WorldWideScience

Sample records for behavioral sensory processing

  1. Sensory Processing Subtypes in Autism: Association with Adaptive Behavior

    Science.gov (United States)

    Lane, Alison E.; Young, Robyn L.; Baker, Amy E. Z.; Angley, Manya T.

    2010-01-01

    Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes…

  2. Sensory processing subtypes in autism: association with adaptive behavior.

    Science.gov (United States)

    Lane, Alison E; Young, Robyn L; Baker, Amy E Z; Angley, Manya T

    2010-01-01

    Children with autism are frequently observed to experience difficulties in sensory processing. This study examined specific patterns of sensory processing in 54 children with autistic disorder and their association with adaptive behavior. Model-based cluster analysis revealed three distinct sensory processing subtypes in autism. These subtypes were differentiated by taste and smell sensitivity and movement-related sensory behavior. Further, sensory processing subtypes predicted communication competence and maladaptive behavior. The findings of this study lay the foundation for the generation of more specific hypotheses regarding the mechanisms of sensory processing dysfunction in autism, and support the continued use of sensory-based interventions in the remediation of communication and behavioral difficulties in autism.

  3. Physiological and behavioral differences in sensory processing: a comparison of children with autism spectrum disorder and sensory modulation disorder.

    Science.gov (United States)

    Schoen, Sarah A; Miller, Lucy J; Brett-Green, Barbara A; Nielsen, Darci M

    2009-01-01

    A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD) and children with Sensory Modulation Disorder (SMD). This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a measure of sensory-related behaviors. Physiological arousal and sensory reactivity were lower in children with ASD whereas reactivity after each sensory stimulus was higher in SMD, particularly to the first stimulus in each sensory domain. Both clinical groups had significantly more sensory-related behaviors than typically developing children, with contrasting profiles. The ASD group had more taste/smell sensitivity and sensory under-responsivity while the SMD group had more atypical sensory seeking behavior. This study provides preliminary evidence distinguishing sympathetic nervous system functions and sensory-related behaviors in Autism Spectrum Disorder and Sensory Modulation Disorder. Differentiating the physiology and sensory symptoms in clinical groups is essential to the provision of appropriate interventions.

  4. Physiological and behavioral differences in sensory processing: a comparison of children with Autism Spectrum Disorder and Sensory Modulation Disorder

    Directory of Open Access Journals (Sweden)

    Sarah A Schoen

    2009-11-01

    Full Text Available A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD and children with idiopathic Sensory Modulation Disorder (SMD. This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a measure of sensory-related behaviors. Physiological arousal and sensory reactivity were lower in children with ASD whereas reactivity after each sensory stimulus was higher in SMD, particularly to the first stimulus in each sensory domain. Both clinical groups had significantly more sensory-related behaviors than typically developing children, with contrasting profiles. The ASD group had more taste/smell sensitivity and sensory under-responsivity while the SMD group had more atypical sensory seeking behavior. This study provides preliminary evidence distinguishing sympathetic nervous system functions and sensory-related behaviors in Autism Spectrum Disorder and Sensory Modulation Disorder. Differentiating the physiology and sensory symptoms in clinical groups is essential to the provision of appropriate interventions.

  5. Physiological and Behavioral Differences in Sensory Processing: A Comparison of Children with Autism Spectrum Disorder and Sensory Modulation Disorder

    Science.gov (United States)

    Schoen, Sarah A.; Miller, Lucy J.; Brett-Green, Barbara A.; Nielsen, Darci M.

    2009-01-01

    A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD) and children with Sensory Modulation Disorder (SMD). This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a measure of sensory-related behaviors. Physiological arousal and sensory reactivity were lower in children with ASD whereas reactivity after each sensory stimulus was higher in SMD, particularly to the first stimulus in each sensory domain. Both clinical groups had significantly more sensory-related behaviors than typically developing children, with contrasting profiles. The ASD group had more taste/smell sensitivity and sensory under-responsivity while the SMD group had more atypical sensory seeking behavior. This study provides preliminary evidence distinguishing sympathetic nervous system functions and sensory-related behaviors in Autism Spectrum Disorder and Sensory Modulation Disorder. Differentiating the physiology and sensory symptoms in clinical groups is essential to the provision of appropriate interventions. PMID:19915733

  6. Sensory Processing Difficulties, Behavioral Problems, and Parental Stress in a Clinical Population of Young Children.

    Science.gov (United States)

    Gourley, Lauren; Wind, Carina; Henninger, Erin M; Chinitz, Susan

    2013-10-01

    This study examined the relationship between sensory processing difficulties, parental stress, and behavioral problems in a clinical sample of young children with developmental and behavioral difficulties. We hypothesized that a high rate of sensory processing difficulties would be found, that there would be a high rate of comorbidity between sensory processing difficulties and behavioral problems, and that children's sensory processing difficulties and parental stress would be highly correlated. Parents of 59 children ages two to five who attended an out-patient clinic in a low income, urban community completed the Child Behavior Checklist, Parental Stress Inventory-Short Form and the Short Sensory Profile. Children in this clinical population showed a high prevalence (55.9%) of sensory processing difficulties, a significantly higher rate than previously reported. Sensory processing deficits were correlated with behavioral difficulties and parental stress levels-suggesting that as sensory processing difficulties increase, so do behavioral difficulties and parental stress. Parents of children with sensory processing deficits had significantly higher levels of parental stress than parents of children without sensory deficits. Parenting stress levels were also clinically elevated for the cohort of children in which sensory processing difficulties and behavioral concerns co-existed. These findings suggest that treatment outcomes might improve and parental stress could be reduced if mental health clinicians were trained to identify and address sensory problems. This could result in more children being screened and treated for sensory processing difficulties and an eventual reduction in the rates of parental stress.

  7. Sensory processing and classroom emotional, behavioral, and educational outcomes in children with autism spectrum disorder.

    Science.gov (United States)

    Ashburner, Jill; Ziviani, Jenny; Rodger, Sylvia

    2008-01-01

    We explored the associations between sensory processing and classroom emotional, behavioral, and educational outcomes of children with autism spectrum disorder (ASD). Twenty-eight children with ASD (with average-range IQ) were compared with 51 age- and gender-matched typically developing peers on sensory processing and educational outcomes. For children with ASD, the Short Sensory Profile scores Underresponsive/Seeks Sensation and Auditory Filtering explained 47% of the variance in academic performance, yet estimated intelligence was not a significant predictor of academic performance. Significant negative correlations were found between (1) auditory filtering and inattention to cognitive tasks, (2) tactile hypersensitivity and hyperactivity and inattention, and (3) movement sensitivity and oppositional behavior. A pattern of auditory filtering difficulties, sensory underresponsiveness, and sensory seeking was associated with academic underachievement in the children with ASD. Children who have difficulty processing verbal instructions in noisy environments and who often focus on sensory-seeking behaviors appear more likely to underachieve academically.

  8. The Duration of Auditory Sensory Memory for Vowel Processing: Neurophysiological and Behavioral Measures

    OpenAIRE

    Yan H. Yu; Valerie L. Shafer; Elyse S. Sussman

    2018-01-01

    Speech perception behavioral research suggests that rates of sensory memory decay are dependent on stimulus properties at more than one level (e.g., acoustic level, phonemic level). The neurophysiology of sensory memory decay rate has rarely been examined in the context of speech processing. In a lexical tone study, we showed that long-term memory representation of lexical tone slows the decay rate of sensory memory for these tones. Here, we tested the hypothesis that long-term memory represe...

  9. Physiological and behavioral differences in sensory processing: a comparison of children with Autism Spectrum Disorder and Sensory Modulation Disorder

    OpenAIRE

    Sarah A Schoen; Sarah A Schoen; Sarah A Schoen; Lucy J Miller; Lucy J Miller; Lucy J Miller; Barbara A Brett-Green; Barbara A Brett-Green; Darci M Nielsen

    2009-01-01

    A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD) and children with idiopathic Sensory Modulation Disorder (SMD). This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure,...

  10. Physiological and Behavioral Differences in Sensory Processing: A Comparison of Children with Autism Spectrum Disorder and Sensory Modulation Disorder

    OpenAIRE

    Schoen, Sarah A.; Miller, Lucy J.; Brett-Green, Barbara A.; Nielsen, Darci M.

    2009-01-01

    A high incidence of sensory processing difficulties exists in children with Autism Spectrum Disorder (ASD) and children with Sensory Modulation Disorder (SMD). This is the first study to directly compare and contrast these clinical disorders. Sympathetic nervous system markers of arousal and reactivity were utilized in a laboratory paradigm that administered a series of sensory challenges across five sensory domains. The Short Sensory Profile, a standardized parent-report measure, provided a ...

  11. Sensory processing and adaptive behavior deficits of children across the fetal alcohol spectrum disorder continuum.

    Science.gov (United States)

    Carr, Joshua L; Agnihotri, Sabrina; Keightley, Michelle

    2010-06-01

    Prenatal alcohol exposure can have detrimental effects on a child's development of adaptive behaviors necessary for success in the areas of academic achievement, socialization, and self-care. Sensory processing abilities have been found to affect a child's ability to successfully perform adaptive behaviors. The current study explored whether significant differences in sensory processing abilities, adaptive behavior, and neurocognitive functioning are observed between children diagnosed with partial Fetal Alcohol Syndrome (pFAS), Alcohol-Related Neurodevelopmental Disorder (ARND), or children who were prenatally exposed to alcohol (PEA), but did not meet criteria for an FASD diagnosis. The influence of IQ on adaptive behavior as well as further exploration of the relationship between sensory processing and adaptive behavior deficits among these children was also examined. A secondary analysis was conducted on some of the Short Sensory Profile (SSP) scores, Adaptive Behavior Assessment System--Second Edition (ABAS-II) scores, and Wechsler Intelligence Scale--Fourth Edition/Wechsler Preschool and Primary Scale of Intelligence--Third Edition (WISC- IV/WPPSI-III) scores of 46 children between 3 and 14 years of age with pFAS, ARND, or who were PEA. Greater sensory processing deficits were found in children with a diagnosis of pFAS and ARND compared to those in the PEA group. Children with an ARND diagnosis scored significantly worse on measures of adaptive behavior than the PEA group. Children with pFAS scored significantly lower than children with ARND or PEA on perceptual/performance IQ. No correlation was found between IQ scores and adaptive behaviors across the FASD diagnostic categories. A significant positive correlation was found between SSP and ABAS-II scores. Regardless of the diagnosis received under the FASD umbrella, functional difficulties that could not be observed using traditional measures of intelligence were found, supporting guidelines that a broad

  12. Sensory Processing in Low-Functioning Adults with Autism Spectrum Disorder: Distinct Sensory Profiles and Their Relationships with Behavioral Dysfunction

    Science.gov (United States)

    Gonthier, Corentin; Longuépée, Lucie; Bouvard, Martine

    2016-01-01

    Sensory processing abnormalities are relatively universal in individuals with autism spectrum disorder, and can be very disabling. Surprisingly, very few studies have investigated these abnormalities in low-functioning adults with autism. The goals of the present study were (a) to characterize distinct profiles of sensory dysfunction, and (b) to…

  13. Learning Enhances Sensory Processing in Mouse V1 before Improving Behavior.

    Science.gov (United States)

    Jurjut, Ovidiu; Georgieva, Petya; Busse, Laura; Katzner, Steffen

    2017-07-05

    A fundamental property of visual cortex is to enhance the representation of those stimuli that are relevant for behavior, but it remains poorly understood how such enhanced representations arise during learning. Using classical conditioning in adult mice of either sex, we show that orientation discrimination is learned in a sequence of distinct behavioral stages, in which animals first rely on stimulus appearance before exploiting its orientation to guide behavior. After confirming that orientation discrimination under classical conditioning requires primary visual cortex (V1), we measured, during learning, response properties of V1 neurons. Learning improved neural discriminability, sharpened orientation tuning, and led to higher contrast sensitivity. Remarkably, these learning-related improvements in the V1 representation were fully expressed before successful orientation discrimination was evident in the animals' behavior. We propose that V1 plays a key role early in discrimination learning to enhance behaviorally relevant sensory information. SIGNIFICANCE STATEMENT Decades of research have documented that responses of neurons in visual cortex can reflect the behavioral relevance of visual information. The behavioral relevance of any stimulus needs to be learned, though, and little is known how visual sensory processing changes, as the significance of a stimulus becomes clear. Here, we trained mice to discriminate two visual stimuli, precisely quantified when learning happened, and measured, during learning, the neural representation of these stimuli in V1. We observed learning-related improvements in V1 processing, which were fully expressed before discrimination was evident in the animals' behavior. These findings indicate that sensory and behavioral improvements can follow different time courses and point toward a key role of V1 at early stages in discrimination learning. Copyright © 2017 the authors 0270-6474/17/376460-15$15.00/0.

  14. The Duration of Auditory Sensory Memory for Vowel Processing: Neurophysiological and Behavioral Measures.

    Science.gov (United States)

    Yu, Yan H; Shafer, Valerie L; Sussman, Elyse S

    2018-01-01

    Speech perception behavioral research suggests that rates of sensory memory decay are dependent on stimulus properties at more than one level (e.g., acoustic level, phonemic level). The neurophysiology of sensory memory decay rate has rarely been examined in the context of speech processing. In a lexical tone study, we showed that long-term memory representation of lexical tone slows the decay rate of sensory memory for these tones. Here, we tested the hypothesis that long-term memory representation of vowels slows the rate of auditory sensory memory decay in a similar way to that of lexical tone. Event-related potential (ERP) responses were recorded to Mandarin non-words contrasting the vowels /i/ vs. /u/ and /y/ vs. /u/ from first-language (L1) Mandarin and L1 American English participants under short and long interstimulus interval (ISI) conditions (short ISI: an average of 575 ms, long ISI: an average of 2675 ms). Results revealed poorer discrimination of the vowel contrasts for English listeners than Mandarin listeners, but with different patterns for behavioral perception and neural discrimination. As predicted, English listeners showed the poorest discrimination and identification for the vowel contrast /y/ vs. /u/, and poorer performance in the long ISI condition. In contrast to Yu et al. (2017), however, we found no effect of ISI reflected in the neural responses, specifically the mismatch negativity (MMN), P3a and late negativity ERP amplitudes. We did see a language group effect, with Mandarin listeners generally showing larger MMN and English listeners showing larger P3a. The behavioral results revealed that native language experience plays a role in echoic sensory memory trace maintenance, but the failure to find an effect of ISI on the ERP results suggests that vowel and lexical tone memory traces decay at different rates. Highlights : We examined the interaction between auditory sensory memory decay and language experience. We compared MMN, P3a, LN

  15. The Duration of Auditory Sensory Memory for Vowel Processing: Neurophysiological and Behavioral Measures

    Directory of Open Access Journals (Sweden)

    Yan H. Yu

    2018-03-01

    Full Text Available Speech perception behavioral research suggests that rates of sensory memory decay are dependent on stimulus properties at more than one level (e.g., acoustic level, phonemic level. The neurophysiology of sensory memory decay rate has rarely been examined in the context of speech processing. In a lexical tone study, we showed that long-term memory representation of lexical tone slows the decay rate of sensory memory for these tones. Here, we tested the hypothesis that long-term memory representation of vowels slows the rate of auditory sensory memory decay in a similar way to that of lexical tone. Event-related potential (ERP responses were recorded to Mandarin non-words contrasting the vowels /i/ vs. /u/ and /y/ vs. /u/ from first-language (L1 Mandarin and L1 American English participants under short and long interstimulus interval (ISI conditions (short ISI: an average of 575 ms, long ISI: an average of 2675 ms. Results revealed poorer discrimination of the vowel contrasts for English listeners than Mandarin listeners, but with different patterns for behavioral perception and neural discrimination. As predicted, English listeners showed the poorest discrimination and identification for the vowel contrast /y/ vs. /u/, and poorer performance in the long ISI condition. In contrast to Yu et al. (2017, however, we found no effect of ISI reflected in the neural responses, specifically the mismatch negativity (MMN, P3a and late negativity ERP amplitudes. We did see a language group effect, with Mandarin listeners generally showing larger MMN and English listeners showing larger P3a. The behavioral results revealed that native language experience plays a role in echoic sensory memory trace maintenance, but the failure to find an effect of ISI on the ERP results suggests that vowel and lexical tone memory traces decay at different rates.Highlights:We examined the interaction between auditory sensory memory decay and language experience.We compared MMN

  16. Measurement in Sensory Modulation: The Sensory Processing Scale Assessment

    Science.gov (United States)

    Miller, Lucy J.; Sullivan, Jillian C.

    2014-01-01

    OBJECTIVE. Sensory modulation issues have a significant impact on participation in daily life. Moreover, understanding phenotypic variation in sensory modulation dysfunction is crucial for research related to defining homogeneous groups and for clinical work in guiding treatment planning. We thus evaluated the new Sensory Processing Scale (SPS) Assessment. METHOD. Research included item development, behavioral scoring system development, test administration, and item analyses to evaluate reliability and validity across sensory domains. RESULTS. Items with adequate reliability (internal reliability >.4) and discriminant validity (p sensory modulation (scale reliability >.90; discrimination between group effect sizes >1.00). This scale has the potential to aid in differential diagnosis of sensory modulation issues. PMID:25184464

  17. Timing of moderate level prenatal alcohol exposure influences gene expression of sensory processing behavior in rhesus monkeys

    Directory of Open Access Journals (Sweden)

    Mary L Schneider

    2009-11-01

    Full Text Available Sensory processing disorder (SPD, characterized by over- or under-responsivity to non-noxious environmental stimuli, is a common but poorly understood disorder. We examined the role of prenatal alcohol exposure, serotonin transporter gene polymorphic region variation (rh5-HTTLPR, and striatal dopamine (DA function on behavioral measures of sensory responsivity to repeated non-noxious sensory stimuli in macaque monkeys. Results indicated that early gestation alcohol exposure induced behavioral under-responsivity to environmental stimuli in monkeys carrying the short (s rh5-HTTLPR allele compared to both early-exposed monkeys homozygous for the long (l allele and monkeys from middle-to-late exposed pregnancies and controls, regardless of genotype. Moreover, prenatal timing of alcohol exposure altered the relationship between sensory scores and DA D2R availability. In early-exposed monkeys, a positive relationship was shown between sensory scores and DA D2R availability, with low or blunted DA function associated with under-responsive sensory function. The opposite pattern was found for the middle-to-late gestation alcohol-exposed group. These findings raise questions about how the timing of prenatal perturbation and genotype contributes to effects on neural processing and possibly alters neural connections.

  18. Sensory processes modulate differences in multi-component behavior and cognitive control between childhood and adulthood.

    Science.gov (United States)

    Gohil, Krutika; Bluschke, Annet; Roessner, Veit; Stock, Ann-Kathrin; Beste, Christian

    2017-10-01

    Many everyday tasks require executive functions to achieve a certain goal. Quite often, this requires the integration of information derived from different sensory modalities. Children are less likely to integrate information from different modalities and, at the same time, also do not command fully developed executive functions, as compared to adults. Yet still, the role of developmental age-related effects on multisensory integration processes has not been examined within the context of multicomponent behavior until now (i.e., the concatenation of different executive subprocesses). This is problematic because differences in multisensory integration might actually explain a significant amount of the developmental effects that have traditionally been attributed to changes in executive functioning. In a system, neurophysiological approach combining electroencephaloram (EEG) recordings and source localization analyses, we therefore examined this question. The results show that differences in how children and adults accomplish multicomponent behavior do not solely depend on developmental differences in executive functioning. Instead, the observed developmental differences in response selection processes (reflected by the P3 ERP) were largely dependent on the complexity of integrating temporally separated stimuli from different modalities. This effect was related to activation differences in medial frontal and inferior parietal cortices. Primary perceptual gating or attentional selection processes (P1 and N1 ERPs) were not affected. The results show that differences in multisensory integration explain parts of transformations in cognitive processes between childhood and adulthood that have traditionally been attributed to changes in executive functioning, especially when these require the integration of multiple modalities during response selection. Hum Brain Mapp 38:4933-4945, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Meal time behavior difficulties but not nutritional deficiencies correlate with sensory processing in children with autism spectrum disorder.

    Science.gov (United States)

    Shmaya, Yael; Eilat-Adar, Sigal; Leitner, Yael; Reif, Shimon; Gabis, Lidia V

    2017-07-01

    Food aversion and nutritional difficulties are common in children with autism spectrum disorder. To compare meal time behavior of children with autism to their typically developing siblings and to typical controls and to examine if sensory profiles can predict meal time behavior or nutritional deficiencies in the autism group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Gray matter volumes of early sensory regions are associated with individual differences in sensory processing.

    Science.gov (United States)

    Yoshimura, Sayaka; Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Sawada, Reiko; Kubota, Yasutaka; Toichi, Motomi

    2017-12-01

    Sensory processing (i.e., the manner in which the nervous system receives, modulates, integrates, and organizes sensory stimuli) is critical when humans are deciding how to react to environmental demands. Although behavioral studies have shown that there are stable individual differences in sensory processing, the neural substrates that implement such differences remain unknown. To investigate this issue, structural magnetic resonance imaging scans were acquired from 51 healthy adults and individual differences in sensory processing were assessed using the Sensory Profile questionnaire (Brown et al.: Am J Occup Ther 55 (2001) 75-82). There were positive relationships between the Sensory Profile modality-specific subscales and gray matter volumes in the primary or secondary sensory areas for the visual, auditory, touch, and taste/smell modalities. Thus, the present results suggest that individual differences in sensory processing are implemented by the early sensory regions. Hum Brain Mapp 38:6206-6217, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Sensory processing disorders among substance dependents

    Directory of Open Access Journals (Sweden)

    Batya Engel-Yeger

    2014-08-01

    Full Text Available Purpose: (1 To compare sensory processing patterns as expressed in daily life between substance dependents and typical controls; (2 profile the prevalence of sensory processing disorders (SPD among substance dependents; and (3 examine gender effect on SPD within and between groups. Methods: Two hundred ninety people aged 19-64 participated in this study. The study group included 145 individuals who lived in the community or took part in an outpatient program because of addiction to drugs/alcohol and had been clean for over three months. The control group included 145 individuals who were not exposed to drugs or alcohol on a regular basis and did not suffer from addictive behavior. All participants filled a demographic questionnaire. Those who met the inclusion criteria completed the Adolescent/Adult Sensory Profile (AASP so that their sensory processing patterns could be assessed. Results: When comparing both groups, the study group showed greater sensory sensitivity and significantly higher prevalence of SPD. Significant group/gender interaction was found in regard to sensation seeking. Discussion: SPD among substance dependents may be expressed in daily life by either hypersensitivity or hyposensitivity. The behavioral outcomes reflected by the AASP support neurophysiological manifestations about SPD of substance dependents. The evaluation process of substance dependents should refer to their sensory processing abilities. In case SPD is diagnosed, Occupational Therapy and specific sensory–based interventions should be considered in order to fit the specific needs of individuals and enhance their performance, meaningful participation, and quality of life.

  2. Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior

    Directory of Open Access Journals (Sweden)

    Nina Deisig

    2014-06-01

    Full Text Available Insects communicating with pheromones, be it sex- or aggregation pheromones, are confronted with an olfactory environment rich in a diversity of volatile organic compounds of which plants are the main releaser. Certain of these volatiles can represent behaviorally relevant information, such as indications about host- or non-host plants; others will provide essentially a rich odor background out of which the behaviorally relevant information needs to be extracted. In an attempt to disentangle mechanisms of pheromone communication in a rich olfactory environment, which might underlie interactions between intraspecific signals and a background, we will summarize recent literature on pheromone/plant volatile interactions. Starting from molecular mechanisms, describing the peripheral detection and central nervous integration of pheromone-plant volatile mixtures, we will end with behavioral output in response to such mixtures and its plasticity.

  3. Sensory integration therapies for children with developmental and behavioral disorders.

    Science.gov (United States)

    Zimmer, Michelle; Desch, Larry

    2012-06-01

    Sensory-based therapies are increasingly used by occupational therapists and sometimes by other types of therapists in treatment of children with developmental and behavioral disorders. Sensory-based therapies involve activities that are believed to organize the sensory system by providing vestibular, proprioceptive, auditory, and tactile inputs. Brushes, swings, balls, and other specially designed therapeutic or recreational equipment are used to provide these inputs. However, it is unclear whether children who present with sensory-based problems have an actual "disorder" of the sensory pathways of the brain or whether these deficits are characteristics associated with other developmental and behavioral disorders. Because there is no universally accepted framework for diagnosis, sensory processing disorder generally should not be diagnosed. Other developmental and behavioral disorders must always be considered, and a thorough evaluation should be completed. Difficulty tolerating or processing sensory information is a characteristic that may be seen in many developmental behavioral disorders, including autism spectrum disorders, attention-deficit/hyperactivity disorder, developmental coordination disorders, and childhood anxiety disorders. Occupational therapy with the use of sensory-based therapies may be acceptable as one of the components of a comprehensive treatment plan. However, parents should be informed that the amount of research regarding the effectiveness of sensory integration therapy is limited and inconclusive. Important roles for pediatricians and other clinicians may include discussing these limitations with parents, talking with families about a trial period of sensory integration therapy, and teaching families how to evaluate the effectiveness of a therapy.

  4. Behavioral guides for sensory neurophysiology.

    Science.gov (United States)

    Konishi, M

    2006-06-01

    The study of natural behavior is important for understanding the coding schemes of sensory systems. The jamming avoidance response of the weakly electric fish Eigenmannia is an excellent example of a bottom-up approach, in which behavioral analyses guided neurophysiological studies. These studies started from the electroreceptive sense organs to the motor output consisting of pacemaker neurons. Going in the opposite direction, from the central nervous system to lower centers, is the characteristic of the top-down approach. Although this approach is perhaps more difficult than the bottom-up approach, it was successfully employed in the neuroethological analysis of sound localization in the barn owl. In the latter studies, high-order neurons selective for complex natural stimuli led to the discovery of neural pathways and networks responsible for the genesis of the stimulus selectivity. Comparison of Eigenmannia and barn owls, and their neural systems, has revealed similarities in network designs, such as parallel pathways and their convergence to produce stimulus selectivity necessary for detection of natural stimuli.

  5. The Role of Sensory Modulation Deficits and Behavioral Symptoms in a Diagnosis for Early Childhood

    Science.gov (United States)

    Perez-Robles, Ruth; Doval, Eduardo; Jane, Ma Claustre; da Silva, Pedro Caldeira; Papoila, Ana Luisa; Virella, Daniel

    2013-01-01

    To contribute to the validation of the sensory and behavioral criteria for Regulation Disorders of Sensory Processing (RDSP) (DC:0-3R, 2005), this study examined a sample of toddlers in a clinical setting to analyze: (1) the severity of sensory modulation deficits and the behavioral symptoms of RDSP; (2) the associations between sensory and…

  6. Can Sensory Gallery Guides for Children with Sensory Processing Challenges Improve Their Museum Experience?

    Science.gov (United States)

    Fletcher, Tina S.; Blake, Amanda B.; Shelffo, Kathleen E.

    2018-01-01

    Children routinely visit art museums as part of their educational experience and family time, many of them having special needs. The number of children diagnosed with autism and sensory processing disorders is increasing. These conditions may include heightened sensory "avoiding" or "seeking" behaviors that can interfere with a…

  7. Effects of Cultivar and Process Variables on Dynamic-Mechanical and Sensorial Behavior of Value-Added Grape-Based Smoothies

    Directory of Open Access Journals (Sweden)

    Matteo Alessandro del Nobile

    2012-09-01

    Full Text Available The effects of either cooking temperature (45, 80, and 100 °C or inclusion of seed particles on the dynamic-mechanical and sensorial properties of value-added Crimson seedless, Black Pearl, or Baresana grape-based smoothies were studied. The inclusion of seed particles resulted in significant increases of the phenolic content, both in Black Pearl and Baresana, but it did not affect in a negative way the sensorial characteristics of smoothies whereas it caused an increase of the viscoelastic behavior of Black Pearl and a slight decrease in Baresana grape-based smoothies. In particular, the investigated rheological parameters were the loss and storage modulus. Moreover, the loss tangent value (the ratio between loss and storage modulus remained unchanged, indicating a pseudoplastic behavior of all samples, independent on the process conditions. The smoothies produced from Crimson grapes at the intermediate temperature (80 °C showed sensorial and rheological characteristics similar to those manufactured at 45 °C and better than those manufactured at 100 °C.

  8. Neuroecology: Neural Mechanisms of Sensory and Motor Processes that Mediate Ecologically Relevant Behaviors: An Introduction to the Symposium.

    Science.gov (United States)

    Riffell, Jeffrey A; Rowe, Ashlee H

    2016-11-01

    What is Neuroecology? Animal behavior mediates many critical ecological processes that, in turn, have implications for the evolution of organismal interactions. Because the peripheral and central nervous systems ultimately control behavior, research in neuroecology seeks to link the neural basis of behavior with behavioral control of ecological interactions, and to determine how specific processes (e.g., environmental and genetic constraints, ecological and evolutionary forces) operating to alter nervous system function might constrain or facilitate adaptive behavior. Our goal for this symposium was to promote a general framework for neuroecology by exploring fundamental questions germane to this new area of research, and to develop a "toolbox" of techniques and approaches for addressing those questions. In the following series of papers, we provide a starting point for future work on neuroecology, including evolutionary context, the role of plasticity in shaping nervous system function and behavior, and an exploration of various sensorimotor systems that control ecological interactions. By promoting an integration of observational and experimental approaches at different levels of organization, we can reveal much about how the neural bases of behaviors influence interactions that occur under ecologically relevant contexts that would otherwise be impossible from isolated physiological, behavioral, or ecological components. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Relationships among Sensory Responsiveness, Anxiety, and Ritual Behaviors in Children with and without Atypical Sensory Responsiveness.

    Science.gov (United States)

    Bart, Orit; Bar-Shalita, Tami; Mansour, Hanin; Dar, Reuven

    2017-08-01

    To explore relationships between sensory responsiveness, anxiety, and ritual behaviors in boys with typical and atypical sensory responsiveness. Forty-eight boys, ages 5-9 participated in the study (28 boys with atypical sensory responsiveness and 20 controls). Atypical sensory responsiveness was defined as a score of ≤154 on the Short Sensory Profile. Parents completed the Sensory Profile, the Screen for Child Anxiety Related Emotional Disorders, and the Childhood Routines Inventory. Children with atypical sensory responsiveness had significantly higher levels of anxiety and a higher frequency of ritual behaviors than controls. Atypical sensory responsiveness was significantly related to both anxiety and ritual behaviors, with anxiety mediating the relationship between sensory modulation and ritual behaviors. The findings elucidate the potential consequences of atypical sensory responsiveness and could support the notion that ritual behaviors develop as a coping mechanism in response to anxiety stemming from primary difficulty in modulating sensory input.

  10. Parasympathetic functions in children with sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Roseann C Schaaf

    2010-03-01

    Full Text Available The overall goal of this study was to determine if Parasympathetic Nervous System Activity (PsNS is a significant biomarker of sensory processing difficulties in children. Several studies have demonstrated that PsNS activity is an important regulator of reactivity in children, and thus, it is of interest to study whether PsNS functioning affects sensory reactivity in children who have a type of condition associated with Sensory Processing Disorders (SPD termed Sensory Modulation Dysfunction (SMD. If so, this will have important implications for understanding the mechanisms underlying sensory processing problems of children. The primary aims of this project were to: (1 evaluate PsNS activity in children with SMD compared to typically developing (TYP children, and (2 determine if PsNS activity is a significant predictor of sensory behaviors and adaptive functions among children with SMD. As a secondary aim we examined whether subgroups of children with specific physiological and behavioral sensory reactivity profiles can be identified. Results indicate that the children with severe SMD demonstrated a trend for low baseline parasympathetic activity, compared to TYP children, suggesting this may be a biomarker for severe SMD. In addition, children with SMD demonstrated significantly poorer adaptive behavior. These results provide preliminary evidence that children who demonstrate SMD may have physiological responses that are different from children without SMD, and that these physiological and behavioral manifestations of SMD may affect a child’s ability to engage in everyday social, communication, and daily living skills.

  11. Sensory processing abilities of children with ADHD

    Directory of Open Access Journals (Sweden)

    Vitoria T. Shimizu

    2014-08-01

    Full Text Available OBJECTIVE: To assess and compare the sensory processing abilities of children with Attention Deficit/Hyperactivity Disorder (ADHD and children without disabilities, and to analyze the relationship between sensory processing difficulties and behavioural symptoms presented by children with ADHD. METHOD : Thirty-seven children with ADHD were compared with thirty-seven controls using a translated and adapted version of the "Sensory Profile" answered by the parents/caregivers. For the ADHD group, Sensory Profile scores were correlated to behavioural symptoms assessed using the Child Behaviour Check List (CBCL and the Behavioural Teacher Rating Scale (EACI-P. The statistical analyses were conducted using the Mann Whitney test and Pearson correlation coefficients. RESULTS : Children with ADHD showed significant impairments compared to the control group in sensory processing and modulation, as well as in behavioural and emotional responses as observed in 11 out of 14 sections and 6 out of 9 factors. Differences in all Sensory Profile response patterns were also observed between the two groups of children. Sensory Profile scores showed a moderately negative correlation with CBCL and EACI-P scores in the ADHD group. CONCLUSION : These results indicate that children with ADHD may present sensory processing impairments, which may contribute to the inappropriate behavioural and learning responses displayed by children with ADHD. It also suggests the importance of understanding the sensory processing difficulties and its possible contribution to the ADHD symptomatology.

  12. Sensory processing abilities of children with ADHD.

    Science.gov (United States)

    Shimizu, Vitoria T; Bueno, Orlando F A; Miranda, Mônica C

    2014-01-01

    To assess and compare the sensory processing abilities of children with Attention Deficit/Hyperactivity Disorder (ADHD) and children without disabilities, and to analyze the relationship between sensory processing difficulties and behavioural symptoms presented by children with ADHD. Thirty-seven children with ADHD were compared with thirty-seven controls using a translated and adapted version of the "Sensory Profile" answered by the parents/caregivers. For the ADHD group, Sensory Profile scores were correlated to behavioural symptoms assessed using the Child Behaviour Check List (CBCL) and the Behavioural Teacher Rating Scale (EACI-P). The statistical analyses were conducted using the Mann Whitney test and Pearson correlation coefficients. Children with ADHD showed significant impairments compared to the control group in sensory processing and modulation, as well as in behavioural and emotional responses as observed in 11 out of 14 sections and 6 out of 9 factors. Differences in all Sensory Profile response patterns were also observed between the two groups of children. Sensory Profile scores showed a moderately negative correlation with CBCL and EACI-P scores in the ADHD group. These results indicate that children with ADHD may present sensory processing impairments, which may contribute to the inappropriate behavioural and learning responses displayed by children with ADHD. It also suggests the importance of understanding the sensory processing difficulties and its possible contribution to the ADHD symptomatology.

  13. White matter correlates of sensory processing in autism spectrum disorders

    Science.gov (United States)

    Pryweller, Jennifer R.; Schauder, Kimberly B.; Anderson, Adam W.; Heacock, Jessica L.; Foss-Feig, Jennifer H.; Newsom, Cassandra R.; Loring, Whitney A.; Cascio, Carissa J.

    2014-01-01

    Autism spectrum disorder (ASD) has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure. PMID:25379451

  14. White matter correlates of sensory processing in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Jennifer R. Pryweller

    2014-01-01

    Full Text Available Autism spectrum disorder (ASD has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure.

  15. Can behavioral sensory processing problems guide us to a better pharmacological management of children with attention deficit hyperactivity disorder?: a case report.

    Science.gov (United States)

    Ghanizadeh, Ahmad

    2009-12-01

    Sensory processing problems in children with attention deficit hyperactivity disorder have been the focus of many studies in recent years. It is obvious that different aspects of sensory problems such as with tactile sensory are involved in attention deficit hyperactivity disorder. However, whether the sensory information process problems can be factors in decision making regarding pharmacological management of children with attention deficit hyperactivity disorder has not been researched. This case report presents two children with attention deficit hyperactivity disorder. The mother of the first patient reported that her child's ability for detecting, identifying, and discriminating smells was very high and more than the other children at this age. As she reported, the child also liked to touch everything and everybody. He experienced nail biting after taking 20mg methylphenidate in single dosage. By decreasing of the dosage, nail biting disappeared in the three trials. The other patient started lip biting about half an hour after taking the first dosage of the medication. It continued for four hours. This report suggests that there is an association between methylphenidate and tactile sensory problems in children with attention deficit hyperactivity disorder. It is possible that methylphenidate induces or exacerbates tactile hyposensitivity. If this assumption is supported in controlled clinical trials, then tactile sensory assessment might help to make decisions for the pharmacological management of children with attention deficit hyperactivity disorder. Further studies should investigate whether attention deficit hyperactivity disorder with sensory processing problems is a phenotype with an overlap between autistic disorders and attention deficit hyperactivity disorder in which stimulants may exacerbate some sensory processing problems. Also, if this is the case, the diagnosis of attention deficit hyperactivity disorder as an exclusionary criterion for

  16. Visual working memory storage recruits sensory processing areas

    NARCIS (Netherlands)

    Gayet, S.; Paffen, C.L.E.; Stigchel, S. van der

    2018-01-01

    Human visual processing is subject to a dynamic influx of visual information. Visual working memory (VWM) allows for maintaining relevant visual information available for subsequent behavior. According to the dominating view, VWM recruits sensory processing areas to maintain this visual information

  17. Parasympathetic functions in children with sensory processing disorder.

    Science.gov (United States)

    Schaaf, Roseann C; Benevides, Teal; Blanche, Erna Imperatore; Brett-Green, Barbara A; Burke, Janice P; Cohn, Ellen S; Koomar, Jane; Lane, Shelly J; Miller, Lucy Jane; May-Benson, Teresa A; Parham, Diane; Reynolds, Stacey; Schoen, Sarah A

    2010-01-01

    The overall goal of this study was to determine if parasympathetic nervous system (PsNS) activity is a significant biomarker of sensory processing difficulties in children. Several studies have demonstrated that PsNS activity is an important regulator of reactivity in children, and thus, it is of interest to study whether PsNS activity is related to sensory reactivity in children who have a type of condition associated with sensory processing disorders termed sensory modulation dysfunction (SMD). If so, this will have important implications for understanding the mechanisms underlying sensory processing problems of children and for developing intervention strategies to address them. The primary aims of this project were: (1) to evaluate PsNS activity in children with SMD compared to typically developing (TYP) children, and (2) to determine if PsNS activity is a significant predictor of sensory behaviors and adaptive functions among children with SMD. We examine PsNS activity during the Sensory Challenge Protocol; which includes baseline, the administration of eight sequential stimuli in five sensory domains, recovery, and also evaluate response to a prolonged auditory stimulus. As a secondary aim we examined whether subgroups of children with specific physiological and behavioral sensory reactivity profiles can be identified. Results indicate that as a total group the children with severe SMD demonstrated a trend for low baseline PsNS activity, compared to TYP children, suggesting this may be a biomarker for SMD. In addition, children with SMD as a total group demonstrated significantly poorer adaptive behavior in the communication and daily living subdomains and in the overall Adaptive Behavior Composite of the Vineland than TYP children. Using latent class analysis, the subjects were grouped by severity and the severe SMD group had significantly lower PsNS activity at baseline, tones and prolonged auditory. These results provide preliminary evidence that children

  18. Individuals with agenesis of the corpus callosum show sensory processing differences as measured by the sensory profile.

    Science.gov (United States)

    Demopoulos, Carly; Arroyo, Monica S; Dunn, Winnie; Strominger, Zoe; Sherr, Elliott H; Marco, Elysa

    2015-09-01

    Given reports of high pain thresholds and reduced auditory response in individuals with agenesis of the corpus callosum (AgCC), this study investigated whether affected participants report atypical experiences and behaviors on a well-established sensory processing measure. Fourteen participants with AgCC (ages 11-59) completed the Adolescent/Adult Sensory Profile (Brown & Dunn, 2001). Sensory profile scales were classified as "Atypical" if they were more than 1 standard deviation from the mean. Fifty-seven percent of participants with AgCC reported reduced sensory registration as compared to an expected 16% of the normative sample. Similarly, 50% of the AgCC participants reported atypically increased auditory processing difficulties. Using a well-established sensory processing questionnaire, participants with AgCC reported measurable differences in multiple aspects of sensory processing. The most notable difference was in the quadrant of low sensory registration, suggesting that individuals with AgCC may require sensory information to be presented more slowly or at a higher intensity for adequate processing. The sensory modality that was most affected was the auditory system, which is consistent with increased rates of language disorders and autism spectrum disorders in this population. Understanding sensory processing in individuals with AgCC can both elucidate the role of interhemispheric transfer in the development of intact sensory processing as well as contribute to our knowledge of the role of the corpus callosum in a range of disorders in which sensory processes are impacted. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  19. High sensory-processing sensitivity at work

    NARCIS (Netherlands)

    Evers, A.; Rasche, J.; Schabracq, M.J.

    2008-01-01

    In this study, the construct validity of an instrument for the measurement of sensory-processing sensitivity (SPS), the Highly Sensitive Person Scale (HSPS), was examined. Among the outcomes, first, the results confirm an earlier conclusion of researchers that the HSPS does not measure a

  20. Idiopathic toe walking and sensory processing dysfunction.

    Science.gov (United States)

    Williams, Cylie M; Tinley, Paul; Curtin, Michael

    2010-08-16

    It is generally understood that toe walking involves the absence or limitation of heel strike in the contact phase of the gait cycle. Toe walking has been identified as a symptom of disease processes, trauma and/or neurogenic influences. When there is no obvious cause of the gait pattern, a diagnosis of idiopathic toe walking (ITW) is made. Although there has been limited research into the pathophysiology of ITW, there has been an increasing number of contemporary texts and practitioner debates proposing that this gait pattern is linked to a sensory processing dysfunction (SPD). The purpose of this paper is to examine the literature and provide a summary of what is known about the relationship between toe walking and SPD. Forty-nine articles were reviewed, predominantly sourced from peer reviewed journals. Five contemporary texts were also reviewed. The literature styles consisted of author opinion pieces, letters to the editor, clinical trials, case studies, classification studies, poster/conference abstracts and narrative literature reviews. Literature was assessed and graded according to level of evidence. Only one small prospective, descriptive study without control has been conducted in relation to idiopathic toe walking and sensory processing. A cross-sectional study into the prevalence of idiopathic toe walking proposed sensory processing as being a reason for the difference. A proposed link between ITW and sensory processing was found within four contemporary texts and one conference abstract. Based on the limited conclusive evidence available, the relationship between ITW and sensory processing has not been confirmed. Given the limited number and types of studies together with the growing body of anecdotal evidence it is proposed that further investigation of this relationship would be advantageous.

  1. Sensory processing problems in children with ADHD, a systematic review.

    Science.gov (United States)

    Ghanizadeh, Ahmad

    2011-06-01

    One of the most common psychiatric disorders in children is attention deficit hyperactivity disorder (ADHD). Its course and outcome are heterogeneous. Sensory processing problems impact the nature of response to daily events. ADHD and sensory problems may occur together and interact. No published review article about sensory processing problems in children with ADHD were found. A systematic search, conducted on Pub-Med (up to January 2010), and Google Scholar, yielded 255 abstracts on sensory processing problems in children including 11 studies about sensory problems in children with ADHD. Sensory processing problems in children with ADHD is not a well studied area. Sensory processing problems in children with ADHD are more common than in typically developing children. Findings do not support that ADHD subtypes are distinct disorders with regard to sensory processing problems. However, co-morbidity with oppositional defiant disorder and anxiety are predictors of more severe sensory processing problems in children with ADHD.

  2. Initial Studies of Validity of the Sensory Processing 3-Dimensions Scale.

    Science.gov (United States)

    Mulligan, Shelley; Schoen, Sarah; Miller, Lucy; Valdez, Andrea; Wiggins, Aryanna; Hartford, Brianna; Rixon, Amy

    2018-02-21

    This study examined the validity of a new measure of sensory processing for children, the Sensory Processing 3-Dimensions Scale (SP-3D). The SP-3D is a performance-based measure for children ages three to thirteen years, designed to assess sensory processing abilities, and identify the three patterns of sensory processing disorder (SPD) and related subtypes, including sensory modulation, sensory discrimination, and sensory-based motor disorders. Age trends were explored using descriptive statistics and graphing techniques with a sample of children with and without SPD. SP-3D scores were correlated with scores from the Sensory Processing Measure (SPM) to examine criterion-related validity. Discriminant validity was assessed by comparing SP-3D scores from children with and without SPD. Age trends of SP-3D scores supported sensory discrimination, praxis and postural functions as developmental constructs. Several mild to moderate correlations were found between the scores of the SP-3D and the SPM, indicating that the tools are measuring similar constructs, and supporting the SP-3D as a measure of sensory processing. Modulation and Motor Behavior Scores from the SP-3D discriminated typically developing children from those with SPD, while results from subtests measuring sensory discrimination, postural and praxis were mixed regarding capacity for discrimination suggesting revision to several items. The study provides preliminary evidence of the SP-3D as a valid measure of sensory processing abilities and dysfunction. Further research regarding the reliability and validity of the SP-3D are needed.

  3. Improvements of sensorimotor processes during action cascading associated with changes in sensory processing architecture-insights from sensory deprivation.

    Science.gov (United States)

    Gohil, Krutika; Hahne, Anja; Beste, Christian

    2016-06-20

    In most everyday situations sensorimotor processes are quite complex because situations often require to carry out several actions in a specific temporal order; i.e. one has to cascade different actions. While it is known that changes to stimuli affect action cascading mechanisms, it is unknown whether action cascading changes when sensory stimuli are not manipulated, but the neural architecture to process these stimuli is altered. In the current study we test this hypothesis using prelingually deaf subjects as a model to answer this question. We use a system neurophysiological approach using event-related potentials (ERPs) and source localization techniques. We show that prelingually deaf subjects show improvements in action cascading. However, this improvement is most likely not due to changes at the perceptual (P1-ERP) and attentional processing level (N1-ERP), but due to changes at the response selection level (P3-ERP). It seems that the temporo-parietal junction (TPJ) is important for these effects to occur, because the TPJ comprises overlapping networks important for the processing of sensory information and the selection of responses. Sensory deprivation thus affects cognitive processes downstream of sensory processing and only these seem to be important for behavioral improvements in situations requiring complex sensorimotor processes and action cascading.

