrae (region II) carry neural arches and ribs that articulate with parapophyses. Elastic- and fibrohyaline cartilage and Sharpey's fibres connect the bone of the parapophyses to the bone of the ribs. In the transitional region (III) vertebrae carry neural arches and parapophyses change stepwise into haemal arches. Ribs decrease in size, anterior to posterior. Vestigial ribs remain attached to the haemal arches with Sharpey's fibres. Caudal vertebrae (region IV) carry neural and haemal arches and spines. Basidorsals and basiventrals are small and surrounded by cancellous bone. Preural vertebrae (region V) carry neural and haemal arches with modified neural and haemal spines to support the caudal fin. Ural vertebrae (region VI) carry hypurals and epurals that represent modified haemal and neural arches and spines, respectively. The postcranial and transitional vertebrae and their respective characters are usually recognised, but should be considered as regions within the vertebral column of teleosts

  7. Closure of the vertebral canal in human embryos and fetuses.

    Science.gov (United States)

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  8. Insights from amphioxus into the evolution of vertebrate cartilage.

    Directory of Open Access Journals (Sweden)

    Daniel Meulemans

    2007-08-01

    Full Text Available Central to the story of vertebrate evolution is the origin of the vertebrate head, a problem difficult to approach using paleontology and comparative morphology due to a lack of unambiguous intermediate forms. Embryologically, much of the vertebrate head is derived from two ectodermal tissues, the neural crest and cranial placodes. Recent work in protochordates suggests the first chordates possessed migratory neural tube cells with some features of neural crest cells. However, it is unclear how and when these cells acquired the ability to form cellular cartilage, a cell type unique to vertebrates. It has been variously proposed that the neural crest acquired chondrogenic ability by recruiting proto-chondrogenic gene programs deployed in the neural tube, pharynx, and notochord. To test these hypotheses we examined the expression of 11 amphioxus orthologs of genes involved in neural crest chondrogenesis. Consistent with cellular cartilage as a vertebrate novelty, we find that no single amphioxus tissue co-expresses all or most of these genes. However, most are variously co-expressed in mesodermal derivatives. Our results suggest that neural crest-derived cartilage evolved by serial cooption of genes which functioned primitively in mesoderm.

  9. Micromechanics of the human vertebral body for forward flexion.

    Science.gov (United States)

    Yang, Haisheng; Nawathe, Shashank; Fields, Aaron J; Keaveny, Tony M

    2012-08-09

    To provide mechanistic insight into the etiology of osteoporotic wedge fractures, we investigated the spatial distribution of tissue at the highest risk of initial failure within the human vertebral body for both forward flexion and uniform compression loading conditions. Micro-CT-based linear elastic finite element analysis was used to virtually load 22 human T9 vertebral bodies in either 5° of forward flexion or uniform compression; we also ran analyses replacing the simulated compliant disc (E=8 MPa) with stiff polymethylmethacrylate (PMMA, E=2500 MPa). As expected, we found that, compared to uniform compression, forward flexion increased the overall endplate axial load on the anterior half of the vertebra and shifted the spatial distribution of high-risk tissue within the vertebra towards the anterior aspect of the vertebral body. However, despite that shift, the high-risk tissue remained primarily within the central regions of the trabecular bone and endplates, and forward flexion only slightly altered the ratio of cortical-to-trabecular load sharing at the mid-vertebral level (mean±SD for n=22: 41.3±7.4% compression; 44.1±8.2% forward flexion). When the compliant disc was replaced with PMMA, the anterior shift of high-risk tissue was much more severe. We conclude that, for a compliant disc, a moderate degree of forward flexion does not appreciably alter the spatial distribution of stress within the vertebral body. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. [Vertebral fractures in children with Type I Osteogenesis imperfecta].

    Science.gov (United States)

    Sepúlveda, Andrea M; Terrazas, Claudia V; Sáez, Josefina; Reyes, María L

    2017-06-01

    Osteogenesis imperfecta (OI) is an hereditary disease affecting conective tissue, mainly associated to growth retardation and pathological fractures. OI type I (OI type I), is the mildest, most often, and homogeneous in its fenotype. Vertebral fractures are the most significant complications, associated to skeletical and cardiopulmonary morbidity. To characterize clinically a cohort of children with OI type I. A cohort of OI type I children younger than 20 year old was evaluated. Demographic, clinical, biochemical and radiological data were registered. Sixty seven patients were included, 55% male, 69% resident in the Metropolitan Region. The mean age of diagnose was 2.9 years, 70% presented vertebral fractures on follow-up, mostly thoracic, and 50% before the age of 5 years. Fifty percentage presented vertebral fractures at diagnose, which was about the age of 5 years. Bone metabolic parameters were in the normal range, without significant change at the moment of vertebral fractures. Calcium intake was found to be below American Academy of Pediatrics recommendations at the time of the first fracture. In this study OI type I has an early diagnose, and vertebral fractures show a high incidence, mostly in toddlers. Calcium intake was found to be below reccomended values, and should be closely supervised in these patients.

  11. Combined endovascular and surgical treatment in vertebral arteriovenous fistula

    International Nuclear Information System (INIS)

    Nakstad, P.H.; Haakonsen, M.; Magn