  4. Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae

    OpenAIRE

    Song, Wei; Onishi, Maika; Jan, Lily Yeh; Jan, Yuh Nung

    2007-01-01

    From breathing to walking, rhythmic movements encompass physiological processes important across the entire animal kingdom. It is thought by many that the generation of rhythmic behavior is operated by a central pattern generator (CPG) and does not require peripheral sensory input. Sensory feedback is, however, required to modify or coordinate the motor activity in response to the circumstances of actual movement. In contrast to this notion, we report here that sensory input is necessary for ...

  5. The impact of atypical sensory processing on social impairments in autism spectrum disorder.

    Science.gov (United States)

    Thye, Melissa D; Bednarz, Haley M; Herringshaw, Abbey J; Sartin, Emma B; Kana, Rajesh K

    2017-05-17

    Altered sensory processing has been an important feature of the clinical descriptions of autism spectrum disorder (ASD). There is evidence that sensory dysregulation arises early in the progression of ASD and impacts social functioning. This paper reviews behavioral and neurobiological evidence that describes how sensory deficits across multiple modalities (vision, hearing, touch, olfaction, gustation, and multisensory integration) could impact social functions in ASD. Theoretical models of ASD and their implications for the relationship between sensory and social functioning are discussed. Furthermore, neural differences in anatomy, function, and connectivity of different regions underlying sensory and social processing are also discussed. We conclude that there are multiple mechanisms through which early sensory dysregulation in ASD could cascade into social deficits across development. Future research is needed to clarify these mechanisms, and specific focus should be given to distinguish between deficits in primary sensory processing and altered top-down attentional and cognitive processes. Published by Elsevier Ltd.

  6. Sensory integration and neuromodulatory feedback facilitate Drosophila mechanonociceptive behavior.

    Science.gov (United States)

    Hu, Chun; Petersen, Meike; Hoyer, Nina; Spitzweck, Bettina; Tenedini, Federico; Wang, Denan; Gruschka, Alisa; Burchardt, Lara S; Szpotowicz, Emanuela; Schweizer, Michaela; Guntur, Ananya R; Yang, Chung-Hui; Soba, Peter

    2017-08-01

    Nociception is an evolutionarily conserved mechanism to encode and process harmful environmental stimuli. Like most animals, Drosophila melanogaster larvae respond to a variety of nociceptive stimuli, including noxious touch and temperature, with stereotyped escape responses through activation of multimodal nociceptors. How behavioral responses to these different modalities are processed and integrated by the downstream network remains poorly understood. By combining trans-synaptic labeling, ultrastructural analysis, calcium imaging, optogenetics and behavioral analyses, we uncovered a circuit specific for mechanonociception but not thermonociception. Notably, integration of mechanosensory input from innocuous and nociceptive sensory neurons is required for robust mechanonociceptive responses. We further show that neurons integrating mechanosensory input facilitate primary nociceptive output by releasing short neuropeptide F, the Drosophila neuropeptide Y homolog. Our findings unveil how integration of somatosensory input and neuropeptide-mediated modulation can produce robust modality-specific escape behavior.

  7. Is Sensory Over-Responsivity Distinguishable from Childhood Behavior Problems? A Phenotypic and Genetic Analysis

    Science.gov (United States)

    Van Hulle, Carol A.; Schmidt, Nicole L.; Goldsmith, H. Hill

    2012-01-01

    Background: Although impaired sensory processing accompanies various clinical conditions, the question of its status as an independent disorder remains open. Our goal was to delineate the comorbidity (or lack thereof) between childhood psychopathology and sensory over-responsivity (SOR) in middle childhood using phenotypic and behavior-genetic…

  8. Autism and sensory processing disorders: shared white matter disruption in sensory pathways but divergent connectivity in social-emotional pathways.

    Science.gov (United States)

    Chang, Yi-Shin; Owen, Julia P; Desai, Shivani S; Hill, Susanna S; Arnett, Anne B; Harris, Julia; Marco, Elysa J; Mukherjee, Pratik

    2014-01-01

    Over 90% of children with Autism Spectrum Disorders (ASD) demonstrate atypical sensory behaviors. In fact, hyper- or hyporeactivity to sensory input or unusual interest in sensory aspects of the environment is now included in the DSM-5 diagnostic criteria. However, there are children with sensory processing differences who do not meet an ASD diagnosis but do show atypical sensory behaviors to the same or greater degree as ASD children. We previously demonstrated that children with Sensory Processing Disorders (SPD) have impaired white matter microstructure, and that this white matter microstructural pathology correlates with atypical sensory behavior. In this study, we use diffusion tensor imaging (DTI) fiber tractography to evaluate the structural connectivity of specific white matter tracts in boys with ASD (n = 15) and boys with SPD (n = 16), relative to typically developing children (n = 23). We define white matter tracts using probabilistic streamline tractography and assess the strength of tract connectivity using mean fractional anisotropy. Both the SPD and ASD cohorts demonstrate decreased connectivity relative to controls in parieto-occipital tracts involved in sensory perception and multisensory integration. However, the ASD group alone shows impaired connectivity, relative to controls, in temporal tracts thought to subserve social-emotional processing. In addition to these group difference analyses, we take a dimensional approach to assessing the relationship between white matter connectivity and participant function. These correlational analyses reveal significant associations of white matter connectivity with auditory processing, working memory, social skills, and inattention across our three study groups. These findings help elucidate the roles of specific neural circuits in neurodevelopmental disorders, and begin to explore the dimensional relationship between critical cognitive functions and structural connectivity across affected and

  9. Sensory processing difficulties in school-age children born very preterm: An exploratory study.

    Science.gov (United States)

    Bröring, Tinka; Königs, Marsh; Oostrom, Kim J; Lafeber, Harrie N; Brugman, Anniek; Oosterlaan, Jaap

    2018-02-01

    Very preterm birth has a detrimental impact on the developing brain, including widespread white matter brain abnormalities that threaten efficient sensory processing. Yet, sensory processing difficulties in very preterm children are scarcely studied, especially at school age. To investigate somatosensory registration, multisensory integration and sensory modulation. 57 very preterm school-age children (mean age=9.2years) were compared to 56 gender and age matched full-term children. Group differences on somatosensory registration tasks (Registration of Light Touch, Sensory Discrimination of Touch, Position Sense, Graphestesia), a computerized multisensory integration task, and the parent-reported Sensory Profile were investigated using t-tests and Mann-Whitney U tests. In comparison to full-term children, very preterm children are less accurate on somatosensory registration tasks, including Registration of Light Touch (d=0.34), Position Sense (d=0.31) and Graphestesia (d=0.42) and show more sensory modulation difficulties (d=0.41), including both behavioral hyporesponsivity (d=0.52) and hyperresponsivity (d=0.56) to sensory stimuli. Tactile discrimination and multisensory integration efficiency were not affected in very preterm children. Aspects of sensory processing were only modestly related. Very preterm children show sensory processing difficulties regarding somatosensory registration and sensory modulation, and preserved multisensory (audio-visual) integration. Follow-up care for very preterm children should involve screening of sensory processing difficulties at least up to school age. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Sensory Processing in Adults with Autism Spectrum Disorders

    Science.gov (United States)

    Crane, Laura; Goddard, Lorna; Pring, Linda

    2009-01-01

    Unusual sensory processing has been widely reported in autism spectrum disorders (ASDs); however, the majority of research in this area has focused on children. The present study assessed sensory processing in adults with ASD using the Adult/Adolescent Sensory Profile (AASP), a 60-item self-report questionnaire assessing levels of sensory…

  11. Hyperactivation balances sensory processing deficits during mood induction in schizophrenia.

    Science.gov (United States)

    Dyck, Miriam; Loughead, James; Gur, Ruben C; Schneider, Frank; Mathiak, Klaus

    2014-02-01

    While impairments in emotion recognition are consistently reported in schizophrenia, there is some debate on the experience of emotion. Only few studies investigated neural correlates of emotional experience in schizophrenia. The present functional magnetic resonance imaging study compared a standard visual mood induction paradigm with an audiovisual method aimed at eliciting emotions more automatically. To investigate the interplay of sensory, cognitive and emotional mechanisms during emotion experience, we examined connectivity patterns between brain areas. Sixteen schizophrenia patients and sixteen healthy subjects participated in two different mood inductions (visual and audiovisual) that were administered for different emotions (happiness, sadness and neutral). Confirming the dissociation of behavioral and neural correlates of emotion experience, patients rated their mood similarly to healthy subjects but showed differences in neural activations. Sensory brain areas were activated less, increased activity emerged in higher cortical areas, particularly during audiovisual stimulation. Connectivity was increased between primary and secondary sensory processing areas in schizophrenia. These findings support the hypothesis of a deficit in filtering and processing sensory information alongside increased higher-order cognitive effort compensating for perception deficits in the affective domain. This may suffice to recover emotion experience in ratings of clinically stable patients but may fail during acute psychosis.

  12. Implications of Sensory Stimulation in Self-Destructive Behavior.

    Science.gov (United States)

    Edelson, Stephen M.

    1984-01-01

    The author extends the self stimulatory theory of self destructive behavior in autistic, schizophrenic, and mentally retarded individuals to suggest that damage of the skin's nerve structure lowers the tactile sensory threshold for physical input and enables individuals to obtain sensory stimulation by repeatedly depressing the damaged area. (CL)

  13. Sensory processing disorder in preterm infants during early childhood and relationships to early neurobehavior.

    Science.gov (United States)

    Ryckman, Justin; Hilton, Claudia; Rogers, Cynthia; Pineda, Roberta

    2017-10-01

    Preterm infants are exposed to a variety of sensory stimuli that they are not developmentally prepared to handle, which puts them at risk for developing a sensory processing disorder. However, the patterns and predictors of sensory processing disorder and their relationship to early behavior at term equivalent age are poorly understood. The aims of the study are to: 1) describe the incidence of sensory processing disorder in preterm infants at four to six years of age, 2) define medical and sociodemographic factors that relate to sensory processing disorder, and 3) explore relationships between early neurobehavior at term equivalent age and sensory processing disorder at age four to six years. This study was a prospective longitudinal design. Thirty-two preterm infants born ≤30weeks gestation were enrolled. Infants had standardized neurobehavioral testing at term equivalent age with the NICU Network Neurobehavioral Scale. At four to six years of age, participants were assessed with the Sensory Processing Assessment for Young Children (SPA). Sixteen children (50%) had at least one abnormal score on the SPA, indicating a sensory processing disorder. There were no identified relationships between medical and sociodemographic factors and sensory processing disorder. More sub-optimal reflexes (p=0.04) and more signs of stress (p=0.02) at term equivalent age were related to having a sensory processing disorder in early childhood. Preterm infants are at an increased risk for developing a sensory processing disorder. Medical and sociodemographic factors related to sensory processing disorder could not be isolated in this study, however relationships between sensory processing disorder and early neurobehavior were identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. A Retrospective Pre-Post Treatment Study of Occupational Therapy Intervention for Children with Sensory Processing Challenges

    Directory of Open Access Journals (Sweden)

    Sarah A. Schoen

    2018-01-01

    Full Text Available Background: This study investigated the impact of an intensive, short-term program that incorporates the principles of sensory integration and relationship-based therapies with extensive parent collaboration. The goals were to identify measures sensitive to change and explore the relation between sensory modulation characteristics and change in behavior after intervention. Method: A retrospective chart review examined routine clinical data pre-post intervention from 179 children identified with sensory processing challenges without comorbid autism. Change in measures of adaptive behavior, emotional functioning, sensory-related behaviors, and motor functioning were evaluated. Relations between sensory modulation and behavior were explored. Results: Improvements were noted from pretreatment to postreatment on all measures of adaptive behavior, problem behaviors, sensory-related functions, and measures of motor function. Sensory craving symptoms were associated with a significant reduction in externalizing and behavior problems after intervention. Conclusion: This study provides preliminary support for the effectiveness of a novel treatment approach.

  15. Sensory Processing Problems in Children with ADHD, a Systematic Review

    OpenAIRE

    Ghanizadeh, Ahmad

    2010-01-01

    One of the most common psychiatric disorders in children is attention deficit hyperactivity disorder (ADHD). Its course and outcome are heterogeneous. Sensory processing problems impact the nature of response to daily events. ADHD and sensory problems may occur together and interact. No published review article about sensory processing problems in children with ADHD were found. A systematic search, conducted on Pub-Med (up to January 2010), and Google Scholar, yielded 255 abstracts on sensory...

  16. Flexibility and Stability in Sensory Processing Revealed Using Visual-to-Auditory Sensory Substitution

    Science.gov (United States)

    Hertz, Uri; Amedi, Amir

    2015-01-01

    The classical view of sensory processing involves independent processing in sensory cortices and multisensory integration in associative areas. This hierarchical structure has been challenged by evidence of multisensory responses in sensory areas, and dynamic weighting of sensory inputs in associative areas, thus far reported independently. Here, we used a visual-to-auditory sensory substitution algorithm (SSA) to manipulate the information conveyed by sensory inputs while keeping the stimuli intact. During scan sessions before and after SSA learning, subjects were presented with visual images and auditory soundscapes. The findings reveal 2 dynamic processes. First, crossmodal attenuation of sensory cortices changed direction after SSA learning from visual attenuations of the auditory cortex to auditory attenuations of the visual cortex. Secondly, associative areas changed their sensory response profile from strongest response for visual to that for auditory. The interaction between these phenomena may play an important role in multisensory processing. Consistent features were also found in the sensory dominance in sensory areas and audiovisual convergence in associative area Middle Temporal Gyrus. These 2 factors allow for both stability and a fast, dynamic tuning of the system when required. PMID:24518756

  17. Sensory reactivity, empathizing and systemizing in autism spectrum conditions and sensory processing disorder.

    Science.gov (United States)

    Tavassoli, Teresa; Miller, Lucy Jane; Schoen, Sarah A; Jo Brout, Jennifer; Sullivan, Jillian; Baron-Cohen, Simon

    2017-05-18

    Although the DSM-5 added sensory symptoms as a criterion for ASC, there is a group of children who display sensory symptoms but do not have ASC; children with sensory processing disorder (SPD). To be able to differentiate these two disorders, our aim was to evaluate whether children with ASC show more sensory symptomatology and/or different cognitive styles in empathy and systemizing compared to children with SPD and typically developing (TD) children. The study included 210 participants: 68 children with ASC, 79 with SPD and 63 TD children. The Sensory Processing Scale Inventory was used to measure sensory symptoms, the Autism Spectrum Quotient (AQ) to measure autistic traits, and the Empathy Quotient (EQ) and Systemizing Quotient (SQ) to measure cognitive styles. Across groups, a greater sensory symptomatology was associated with lower empathy. Further, both the ASC and SPD groups showed more sensory symptoms than TD children. Children with ASC and SPD only differed on sensory under-reactivity. The ASD group did, however, show lower empathy and higher systemizing scores than the SPD group. Together, this suggest that sensory symptoms alone may not be adequate to differentiate children with ASC and SPD but that cognitive style measures could be used for differential diagnosis. Copyright © 2017. Published by Elsevier Ltd.

  18. Sensory processing patterns, coping strategies, and quality of life among patients with unipolar and bipolar disorders

    Directory of Open Access Journals (Sweden)

    Batya Engel-Yeger

    2016-01-01

    Full Text Available Objective: To compare sensory processing, coping strategies, and quality of life (QoL in unipolar and bipolar patients; to examine correlations between sensory processing and QoL; and to investigate the relative contribution of sociodemographic characteristics, sensory processing, and coping strategies to the prediction of QoL. Methods: Two hundred sixty-seven participants, aged 16-85 years (53.6±15.7, of whom 157 had a diagnosis of unipolar major depressive disorder and 110 had bipolar disorder type I and type II, completed the Adolescent/Adult Sensory Profile, Coping Orientations to Problems Experienced, and 12-item Short-Form Health Survey version 2. The two groups were compared with multivariate analyses. Results: The unipolar and bipolar groups did not differ concerning sensory processing, coping strategies, or QoL. Sensory processing patterns correlated with QoL independently of mediation by coping strategies. Correlations between low registration, sensory sensitivity, sensation avoidance, and reduced QoL were found more frequently in unipolar patients than bipolar patients. Higher physical QoL was mainly predicted by lower age and lower sensory sensitivity, whereas higher mental QoL was mainly predicted by coping strategies. Conclusion: While age may predict physical QoL, coping strategies predict mental QoL. Future studies should further investigate the impact of sensory processing and coping strategies on patients’ QoL in order to enhance adaptive and functional behaviors related to affective disturbances.

  19. Sensory processing patterns, coping strategies, and quality of life among patients with unipolar and bipolar disorders.

    Science.gov (United States)

    Engel-Yeger, Batya; Gonda, Xenia; Muzio, Caterina; Rinosi, Giorgio; Pompili, Maurizio; Amore, Mario; Serafini, Gianluca

    2016-01-01

    To compare sensory processing, coping strategies, and quality of life (QoL) in unipolar and bipolar patients; to examine correlations between sensory processing and QoL; and to investigate the relative contribution of sociodemographic characteristics, sensory processing, and coping strategies to the prediction of QoL. Two hundred sixty-seven participants, aged 16-85 years (53.6±15.7), of whom 157 had a diagnosis of unipolar major depressive disorder and 110 had bipolar disorder type I and type II, completed the Adolescent/Adult Sensory Profile, Coping Orientations to Problems Experienced, and 12-item Short-Form Health Survey version 2. The two groups were compared with multivariate analyses. The unipolar and bipolar groups did not differ concerning sensory processing, coping strategies, or QoL. Sensory processing patterns correlated with QoL independently of mediation by coping strategies. Correlations between low registration, sensory sensitivity, sensation avoidance, and reduced QoL were found more frequently in unipolar patients than bipolar patients. Higher physical QoL was mainly predicted by lower age and lower sensory sensitivity, whereas higher mental QoL was mainly predicted by coping strategies. While age may predict physical QoL, coping strategies predict mental QoL. Future studies should further investigate the impact of sensory processing and coping strategies on patients' QoL in order to enhance adaptive and functional behaviors related to affective disturbances.

  20. The Applicability of the Short Sensory Profile for Screening Sensory Processing Disorders among Israeli Children

    Science.gov (United States)

    Engel-Yeger, Batya

    2010-01-01

    The objective of this study was to examine the applicability of the short sensory profile (SSP) for screening sensory processing disorders (SPDs) among typical children in Israel, and to evaluate the relationship between SPDs and socio-demographic parameters. Participants were 395 Israeli children, aged 3 years to 10 years 11 months, with typical…

  1. Relationships among Repetitive Behaviors, Sensory Features, and Executive Functions in High Functioning Autism

    Science.gov (United States)

    Boyd, Brian A.; McBee, Matthew; Holtzclaw, Tia; Baranek, Grace T.; Bodfish, James W.

    2009-01-01

    This study examined the relationship between repetitive behaviors and sensory processing issues in school-aged children with high functioning autism (HFA). Children with HFA (N = 61) were compared to healthy, typical controls (N = 64) to determine the relationship between these behavioral classes and to examine whether executive dysfunction…

  2. Identification of Sensory Processing and Integration Symptom Clusters: A Preliminary Study.

    Science.gov (United States)

    Miller, Lucy Jane; Schoen, Sarah A; Mulligan, Shelley; Sullivan, Jillian

    2017-01-01

    This study explored subtypes of sensory processing disorder (SPD) by examining the clinical presentations of cluster groups that emerged from scores of children with SPD on the Sensory Processing 3-Dimension (SP-3D) Inventory. A nonexperimental design was used involving data extraction from the records of 252 children with SPD. Exploratory cluster analyses were conducted with scores from the SP-3D Inventory which measures sensory overresponsivity (SOR), sensory underresponsivity (SUR), sensory craving (SC), postural disorder, dyspraxia, and sensory discrimination. Scores related to adaptive behavior, social-emotional functioning, and attention among children with different sensory modulation patterns were then examined and compared. Three distinct cluster groups emerged from the data: High SOR only, High SUR with SOR, and High SC with SOR. All groups showed low performance within multiple domains of adaptive behavior. Atypical behaviors associated with social-emotional functioning and attention varied among the groups. The SP-3D Inventory shows promise as a tool for assisting in identifying patterns of sensory dysfunction and for guiding intervention. Better characterization can guide intervention precision and facilitate homogenous samples for research.

  3. Identification of Sensory Processing and Integration Symptom Clusters: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Lucy Jane Miller

    2017-01-01

    Full Text Available Rationale. This study explored subtypes of sensory processing disorder (SPD by examining the clinical presentations of cluster groups that emerged from scores of children with SPD on the Sensory Processing 3-Dimension (SP-3D Inventory. Method. A nonexperimental design was used involving data extraction from the records of 252 children with SPD. Exploratory cluster analyses were conducted with scores from the SP-3D Inventory which measures sensory overresponsivity (SOR, sensory underresponsivity (SUR, sensory craving (SC, postural disorder, dyspraxia, and sensory discrimination. Scores related to adaptive behavior, social-emotional functioning, and attention among children with different sensory modulation patterns were then examined and compared. Results. Three distinct cluster groups emerged from the data: High SOR only, High SUR with SOR, and High SC with SOR. All groups showed low performance within multiple domains of adaptive behavior. Atypical behaviors associated with social-emotional functioning and attention varied among the groups. Implications. The SP-3D Inventory shows promise as a tool for assisting in identifying patterns of sensory dysfunction and for guiding intervention. Better characterization can guide intervention precision and facilitate homogenous samples for research.

  4. Heterogeneous sensory processing in persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Jensen, Troels Staehelin

    2010-01-01

    Previous studies on sensory function in persistent postherniotomy pain (PPP) have only identified pressure pain threshold to be significantly different from pain-free patients despite several patients reporting cutaneous pain and wind-up phenomena. However the limited number of patients studied...... hinders evaluation of potential subgroups for further investigation and/or treatment allocation. Thus we used a standardized QST protocol to evaluate sensory functions in PPP and pain-free control patients, to allow individual sensory characterization of pain patients from calculated Z-values. Seventy PPP...... patients with pain related impairment of everyday activities were compared with normative data from 40 pain-free postherniotomy patients operated>1 year previously. Z-values showed a large variation in sensory disturbances ranging from pronounced detection hypoesthesia (Z=6, cold) to pain hyperalgesia (Z...

  5. Heterogeneous sensory processing in persistent postherniotomy pain

    DEFF Research Database (Denmark)

    Aasvang, Eske Kvanner; Brandsborg, Birgitte; Jensen, Troels Staehelin

    2010-01-01

    patients with pain related impairment of everyday activities were compared with normative data from 40 pain-free postherniotomy patients operated>1 year previously. Z-values showed a large variation in sensory disturbances ranging from pronounced detection hypoesthesia (Z=6, cold) to pain hyperalgesia (Z......Previous studies on sensory function in persistent postherniotomy pain (PPP) have only identified pressure pain threshold to be significantly different from pain-free patients despite several patients reporting cutaneous pain and wind-up phenomena. However the limited number of patients studied...... hinders evaluation of potential subgroups for further investigation and/or treatment allocation. Thus we used a standardized QST protocol to evaluate sensory functions in PPP and pain-free control patients, to allow individual sensory characterization of pain patients from calculated Z-values. Seventy PPP...

  6. Prenatal VPA exposure and changes in sensory processing by the superior colliculus

    Directory of Open Access Journals (Sweden)

    Georgia eDendrinos

    2011-10-01

    Full Text Available Disorders involving dysfunctional sensory processing are characterized by an inability to filter sensory information, particularly simultaneously arriving multimodal inputs. We examined the effects of prenatal exposure to valproic acid (VPA, a teratogen linked to sensory dysfunction, on the behavior of juvenile and adult rats, and on the anatomy of the superior colliculus, a critical multisensory integration center in the brain. VPA-exposed rats showed deficits in colliculus-dependent behaviors including startle response, prepulse inhibition and nociceptive responses. Some deficits reversed with age. Stereological analyses revealed that colliculi of VPA-treated rats had significantly fewer parvalbumin-positive neurons, a subset of GABAergic cells. These results suggest that prenatal VPA treatment affects the development of the superior colliculus and leads to persistent anatomical changes evidenced by aberrant behavior in tasks that require sensory processing.

  7. Relations between temperament, sensory processing, and motor coordination in three-year-old children

    Directory of Open Access Journals (Sweden)

    Atsuko eNakagawa

    2016-04-01

    Full Text Available Poor motor skills and differences in sensory processing have been noted as behavioral markers of common neurodevelopmental disorders. A total of 171 healthy children (81 girls, 90 boys were investigated at age 3 to examine relations between temperament, sensory processing, and motor coordination. Using the Japanese versions of the Children's Behavior Questionnaire (CBQ, the Sensory Profile (SP-J, and the Little Developmental Coordination Disorder Questionnaire (LDCDQ, this study examines an expanded model based on Rothbart's three-factor temperamental theory (surgency, negative affect, effortful control through path analysis. The results indicate that effortful control affects both sensory processing and motor coordination. The subscale of the LDCDQ, control during movement, is also influenced by surgency, while temperamental negative affect and surgency each have an effect on subscales of the SP-J.

  8. Relations between Temperament, Sensory Processing, and Motor Coordination in 3-Year-Old Children.

    Science.gov (United States)

    Nakagawa, Atsuko; Sukigara, Masune; Miyachi, Taishi; Nakai, Akio

    2016-01-01

    Poor motor skills and differences in sensory processing have been noted as behavioral markers of common neurodevelopmental disorders. A total of 171 healthy children (81 girls, 90 boys) were investigated at age 3 to examine relations between temperament, sensory processing, and motor coordination. Using the Japanese versions of the Children's Behavior Questionnaire (CBQ), the Sensory Profile (SP-J), and the Little Developmental Coordination Disorder Questionnaire (LDCDQ), this study examines an expanded model based on Rothbart's three-factor temperamental theory (surgency, negative affect, effortful control) through covariance structure analysis. The results indicate that effortful control affects both sensory processing and motor coordination. The subscale of the LDCDQ, control during movement, is also influenced by surgency, while temperamental negative affect and surgency each have an effect on subscales of the SP-J.

  9. Perspectives on sensory processing disorder: a call for translational research.

    Science.gov (United States)

    Miller, Lucy J; Nielsen, Darci M; Schoen, Sarah A; Brett-Green, Barbara A

    2009-01-01

    THIS ARTICLE EXPLORES THE CONVERGENCE OF TWO FIELDS, WHICH HAVE SIMILAR THEORETICAL ORIGINS: a clinical field originally known as sensory integration and a branch of neuroscience that conducts research in an area also called sensory integration. Clinically, the term was used to identify a pattern of dysfunction in children and adults, as well as a related theory, assessment, and treatment method for children who have atypical responses to ordinary sensory stimulation. Currently the term for the disorder is sensory processing disorder (SPD). In neuroscience, the term sensory integration refers to converging information in the brain from one or more sensory domains. A recent subspecialty in neuroscience labeled multisensory integration (MSI) refers to the neural process that occurs when sensory input from two or more different sensory modalities converge. Understanding the specific meanings of the term sensory integration intended by the clinical and neuroscience fields and the term MSI in neuroscience is critical. A translational research approach would improve exploration of crucial research questions in both the basic science and clinical science. Refinement of the conceptual model of the disorder and the related treatment approach would help prioritize which specific hypotheses should be studied in both the clinical and neuroscience fields. The issue is how we can facilitate a translational approach between researchers in the two fields. Multidisciplinary, collaborative studies would increase knowledge of brain function and could make a significant contribution to alleviating the impairments of individuals with SPD and their families.

  10. Perspectives on sensory processing disorder: a call for translational research

    Directory of Open Access Journals (Sweden)

    Lucy J Miller

    2009-09-01

    Full Text Available This article explores the convergence of two fields, which have similar theoretical origins: a clinical field originally known as sensory integration and a branch of neuroscience that conducts research in an area also called sensory integration. Clinically, the term was used to identify a pattern of dysfunction in children and adults, as well as a related theory, assessment, and treatment method for children who have atypical responses to ordinary sensory stimulation. Currently the term for the disorder is Sensory Processing Disorder (SPD. In neuroscience, the term sensory integration refers to converging information in the brain from one or more sensory domains. A recent subspecialty in neuroscience labeled multisensory integration (MSI refers to the neural process that occurs when sensory input from two or more different sensory modalities converge. Understanding the specific meanings of the term sensory integration intended by the clinical and neuroscience fields and the term multisensory integration in neuroscience is critical. A translational research approach would improve exploration of crucial research questions in both the basic science and clinical science. Refinement of the conceptual model of the disorder and the related treatment approach would help prioritize which specific hypotheses should be studied in both the clinical and neuroscience fields. The issue is how we can facilitate a translational approach between researchers in the two fields. Multidisciplinary, collaborative studies would increase knowledge of brain function and could make a significant contribution to alleviating the impairments of individuals with SPD and their families.

  11. Sensory and motor components of reproductive behavior : pathways and plasticity

    NARCIS (Netherlands)

    Holstege, Gert; Van der Horst, Veronique G.J.M.

    Reproductive behavior in most mammalian species consists of a highly stereotyped pattern of movements, is elicited by specific sensory stimuli and is sex steroid dependent. The present paper describes a concept of the pathways in the midbrain, brainstem and spinal cord which control the receptive

  12. The Experience of Children Living with Sensory Processing Disorder

    Science.gov (United States)

    Scotch, Melissa Dawn

    2017-01-01

    Sensory processing disorder (SPD) is a neurological condition that alters the way an individual perceives sensory information. Although the condition has been studied for more than 40 years, SPD remains a difficult condition to diagnose, treat, and live with because it affects individuals uniquely, and the symptoms can change from childhood to…

  13. Reported Sensory Processing of Children with Down Syndrome

    Science.gov (United States)

    Bruni, Maryanne; Cameron, Debra; Dua, Shelly; Noy, Sarah

    2010-01-01

    Investigators have identified delays and differences in cognitive, language, motor, and sensory development in children with Down syndrome (DS). The purpose of this study was to determine the parent-reported frequency of sensory processing issues in children with DS aged 3-10 years, and the parent-reported functional impact of those sensory…

  14. Extreme sensory processing patterns and their relation with clinical conditions among individuals with major affective disorders.

    Science.gov (United States)

    Engel-Yeger, Batya; Muzio, Caterina; Rinosi, Giorgio; Solano, Paola; Geoffroy, Pierre Alexis; Pompili, Maurizio; Amore, Mario; Serafini, Gianluca

    2016-02-28

    Previous studies highlighted the involvement of sensory perception in emotional processes. However, the role of extreme sensory processing patterns expressed in hyper- or hyposensitivity was not thoroughly considered. The present study, in real life conditions, examined the unique sensory processing patterns of individuals with major affective disorders and their relationship with psychiatric symptomatology. The sample consisted of 105 participants with major affective conditions ranging in age from 20 to 84 years (mean=56.7±14.6). All participants completed the Temperament Evaluation of Memphis, Pisa, Paris and San Diego (TEMPS-A), the second version of the Beck Depression Inventory (BDI-II), and Adolescent/Adult Sensory Profile (AASP). Sensory sensitivity/avoiding hypersensitivity patterns and low registration (a hyposensitivity pattern) were prevalent among our sample as compared to normative data. About seventy percent of the sample showed lower seeking tendency. Stepwise regression analyses revealed that depression and anxious/cyclothymic affective temperaments were predicted by sensory sensory/avoiding. Anxious and irritable affective temperaments were predicted by low registration. Hyperthymic affective temperament and lower severity of depression were predicted by sensation seeking. Hyposensitivity or hypersensitivity may be "trait" markers of individuals with major affective disorders. Interventions should refer to the individual unique sensory profiles and their behavioral and functional impact in the context of real life. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Sensory Systems and Environmental Change on Behavior during Social Interactions

    Directory of Open Access Journals (Sweden)

    S. M. Bierbower

    2013-01-01

    Full Text Available The impact of environmental conditions for transmitting sensory cues and the ability of crayfish to utilize olfaction and vision were examined in regards to social interactive behavior. The duration and intensity of interactions were examined for conspecific crayfish with different sensory abilities. Normally, vision and chemosensory have roles in agonistic communication of Procambarus clarkii; however, for the blind cave crayfish (Orconectes australis packardi, that lack visual capabilities, olfaction is assumed to be the primary sensory modality. To test this, we paired conspecifics in water and out of water in the presence and absence of white light to examine interactive behaviors when these various sensory modalities are altered. For sighted crayfish, in white light, interactions occurred and escalated; however, when the water was removed, interactions and aggressiveness decreased, but, there was an increase in visual displays out of the water. The loss of olfaction abilities for blind cave and sighted crayfish produced fewer social interactions. The importance of environmental conditions is illustrated for social interactions among sighted and blind crayfish. Importantly, this study shows the relevance in the ecological arena in nature for species survival and how environmental changes disrupt innate behaviors.

  16. Measuring sensory processing patterns of older Chinese people: psychometric validation of the adult sensory profile.

    Science.gov (United States)

    Chung, J C C

    2006-11-01

    The Adult Sensory Profile (ASP) evaluates the sensory experiences of adults in the categories of auditory, visual, taste/smell, touch, movement, and activity level. It generates four sensory processing patterns including low registration, sensation seeking, sensory sensitivity, and sensation avoiding. This study examined the psychometric properties of the Chinese version of ASP (ASP-CV) for older Hong Kong Chinese adults. Ninety-six participants with normal cognitive functioning and 33 participants with dementia were recruited. All participants were involved in the investigation of internal consistency and construct validity. One sub-sample from each group was selected for test-retest reliability and inter-rater reliability respectively. The ASP-CV demonstrated excellent inter-rater reliability and test-retest reliability (r = 0.91-0.99 and 0.76-0.88 respectively), and satisfactory internal consistency (alpha = 0.58-0.72). The construct validity of ASP-CV was supported by the known-groups method, in which participants with dementia differed significantly from their healthy counterparts in the patterns of 'low registration' (F(1, 127) = 9.69, p = 0.002), 'sensory sensitivity' (F(1, 127) = 4.63, p = 0.033), and 'sensation avoiding' (F(1, 127) = 15.87, p sensory processing functions of older Hong Kong Chinese people. Further studies are suggested to examine the factor structure of and the equivalence of self-report and proxy report of ASP-CV.

  17. Sensory processing disorder in children ages birth-3 years born prematurely: a systematic review.

    Science.gov (United States)

    Mitchell, Anita Witt; Moore, Elizabeth M; Roberts, Emily J; Hachtel, Kristen W; Brown, Melissa S

    2015-01-01

    This systematic review of multidisciplinary literature synthesizes evidence of the prevalence and patterns of sensory processing disorder (SPD) in children ages birth-3 yr born preterm. Forty-five articles including physiological, behavioral, temperament, and SPD research met the inclusion criteria and provided 295 findings related to SPD-130 (44%) positive (evidence of SPD) and 165 (56%) negative (no evidence of SPD). The majority of findings related to sensory modulation disorder (SMD; 43% positive). The most prevalent subcategory of SMD was sensory overresponsivity (82% of findings positive). Evidence of sensory underresponsivity and sensory-seeking SMD, sensory discrimination disorder, and sensory-based motor disorder was limited. This study supports the education of neonatologists, pediatricians, and caregivers about the symptoms and potential consequences of SPD and helps justify the need for follow-up screening for SPD in children ages birth-3 yr born preterm. Research using measures based on sensory processing theory is needed. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  18. Processing of Sensory Information in the Olfactory System

    DEFF Research Database (Denmark)

    The olfactory system is an attractive model system due to the easy control of sensory input and the experimental accessibility in animal studies. The odorant signals are processed from receptor neurons to a neural network of mitral and granular cells while various types of nonlinear behaviour can...... and equation-free techniques allow for a better reproduction and understanding of recent experimental findings. Talks: Olfaction as a Model System for Sensory-Processing Neural Networks (Jens Midtgaard, University of Copenhagen, Denmark) Nonlinear Effects of Signal Transduction in Olfactory Sensory Neurons...

  19. Association between dysfunctional elimination syndrome and sensory processing disorder.

    Science.gov (United States)

    Pollock, Mary R; Metz, Alexia E; Barabash, Theresa

    2014-01-01

    OBJECTIVE. We explored whether sensory processing disorder (SPD) is related to dysfunctional elimination syndrome (DES). METHOD. We used the Vancouver Nonneurogenic Lower Urinary Tract Dysfunction/Dysfunctional Elimination Syndrome Questionnaire and the Short Sensory Profile with participants who sought treatment of DES (n = 19) and healthy control participants (n = 55). RESULTS. Significantly more children with DES (53%) had SPD than was reported for the general population (p sensory processing pattern would be an important aspect that could influence the plan of care. Copyright © 2014 by the American Occupational Therapy Association, Inc.

  20. Peripheral multidendritic sensory neurons are necessary for rhythmic locomotion behavior in Drosophila larvae

    Science.gov (United States)

    Song, Wei; Onishi, Maika; Jan, Lily Yeh; Jan, Yuh Nung

    2007-01-01

    From breathing to walking, rhythmic movements encompass physiological processes important across the entire animal kingdom. It is thought by many that the generation of rhythmic behavior is operated by a central pattern generator (CPG) and does not require peripheral sensory input. Sensory feedback is, however, required to modify or coordinate the motor activity in response to the circumstances of actual movement. In contrast to this notion, we report here that sensory input is necessary for the generation of Drosophila larval locomotion, a form of rhythmic behavior. Blockage of all peripheral sensory inputs resulted in cessation of larval crawling. By conditionally silencing various subsets of larval peripheral sensory neurons, we identified the multiple dendritic (MD) neurons as the neurons essential for the generation of rhythmic peristaltic locomotion. By recording the locomotive motor activities, we further demonstrate that removal of MD neuron input disrupted rhythmic motor firing pattern in a way that prolonged the stereotyped segmental motor firing duration and prevented the propagation of posterior to anterior segmental motor firing. These findings reveal that MD sensory neuron input is a necessary component in the neural circuitry that generates larval locomotion. PMID:17360325

  1. Visual perception of ADHD children with sensory processing disorder.

    Science.gov (United States)

    Jung, Hyerim; Woo, Young Jae; Kang, Je Wook; Choi, Yeon Woo; Kim, Kyeong Mi

    2014-04-01

    The aim of the present study was to investigate the visual perception difference between ADHD children with and without sensory processing disorder, and the relationship between sensory processing and visual perception of the children with ADHD. Participants were 47 outpatients, aged 6-8 years, diagnosed with ADHD. After excluding those who met exclusion criteria, 38 subjects were clustered into two groups, ADHD children with and without sensory processing disorder (SPD), using SSP reported by their parents, then subjects completed K-DTVP-2. Spearman correlation analysis was run to determine the relationship between sensory processing and visual perception, and Mann-Whitney-U test was conducted to compare the K-DTVP-2 score of two groups respectively. The ADHD children with SPD performed inferiorly to ADHD children without SPD in the on 3 quotients of K-DTVP-2. The GVP of K-DTVP-2 score was related to Movement Sensitivity section (r=0.368(*)) and Low Energy/Weak section of SSP (r=0.369*). The result of the present study suggests that among children with ADHD, the visual perception is lower in those children with co-morbid SPD. Also, visual perception may be related to sensory processing, especially in the reactions of vestibular and proprioceptive senses. Regarding academic performance, it is necessary to consider how sensory processing issues affect visual perception in children with ADHD.

  2. Sensory integration regulating male courtship behavior in Drosophila.

    Directory of Open Access Journals (Sweden)

    Dimitrije Krstic

    Full Text Available The courtship behavior of Drosophila melanogaster serves as an excellent model system to study how complex innate behaviors are controlled by the nervous system. To understand how the underlying neural network controls this behavior, it is not sufficient to unravel its architecture, but also crucial to decipher its logic. By systematic analysis of how variations in sensory inputs alter the courtship behavior of a naïve male in the single-choice courtship paradigm, we derive a model describing the logic of the network that integrates the various sensory stimuli and elicits this complex innate behavior. This approach and the model derived from it distinguish (i between initiation and maintenance of courtship, (ii between courtship in daylight and in the dark, where the male uses a scanning strategy to retrieve the decamping female, and (iii between courtship towards receptive virgin females and mature males. The last distinction demonstrates that sexual orientation of the courting male, in the absence of discriminatory visual cues, depends on the integration of gustatory and behavioral feedback inputs, but not on olfactory signals from the courted animal. The model will complement studies on the connectivity and intrinsic properties of the neurons forming the circuitry that regulates male courtship behavior.

  3. Sensory processing disorder: any of a nurse practitioner's business?

    Science.gov (United States)

    Byrne, Mary W

    2009-06-01

    Children who exhibit the confusing symptom patterns associated with sensory processing deficits are often seen first by primary care providers, including family and pediatric nurse practitioners (NPs). The purpose of this article is to alert NPs to the state of the science for these disorders and to the roles NPs could play in filling the knowledge gaps in assessment, treatment, education, and research. Literature searches using PubMed and MedLine databases and clinical practice observations. Sensory integration disorders have only begun to be defined during the past 35 years. They are not currently included in the DSM IV standard terminology, and are not yet substantively incorporated into most health disciplines' curricula or practice, including those of the NP. NPs are in a unique position to test hypothesized terminology for Sensory Processing Disorder (SPD) by contributing precise clinical descriptions of children who match as well as deviate from the criteria for three proposed diagnostic groups: Sensory Modulation Disorder (SMD), Sensory Discrimination Disorder (SDD), and Sensory-Based Motor Disorder (SBMD). Beyond the SPD diagnostic debate, for children with sensory deficit patterns the NP role can incorporate participating in interdisciplinary treatment plans, refining differential diagnoses, providing frontline referral and support for affected children and their families, and making both secondary prevention and critical causal research possible through validation of consistently accepted diagnostic criteria.

  4. Comparison of behavioral intervention and sensory-integration therapy in the treatment of challenging behavior.

    Science.gov (United States)

    Devlin, Sarah; Healy, Olive; Leader, Geraldine; Hughes, Brian M

    2011-10-01

    The objective of the current study was to compare the effects of sensory-integration therapy (SIT) and a behavioral intervention on rates of challenging behavior (including self-injurious behavior) in four children diagnosed with Autism Spectrum Disorder. For each of the participants a functional assessment was conducted to identify the variables maintaining challenging behavior. Results of these assessments were used to design function-based behavioral interventions for each participant. Recommendations for the sensory-integration treatment were designed by an Occupational Therapist, trained in the use of sensory-integration theory and techniques. The sensory-integration techniques were not dependent on the results of the functional assessments. The study was conducted within an alternating treatments design, with initial baseline and final best treatment phase. For each participant, results demonstrated that the behavioral intervention was more effective than the sensory integration therapy in the treatment of challenging behavior. In the best treatment phase, the behavioral intervention alone was implemented and further reduction was observed in the rate of challenging behavior. Analysis of saliva samples revealed relatively low levels of cortisol and very little stress-responsivity across the SIT condition and the behavioral intervention condition, which may be related to the participants' capacity to perceive stress in terms of its social significance.

  5. Comparison of Behavioral Intervention and Sensory-Integration Therapy in the Treatment of Challenging Behavior

    Science.gov (United States)

    Devlin, Sarah; Healy, Olive; Leader, Geraldine; Hughes, Brian M.

    2011-01-01

    The objective of the current study was to compare the effects of sensory-integration therapy (SIT) and a behavioral intervention on rates of challenging behavior (including self-injurious behavior) in four children diagnosed with Autism Spectrum Disorder. For each of the participants a functional assessment was conducted to identify the variables…

  6. SENSORY PROCESSING DURING CHILDHOOD IN PRETERM INFANTS: A SYSTEMATIC REVIEW

    Science.gov (United States)

    Machado, Ana Carolina Cabral de Paula; de Oliveira, Suelen Rosa; Magalhães, Lívia de Castro; de Miranda, Débora Marques; Bouzada, Maria Cândida Ferrarez

    2017-01-01

    ABSTRACT Objective: To conduct a systematic search for grounded and quality evidence of sensory processing in preterm infants during childhood. Data source: The search of the available literature on the theme was held in the following electronic databases: Medical Literature Analysis and Retrieval System Online (Medline)/PubMed, Latin American and Caribbean Literature in Health Sciences (Lilacs)/Virtual Library in Health (BVS), Índice Bibliográfico Español de Ciencias de la Salud (IBECS)/BVS, Scopus, and Web of Science. We included only original indexed studies with a quantitative approach, which were available in full text on digital media, published in Portuguese, English, or Spanish between 2005 and 2015, involving children aged 0-9years. Data synthesis: 581 articles were identified and eight were included. Six studies (75%) found high frequency of dysfunction in sensory processing in preterm infants. The association of sensory processing with developmental outcomes was observed in three studies (37.5%). The association of sensory processing with neonatal characteristics was observed in five studies (62.5%), and the sensory processing results are often associated with gestational age, male gender, and white matter lesions. Conclusions: The current literature suggests that preterm birth affects the sensory processing, negatively. Gestational age, male gender, and white matter lesions appear as risk factors for sensoryprocessing disorders in preterm infants. The impairment in the ability to receivesensory inputs, to integrateand to adapt to them seems to have a negative effect on motor, cognitive, and language development of these children. We highlight the feasibility of identifying sensory processing disorders early in life, favoring early clinical interventions. PMID:28977307

  7. Sensory processing disorders – diagnostic and therapeutic controversies

    Directory of Open Access Journals (Sweden)

    Aneta R. Borkowska

    2017-09-01

    Full Text Available This article presents the current state of knowledge regarding the controversial issue of sensory integration dysfunction/sensory processing disorder. Symptoms are defined as impairments in the accurate reception and registering of stimuli, differentiation of stimulus intensity, and adequate reactivity to stimulation. They can be of specific character and occur in isolation and can also be a nonspecific element of a clinical picture of another disease entity. Psychophysiological and neuroimaging studies confirm the existence of both a distinct group of children with symptoms of sensory processing disorder diagnosed based on descriptions of behaviours listed in questionnaires and of a specific neurobiological basis of this disorder. In clinical practice, it is of key importance to determine whether behavioural problems observed in children are caused by disorders other than sensory processing disorders. Results of meta-analyses regarding sensory integration therapy are inconclusive and do not allow this form of treatment to be considered fact-based. Future studies with high methodological standards are necessary in order to verify the effectiveness of different forms of sensory integration therapy. Parents should be informed about the existing limitations.

  8. Sensory Processing Patterns in Autism, Attention Deficit Hyperactivity Disorder, and Typical Development.

    Science.gov (United States)

    Little, Lauren M; Dean, Evan; Tomchek, Scott; Dunn, Winnie

    2017-12-14

    The purpose of this study was to examine sensory processing in children ages 3-14 years with autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), and typical development (TD) using the Sensory Profile 2nd Edition (Dunn, 2014). Participants included 239 children (ASD = 77; ADHD = 78; TD = 84) matched on age and gender. Multivariate analysis of covariance was used to compare the extent to which the three grsoups differed on sensory processing patterns (i.e., sensitivity, avoiding, registration, seeking) and sensory systems (i.e., auditory, visual, touch, movement, body position, oral, conduct, attention, social). We also examined the effect of chronological age. Children with ASD and ADHD did not differ in sensory processing patterns which were elevated as compared to a TD group. Children with ASD showed the highest rate of oral processing differences, followed by ADHD and TD. Children with ADHD had higher visual processing scores than children with ASD and TD. Older children had lower scores for seeking, auditory, visual, movement, touch, and conduct than younger children, regardless of diagnosis. Findings suggest that sensory features may be an area of overlap of behaviors in ASD and ADHD, which may have implications for intervention approaches for children with these conditions.

  9. The influence of posttraumatic stress disorder, depression, and sensory processing patterns on occupational engagement: a case study.

    Science.gov (United States)

    Champagne, Tina

    2011-01-01

    The purpose of this article is to provide a brief overview of how Posttraumatic Stress Disorder (PTSD), Depression, and Sensory Processing patterns influence occupational engagement, including work performance. Interventions and outcomes of the Sensory Modulation Program and approaches from Cognitive Behavior Therapy (CBT) are reviewed through single case exploration with a 42 year-old woman in outpatient services. The marked increase in occupational engagement and improved work performance in this single case review demonstrates the need for more research on the use of the Sensory Modulation Program and approaches from CBT with populations with PTSD, Depression, and Sensory Processing disorder.

  10. Remodeling sensory cortical maps implants specific behavioral memory.

    Science.gov (United States)

    Bieszczad, K M; Miasnikov, A A; Weinberger, N M

    2013-08-29

    Neural mechanisms underlying the capacity of memory to be rich in sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels the adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66-kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity was consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects' area of expansion and the tone that was strongest in each animal's memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. REMODELING SENSORY CORTICAL MAPS IMPLANTS SPECIFIC BEHAVIORAL MEMORY

    Science.gov (United States)

    Bieszczad, Kasia M.; Miasnikov, Alexandre A.; Weinberger, Norman M.

    2013-01-01

    Neural mechanisms underlying the capacity of memory to be rich with sensory detail are largely unknown. A candidate mechanism is learning-induced plasticity that remodels adult sensory cortex. Here, expansion in the primary auditory cortical (A1) tonotopic map of rats was induced by pairing a 3.66 kHz tone with activation of the nucleus basalis, mimicking the effects of natural associative learning. Remodeling of A1 produced de novo specific behavioral memory, but neither memory nor plasticity were consistently at the frequency of the paired tone, which typically decreased in A1 representation. Rather, there was a specific match between individual subjects’ area of expansion and the tone that was strongest in each animal’s memory, as determined by post-training frequency generalization gradients. These findings provide the first demonstration of a match between the artificial induction of specific neural representational plasticity and artificial induction of behavioral memory. As such, together with prior and present findings for detection, correlation and mimicry of plasticity with the acquisition of memory, they satisfy a key criterion for neural substrates of memory. This demonstrates that directly remodeling sensory cortical maps is sufficient for the specificity of memory formation. PMID:23639876

  12. The importance of sensory integration processes for action cascading

    Science.gov (United States)

    Gohil, Krutika; Stock, Ann-Kathrin; Beste, Christian

    2015-01-01

    Dual tasking or action cascading is essential in everyday life and often investigated using tasks presenting stimuli in different sensory modalities. Findings obtained with multimodal tasks are often broadly generalized, but until today, it has remained unclear whether multimodal integration affects performance in action cascading or the underlying neurophysiology. To bridge this gap, we asked healthy young adults to complete a stop-change paradigm which presented different stimuli in either one or two modalities while recording behavioral and neurophysiological data. Bimodal stimulus presentation prolonged response times and affected bottom-up and top-down guided attentional processes as reflected by the P1 and N1, respectively. However, the most important effect was the modulation of response selection processes reflected by the P3 suggesting that a potentially different way of forming task goals operates during action cascading in bimodal vs. unimodal tasks. When two modalities are involved, separate task goals need to be formed while a conjoint task goal may be generated when all stimuli are presented in the same modality. On a systems level, these processes seem to be related to the modulation of activity in fronto-polar regions (BA10) as well as Broca's area (BA44). PMID:25820681

  13. Relationships between atypical sensory processing patterns, maladaptive behaviour and maternal stress in Spanish children with autism spectrum disorder.

    Science.gov (United States)

    Nieto, C; López, B; Gandía, H

    2017-12-01

    This study investigated sensory processing in a sample of Spanish children with autism spectrum disorder (ASD). Specifically, the study aimed to explore (1) the prevalence and distribution of atypical sensory processing patterns, (2) the relationship between adaptive and maladaptive behaviour with atypical sensory processing and (3) the possible relationship between sensory subtype and maternal stress. The short sensory profile 2 (Dunn 2014) and the vineland adaptive behavior scale (Sparrow et al. 1984) were administered to examine the sensory processing difficulties and maladaptive behaviours of 45 children with ASD aged 3 to 14; their mothers also completed the parenting stress index-short form (Abidin 1995). Atypical sensory features were found in 86.7% of the children; avoider and sensor being the two most common patterns. No significant relationship was found between atypical sensory processing and adaptive behaviour. However, the analysis showed a strong relationship between sensory processing and maladaptive behaviour. Both maladaptive behaviour and sensory processing difficulties correlated significantly with maternal stress although maternal stress was predicted only by the sensory variable, and in particular by the avoider pattern. The findings suggest that sensory features in ASD may be driving the high prevalence of parental stress in carers. They also suggest that the effect on parental stress that has been attributed traditionally to maladaptive behaviours may be driven by sensory difficulties. The implications of these findings are discussed in relation to the development of interventions and the need to explore contextual and cultural variables as possible sources of variability. © 2017 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  14. Evaluating Sensory Processing in Fragile X Syndrome: Psychometric Analysis of the Brain Body Center Sensory Scales (BBCSS).

    Science.gov (United States)

    Kolacz, Jacek; Raspa, Melissa; Heilman, Keri J; Porges, Stephen W

    2018-02-07

    Individuals with fragile X syndrome (FXS), especially those co-diagnosed with autism spectrum disorder (ASD), face many sensory processing challenges. However, sensory processing measures informed by neurophysiology are lacking. This paper describes the development and psychometric properties of a parent/caregiver report, the Brain-Body Center Sensory Scales (BBCSS), based on Polyvagal Theory. Parents/guardians reported on 333 individuals with FXS, 41% with ASD features. Factor structure using a split-sample exploratory-confirmatory design conformed to neurophysiological predictions. Internal consistency, test-retest, and inter-rater reliability were good to excellent. BBCSS subscales converged with the Sensory Profile and Sensory Experiences Questionnaire. However, data also suggest that BBCSS subscales reflect unique features related to sensory processing. Individuals with FXS and ASD features displayed more sensory challenges on most subscales.

  15. Helping Children with Sensory Processing Disorders: The Role of Occupational Therapy

    Science.gov (United States)

    Sweet, Margarita

    2010-01-01

    Normally functioning sensory systems develop through sensory experiences. Children are stimulated through their senses in many different ways. Even though a person's sensory system is intact, he or she may have a sensory processing disorder (SPD), also known as sensory integration dysfunction. This means the person's brain does not correctly…

  16. Higher sensory processing sensitivity, introversion and ectomorphism: New biomarkers for human creativity in developing rural areas.

    Science.gov (United States)

    Rizzo-Sierra, Carlos V; Leon-S, Martha E; Leon-Sarmiento, Fidias E

    2012-05-01

    The highly sensitive trait present in animals, has also been proposed as a human neurobiological trait. People having such trait can process larger amounts of sensory information than usual, making it an excellent attribute that allows to pick up subtle environmental details and cues. Furthermore, this trait correlates to some sort of giftedness such as higher perception, inventiveness, imagination and creativity. We present evidences that support the existance of key neural connectivity between the mentioned trait, higher sensory processing sensitivity, introversion, ectomorphism and creativity. The neurobiological and behavioral implications that these biomarkers have in people living in developing rural areas are discussed as well.

  17. Modeling Battery Behavior on Sensory Operations for Context-Aware Smartphone Sensing

    Directory of Open Access Journals (Sweden)

    Ozgur Yurur

    2015-05-01

    Full Text Available Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM, under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.

  18. Modeling battery behavior on sensory operations for context-aware smartphone sensing.

    Science.gov (United States)

    Yurur, Ozgur; Liu, Chi Harold; Moreno, Wilfrido

    2015-05-26

    Energy consumption is a major concern in context-aware smartphone sensing. This paper first studies mobile device-based battery modeling, which adopts the kinetic battery model (KiBaM), under the scope of battery non-linearities with respect to variant loads. Second, this paper models the energy consumption behavior of accelerometers analytically and then provides extensive simulation results and a smartphone application to examine the proposed sensor model. Third, a Markov reward process is integrated to create energy consumption profiles, linking with sensory operations and their effects on battery non-linearity. Energy consumption profiles consist of different pairs of duty cycles and sampling frequencies during sensory operations. Furthermore, the total energy cost by each profile is represented by an accumulated reward in this process. Finally, three different methods are proposed on the evolution of the reward process, to present the linkage between different usage patterns on the accelerometer sensor through a smartphone application and the battery behavior. By doing this, this paper aims at achieving a fine efficiency in power consumption caused by sensory operations, while maintaining the accuracy of smartphone applications based on sensor usages. More importantly, this study intends that modeling the battery non-linearities together with investigating the effects of different usage patterns in sensory operations in terms of the power consumption and the battery discharge may lead to discovering optimal energy reduction strategies to extend the battery lifetime and help a continual improvement in context-aware mobile services.

  19. Bilateral Pathways from the Basal Forebrain to Sensory Cortices May Contribute to Synchronous Sensory Processing

    Directory of Open Access Journals (Sweden)

    Irene Chaves-Coira

    2018-01-01

    Full Text Available Sensory processing in the cortex should integrate inputs arriving from receptive fields located on both sides of the body. This role could be played by the corpus callosum through precise projections between both hemispheres. However, different studies suggest that cholinergic projections from the basal forebrain (BF could also contribute to the synchronization and integration of cortical activities. Using tracer injections and optogenetic techniques in transgenic mice, we investigated whether the BF cells project bilaterally to sensory cortical areas, and have provided anatomical evidence to support a modulatory role for the cholinergic projections in sensory integration. Application of the retrograde tracer Fluor-Gold or Fast Blue in both hemispheres of the primary somatosensory (S1, auditory or visual cortical areas showed labeled neurons in the ipsi- and contralateral areas of the diagonal band of Broca and substantia innominata. The nucleus basalis magnocellularis only showed ipsilateral projections to the cortex. Optogenetic stimulation of the horizontal limb of the diagonal band of Broca facilitated whisker responses in the S1 cortex of both hemispheres through activation of muscarinic cholinergic receptors and this effect was diminished by atropine injection. In conclusion, our findings have revealed that specific areas of the BF project bilaterally to sensory cortices and may contribute to the coordination of neuronal activity on both hemispheres.

  20. The relationship between sensory processing and anxiety on cars scale in autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Novaković Neda

    2015-01-01

    Full Text Available Autism Spectrum Disorder is a neurodevelopmental disorder, characterized by deficits in social interactions, social communication, stereotyped behavior associated with sensory disorders occurring before the age of 3. There has been a growing trend of this neurodevelopmental disorder in recent years. Although the sensory processing problems have been noticed since the first descriptions of autism spectrum disorders, it is only the DSM-5, diagnostic and statistical manual of mental disorders, that includes sensory problems, as the crucial symptom in diagnostic profile of autism spectrum disorder. Objective: To establish the relationship between functional areas related to sensory processing and anxiety, as well as to determine the degree of autistic disorder in adolescents and adults with autism spectrum disorder. Method: 42 participants, adolescents and adults with severe autism disorder and intellectual disability, aged 15-35, of both sexes from Belgrade were evaluated by Childhood Autism Rating Scale (CARS used to determine the degree of autistic disorder. The following functional areas were compared: sensory interests and anxiety in adolescents and adults with autistic spectrum of both sexes. Results: The results indicated the existence of the relationship between anxiety and unusual sensory interests and the severity of autism spectrum disorder. The results showed that there was a correlation between visual perception and the level of intellectual functioning, especially of the severity of autistic disorder and visual perception. Conclusion: These results indicate the reasons of the problems and difficulties in the field of general adaptation of the individuals with autism spectrum disorder.

  1. The canonical relationship between sensory-motor functioning and cognitive processing in children with attention-deficit/hyperactivity disorder.

    Science.gov (United States)

    Davis, Andrew S; Pass, Lisa A; Finch, W Holmes; Dean, Raymond S; Woodcock, Richard W

    2009-05-01

    Children with Attention-Deficit/Hyperactivity Disorder (ADHD) typically exhibits a pattern of behavioral deficits, impairment in academic achievement, and cognitive processing, and presents with sensory-motor deficits. This study examined the relationships between sensory-motor tasks, cognitive processing, and academic achievement for a group of 67 children with ADHD. Strong canonical correlations emerged between sensory-motor functioning and academic achievement (.93) and sensory-motor functioning and cognitive processing (.98). An analysis of the redundancy coefficient showed that sensory-motor skills accounted for 65% of the variance in the achievement variables and 31% of the variance in the cognitive processing variables. The strong relationship between sensory-motor skills and higher order cognitive processes indicates that early assessment of sensory-motor skills may be useful in the identification of subsequent deficits in academic performance. Neuropsychologists should carefully consider the contribution of sensory-motor functioning to the more widely studied and assessed constructs of academic, behavioral, and emotional problems in children with ADHD.

  2. Assessing Sensory Processing Dysfunction in Adults and Adolescents with Autism Spectrum Disorder: A Scoping Review.

    Science.gov (United States)

    DuBois, Denise; Lymer, Erin; Gibson, Barbara E; Desarkar, Pushpal; Nalder, Emily

    2017-08-19

    Sensory reactivity is a diagnostic criterion for Autism Spectrum Disorder (ASD), and has been associated with poorer functional outcomes, behavioral difficulties, and autism severity across the lifespan. Yet, there is little consensus on best practice approaches to assessing sensory processing dysfunction in adolescents and adults with ASD. Despite growing evidence that sensory symptoms persist into adolescence and adulthood, there is a lack of norms for older age groups, and pediatric assessments may not target appropriate functional outcomes or environments. This review identified approaches used to measure sensory processing in the scientific literature, and to describe and compare these approaches to current best practice guidelines that can be incorporated into evidence-based practice. Method and Analysis: A search of scientific databases and grey literature (professional association and ASD society websites), from January 1987-May 2017, uncovered 4769 articles and 12 clinical guidelines. Study and sample characteristics were extracted, charted, and categorized according to assessment approach. There were 66 articles included after article screening. Five categories of assessment approaches were identified: Self- and Proxy-Report Questionnaires, Psychophysical Assessment, Direct Behavioral Observation, Qualitative Interview Techniques, and Neuroimaging/EEG. Sensory research to date has focused on individuals with high-functioning ASD, most commonly through the use of self-report questionnaires. The Adolescent and Adult Sensory Profile (AASP) is the most widely used assessment measure ( n = 22), however, a number of other assessment approaches may demonstrate strengths specific to the ASD population. Multi-method approaches to assessment (e.g., combining psychophysical or observation with questionnaires) may have clinical applicability to interdisciplinary clinical teams serving adolescents and adults with ASD. Contribution: A comprehensive knowledge of

  3. Engineering Sensorial Delay to Control Phototaxis and Emergent Collective Behaviors

    Science.gov (United States)

    Mijalkov, Mite; McDaniel, Austin; Wehr, Jan; Volpe, Giovanni

    2016-01-01

    Collective motions emerging from the interaction of autonomous mobile individuals play a key role in many phenomena, from the growth of bacterial colonies to the coordination of robotic swarms. For these collective behaviors to take hold, the individuals must be able to emit, sense, and react to signals. When dealing with simple organisms and robots, these signals are necessarily very elementary; e.g., a cell might signal its presence by releasing chemicals and a robot by shining light. An additional challenge arises because the motion of the individuals is often noisy; e.g., the orientation of cells can be altered by Brownian motion and that of robots by an uneven terrain. Therefore, the emphasis is on achieving complex and tunable behaviors from simple autonomous agents communicating with each other in robust ways. Here, we show that the delay between sensing and reacting to a signal can determine the individual and collective long-term behavior of autonomous agents whose motion is intrinsically noisy. We experimentally demonstrate that the collective behavior of a group of phototactic robots capable of emitting a radially decaying light field can be tuned from segregation to aggregation and clustering by controlling the delay with which they change their propulsion speed in response to the light intensity they measure. We track this transition to the underlying dynamics of this system, in particular, to the ratio between the robots' sensorial delay time and the characteristic time of the robots' random reorientation. Supported by numerics, we discuss how the same mechanism can be applied to control active agents, e.g., airborne drones, moving in a three-dimensional space. Given the simplicity of this mechanism, the engineering of sensorial delay provides a potentially powerful tool to engineer and dynamically tune the behavior of large ensembles of autonomous mobile agents; furthermore, this mechanism might already be at work within living organisms such as

  4. Engineering Sensorial Delay to Control Phototaxis and Emergent Collective Behaviors

    Directory of Open Access Journals (Sweden)

    Mite Mijalkov

    2016-01-01

    Full Text Available Collective motions emerging from the interaction of autonomous mobile individuals play a key role in many phenomena, from the growth of bacterial colonies to the coordination of robotic swarms. For these collective behaviors to take hold, the individuals must be able to emit, sense, and react to signals. When dealing with simple organisms and robots, these signals are necessarily very elementary; e.g., a cell might signal its presence by releasing chemicals and a robot by shining light. An additional challenge arises because the motion of the individuals is often noisy; e.g., the orientation of cells can be altered by Brownian motion and that of robots by an uneven terrain. Therefore, the emphasis is on achieving complex and tunable behaviors from simple autonomous agents communicating with each other in robust ways. Here, we show that the delay between sensing and reacting to a signal can determine the individual and collective long-term behavior of autonomous agents whose motion is intrinsically noisy. We experimentally demonstrate that the collective behavior of a group of phototactic robots capable of emitting a radially decaying light field can be tuned from segregation to aggregation and clustering by controlling the delay with which they change their propulsion speed in response to the light intensity they measure. We track this transition to the underlying dynamics of this system, in particular, to the ratio between the robots’ sensorial delay time and the characteristic time of the robots’ random reorientation. Supported by numerics, we discuss how the same mechanism can be applied to control active agents, e.g., airborne drones, moving in a three-dimensional space. Given the simplicity of this mechanism, the engineering of sensorial delay provides a potentially powerful tool to engineer and dynamically tune the behavior of large ensembles of autonomous mobile agents; furthermore, this mechanism might already be at work within

  5. Comparing Sensory Information Processing and Alexithymia between People with Substance Dependency and Normal.

    Science.gov (United States)

    Bashapoor, Sajjad; Hosseini-Kiasari, Seyyedeh Tayebeh; Daneshvar, Somayeh; Kazemi-Taskooh, Zeinab

    2015-01-01

    Sensory information processing and alexithymia are two important factors in determining behavioral reactions. Some studies explain the effect of the sensitivity of sensory processing and alexithymia in the tendency to substance abuse. Giving that, the aim of the current study was to compare the styles of sensory information processing and alexithymia between substance-dependent people and normal ones. The research method was cross-sectional and the statistical population of the current study comprised of all substance-dependent men who are present in substance quitting camps of Masal, Iran, in October 2013 (n = 78). 36 persons were selected randomly by simple randomly sampling method from this population as the study group, and 36 persons were also selected among the normal population in the same way as the comparison group. Both groups was evaluated by using Toronto alexithymia scale (TAS) and adult sensory profile, and the multivariate analysis of variance (MANOVA) test was applied to analyze data. The results showed that there are significance differences between two groups in low registration (P processing and difficulty in describing emotions (P process sensory information in a different way than normal people and show more alexithymia features than them.

  6. Behavioral phenotyping of calcium channel (CACN) subunit α2δ3 knockout mice: Consequences of sensory cross-modal activation.

    Science.gov (United States)

    Landmann, Julia; Richter, Franziska; Classen, Joseph; Richter, Angelika; Penninger, Josef M; Bechmann, Ingo

    2018-01-02

    Sensory cross-activation is still ill-defined and research concerning the consequences of sensory mergence on normal brain function is very limited. Human studies describe behavioral benefits of people with synesthesia- a peculiar form of perception possibly due to cross-modal activation- regarding sensory and memory abilities. Here, we studied behavioral alterations in calcium channel (CACN) subunit α2δ3 knockout (KO) mice exhibiting pain-induced cortical cross-modal activation. Knockout mice exhibited an increased response upon touch of a pinna and impaired audition, while elementary olfaction, vision, somatosensation and motor function were not altered. In contrast to synesthetic humans for whom enhanced memory function had been described, α2δ3 KO mice might have developed defects for object-based memory. However, in a task requiring use of multiple modalities, mutant mice revealed an enhanced performance compared to wild-type controls. Furthermore, several tests revealed evidence for increased anxiety-like behavior of α2δ3 KO animals. In summary, deficits in single sensory abilities and a potential gain in processing simultaneous sensory information in α2δ3 KO mice might represent behavioral correlates of sensory cross-activation. Further, our data suggest a role of CACNα2δ3 within the functionality of the sensory system, but not the motor system and general health. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Sensory Processing in Internationally Adopted, Post-Institutionalized Children

    Science.gov (United States)

    Wilbarger, Julia; Gunnar, Megan; Schneider, Mary; Pollak, Seth

    2010-01-01

    Background/Methods: Sensory processing capacities of 8-12-year-old internationally adopted (IA) children who experienced prolonged institutional care (greater than 12 months with 75% of pre-adoption lives in institutional care) prior to adoption into family environments (PI) were compared to a group of IA children who were adopted early (less than…

  8. Sensory Processing Difficulties in Toddlers With Nonorganic Failure-to-Thrive and Feeding Problems.

    Science.gov (United States)

    Yi, Sook-Hee; Joung, Yoo-Sook; Choe, Yon Ho; Kim, Eun-Hye; Kwon, Jeong-Yi

    2015-06-01

    Failure-to-thrive is defined as an abnormally low weight and/or height for age. The term "nonorganic failure-to-thrive" (NOFT) has been used to describe "failure-to-thrive" without an obvious cause underlying the growth failure. The purpose of the present study was to compare sensory processing abilities between toddlers with NOFT and feeding problems and age-matched controls. Toddlers with NOFT and feeding problems (N = 16) were recruited from the pediatric feeding clinic in a tertiary university hospital, and age-matched controls (N = 16) were recruited from community volunteers. They were evaluated for sensory processing ability using an Infant/Toddler Sensory Profile (ITSP), and for development of cognition, motor skills, and language using the Bayley Scales of Infant Development II and Sequenced Language Scale for Infants. Behavior at mealtime was evaluated using the Behavioral Pediatrics Feeding Assessment Scale. In the NOFT with feeding problems group, atypical performances were more frequently observed in 3 of 5 ITSP section items (tactile, vestibular, and oral) compared with those in the control group. Significant delayed development of cognition, motor skills, and language was observed in the NOFT with feeding problems group compared with that in the control group. In addition, children who showed 1 or more atypical performances in ITSP had delayed development in cognition, motor skills, and language. Sensory processing problems were more commonly observed in toddlers with feeding problems and growth deficiency. The present study could provide a preliminary evidence for a possible impact of the sensory processing problems on the feeding difficulties in toddlers with NOFT. Future large studies should be conducted to clarify the relation between sensory processing difficulties and feeding problems in toddlers.

  9. Sensory-Based Intervention for Children with Behavioral Problems: A Systematic Review

    Science.gov (United States)

    Wan Yunus, Farahiyah; Liu, Karen P.; Bissett, Michelle; Penkala, Stefania

    2015-01-01

    Sensory-based intervention is a common approach used to address behavioral problems in children. Types of sensory-based intervention for children and details of the intervention effectiveness have not been systematically examined. This review examined the effectiveness and ideal types of sensory-based interventions for children with behavioral…

  10. Measurement of pharyngeal sensory cortical processing: technique and physiologic implications

    Directory of Open Access Journals (Sweden)

    Ringelstein E Bernd

    2009-07-01

    Full Text Available Abstract Background Dysphagia is a major complication of different diseases affecting both the central and peripheral nervous system. Pharyngeal sensory impairment is one of the main features of neurogenic dysphagia. Therefore an objective technique to examine the cortical processing of pharyngeal sensory input would be a helpful diagnostic tool in this context. We developed a simple paradigm to perform pneumatic stimulation to both sides of the pharyngeal wall. Whole-head MEG was employed to study changes in cortical activation during this pharyngeal stimulation in nine healthy subjects. Data were analyzed by means of synthetic aperture magnetometry (SAM and the group analysis of individual SAM data was performed using a permutation test. Results Our results revealed bilateral activation of the caudolateral primary somatosensory cortex following sensory pharyngeal stimulation with a slight lateralization to the side of stimulation. Conclusion The method introduced here is simple and easy to perform and might be applicable in the clinical setting. The results are in keeping with previous findings showing bihemispheric involvement in the complex task of sensory pharyngeal processing. They might also explain changes in deglutition after hemispheric strokes. The ipsilaterally lateralized processing is surprising and needs further investigation.

  11. Sensory Behaviors in Minimally Verbal Children with Autism Spectrum Disorder: How and When Do Caregivers Respond?

    Science.gov (United States)

    Harrop, Clare; Tu, Nicole; Landa, Rebecca; Kasier, Ann; Kasari, Connie

    2018-01-01

    Sensory behaviors are widely reported in autism spectrum disorder (ASD). However, the impact of these behaviors on families remains largely unknown. This study explored how caregivers of minimally verbal children with ASD responded to their child's sensory behaviors. Using a mixed-methods approach, we examined two variables for each endorsed child…

  12. Automatic auditory intelligence: an expression of the sensory-cognitive core of cognitive processes.

    Science.gov (United States)

    Näätänen, Risto; Astikainen, Piia; Ruusuvirta, Timo; Huotilainen, Minna

    2010-09-01

    In this article, we present a new view on the nature of cognitive processes suggesting that there is a common core, viz., automatic sensory-cognitive processes that form the basis for higher-order cognitive processes. It has been shown that automatic sensory-cognitive processes are shared by humans and various other species and occur at different developmental stages and even in different states of consciousness. This evidence, based on the automatic electrophysiological change-detection response mismatch negativity (MMN), its magnetoencephalographic equivalent MMNm, and behavioral data, indicates that in audition surprisingly complex processes occur automatically and mainly in the sensory-specific cortical regions. These processes include, e.g. stimulus anticipation and extrapolation, sequential stimulus-rule extraction, and pattern and pitch-interval encoding. Furthermore, these complex perceptual-cognitive processes, first found in waking adults, occur similarly even in sleeping newborns, anesthetized animals, and deeply sedated adult humans, suggesting that they form the common perceptual-cognitive core of cognitive processes in general. Although the present evidence originates mainly from the auditory modality, it is likely that analogous evidence could be obtained from other sensory modalities when measures corresponding to those used in the study of the auditory modality become available.

  13. White matter microstructure is associated with auditory and tactile processing in children with and without sensory processing disorder

    Directory of Open Access Journals (Sweden)

    Yi Shin Chang

    2016-01-01

    Full Text Available Sensory processing disorders (SPD affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA, correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8 to 12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children, along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity -- not just in children with

  14. White Matter Microstructure is Associated with Auditory and Tactile Processing in Children with and without Sensory Processing Disorder.

    Science.gov (United States)

    Chang, Yi-Shin; Gratiot, Mathilde; Owen, Julia P; Brandes-Aitken, Anne; Desai, Shivani S; Hill, Susanna S; Arnett, Anne B; Harris, Julia; Marco, Elysa J; Mukherjee, Pratik

    2015-01-01

    Sensory processing disorders (SPDs) affect up to 16% of school-aged children, and contribute to cognitive and behavioral deficits impacting affected individuals and their families. While sensory processing differences are now widely recognized in children with autism, children with sensory-based dysfunction who do not meet autism criteria based on social communication deficits remain virtually unstudied. In a previous pilot diffusion tensor imaging (DTI) study, we demonstrated that boys with SPD have altered white matter microstructure primarily affecting the posterior cerebral tracts, which subserve sensory processing and integration. This disrupted microstructural integrity, measured as reduced white matter fractional anisotropy (FA), correlated with parent report measures of atypical sensory behavior. In this present study, we investigate white matter microstructure as it relates to tactile and auditory function in depth with a larger, mixed-gender cohort of children 8-12 years of age. We continue to find robust alterations of posterior white matter microstructure in children with SPD relative to typically developing children (TDC), along with more spatially distributed alterations. We find strong correlations of FA with both parent report and direct measures of tactile and auditory processing across children, with the direct assessment measures of tactile and auditory processing showing a stronger and more continuous mapping to the underlying white matter integrity than the corresponding parent report measures. Based on these findings of microstructure as a neural correlate of sensory processing ability, diffusion MRI merits further investigation as a tool to find biomarkers for diagnosis, prognosis and treatment response in children with SPD. To our knowledge, this work is the first to demonstrate associations of directly measured tactile and non-linguistic auditory function with white matter microstructural integrity - not just in children with SPD, but also

  15. Influence of sensory neuropeptides on human cutaneous wound healing process.

    Science.gov (United States)

    Chéret, J; Lebonvallet, N; Buhé, V; Carre, J L; Misery, L; Le Gall-Ianotto, C

    2014-06-01

    Close interactions exist between primary sensory neurons of the peripheral nervous system (PNS) and skin cells. The PNS may be implicated in the modulation of different skin functions as wound healing. Study the influence of sensory neurons in human cutaneous wound healing. We incubated injured human skin explants either with rat primary sensory neurons from dorsal root ganglia (DRG) or different neuropeptides (vasoactive intestinal peptide or VIP, calcitonin gene-related peptide or CGRP, substance P or SP) at various concentrations. Then we evaluated their effects on the proliferative and extracellular matrix (ECM) remodeling phases, dermal fibroblasts adhesion and differentiation into myofibroblasts. Thus, DRG and all studied neuromediators increased fibroblasts and keratinocytes proliferation and act on the expression ratio between collagen type I and type III in favor of collagen I, particularly between the 3rd and 7th day of culture. Furthermore, the enzymatic activities of matrix metalloprotesases (MMP-2 and MMP-9) were increased in the first days of wound healing process. Finally, the adhesion of human dermal fibroblasts and their differentiation into myofibroblasts were promoted after incubation with neuromediators. Interestingly, the most potent concentrations for each tested molecules, were the lowest concentrations, corresponding to physiological concentrations. Sensory neurons and their derived-neuropeptides are able to promote skin wound healing. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Improvements of sensorimotor processes during action cascading associated with changes in sensory processing architecture?insights from sensory deprivation

    OpenAIRE

    Gohil, Krutika; Hahne, Anja; Beste, Christian

    2016-01-01

    In most everyday situations sensorimotor processes are quite complex because situations often require to carry out several actions in a specific temporal order; i.e. one has to cascade different actions. While it is known that changes to stimuli affect action cascading mechanisms, it is unknown whether action cascading changes when sensory stimuli are not manipulated, but the neural architecture to process these stimuli is altered. In the current study we test this hypothesis using prelingual...

  17. Relating microstructure, sensory and instrumental texture of processed oat

    Directory of Open Access Journals (Sweden)

    M. SALMENKALLIO-MARTTILA

    2008-12-01

    Full Text Available This study is a part of a larger project aiming to produce new, healthy, and tasty food ingredients from oat. Germination and different heating processes can be used to improve the texture and flavour of cereals. In this study effects of germination and wet and dry heating on the microstructure, instrumental structure and sensory properties of two oat varieties were assessed. The microstructure of native, germinated, autoclaved and extruded grains of the hulled cv. Veli and hull-less cv. Lisbeth was examined by light microscopy, the texture was measured by determining the milling energy and hardness of the grains and sensory characteristics were evaluated with descriptive sensory profile analysis. In cv. Veli the cells of the starchy endosperm were smaller than in cv. Lisbeth and ß-glucan was concentrated in the subaleurone layer. In cv. Lisbeth ß-glucan was evenly distributed in the starchy endosperm. The grains of cv. Lisbeth were more extensively modified in the germination process than the grains of cv. Veli, otherwise the effects of processing on the grains of the two cultivars were similar. Germination caused cell wall degradation, autoclaving and extrusion cooking caused starch gelatinization. Autoclaving resulted in the hardest perceived texture in oat. Gelatinization of starch appeared to contribute more to the hardness of oat groats than the cell wall structure. Of the instrumental methods used in this study the milling energy measurement appeared to be the most useful method for the analysis of the effects of processing on grain structure.;

  18. Subsecond Sensory Modulation of Serotonin Levels in a Primary Sensory Area and Its Relation to Ongoing Communication Behavior in a Weakly Electric Fish.

    Science.gov (United States)

    Fotowat, Haleh; Harvey-Girard, Erik; Cheer, Joseph F; Krahe, Rüdiger; Maler, Leonard

    2016-01-01

    Serotonergic neurons of the raphe nuclei of vertebrates project to most regions of the brain and are known to significantly affect sensory processing. The subsecond dynamics of sensory modulation of serotonin levels and its relation to behavior, however, remain unknown. We used fast-scan cyclic voltammetry to measure serotonin release in the electrosensory system of weakly electric fish, Apteronotus leptorhynchus . These fish use an electric organ to generate a quasi-sinusoidal electric field for communicating with conspecifics. In response to conspecific signals, they frequently produce signal modulations called chirps. We measured changes in serotonin concentration in the hindbrain electrosensory lobe (ELL) with a resolution of 0.1 s concurrently with chirping behavior evoked by mimics of conspecific electric signals. We show that serotonin release can occur phase locked to stimulus onset as well as spontaneously in the ELL region responsible for processing these signals. Intense auditory stimuli, on the other hand, do not modulate serotonin levels in this region, suggesting modality specificity. We found no significant correlation between serotonin release and chirp production on a trial-by-trial basis. However, on average, in the trials where the fish chirped, there was a reduction in serotonin release in response to stimuli mimicking similar-sized same-sex conspecifics. We hypothesize that the serotonergic system is part of an intricate sensory-motor loop: serotonin release in a sensory area is triggered by sensory input, giving rise to motor output, which can in turn affect serotonin release at the timescale of the ongoing sensory experience and in a context-dependent manner.

  19. Through the Lens of Sensory Integration: A Different Way of Analyzing Challenging Behavior.

    Science.gov (United States)

    Bakley, Sue

    2001-01-01

    Examines how sensory integration disorders contribute to behavioral difficulties in young children and how considering the neurological underpinnings to behavior problems can help to clarify their origins and lead to obtaining appropriate and effective help. Lists signs of sensory integration disorders. Delineates techniques to use when a child…

  20. Sensory processing, neurocognition, and social cognition in schizophrenia : Towards a cohesive cognitive model

    NARCIS (Netherlands)

    de Jong, J.J.; de Gelder, B.; Hodiamont, P.P.G.

    2013-01-01

    Schizophrenia research has identified deficits in neurocognition, social cognition, and sensory processing. Because a cohesive model of “disturbed cognitive machinery” is currently lacking, we built a conceptual model to integrate neurocognition, social cognition, and sensory processing. In a

  1. Sensory processing, neurocognition, and social cognition in schizophrenia: Towards a cohesive cognitive model

    NARCIS (Netherlands)

    Jong, J.S. de; Gelder, B.B. de; Hodiamont, P.P.G.

    2013-01-01

    Schizophrenia research has identified deficits in neurocognition, social cognition, and sensory processing. Because a cohesive model of "disturbed cognitive machinery" is currently lacking, we built a conceptual model to integrate neurocognition, social cognition, and sensory processing. In a

  2. Assessment of Sensory Processing and Executive Functions in Childhood: Development, Reliability, and Validity of the EPYFEI

    Directory of Open Access Journals (Sweden)

    Dulce Romero-Ayuso

    2018-03-01

    Full Text Available The aim of this study was to determine the psychometric properties of the “Assessment of Sensory Processing and Executive Functions in Childhood” (EPYFEI, a questionnaire designed to assess the sensory processing and executive functions of children aged between 3 and 11 years. The EPYFEI was completed by a sample of 1,732 parents of children aged between 3 and 11 years who lived in Spain. An exploratory factor analysis was conducted and showed five main factors: (1 executive attention, working memory, and initiation of actions; (2 general sensory processing; (3 emotional and behavioral self-regulation; (4 supervision, correction of actions, and problem solving; and (5 inhibitory. The reliability of the analysis was high both for the whole questionnaire and for the factors it is composed of. Results provide evidence of the potential usefulness of the EPYFEI in clinical contexts for the early detection of neurodevelopmental disorders, in which there may be a deficit of executive functions and sensory processing.

  3. The relationship between sensory-processing patterns and occupational engagement among older persons.

    Science.gov (United States)

    Engel-Yeger, Batya; Rosenblum, Sara

    2017-02-01

    Meaningful occupational engagement is essential for successful aging. Sensory-processing abilities that are known to deteriorate with age may reduce occupational engagement. However, the relationship between sensory-processing abilities and occupational engagement among older persons in daily life is unknown. This study examined the relationship between sensory-processing patterns and occupational engagement among older persons. Participants were 180 people, ages 50 to 73 years, in good health, who lived in their homes. All participants completed the Adolescent/Adult Sensory Profile and the Activity Card Sort. Better registration of sensory input and greater sensory seeking were related to greater occupational engagement. Sensory-processing abilities among older persons and their relation to occupational engagement in various life settings should receive attention in research and practice. Occupational therapists should encourage older people to seek sensory input and provide them with rich sensory environments for enhancing meaningful engagement in real life.

  4. Attention Deficit Hyperactivity Disorder and Sensory Modulation Disorder: A Comparison of Behavior and Physiology

    Science.gov (United States)

    Miller, Lucy Jane; Nielsen, Darci M.; Schoen, Sarah A.

    2012-01-01

    Children with attention deficit hyperactivity disorder (ADHD) are impulsive, inattentive and hyperactive, while children with sensory modulation disorder (SMD), one subtype of Sensory Processing Disorder, have difficulty responding adaptively to daily sensory experiences. ADHD and SMD are often difficult to distinguish. To differentiate these…

  5. Behavior life style analysis for mobile sensory data in cloud computing through MapReduce.

    Science.gov (United States)

    Hussain, Shujaat; Bang, Jae Hun; Han, Manhyung; Ahmed, Muhammad Idris; Amin, Muhammad Bilal; Lee, Sungyoung; Nugent, Chris; McClean, Sally; Scotney, Bryan; Parr, Gerard

    2014-11-20

    Cloud computing has revolutionized healthcare in today's world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user's activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends.

  6. Behavior Life Style Analysis for Mobile Sensory Data in Cloud Computing through MapReduce

    Directory of Open Access Journals (Sweden)

    Shujaat Hussain

    2014-11-01

    Full Text Available Cloud computing has revolutionized healthcare in today’s world as it can be seamlessly integrated into a mobile application and sensor devices. The sensory data is then transferred from these devices to the public and private clouds. In this paper, a hybrid and distributed environment is built which is capable of collecting data from the mobile phone application and store it in the cloud. We developed an activity recognition application and transfer the data to the cloud for further processing. Big data technology Hadoop MapReduce is employed to analyze the data and create user timeline of user’s activities. These activities are visualized to find useful health analytics and trends. In this paper a big data solution is proposed to analyze the sensory data and give insights into user behavior and lifestyle trends.

  7. A Comparison of Patterns of Sensory Processing in Children with and without Developmental Disabilities

    Science.gov (United States)

    Cheung, Phoebe P. P.; Siu, Andrew M. H.

    2009-01-01

    This study compared the patterns of sensory processing among children with autism spectrum disorder (ASD), attention deficit and hyperactivity disorder (ADHD), and children without disabilities. Parents reported on the frequency of sensory processing issues by completing the Chinese Sensory Profile (CSP). Children with disabilities (ASD or ADHD)…

  8. Association between Sensory Processing by Children with High Functioning Autism Spectrum Disorder and their Daily Routines

    Directory of Open Access Journals (Sweden)

    Tsameret Ricon

    2017-10-01

    Full Text Available Background: Children diagnosed with autism spectrum disorder exhibit persistent deficits in social communication and social interaction accompanied by restricted, repetitive patterns of behavior, interests, or activities. Those with normal intelligence are considered to have high functioning autism spectrum disorder (HFASD. Method: The study participants were 20 children with HFASD aged 5 to 7 years old attending mainstream educational programs and their parents (study group and 30 typically-developing age-matched children from the same socio-economic background and their parents (control group. Parents from both groups completed the Short Sensory Profile to investigate their children’s sensory processing and the presence of Sensory Processing Disorder. Children and parents from both groups were administered the Make My Day (MMD to obtain information regarding the children’s participation and performance in daily activities. Results: The study group had significantly more sensory difficulties, which correlated with restricted daily routines, compared with the control group. SPD significantly predicted the quality and independence of the performance of daily activities by children with HFASD as measured by the MMD. Conclusions: SPD may be a worthwhile therapeutic target for therapists seeking to improve participation in and performance of daily activities, as identified by the MMD, among children with HFASD.

  9. Evaluation of rheological behavior and sensory properties of ready to eat salad dressings submitted to irradiation

    International Nuclear Information System (INIS)

    Gallo, Juliana Maria Altavista Sagretti

    2013-01-01

    This study evaluated the rheological behavior of 11 salad dressings ready to eat, processed by gamma irradiation, at doses: 3 kGy and 5 kGy. This assessment was made by rheograms traced by measurements of viscosity and shear stress by shear rate. Mathematical parameters obtained from these measures also contributed to the conclusion of the behavior exhibited and for choosing the best mathematical model applicable to them. The measurements were performed on a Brookfield viscometer Model LVDV - III. The Neslab thermal bath was used to maintain ambient temperature during the whole analysis. This study protocol was done in two stages. In step 1, the evaluation was performed soon after the samples have been irradiated when these were close to their dates of manufacture. In phase 2 the samples were reassessed after a period of storage, near the expiration date of their validity. Simultaneously pH measurement was performed to evaluate their stability in the face of treatment and sensory analyzes of two salad dressings were studied, in order to verify the acceptance of these when submitted to irradiation. The shear-thinning behavior was confirmed for all dressings through the mathematical model, the power law, that best model apply to this, in both phases. The irradiation at the absorbed doses studied did not influence this behavior. The results of sensory evaluation indicated good acceptance of irradiated sauces for the tasters. (author)

  10. Using Home-Program Adherence App in Pediatric Therapy: Case Study of Sensory Processing Disorder.

    Science.gov (United States)

    Gal, Eynat; Steinberg, Oren

    2017-12-18

    Pediatric therapies adopt a family-centered approach that encourages a caregiver's involvement in therapy. Contextual interventions in the child's natural environment have been effective in generalization of skills and increasing of child participation in daily activities. The use of home programs is common across a variety of conditions, but adherence has been challenging. Apps have been demonstrated to promote medication adherence and physical activity maintenance. This study suggested and tested a construct for features required for caregivers' behavioral modification during home programs in pediatric therapy. SensoryTreat is an adherence promoting app for home-program treatments of children with sensory processing disorders. The app was evaluated by testing availability of desired features, usage frequency, impact on adherence with home programs, and parental sense of competence. Results suggest a strong significant correlation between SensoryTreat usage frequency and families' adherence with home programs, as well as a strong significant correlation between relevancy and usefulness of SensoryTreat's interventional content, and parental competence and their adherence with home programs. Using SensoryTreat twice or more per week increases parental adherence with home programs. Content plays an important role in promoting adherence and parental sense of competence, yet, as usage frequency grows the interventional content habituates, and other features as goal setting and feedback logs have significant impact on parental competence and adherence with home programs over time. These findings indicate that the content and features of SensoryTreat app have the potential to promote adherence of families with pediatric therapy home programs.

  11. Research opportunities in the area of children and adolescents with challenges in sensory processing and sensory integration.

    Science.gov (United States)

    2014-01-01

    The American Occupational Therapy Association (AOTA) Evidence-Based Practice Project has developed a table summarizing the research opportunities on children and adolescents with challenges in sensory processing and sensory integration. The table provides an overview of the state of current available evidence on interventions within the scope of occupational therapy practice and is based on the systematic reviews from the AOTA Evidence-Based Practice Guidelines Series. Researchers, students, and clinicians can use this information in developing innovative research to answer important questions within the occupational therapy field. American Occupational Therapy Association. (2014). Research opportunities in the area of children and adolescents with challenges in sensory processing and sensory integration. Copyright © 2014 by the American Occupational Therapy Association, Inc.

  12. Sensory processing in autism spectrum disorders and Fragile X syndrome-From the clinic to animal models.

    Science.gov (United States)

    Sinclair, D; Oranje, B; Razak, K A; Siegel, S J; Schmid, S

    2017-05-01

    Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Sensory processing in autism spectrum disorders and Fragile X syndrome—From the clinic to animal models

    Science.gov (United States)

    Sinclair, D.; Oranje, B.; Razak, K.A.; Siegel, S.J.; Schmid, S.

    2017-01-01

    Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X Syndrome (FXS) are often over- or under-reactive to stimulation, leading to a wide range of behavioral symptoms. This altered sensitivity may be caused by disrupted sensory processing, signal integration and/or gating, and is often being neglected. Here, we review translational experimental approaches that are used to investigate sensory processing in humans with ASD and FXS, and in relevant rodent models. This includes electroencephalographic measurement of event related potentials, neural oscillations and mismatch negativity, as well as habituation and pre-pulse inhibition of startle. We outline robust evidence of disrupted sensory processing in individuals with ASD and FXS, and in respective animal models, focusing on the auditory sensory domain. Animal models provide an excellent opportunity to examine common mechanisms of sensory pathophysiology in order to develop therapeutics. PMID:27235081

  14. Age effects on sensory-processing abilities and their impact on handwriting.

    Science.gov (United States)

    Engel-Yeger, Batya; Hus, Sari; Rosenblum, Sara

    2012-12-01

    Sensory-processing abilities are known to deteriorate in the elderly. As a result, daily activities such as handwriting may be impaired. Yet, knowledge about sensory-processing involvement in handwriting characteristics among older persons is limited. To examine how age influences sensory-processing abilities and the impact on handwriting as a daily performance. The study participants were 118 healthy, independently functioning adults divided into four age groups: 31-45, 46-60, 61-75 and 76+ years. All participants completed the Adolescent/ Adult Sensory Profile (AASP). Handwriting process was documented using the Computerized Handwriting Penmanship Evaluation Tool (ComPET). Age significantly affects sensory processing and handwriting pressure as well as temporal and spatial measures. Both handwriting time and spatial organization of the written product were predicted by sensory seeking. When examining age contribution to the prediction of handwriting by sensory processing, sensory seeking showed a tendency for predicting handwriting pressure (p = .06), while sensory sensitivity significantly predicted handwriting velocity. Age appears to influence sensory-processing abilities and affect daily performance tasks, such as handwriting, for which sensitivity and seeking for sensations are essential. Awareness of clinicians to sensory-processing deficits among older adults and examining their impact on broader daily activities are essential to improve daily performance and quality of life.

  15. A Systematic Review of Sensory Processing Interventions for Children with Autism Spectrum Disorders

    Science.gov (United States)

    Case-Smith, Jane; Weaver, Lindy L.; Fristad, Mary A.

    2015-01-01

    Children with autism spectrum disorders often exhibit co-occurring sensory processing problems and receive interventions that target self-regulation. In current practice, sensory interventions apply different theoretic constructs, focus on different goals, use a variety of sensory modalities, and involve markedly disparate procedures. Previous…

  16. Comparison of Behavioral Intervention and Sensory-Integration Therapy in the Treatment of Self-Injurious Behavior

    Science.gov (United States)

    Devlin, Sarah; Leader, Geraldine; Healy, Olive

    2009-01-01

    The current study investigates the comparative effects of sensory-integration therapy and behavioral interventions on rates of self-injurious behavior (SIB) in a 9-year-old boy with diagnosis of autism. A functional analysis was conducted to identify the variables maintaining the self-injurious behavior. This analysis demonstrated that SIB was…

  17. Sensory-processing sensitivity in social anxiety disorder: Relationship to harm avoidance and diagnostic subtypes

    OpenAIRE

    Hofmann, Stefan G.; Bitran, Stella

    2006-01-01

    Sensory-processing sensitivity is assumed to be a heritable vulnerability factor for shyness. The present study is the first to examine sensory-processing sensitivity among individuals with social anxiety disorder. The results showed that the construct is separate from social anxiety, but it is highly correlated with harm avoidance and agoraphobic avoidance. Individuals with a generalized subtype of social anxiety disorder reported higher levels of sensory-processing sensitivity than individu...

  18. Behavioral, perceptual, and neural alterations in sensory and multisensory function in autism spectrum disorder.

    Science.gov (United States)

    Baum, Sarah H; Stevenson, Ryan A; Wallace, Mark T

    2015-11-01

    Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Behavioral, Perceptual, and Neural Alterations in Sensory and Multisensory Function in Autism Spectrum Disorder

    Science.gov (United States)

    Baum, Sarah H.; Stevenson, Ryan A.; Wallace, Mark T.

    2015-01-01

    Although sensory processing challenges have been noted since the first clinical descriptions of autism, it has taken until the release of the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) in 2013 for sensory problems to be included as part of the core symptoms of autism spectrum disorder (ASD) in the diagnostic profile. Because sensory information forms the building blocks for higher-order social and cognitive functions, we argue that sensory processing is not only an additional piece of the puzzle, but rather a critical cornerstone for characterizing and understanding ASD. In this review we discuss what is currently known about sensory processing in ASD, how sensory function fits within contemporary models of ASD, and what is understood about the differences in the underlying neural processing of sensory and social communication observed between individuals with and without ASD. In addition to highlighting the sensory features associated with ASD, we also emphasize the importance of multisensory processing in building perceptual and cognitive representations, and how deficits in multisensory integration may also be a core characteristic of ASD. PMID:26455789

  20. [Sensory integration: benefits and effectiveness of therapeutic management in sensory processing disorders].

    Science.gov (United States)

    Tudela-Torras, M; Abad-Mas, L; Tudela-Torras, E

    2017-02-24

    Today, the fact that sensory integration difficulties with a neurological basis exist and that they seriously condition the development of those individuals who suffer from them is widely accepted and acknowledged as being obvious by the vast majority of professionals working in the field of community healthcare. However, less is known and there is more controversy about effective treatments that can be applied to them. This is because many professionals criticise the fact that there is not enough scientific evidence to prove, both quantitatively and empirically, the outcomes of the interventions implemented as alternatives to pharmacological therapy. Consequently, when the symptoms and repercussions on the quality of life deriving from a distorted sensory integration are really disabling for the person, pharmacological treatment is used as the only possible approach, with the side effects that this entails. The reason for this is largely the fact that little is known about other effective therapeutic approaches, such as occupational therapy based on sensory integration.

  1. Omega-3 and -6 fatty acid supplementation and sensory processing in toddlers with ASD symptomology born preterm: A randomized controlled trial.

    Science.gov (United States)

    Boone, Kelly M; Gracious, Barbara; Klebanoff, Mark A; Rogers, Lynette K; Rausch, Joseph; Coury, Daniel L; Keim, Sarah A

    2017-12-01

    Despite advances in the health and long-term survival of infants born preterm, they continue to face developmental challenges including higher risk for autism spectrum disorder (ASD) and atypical sensory processing patterns. This secondary analysis aimed to describe sensory profiles and explore effects of combined dietary docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and gamma-linolenic acid (GLA) supplementation on parent-reported sensory processing in toddlers born preterm who were exhibiting ASD symptoms. 90-day randomized, double blinded, placebo-controlled trial. 31 children aged 18-38months who were born at ≤29weeks' gestation. Mixed effects regression analyses followed intent to treat and explored effects on parent-reported sensory processing measured by the Infant/Toddler Sensory Profile (ITSP). Baseline ITSP scores reflected atypical sensory processing, with the majority of atypical scores falling below the mean. Sensory processing sections: auditory (above=0%, below=65%), vestibular (above=13%, below=48%), tactile (above=3%, below=35%), oral sensory (above=10%; below=26%), visual (above=10%, below=16%); sensory processing quadrants: low registration (above=3%; below=71%), sensation avoiding (above=3%; below=39%), sensory sensitivity (above=3%; below=35%), and sensation seeking (above=10%; below=19%). Twenty-eight of 31 children randomized had complete outcome data. Although not statistically significant (p=0.13), the magnitude of the effect for reduction in behaviors associated with sensory sensitivity was medium to large (effect size=0.57). No other scales reflected a similar magnitude of effect size (range: 0.10 to 0.32). The findings provide support for larger randomized trials of omega fatty acid supplementation for children at risk of sensory processing difficulties, especially those born preterm. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Enhanced behavioral responses to cold stimuli following CGRPα sensory neuron ablation are dependent on TRPM8.

    Science.gov (United States)

    McCoy, Eric S; Zylka, Mark J

    2014-11-19

    Calcitonin gene-related peptide-α (CGRPα) is a classic marker of peptidergic nociceptive neurons and is expressed in myelinated and unmyelinated dorsal root ganglia (DRG) neurons. Recently, we found that ablation of Cgrpα-expressing sensory neurons reduced noxious heat sensitivity and enhanced sensitivity to cold stimuli in mice. These studies suggested that the enhanced cold responses were due to disinhibition of spinal neurons that receive inputs from cold-sensing/TRPM8 primary afferents; although a direct role for TRPM8 was not examined at the time. Here, we ablated Cgrpα-expressing sensory neurons in mice lacking functional TRPM8 and evaluated sensory responses to noxious heat, cold temperatures, and cold mimetics (acetone evaporative cooling and icilin). We also evaluated thermoregulation in these mice following an evaporative cold challenge. We found that ablation of Cgrpα-expressing sensory neurons in a Trpm8-/- background reduced sensitivity to noxious heat but did not enhance sensitivity to cold stimuli. Thermoregulation following the evaporative cold challenge was not affected by deletion of Trpm8 in control or Cgrpα-expressing sensory neuron-ablated mice. Our data indicate that the enhanced behavioral responses to cold stimuli in CGRPα sensory neuron-ablated mice are dependent on functional TRPM8, whereas the other sensory and thermoregulatory phenotypes caused by CGRPα sensory neuron ablation are independent of TRPM8.

  3. Modified prenatal sensory stimulation influences postnatal behavioral and perceptual responsiveness in bobwhite quail chicks (Colinus virginianus).

    Science.gov (United States)

    Reynolds, Greg D; Lickliter, Robert

    2004-06-01

    Asynchronous bimodal stimulation during prenatal development elicits higher levels of behavioral and physiological arousal in precocial avian embryos than does unimodal sensory stimulation. To investigate whether the increased arousal associated with prenatal bimodal stimulation has enduring effects into postnatal development, bobwhite quail (Colinus virginianus) embryos received no supplemental stimulation, unimodal auditory stimulation, or bimodal (audiovisual) stimulation prior to hatching. Embryos exposed to concurrent bimodal stimulation demonstrated greater levels of behavioral activity and failed to use maternal visual cues to successfully direct species-specific perceptual preferences following hatching. These results provide initial evidence that asynchronous bimodal sensory stimulation during prenatal development can have enduring effects on early postnatal behavioral arousal and perceptual responsiveness and suggest that developmental limitations on prenatal sensory stimulation play an important role in the emergence of species-typical behavior.

  4. Music and speech listening enhance the recovery of early sensory processing after stroke.

    Science.gov (United States)

    Särkämö, Teppo; Pihko, Elina; Laitinen, Sari; Forsblom, Anita; Soinila, Seppo; Mikkonen, Mikko; Autti, Taina; Silvennoinen, Heli M; Erkkilä, Jaakko; Laine, Matti; Peretz, Isabelle; Hietanen, Marja; Tervaniemi, Mari

    2010-12-01

    Our surrounding auditory environment has a dramatic influence on the development of basic auditory and cognitive skills, but little is known about how it influences the recovery of these skills after neural damage. Here, we studied the long-term effects of daily music and speech listening on auditory sensory memory after middle cerebral artery (MCA) stroke. In the acute recovery phase, 60 patients who had middle cerebral artery stroke were randomly assigned to a music listening group, an audio book listening group, or a control group. Auditory sensory memory, as indexed by the magnetic MMN (MMNm) response to changes in sound frequency and duration, was measured 1 week (baseline), 3 months, and 6 months after the stroke with whole-head magnetoencephalography recordings. Fifty-four patients completed the study. Results showed that the amplitude of the frequency MMNm increased significantly more in both music and audio book groups than in the control group during the 6-month poststroke period. In contrast, the duration MMNm amplitude increased more in the audio book group than in the other groups. Moreover, changes in the frequency MMNm amplitude correlated significantly with the behavioral improvement of verbal memory and focused attention induced by music listening. These findings demonstrate that merely listening to music and speech after neural damage can induce long-term plastic changes in early sensory processing, which, in turn, may facilitate the recovery of higher cognitive functions. The neural mechanisms potentially underlying this effect are discussed.

  5. Atypical sensory processing is common in extremely low gestational age children.

    Science.gov (United States)

    Rahkonen, Petri; Lano, Aulikki; Pesonen, Anu-Katriina; Heinonen, Kati; Räikkönen, Katri; Vanhatalo, Sampsa; Autti, Taina; Valanne, Leena; Andersson, Sture; Metsäranta, Marjo

    2015-05-01

    Atypical sensory processing is common in children born extremely prematurely. We investigated sensory processing abilities in extremely low gestational age (ELGA) children and analysed associated neonatal risk factors, neuroanatomical findings and neurodevelopmental outcome. We carried out a prospective study of 44 ELGA children, including 42 who had undergone brain magnetic resonance imaging (MRI) at term-equivalent age, when they were 2 years of corrected age. Their sensory processing abilities were assessed with the Infant/Toddler Sensory Profile questionnaire and their neurodevelopmental with a structured Hempel neurological examination, Griffiths Mental Developmental Scales and Bayley Scales of Infant and Toddler Development Third Edition. Sensory profiles were definitely or probably atypical (sensory processing was associated with surgical closure of the patent ductus arteriosus (p = 0.02, adjusted p sensory processing in ELGA children was common, and children with neonatal neuroanatomical lesions tended to present specific behavioural responses to sensory stimuli. Surgical closure of the patent ductus arteriosus may predispose infants to feeding problems due to atypical oral sensory processing. ©2015 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  6. Sensors and Sensory Processing for Airborne Vibrations in Silk Moths and Honeybees

    Directory of Open Access Journals (Sweden)

    Hiroyuki Ai

    2013-07-01

    Full Text Available Insects use airborne vibrations caused by their own movements to control their behaviors and produce airborne vibrations to communicate with conspecific mates. In this review, I use two examples to introduce how insects use airborne vibrations to accurately control behavior or for communication. The first example is vibration-sensitive sensilla along the wing margin that stabilize wingbeat frequency. There are two specialized sensors along the wing margin for detecting the airborne vibration caused by wingbeats. The response properties of these sensors suggest that each sensor plays a different role in the control of wingbeats. The second example is Johnston’s organ that contributes to regulating flying speed and perceiving vector information about food sources to hive-mates. There are parallel vibration processing pathways in the central nervous system related with these behaviors, flight and communication. Both examples indicate that the frequency of airborne vibration are filtered on the sensory level and that on the central nervous system level, the extracted vibration signals are integrated with other sensory signals for executing quick adaptive motor response.

  7. The identification of sensory processing difficulties of learners experiencing

    Directory of Open Access Journals (Sweden)

    Petronella Susanna de Jager

    2011-12-01

    perceived as underachievers. By identifying these sensory difficulties and creating awareness among educators, it is possible to debunk misconceptions people have of the adaptability of these learners to a mainstream school environment.

  8. Sensory properties of marinated herring (Clupea harengus) processed from raw material from commercial landings

    DEFF Research Database (Denmark)

    Nielsen, Durita; Hyldig, Grethe; Nielsen, Jette

    2005-01-01

    Sensory properties of marinated herring processed from raw material from Danish commercial catches were described and related to fishing season and biological, chemical and functional properties. Herring was caught on five cruises and stored on board in tanks or ice. The sensory profile of marina......Sensory properties of marinated herring processed from raw material from Danish commercial catches were described and related to fishing season and biological, chemical and functional properties. Herring was caught on five cruises and stored on board in tanks or ice. The sensory profile...

  9. Developmental coordination disorders and sensory processing and integration: Incidence, associations and co-morbidities.

    Science.gov (United States)

    Allen, Susan; Casey, Jackie

    2017-09-01

    Children with developmental coordination disorder or sensory processing and integration difficulties face challenges to participation in daily living. To date there has been no exploration of the co-occurrence of developmental coordination disorders and sensory processing and integration difficulties. Records of children meeting Diagnostic and Statistical Manual - V criteria for developmental coordination disorder ( n  = 93) age 5 to 12 years were examined. Data on motor skills (Movement Assessment Battery for Children - 2) and sensory processing and integration (Sensory Processing Measure) were interrogated. Of the total sample, 88% exhibited some or definite differences in sensory processing and integration. No apparent relationship was observed between motor coordination and sensory processing and integration. The full sample showed high rates of some difficulties in social participation, hearing, body awareness, balance and motion, and planning and ideation. Further, children with co-morbid autistic spectrum disorder showed high rates of difficulties with touch and vision. Most, but not all, children with developmental coordination disorder presented with some difficulties in sensory processing and integration that impacted on their participation in everyday activities. Sensory processing and integration difficulties differed significantly between those with and without co-morbid autistic spectrum disorder.

  10. Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment.

    Science.gov (United States)

    Keshner, Emily A; Slaboda, Jill C; Buddharaju, Ravi; Lanaria, Lois; Norman, Jeremy

    2011-01-01

    We present results from a series of studies that investigated how multimodal mismatches in a virtual environment modified postural response organization. Adaptation of motor commands to functional circumstances is driven directly by error signals. Thus, motor relearning should increase when performing in environments containing sensory mismatch. We hypothesized that kinematics of the response would be linked to specific characteristics of the sensory array. Sensory weighting was varied by: 1) rotating the visual field about the talo-crural joint or the interaural axis, 2) adding stochastic vibrations at the sole of the foot, and 3) combining galvanic vestibular stimulation with rotations of the visual field. Results indicated that postural responses are shaped by the location of a sensory disturbance and also by the processing demands of the environmental array. Sensory-motor demands need to be structured when developing therapeutic interventions for patients with balance disorders.

  11. Sensory processing and ADHD in children with fetal alcohol spectrum disorder.

    Science.gov (United States)

    Abele-Webster, Lynne A; Magill-Evans, Joyce E; Pei, Jacqueline R

    2012-02-01

    Sensory processing problems are prevalent in children who have fetal alcohol spectrum disorder. It is unclear to what degree these problems are distinct from attention deficits as measured during the diagnostic process in these children. To understand sensory processing in these children, which may assist with early identification and intervention. The relationship between attention and sensory processing was studied in a retrospective sample of 26 Canadian children diagnosed with fetal alcohol spectrum disorder. A very low correlation (r = .02) between Short Sensory Profile scores and the attention deficit hyperactivity index of the Conners' Parent Rating Scales was found for the five- to ten-year-old children. Sensory processing problems were found in 81% of the children, similar to other studies of children with fetal alcohol spectrum disorder. These findings can guide modifications of the environments, tasks, and approaches to children with fetal alcohol spectrum disorder.

  12. Children's Responses to Sensory Stimuli and their Behavior in the Dental Office.

    Science.gov (United States)

    Nissan, Sagit; Yochman, Aviva; Blumer, Sigalit; Kharouba, Johnny; Peretz, Benjamin

    To evaluate children's behavior during dental examinations, their reactions to various selected sensory stimuli and the association between them. Sixty-three children (28 boys and 35 girls) aged 5-12 years (mean age 7.9 ± 1.6 years) participated in the study. Their parents were asked to complete a questionnaire while in the dentist's waiting room. The dentists evaluated the children's behavior in the dental office using Frankl's behavioral scale and noted the children's reactions to the sensory stimuli of touch, noise, smell and backward tilting of the examination chair. Most of the children cooperated during the dental examination. Lack of cooperation was associated with adverse reactions to all selected sensory stimuli. There was also an association between resistance to brushing teeth and adverse reaction to touch. Children who reacted negatively to sensory stimuli during dental examinations were more likely to have needed advanced management techniques during past dental treatment. Children's behavior during dental examinations is known to be affected by many factors, including age, previous experiences, anxiety and fear and others. This investigation demonstrates that it is also associated with their reactions to various sensory stimuli.

  13. Pheromone evolution and sexual behavior in Drosophila are shaped by male sensory exploitation of other males.

    Science.gov (United States)

    Ng, Soon Hwee; Shankar, Shruti; Shikichi, Yasumasa; Akasaka, Kazuaki; Mori, Kenji; Yew, Joanne Y

    2014-02-25

    Animals exhibit a spectacular array of traits to attract mates. Understanding the evolutionary origins of sexual features and preferences is a fundamental problem in evolutionary biology, and the mechanisms remain highly controversial. In some species, females choose mates based on direct benefits conferred by the male to the female and her offspring. Thus, female preferences are thought to originate and coevolve with male traits. In contrast, sensory exploitation occurs when expression of a male trait takes advantage of preexisting sensory biases in females. Here, we document in Drosophila a previously unidentified example of sensory exploitation of males by other males through the use of the sex pheromone CH503. We use mass spectrometry, high-performance liquid chromatography, and behavioral analysis to demonstrate that an antiaphrodisiac produced by males of the melanogaster subgroup also is effective in distant Drosophila relatives that do not express the pheromone. We further show that species that produce the pheromone have become less sensitive to the compound, illustrating that sensory adaptation occurs after sensory exploitation. Our findings provide a mechanism for the origin of a sex pheromone and show that sensory exploitation changes male sexual behavior over evolutionary time.

  14. Sensory processing and motor skill performance in elementary school children with autism spectrum disorder.

    Science.gov (United States)

    Liu, Ting

    2013-02-01

    Research to examine both sensory processing and motor skill performance in children with autism spectrum disorder (ASD) is limited. This study assessed whether children with ASD would show sensory and motor delays compared to typically developing children and examined the relationship between sensory processing and motor performance. 32 children diagnosed with ASD were assessed using the Short Sensory Profile (SSP) and the Movement ABC-2 (MABC-2). The SSP measures children's sensory processing in daily life and the MABC-2 measures children's fine and gross motor skill performance. Overall, the samples' scores on the SSP indicated atypical sensory processing and scores on the MABC-2 showed poorer fine and gross motor performance as compared to age-matched norms. Furthermore, the samples' scores for sensory processing were positively correlated with their motor performance. The results suggest that fine and gross motor difficulties of children with ASD may be related to their delayed sensory processing to visual, auditory, tactile, and movement stimuli, and that this hypothesis needs to be tested in future research.

  15. Investigation of the Relationship Between Sensory Processing and Motor Development in Preterm Infants.

    Science.gov (United States)

    Celik, Halil Ibrahim; Elbasan, Bulent; Gucuyener, Kivilcim; Kayihan, Hulya; Huri, Meral

    The aim of this study was to analyze the correlation between sensory processing and motor development in preterm infants. We included 30 preterm and 30 term infants with corrected and chronological ages between 10 and 12 mo. We used the Test of Sensory Functions in Infants to evaluate sensory processing and the Alberta Infant Motor Scale to evaluate motor development. The Spearman correlation test indicated a strong positive relationship between sensory processing and motor development in preterm infants (r = .63, p motor development in the preterm group, the evaluation of sensory processing and motor development in preterm infants was considered necessary for the effective implementation of physiotherapy assessment and interventions. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  16. Sensory profiles for dried fig (Ficus carica L.) cultivars commercially grown and processed in California.

    Science.gov (United States)

    Haug, Megan T; King, Ellena S; Heymann, Hildegarde; Crisosto, Carlos H

    2013-08-01

    A trained sensory panel evaluated the 6 fig cultivars currently sold in the California dried fig market. The main flavor and aroma attributes determined by the sensory panel were "caramel," "honey," "raisin," and "fig," with additional aroma attributes: "common date," "dried plum," and "molasses." Sensory differences were observed between dried fig cultivars. All figs were processed by 2 commercial handlers. Processing included potassium sorbate as a preservative and SO2 application as an antibrowning agent for white cultivars. As a consequence of SO2 use during processing, high sulfite residues affected the sensory profiles of the white dried fig cultivars. Significant differences between dried fig cultivars and sources demonstrate perceived differences between processing and storage methods. The panel-determined sensory lexicon can help with California fig marketing. © 2013 The Regents of California, Davis Campus Department of Plant Sciences.

  17. Pathophysiology of Migraine: A Disorder of Sensory Processing.

    Science.gov (United States)

    Goadsby, Peter J; Holland, Philip R; Martins-Oliveira, Margarida; Hoffmann, Jan; Schankin, Christoph; Akerman, Simon

    2017-04-01

    Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT 1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT 1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu 5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology. Copyright © 2017 the American Physiological Society.

  18. Sensory Processing Disorders are Associated with Duration of Current Episode and Severity of Side Effects.

    Science.gov (United States)

    Serafini, Gianluca; Engel-Yeger, Batya; Vazquez, Gustavo H; Pompili, Maurizio; Amore, Mario

    2017-01-01

    Longer duration of untreated illness, longer duration of current episode, and the severity of medication side effects may negatively impact on the perceived disability and psychosocial impairment of patients with major affective and anxiety disorders. Studies also suggested the involvement of sensory perception in emotional and psychopathological processes. The present study aimed to examine the relationship between Sensory Processing Disorders (SPD), duration of untreated illness and current illness episode, and the severity of side effects related to psychoactive medications. The sample included 178 participants with an age ranging from 17 to 85 years (mean=53.84±15.55). Participants were diagnosed with unipolar Major Depressive Disorder (MDD) (50%), Bipolar Disorder (BD) (33.7%), and Anxiety disorders (16.3%). They completed a socio-demographic questionnaire, the Udvalg for Kliniske Undersøgelser (UKU), and Adolescent/Adult Sensory Profile (AASP) questionnaire. Longer duration of current episode correlated with greater registration of sensory input and lower avoidance from sensory input among unipolar patients; with lower registration of sensory input, and higher tendency for sensory sensitivity/avoidance among bipolar participants; with lower sensory sensitivity/avoidance among anxiety participants, respectively. Also, mean UKU total scores correlated with lower sensory sensitivity among bipolar individuals. SPD expressed in either hypo/hyper sensitivity may serve to clinically characterize subjects with major affective and anxiety disorders.

  19. Relationship between Social Competence and Sensory Processing in Children with High Functioning Autism Spectrum Disorders

    Science.gov (United States)

    Hilton, Claudia; Graver, Kathleen; LaVesser, Patricia

    2007-01-01

    Purpose: This study examines the relationship between social competence and sensory processing in children with high functioning autism spectrum disorders. Methodology: Children, ages 6-10 (N = 36), with high functioning autism spectrum disorders were assessed using the Social Responsiveness Scale (SRS) and the Sensory Profile (SP). A bivariate…

  20. Brief Report: Exploring the Relationship between Sensory Processing and Repetitive Behaviours in Williams Syndrome

    Science.gov (United States)

    Riby, Deborah M.; Janes, Emily; Rodgers, Jacqui

    2013-01-01

    This study explored the relationship between sensory processing abnormalities and repetitive behaviours in children with Williams Syndrome (WS; n = 21). This is a novel investigation bringing together two clinical phenomena for the first time in this neuro-developmental disorder. Parents completed the Sensory Profile (Short Form; Dunn in The…

  1. Differences in sensory processing between chronic cervical zygapophysial joint pain patients with and without cervicogenic headache

    NARCIS (Netherlands)

    Chua Hai Liang, N.; Suijlekom, H.A. van; Vissers, K.C.P.; Arendt-Nielsen, L.; Wilder-Smith, O.H.G.

    2011-01-01

    BACKGROUND: It is not known why some patients with underlying chronic nociceptive sources in the neck develop cervicogenic headache (CEH) and why others do not. This quantitative sensory testing (QST) study systematically explores the differences in sensory pain processing in 17 CEH patients with

  2. Sensory processing sensitivity: a review in the light of the evolution of biological responsivity.

    Science.gov (United States)

    Aron, Elaine N; Aron, Arthur; Jagiellowicz, Jadzia

    2012-08-01

    This article reviews the literature on sensory processing sensitivity (SPS) in light of growing evidence from evolutionary biology that many personality differences in nonhuman species involve being more or less responsive, reactive, flexible, or sensitive to the environment. After briefly defining SPS, it first discusses how biologists studying animal personality have conceptualized this general environmental sensitivity. Second, it reviews relevant previous human personality/temperament work, focusing on crossover interactions (where a trait generates positive or negative outcomes depending on the environment), and traits relevant to specific hypothesized aspects of SPS: inhibition of behavior, sensitivity to stimuli, depth of processing, and emotional/physiological reactivity. Third, it reviews support for the overall SPS model, focusing on development of the Highly Sensitive Person (HSP) Scale as a measure of SPS then on neuroimaging and genetic studies using the scale, all of which bears on the extent to which SPS in humans corresponds to biological responsivity.

  3. Error-Induced Blindness: Error Detection Leads to Impaired Sensory Processing and Lower Accuracy at Short Response-Stimulus Intervals.

    Science.gov (United States)

    Buzzell, George A; Beatty, Paul J; Paquette, Natalie A; Roberts, Daniel M; McDonald, Craig G

    2017-03-15

    Empirical evidence indicates that detecting one's own mistakes can serve as a signal to improve task performance. However, little work has focused on how task constraints, such as the response-stimulus interval (RSI), influence post-error adjustments. In the present study, event-related potential (ERP) and behavioral measures were used to investigate the time course of error-related processing while humans performed a difficult visual discrimination task. We found that error commission resulted in a marked reduction in both task performance and sensory processing on the following trial when RSIs were short, but that such impairments were not detectable at longer RSIs. Critically, diminished sensory processing at short RSIs, indexed by the stimulus-evoked P1 component, was predicted by an ERP measure of error processing, the Pe component. A control analysis ruled out a general lapse in attention or mind wandering as being predictive of subsequent reductions in sensory processing; instead, the data suggest that error detection causes an attentional bottleneck, which can diminish sensory processing on subsequent trials that occur in short succession. The findings demonstrate that the neural system dedicated to monitoring and improving behavior can, paradoxically, at times be the source of performance failures. SIGNIFICANCE STATEMENT The performance-monitoring system is a network of brain regions dedicated to monitoring behavior to adjust task performance when necessary. Previous research has demonstrated that activation of the performance monitoring system following incorrect decisions serves to improve future task performance. However, the present study provides evidence that, when perceptual decisions must be made rapidly (within approximately half a second of each other), activation of the performance-monitoring system is predictive of impaired task-related attention on the subsequent trial. The data illustrate that the cognitive demands imposed by error processing

  4. Assessing sensory processing problems in children with and without attention deficit hyperactivity disorder.

    Science.gov (United States)

    Pfeiffer, Beth; Daly, Brian P; Nicholls, Elizabeth G; Gullo, Dominic F

    2015-02-01

    This exploratory study investigated whether children with attention-deficit/hyperactivity disorder (ADHD) are at greater risk than children without ADHD for problems with sensory processing and if certain sensory systems are more closely associated with the core symptoms of ADHD, specifically inattention and hyperactivity/impulsivity. The sample included 20 children with ADHD and 27 children without ADHD, ages 5 to 10 years. Assessments included the Sensory Processing Measure-Home Form and the Conners 3rd edition-Parent Short Form. After controlling for age, children with ADHD exhibited more sensory processing problems on all scales of the Sensory Processing Measure with small to medium effect sizes observed (η(2) = .27 to .61). For children with ADHD, the Social Participation (r = .50) and Planning and Ideas (r = .73) subtests of the Sensory Processing Measure were significantly associated with hyperactivity/impulsivity, but not with inattention on the subtests of the Conners Parent Short Form. The results suggest the importance of assessing sensory processing issues in children with ADHD to guide in the intervention process.

  5. Microbial and Sensory Quality of Freshly Processed and ...

    African Journals Online (AJOL)

    The samples were also evaluated for difference and preference. The study showed that the reconstituted beverage had better microbiological quality with detectable difference between the two samples with the fresh sample being preferred. Key words: Millet grains, Kununzaki, microbial quality, sensory quality. J Food Tech ...

  6. Switching between Sensory and Affective Systems Incurs Processing Costs

    Science.gov (United States)

    Vermeulen, Nicolas; Niedenthal, Paula M.; Luminet, Olivier

    2007-01-01

    Recent models of the conceptual system hold that concepts are grounded in simulations of actual experiences with instances of those concepts in sensory-motor systems (e.g., Barsalou, 1999, 2003; Solomon & Barsalou, 2001). Studies supportive of such a view have shown that verifying a property of a concept in one modality, and then switching to…

  7. Quality and sensory evaluation of processed calyces of six varieties ...

    African Journals Online (AJOL)

    Extracts from mature calyces of six varieties of Roselle (Hibiscuss sabdariffa L.) grown at the University of Agriculture, Abeokuta, were assessed for quality through proximate and chemical analysis procedures as well as by sensory evaluation. Proximate composition of all six varieties as indicated by percentages of ...

  8. Cortical-Cortical Interactions and Sensory Information Processing in Autism

    Science.gov (United States)

    2012-04-01

    deviates from the control values for subjects with autism (Tannan et al, 2008), chronic pain ( fibromyalgia , migraine, TMJD) and concussion...research is to develop sensory based instrumentation and methodologies for the diagnosis and assessment of treatment effi- cacies for a broad range of

  9. Preliminary study: Taiwanese mothers' experiences of children with sensory processing disorder.

    Science.gov (United States)

    Chiu, En-Chi

    2013-09-01

    Different cultural backgrounds and parental experiences influence parenting styles and approaches to raising children with disabilities. Family-centered care should consider parental, especially main caregivers, experiences with their disabled children. In Taiwan, in most of homes, mothers are the main caregivers. The purpose of this study was to explore Taiwanese mothers' experiences with their children who have sensory processing disorder. This study used a qualitative ethnographic design and semistructured interview format. Transcripts were analyzed and synthesized into themes. Three mothers were interviewed. The following three themes emerged: (a) relationships within the shared worlds of disability and culture, (b) daily life challenges and expectations, and (c) opportunity to receive professional services. These Taiwanese mothers expressed that they experienced stress from being blamed for insufficient skills and from the shame of their children's disabilities that reflected lack of teacher, friend, and other family members' understanding of the cause of their children's inappropriate behaviors. Their children experienced difficulties performing daily activities, which resulted in stresses on both the mother and her child. The interviewed mothers needed to receive timely, long-term services from healthcare professionals. However, hospitals are inadequately staffed with occupational therapists, which delays care for children with special needs. Taiwanese mothers experience stresses from themselves, their child, and others. Healthcare professionals should apply a family-centered service approach to fulfill the needs of mothers and their disabled children. Moreover, healthcare professionals should promote greater awareness of sensory processing disorder symptoms and interventions to increase public awareness and acceptance of these children.

  10. A Retrospective Examination of the Effect of Diabetes on Sensory Processing in Older Adults.

    Science.gov (United States)

    Humes, Larry E

    2016-12-01

    The purpose of this article is to examine retrospectively the impact of diabetes mellitus on auditory, visual, and tactile processing in older adults. Fourteen (10.4%) of a sample of 135 older adults self-reported the presence of diabetes mellitus in a study of sensory and cognitive processing across the adult lifespan. In this study, the performance of the subgroup with diabetes on a number of psychophysical sensory-processing measures was compared with that of the 121 older adults without diabetes. Measures of sensory processing focused on temporal processing and threshold sensitivity in each of 3 sensory modalities: hearing, vision, and touch. The subgroup of older adults with diabetes differed significantly (p processing deficits in older adults with a positive history of diabetes mellitus.

  11. Association of sensory processing and eating problems in children with autism spectrum disorders.

    Science.gov (United States)

    Nadon, Geneviève; Feldman, Debbie Ehrmann; Dunn, Winnie; Gisel, Erika

    2011-01-01

    "Selective" or "picky eating" is a frequent problem in children with autism spectrum disorders (ASD). Many of these children do not treat sensory input, particularly olfactory, auditory, visual, and tactile information in the same manner as their typically developing peers of the same age. The purpose of this paper was to examine the relationship between problems of sensory processing and the number of eating problems in children with ASD. Of 95 children with ASD, 3 to 10 years of age, 65 percent showed a definite difference and 21 percent a probable difference in sensory processing on the total score of the Short Sensory Profile. These results were significantly related to an increase in the number of eating problems measured by the Eating Profile. These results could not be explained by age, sex, mental retardation, attention deficit disorder, or hyperactivity. Timely interventions focusing on the sensory components of eating must now be developed.

  12. Association of Sensory Processing and Eating Problems in Children with Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Geneviève Nadon

    2011-01-01

    Full Text Available “Selective” or “picky eating” is a frequent problem in children with autism spectrum disorders (ASD. Many of these children do not treat sensory input, particularly olfactory, auditory, visual, and tactile information in the same manner as their typically developing peers of the same age. The purpose of this paper was to examine the relationship between problems of sensory processing and the number of eating problems in children with ASD. Of 95 children with ASD, 3 to 10 years of age, 65 percent showed a definite difference and 21 percent a probable difference in sensory processing on the total score of the Short Sensory Profile. These results were significantly related to an increase in the number of eating problems measured by the Eating Profile. These results could not be explained by age, sex, mental retardation, attention deficit disorder, or hyperactivity. Timely interventions focusing on the sensory components of eating must now be developed.

  13. A Comparison of Sensory Integrative and Behavioral Therapies as Treatment for Pediatric Feeding Disorders

    Science.gov (United States)

    Addison, Laura R.; Piazza, Cathleen C.; Patel, Meeta R.; Bachmeyer, Melanie H.; Rivas, Kristi M.; Milnes, Suzanne M.; Oddo, Jackie

    2012-01-01

    We compared the effects of escape extinction (EE) plus noncontingent reinforcement (NCR) with sensory integration therapy as treatment for the feeding problems of 2 children. Results indicated that EE plus NCR was more effective in increasing acceptance, decreasing inappropriate behavior, and increasing amount consumed relative to sensory…

  14. The signal processing architecture underlying subjective reports of sensory awareness.

    Science.gov (United States)

    Maniscalco, Brian; Lau, Hakwan

    2016-01-01

    What is the relationship between perceptual information processing and subjective perceptual experience? Empirical dissociations between stimulus identification performance and subjective reports of stimulus visibility are crucial for shedding light on this question. We replicated a finding that metacontrast masking can produce such a dissociation (Lau and Passingham, 2006), and report a novel finding that this paradigm can also dissociate stimulus identification performance from the efficacy with which visibility ratings predict task performance. We explored various hypotheses about the relationship between perceptual task performance and visibility rating by implementing them in computational models and using formal model comparison techniques to assess which ones best captured the unusual patterns in the data. The models fell into three broad categories: Single Channel models, which hold that task performance and visibility ratings are based on the same underlying source of information; Dual Channel models, which hold that there are two independent processing streams that differentially contribute to task performance and visibility rating; and Hierarchical models, which hold that a late processing stage generates visibility ratings by evaluating the quality of early perceptual processing. Taking into account the quality of data fitting and model complexity, we found that Hierarchical models perform best at capturing the observed behavioral dissociations. Because current theories of visual awareness map well onto these different model structures, a formal comparison between them is a powerful approach for arbitrating between the different theories.

  15. Explosives Detection Systems Employing Behaviorally Modified Rats as Sensory Elements

    Science.gov (United States)

    1982-06-18

    disciplines including physiology, behavioral science, electronics engineering , biochemistry and explosiles L technology. Unfortunately, space limitation...precludes significant discus- sion of the relative merits of Physico- Chemical , Electromagnetic (the existing explosives detecting techniques), and...was known to be 500 *70 milliseconds, a careful examination of the mid-abeissa region of the TO plot anFi may reveal smoe evidence of unusual

  16. Automated tracking of animal posture and movement during exploration and sensory orientation behaviors.

    Science.gov (United States)

    Gomez-Marin, Alex; Partoune, Nicolas; Stephens, Greg J; Louis, Matthieu; Brembs, Björn

    2012-01-01

    The nervous functions of an organism are primarily reflected in the behavior it is capable of. Measuring behavior quantitatively, at high-resolution and in an automated fashion provides valuable information about the underlying neural circuit computation. Accordingly, computer-vision applications for animal tracking are becoming a key complementary toolkit to genetic, molecular and electrophysiological characterization in systems neuroscience. We present Sensory Orientation Software (SOS) to measure behavior and infer sensory experience correlates. SOS is a simple and versatile system to track body posture and motion of single animals in two-dimensional environments. In the presence of a sensory landscape, tracking the trajectory of the animal's sensors and its postural evolution provides a quantitative framework to study sensorimotor integration. To illustrate the utility of SOS, we examine the orientation behavior of fruit fly larvae in response to odor, temperature and light gradients. We show that SOS is suitable to carry out high-resolution behavioral tracking for a wide range of organisms including flatworms, fishes and mice. Our work contributes to the growing repertoire of behavioral analysis tools for collecting rich and fine-grained data to draw and test hypothesis about the functioning of the nervous system. By providing open-access to our code and documenting the software design, we aim to encourage the adaptation of SOS by a wide community of non-specialists to their particular model organism and questions of interest.

  17. Automated tracking of animal posture and movement during exploration and sensory orientation behaviors.

    Directory of Open Access Journals (Sweden)

    Alex Gomez-Marin

    Full Text Available The nervous functions of an organism are primarily reflected in the behavior it is capable of. Measuring behavior quantitatively, at high-resolution and in an automated fashion provides valuable information about the underlying neural circuit computation. Accordingly, computer-vision applications for animal tracking are becoming a key complementary toolkit to genetic, molecular and electrophysiological characterization in systems neuroscience.We present Sensory Orientation Software (SOS to measure behavior and infer sensory experience correlates. SOS is a simple and versatile system to track body posture and motion of single animals in two-dimensional environments. In the presence of a sensory landscape, tracking the trajectory of the animal's sensors and its postural evolution provides a quantitative framework to study sensorimotor integration. To illustrate the utility of SOS, we examine the orientation behavior of fruit fly larvae in response to odor, temperature and light gradients. We show that SOS is suitable to carry out high-resolution behavioral tracking for a wide range of organisms including flatworms, fishes and mice.Our work contributes to the growing repertoire of behavioral analysis tools for collecting rich and fine-grained data to draw and test hypothesis about the functioning of the nervous system. By providing open-access to our code and documenting the software design, we aim to encourage the adaptation of SOS by a wide community of non-specialists to their particular model organism and questions of interest.

  18. Differential hedonic, sensory and behavioral changes associated with flavor-nutrient and flavor-flavor learning.

    Science.gov (United States)

    Yeomans, Martin R; Leitch, Margaret; Gould, Natalie J; Mobini, Sirous

    2008-03-18

    Flavor-flavor and flavor-nutrient associations can modify liking for a flavor CS, while flavor-flavor associations can also modify the sensory experience of the trained flavor. Less is known about how these associations modify behavioral responses to the trained CS. To test this, 60 participants classified as sweet likers were divided into five training conditions with a novel flavor CS. In the flavor-flavor only condition, participants consumed the target CS in a sweetened, low-energy form, with energy (maltodextrin) but no sweetness added in the flavor-nutrient only condition and both energy and sweetness (sucrose) in the combined flavor-flavor, flavor-nutrient condition. Comparison groups controlled for exposure to the CS, and repeat testing. Training was conducted in a hungry state on four non-consecutive days. To test for acquired changes in evaluation and intake, the flavor CS was processed into a low-energy sorbet, which was evaluated and consumed ad libitum on test days before and after training. Liking for the flavor CS increased only in the sucrose-sweetened condition, but intake increased significantly in both high-energy conditions. In contrast, rated sweetness of the sorbet increased in both sucrose-sweetened and aspartame-sweetened conditions. These findings suggest that liking changes were maximal when flavor-flavor and flavor-nutrient associations co-occurred, but that behavioral changes were specific to flavor-nutrient associations.

  19. Sensory processing, neurocognition, and social cognition in schizophrenia: towards a cohesive cognitive model.

    Science.gov (United States)

    de Jong, J J; de Gelder, B; Hodiamont, P Paul P G

    2013-05-01

    Schizophrenia research has identified deficits in neurocognition, social cognition, and sensory processing. Because a cohesive model of "disturbed cognitive machinery" is currently lacking, we built a conceptual model to integrate neurocognition, social cognition, and sensory processing. In a cross-sectional study, the cognitive performance of participants was measured. In accordance with the Schedules for Clinical Assessment in Neuropsychiatry, the participants were assigned to either the schizophrenia group or the non-schizophrenic psychosis group. Exclusion criteria included substance abuse, serious somatic/neurological illness, and perceptual handicap. The male/female ratio, educational level, and handedness did not differ significantly between the groups. The data were analyzed using structural equation modeling. Based upon the results of all possible pairwise models correlating neurocognition, social cognition, and sensory processing, three omnibus models were analyzed. A statistical analysis of a pairwise model-fit (χ(2), CFI, and RMSEA statistics) revealed poor interrelatedness between sensory processing and neurocognition in schizophrenia patients compared with healthy control participants. The omnibus model that predicted disintegration between sensory processing and neurocognition was statistically confirmed as superior for the schizophrenia group (χ(2)(53) of 56.62, p=0.341, RMSEA=0.04, CFI=0.95). In healthy participants, the model predicting maximal interrelatedness between sensory processing/neurocognition and neurocognition/social cognition gave the best fit (χ(2)(52) of 53.74, p=0.408, RMSEA=0.03, CFI=0.97). The performance of the patients with non-schizophrenic psychosis fell between the schizophrenia patients and control participants. These findings suggest increasing separation between sensory processing and neurocognition along the continuum from mental health to schizophrenia. Our results support a conceptual model that posits disintegration

  20. Developmental Risk Signals as a Screening Tool for Early Identification of Sensory Processing Disorders.

    Science.gov (United States)

    Bolaños, Cristina; Gomez, M Marlene; Ramos, Gregorio; Rios Del Rio, Janina

    2016-06-01

    The main purpose of this research was to determine if the indicators of risk included in the Indicators of Developmental Risk Signals (INDIPCD-R) could differentiate between children at risk of sensory processing disorders (SPDs) from those with normal development and if the SPD indicators correlated with a delay or altered development. A retrospective, descriptive, correlational design was used with a sample of 51 children, 36 referred because of clinical sensory processing indicators and 15 with non-clinical indicators. Participants were assessed with a developmental scale Revised Profile of Developmental Behaviors (PCD-R), the Sensory Profile, play and clinical observations. The INDIPCD-R showed a high correlation with developmental areas of PCD-R and a sensitivity and specificity of 100%, when compared with the Sensory Profile. T-test results for independent samples showed significant differences at p ≤ 0.01 level between the children with SPD indicators and those with no clinical signs in the PCD-R. The Mann-Whitney U-test was conducted for unpaired samples, to verify if there were significant differences between children with apparent SPD indicators and children with no apparent difficulties. The Spearman's rho was used to identify the correlations between the INDIPCD-R, with different areas of development. This study supports the use of the INDIPCD-R as a screening instrument that could be used by occupational therapists to discriminate children with and without indicators of SPD. The limitation of this study was that it did not cover all the ages of the INDIPCD-R. Additional studies are required to determine the utility of this instrument for outcome studies and whether it is valid and reliable to identify children at risk of different pathologies. The INDIPCD-R is a low-cost instrument that allows the occupational therapist to make a quick review of the different components that could be involved in SPD and therefore guide the more in

  1. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

    Directory of Open Access Journals (Sweden)

    Hui-Xin eQi

    2014-05-01

    Full Text Available In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b. However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord

  2. The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates

    Science.gov (United States)

    Qi, Hui-Xin; Kaas, Jon H.; Reed, Jamie L.

    2014-01-01

    In our experiments, we removed a major source of activation of somatosensory cortex in mature monkeys by unilaterally sectioning the sensory afferents in the dorsal columns of the spinal cord at a high cervical level. At this level, the ascending branches of tactile afferents from the hand are cut, while other branches of these afferents remain intact to terminate on neurons in the dorsal horn of the spinal cord. Immediately after such a lesion, the monkeys seem relatively unimpaired in locomotion and often use the forelimb, but further inspection reveals that they prefer to use the unaffected hand in reaching for food. In addition, systematic testing indicates that they make more errors in retrieving pieces of food, and start using visual inspection of the rotated hand to confirm the success of the grasping of the food. Such difficulties are not surprising as a complete dorsal column lesion totally deactivates the contralateral hand representation in primary somatosensory cortex (area 3b). However, hand use rapidly improves over the first post-lesion weeks, and much of the hand representational territory in contralateral area 3b is reactivated by inputs from the hand in roughly a normal somatotopic pattern. Quantitative measures of single neuron response properties reveal that reactivated neurons respond to tactile stimulation on the hand with high firing rates and only slightly longer latencies. We conclude that preserved dorsal column afferents after nearly complete lesions contribute to the reactivation of cortex and the recovery of the behavior, but second-order sensory pathways in the spinal cord may also play an important role. Our microelectrode recordings indicate that these preserved first-order, and second-order pathways are initially weak and largely ineffective in activating cortex, but they are potentiated during the recovery process. Therapies that would promote this potentiation could usefully enhance recovery after spinal cord injury. PMID:24860443

  3. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms.

    Science.gov (United States)

    Mascheretti, S; De Luca, A; Trezzi, V; Peruzzo, D; Nordio, A; Marino, C; Arrigoni, F

    2017-01-03

    Developmental dyslexia (DD) is a complex neurodevelopmental deficit characterized by impaired reading acquisition, in spite of adequate neurological and sensorial conditions, educational opportunities and normal intelligence. Despite the successful characterization of DD-susceptibility genes, we are far from understanding the molecular etiological pathways underlying the development of reading (dis)ability. By focusing mainly on clinical phenotypes, the molecular genetics approach has yielded mixed results. More optimally reduced measures of functioning, that is, intermediate phenotypes (IPs), represent a target for researching disease-associated genetic variants and for elucidating the underlying mechanisms. Imaging data provide a viable IP for complex neurobehavioral disorders and have been extensively used to investigate both morphological, structural and functional brain abnormalities in DD. Performing joint genetic and neuroimaging studies in humans is an emerging strategy to link DD-candidate genes to the brain structure and function. A limited number of studies has already pursued the imaging-genetics integration in DD. However, the results are still not sufficient to unravel the complexity of the reading circuit due to heterogeneous study design and data processing. Here, we propose an interdisciplinary, multilevel, imaging-genetic approach to disentangle the pathways from genes to behavior. As the presence of putative functional genetic variants has been provided and as genetic associations with specific cognitive/sensorial mechanisms have been reported, new hypothesis-driven imaging-genetic studies must gain momentum. This approach would lead to the optimization of diagnostic criteria and to the early identification of 'biologically at-risk' children, supporting the definition of adequate and well-timed prevention strategies and the implementation of novel, specific remediation approach.

  4. Developmental coordination disorders and sensory processing and integration: Incidence, associations and co-morbidities

    OpenAIRE

    Allen, Susan; Casey, Jackie

    2017-01-01

    Introduction Children with developmental coordination disorder or sensory processing and integration difficulties face challenges to participation in daily living. To date there has been no exploration of the co-occurrence of developmental coordination disorders and sensory processing and integration difficulties. Method Records of children meeting Diagnostic and Statistical Manual ? V criteria for developmental coordination disorder (n?=?93) age 5 to 12 years were examined. Data on motor ski...

  5. Effectiveness of sensory processing strategies on activity level in inclusive preschool classrooms

    Directory of Open Access Journals (Sweden)

    Lin CL

    2012-10-01

    Full Text Available Chien-Lin Lin,1,2 Yu-Fan Min,3 Li-Wei Chou,1,2,* Chin-Kai Lin,4,* 1Department of Physical Medicine and Rehabilitation, China Medical University Hospital, Taichung, Taiwan; 2School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; 3Faith, Hope and Love, Center for Children and Adults With Disabilities, Taichung, Taiwan; 4Program of Early Intervention, Department of Early Childhood Education, National Taichung University of Education, Taichung, Taiwan*These authors contributed equally to this workBackground: The purpose of this study was to investigate the effectiveness of sensory processing strategies in improving the activity level of children with sensory integration dysfunction.Methods: The study used a matching-only pretest–posttest control group design, which requires random matching of sensory integration dysfunction to the corresponding intervention group (n = 18 and control group (n = 18. The intervention group comprised 3–6-year-old children who received an 8-week school-day intervention during implementation of the theme curriculum.Results: The 8-week treatment significantly reduced the activity level and foot-swinging episodes in children with sensory integration dysfunction, and obtained a medium-effect size. However, the level of improvement in the control group did not show any statistically significant change.Conclusion: Sensory processing strategies could improve activity levels in children with sensory integration dysfunction. However, this study was unable to exclude a developmental effect. The social validity results show that sensory processing strategies can be integrated into the theme curriculum and improve activity levels in children.Keywords: activity level, preschool inclusive classroom, sensory integration dysfunction, sensory processing strategy

  6. Brief Report: Assessment of Early Sensory Processing in Infants at High-Risk of Autism Spectrum Disorder

    Science.gov (United States)

    Germani, Tamara; Zwaigenbaum, Lonnie; Bryson, Susan; Brian, Jessica; Smith, Isabel; Roberts, Wendy; Szatmari, Peter; Roncadin, Caroline; Sacrey, Lori Ann R.; Garon, Nancy; Vaillancourt, Tracy

    2014-01-01

    This study assessed sensory processing differences between 24-month infants at high-risk of autism spectrum disorder (ASD), each with an older sibling with ASD, and low-risk infants with no family history of ASD. Sensory processing differences were assessed using the Infant/Toddler Sensory Profile, a parent-reported measure. Groups were compared…

  7. SENSORIAL AND PHYSIOLOGICAL CONTROL OF MATERNAL BEHAVIOR IN SMALL RUMINANTS: SHEEP AND GOATS

    Directory of Open Access Journals (Sweden)

    Angélica María Terrazas

    2011-11-01

    Full Text Available Contrary to rodents in which maternal behaviors is characterized by the nest formation and give birth to altricial offsprings, maternal behavior in sheep and goats is characterized by the establishment of a selective bond between the mother and their progeny during the first postpartum hours. In both species, maternal behavior ethogram at parturition consists of a series of behaviors that initiates with the prepartum isolation of the female from their coespecifics and that culminates with the successful exclusive nursing behavior toward their newborn during postpartum. The sensory and physiological factors that control the expression of maternal behavior are very similar in both sheep and goats, although in the goats there is little information generated about this aspect. The increased peripherical concentrations of oestradiol at the end of gestation and the vaginocervical stimulation are two primary physiological events that are very important to the expression of the maternal behavior. However, olfactory cues from the offspring also are involved in the maintenance of maternal responsiveness once the birth takes place. Although mother-young spatial relationships during postpartum are different between sheep (followers and goats (hiders the maternal behavior had many similarities and their sensorial and physiological control are basically identical for many aspects.

  8. Processing, physicochemical, and sensory analyses of ostrich meat hamburger

    Directory of Open Access Journals (Sweden)

    Vera Lúcia Ferreira de Souza

    2012-09-01

    Full Text Available The objective of this study was to assess the potential utilization of ostrich meat trimming in hamburger preparation, as well as its physicochemical and sensory characterization. Using ostrich meat trimmings from the legs and neck, four different formulations were prepared with varied amounts of bacon and textured soybean protein. Physical analysis of yield, shrinkage percentage, and water retention capacity and chemical analysis of proximate composition, cholesterol levels, and calories were performed. The formulations underwent sensory analysis by 52 potential ostrich meat consumers, who evaluated tenderness, juiciness, flavor, and purchase intent. The formulations containing textured soybean protein showed the highest yield, lowest shrinkage percentage, and highest water retention capacity. Lipid content varied from 0.58 to 4.99%; protein from 17.08 to 21.37%; ash from 3.00 to 3.62%; moisture from 73.87 to 76.27%; cholesterol from 22.54 to 32.11 mg.100 g-1; and calorie from 87.22 to 163.42 kcal.100 g-1. All formulations showed low cholesterol and calorie levels, even that containing 10% bacon and 3.5% textured soybean protein, which achieved the best scores and acceptance by the panelists.

  9. A preliminary investigation of the relationship between sensory processing and social play in autism spectrum disorder.

    Science.gov (United States)

    Miller Kuhaneck, Heather; Britner, Preston A

    2013-01-01

    There are well-documented play deficits in autism beginning with infant object and social play. To create effective interventions, the predictors of play deficits in autism must be established. Individuals with autism spectrum disorder (ASD) frequently report sensory processing difficulties including poor praxis; however, these are potential predictors of play that have not been well studied. Using a data set of 162 individuals with ASD, this study examined the direct and indirect relationships between sensory processing and social play performance via structural equation modeling. The best fitting model suggested that sensory system functions predict praxis and play in combination, providing preliminary evidence that sensory functions are related to social play in combination with praxis in children with ASD. The findings suggest future avenues for research. [OTJR: Occupation, Participation and Health 2013;33(3):159-167.]. Copyright 2013, SLACK Incorporated.

  10. [Neurophysiological investigations of information processing in the somato-sensory system].

    Science.gov (United States)

    Kunesch, E

    2009-08-01

    The ability of the human hand to perform complex sensorimotor tasks such as tactile exploration and grasping is based on 1. exact encoding of somatosensory information by cutaneous mechanoreceptors, 2. elaborated processing of afferent signals in somatosensory relay stations and cortex fields, 3. rapid and effective interaction of sensory feedback with motor programs, and 4. different modes of sensory control, which can be switched over. (c) Georg Thieme Verlag KG Stuttgart-New York.

  11. Motor development and sensory processing: A comparative study between preterm and term infants.

    Science.gov (United States)

    Cabral, Thais Invenção; Pereira da Silva, Louise Gracelli; Tudella, Eloisa; Simões Martinez, Cláudia Maria

    2014-10-16

    Infants born preterm and/or with low birth weight may present a clinical condition of organic instability and usually face a long period of hospitalization in the Neonatal Intensive Care Units, being exposed to biopsychosocial risk factors to their development due to decreased spontaneous movement and excessive sensory stimuli. This study assumes that there are relationships between the integration of sensory information of preterm infants, motor development and their subsequent effects. To evaluate the sensory processing and motor development in preterm infants aged 4-6 months and compare performance data with their peers born at term. This was a cross-sectional and comparative study consisting of a group of preterm infants (n=15) and a group of term infants (n=15), assessed using the Test of Sensory Functions in Infants (TSFI) and the Alberta Infant Motor Scale (AIMS). The results showed no significant association between motor performance on the AIMS scale (total score) and sensory processing in the TSFI (total score). However, all infants who scored abnormal in the total TSFI score, subdomain 1, and subdomain 5 presented motor performance at or below the 5th percentile on the AIMS scale. Since all infants who presented definite alteration in tolerating tactile deep pressure and poor postural control are at risk of delayed gross motor development, there may be peculiarities not detected by the tests used that seem to establish some relationship between sensory processing and motor development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia

    Science.gov (United States)

    Javitt, Daniel C.; Freedman, Robert

    2015-01-01

    Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496

  13. Processes to Preserve Spice and Herb Quality and Sensory Integrity During Pathogen Inactivation

    Science.gov (United States)

    Moberg, Kayla; Amin, Kemia N.; Wright, Melissa; Newkirk, Jordan J.; Ponder, Monica A.; Acuff, Gary R.; Dickson, James S.

    2017-01-01

    Abstract Selected processing methods, demonstrated to be effective at reducing Salmonella, were assessed to determine if spice and herb quality was affected. Black peppercorn, cumin seed, oregano, and onion powder were irradiated to a target dose of 8 kGy. Two additional processes were examined for whole black peppercorns and cumin seeds: ethylene oxide (EtO) fumigation and vacuum assisted‐steam (82.22 °C, 7.5 psia). Treated and untreated spices/herbs were compared (visual, odor) using sensory similarity testing protocols (α = 0.20; β = 0.05; proportion of discriminators: 20%) to determine if processing altered sensory quality. Analytical assessment of quality (color, water activity, and volatile chemistry) was completed. Irradiation did not alter visual or odor sensory quality of black peppercorn, cumin seed, or oregano but created differences in onion powder, which was lighter (higher L *) and more red (higher a*) in color, and resulted in nearly complete loss of measured volatile compounds. EtO processing did not create detectable odor or appearance differences in black peppercorn; however visual and odor sensory quality differences, supported by changes in color (higher b *; lower L *) and increased concentrations of most volatiles, were detected for cumin seeds. Steam processing of black peppercorn resulted in perceptible odor differences, supported by increased concentration of monoterpene volatiles and loss of all sesquiterpenes; only visual differences were noted for cumin seed. An important step in process validation is the verification that no effect is detectable from a sensory perspective. PMID:28407236

  14. Age-Related Changes in Cognitive and Sensory Processing: Focus on Middle-Aged Adults.

    Science.gov (United States)

    Humes, Larry E

    2015-06-01

    The purpose of this article was to examine the effects of age on (a) various psychophysical measures of threshold sensitivity and temporal processing in hearing, vision, and touch and (b) measures of cognitive processing as assessed by the Wechsler Adult Intelligence Scale–Third Edition (Wechsler, 1997). Age group differences and correlations with age were examined, as were associations among age, sensory processing, and cognition. The group analyses showed significant differences on most sensory and cognitive measures such that middle-aged adults performed significantly worse than young adults and significantly better than older adults. Correlations of performance with age were also significant when analyses were restricted to just the young and middle-aged adults. Last, sensory processing, but not age, was significantly correlated with cognitive processing when analyses were restricted to just the young and middle-aged adults. Middle-aged adults experienced declines in both sensory and cognitive processing. The declines in both the cognitive and sensory domains were such that, for most measures in each domain, the performance of middle-aged adults fell somewhere between that of young and older adults.

  15. Young Children's Food Neophobia Characteristics and Sensory Behaviors Are Related to Their Food Intake.

    Science.gov (United States)

    Johnson, Susan L; Davies, Patricia L; Boles, Richard E; Gavin, William J; Bellows, Laura L

    2015-11-01

    Food neophobia in children has been associated with poor dietary variety and nutrient intakes. Underlying characteristics that may predispose a child to neophobia have not been widely studied. We investigated the associations between children's food neophobia, sensory sensitivity, and dietary intake in a diverse sample of typically developing preschoolers. Caregiver reports of children's food neophobia and sensory behaviors (SBs) as measured by the Food Neophobia Scale and the Sensory Profile, children's observed weight outcome [body mass index z score (BMIz)], and children's food intake as estimated from the Block Kids Food Screener were collected at baseline in the Colorado LEAP (Longitudinal Eating and Physical Activity Study) study of childhood obesity. Preschool-aged children (n = 249; 136 girls, 113 boys; aged 55.6 ± 4.7 mo; BMIz = 0.54 ± 1.14) and caregivers [n = 180; 57 Hispanic, 119 non-Hispanic white (NHW), 4 unknown] participated. Data were analyzed by Pearson correlations and multivariate hierarchical linear regression analyses. Lower scores for children's oral sensory characteristics (i.e., more atypical) were related to higher neophobia ratings (r = -0.53, P healthy dietary intake patterns for their children. This trial was registered at clinicaltrials.gov as NCT01937481. © 2015 American Society for Nutrition.

  16. Electrophysiological evidence for age effects on sensory memory processing of tonal patterns

    OpenAIRE

    Rimmele, Johanna; Sussman, Elyse; Keitel, Christian; Jacobsen, Thomas; Schröger, Erich

    2011-01-01

    In older adults, difficulties processing complex auditory scenes, such as speech comprehension in noisy environments, might be due to a specific impairment of temporal processing at early, automatic processing stages involving auditory sensory memory (ASM). Even though age effects on auditory temporal processing have been well-documented, there is a paucity of research on how ASM processing of more complex tone-patterns is altered by age. In the current study, age effects on ASM processing of...

  17. Sensory Processing in the Dorsolateral Striatum: The Contribution of Thalamostriatal Pathways

    Directory of Open Access Journals (Sweden)

    Kevin D. Alloway

    2017-07-01

    Full Text Available The dorsal striatum has two functionally-defined subdivisions: a dorsomedial striatum (DMS region involved in mediating goal-directed behaviors that require conscious effort, and a dorsolateral striatum (DLS region involved in the execution of habitual behaviors in a familiar sensory context. Consistent with its presumed role in forming stimulus-response (S-R associations, neurons in DLS receive massive inputs from sensorimotor cortex and are responsive to both active and passive sensory stimulation. While several studies have established that corticostriatal inputs contribute to the stimulus-induced responses observed in the DLS, there is growing awareness that the thalamus has a significant role in conveying sensory-related information to DLS and other parts of the striatum. The thalamostriatal projections to DLS originate mainly from the caudal intralaminar region, which contains the parafascicular (Pf nucleus, and from higher-order thalamic nuclei such as the medial part of the posterior (POm nucleus. Based on recent findings, we hypothesize that the thalamostriatal projections from these two regions exert opposing influences on the expression of behavioral habits. This article reviews the subcortical circuits that regulate the transmission of sensory information through these thalamostriatal projection systems, and describes the evidence that indicates these circuits could be manipulated to ameliorate the symptoms of Parkinson’s disease (PD and related neurological disorders.

  18. Sensory response system of social behavior tied to female reproductive traits.

    Directory of Open Access Journals (Sweden)

    Jennifer M Tsuruda

    Full Text Available Honey bees display a complex set of anatomical, physiological, and behavioral traits that correlate with the colony storage of surplus pollen (pollen hoarding. We hypothesize that the association of these traits is a result of pleiotropy in a gene signaling network that was co-opted by natural selection to function in worker division of labor and foraging specialization. By acting on the gene network, selection can change a suite of traits, including stimulus/response relationships that affect individual foraging behavior and alter the colony level trait of pollen hoarding. The 'pollen-hoarding syndrome' of honey bees is the best documented syndrome of insect social organization. It can be exemplified as a link between reproductive anatomy (ovary size, physiology (yolk protein level, and foraging behavior in honey bee strains selected for pollen hoarding, a colony level trait. The syndrome gave rise to the forager-Reproductive Ground Plan Hypothesis (RGPH, which proposes that the regulatory control of foraging onset and foraging preference toward nectar or pollen was derived from a reproductive signaling network. This view was recently challenged. To resolve the controversy, we tested the associations between reproductive anatomy, physiology, and stimulus/response relationships of behavior in wild-type honey bees.Central to the stimulus/response relationships of honey bee foraging behavior and pollen hoarding is the behavioral trait of sensory sensitivity to sucrose (an important sugar in nectar. To test the linkage of reproductive traits and sensory response systems of social behavior, we measured sucrose responsiveness with the proboscis extension response (PER assay and quantified ovary size and vitellogenin (yolk precursor gene expression in 6-7-day-old bees by counting ovarioles (ovary filaments and by using semiquantitative real time RT-PCR. We show that bees with larger ovaries (more ovarioles are characterized by higher levels of

  19. Sensory processing patterns predict the integration of information held in visual working memory.

    Science.gov (United States)

    Lowe, Matthew X; Stevenson, Ryan A; Wilson, Kristin E; Ouslis, Natasha E; Barense, Morgan D; Cant, Jonathan S; Ferber, Susanne

    2016-02-01

    Given the limited resources of visual working memory, multiple items may be remembered as an averaged group or ensemble. As a result, local information may be ill-defined, but these ensemble representations provide accurate diagnostics of the natural world by combining gist information with item-level information held in visual working memory. Some neurodevelopmental disorders are characterized by sensory processing profiles that predispose individuals to avoid or seek-out sensory stimulation, fundamentally altering their perceptual experience. Here, we report such processing styles will affect the computation of ensemble statistics in the general population. We identified stable adult sensory processing patterns to demonstrate that individuals with low sensory thresholds who show a greater proclivity to engage in active response strategies to prevent sensory overstimulation are less likely to integrate mean size information across a set of similar items and are therefore more likely to be biased away from the mean size representation of an ensemble display. We therefore propose the study of ensemble processing should extend beyond the statistics of the display, and should also consider the statistics of the observer. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  20. Mucus trail tracking in a predatory snail: olfactory processing retooled to serve a novel sensory modality.

    Science.gov (United States)

    Patel, Kinjal; Shaheen, Nagma; Witherspoon, Jessica; Robinson, Natallia; Harrington, Melissa A

    2014-01-01

    The rosy wolfsnail (Euglandina rosea), a predatory land snail, finds prey snails and potential mates by following their mucus trails. Euglandina have evolved unique, mobile lip extensions that detect mucus and aid in following trails. Currently, little is known of the neural substrates of the trail-following behavior. To investigate the neural correlates of trail following we used tract-tracing experiments in which nerves were backfilled with either nickel-lysine or Lucifer yellow, extracellular recording of spiking neurons in snail procerebra using a multielectrode array, and behavioral assays of trail following and movement toward the source of a conditioned odor. The tract-tracing experiments demonstrate that in Euglandina, the nerves carrying mucus signals innervate the same region of the central ganglia as the olfactory nerves, while the electrophysiology studies show that mucus stimulation of the sensory epithelium on the lip extensions alters the frequency and pattern of neural activity in the procerebrum in a manner similar to odor stimulation of the olfactory epithelium on the optic tentacles of another land snail species, Cantareus aspersa (previously known as Helix aspersa). While Euglandina learn to follow trails of novel chemicals that they contact with their lip extensions in one to three trials, these snails proved remarkably resistant to associative learning in the olfactory modality. Even after seven to nine pairings of odorant molecules with food, they showed no orientation toward the conditioned odor. This is in marked contrast to Cantareus snails, which reliably oriented toward conditioned odors after two to three trials. The apparent inability of Euglandina to learn to associate food with odors and use odor cues to drive behavior suggests that the capability for sophisticated neural processing of nonvolatile mucus cues detected by the lip extensions has evolved at the expense of processing of odorant molecules detected by the olfactory system.

  1. Aging effects on functional auditory and visual processing using fMRI with variable sensory loading.

    Science.gov (United States)

    Cliff, Michael; Joyce, Dan W; Lamar, Melissa; Dannhauser, Thomas; Tracy, Derek K; Shergill, Sukhwinder S

    2013-05-01

    Traditionally, studies investigating the functional implications of age-related structural brain alterations have focused on higher cognitive processes; by increasing stimulus load, these studies assess behavioral and neurophysiological performance. In order to understand age-related changes in these higher cognitive processes, it is crucial to examine changes in visual and auditory processes that are the gateways to higher cognitive functions. This study provides evidence for age-related functional decline in visual and auditory processing, and regional alterations in functional brain processing, using non-invasive neuroimaging. Using functional magnetic resonance imaging (fMRI), younger (n=11; mean age=31) and older (n=10; mean age=68) adults were imaged while observing flashing checkerboard images (passive visual stimuli) and hearing word lists (passive auditory stimuli) across varying stimuli presentation rates. Younger adults showed greater overall levels of temporal and occipital cortical activation than older adults for both auditory and visual stimuli. The relative change in activity as a function of stimulus presentation rate showed differences between young and older participants. In visual cortex, the older group showed a decrease in fMRI blood oxygen level dependent (BOLD) signal magnitude as stimulus frequency increased, whereas the younger group showed a linear increase. In auditory cortex, the younger group showed a relative increase as a function of word presentation rate, while older participants showed a relatively stable magnitude of fMRI BOLD response across all rates. When analyzing participants across all ages, only the auditory cortical activation showed a continuous, monotonically decreasing BOLD signal magnitude as a function of age. Our preliminary findings show an age-related decline in demand-related, passive early sensory processing. As stimulus demand increases, visual and auditory cortex do not show increases in activity in older

  2. The impact of the manufacturing process on the hardness and sensory properties of milk chocolate

    Directory of Open Access Journals (Sweden)

    Zarić Danica B.

    2012-01-01

    Full Text Available The aim of this paper was to examine the impact of the manufacturing process on the textural characteristics and sensory properties of milk chocolate. The research was conducted on the samples of chocolate produced in a ball mill during 30, 60 and 90 minutes of refining, each of them being pre-crystallized at 26, 28 and 30°C. A chocolate mass of identical ingredient composition was also produced using a standard manufacturing process at the same pre-crystallization temperatures. Chocolate hardness was examined using a piece of equipment called Texture Analyser, measuring the stress intensity which leads to chocolate crushing. Sensory analysis was performed using the point scoring method. The new manufacturing process, i.e. the manufacturing of chocolate in a ball mill improves sensory properties and hardness of milk chocolate. [Projekat Ministarstva nauke Republike Srbije, br. TR 31014

  3. Consumers and vegetables: effects of domestic processing on sensory and health properties

    NARCIS (Netherlands)

    Bongoni, R.

    2014-01-01

    The quality of foods e.g. vegetables at the time of consumption depends on the post-purchase handling conditions especially by domestic processing. On the one hand, from the consumer’s perspective, domestic processing i.e. cooking improves the sensory acceptability of vegetables. On the

  4. Consumers and vegetables: effects of domestic processing on sensory and health properties

    NARCIS (Netherlands)

    Bongoni, R.

    2014-01-01

      The quality of foods e.g. vegetables at the time of consumption depends on the post-purchase handling conditions especially by domestic processing. On the one hand, from the consumer’s perspective, domestic processing i.e. cooking improves the sensory acceptability

  5. The Drosophila female aphrodisiac pheromone activates ppk23(+) sensory neurons to elicit male courtship behavior.

    Science.gov (United States)

    Toda, Hirofumi; Zhao, Xiaoliang; Dickson, Barry J

    2012-06-28

    Females of many animal species emit chemical signals that attract and arouse males for mating. For example, the major aphrodisiac pheromone of Drosophila melanogaster females, 7,11-heptacosadiene (7,11-HD), is a potent inducer of male-specific courtship and copulatory behaviors. Here, we demonstrate that a set of gustatory sensory neurons on the male foreleg, defined by expression of the ppk23 marker, respond to 7,11-HD. Activity of these neurons is required for males to robustly court females or to court males perfumed with 7,11-HD. Artificial activation of these ppk23(+) neurons stimulates male-male courtship even without 7,11-HD perfuming. These data identify the ppk23(+) sensory neurons as the primary targets for female sex pheromones in Drosophila. Copyright © 2012 The Authors. Published by Elsevier Inc. All rights reserved.

  6. The Drosophila Female Aphrodisiac Pheromone Activates ppk23+ Sensory Neurons to Elicit Male Courtship Behavior

    Directory of Open Access Journals (Sweden)

    Hirofumi Toda

    2012-06-01

    Full Text Available Females of many animal species emit chemical signals that attract and arouse males for mating. For example, the major aphrodisiac pheromone of Drosophila melanogaster females, 7,11-heptacosadiene (7,11-HD, is a potent inducer of male-specific courtship and copulatory behaviors. Here, we demonstrate that a set of gustatory sensory neurons on the male foreleg, defined by expression of the ppk23 marker, respond to 7,11-HD. Activity of these neurons is required for males to robustly court females or to court males perfumed with 7,11-HD. Artificial activation of these ppk23+ neurons stimulates male-male courtship even without 7,11-HD perfuming. These data identify the ppk23+ sensory neurons as the primary targets for female sex pheromones in Drosophila.

  7. Emotional processing, p50 sensory gating, and social functioning in bipolar disorder.

    Science.gov (United States)

    Vuillier, Laura; Hermens, Daniel F; Chitty, Kate; Wang, Chenyu; Kaur, Manreena; Ward, Philip B; Degabriele, Rachael; Hickie, Ian B; Lagopoulos, Jim

    2015-04-01

    Emotional processing has been reported to effect sensory gating as measured by the event-related potential known as P50. Because both P50 and emotional processing are dysfunctional in bipolar disorder (BD), we sought to investigate the impact that concurrent emotional processing has on sensory gating in this psychiatric population. P50 was recorded using a paired-click paradigm. Peak-to-peak amplitudes for stimulus 1 (S1) and stimulus 2 (S2) were acquired during the presentation of disgust and neutral faces to young adults with BD (n = 19) and controls (n = 20). Social functioning and quality-of-life self-reported measures were also obtained. The BD group had significantly larger P50 amplitudes elicited by the S2-disgust response compared with controls, but no significant difference in overall P50 sensory gating was found between the groups. There were also no differences between groups in S1-disgust or in either of the neutral P50 amplitudes. The BD group showed significant associations between sensory gating to disgust and measures of social functioning. Importantly, BD showed impaired filtering of auditory information when paired with an emotionally salient image. Thus, it appears that patients with the greatest impairment in sensory gating also have the most difficulty engaging in social situations. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  8. EEG Correlates of Preparatory Orienting, Contextual Updating, and Inhibition of Sensory Processing in Left Spatial Neglect.

    Science.gov (United States)

    Lasaponara, Stefano; D'Onofrio, Marianna; Pinto, Mario; Dragone, Alessio; Menicagli, Dario; Bueti, Domenica; De Lucia, Marzia; Tomaiuolo, Francesco; Doricchi, Fabrizio

    2018-04-11

    Studies with event-related potentials have highlighted deficits in the early phases of orienting to left visual targets in right-brain-damaged patients with left spatial neglect (N+). However, brain responses associated with preparatory orienting of attention, with target novelty and with the detection of a match/mismatch between expected and actual targets (contextual updating), have not been explored in N+. Here in a study in healthy humans and brain-damaged patients of both sexes we demonstrate that frontal activity that reflects supramodal mechanisms of attentional orienting (Anterior Directing Attention Negativity, ADAN) is entirely spared in N+. In contrast, posterior responses that mark the early phases of cued orienting (Early Directing Attention Negativity, EDAN) and the setting up of sensory facilitation over the visual cortex (Late Directing Attention Positivity, LDAP) are suppressed in N+. This uncoupling is associated with damage of parietal-frontal white matter. N+ also exhibit exaggerated novelty reaction to targets in the right side of space and reduced novelty reaction for those in the left side (P3a) together with impaired contextual updating (P3b) in the left space. Finally, we highlight a drop in the amplitude and latency of the P1 that over the left hemisphere signals the early blocking of sensory processing in the right space when targets occur in the left one: this identifies a new electrophysiological marker of the rightward attentional bias in N+. The heterogeneous effects and spatial biases produced by localized brain damage on the different phases of attentional processing indicate relevant functional independence among their underlying neural mechanisms and improve the understanding of the spatial neglect syndrome. SIGNIFICANCE STATEMENT Our investigation answers important questions: are the different components of preparatory orienting (EDAN, ADAN, LDAP) functionally independent in the healthy brain? Is preparatory orienting of

  9. Shared Neural Mechanisms for the Evaluation of Intense Sensory Stimulation and Economic Reward, Dependent on Stimulation-Seeking Behavior.

    Science.gov (United States)

    Norbury, Agnes; Valton, Vincent; Rees, Geraint; Roiser, Jonathan P; Husain, Masud

    2016-09-28

    Why are some people strongly motivated by intense sensory experiences? Here we investigated how people encode the value of an intense sensory experience compared with economic reward, and how this varies according to stimulation-seeking preference. Specifically, we used a novel behavioral task in combination with computational modeling to derive the value individuals assigned to the opportunity to experience an intense tactile stimulus (mild electric shock). We then examined functional imaging data recorded during task performance to see how the opportunity to experience the sensory stimulus was encoded in stimulation-seekers versus stimulation-avoiders. We found that for individuals who positively sought out this kind of sensory stimulation, there was common encoding of anticipated economic and sensory rewards in the ventromedial prefrontal cortex. Conversely, there was robust encoding of the modeled probability of receiving such stimulation in the insula only in stimulation-avoidant individuals. Finally, we found preliminary evidence that sensory prediction error signals may be positively signed for stimulation-seekers, but negatively signed for stimulation-avoiders, in the posterior cingulate cortex. These findings may help explain why high intensity sensory experiences are appetitive for some individuals, but not for others, and may have relevance for the increased vulnerability for some psychopathologies, but perhaps increased resilience for others, in high sensation-seeking individuals. People vary in their preference for intense sensory experiences. Here, we investigated how different individuals evaluate the prospect of an unusual sensory experience (electric shock), compared with the opportunity to gain a more traditional reward (money). We found that in a subset of individuals who sought out such unusual sensory stimulation, anticipation of the sensory outcome was encoded in the same way as that of monetary gain, in the ventromedial prefrontal cortex

  10. Anti-Hebbian Spike Timing Dependent Plasticity and Adaptive Sensory Processing

    Directory of Open Access Journals (Sweden)

    Patrick D Roberts

    2010-12-01

    Full Text Available Adaptive processing influences the central nervous system's interpretation of incoming sensory information. One of the functions of this adaptative sensory processing is to allow the nervous system to ignore predictable sensory information so that it may focus on important new information needed to improve performance of specific tasks. The mechanism of spike timing-dependent plasticity (STDP has proven to be intriguing in this context because of its dual role in long-term memory and ongoing adaptation to maintain optimal tuning of neural responses. Some of the clearest links between STDP and adaptive sensory processing have come from in vitro, in vivo, and modeling studies of the electrosensory systems of fish. Plasticity in such systems is anti-Hebbian, i.e. presynaptic inputs that repeatedly precede and hence could contribute to a postsynaptic neuron’s firing are weakened. The learning dynamics of anti-Hebbian STDP learning rules are stable if the timing relations obey strict constraints. The stability of these learning rules leads to clear predictions of how functional consequences can arise from the detailed structure of the plasticity. Here we review the connection between theoretical predictions and functional consequences of anti-Hebbian STDP, focusing on adaptive processing in the electrosensory system of weakly electric fish. After introducing electrosensory adaptive processing and the dynamics of anti-Hebbian STDP learning rules, we address issues of predictive sensory cancellation and novelty detection, descending control of plasticity, synaptic scaling, and optimal sensory tuning. We conclude with examples in other systems where these principles may apply.

  11. Using a Multifaceted Approach to Working With Children Who Have Differences in Sensory Processing and Integration.

    Science.gov (United States)

    Reynolds, Stacey; Glennon, Tara J; Ausderau, Karla; Bendixen, Roxanna M; Kuhaneck, Heather Miller; Pfeiffer, Beth; Watling, Renee; Wilkinson, Kimberly; Bodison, Stefanie C

    Pediatric occupational therapy practitioners frequently provide interventions for children with differences in sensory processing and integration. Confusion exists regarding how best to intervene with these children and about how to describe and document methods. Some practitioners hold the misconception that Ayres Sensory Integration intervention is the only approach that can and should be used with this population. The issue is that occupational therapy practitioners must treat the whole client in varied environments; to do so effectively, multiple approaches to intervention often are required. This article presents a framework for conceptualizing interventions for children with differences in sensory processing and integration that incorporates multiple evidence-based approaches. To best meet the needs of the children and families seeking occupational therapy services, interventions must be focused on participation and should be multifaceted. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  12. Sensory shelf-life limiting factor of high hydrostatic pressure processed avocado paste.

    Science.gov (United States)

    Jacobo-Velázquez, D A; Hernández-Brenes, C

    2011-08-01

    High hydrostatic pressure (HHP) processing pasteurizes avocado paste without a significant impact on flavor. Although HHP-treated avocado paste stored under refrigeration is safe for human consumption for months, sensory changes taking place during storage cause the rejection of the product by consumers within days. Although it is known that the shelf life of the product ends before its microbial counts are high, its sensory shelf life limiting factor remains unknown. The present study focused on the use of a trained panel and a consumer panel to determine the sensory shelf life limiting factor of HHP-treated avocado paste. The trained panel identified sour and rancid flavors as the main sensory descriptors (critical descriptors) that differentiated stored from freshly processed samples. Further data obtained from consumers identified sour flavor as the main cause for a significant decrease in the acceptability (shelf life limiting factor) of refrigerated HHP-treated avocado paste. The study allowed the elucidation of a proposed deterioration mechanism for HHP-treated avocado paste during its refrigerated shelf life. The information through this work enhances scientific knowledge of the product and proposes the sour flavor development during storage as a relevant sensory attribute that needs to be improved in order to enhance the product shelf life. At present, HHP is the most effective commercial nonthermal technology to process avocado paste when compared to thermal and chemical alternatives. HHP-treated avocado paste is a microbiologically stable food for a period of at least 45 d stored under refrigeration. However, previous published work indicated that consumers rejected the product after approximately 19 d of storage due to sensory changes. This manuscript presents a sensory study that permitted the identification of the critical sensory descriptor that is acting as the sensory shelf life limiting factor of the product. The data presented herein along with

  13. Evidence of a sensory processing unit in the mammalian macula

    Science.gov (United States)

    Chimento, T. C.; Ross, M. D.

    1996-01-01

    We cut serial sections through the medial part of the rat vestibular macula for transmission electron microscopic (TEM) examination, computer-assisted 3-D reconstruction, and compartmental modeling. The ultrastructural research showed that many primary vestibular neurons have an unmyelinated segment, often branched, that extends between the heminode (putative site of the spike initiation zone) and the expanded terminal(s) (calyx, calyces). These segments, termed the neuron branches, and the calyces frequently have spine-like processes of various dimensions with bouton endings that morphologically are afferent, efferent, or reciprocal to other macular neural elements. The major questions posed by this study were whether small details of morphology, such as the size and location of neuronal processes or synapses, could influence the output of a vestibular afferent, and whether a knowledge of morphological details could guide the selection of values for simulation parameters. The conclusions from our simulations are (1) values of 5.0 k omega cm2 for membrane resistivity and 1.0 nS for synaptic conductance yield simulations that best match published physiological results; (2) process morphology has little effect on orthodromic spread of depolarization from the head (bouton) to the spike initiation zone (SIZ); (3) process morphology has no effect on antidromic spread of depolarization to the process head; (4) synapses do not sum linearly; (5) synapses are electrically close to the SIZ; and (6) all whole-cell simulations should be run with an active SIZ.

  14. Increased Prevalence of Unusual Sensory Behaviors in Infants at Risk for, and Teens with, Autism Spectrum Disorder.

    Science.gov (United States)

    Van Etten, Hannah M; Kaur, Maninderjit; Srinivasan, Sudha M; Cohen, Shereen J; Bhat, Anjana; Dobkins, Karen R

    2017-11-01

    The current study investigated the prevalence and pattern of unusual sensory behaviors (USBs) in teens with Autism Spectrum Disorder (ASD) and infants (3-36 months) at risk for ASD. From two different sites (UCSD and UConn), caregivers of infants at high (n = 32) and low risk (n = 33) for ASD, and teenagers with (n = 12) and without ASD (n = 11), completed age-appropriate Sensory Profile questionnaires (Infant/Toddler Sensory Profile; Dunn 2002; Adolescent/Adult Sensory Profile; Brown and Dunn 2002). The results show that high-risk infants and teenagers with ASD exhibit higher-than-typical prevalence of USBs. Results of our distribution analyses investigating the direction of sensory atypicalities (greater-than-typical vs. less-than-typical) revealed a fair degree of consistency amongst teens, however, USB patterns were more varied in high-risk infants.

  15. Can tactile sensory processing differentiate between children with autistic disorder and asperger's disorder?

    Science.gov (United States)

    Ghanizadeh, Ahmad

    2011-05-01

    There are debates whether autistic disorder (autism) and Asperger's disorder are two distinct disorders. Moreover, interventional sensory occupational therapy should consider the clinical characteristics of patients. Already, commonalities and differences between Asperger's disorder and autistic disorder are not well studied. The aim of this study is to compare tactile sensory function of children with autistic disorder and children with Asperger's disorder. Tactile sensory function was compared between 36 children with autism and 19 children with Asperger's disorder. The two disorders were diagnosed based on Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision. The parent-reported Tactile Dysfunction Checklist was used to assess the three aspects of hypersensitivity, hyposensitivity, and poor tactile perception and discrimination. Developmental coordination was also assessed. Developmental coordination problems total score was not associated with group. The mean (standard deviation) score of tactile hyper-responsivity was not different between the groups. Tactile hyporesponsivity and poor tactile perception and discrimination scores were statistically higher in autistic disorder than Asperger's disorder group. These results for the first time indicated that at least some aspects of tactile perception can differentiate these two disorders. Children with autistic disorder have more tactile sensory seeking behaviors than children with Asperger's disorder. Moreover, the ability of children with autistic disorder for tactile discrimination and sensory perception is less than those with Asperger's disorder. Interventional sensory therapy in children with autistic disorder should have some characteristics that can be different and specific for children with Asperger's disorder. Formal intelligence quotient testing was not performed on all of the children evaluated, which is a limitation to this study. In some cases, a clinical estimation of

  16. Can Tactile Sensory Processing Differentiate Between Children with Autistic Disorder and Asperger's Disorder?

    Science.gov (United States)

    2011-01-01

    Objective There are debates whether autistic disorder (autism) and Asperger's disorder are two distinct disorders. Moreover, interventional sensory occupational therapy should consider the clinical characteristics of patients. Already, commonalities and differences between Asperger's disorder and autistic disorder are not well studied. The aim of this study is to compare tactile sensory function of children with autistic disorder and children with Asperger's disorder. Methods Tactile sensory function was compared between 36 children with autism and 19 children with Asperger's disorder. The two disorders were diagnosed based on Diagnostic and Statistical Manual of Mental Disorders Fourth Edition, Text Revision. The parent-reported Tactile Dysfunction Checklist was used to assess the three aspects of hypersensitivity, hyposensitivity, and poor tactile perception and discrimination. Developmental coordination was also assessed. Results Developmental coordination problems total score was not associated with group. The mean (standard deviation) score of tactile hyper-responsivity was not different between the groups. Tactile hyporesponsivity and poor tactile perception and discrimination scores were statistically higher in autistic disorder than Asperger's disorder group. Conclusion These results for the first time indicated that at least some aspects of tactile perception can differentiate these two disorders. Children with autistic disorder have more tactile sensory seeking behaviors than children with Asperger's disorder. Moreover, the ability of children with autistic disorder for tactile discrimination and sensory perception is less than those with Asperger's disorder. Interventional sensory therapy in children with autistic disorder should have some characteristics that can be different and specific for children with Asperger's disorder. Formal intelligence quotient testing was not performed on all of the children evaluated, which is a limitation to this study. In

  17. The Drosophila Female Aphrodisiac Pheromone Activates ppk23+ Sensory Neurons to Elicit Male Courtship Behavior

    OpenAIRE

    Toda, Hirofumi; Zhao, Xiaoliang; Dickson, Barry J.

    2012-01-01

    Females of many animal species emit chemical signals that attract and arouse males for mating. For example, the major aphrodisiac pheromone of Drosophila melanogaster females, 7,11-heptacosadiene (7,11-HD), is a potent inducer of male-specific courtship and copulatory behaviors. Here, we demonstrate that a set of gustatory sensory neurons on the male foreleg, defined by expression of the ppk23 marker, respond to 7,11-HD. Activity of these neurons is required for males to robustly court female...

  18. Characterizing cognitive and visuomotor control in children with sensory processing dysfunction and autism spectrum disorders.

    Science.gov (United States)

    Brandes-Aitken, Anne; Anguera, Joaquin A; Rolle, Camarin E; Desai, Shivani S; Demopoulos, Carly; Skinner, Sasha N; Gazzaley, Adam; Marco, Elysa J

    2018-02-01

    Children with autism spectrum disorders (ASD) and sensory processing dysfunction (SPD) are reported to show difficulties involving cognitive and visuomotor control. We sought to determine whether performance on computerized, behavioral measures of cognitive control aimed at assessing selective attention, as well as visuomotor abilities differentiated children with ASD (n = 14), SPD (n = 14) and typically developing controls (TDC; n = 28). Cognitive control differences were measured by assessing selective attention-based abilities both with and without distracting stimuli, and visuomotor differences were measured by characterizing visuomotor tracking and tracing skills. Performance in cognitive control and visuomotor domains were investigated globally as composite scores, and specifically within each task. Our results indicated that though the ASD group showed the most impaired selective attention performance, the SPD group had intermediate abilities-performing above the ASD group but below the TDC group. Furthermore, both the SPD and ASD groups demonstrated equally impaired visuomotor abilities relative to the TDC group. A correlational analysis between cognitive and visuomotor control suggest a relationship between these overlapping control networks. This study supports the importance of direct, phenotypic characterizations of control-based abilities in children with ASD and SPD to personalize characterization and treatment interventions for at-risk children. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Auditory sensory processing deficits in sensory gating and mismatch negativity-like responses in the social isolation rat model of schizophrenia

    DEFF Research Database (Denmark)

    Witten, Louise; Oranje, Bob; Mørk, Arne

    2014-01-01

    Patients with schizophrenia exhibit disturbances in information processing. These disturbances can be investigated with different paradigms of auditory event related potentials (ERP), such as sensory gating in a double click paradigm (P50 suppression) and the mismatch negativity (MMN) component...... in an auditory oddball paradigm. The aim of the current study was to test if rats subjected to social isolation, which is believed to induce some changes that mimic features of schizophrenia, displays alterations in sensory gating and MMN-like response. Male Lister-Hooded rats were separated into two groups; one...... group socially isolated (SI) for 8 weeks and one group housed (GH). Both groups were then tested in a double click sensory gating paradigm and an auditory oddball paradigm (MMN-like) paradigm. It was observed that the SI animals showed reduced sensory gating of the cortical N1 amplitude. Furthermore...

  20. Association of Sensory Processing and Eating Problems in Children with Autism Spectrum Disorders

    OpenAIRE

    Nadon, Geneviève; Feldman, Debbie Ehrmann; Dunn, Winnie; Gisel, Erika

    2011-01-01

    “Selective” or “picky eating” is a frequent problem in children with autism spectrum disorders (ASD). Many of these children do not treat sensory input, particularly olfactory, auditory, visual, and tactile information in the same manner as their typically developing peers of the same age. The purpose of this paper was to examine the relationship between problems of sensory processing and the number of eating problems in children with ASD. Of 95 children with ASD, 3 to 10 years of age, 65 per...

  1. Are Sensory Processing Features Associated with Depressive Symptoms in Boys with an ASD?

    Science.gov (United States)

    Bitsika, Vicki; Sharpley, Christopher F.; Mills, Richard

    2016-01-01

    The association between Sensory Processing Features (SPF) and depressive symptoms was investigated at two levels in 150 young males (6-18 years) with an ASD. First, a significant correlation was found between SPF and total depressive symptom scores. Second, different aspects of SPF significantly predicted different depressive symptom factors, with…

  2. Vibromyography of oral processing varies with type of semi-solid food and with sensory judgements

    NARCIS (Netherlands)

    Wijk, R.A.de; Polet, I.A.; Bult, J.H.F.; Prinz, J.F.

    2008-01-01

    Vibromyography was used to quantify oral activity during the processing of well-characterized semi-solid model foods whilst subjects assessed the intensity of the sensory attributes to thick, creamy, melting, fatty, rough and liking. A series of eleven starch-based vanilla custard desserts was

  3. Atypical Sensory Processing in Adolescents with an Autism Spectrum Disorder and Their Non-Affected Siblings

    Science.gov (United States)

    De la Marche, Wouter; Steyaert, Jean; Noens, Ilse

    2012-01-01

    Atypical sensory processing is common in autism spectrum disorders (ASD). Specific profiles have been proposed in different age groups, but no study has focused specifically on adolescents. Identifying traits of ASD that are shared by individuals with ASD and their non-affected family members can shed light on the genetic underpinnings of ASD.…

  4. A Pilot Study of Integrated Listening Systems for Children with Sensory Processing Problems

    Science.gov (United States)

    Schoen, Sarah A.; Miller, Lucy J.; Sullivan, Jillian

    2015-01-01

    This pilot study explored the effects of Integrated Listening Systems (iLs) Focus Series on individualized parent goals for children with sensory processing impairments. A nonconcurrent multiple baseline, repeated measure across participants, single-case study design was employed (n = 7). The 40-session intervention was delivered at home and in…

  5. Effects of processing on the proximate and sensory quality of 'oze ...

    African Journals Online (AJOL)

    Effects of processing on the proximate and sensory quality of 'oze\\' (Bosqueia angolensis) seeds. JN Nwosu, CN Ubbaonu, A Uzomah, EOI Banigo. Abstract. No Abstract. International Journal of Tropical Agriculture and Food Systems Vol. 2 (1) 2008: pp. 77-82. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD ...

  6. Prediction of chemical, physical and sensory data from process parameters for frozen cod using multivariate analysis

    DEFF Research Database (Denmark)

    Bechmann, Iben Ellegaard; Jensen, H.S.; Bøknæs, Niels

    1998-01-01

    Physical, chemical and sensory quality parameters were determined for 115 cod (Gadus morhua) samples stored under varying frozen storage conditions. Five different process parameters (period of frozen storage, frozen storage. temperature, place of catch, season for catching and state of rigor) were...

  7. Consumers and vegetables: effects of domestic processing on sensory and health properties

    OpenAIRE

    Bongoni, R.

    2014-01-01

      The quality of foods e.g. vegetables at the time of consumption depends on the post-purchase handling conditions especially by domestic processing. On the one hand, from the consumer’s perspective, domestic processing i.e. cooking improves the sensory acceptability of vegetables. On the other hand, from the food technologist’s perspective, nutrients like vitamins and phytochemicals are degraded (though bioaccessibility can increase) by various processing conditions. An app...

  8. Process optimization for sensory characteristics of seriales (Flacourtia jangomas) ready-to-drink (RTD) beverage

    Science.gov (United States)

    Cimafranca, L.; Dizon, E.

    2018-01-01

    Seriales (Flacourtia jangomas) is an underutilized fruit in the Philippines. The processing of the fruit into a RTD beverage was standardized by statistical methods. Plackett-Burman Design (PB) was used to determine the most significant factors that affect the sensory characteristics of the product. Response surface methodology (RSM) was applied based on the factorial Central Composite Design (CCD) to determine the optimum conditions for the maximum sensory acceptability of the seriales RTD beverage. Results of the PB revealed that the most significant factors were blanching time, level of seriales and TSS level. With different levels of blanching time (0.5, 1.0, and 1.5 min.), seriales level (10, 20, 30 %) and TSS value (12, 15, 18ºBrix), the optimum region for sensory acceptability was perceived at 0.7 to 1.4 minutes blanching time, seriales level of not beyond 27 %, and TSS at any level.

  9. Sensory modulation disorders in childhood epilepsy.

    Science.gov (United States)

    van Campen, Jolien S; Jansen, Floor E; Kleinrensink, Nienke J; Joëls, Marian; Braun, Kees Pj; Bruining, Hilgo

    2015-01-01

    Altered sensory sensitivity is generally linked to seizure-susceptibility in childhood epilepsy but may also be associated to the highly prevalent problems in behavioral adaptation. This association is further suggested by the frequent overlap of childhood epilepsy with autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), conditions in which altered behavioral responses to sensory stimuli have been firmly established. A continuum of sensory processing defects due to imbalanced neuronal inhibition and excitation across these disorders has been hypothesizedthat may lead to common symptoms of inadequate modulation of behavioral responses to sensory stimuli. Here, we investigated the prevalence of sensory modulation disorders among children with epilepsy and their relation with symptomatology of neurodevelopmental disorders. We used the Sensory Profile questionnaire to assess behavioral responses to sensory stimuli and categorize sensory modulation disorders in children with active epilepsy (aged 4-17 years). We related these outcomes to epilepsy characteristics and tested their association with comorbid symptoms of ASD (Social Responsiveness Scale) and ADHD (Strengths and Difficulties Questionnaire). Sensory modulation disorders were reported in 49 % of the 158 children. Children with epilepsy reported increased behavioral responses associated with sensory "sensitivity," "sensory avoidance," and "poor registration" but not "sensory seeking." Comorbidity of ASD and ADHD was associated with more severe sensory modulation problems, although 27 % of typically developing children with epilepsy also reported a sensory modulation disorder. Sensory modulation disorders are an under-recognized problem in children with epilepsy. The extent of the modulation difficulties indicates a substantial burden on daily functioning and may explain an important part of the behavioral distress associated with childhood epilepsy.

  10. The Relationship Between Sensory-Processing Disorders and Sleep Disturbances in School-Aged Autistic Children in Shiraz, 2015

    OpenAIRE

    Ghanbari; Rezaei

    2016-01-01

    Background Autism is a neurological disorder that limits communication, socialization, and participation of children in symbolic play. Sensory processing disorders are common characteristics (45% to 96%) of children with pervasive development disorders, including. Sleep disorders are also more prevalent in autistic children than in normal children. Objectives This study aimed to investigate the relationship between sensory process...

  11. Correlations of Sensory Processing and Visual Organization Ability with Participation in School-Aged Children with Down Syndrome

    Science.gov (United States)

    Wuang, Yee-Pay; Su, Chwen-Yng

    2011-01-01

    Previous work has highlighted delays and differences in cognitive, language, and sensorimotor functions in children diagnosed with Down syndrome (DS). However, sensory processing and visual organization abilities have not been well-examined in DS to date. This study aimed to investigate the developmental profile of sensory processing and visual…

  12. The Relationship between Sensory Processing Difficulties and Leisure Activity Preference of Children with Different Types of ADHD

    Science.gov (United States)

    Engel-Yeger, Batya; Ziv-On, Daniella

    2011-01-01

    Sensory processing difficulties (SPD) are prevalent among children with ADHD. Yet, the question whether different SPD characterize children with different types of ADHD has not received enough attention in the literature. The current study characterized sensory processing difficulties (SPD) of children with different types of ADHD and explored the…

  13. An internal model architecture for novelty detection: implications for cerebellar and collicular roles in sensory processing.

    Science.gov (United States)

    Anderson, Sean R; Porrill, John; Pearson, Martin J; Pipe, Anthony G; Prescott, Tony J; Dean, Paul

    2012-01-01

    The cerebellum is thought to implement internal models for sensory prediction, but details of the underlying circuitry are currently obscure. We therefore investigated a specific example of internal-model based sensory prediction, namely detection of whisker contacts during whisking. Inputs from the vibrissae in rats can be affected by signals generated by whisker movement, a phenomenon also observable in whisking robots. Robot novelty-detection can be improved by adaptive noise-cancellation, in which an adaptive filter learns a forward model of the whisker plant that allows the sensory effects of whisking to be predicted and thus subtracted from the noisy sensory input. However, the forward model only uses information from an efference copy of the whisking commands. Here we show that the addition of sensory information from the whiskers allows the adaptive filter to learn a more complex internal model that performs more robustly than the forward model, particularly when the whisking-induced interference has a periodic structure. We then propose a neural equivalent of the circuitry required for adaptive novelty-detection in the robot, in which the role of the adaptive filter is carried out by the cerebellum, with the comparison of its output (an estimate of the self-induced interference) and the original vibrissal signal occurring in the superior colliculus, a structure noted for its central role in novelty detection. This proposal makes a specific prediction concerning the whisker-related functions of a region in cerebellar cortical zone A(2) that in rats receives climbing fibre input from the superior colliculus (via the inferior olive). This region has not been observed in non-whisking animals such as cats and primates, and its functional role in vibrissal processing has hitherto remained mysterious. Further investigation of this system may throw light on how cerebellar-based internal models could be used in broader sensory, motor and cognitive contexts.

  14. Comparing and Exploring the Sensory Processing Patterns of Higher Education Students With Attention Deficit Hyperactivity Disorder and Autism Spectrum Disorder.

    Science.gov (United States)

    Clince, Maria; Connolly, Laura; Nolan, Clodagh

    2016-01-01

    Research regarding sensory processing and adults with attention deficit hyperactivity disorder (ADHD) or autism spectrum disorder (ASD) is limited. This study aimed to compare sensory processing patterns of groups of higher education students with ADHD or ASD and to explore the implications of these disorders for their college life. The Adolescent/Adult Sensory Profile was administered to 28 students with ADHD and 27 students with ASD. Students and professionals were interviewed. The majority of students received scores that differed from those of the general population. Students with ADHD received significantly higher scores than students with ASD in relation to sensation seeking; however, there were no other major differences. Few differences exist between the sensory processing patterns of students with ADHD and ASD; however, both groups differ significantly from the general population. Occupational therapists should consider sensory processing patterns when designing supports for these groups. Copyright © 2016 by the American Occupational Therapy Association, Inc.

  15. Evolution of a Communication System by Sensory Exploitation of Startle Behavior.

    Science.gov (United States)

    Ter Hofstede, Hannah M; Schöneich, Stefan; Robillard, Tony; Hedwig, Berthold

    2015-12-21

    New communication signals can evolve by sensory exploitation if signaling taps into preexisting sensory biases in receivers [1, 2]. For mate attraction, signals are typically similar to attractive environmental cues like food [3-6], which amplifies their attractiveness to mates, as opposed to aversive stimuli like predator cues. Female field crickets approach the low-frequency calling song of males, whereas they avoid high-frequency sounds like predatory bat calls [7]. In one group of crickets (Eneopterinae: Lebinthini), however, males produce exceptionally high-frequency calling songs in the range of bat calls [8], a surprising signal in the context of mate attraction. We found that female lebinthines, instead of approaching singing males, produce vibrational responses after male calls, and males track the source of vibrations to find females. We also demonstrate that field cricket species closely related to the Lebinthini show an acoustic startle response to high-frequency sounds that generates substrate vibrations similar to those produced by female lebinthine crickets. Therefore, the startle response is the most likely evolutionary origin of the female lebinthine vibrational signal. In field crickets, the brain receives activity from two auditory interneurons; AN1 tuned to male calling song controls positive phonotaxis, and AN2 tuned to high-frequency bat calls triggers negative phonotaxis [9, 10]. In lebinthine crickets, however, we found that auditory ascending neurons are only tuned to high-frequency sounds, and their tuning matches the thresholds for female vibrational signals. Our results demonstrate how sensory exploitation of anti-predator behavior can evolve into a communication system that benefits both senders and receivers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner.

    Science.gov (United States)

    Ketzef, Maya; Spigolon, Giada; Johansson, Yvonne; Bonito-Oliva, Alessandra; Fisone, Gilberto; Silberberg, Gilad

    2017-05-17

    Parkinson's disease (PD) is a movement disorder caused by the loss of dopaminergic innervation, particularly to the striatum. PD patients often exhibit sensory impairments, yet the underlying network mechanisms are unknown. Here we examined how dopamine (DA) depletion affects sensory processing in the mouse striatum. We used the optopatcher for online identification of direct and indirect pathway projection neurons (MSNs) during in vivo whole-cell recordings. In control mice, MSNs encoded the laterality of sensory inputs with larger and earlier responses to contralateral than ipsilateral whisker deflection. This laterality coding was lost in DA-depleted mice due to adaptive changes in the intrinsic and synaptic properties, mainly, of direct pathway MSNs. L-DOPA treatment restored laterality coding by increasing the separation between ipsilateral and contralateral responses. Our results show that DA depletion impairs bilateral tactile acuity in a pathway-dependent manner, thus providing unexpected insights into the network mechanisms underlying sensory deficits in PD. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior.

    Science.gov (United States)

    Kobayashi, Kyogo; Nakano, Shunji; Amano, Mutsuki; Tsuboi, Daisuke; Nishioka, Tomoki; Ikeda, Shingo; Yokoyama, Genta; Kaibuchi, Kozo; Mori, Ikue

    2016-01-05

    Unveiling the molecular and cellular mechanisms underlying memory has been a challenge for the past few decades. Although synaptic plasticity is proven to be essential for memory formation, the significance of "single-cell memory" still remains elusive. Here, we exploited a primary culture system for the analysis of C. elegans neurons and show that a single thermosensory neuron has an ability to form, retain, and reset a temperature memory. Genetic and proteomic analyses found that the expression of the single-cell memory exhibits inter-individual variability, which is controlled by the evolutionarily conserved CaMKI/IV and Raf pathway. The variable responses of a sensory neuron influenced the neural activity of downstream interneurons, suggesting that modulation of the sensory neurons ultimately determines the behavioral output in C. elegans. Our results provide proof of single-cell memory and suggest that the individual differences in neural responses at the single-cell level can confer individuality. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. The Relationship of Repetitive Behavior and Sensory Behavior to Parenting Stress in Mothers of Boys with Autism and Mothers of Boys with Fragile X Syndrome

    Science.gov (United States)

    Richardson, Lolita Lisa

    2010-01-01

    This study investigated the relationship between repetitive behaviors and sensory behavior to the parenting stress of mothers of boys with fragile X syndrome and mothers of boys with autism. Participants consisted of two groups: 51 mothers with boys diagnosed with fragile X syndrome (M = 71.3, SD = 56.5) and 30 mothers with boys diagnosed with…

  19. Increased Sensory Processing Atypicalities in Parents of Multiplex ASD Families versus Typically Developing and Simplex ASD Families

    Science.gov (United States)

    Donaldson, Chelsea K.; Stauder, Johannes E. A.; Donkers, Franc C. L.

    2017-01-01

    Recent studies have suggested that sensory processing atypicalities may share genetic influences with autism spectrum disorder (ASD). To further investigate this, the adolescent/adult sensory profile (AASP) questionnaire was distributed to 85 parents of typically developing children (P-TD), 121 parents from simplex ASD families (SPX), and 54…

  20. skn-1 is required for interneuron sensory integration and foraging behavior in Caenorhabditis elegans.

    Science.gov (United States)

    Wilson, Mark A; Iser, Wendy B; Son, Tae Gen; Logie, Anne; Cabral-Costa, Joao V; Mattson, Mark P; Camandola, Simonetta

    2017-01-01

    Nrf2/skn-1, a transcription factor known to mediate adaptive responses of cells to stress, also regulates energy metabolism in response to changes in nutrient availability. The ability to locate food sources depends upon chemosensation. Here we show that Nrf2/skn-1 is expressed in olfactory interneurons, and is required for proper integration of multiple food-related sensory cues in Caenorhabditis elegans. Compared to wild type worms, skn-1 mutants fail to perceive that food density is limiting, and display altered chemo- and thermotactic responses. These behavioral deficits are associated with aberrant AIY interneuron morphology and migration in skn-1 mutants. Both skn-1-dependent AIY autonomous and non-autonomous mechanisms regulate the neural circuitry underlying multisensory integration of environmental cues related to energy acquisition.

  1. Sensorial analysis evaluation in cereal bars preserved by ionizing radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP, Centro de Tecnologia das Radiacoes, Lab. de Deteccao de Alimentos Irradiados, Travessa R. No. 400, Cidade Universitaria, CEP 05508-910, Sao Paulo (Brazil)], E-mail: villavic@ipen.br; Araujo, M.M.; Fanaro, G.B.; Rela, P.R. [Instituto de Pesquisas Energeticas e Nucleares-IPEN-CNEN/SP, Centro de Tecnologia das Radiacoes, Lab. de Deteccao de Alimentos Irradiados, Travessa R. No. 400, Cidade Universitaria, CEP 05508-910, Sao Paulo (Brazil); Mancini-Filho, J. [Faculdade de Ciencias Farmaceuticas-FCF/USP, Departamento de Alimentos e Nutricao Experimental, Lab. de Lipides, Sao Paulo (Brazil)], E-mail: jmancini@usp.br

    2007-11-15

    Gamma-rays utilized as a food-processing treatment to eliminate insect contamination is well established in food industries. Recent troubles in Brazilian cereal bars commercialization require a special consumer's attention because some products were contaminated by insects. To solve the problem, food-irradiation treatment was utilized as a safe and effective solution. The final product was free of insect contamination. The aim of this study was to determine the best radiation dose processing utilized to disinfestations and detect some change on sensorial characteristic by sensorial analysis in cereal bars. In this study, three different kinds of cereal bars were purchased in Sao Paulo (Brazil) in supermarkets and irradiated with 1.0, 2.0 and 3.0 kGy at 'Instituto de Pesquisas Energeticas e Nucleares' (IPEN-CNEN/SP). The samples were treated with ionizing radiation using a {sup 60}Co gamma-ray facility (Gammacell 220, A.E.C.L.). That radiation doses were used successfully as an anti-insect treatment in the cereal bars, since in some food industries doses up to 3.0 kGy are used to guarantee at least a dose of 1.0 kGy in internal cereal bars package. Sensorial analysis was necessary since cereal bars contain ingredients very sensitive to ionizing radiation process.

  2. Early sensory-perceptual processing deficits for affectively valenced inputs are more pronounced in schizophrenia patients with a history of violence than in their non-violent peers.

    Science.gov (United States)

    De Sanctis, Pierfilippo; Foxe, John J; Czobor, Pal; Wylie, Glenn R; Kamiel, Stephanie M; Huening, Jessica; Nair-Collins, Mike; Krakowski, Menahem I

    2013-08-01

    Individuals with schizophrenia are more prone to violent behaviors than the general population. It is increasingly recognized that processing of emotionally valenced stimuli is impaired in schizophrenia, a deficit that may play a role in aggressive behavior. Our goal was to establish whether patients with a history of violence would show more severe deficits in processing emotionally valenced inputs than non-violent patients. Using event-related potentials, we measured how early during processing of emotional valence, evidence of aberrant function was observed. A total of 42 schizophrenia patients (21 with history of violence; 21 without) and 28 healthy controls were tested. Participants performed an inhibitory control task, making speeded responses to pictorial stimuli. Pictures occasionally repeated twice and participants withheld responses to these repeats. Valenced pictures from the International Affective Picture System were presented. Results in controls showed modulations during the earliest phases of sensory processing (<100 ms) for negatively valenced pictures. A cascade of modulations ensued, involving sensory and perceptual processing stages. In contrast, neither schizophrenia group showed early differentiation. Non-violent patients showed earliest modulations beginning ∼150 ms. For violent patients, however, earliest modulations were further delayed and highly attenuated. The current study reveals sensory-perceptual processing dysfunction for negatively valenced inputs, which is particularly pronounced in aggressive patients.

  3. Early auditory sensory processing of voices is facilitated by visual mechanisms.

    Science.gov (United States)

    Schall, Sonja; Kiebel, Stefan J; Maess, Burkhard; von Kriegstein, Katharina

    2013-08-15

    How do we recognize people that are familiar to us? There is overwhelming evidence that our brains process voice and face in a combined fashion to optimally recognize both who is speaking and what is said. Surprisingly, this combined processing of voice and face seems to occur even if one stream of information is missing. For example, if subjects only hear someone who is familiar to them talking, without seeing their face, visual face-processing areas are active. One reason for this crossmodal activation might be that it is instrumental for early sensory processing of voices-a hypothesis that is contrary to current models of unisensory perception. Here, we test this hypothesis by harnessing a temporally highly resolved method, i.e., magnetoencephalography (MEG), to identify the temporal response profile of the fusiform face area in response to auditory-only voice recognition. Participants briefly learned a set of voices audio-visually, i.e., together with a talking face. After learning, we measured subjects' MEG signals in response to the auditory-only, now familiar, voices. The results revealed three key mechanisms that characterize the sensory processing of familiar speakers' voices: (i) activation in the face-sensitive fusiform gyrus at very early auditory processing stages, i.e., only 100ms after auditory onset, (ii) a temporal facilitation of auditory processing (M200), and (iii) a correlation of this temporal facilitation with recognition performance. These findings suggest that a neural representation of face information is evoked before the identity of the voice is even recognized and that the brain uses this visual representation to facilitate early sensory processing of auditory-only voices. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Sensory basis of vigilance behavior in birds: synthesis and future prospects.

    Science.gov (United States)

    Fernández-Juricic, Esteban

    2012-02-01

    Birds gather visual information through scanning behavior to make decisions relevant for survival (e.g., detecting predators and finding food). The goal of this study was (a) to review some visual properties involved in scanning behavior (retinal specialization for visual resolution and motion detection, visual acuity, and size of the blind area), and (b) hypothesize how the inter-specific variability in these properties may lead to different scanning strategies. The avian visual system has a high degree of heterogeneity in visual performance across the visual field, with some sectors providing higher levels of visual resolution and motion detection (e.g., retinal specializations) than others (e.g., peripheral retina and blind area). Thus, information quality will vary in different parts of the visual field, which contradicts some theoretical assumptions on information gathering. Birds need to move their eyes and heads to align the retinal specializations to different sectors of visual space. The rates of eye and head movements can then be used as proxies for scanning strategies. I propose specific predictions as to how each of the visual properties studied can affect scanning strategies in the context of predator detection in different habitat types and with different levels of predation risk. Establishing the degree of association between sensory specializations and scanning strategies can enhance our understanding of the evolution of anti-predator behavior. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Self-Disgust within Eating Disordered Groups: Associations with Anxiety, Disgust Sensitivity and Sensory Processing.

    Science.gov (United States)

    Bell, Katie; Coulthard, Helen; Wildbur, Diane

    2017-09-01

    This study aimed to assess the relationship between self-disgust and sensory processing within eating psychopathology. Five hundred and ninety-one women with a self-reported diagnosis of anorexia nervosa, bulimia nervosa or who had no previous history of an eating disorder completed a battery of online questionnaires measuring disgust, emotion and sensory variables. Those with an eating disorder reported significantly higher rates of self-disgust than those with no history of disordered eating. In groups of women with self-reported bulimia, self-disgust was associated with sensation avoidance and sensation seeking. Within the group with anorexia nervosa, self-disgust was associated with low registration and sensation seeking. This report is the first to examine the expression of the emotion self-disgust within eating psychopathology and examine associations of this factor with sensory processing. The emotion self-disgust needs to be further examined to understand its possible role in the onset and maintenance of disordered eating. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.

  6. Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae) submitted to a dehumidification process.

    Science.gov (United States)

    Carvalho, Carlos A L; Sodré, Geni S; Fonseca, Antonio A O; Alves, Rogério M O; Souza, Bruno A; Clarton, Lana

    2009-03-01

    This study was conducted to evaluate the effect of a dehumidification process on the physicochemical and sensory characteristics of stingless-bee honey. Melipona scutellaris and M. quadrifasciata honey samples were submitted to a dehumidification process and to physicochemical (reducing sugars, apparent sucrose, moisture, diastatic activity, hydroxymethylfurfural, ash, pH, acidity, and electric conductivity) and sensory evaluations (fluidity, color, aroma, crystallization,flavor,and acceptability). The results indicated that the dehumidification process does not interfere with honey quality and acceptability.

  7. FMRI Reveals Abnormal Central Processing of Sensory and Pain Stimuli in Ill Gulf War Veterans

    Science.gov (United States)

    Gopinath, Kaundinya; Gandhi, Parina; Goyal, Aman; Jiang, Lei; Fang, Yan; Ouyang, Luo; Ganji, Sandeepkumar; Buhner, David; Ringe, Wendy; Spence, Jeffrey; Biggs, Melanie; Briggs, Richard; Haley, Robert

    2012-01-01

    Many veterans chronically ill from the 1991 Gulf War exhibit symptoms of altered sensation, including chronic pain. In this study of 55 veterans of a Construction Battalion previously examined in 1995–1996 and 1997–1998, brain activation to innocuous and noxious heat stimuli was assessed in 2008–2009 with a quantitative sensory testing fMRI protocol in control veterans and groups representing three syndrome variants. Testing outside the scanner revealed no significant differences in warm detection or heat pain threshold among the four groups. In the fMRI study, Syndrome 1 and Syndrome 2, but not Syndrome 3, exhibited hypo-activation to innocuous heat and hyper-activation to noxious heat stimuli compared to controls. The results indicate abnormal central processing of sensory and painful stimuli in 2 of 3 variants of Gulf War illness and call for a more comprehensive study with a larger, representative sample of veterans. PMID:22327017

  8. Acquisition and processing method for human sensorial, sensitive, motory and phonatory circuits reaction times

    International Nuclear Information System (INIS)

    Doche, Claude

    1972-01-01

    This work describes a storage and acquisition device and a method for human sensorial and sensitive motory and phonatory reaction times. The considered circuits are those made with the visual, auditory and sensory receptor organs and the motory or phonatory effector organs. The anatomo-physiological localization of these circuits allows us to appreciate the possibilities of the central nervous system for different angles. The experimental population is made of normal and pathological individuals (individuals having tumoral or vascular, localized or diffused cerebral lesions or parkinsonian individuals). The parameter processing method is based on the multivariate analysis results and allows us to position each individual compared to a normal individual and to appreciate the weight of each circuit in this positioning. Clinical exploitation results give to this method a prognosis and therapeutic interest. It seems though untimely to talk about its diagnosis value. (author) [fr

  9. A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila

    Directory of Open Access Journals (Sweden)

    Chertemps Thomas

    2012-06-01

    Full Text Available Abstract Background Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to 'odor on', but also to 'odor off'. This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6, in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis-vaccenyl acetate (cVA. Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVA-induced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE in male

  10. Investigating the Relationship between Sensory Processing and Job Satisfaction in Occupational Therapists Working in Shiraz Cit

    Directory of Open Access Journals (Sweden)

    Sahar Ghanbari

    2015-09-01

    Full Text Available Background: job satisfaction is referred to a set of individual’s positive and negative attitudes toward his/her job. Personality traits of individuals are among the factors contributing to job satisfaction. According to Dunn model, people receive information based on their self-regulatory strategies and sensory thresholds. Then behave accordingly and in response to the environment. This paper examines the relationship between sensory processing and job satisfaction especially in occupational therapist employing in Shiraz (2014. Methods: This study is descriptive-analytic. The sample consisted of all 33 occupational therapists working in Shiraz City who work in private and public sectors, part-time and full-time of both genders. After obtaining written consent, the demographic characteristics questionnaire, adult sensory profile and Minnesota Job Satisfaction Test were obtained. The results were analyzed by SPSS 21 software as well as Spearman’s and Pearson chi square tests. Results: No statistical correlation was found between job satisfaction and all four quadrants including the first quadrant (P=0.441 and second (P=0.943 and third (P=0.650 and fourth (P=0.338. In addition, statistically, there was no relationship between job satisfaction and various variables such as participants’ ages (P=0.51, gender (P=0.401, marital status (P=0.114, educational level (P=0.073, job experience (P=0.403, average of daily work hours (P=0.617 and at end the type of contract (P=0.079. Conclusion: The sensory processing cannot directly determine people’s satisfaction with their jobs. Job satisfaction is a complex issue that is influenced by different internal and external factors, and cannot be considered as an element for determining job satisfaction of therapists.

  11. Effects of prenatal sensory stimulation on heart rate and behavioral measures of arousal in bobwhite quail embryos.

    Science.gov (United States)

    Reynolds, Greg D; Lickliter, Robert

    2002-09-01

    Although a number of studies have demonstrated the effects of altered prenatal experience on subsequent behavioral development, how these effects are achieved remains a topic of enduring interest. The present study examined the immediate effects of unimodal and multimodal prenatal sensory stimulation on physiological and behavioral arousal in bobwhite quail embryos. Embryos were videotaped and their heart rate was monitored during a 4-min exposure period to (a) no supplemental sensory stimulation, (b) unimodal auditory stimulation, (c) unimodal visual stimulation, (d) two sources of concurrent auditory stimulation, or (e) concurrent auditory/visual stimulation. Results indicated that quail embryos' overall activity levels and heart rate can be significantly affected by the type of prenatal sensory stimulation provided during the period prior to hatching. In particular, multimodal stimulation increased both behavioral activity levels and heart rate compared to controls. Across the unimodal and intramodal groups, however, behavioral and physiological measures revealed different patterns of activity in response to supplemental sensory stimulation, highlighting the value of using multiple levels of analysis in exploring arousal mechanisms involved in prenatal perceptual responsiveness. Copyright 2002 Wiley Periodicals, Inc. Dev Psychobiol 41: 112-122, 2002. Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/dev.10058

  12. The impact of the manufacturing process on the hardness and sensory properties of milk chocolate

    OpenAIRE

    Zarić, Danica B.; Pajin, Biljana S.; Lončarević, Ivana S.; Šoronja-Simović, Dragana M.; Šereš, Zita I.

    2012-01-01

    The aim of this paper was to examine the impact of the manufacturing process on the textural characteristics and sensory properties of milk chocolate. The research was conducted on the samples of chocolate produced in a ball mill during 30, 60 and 90 minutes of refining, each of them being pre-crystallized at 26, 28 and 30°C. A chocolate mass of identical ingredient composition was also produced using a standard manufacturing process at the same pre-crystallization temperatures. Chocola...

  13. The active electric sense of weakly electric fish: from electric organ discharge to sensory processing and behaviour

    Directory of Open Access Journals (Sweden)

    Krahe Rüdiger

    2016-01-01

    Full Text Available Sensory systems have been shaped by evolution to extract information that is relevant for decision making. In order to understand the mechanisms used by sensory systems for filtering the incoming stream of sensory input, it is important to have a quantitative understanding of the natural sensory scenes that are to be processed. Weakly electric fish lead a rather cryptic nocturnal life in often turbid tropical rainforest streams. They produce electric discharges and sense perturbations of their selfgenerated electric field for prey detection and navigation, and also use their active sense for communication in the context of courtship and aggression. The fact that they produce their electric signals throughout day and night permits the use of electrode arrays to track the movements of multiple individual fish and monitor their communication interactions, thus offering a window into their electrosensory world. This approach yields unprecedented access to information on the biology of these fishes and also on the statistical properties of the sensory scenes that are to be processed by their electrosensory system. The electrosensory system shares many organizational features with other sensory systems, in particular, the use of multiple topographic maps. In fact, the sensory surface (the skin is represented in three parallel maps in the hindbrain, with each map covering the receptor organ array with six different cell types that project to the next higher level of processing. Thus, the electroreceptive body surface is represented a total of 18 times in the hindbrain, with each representation having its specific filter properties and degree of response plasticity. Thus, the access to the sensory world of these fish as well as the manifold filtering of the sensory input makes these fish an excellent model system for exploring the cell-intrinsic and network characteristics underlying the extraction of behaviourally relevant sensory information.

  14. A comparative study of sensory processing in children with and without Autism Spectrum Disorder in the home and classroom environments.

    Science.gov (United States)

    Fernández-Andrés, Ma Inmaculada; Pastor-Cerezuela, Gemma; Sanz-Cervera, Pilar; Tárraga-Mínguez, Raúl

    2015-03-01

    Sensory processing and higher integrative functions impairments are highly prevalent in children with ASD. Context should be considered in analyzing the sensory profile and higher integrative functions. The main objective of this study is to compare sensory processing, social participation and praxis in a group of 79 children (65 males and 14 females) from 5 to 8 years of age (M=6.09) divided into two groups: ASD Group (n=41) and Comparison Group (n=38). The Sensory Processing Measure (SPM) was used to evaluate the sensory profile of the children: parents reported information about their children's characteristics in the home environment, and teachers reported information about the same characteristics in the classroom environment. The ASD Group obtained scores that indicate higher levels of dysfunction on all the assessed measures in both environments, with the greatest differences obtained on the social participation and praxis variables. The most affected sensory modalities in the ASD Group were hearing and touch. Only in the ASD Group were significant differences found between the information reported by parents and what was reported by teachers: specifically, the teachers reported greater dysfunction than the parents in social participation (p=.000), touch (p=.003) and praxis (p=.010). These results suggest that the context-specific qualities found in children with ASD point out the need to receive information from both parents and teachers during the sensory profile assessment process, and use context-specific assessments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of radiation processing on nutritional and sensory quality of minimally processed green gram and garden pea sprouts

    International Nuclear Information System (INIS)

    Hajare, Sachin N.; Saroj, Sunil D.; Dhokane, Varsha S.; Shashidhar, R.; Bandekar, Jayant R.

    2007-01-01

    In the present study, radiation processing of minimally processed green gram and garden pea sprouts was carried out at doses 1 and 2 kGy. The effect of this treatment on different quality parameters like vitamin C content, total carotenoids content, sensory quality, texture, and color was determined over a storage period of 12 days at two different temperatures, a 4 and 8 deg. C. It was observed that treatment of irradiation (1 and 2 kGy) and storage period did not have any significant effect on vitamin C content of control as well as irradiated sprout samples stored at 4 and 8 deg.C. Total carotenoids content of sprouts stored at 4, as well as at 8 deg. C, for 12 days remained almost unchanged after irradiation as well as during storage. Sensory evaluation studies showed that irradiation had no significant effect (p>0.05) on the ratings of any of the sensory attributes in green gram as well as garden pea sprouts and, thus, did not alter the overall acceptability of the irradiated sprouts. Textural studies revealed that there was no significant change (p>0.05) in the firmness of irradiated sprouts (1 and 2 kGy) as compared to control samples at both the temperatures. Storage period of 12 days also did not affect the firmness of sprouts significantly. Color measurement results indicated no drastic change in the color coordinates of the green gram samples except greenness of controls stored at both the temperatures, which showed insignificant decrease in the a * values. Thus, the nutritional as well as sensory quality of minimally processed green gram and garden pea sprouts did not alter significantly after gamma irradiation with a dose of 1 and 2 kGy

  16. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction.

    Science.gov (United States)

    Demopoulos, Carly; Yu, Nina; Tripp, Jennifer; Mota, Nayara; Brandes-Aitken, Anne N; Desai, Shivani S; Hill, Susanna S; Antovich, Ashley D; Harris, Julia; Honma, Susanne; Mizuiri, Danielle; Nagarajan, Srikantan S; Marco, Elysa J

    2017-01-01

    This study compared magnetoencephalographic (MEG) imaging-derived indices of auditory and somatosensory cortical processing in children aged 8-12 years with autism spectrum disorder (ASD; N = 18), those with sensory processing dysfunction (SPD; N = 13) who do not meet ASD criteria, and typically developing control (TDC; N = 19) participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  17. Magnetoencephalographic Imaging of Auditory and Somatosensory Cortical Responses in Children with Autism and Sensory Processing Dysfunction

    Directory of Open Access Journals (Sweden)

    Carly Demopoulos

    2017-05-01

    Full Text Available This study compared magnetoencephalographic (MEG imaging-derived indices of auditory and somatosensory cortical processing in children aged 8–12 years with autism spectrum disorder (ASD; N = 18, those with sensory processing dysfunction (SPD; N = 13 who do not meet ASD criteria, and typically developing control (TDC; N = 19 participants. The magnitude of responses to both auditory and tactile stimulation was comparable across all three groups; however, the M200 latency response from the left auditory cortex was significantly delayed in the ASD group relative to both the TDC and SPD groups, whereas the somatosensory response of the ASD group was only delayed relative to TDC participants. The SPD group did not significantly differ from either group in terms of somatosensory latency, suggesting that participants with SPD may have an intermediate phenotype between ASD and TDC with regard to somatosensory processing. For the ASD group, correlation analyses indicated that the left M200 latency delay was significantly associated with performance on the WISC-IV Verbal Comprehension Index as well as the DSTP Acoustic-Linguistic index. Further, these cortical auditory response delays were not associated with somatosensory cortical response delays or cognitive processing speed in the ASD group, suggesting that auditory delays in ASD are domain specific rather than associated with generalized processing delays. The specificity of these auditory delays to the ASD group, in addition to their correlation with verbal abilities, suggests that auditory sensory dysfunction may be implicated in communication symptoms in ASD, motivating further research aimed at understanding the impact of sensory dysfunction on the developing brain.

  18. Effectiveness of Cognitive and Occupation-Based Interventions for Children With Challenges in Sensory Processing and Integration: A Systematic Review.

    Science.gov (United States)

    Pfeiffer, Beth; Clark, Gloria Frolek; Arbesman, Marian

    This systematic review examines the evidence for the effectiveness of cognitive and occupation-based interventions to improve self-regulation in children and youth who have challenges in processing and integrating sensory information. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis guided the methodology. Five studies identified through a comprehensive database search met the inclusion criteria and were separated into categories of cognitive and occupation-based interventions. Articles that did not specifically measure sensory integration (SI) or processing challenges were omitted. Synthesis of the articles suggests that self-regulation (e.g., sensory processing, emotional regulation, executive functioning, social function) improved with cognitive and occupation-based interventions. Because the number of studies that measured sensory processing or SI challenges was limited, researchers are encouraged to include these measures in future research to understand the impact of a broader range of cognitive and occupation-based interventions. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  19. Possible anatomical pathways for short-latency multisensory integration processes in primary sensory cortices.

    Science.gov (United States)

    Henschke, Julia U; Noesselt, Tömme; Scheich, Henning; Budinger, Eike

    2015-03-01

    Multisensory integration does not only recruit higher-level association cortex, but also low-level and even primary sensory cortices. Here, we will describe and quantify two types of anatomical pathways, a thalamocortical and a corticocortical that possibly underlie short-latency multisensory integration processes in the primary auditory (A1), somatosensory (S1), and visual cortex (V1). Results were obtained from Mongolian gerbils, a common model-species in neuroscience, using simultaneous injections of different retrograde tracers into A1, S1, and V1. Several auditory, visual, and somatosensory thalamic nuclei project not only to the primary sensory area of their own (matched) but also to areas of other (non-matched) modalities. The crossmodal output ratios of these nuclei, belonging to both core and non-core sensory pathways, vary between 0.4 and 63.5 % of the labeled neurons. Approximately 0.3 % of the sensory thalamic input to A1, 5.0 % to S1, and 2.1 % to V1 arise from non-matched nuclei. V1 has most crossmodal corticocortical connections, projecting strongest to S1 and receiving a similar amount of moderate inputs from A1 and S1. S1 is mainly interconnected with V1. A1 has slightly more projections to V1 than S1, but gets just faint inputs from there. Concerning the layer-specific distribution of the retrogradely labeled somata in cortex, V1 provides the most pronounced feedforward-type outputs and receives (together with S1) most pronounced feedback-type inputs. In contrast, A1 has most pronounced feedback-type outputs and feedforward-type inputs in this network. Functionally, the different sets of thalamocortical and corticocortical connections could underlie distinctive types of integration mechanisms for different modality pairings.

  20. A lifespan perspective on semantic processing of concrete concepts: does a sensory/motor model have the potential to bridge the gap?

    Science.gov (United States)

    Antonucci, Sharon M; Alt, Mary

    2011-12-01

    Research regarding semantic knowledge of objects is often conducted independently in children and adults. Review of these bodies of evidence suggests that the two literatures are often complementary. It seems critical to determine what we can learn from a developmental perspective, toward the common goal of understanding semantic organization. Here we focus on the proposal that semantic knowledge about concrete concepts may be built on the foundation of sensory/motor processes. In particular, we focus on a moderate formulation of this viewpoint, the sensory/motor model of semantic representations of objects (e.g., Gainotti 2007; Martin 2007), which has been examined utilizing behavioral, neuroimaging, and neuropsychological evidence. Taken together, behavioral and neuroimaging studies with infants, older children, and adults have suggested that patterns laid down in early childhood remain salient throughout the lifespan and may also predict patterns of deficit that emerge following brain injury.

  1. The Relationship Between Sensory-Processing Disorders and Sleep Disturbances in School-Aged Autistic Children in Shiraz, 2015

    Directory of Open Access Journals (Sweden)

    Ghanbari

    2016-04-01

    Full Text Available Background Autism is a neurological disorder that limits communication, socialization, and participation of children in symbolic play. Sensory processing disorders are common characteristics (45% to 96% of children with pervasive development disorders, including. Sleep disorders are also more prevalent in autistic children than in normal children. Objectives This study aimed to investigate the relationship between sensory processing disorders and sleep disturbances in school-aged autistic children. Patients and Methods This study is quantitative, observational, and cross-sectional. 35 school-aged autistic children in Shiraz, Iran were selected using cluster sampling. A demographic questionnaire, short sensory profile (SSP, and the sleep disturbance scale for children (SDSC were used. The Pearson correlation coefficient and Pearson chi-square were used during data analysis. Results Results shows that autistic children show clear differences from normal function (74.3%, possible differences with normal function (20%, and normal function (5.7% in their total sensory processing scores. 95.3% of autistic children had some degrees of abnormal sensory processing disorder. Also, 68.6% of the participants suffered from sleep disorders. However, there was no relationship between sensory processing disorders and sleep disturbances in children with autism (P value = 0.83. Also, there was no correlation between the subscales of sensory processing disorders and the subscales of sleep disturbances. Conclusions The results showed that despite the simultaneous high prevalence of sleep disturbances and sensory processing disorders in children with autism, there isn’t a significant relationship between the two conditions among these children.

  2. Propofol disrupts functional interactions between sensory and high-order processing of auditory verbal memory.

    Science.gov (United States)

    Liu, Xiaolin; Lauer, Kathryn K; Ward, Barney D; Rao, Stephen M; Li, Shi-Jiang; Hudetz, Anthony G

    2012-10-01

    Current theories suggest that disrupting cortical information integration may account for the mechanism of general anesthesia in suppressing consciousness. Human cognitive operations take place in hierarchically structured neural organizations in the brain. The process of low-order neural representation of sensory stimuli becoming integrated in high-order cortices is also known as cognitive binding. Combining neuroimaging, cognitive neuroscience, and anesthetic manipulation, we examined how cognitive networks involved in auditory verbal memory are maintained in wakefulness, disrupted in propofol-induced deep sedation, and re-established in recovery. Inspired by the notion of cognitive binding, an functional magnetic resonance imaging-guided connectivity analysis was utilized to assess the integrity of functional interactions within and between different levels of the task-defined brain regions. Task-related responses persisted in the primary auditory cortex (PAC), but vanished in the inferior frontal gyrus (IFG) and premotor areas in deep sedation. For connectivity analysis, seed regions representing sensory and high-order processing of the memory task were identified in the PAC and IFG. Propofol disrupted connections from the PAC seed to the frontal regions and thalamus, but not the connections from the IFG seed to a set of widely distributed brain regions in the temporal, frontal, and parietal lobes (with exception of the PAC). These later regions have been implicated in mediating verbal comprehension and memory. These results suggest that propofol disrupts cognition by blocking the projection of sensory information to high-order processing networks and thus preventing information integration. Such findings contribute to our understanding of anesthetic mechanisms as related to information and integration in the brain. Copyright © 2011 Wiley Periodicals, Inc.

  3. Evaluation of sensorial analysis in mate (Ilex Paraguariensis) processed by gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Furgeri, Camilo; Sabundjian, Ingrid T.; Silva, Priscila V.; Salum, Debora C.; Villavicencio, A.L.C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: camilo.furgeri@gmail.com; Bastos, Deborah H.M. [Universidade de Sao Paulo USP, SP (Brazil). Faculdade de Saude Publica. Dept. de Nutricao Experimental]. E-mail: dmbastos@usp.br

    2007-07-01

    Mate (Ilex paraguariensis) is a native species from South America which is widely consumed as chimarrao (made white hot water) and terere (made white could water) beverages. One of the basic questions for the food area is the relation between the quality observed by the consumers and the presence of compounds responsible for its flavor and aroma, essential parameters of the food quality. The radiation food processing has been demonstrating great effectiveness in the combat of pathogenic agents while little compromising nutritional value and sensorial properties of foods. This boarding affects directly the food industry, which represent quality and aggregate product value. (author)

  4. Evaluation of sensorial analysis in mate (Ilex Paraguariensis) processed by gamma radiation

    International Nuclear Information System (INIS)

    Furgeri, Camilo; Sabundjian, Ingrid T.; Silva, Priscila V.; Salum, Debora C.; Villavicencio, A.L.C.H.; Bastos, Deborah H.M.

    2007-01-01

    Mate (Ilex paraguariensis) is a native species from South America which is widely consumed as chimarrao (made white hot water) and terere (made white could water) beverages. One of the basic questions for the food area is the relation between the quality observed by the consumers and the presence of compounds responsible for its flavor and aroma, essential parameters of the food quality. The radiation food processing has been demonstrating great effectiveness in the combat of pathogenic agents while little compromising nutritional value and sensorial properties of foods. This boarding affects directly the food industry, which represent quality and aggregate product value. (author)

  5. Theta phase coherence in affective picture processing reveals dysfunctional sensory integration in psychopathic offenders.

    Science.gov (United States)

    Tillem, Scott; Ryan, Jonathan; Wu, Jia; Crowley, Michael J; Mayes, Linda C; Baskin-Sommers, Arielle

    2016-09-01

    Psychopathic offenders are described as emotionally cold, displaying deficits in affective responding. However, research demonstrates that many of the psychopathy-related deficits are moderated by attention, such that under conditions of high attentional and perceptual load psychopathic offenders display deficits in affective responses, but do not in conditions of low load. To date, most studies use measures of defensive reflex (i.e., startle) and conditioning manipulations to examine the impact of load on psychopathy-related processing, but have not examined more direct measures of attention processing. In a sample of adult male offenders, the present study examined time-frequency EEG phase coherence in response to a picture-viewing paradigm that manipulated picture familiarity to assess neural changes in processing based on perceptual demands. Results indicated psychopathy-related differences in the theta response, an index of readiness to perceive and integrate sensory information. These data provide further evidence that psychopathic offenders have disrupted integration of sensory information. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Sensory processing during kinesthetic aftereffect following illusory hand movement elicited by tendon vibration.

    Science.gov (United States)

    Kito, Tomonori; Hashimoto, Toshihiro; Yoneda, Tsugutake; Katamoto, Shizuo; Naito, Eiichi

    2006-10-09

    We investigated how the human sensory-motor system elicits a somatosensory aftereffect. Tendon vibration of a limb excites the muscle spindle afferents that contribute to eliciting illusory movements of the limb. After the cessation of vibration, a transient sensation in which the vibrated limb returns towards its original position (kinesthetic aftereffect) is often experienced, even in the absence of the afferent inputs recruited by the vibration. We vibrated the tendon of either the right wrist extensor or flexor muscle that elicited an illusory flexion or extension movement, which was followed by its corresponding extension or flexion aftereffect. First, we psychophysically investigated how the preceding illusory movement affects the aftereffect. Second, we examined the cortico-spinal excitability during the aftereffect to evaluate its changes from the time during the illusion. We measured the amplitude of the motor-evoked potential that is evoked by a single-pulse transcranial magnetic stimulation to the hand section of the contralateral motor cortex (M1). All 19 subjects experienced the aftereffect, and the amount of aftereffect was approximately 70% of the preceding illusion. During the illusion, the cortico-spinal excitability increased more in non-vibrated than in vibrated muscle, so as to reflect the illusory directions. During the aftereffect, the excitability was significantly reduced only in the non-vibrated muscle, with no change in the vibrated muscle, which, in turn, caused an opposite pattern in the unbalanced excitability between the two muscles, and the degree of unbalanced excitability was correlated with the sensation of aftereffect. The kinesthetic aftereffect seems to be elicited by a sensory process that is determined by the preceding illusory movements. Motor-cortical processing of the unbalanced sensory information from the stimulated and non-stimulated muscles may contribute to the elicitation of kinesthetic aftereffect.

  7. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat

    Science.gov (United States)

    Zheng, Lingxing; Walls, Michael; Allette, Yohance M.; White, Fletcher A.; Shi, Riyi

    2013-01-01

    Growing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1-dependent mechanism. Here we report that there are enhanced levels of acrolein and increased neuronal sensitivity to the aldehyde for at least 14 days after SCI. Concurrent with injury-induced increases in acrolein concentration is an increased expression of TRPA1 in the lumbar (L3-L6) sensory ganglia. As proof of the potential pronociceptive role for acrolein, intrathecal injections of acrolein revealed enhanced sensitivity to both tactile and thermal stimuli for up to 10 days, supporting the compound’s pro-nociceptive functionality. Treatment of SCI animals with the acrolein scavenger hydralazine produced moderate improvement in tactile responses as well as robust changes in thermal sensitivity for up to 49 days. Taken together, these data suggests that acrolein directly modulates SCI-associated pain behavior, making it a novel therapeutic target for preclinical and clinical SCI as an analgesic. PMID:24147766

  8. TRPM7 is required within zebrafish sensory neurons for the activation of touch-evoked escape behaviors

    Science.gov (United States)

    Low, Sean E.; Amburgey, Kimberly; Horstick, Eric; Linsley, Jeremy; Sprague, Shawn M.; Cui, Wilson W.; Zhou, Weibin; Hirata, Hiromi; Saint-Amant, Louis; Hume, Richard I.; Kuwada, John Y.

    2011-01-01

    Mutations in the gene encoding TRPM7 (trpm7), a member of the TRP superfamily of cation channels that possesses an enzymatically active kinase at its carboxyl terminus, cause the touch-unresponsive zebrafish mutant touchdown. We identified and characterized a new allele of touchdown, as well as two previously reported alleles, and found that all three alleles harbor mutations which abolish channel activity. Through the selective restoration of TRPM7 expression in sensory neurons we found that TRPM7’s kinase activity, and selectivity for divalent cations over monovalent cations, were dispensable for touch-evoked activation of escape behaviors in zebrafish. Additional characterization revealed that sensory neurons were present and capable of responding to tactile stimuli in touchdown mutants, indicating that TRPM7 is not required for sensory neuron survival or mechanosensation. Finally, exposure to elevated concentrations of divalent cations was found to restore touch-evoked behaviors in touchdown mutants. Collectively these findings are consistent with a role for zebrafish TRPM7 within sensory neurons in the modulation of neurotransmitter release at central synapses, similar to that proposed for mammalian TRPM7 at peripheral synapses. PMID:21832193

  9. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation.

    Science.gov (United States)

    Uvnäs-Moberg, Kerstin; Handlin, Linda; Petersson, Maria

    2014-01-01

    Oxytocin, a hypothalamic nonapeptide, is linked to increased levels of social interaction, well-being and anti-stress effects. The effects of oxytocin that is released by sensory stimulation during different kinds of interactive behaviors are often underestimated or even forgotten. In fact, many of the positive effects caused during interaction, such a wellbeing, stress reduction and even health promotion, are indeed linked to oxytocin released in response to activation of various types of sensory nerves. Oxytocin is released in response to activation of sensory nerves during labor, breastfeeding and sexual activity. In addition oxytocin is released in response to low intensity stimulation of the skin, e.g., in response to touch, stroking, warm temperature, etc. Consequently oxytocin is not only released during interaction between mothers and infants, but also during positive interaction between adults or between humans and animals. Finally oxytocin is also released in response to suckling and food intake. Oxytocin released in the brain in response to sensory stimulation as a consequence of these types of interactive behaviors, contributes to every day wellbeing and ability to handle stress. Food intake or sex may be used or even abused to achieve oxytocin-linked wellbeing and stress relief to compensate for lack of good relationships or when the levels of anxiety are high. The present review article will summarize the role played by oxytocin released by sensory (in particular somatosensory) stimulation, during various kinds of interactive behaviors. Also the fact that the anti-stress effects of oxytocin are particularly strong when oxytocin is released in response to "low intensity" stimulation of the skin will be highlighted.

  10. Self-soothing behaviors with particular reference to oxytocin release induced by non-noxious sensory stimulation

    Directory of Open Access Journals (Sweden)

    Kerstin eUvnäs-Moberg

    2015-01-01

    Full Text Available Oxytocin, a hypothalamic nonapeptide, is linked to increased levels of social interaction, well-being and anti-stress effects. The effects of oxytocin that is released by sensory stimulation during different kinds of interactive behaviors are often underestimated or even forgotten. In fact, many of the positive effects caused during interaction, such a wellbeing, stress reduction and even health promotion, are indeed linked to oxytocin released in response to activation of various types of sensory nerves. Oxytocin is released in response to activation of sensory nerves during labor, breastfeeding and sexual activity. In addition oxytocin is released in response to low intensity stimulation of the skin, e.g. in response to touch, stroking, warm temperature etc . Consequently oxytocin is not only released during interaction between mothers and infants, but also during positive interaction between adult or between humans and animals. Finally oxytocin is also released in response to suckling and food intake. Oxytocin released in the brain in response to sensory stimulation as a consequence of these types of interactive behaviors, contributes to every day wellbeing and ability to handle stress. Food intake or sex may be used or even abused to achieve oxytocin-linked wellbeing and stress relief to compensate for lack of good relationships or when the levels of anxiety are high. The present review article will summarize the role played by oxytocin released by sensory (in particular somatosensory stimulation, during various kinds of interactive behaviors. Also the fact that the anti-stress effects of oxytocin are particularly strong when oxytocin is released in response to low intensity stimulation of the skin will be highlighted.

  11. Improving therapeutic outcomes in autism spectrum disorders: Enhancing social communication and sensory processing through the use of interactive robots.

    Science.gov (United States)

    Sartorato, Felippe; Przybylowski, Leon; Sarko, Diana K

    2017-07-01

    For children with autism spectrum disorders (ASDs), social robots are increasingly utilized as therapeutic tools in order to enhance social skills and communication. Robots have been shown to generate a number of social and behavioral benefits in children with ASD including heightened engagement, increased attention, and decreased social anxiety. Although social robots appear to be effective social reinforcement tools in assistive therapies, the perceptual mechanism underlying these benefits remains unknown. To date, social robot studies have primarily relied on expertise in fields such as engineering and clinical psychology, with measures of social robot efficacy principally limited to qualitative observational assessments of children's interactions with robots. In this review, we examine a range of socially interactive robots that currently have the most widespread use as well as the utility of these robots and their therapeutic effects. In addition, given that social interactions rely on audiovisual communication, we discuss how enhanced sensory processing and integration of robotic social cues may underlie the perceptual and behavioral benefits that social robots confer. Although overall multisensory processing (including audiovisual integration) is impaired in individuals with ASD, social robot interactions may provide therapeutic benefits by allowing audiovisual social cues to be experienced through a simplified version of a human interaction. By applying systems neuroscience tools to identify, analyze, and extend the multisensory perceptual substrates that may underlie the therapeutic benefits of social robots, future studies have the potential to strengthen the clinical utility of social robots for individuals with ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Sensorial effects of gamma radiation processing on cinnamon (Laurus cinnamomum) and nut meg (Myristica fragans)

    Energy Technology Data Exchange (ETDEWEB)

    Salum, Debora C.; Sabundjian, Ingrid T.; Silva, Priscila V.; Furgeri, Camilo; Villavicencio, Anna L.C.H. [Instituto de Pesquisas Energeticas e Nucleares IPEN/CNEN-SP, Sao Paulo, SP (Brazil). Centro de Tecnologia das Radiacoes. Lab. de Deteccao de Alimentos Irradiados]. E-mails: villavic@ipen.br; dcsalum@ipen.br; Purgatto, Eduardo [Universidade de Sao Paulo, SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental]. E-mail: epurgatt@usp.br

    2007-07-01

    Food irradiation is the processing of food products by ionizing radiation in order, among other things, to control food borne pathogens, reduce microbial load and insect infestation, inhibit the germination of root crops, and extend the durable life of perishable products. Irradiation of dried food ingredients, particularly herbs and spices, has a great application potential, and has already been implemented in many countries. Spice irradiation is performed to increase the hygienic quality and used as decontamination processes instead of fumigation methods. European Community approves irradiation processing as an effective residue-free alternative. The present paper evaluates the effect of ionizing radiation on sensorial properties of cinnamon (Laurus cinnamomum) and nut meg (Myristica fragans). The samples have been irradiated in multipurpose irradiator of {sup 60}Co in the doses: 0, 5, 10, 15, 20 e 25 kGy. (author)

  13. Prenatal sensory experience affects hatching behavior in domestic chicks (Gallus gallus) and Japanese quail chicks (Coturnix coturnix japonica).

    Science.gov (United States)

    Sleigh, Merry J; Casey, Michael B

    2014-07-01

    Species-typical developmental outcomes result from organismic and environmental constraints and experiences shared by members of a species. We examined the effects of enhanced prenatal sensory experience on hatching behaviors by exposing domestic chicks (n = 95) and Japanese quail (n = 125) to one of four prenatal conditions: enhanced visual stimulation, enhanced auditory stimulation, enhanced auditory and visual stimulation, or no enhanced sensory experience (control condition). In general, across species, control embryos had slower hatching behaviors than all other embryos. Embryos in the auditory condition had faster hatching behaviors than embryos in the visual and control conditions. Auditory-visual condition embryos showed similarities to embryos exposed to either auditory or visual stimulation. These results suggest that prenatal sensory experience can influence hatching behavior of precocial birds, with the type of stimulation being a critical variable. These results also provide further evidence that species-typical outcomes are the result of species-typical prenatal experiences. © 2013 Wiley Periodicals, Inc.

  14. Increased Sensory Processing Atypicalities in Parents of Multiplex ASD Families Versus Typically Developing and Simplex ASD Families

    OpenAIRE

    Donaldson, Chelsea K.; Stauder, Johannes E. A.; Donkers, Franc C. L.

    2016-01-01

    Recent studies have suggested that sensory processing atypicalities may share genetic influences with autism spectrum disorder (ASD). To further investigate this, the adolescent/adult sensory profile (AASP) questionnaire was distributed to 85 parents of typically developing children (P-TD), 121 parents from simplex ASD families (SPX), and 54 parents from multiplex ASD families (MPX). After controlling for gender and presence of mental disorders, results showed that MPX parents significantly d...

  15. Electrophysiological evidence for age effects on sensory memory processing of tonal patterns.

    Science.gov (United States)

    Rimmele, Johanna; Sussman, Elyse; Keitel, Christian; Jacobsen, Thomas; Schröger, Erich

    2012-06-01

    In older adults, difficulties processing complex auditory scenes, such as speech comprehension in noisy environments, might be due to a specific impairment of temporal processing at early, automatic processing stages involving auditory sensory memory (ASM). Even though age effects on auditory temporal processing have been well-documented, there is a paucity of research on how ASM processing of more complex tone-patterns is altered by age. In the current study, age effects on ASM processing of temporal and frequency aspects of two-tone patterns were investigated using a passive listening protocol. The P1 component, the mismatch negativity (MMN) and the P3a component of event-related brain potentials (ERPs) to tone frequency and temporal pattern deviants were recorded in younger and older adults as a measure of auditory event detection, ASM processing, and attention switching, respectively. MMN was elicited with smaller amplitude to both frequency and temporal deviants in older adults. Furthermore, P3a was elicited only in the younger adults. In conclusion, the smaller MMN amplitude indicates that automatic processing of both frequency and temporal aspects of two-tone patterns is impaired in older adults. The failure to initiate an attention switch, suggested by the absence of P3a, indicates that impaired ASM processing of patterns may lead to less distractibility in older adults. Our results suggest age-related changes in ASM processing of patterns that cannot be explained by an inhibitory deficit. PsycINFO Database Record (c) 2012 APA, all rights reserved

  16. Parental or Teacher Education and Coaching to Support Function and Participation of Children and Youth With Sensory Processing and Sensory Integration Challenges: A Systematic Review.

    Science.gov (United States)

    Miller-Kuhaneck, Heather; Watling, Renee

    This systematic review examines the literature published from January 2007 through May 2015 related to the effectiveness of occupational therapy interventions using parental or teacher education and coaching with children with challenges in sensory processing and sensory integration (SP-SI). Of more than 11,000 abstracts and 86 articles that were considered, only 4 met the criteria and were included in this review. Studies of parental training and coaching for children with challenges in SP-SI and comorbid autism spectrum disorder have suggested that educational or coaching programs could result in positive outcomes for both parents and children, often in a relatively short time period. Recommendations include a greater focus on providing educational interventions for parents and teachers and including specific assessment of SP-SI before implementing interventions meant to address those issues. Specific recommendations for future research are provided. Copyright © 2018 by the American Occupational Therapy Association, Inc.

  17. Foodborne Pathogens Prevention and Sensory Attributes Enhancement in Processed Cheese via Flavoring with Plant Extracts.

    Science.gov (United States)

    Tayel, Ahmed A; Hussein, Heba; Sorour, Noha M; El-Tras, Wael F

    2015-12-01

    Cheese contaminations with foodborne bacterial pathogens, and their health outbreaks, are serious worldwide problems that could happen from diverse sources during cheese production or storage. Plants, and their derivatives, were always regarded as the potential natural and safe antimicrobial alternatives for food preservation and improvement. The extracts from many plants, which are commonly used as spices and flavoring agents, were evaluated as antibacterial agents against serious foodborne pathogens, for example Listeria monocytogenes, Salmonella Typhimurium, Staphylococcus aureus, and Escherichia coli O157:H7, using qualitative and quantitative assaying methods. Dairy-based media were also used for evaluating the practical application of plant extracts as antimicrobial agents. Most of the examined plant extracts exhibited remarkable antibacterial activity; the extracts of cinnamon, cloves, garden cress, and lemon grass were the most powerful, either in synthetic or in dairy-based media. Flavoring processed cheese with plant extracts resulted in the enhancement of cheese sensory attributes, for example odor, taste, color, and overall quality, especially in flavored samples with cinnamon, lemon grass, and oregano. It can be concluded that plant extracts are strongly recommended, as powerful and safe antibacterial and flavoring agents, for the preservation and sensory enhancement of processed cheese. © 2015 Institute of Food Technologists®

  18. Elaboration process, chemical and sensory analyses of fried-salted soybean

    Directory of Open Access Journals (Sweden)

    Gayol, María F.

    2010-09-01

    Full Text Available The purpose of this work was to develop an elaboration process of fried-salted soybean and to determine the chemical composition, consumer acceptance and sensory description of the product. Different fried-salted soybean products were obtained under different temperature and time conditions by maceration in water, roasting and frying. Four of the best products were selected and evaluated by consumers (overall, color and texture acceptances: FSS1, FSS2, FSS3 and FSS4. The product with the highest consumer acceptance (7 = “like moderately” in a hedonic scale of 9 points was the one obtained by maceration at 100°C during 10 min and fried at 170°C for 5 min (FSS3. Proximate and fatty acid composition along with sensory attribute intensity ratings from descriptive analyses were determined on the fried-salted soybean with the highest consumer acceptance (FSS3. Proximate and fatty acid composition were also determined in raw soybeans. FSS3 had lower percentages of moisture and proteins, and higher lipids and carbohydrates than raw soybean. The use of sunflower oil in the frying process improved the fatty acid composition of the soybean product. Sensory attributes from descriptive analyses that were detected in high intensity ratings for the product were roasted, salty, crunchiness, hardness, brown color and gloss. This product is neither commonly consumed nor easily available in markets. It could be promoted to be consumed as a snack because of its high nutritional and sensory quality.

    El propósito de este trabajo fue desarrollar un proceso de elaboración de soja frita salada, determinar la composición química, la aceptabilidad por consumidores y la descripción sensorial del producto. Diferentes productos de soja frita salada fueron obtenidos bajo diferentes condiciones de temperatura y tiempo de: maceración, tostado y fritura. Los consumidores evaluaron y seleccionaron los cuatro mejores productos, los que presentaron mayor aceptaci

  19. Sensory Symptoms and Processing of Nonverbal Auditory and Visual Stimuli in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Stewart, Claire R.; Sanchez, Sandra S.; Grenesko, Emily L.; Brown, Christine M.; Chen, Colleen P.; Keehn, Brandon; Velasquez, Francisco; Lincoln, Alan J.; Müller, Ralph-Axel

    2016-01-01

    Atypical sensory responses are common in autism spectrum disorder (ASD). While evidence suggests impaired auditory-visual integration for verbal information, findings for nonverbal stimuli are inconsistent. We tested for sensory symptoms in children with ASD (using the Adolescent/Adult Sensory Profile) and examined unisensory and bisensory…

  20. Sensory processing in autism spectrum disorders and Fragile X syndrome—From the clinic to animal models

    NARCIS (Netherlands)

    Sinclair, David; Oranje, B.|info:eu-repo/dai/nl/217177409; Razak, K. A.; Siegel, S. J.; Schmid, S.

    2017-01-01

    Brains are constantly flooded with sensory information that needs to be filtered at the pre-attentional level and integrated into endogenous activity in order to allow for detection of salient information and an appropriate behavioral response. People with Autism Spectrum Disorder (ASD) or Fragile X

  1. Auditory-prosodic processing in bipolar disorder; from sensory perception to emotion.

    Science.gov (United States)

    Van Rheenen, Tamsyn E; Rossell, Susan L

    2013-12-01

    Accurate emotion processing is critical to understanding the social world. Despite growing evidence of facial emotion processing impairments in patients with bipolar disorder (BD), comprehensive investigations of emotional prosodic processing is limited. The existing (albeit sparse) literature is inconsistent at best, and confounded by failures to control for the effects of gender or low level sensory-perceptual impairments. The present study sought to address this paucity of research by utilizing a novel behavioural battery to comprehensively investigate the auditory-prosodic profile of BD. Fifty BD patients and 52 healthy controls completed tasks assessing emotional and linguistic prosody, and sensitivity for discriminating tones that deviate in amplitude, duration and pitch. BD patients were less sensitive than their control counterparts in discriminating amplitude and durational cues but not pitch cues or linguistic prosody. They also demonstrated impaired ability to recognize happy intonations; although this was specific to male's with the disorder. The recognition of happy in the patient group was correlated with pitch and amplitude sensitivity in female patients only. The small sample size of patients after stratification by current mood state prevented us from conducting subgroup comparisons between symptomatic, euthymic and control participants to explicitly examine the effects of mood. Our findings indicate the existence of a female advantage for the processing of emotional prosody in BD, specifically for the processing of happy. Although male BD patients were impaired in their ability to recognize happy prosody, this was unrelated to reduced tone discrimination sensitivity. This study indicates the importance of examining both gender and low order sensory perceptual capacity when examining emotional prosody. © 2013 Elsevier B.V. All rights reserved.

  2. Irradiation of watercress (Nasturtium officinale) minimally processed: microbiological and sensory aspects

    International Nuclear Information System (INIS)

    Martins, Cecilia Geraldes

    2004-01-01

    Consumer attitudes towards foods have changed in the last two decades increasing requirements for fresh like products. Consequently less extreme treatments or additives are being required. Minimally processed foods have fresh like characteristics and satisfy this new consumer demand. Besides freshness, the minimally processing also provide convenience required by the market. Salad vegetables can be source of pathogen such as Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes. The minimally processing does not reduce the levels of pathogenic microorganisms to safe levels. Therefore, this study was carried out in order to improve the microbiological safety and the shelf-life of minimally processed vegetables using gamma radiation. Minimally processed watercress inoculated with a cocktail of Salmonella spp was exposed to 0.0, 0.2, 0.5, 0.7, 1.0, 1.2 and 1.5 kGy. D10 values for Salmonella spp inoculated in watercress varied from 0.29 to 0.43 kGy. Samples of watercress exposed of 1, 3 e 4 kGy and non-irradiated sample, stored at 7 deg C, were submitted to sensory evaluation and their shelf-life was determined. All samples were accepted by members of sensory panel. The shelf-life of sample irradiated with 1 kGy was 16 days (one and half day more than shelf-life of non-irradiated sample) and samples exposed to 3 and 4 kGy presented shelf-life of 9 and o days, respectively. (author)

  3. Brain size and visual environment predict species differences in paper wasp sensory processing brain regions (hymenoptera: vespidae, polistinae).

    Science.gov (United States)

    O'Donnell, Sean; Clifford, Marie R; DeLeon, Sara; Papa, Christopher; Zahedi, Nazaneen; Bulova, Susan J

    2013-01-01

    The mosaic brain evolution hypothesis predicts that the relative volumes of functionally distinct brain regions will vary independently and correlate with species' ecology. Paper wasp species (Hymenoptera: Vespidae, Polistinae) differ in light exposure: they construct open versus enclosed nests and one genus (Apoica) is nocturnal. We asked whether light environments were related to species differences in the size of antennal and optic processing brain tissues. Paper wasp brains have anatomically distinct peripheral and central regions that process antennal and optic sensory inputs. We measured the volumes of 4 sensory processing brain regions in paper wasp species from 13 Neotropical genera including open and enclosed nesters, and diurnal and nocturnal species. Species differed in sensory region volumes, but there was no evidence for trade-offs among sensory modalities. All sensory region volumes correlated with brain size. However, peripheral optic processing investment increased with brain size at a higher rate than peripheral antennal processing investment. Our data suggest that mosaic and concerted (size-constrained) brain evolution are not exclusive alternatives. When brain regions increase with brain size at different rates, these distinct allometries can allow for differential investment among sensory modalities. As predicted by mosaic evolution, species ecology was associated with some aspects of brain region investment. Nest architecture variation was not associated with brain investment differences, but the nocturnal genus Apoica had the largest antennal:optic volume ratio in its peripheral sensory lobes. Investment in central processing tissues was not related to nocturnality, a pattern also noted in mammals. The plasticity of neural connections in central regions may accommodate evolutionary shifts in input from the periphery with relatively minor changes in volume. © 2013 S. Karger AG, Basel.

  4. Abnormal fermentations in table-olive processing: microbial origin and sensory evaluation.

    Science.gov (United States)

    Lanza, Barbara

    2013-01-01

    The process of transformation of table olives from tree to table is the result of complex biochemical reactions that are determined by the interactions between the indigenous microflora of the olives, together with a variety of contaminating microrganisms from different sources [fiber-glass fermenters, polyvinyl chloride (PVC) tanks, pipelines, pumps, and water], with the compositional characteristics of the fruit. One of the most important aspects of improving the quality of table olives is the use of selected microorganisms to drive the fermentation. These can supplant the indigenous microflora and, in particular, the complementary microflora that are responsible for spoilage of canned olives. In this context, from a technological point of view, a well-characterized collection of microrganisms (lactic acid bacteria, yeast) that can be isolated from the matrix to be processed (the olive fruit) will provide the basis for the development of starter culture systems. These cultures can be fully compatible with the typical products and will guarantee high quality standards. Inoculation of the brine with such selected starter cultures will reduce the probability of spoilage, and help to achieve an improved and more predictable fermentation process. Control of the fermentation processes can thus occur through chemical, chemico-physical and microbiological approaches, and since 2008, also through organoleptic evaluation (COI/OT/MO/Doc. No 1. Method for the sensory analysis of table olives). This last has established the necessary criteria and procedures for sensory analysis of the negative, gustatory and kinaesthetic sensations of table olives, which can also be attributed to abnormal proliferation of microrganisms. It also sets out the system for commercial classification, through assessment of the median of the defect predominantly perceived.

  5. Abnormal fermentations in table-olive processing: microbial origin and sensory evaluation

    Directory of Open Access Journals (Sweden)

    Barbara eLanza

    2013-05-01

    Full Text Available The process of transformation of table olives is the result of complex biochemical reactions that are determined by the interactions of the indigenous microflora of the olives together with a variety of contaminating microrganisms from different sources (fiber-glass fermenters, PVC tanks, pipelines, pumps and water with the compositional characteristics of the fruit. One of the most important aspects of improving the quality of table olives is the use of selected microorganisms to drive the fermentation. These can supplant the indigenous microflora and, in particular, the complementary microflora that are responsible for spoilage of canned olives. In this context, from a technological point of view, a well-characterised collection of microrganisms (lactic acid bacteria, yeasts that is possibly isolated from the matrix to be processed (the olive fruit will provide the basis for the development of starter culture systems. These cultures can be fully compatible with the typical products and guarantee high quality standards. Inoculation of the brine with such selected starter cultures will reduce the probability of spoilage and help to achieve an improved and more predictable fermentation process. Control of the fermentation processes can thus occur through chemical, chemico-physical and microbiological approaches, and since 2008 (COI/OT/MO/Doc. No 1. Method for the sensory analysis of table olives, also through organoleptic evaluation. This last has established the necessary criteria and procedures for sensory analysis of the negative, gustatory and kinaesthetic sensations of table olives that can also be attributed to abnormal proliferation of microrganisms. It also sets out the systematics for commercial classification, through the assessment of the median of the defect predominantly perceived.

  6. Sensory-integration system rather than approximate number system underlies numerosity processing: A critical review.

    Science.gov (United States)

    Gebuis, Titia; Cohen Kadosh, Roi; Gevers, Wim

    2016-11-01

    It is widely accepted that human and nonhuman species possess a specialized system to process large approximate numerosities. The theory of an evolutionarily ancient approximate number system (ANS) has received converging support from developmental studies, comparative experiments, neuroimaging, and computational modelling, and it is one of the most dominant and influential theories in numerical cognition. The existence of an ANS system is significant, as it is believed to be the building block of numerical development in general. The acuity of the ANS is related to future arithmetic achievements, and intervention strategies therefore aim to improve the ANS. Here we critically review current evidence supporting the existence of an ANS. We show that important shortcomings and confounds exist in the empirical studies on human and non-human animals as well as the logic used to build computational models that support the ANS theory. We conclude that rather than taking the ANS theory for granted, a more comprehensive explanation might be provided by a sensory-integration system that compares or estimates large approximate numerosities by integrating the different sensory cues comprising number stimuli. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  7. Early Stages of Sensory Processing, but Not Semantic Integration, Are Altered in Dyslexic Adults.

    Science.gov (United States)

    Silva, Patrícia B; Ueki, Karen; Oliveira, Darlene G; Boggio, Paulo S; Macedo, Elizeu C

    2016-01-01

    items being greater than that of the congruent items. Electrophysiological findings were corroborated by the N400 literature and showed that the semantic processing of individuals with dyslexia was preserved. Furthermore, the findings indicate P100 visual sensory processing deficits in the dyslexic group and may suggest difficulty in the sensory stimuli process.

  8. Quality stability and sensory attributes of apple juice processed by thermosonication, pulsed electric field and thermal processing.

    Science.gov (United States)

    Sulaiman, Alifdalino; Farid, Mohammed; Silva, Filipa Vm

    2017-04-01

    Worldwide, apple juice is the second most popular juice, after orange juice. It is susceptible to enzymatic browning spoilage by polyphenoloxidase, an endogenous enzyme. In this study, Royal Gala apple juice was treated by thermosonication (TS: 1.3 W/mL, 58 ℃, 10 min), pulsed electric field (PEF: 24.8 kV/cm, 60 pulses, 169 µs treatment time, 53.8 ℃) and heat (75 ℃, 20 min) and stored at 3.0 ℃ and 20.0 ℃ for 30 days. A sensory analysis was carried out after processing. The polyphenoloxidase activity, antioxidant activity and total color difference of the apple juice were determined before and after processing and during storage. The sensory analysis revealed that thermosonication and pulsed electric field juices tasted differently from the thermally treated juice. Apart from the pulsed electric field apple juice stored at room temperature, the processed juice was stable during storage, since the pH and soluble solids remained constant and fermentation was not observed. Polyphenoloxidase did not reactivate during storage. Along storage, the juices' antioxidant activity decreased and total color difference increased (up to 6.8). While the antioxidant activity increased from 86 to 103% with thermosonication and was retained after pulsed electric field, thermal processing reduced it to 67%. The processing increased the total color difference slightly. No differences in the total color difference of the juices processed by the three methods were registered after storage. Thermosonication and pulsed electric field could possibly be a better alternative to thermal preservation of apple juice, but refrigerated storage is recommended for pulsed electric field apple juice.

  9. Acrolein involvement in sensory and behavioral hypersensitivity following spinal cord injury in the rat.

    Science.gov (United States)

    Due, Michael R; Park, Jonghyuck; Zheng, Lingxing; Walls, Michael; Allette, Yohance M; White, Fletcher A; Shi, Riyi

    2014-03-01

    Growing evidence suggests that oxidative stress, as associated with spinal cord injury (SCI), may play a critical role in both neuroinflammation and neuropathic pain conditions. The production of the endogenous aldehyde acrolein, following lipid peroxidation during the inflammatory response, may contribute to peripheral sensitization and hyperreflexia following SCI via the TRPA1-dependent mechanism. Here, we report that there are enhanced levels of acrolein and increased neuronal sensitivity to the aldehyde for at least 14 days after SCI. Concurrent with injury-induced increases in acrolein concentration is an increased expression of TRPA1 in the lumbar (L3-L6) sensory ganglia. As proof of the potential pronociceptive role for acrolein, intrathecal injections of acrolein revealed enhanced sensitivity to both tactile and thermal stimuli for up to 10 days, supporting the compound's pro-nociceptive functionality. Treatment of SCI animals with the acrolein scavenger hydralazine produced moderate improvement in tactile responses as well as robust changes in thermal sensitivity for up to 49 days. Taken together, these data suggest that acrolein directly modulates SCI-associated pain behavior, making it a novel therapeutic target for preclinical and clinical SCI as an analgesic. Following spinal cord injury (SCI), acrolein involvement in neuropathic pain is likely through direct activation and elevated levels of pro-nociceptive channel TRPA1. While acrolein elevation correlates with neuropathic pain, suppression of this aldehyde by hydralazine leads to an analgesic effect. Acrolein may serve as a novel therapeutic target for preclinical and clinical SCI to relieve both acute and chronic post-SCI neuropathic pain. © 2013 International Society for Neurochemistry.

  10. Visual sensory processing deficits in patients with bipolar disorder revealed through high-density electrical mapping.

    Science.gov (United States)

    Yeap, Sherlyn; Kelly, Simon P; Reilly, Richard B; Thakore, Jogin H; Foxe, John J

    2009-11-01

    Etiological commonalities are apparent between bipolar disorder and schizophrenia. For example, it is becoming clear that both populations show similar electrophysiological deficits in the auditory domain. Recent studies have also shown robust visual sensory processing deficits in patients with schizophrenia using the event-related potential technique, but this has not been formally tested in those with bipolar disorder. Our goal here was to assess whether early visual sensory processing in patients with bipolar disorder, as indexed by decreased amplitude of the P1 component of the visual evoked potential (VEP), would show a similar deficit to that seen in those with schizophrenia. Since the P1 deficit has already been established as an endophenotype in schizophrenia, a finding of commonality between disorders would raise the possibility that it represents a measure of common genetic liability. We visually presented isolated-check stimuli to euthymic patients with a diagnosis of bipolar disorder and age-matched healthy controls within a simple go/no-go task and recorded VEPs using high-density (72-channel) electroencephalography. The P1 VEP amplitude was substantially reduced in patients with bipolar disorder, with an effect size of f = 0.56 (large according to Cohen's criteria). Our sample size was relatively small and as such, did not allow for an examination of potential relations between the physiologic measures and clinical measures. This reduction in P1 amplitude among patients with bipolar disorder represents a dysfunction in early visual processing that is highly similar to that found repeatedly in patients with schizophrenia and their healthy first-degree relatives. Since the P1 deficit has been related to susceptibility genes for schizophrenia, our results raise the possibility that the deficit may in fact be more broadly related to the development of psychosis and that it merits further investigation as a candidate endophenotype for bipolar disorder.

  11. Cholinergic modulation of auditory processing, sensory gating and novelty detection in human participants.

    Science.gov (United States)

    Klinkenberg, Inge; Blokland, Arjan; Riedel, Wim J; Sambeth, Anke

    2013-02-01

    Suppression of redundant auditory information and facilitation of deviant, novel, or salient sounds can be assessed with paired-click and oddball tasks, respectively. Electrophysiological correlates of perturbed auditory processing found in these paradigms are likely to be a trait marker or candidate endophenotype for schizophrenia. This is the first study to investigate the effects of the muscarinic M1 antagonist biperiden and the cholinesterase inhibitor rivastigmine on auditory-evoked potentials (AEPs), sensory gating, and mismatch negativity (MMN) in young, healthy volunteers. Biperiden increased P50 amplitude and prolonged N100 and P200 latency in the paired-click task but did not affect sensory gating. Rivastigmine was able to reverse the effects of biperiden on N100 and P200 latency. Biperiden increased P50 latency in the novelty oddball task, which was reversed by concurrent administration of rivastigmine. Rivastigmine shortened N100 latency and enhanced P3a amplitude in the novelty oddball paradigm, both of which were reversed by biperiden. The muscarinic M1 receptor appears to be involved in preattentive processing of auditory information in the paired-click task. Additional effects of biperiden versus rivastigmine were reversed by a combination treatment, which renders attribution of these findings to muscarinic M1 versus muscarinic M2-M5 or nicotinic receptors much more difficult. It remains to be seen whether the effects of cholinergic drugs on AEPs are specifically related to the abnormalities found in schizophrenia. Alternatively, aberrant auditory processing could also be indicative of a general disturbance in neural functioning shared by several neuropsychiatric disorders and/or neurodegenerative changes seen in aging.

  12. Visual sensory processing deficits in patients with bipolar disorder revealed through high-density electrical mapping.

    LENUS (Irish Health Repository)

    Yeap, Sherlyn

    2009-11-01

    BACKGROUND: Etiological commonalities are apparent between bipolar disorder and schizophrenia. For example, it is becoming clear that both populations show similar electrophysiological deficits in the auditory domain. Recent studies have also shown robust visual sensory processing deficits in patients with schizophrenia using the event-related potential technique, but this has not been formally tested in those with bipolar disorder. Our goal here was to assess whether early visual sensory processing in patients with bipolar disorder, as indexed by decreased amplitude of the P1 component of the visual evoked potential (VEP), would show a similar deficit to that seen in those with schizophrenia. Since the P1 deficit has already been established as an endophenotype in schizophrenia, a finding of commonality between disorders would raise the possibility that it represents a measure of common genetic liability. METHODS: We visually presented isolated-check stimuli to euthymic patients with a diagnosis of bipolar disorder and age-matched healthy controls within a simple go\\/no-go task and recorded VEPs using high-density (72-channel) electroencephalography. RESULTS: The P1 VEP amplitude was substantially reduced in patients with bipolar disorder, with an effect size of f = 0.56 (large according to Cohen\\'s criteria). LIMITATIONS: Our sample size was relatively small and as such, did not allow for an examination of potential relations between the physiologic measures and clinical measures. CONCLUSION: This reduction in P1 amplitude among patients with bipolar disorder represents a dysfunction in early visual processing that is highly similar to that found repeatedly in patients with schizophrenia and their healthy first-degree relatives. Since the P1 deficit has been related to susceptibility genes for schizophrenia, our results raise the possibility that the deficit may in fact be more broadly related to the development of psychosis and that it merits further

  13. Caramel as a Model System for Evaluating the Roles of Mechanical Properties and Oral Processing on Sensory Perception of Texture.

    Science.gov (United States)

    Wagoner, Ty B; Luck, Paige J; Foegeding, E Allen

    2016-03-01

    Food formulation can have a significant impact on texture perception during oral processing. We hypothesized that slight modifications to caramel formulations would significantly alter mechanical and masticatory parameters, which can be used to explain differences in texture perception. A multidisciplinary approach was applied by evaluating relationships among mechanical properties, sensory texture, and oral processing. Caramels were utilized as a highly adhesive and cohesive model system and the formulation was adjusted to generate distinct differences in sensory hardness and adhesiveness. Descriptive analysis was used to determine sensory texture, and mechanical properties were evaluated by oscillatory rheology, creep recovery, and pressure sensitive tack measurements. Oral processing was measured by determining activity of anterior temporalis and masseter muscles via electromyography and tracking jaw movement during chewing. The substitution of agar or gelatin for corn syrup at 0.6% w/w of the total formulation resulted in increased sensory hardness and decreased adhesiveness. Creep recovery and pressure sensitive tack testing were more effective at differentiating among treatments than oscillatory rheology. Hardness correlated inversely with creep compliance, and both stickiness and tooth adhesiveness correlated with pressure sensitive adhesive force. Harder samples, despite being less adhesive, were associated with increased muscle activity and jaw movement during mastication. Tooth packing, not linked with any mechanical property, correlated with altered jaw movement. The combination of material properties and oral processing parameters were able to explain all sensory texture differences in a highly adhesive food. © 2016 Institute of Food Technologists®

  14. EFFECTS OF SENSORI-MOTOR LEARNING ON MELODY PROCESSING ACROSS DEVELOPMENT

    Science.gov (United States)

    WAKEFIELD, Elizabeth M.; JAMES, Karin H.

    2014-01-01

    Actions influence perceptions, but how this occurs may change across the lifespan. Studies have investigated how object-directed actions (e.g., learning about objects through manipulation) affect subsequent perception, but how abstract actions affect perception, and how this may change across development, have not been well studied. In the present study, we address this question, teaching children (4–7 year-olds) and adults sung melodies, with or without an abstract motor component, and using functional Magnetic Resonance Imaging (fMRI) to determine how these melodies are subsequently processed. Results demonstrated developmental change in the motor cortices and Middle Temporal Gyrus. Results have implications for understanding sensori-motor integration in the developing brain, and may provide insight into motor learning use in some music education techniques. PMID:25653926

  15. Reversal of interlaminar signal between sensory and memory processing in monkey temporal cortex.

    Science.gov (United States)

    Takeuchi, Daigo; Hirabayashi, Toshiyuki; Tamura, Keita; Miyashita, Yasushi

    2011-03-18

    The primate temporal cortex implements visual long-term memory. However, how its interlaminar circuitry executes cognitive computations is poorly understood. Using linear-array multicontact electrodes, we simultaneously recorded unit activities across cortical layers in the perirhinal cortex of macaques performing a pair-association memory task. Cortical layers were estimated on the basis of current source density profiles with histological verifications, and the interlaminar signal flow was determined with cross-correlation analysis between spike trains. During the cue period, canonical "feed-forward" signals flowed from granular to supragranular layers and from supragranular to infragranular layers. During the delay period, however, the signal flow reversed to the "feed-back" direction: from infragranular to supragranular layers. This reversal of signal flow highlights how the temporal cortex differentially recruits its laminar circuits for sensory and mnemonic processing.

  16. Does a Sensory Processing Deficit Explain Counting Accuracy on Rapid Visual Sequencing Tasks in Adults with and without Dyslexia?

    Science.gov (United States)

    Conlon, Elizabeth G.; Wright, Craig M.; Norris, Karla; Chekaluk, Eugene

    2011-01-01

    The experiments conducted aimed to investigate whether reduced accuracy when counting stimuli presented in rapid temporal sequence in adults with dyslexia could be explained by a sensory processing deficit, a general slowing in processing speed or difficulties shifting attention between stimuli. To achieve these aims, the influence of the…

  17. Exploring the prevalence and phenomenology of repetitive behaviours and abnormal sensory processing in children with Williams Syndrome.

    Science.gov (United States)

    Janes, E; Riby, D M; Rodgers, J

    2014-08-01

    A small amount of research with individuals who have Williams Syndrome (WS) suggests that children with the condition may be vulnerable to sensory processing abnormalities and present with repetitive and restricted behaviours. Parents of 21 children with WS aged 6-15 years completed a semi-structured interview designed to elicit the form, frequency, impact and developmental course of a range of sensory processing abnormalities and repetitive behaviours. Findings indicate that sensory processing difficulties are predominantly characterised by hypersensitivities, particularly in relation to vestibular, auditory, gustatory and proprioceptive functioning. Parents also reported the presence of a range of restricted and repetitive behaviours, which were often associated with their child's sensory symptoms. This study makes a significant contribution to our understanding of sensory functioning and repetitive behaviours in WS. It also highlights the need for a multidisciplinary assessment of the difficulties experienced by children with the disorder. © 2013 MENCAP and International Association of the Scientific Study of Intellectual and Developmental Disabilities and John Wiley & Sons Ltd.

  18. Pollen Processing Behavior of Heliconius Butterflies: A Derived Grooming Behavior

    Science.gov (United States)

    Hikl, Anna-Laetitia; Krenn, Harald W.

    2011-01-01

    Pollen feeding behaviors Heliconius and Laparus (Lepidoptera: Nymphalidae) represent a key innovation that has shaped other life history traits of these neotropical butterflies. Although all flower visiting Lepidoptera regularly come in contact with pollen, only Heliconius and Laparus butterflies actively collect pollen with the proboscis and subsequently take up nutrients from the pollen grains. This study focused on the behavior of pollen processing and compared the movement patterns with proboscis grooming behavior in various nymphalid butterflies using video analysis. The proboscis movements of pollen processing behavior consisted of a lengthy series of repeated coiling and uncoiling movements in a loosely coiled proboscis position combined with up and down movements and the release of saliva. The proboscis-grooming behavior was triggered by contamination of the proboscis in both pollen feeding and non-pollen feeding nymphalid butterflies. Proboscis grooming movements included interrupted series of coiling and uncoiling movements, characteristic sideways movements, proboscis lifting, and occasionally full extension of the proboscis. Discharge of saliva was more pronounced in pollen feeding species than in non-pollen feeding butterfly species. We conclude that the pollen processing behavior of Heliconius and Laparus is a modified proboscis grooming behavior that originally served to clean the proboscis after contamination with particles. PMID:22208893

  19. Clinical processes in behavioral couples therapy.

    Science.gov (United States)

    Fischer, Daniel J; Fink, Brandi C

    2014-03-01

    Behavioral couples therapy is a broad term for couples therapies that use behavioral techniques based on principles of operant conditioning, such as reinforcement. Behavioral shaping and rehearsal and acceptance are clinical processes found across contemporary behavioral couples therapies. These clinical processes are useful for assessment and case formulation, as well as teaching couples new methods of conflict resolution. Although these clinical processes assist therapists in achieving efficient and effective therapeutic change with distressed couples by rapidly stemming couples' corrosive affective exchanges, they also address the thoughts, emotions, and issues of trust and intimacy that are important aspects of the human experience in the context of a couple. Vignettes are provided to illustrate the clinical processes described. (PsycINFO Database Record (c) 2014 APA, all rights reserved).

  20. Age and sensory processing abnormalities predict declines in encoding and recall of temporally manipulated speech in high-functioning adults with ASD.

    Science.gov (United States)

    Mayer, Jennifer L; Heaton, Pamela F

    2014-02-01

    While temporal and perceptual processing abnormalities, identified in a number of electrophysiological and brain imaging studies of individuals with (ASD), are likely to impact on speech perception, surprisingly little is known about the behavioral outcomes of such abnormalities. It has been hypothesized that rapid temporal processing deficits may be linked to impaired language development through interference with acoustic information during speech perception. The present study aimed to investigate the impact of temporal changes on encoding and recall of speech, and the associated cognitive, clinical, and behavioral correlates in adults with ASD. Research carried out with typically developing (TD) adults has shown that word recall diminishes as the speed of speech increases, and it was predicted that the magnitude of this effect would be far greater in those with ASD because of a preexisting rapid temporal processing deficit. Nineteen high-functioning adults with ASD, and age- and intelligence-matched TD controls performed verbatim recall of temporally manipulated sentences. Reduced levels of word recall in response to increases in presentation speed were observed, and this effect was greater in the older participants in the ASD group than in the control group. This is the first study to show that both sensory abnormalities and aging impact on speech encoding in ASD. Auditory processing deficits in ASD may be indicative of an association with the sensory abnormalities and social and communication impairments characterizing the disorder. © 2013 International Society for Autism Research, Wiley Periodicals, Inc.

  1. Astrocytes modulate thalamic sensory processing via mGlu2 receptor activation.

    Science.gov (United States)

    Copeland, C S; Wall, T M; Sims, R E; Neale, S A; Nisenbaum, E; Parri, H R; Salt, T E

    2017-07-15

    Astrocytes possess many of the same signalling molecules as neurons. However, the role of astrocytes in information processing, if any, is unknown. Using electrophysiological and imaging methods, we report the first evidence that astrocytes modulate neuronal sensory inhibition in the rodent thalamus. We found that mGlu2 receptor activity reduces inhibitory transmission from the thalamic reticular nucleus to the somatosensory ventrobasal thalamus (VB): mIPSC frequencies in VB slices were reduced by the Group II mGlu receptor agonist LY354740, an effect potentiated by mGlu2 positive allosteric modulator (PAM) LY487379 co-application (30 nM LY354740: 10.0 ± 1.6% reduction; 30 nM LY354740 & 30 μM LY487379: 34.6 ± 5.2% reduction). We then showed activation of mGlu2 receptors on astrocytes: astrocytic intracellular calcium levels were elevated by the Group II agonist, which were further potentiated upon mGlu2 PAM co-application (300 nM LY354740: ratio amplitude 0.016 ± 0.002; 300 nM LY354740 & 30 μM LY487379: ratio amplitude 0.035 ± 0.003). We then demonstrated mGlu2-dependent astrocytic disinhibition of VB neurons in vivo: VB neuronal responses to vibrissae stimulation trains were disinhibited by the Group II agonist and the mGlu2 PAM (LY354740: 156 ± 12% of control; LY487379: 144 ± 10% of control). Presence of the glial inhibitor fluorocitrate abolished the mGlu2 PAM effect (91 ± 5% of control), suggesting the mGlu2 component to the Group II effect can be attributed to activation of mGlu2 receptors localised on astrocytic processes within the VB. Gating of thalamocortical function via astrocyte activation represents a novel sensory processing mechanism. As this thalamocortical circuitry is important in discriminative processes, this demonstrates the importance of astrocytes in synaptic processes underlying attention and cognition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Effect of cocoa bean irradiation on sensory quality of processed cocoa products

    International Nuclear Information System (INIS)

    Bah, F.A.; Appiah, V.; Nketsia-Tabiri, J.; Akomea-Adjei, F.

    2007-01-01

    Cocoa is the traditional export crop for Ghana. Its beans are susceptible to insect attack and microbial contamination, both of which reduce their quality. Irradiation has been reported as effective in insect disinfestation and microbial decontamination of the bean, without adversely affecting the chemical and organoleptic quality of its products. This study was therefore conducted to evaluate the effect that irradiation of the beans at the appropriate doses, had on the sensory quality of processed products stored up to their 'best before date', which is approximately one year. Cocoa beans irradiated at doses of 1 kGy and 5 kGy, for insect disinfestation and microbial decontamination respectively, were used to prepare chocolate bars and cocoa powder. The products were stored for a year, at room temperature of 18±2 C , and their sensory quality evaluated after 4, 7, 10 and 11 months production. Multiple comparison test was used to determine the effect that the irradiation doses had on the taste, colour and flavour of the products during the storage period while preference test was used to determine consumer acceptability and preference. After 4 months storage, the I kGy cocoa powder differed significantly (p<0.05) from the non-irradiated and 5 kGy samples in terms of colour while after 7 months storage, there was significant difference in both taste and flavour, between the irradiated and non-irradiated cocoa powders. After 10 and I I months of storage, the colours of the irradiated cocoa powders significantly differed (p< O. 01) from the non-irradiated one and also from each other. The chocolate bars did not differ significantly from each other in terms of all the 3 measurable attributes. Differences that were observed between the irradiated and non-irradiated cocoa powders were slight and did not render the irradiated samples unacceptable to the consumer panel. (au)

  3. Classification of children with autism spectrum disorder by sensory subtype: a case for sensory-based phenotypes.

    Science.gov (United States)

    Lane, Alison E; Molloy, Cynthia A; Bishop, Somer L

    2014-06-01

    This study examines whether sensory differences can be used to classify meaningful subgroups of children with autism spectrum disorder (ASD). Caregivers of children with ASD aged 2-10 years (n = 228) completed the Short Sensory Profile. Model-based cluster analysis was used to extract sensory subtypes. The relationship of these subtypes to age, gender, autism symptom severity, and nonverbal intelligence quotient (IQ) was further explored. Four distinct sensory subtypes were identified: (a) sensory adaptive; (b) taste smell sensitive; (c) postural inattentive; and (d) generalized sensory difference. The sensory subtypes differ from each other on two dimensions: (a) the severity of reported sensory differences; and (b) the focus of differences across auditory, taste, smell, vestibular and proprioceptive domains. Examination of the clinical features of each subtype reveals two possible mechanisms of sensory disturbance in autism: (a) sensory hyperreactivity; and (b) difficulties with multisensory processing. Further, the sensory subtypes are not well explained by other variables such as age, gender, IQ, and autism symptom severity. We conclude that classification of children using sensory differences offers a promising method by which to identify phenotypes in ASD. Sensory-based phenotypes may be useful in identifying behavioral features responsive to specific interventions thereby improving intervention effectiveness. Further validation of the sensory-based phenotypes by establishing neural and physiological correlates is recommended. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  4. From sense to perception: representations along pathways of sensory information processing

    NARCIS (Netherlands)

    Borra, T.

    2012-01-01

    In four studies, we investigated how the human sensory system acts on representations of sensory information. By making use of an anisotropy in orientational sensitivity (the oblique effect), we investigated how the human visual system determines object orientation. We showed that the visual system

  5. Spontaneous fluctuations in sensory processing predict within-subject reaction time variability

    Directory of Open Access Journals (Sweden)

    Maria José Ribeiro

    2016-05-01

    Full Text Available When engaged in a repetitive task our performance fluctuates from trial-to-trial. In particular, inter-trial reaction time variability has been the subject of considerable research. It has been claimed to be a strong biomarker of attention deficits, increases with frontal dysfunction, and predicts age-related cognitive decline. Thus, rather than being just a consequence of noise in the system, it appears to be under the control of a mechanism that breaks down under certain pathological conditions. Although the underlying mechanism is still an open question, consensual hypotheses are emerging regarding the neural correlates of reaction time inter-trial intra-individual variability. Sensory processing, in particular, has been shown to covary with reaction time, yet the spatio-temporal profile of the moment-to-moment variability in sensory processing is still poorly characterized. The goal of this study was to characterize the intra-individual variability in the time course of single-trial visual evoked potentials and its relationship with inter-trial reaction time variability. For this, we chose to take advantage of the high temporal resolution of the electroencephalogram (EEG acquired while participants were engaged in a 2-choice reaction time task. We studied the link between single trial event-related potentials (ERPs and reaction time using two different analyses: 1 time point by time point correlation analyses thereby identifying time windows of interest, and 2 correlation analyses between single trial measures of peak latency and amplitude and reaction time. To improve extraction of single trial ERP measures related with activation of the visual cortex, we used an independent component analysis procedure.Our ERP analysis revealed a relationship between the N1 visual evoked potential and reaction time. The earliest time point presenting a significant correlation of its respective amplitude with reaction time occurred 175 ms after stimulus

  6. Principles of auditory processing differ between sensory and premotor structures of the songbird forebrain.

    Science.gov (United States)

    Soyman, Efe; Vicario, David S

    2017-03-01

    Sensory and motor brain structures work in collaboration during perception. To evaluate their respective contributions, the present study recorded neural responses to auditory stimulation at multiple sites simultaneously in both the higher-order auditory area NCM and the premotor area HVC of the songbird brain in awake zebra finches ( Taeniopygia guttata ). Bird's own song (BOS) and various conspecific songs (CON) were presented in both blocked and shuffled sequences. Neural responses showed plasticity in the form of stimulus-specific adaptation, with markedly different dynamics between the two structures. In NCM, the response decrease with repetition of each stimulus was gradual and long-lasting and did not differ between the stimuli or the stimulus presentation sequences. In contrast, HVC responses to CON stimuli decreased much more rapidly in the blocked than in the shuffled sequence. Furthermore, this decrease was more transient in HVC than in NCM, as shown by differential dynamics in the shuffled sequence. Responses to BOS in HVC decreased more gradually than to CON stimuli. The quality of neural representations, computed as the mutual information between stimuli and neural activity, was higher in NCM than in HVC. Conversely, internal functional correlations, estimated as the coherence between recording sites, were greater in HVC than in NCM. The cross-coherence between the two structures was weak and limited to low frequencies. These findings suggest that auditory communication signals are processed according to very different but complementary principles in NCM and HVC, a contrast that may inform study of the auditory and motor pathways for human speech processing. NEW & NOTEWORTHY Neural responses to auditory stimulation in sensory area NCM and premotor area HVC of the songbird forebrain show plasticity in the form of stimulus-specific adaptation with markedly different dynamics. These two structures also differ in stimulus representations and internal

  7. The Interplay between Sensory Processing Abnormalities, Intolerance of Uncertainty, Anxiety and Restricted and Repetitive Behaviours in Autism Spectrum Disorder

    Science.gov (United States)

    Wigham, Sarah; Rodgers, Jacqui; South, Mikle; McConachie, Helen; Freeston, Mark

    2015-01-01

    Sensory processing abnormalities, anxiety and restricted and repetitive behaviours (RRBs) frequently co-occur in Autism Spectrum Disorders (ASD). Though the relationship between these phenomena is not well understood, emerging evidence indicates intolerance of uncertainty (IU) may play an important role. This study aimed to determine pathways…

  8. Sensory Processing Disorder in a Primate Model: Evidence from a Longitudinal Study of Prenatal Alcohol and Prenatal Stress Effects

    Science.gov (United States)

    Schneider, Mary L.; Moore, Colleen F.; Gajewski, Lisa L.; Larson, Julie A.; Roberts, Andrew D.; Converse, Alexander K.; DeJesus, Onofre T.

    2008-01-01

    Disrupted sensory processing, characterized by over- or underresponsiveness to environmental stimuli, has been reported in children with a variety of developmental disabilities. This study examined the effects of prenatal stress and moderate-level prenatal alcohol exposure on tactile sensitivity and its relationship to striatal dopamine system…

  9. The Assessment of Cognitive Emotion Regulation Strategies, Sensory Processing Sensitivity and Anxiety Sensitivity in Patients with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Esmeil Soleymani

    2016-11-01

    Full Text Available Abstract Background: The purpose of this study was to compare the cognitive emotional regulation strategies, sensory processing sensitivity and anxiety sensitivity in patients with multiple sclerosis and normal people. Materials and Methods: Statistical population of this study was all of patients with multiple sclerosis that referred to M.S association of Iran in the tehran. Sample of this study was 30 individuals of patients with multiple sclerosis selected by available sampling method and were matched with 30 individuals of normal people. Two groups completed cognitive emotion regulation, high sensory processing sensitivity and anxiety sensitivity questionnaires. Data were analyzed by one-way analysis of variance and Multivariate Analysis of Variance. Results: The results indicated that there is significant difference between two groups in view of cognitive emotion regulation strategies in which the mean of scores of patients with multiple sclerosis in maladaptive strategies of self- blame, catastrophizing and other blame were more than normal people and mean of scores of them in adaptive strategies of positive refocusing, positive reappraisal and putting into perspective were less than normal people. The results also indicated that there is a significant difference between two groups in anxiety sensitivity and sensory processing sensitivity. Conclusion: The most of emotional problems in patients with multiple sclerosis can be the result of more application of maladaptive strategies of cognitive emotion regulation, high sensory processing sensitivity and high anxiety sensitivity.

  10. Fermentation process for production of apple-based kefir vinegar: microbiological, chemical and sensory analysis.

    Science.gov (United States)

    Viana, Roberta Oliveira; Magalhães-Guedes, Karina Teixeira; Braga, Roberto Alves; Dias, Disney Ribeiro; Schwan, Rosane Freitas

    The aim of this study was to develop a kefir apple-based vinegar and evaluate this fermentation process using new methodology with Biospeckle Laser. Brazilian kefir grains were inoculated in apple must for vinegar production. In this study, the microbial community present in kefir, and correspondent vinegar, was investigated using Matrix Assisted Laser Desorption/Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS) technique. Saccharomyces cerevisiae, Lactobacillus paracasei, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii were the microbial species identified. S. cerevisiae, L. plantarum, A. pasteurianus and A. syzygii were found in smaller quantities at the beginning of the alcoholic fermentation, but were found throughout the alcoholic and acetic fermentation. Kefir grains were able to utilize apple must as substrate to produce ethanol, and acetic acid. Acetate, volatile alcohols and aldehydes in the vinegar-based kefir were also produced. The yield of acetic acid in the kefir vinegars was ∼79%. The acetic acid concentration was ∼41gL -1 , reaching the required standard for the Brazilian legislation accepts it as vinegar (4.0% acetic acid). Kefir vinegar showed good acceptance in the sensory analysis. The technology proposed here is novel by the application of immobilized-cell biomass (kefir grains) providing a mixed inocula and eliminating the use of centrifuge at the end of the fermentative process. This step will save energy demand and investment. This is the first study to produce apple vinegar using kefir grains. Copyright © 2017. Published by Elsevier Editora Ltda.

  11. Impaired sensory processing measured by functional MRI in Bipolar disorder manic and depressed mood states.

    Science.gov (United States)

    Shaffer, Joseph J; Johnson, Casey P; Fiedorowicz, Jess G; Christensen, Gary E; Wemmie, John A; Magnotta, Vincent A

    2017-07-03

    Bipolar disorder is characterized by recurring episodes of depression and mania. Defining differences in brain function during these states is an important goal of bipolar disorder research. However, few imaging studies have directly compared brain activity between bipolar mood states. Herein, we compare functional magnetic resonance imaging (fMRI) responses during a flashing checkerboard stimulus between bipolar participants across mood states (euthymia, depression, and mania) in order to identify functional differences between these states. 40 participants with bipolar I disorder and 33 healthy controls underwent fMRI during the presentation of the stimulus. A total of 23 euthymic-state, 16 manic-state, 15 depressed-state, and 32 healthy control imaging sessions were analyzed in order to compare functional activation during the stimulus between mood states and with healthy controls. A reduced response was identified in the visual cortex in both the depressed and manic groups compared to euthymic and healthy participants. Functional differences between bipolar mood states were also observed in the cerebellum, thalamus, striatum, and hippocampus. Functional differences between mood states occurred in several brain regions involved in visual and other sensory processing. These differences suggest that altered visual processing may be a feature of mood states in bipolar disorder. The key limitations of this study are modest mood-state group size and the limited temporal resolution of fMRI which prevents the segregation of primary visual activity from regulatory feedback mechanisms.

  12. Fermentation process for production of apple-based kefir vinegar: microbiological, chemical and sensory analysis

    Directory of Open Access Journals (Sweden)

    Roberta Oliveira Viana

    Full Text Available Abstract The aim of this study was to develop a kefir apple-based vinegar and evaluate this fermentation process using new methodology with Biospeckle Laser. Brazilian kefir grains were inoculated in apple must for vinegar production. In this study, the microbial community present in kefir, and correspondent vinegar, was investigated using Matrix Assisted Laser Desorption/Ionization - Time of Flight Mass Spectrometry (MALDI-TOF MS technique. Saccharomyces cerevisiae, Lactobacillus paracasei, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii were the microbial species identified. S. cerevisiae, L. plantarum, A. pasteurianus and A. syzygii were found in smaller quantities at the beginning of the alcoholic fermentation, but were found throughout the alcoholic and acetic fermentation. Kefir grains were able to utilize apple must as substrate to produce ethanol, and acetic acid. Acetate, volatile alcohols and aldehydes in the vinegar-based kefir were also produced. The yield of acetic acid in the kefir vinegars was ∼79%. The acetic acid concentration was ∼41 g L-1, reaching the required standard for the Brazilian legislation accepts it as vinegar (4.0% acetic acid. Kefir vinegar showed good acceptance in the sensory analysis. The technology proposed here is novel by the application of immobilized-cell biomass (kefir grains providing a mixed inocula and eliminating the use of centrifuge at the end of the fermentative process. This step will save energy demand and investment. This is the first study to produce apple vinegar using kefir grains.

  13. Effect of inulin on physico-chemical, sensory, fatty acid profile and microstructure of processed cheese spread.

    Science.gov (United States)

    Giri, Apurba; Kanawjia, Suresh Kumar; Singh, Mukesh Pratap

    2017-07-01

    To develop a functional processed cheese spread (PCS) different levels of inulin (0, 4, 6 and 8%) addition into PCS was studied with its physico-chemical, sensory and fatty acid profile and micro-structural quality. As the level of inulin addition increased moisture, a w and titratable acidity, decreased. At the highest level of inulin addition (8%) sensory panelists reported a significant decrease in total sensory score. PCS with 6% insulin was found to have optimum from quantity. The addition of inulin in cheese spread decreased both total saturated fatty acid and unsaturated fatty acid and in unsaturated fatty acid, mono unsaturated fatty acid decreased; however, polyunsaturated fatty acids increased as compared to the control. Scanning Electron Micrograph of PCS containing insulin showed uniform distribution of insulin with diameter ranged 4-10 µm in the protein matrix.

  14. Effects of maturation and processing technologies on nutritional and sensory qualities of Itrana table olives

    Directory of Open Access Journals (Sweden)

    Lanza, B.

    2013-06-01

    Full Text Available In the present study, we evaluated the nutritional and sensory characteristics of table olives of the Italian doubleaptitude olive cultivar (Olea europaea L. cv. Itrana processed as green (Oliva bianca di Itri and black (Oliva di Gaeta table olives with modified Greek methods of preparation. One method provides an initial step of immersion in water to stimulate the growth of specific microflora which contributes to the debittering of the fruits. After 15-45 days, salt is added to the liquid in quantities not exceeding 8 kg per 100 kg of fresh olives. Another method entails the immersion of fruits directly in brine utilizing double-salting (half the amount of NaCl was added immediately and the remaining part after 15 days. All the information derived from chemico-physical, nutritional and sensory data have separated the samples into four groups according to techno-processings, ripening stage and storage. Double-salting is the method which assures the best results.En el presente estudio se evalúan las características nutricionales y sensoriales de la variedad Itrana de aceituna (Olea europaea L. de doble uso, elaborada en verde (Oliva Bianca di Itri y en negro (Oliva di Gaeta, utilizando métodos griegos modificados al efecto. Un método consiste en una etapa inicial de inmersión en agua para favorecer el crecimiento de una flora específica que contribuye al endulzado de los frutos. Después de 15-45 días se añade sal a la solución en una cantidad que no exceda 8 kg por 100 g de fruto fresco. Otro procedimiento consiste en colocar directamente las aceitunas en salmuera utilizando un sistema de adición de la sal en dos etapas (la mitad de la sal se añade inmediatamente y el resto a los 15 días. Toda la información derivada de los análisis fisico-químicos, nutricionales y sensoriales ha permitido la separación de las muestras en cuatro grupos según la tecnología de elaboración, el estado de madurez y el almacenamiento. El proceso de

  15. Development of the "Highly Sensitive Dog" questionnaire to evaluate the personality dimension "Sensory Processing Sensitivity" in dogs.

    Science.gov (United States)

    Braem, Maya; Asher, Lucy; Furrer, Sibylle; Lechner, Isabel; Würbel, Hanno; Melotti, Luca

    2017-01-01

    In humans, the personality dimension 'sensory processing sensitivity (SPS)', also referred to as "high sensitivity", involves deeper processing of sensory information, which can be associated with physiological and behavioral overarousal. However, it has not been studied up to now whether this dimension also exists in other species. SPS can influence how people perceive the environment and how this affects them, thus a similar dimension in animals would be highly relevant with respect to animal welfare. We therefore explored whether SPS translates to dogs, one of the primary model species in personality research. A 32-item questionnaire to assess the "highly sensitive dog score" (HSD-s) was developed based on the "highly sensitive person" (HSP) questionnaire. A large-scale, international online survey was conducted, including the HSD questionnaire, as well as questions on fearfulness, neuroticism, "demographic" (e.g. dog sex, age, weight; age at adoption, etc.) and "human" factors (e.g. owner age, sex, profession, communication style, etc.), and the HSP questionnaire. Data were analyzed using linear mixed effect models with forward stepwise selection to test prediction of HSD-s by the above-mentioned factors, with country of residence and dog breed treated as random effects. A total of 3647 questionnaires were fully completed. HSD-, fearfulness, neuroticism and HSP-scores showed good internal consistencies, and HSD-s only moderately correlated with fearfulness and neuroticism scores, paralleling previous findings in humans. Intra- (N = 447) and inter-rater (N = 120) reliabilities were good. Demographic and human factors, including HSP score, explained only a small amount of the variance of HSD-s. A PCA analysis identified three subtraits of SPS, comparable to human findings. Overall, the measured personality dimension in dogs showed good internal consistency, partial independence from fearfulness and neuroticism, and good intra- and inter-rater reliability

  16. Development of the "Highly Sensitive Dog" questionnaire to evaluate the personality dimension "Sensory Processing Sensitivity" in dogs.

    Directory of Open Access Journals (Sweden)

    Maya Braem

    Full Text Available In humans, the personality dimension 'sensory processing sensitivity (SPS', also referred to as "high sensitivity", involves deeper processing of sensory information, which can be associated with physiological and behavioral overarousal. However, it has not been studied up to now whether this dimension also exists in other species. SPS can influence how people perceive the environment and how this affects them, thus a similar dimension in animals would be highly relevant with respect to animal welfare. We therefore explored whether SPS translates to dogs, one of the primary model species in personality research. A 32-item questionnaire to assess the "highly sensitive dog score" (HSD-s was developed based on the "highly sensitive person" (HSP questionnaire. A large-scale, international online survey was conducted, including the HSD questionnaire, as well as questions on fearfulness, neuroticism, "demographic" (e.g. dog sex, age, weight; age at adoption, etc. and "human" factors (e.g. owner age, sex, profession, communication style, etc., and the HSP questionnaire. Data were analyzed using linear mixed effect models with forward stepwise selection to test prediction of HSD-s by the above-mentioned factors, with country of residence and dog breed treated as random effects. A total of 3647 questionnaires were fully completed. HSD-, fearfulness, neuroticism and HSP-scores showed good internal consistencies, and HSD-s only moderately correlated with fearfulness and neuroticism scores, paralleling previous findings in humans. Intra- (N = 447 and inter-rater (N = 120 reliabilities were good. Demographic and human factors, including HSP score, explained only a small amount of the variance of HSD-s. A PCA analysis identified three subtraits of SPS, comparable to human findings. Overall, the measured personality dimension in dogs showed good internal consistency, partial independence from fearfulness and neuroticism, and good intra- and inter

  17. Sensory and Quality Evaluation of Traditional Compared with Power Ultrasound Processed Corn (Zea Mays) Tortilla Chips.

    Science.gov (United States)

    Janve, Bhaskar; Yang, Wade; Sims, Charles

    2015-06-01

    Power ultrasound reduces the traditional corn steeping time from 18 to 1.5 h during tortilla chips dough (masa) processing. This study sought to examine consumer (n = 99) acceptability and quality of tortilla chips made from the masa by traditional compared with ultrasonic methods. Overall appearance, flavor, and texture acceptability scores were evaluated using a 9-point hedonic scale. The baked chips (process intermediate) before and after frying (finished product) were analyzed using a texture analyzer and machine vision. The texture values were determined using the 3-point bend test using breaking force gradient (BFG), peak breaking force (PBF), and breaking distance (BD). The fracturing properties determined by the crisp fracture support rig using fracture force gradient (FFG), peak fracture force (PFF), and fracture distance (FD). The machine vision evaluated the total surface area, lightness (L), color difference (ΔE), Hue (°h), and Chroma (C*). The results were evaluated by analysis of variance and means were separated using Tukey's test. Machine vision values of L, °h, were higher (P < 0.05) and ΔE was lower (P < 0.05) for fried and L, °h were significantly (P < 0.05) higher for baked chips produced from ultra-sonication as compare to traditional. Baked chips texture for ultra-sonication was significantly higher (P < 0.05) on BFG, BPD, PFF, and FD. Fried tortilla chips texture were higher significantly (P < 0.05) in BFG and PFF for ultra-sonication than traditional processing. However, the instrumental differences were not detected in sensory analysis, concluding possibility of power ultrasound as potential tortilla chips processing aid. © 2015 Institute of Food Technologists®

  18. Gonadotropin-releasing hormone receptor (Gnrhr) gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Science.gov (United States)

    Busby, Ellen R; Sherwood, Nancy M

    2017-01-01

    Gonadotropin-releasing hormone (GnRH) is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  19. Gonadotropin-releasing hormone receptor (Gnrhr gene knock out: Normal growth and development of sensory, motor and spatial orientation behavior but altered metabolism in neonatal and prepubertal mice.

    Directory of Open Access Journals (Sweden)

    Ellen R Busby

    Full Text Available Gonadotropin-releasing hormone (GnRH is important in the control of reproduction, but its actions in non-reproductive processes are less well known. In this study we examined the effect of disrupting the GnRH receptor in mice to determine if growth, metabolism or behaviors that are not associated with reproduction were affected. To minimize the effects of other hormones such as FSH, LH and sex steroids, the neonatal-prepubertal period of 2 to 28 days of age was selected. The study shows that regardless of sex or phenotype in the Gnrhr gene knockout line, there was no significant difference in the daily development of motor control, sensory detection or spatial orientation among the wildtype, heterozygous or null mice. This included a series of behavioral tests for touch, vision, hearing, spatial orientation, locomotory behavior and muscle strength. Neither the daily body weight nor the final weight on day 28 of the kidney, liver and thymus relative to body weight varied significantly in any group. However by day 28, metabolic changes in the GnRH null females compared with wildtype females showed a significant reduction in inguinal fat pad weight normalized to body weight; this was accompanied by an increase in glucose compared with wildtype females shown by Student-Newman-Keuls Multiple Comparison test and Student's unpaired t tests. Our studies show that the GnRH-GnRHR system is not essential for growth or motor/sensory/orientation behavior during the first month of life prior to puberty onset. The lack of the GnRH-GnRHR axis, however, did affect females resulting in reduced subcutaneous inguinal fat pad weight and increased glucose with possible insulin resistance; the loss of the normal rise of estradiol at postnatal days 15-28 may account for the altered metabolism in the prepubertal female pups.

  20. Complete functional characterization of sensory neurons by system identification.

    Science.gov (United States)

    Wu, Michael C-K; David, Stephen V; Gallant, Jack L

    2006-01-01

    System identification is a growing approach to sensory neurophysiology that facilitates the development of quantitative functional models of sensory processing. This approach provides a clear set of guidelines for combining experimental data with other knowledge about sensory function to obtain a description that optimally predicts the way that neurons process sensory information. This prediction paradigm provides an objective method for evaluating and comparing computational models. In this chapter we review many of the system identification algorithms that have been used in sensory neurophysiology, and we show how they can be viewed as variants of a single statistical inference problem. We then review many of the practical issues that arise when applying these methods to neurophysiological experiments: stimulus selection, behavioral control, model visualization, and validation. Finally we discuss several problems to which system identification has been applied recently, including one important long-term goal of sensory neuroscience: developing models of sensory systems that accurately predict neuronal responses under completely natural conditions.

  1. Microbiological, physicochemical and sensory parameters of dry fermented sausages manufactured with high hydrostatic pressure processed raw meat.

    Science.gov (United States)

    Omer, M K; Prieto, B; Rendueles, E; Alvarez-Ordoñez, A; Lunde, K; Alvseike, O; Prieto, M

    2015-10-01

    The aim of this trial was to describe physicochemical, microbiological and organoleptic characteristics of dry fermented sausages produced from high hydrostatic pressure (HHP) pre-processed trimmings. During ripening of the meat products pH, weight, water activity (aw), and several microbiological parameters were measured at zero, eight, fifteen days and after 6weeks. Sensory characteristics were estimated at day 15 and after six weeks by a test panel by using several sensory tests. Enterobacteriaceae were not detected in sausages from HHP-processed trimmings. Fermentation was little affected, but weight and aw of the HHP-processed sausages decreased faster during ripening. HHP-treated sausages were consistently less favoured than non HHP-treated sausages, but the strategy may be an alternative approach if the process is optimized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Attentive, Affective, and Adaptive Behavior in the Cat: Sensory deprivation of the forebrain by lesions in the brain stem results in striking behavioral abnormalities.

    Science.gov (United States)

    Sprague, J M; Chambers, W W; Stellar, E

    1961-01-20

    Lesions of the lateral portion of the upper midbrain, involving medial, lateral, spinal, and trigeminal lemnisci primarily, result in a consistent syndrome of symptoms in the cat. (i) There is a marked sensory deficit, characterized mainly by sensory inattention and poor localization in the tactile, proprioceptive, auditory, gustatory, and nociceptive modalities, where direct pathways are interrupted. Similar defectsappear in vision and olfaction where no known direct or primary paths are interrupted. (ii) These cats are characterized by a lack of affect, showing little or no defensive and aggressive reaction to noxious and aversive situations and no response to pleasurable stimulation or solicitation of affection or petting. The animals are mute, lack facial expression, and show minimal autonomic responses. (iii) They show a hyperexploratory activity characterized by incessant, stereotyped wandering, sniffing, and visual searching, as though hallucinating. This behavior appears to be centrally directed and is very difficult to interrupt with environmental stimuli. (iv) They also demonstrate exaggerated oral activities: they snap in response to tactile stimulation of the lips, seizing and swallowing small objects even if inedible; they overeat; they hold objects too large to swallow (a mouse, a catnip ball) firmly clamped in the mouth for long periods of time; they mount and seize other animals (rat, cat, dog, monkey) by the back or the neck; they lick and chew the hair and skin of the back or tail incessantly when confined in a cage. In interpreting these results we emphasize the view that the syndrome is due chiefly to the extensive, specific, sensory deprivation produced by interruption of the lemnisci at the rostral midbrain. The relation of these findings to the effects of sensory isolation in man and animals, to the effects of midbrain lesions and neodecortication, to parietal lobe syndrome in primates, and to the behavior of autistic children is discussed

  3. Sensory Subtypes in Preschool Aged Children with Autism Spectrum Disorder.

    Science.gov (United States)

    Tomchek, Scott D; Little, Lauren M; Myers, John; Dunn, Winnie

    2018-02-07

    Given the heterogeneity of autism spectrum disorder (ASD), research has investigated how sensory features elucidate subtypes that enhance our understanding of etiology and tailored treatment approaches. Previous studies, however, have not integrated core developmental behaviors with sensory features in investigations of subtypes in ASD. Therefore, we used latent profile analysis to examine subtypes in a preschool aged sample considering sensory processing patterns in combination with social-communication skill, motor performance, and adaptive behavior. Results showed four subtypes that differed by degree and quality of sensory features, age and differential presentation of developmental skills. Findings partially align with previous literature on sensory subtypes and extends our understanding of how sensory processing aligns with other developmental domains in young children with ASD.

  4. Oral processing characteristics of solid savoury meal components, and relationship with food composition, sensory attributes and expected satiation.

    Science.gov (United States)

    Forde, C G; van Kuijk, N; Thaler, T; de Graaf, C; Martin, N

    2013-01-01

    The modern food supply is often dominated by a large variety of energy dense, softly textured foods that can be eaten quickly. Previous studies suggest that particular oral processing characteristics such as large bite size and lack of chewing activity contribute to the low satiating efficiency of these foods. To better design meals that promote greater feelings of satiation, we need an accurate picture of the oral processing characteristics of a range of solid food items that could be used to replace softer textures during a normal hot meal. The primary aim of this study was to establish an accurate picture of the oral processing characteristics of a set of solid savoury meal components. The secondary aim was to determine the associations between oral processing characteristics, food composition, sensory properties, and expected satiation. In a within subjects design, 15 subjects consumed 50 g of 35 different savoury food items over 5 sessions. The 35 foods represented various staples, vegetables and protein rich foods such a meat and fish. Subjects were video-recorded during consumption and measures included observed number of bites, number of chews, number of swallows and derived measures such as chewing rate, eating rate, bite size, and oral exposure time. Subjects rated expected satiation for a standard 200 g portion of each food using a 100mm and the sensory differences between foods were quantified using descriptive analysis with a trained sensory panel. Statistical analysis focussed on the oral processing characteristics and associations between nutritional, sensory and expected satiation parameters of each food. Average number of chews for 50 g of food varied from 27 for mashed potatoes to 488 for tortilla chips. Oral exposure time was highly correlated with the total number of chews, and varied from 27 s for canned tomatoes to 350 s for tortilla chips. Chewing rate was relatively constant with an overall average chewing rate of approximately 1 chew

  5. Analyzing Vessel Behavior Using Process Mining

    NARCIS (Netherlands)

    Maggi, F.M.; Mooij, A.J.; Aalst, W.M.P. van der

    2013-01-01

    In the maritime domain, electronic sensors such as AIS receivers and radars collect large amounts of data about the vessels in a certain geographical area. We investigate the use of process mining techniques for analyzing the behavior of the vessels based on these data. In the context of maritime

  6. Behavioral lifetime of human auditory sensory memory predicted by physiological measures.

    Science.gov (United States)

    Lu, Z L; Williamson, S J; Kaufman, L

    1992-12-04

    Noninvasive magnetoencephalography makes it possible to identify the cortical area in the human brain whose activity reflects the decay of passive sensory storage of information about auditory stimuli (echoic memory). The lifetime for decay of the neuronal activation trace in primary auditory cortex was found to predict the psychophysically determined duration of memory for the loudness of a tone. Although memory for the loudness of a specific tone is lost, the remembered loudness decays toward the global mean of all of the loudnesses to which a subject is exposed in a series of trials.

  7. Optimising the wagashie (A traditional cottage cheese) process and sensory quality

    International Nuclear Information System (INIS)

    Arthur, Akua B.

    2016-07-01

    Wagashie is a traditional West African cottage cheese produced by the Fulani who are semi-nomadic. It is a good protein source and can replace fish or meat in the diet of low income families in Africa. However, it is a product with high moisture content (60%) which is favourable for the growth of microorganisms and thus has a short shelf life of 3 days; it also has a bland taste with limited patronage. This research was therefore carried out to re-engineer wagashie for a larger market with a focus on improving its sensory quality, safety and shelf life. A brief survey was carried out to confirm the wagashie production procedure and identify retailers and producers for collection of samples. The safety of market samples of fresh and fried wagashie samples were determined by assaying for various indicator and pathogenic microorganisms including aerobic mesophiles, Yeast and moulds, coliform bacterin, F coli, Staphylococcus aurcus Bacillus cercus, Salmonella spp, Enterococcus, Enterobacteriaceae. Studies were also carried out to replace the traditional coagulant of milk which involves the use of plant extract of Sodom apple (Calotropis procera) with commercial rennet used in industrial cheese production and ferment fresh milk used in the preparation. The traditional method of preparation was also standardised to improve its sensory quality. The process variables of wagashie, which are salt concentration, coagulant and fermentation time, were thus optimised using the Box Behnken design which is a response surface methodology and an affective testing was carried out to evaluate the consumer preference of the product with a nine-point hedonic scale. The sensory profile of the 'wagashie' samples were described by a Quantitative Descriptive Analysis by a trained 13 member panel. They evaluated the wagashie samples for desirable and undesirable attributes of wagashie. The rheology of 'wagashie which involves Texture Profile Analysis (TPA) with a texture

  8. Perfil sensorial e aceitabilidade de méis de abelhas sem ferrão submetidos a processos de conservação Sensorial profile and acceptability of stingless bee honey submitted to conservation processes

    Directory of Open Access Journals (Sweden)

    Geni da Silva Sodré

    2008-12-01

    Full Text Available O presente trabalho avaliou o perfil sensorial e a aceitabilidade de méis de abelhas sem ferrão submetidos a dois processos de conservação, objetivando obter maior vida de prateleira. Foram utilizadas amostras de méis de Melipona scutellaris e M. quadrifasciata, coletadas no Estado da Bahia entre dezembro de 2005 e janeiro de 2006. As amostras foram submetidas aos processos de pasteurização e desumidificação, passando em seguida por avaliação sensorial. O perfil sensorial foi determinado no Laboratório de Entomologia do Centro de Ciências Agrárias, Ambientais e Biológicas da Universidade Federal do Recôncavo da Bahia, em Cruz das Almas, Estado da Bahia. Os atributos analisados foram: fluidez, cor, aroma, cristalização, sabor e aceitabilidade. Os resultados mostraram que os processos de conservação utilizados não interferem no perfil sensorial e na aceitabilidade do produto.The present work was conducted to evaluate the sensorial profile and the acceptability of the honey of stingless bees submitted to two conservation processes seeking to obtain longer shelf life. The samples of Melipona scutellaris and M. quadrifasciata honey were collected in the State of Bahia, Brazil, between December 2005 and January 2006. The samples were first submitted to pasteurization and dehumidification processes and then to sensorial evaluation. The sensorial profile was determined in the Laboratory of Entomology in the Center for Agrarian, Biological, and Environmental Sciences of the Federal University of Recôncavo Bahiano, in Cruz das Almas, in the state of Bahia. The analyzed attributes were: fluidity, color, scent, crystallization, flavour, and acceptability. The results show that the conservation processes used do not interfere with the sensorial profile and the product acceptability.

  9. Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System

    Science.gov (United States)

    Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.

  10. Sensory Transduction in Caenorhabditis elegans

    Science.gov (United States)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  11. Gum chewing inhibits the sensory processing and the propagation of stress-related information in a brain network.

    Directory of Open Access Journals (Sweden)

    Hongbo Yu

    Full Text Available Stress is prevalent in human life and threatens both physical and mental health; stress coping is thus of adaptive value for individual's survival and well-being. Although there has been extensive research on how the neural and physiological systems respond to stressful stimulation, relatively little is known about how the brain dynamically copes with stress evoked by this stimulation. Here we investigated how stress is relieved by a popular coping behavior, namely, gum chewing. In an fMRI study, we used loud noise as an acute stressor and asked participants to rate their feeling of stress in gum-chewing and no-chewing conditions. The participants generally felt more stressful when hearing noise, but less so when they were simultaneously chewing gum. The bilateral superior temporal sulcus (STS and the left anterior insula (AI were activated by noise, and their activations showed a positive correlation with the self-reported feeling of stress. Critically, gum chewing significantly reduced the noise-induced activation in these areas. Psychophysiological interaction (PPI analysis showed that the functional connectivity between the left AI and the dorsal anterior cingulate cortex (dACC was increased by noise to a lesser extent when the participants were chewing gum than when not chewing gum. Dynamic causality modeling (DCM demonstrated that gum chewing inhibited the connectivity from the STS to the left AI. These findings demonstrate that gum chewing relieves stress by attenuating the sensory processing of external stressor and by inhibiting the propagation of stress-related information in the brain stress network.

  12. Sensory Processing Disorder in a Primate Model: Evidence From a Longitudinal Study of Prenatal Alcohol and Prenatal Stress Effects

    OpenAIRE

    Schneider, Mary L.; Moore, Colleen F.; Gajewski, Lisa L.; Larson, Julie A.; Roberts, Andrew D.; Converse, Alexander K.; DeJesus, Onofre T.

    2008-01-01

    Disrupted sensory processing, characterized by over- or underresponsiveness to environmental stimuli, has been reported in children with a variety of developmental disabilities. This study examined the effects of prenatal stress and moderate-level prenatal alcohol exposure on tactile sensitivity and its relationship to striatal dopamine system function in thirty-eight 5- to 7-year-old rhesus monkeys. The monkeys were from four experimental conditions: (a) prenatal alcohol exposed, (b) prenata...

  13. Tickle me, I think I might be dreaming! Sensory attenuation, self-other distinction, and predictive processing in lucid dreams

    Directory of Open Access Journals (Sweden)

    Jennifer Michelle Windt

    2014-09-01

    Full Text Available The contrast between self- and other-produced tickles, as a special case of sensory attenuation for self-produced actions, has long been a target of empirical research. While in standard wake states it is nearly impossible to tickle oneself, there are interesting exceptions. Notably, subjects awakened from REM (rapid eye movement- sleep dreams are able to tickle themselves. So far, however, the question of whether it is possible to tickle oneself and be tickled by another in the dream state has not been investigated empirically or addressed from a theoretical perspective. Here, we report the results of an explorative web-based study in which participants were asked to rate their sensations during self-tickling and being tickled during wakefulness, imagination, and lucid dreaming. Our results, though highly preliminary, indicate that in the special case of lucid control dreams, the difference between self-tickling and being tickled by another is obliterated, suggesting that sensory attenuation for self-produced tickles spreads to those produced by non-self dream characters. These preliminary results provide the backdrop for a more general theoretical and metatheoretical discussion of tickling in lucid dreams in a predictive processing framework. We argue that the primary value of our study lies not so much in our results, which are subject to important limitations, but rather in the fact that they enable a new theoretical perspective on the relationship between sensory attenuation, the self-other distinction and agency, as well as suggest new questions for future research. In particular, the example of tickling during lucid dreaming raises the question of whether sensory attenuation and the self-other distinction can be simulated largely independently of external sensory input.

  14. Tickle me, I think I might be dreaming! Sensory attenuation, self-other distinction, and predictive processing in lucid dreams.

    Science.gov (United States)

    Windt, Jennifer M; Harkness, Dominic L; Lenggenhager, Bigna

    2014-01-01

    The contrast between self- and other-produced tickles, as a special case of sensory attenuation for self-produced actions, has long been a target of empirical research. While in standard wake states it is nearly impossible to tickle oneself, there are interesting exceptions. Notably, participants awakened from REM (rapid eye movement-) sleep dreams are able to tickle themselves. So far, however, the question of whether it is possible to tickle oneself and be tickled by another in the dream state has not been investigated empirically or addressed from a theoretical perspective. Here, we report the results of an explorative web-based study in which participants were asked to rate their sensations during self-tickling and being tickled during wakefulness, imagination, and lucid dreaming. Our results, though highly preliminary, indicate that in the special case of lucid control dreams, the difference between self-tickling and being tickled by another is obliterated, with both self- and other produced tickles receiving similar ratings as self-tickling during wakefulness. This leads us to the speculative conclusion that in lucid control dreams, sensory attenuation for self-produced tickles spreads to those produced by non-self dream characters. These preliminary results provide the backdrop for a more general theoretical and metatheoretical discussion of tickling in lucid dreams in a predictive processing framework. We argue that the primary value of our study lies not so much in our results, which are subject to important limitations, but rather in the fact that they enable a new theoretical perspective on the relationship between sensory attenuation, the self-other distinction and agency, as well as suggest new questions for future research. In particular, the example of tickling during lucid dreaming raises the question of whether sensory attenuation and the self-other distinction can be simulated largely independently of external sensory input.

  15. Tickle me, I think I might be dreaming! Sensory attenuation, self-other distinction, and predictive processing in lucid dreams

    Science.gov (United States)

    Windt, Jennifer M.; Harkness, Dominic L.; Lenggenhager, Bigna

    2014-01-01

    The contrast between self- and other-produced tickles, as a special case of sensory attenuation for self-produced actions, has long been a target of empirical research. While in standard wake states it is nearly impossible to tickle oneself, there are interesting exceptions. Notably, participants awakened from REM (rapid eye movement-) sleep dreams are able to tickle themselves. So far, however, the question of whether it is possible to tickle oneself and be tickled by another in the dream state has not been investigated empirically or addressed from a theoretical perspective. Here, we report the results of an explorative web-based study in which participants were asked to rate their sensations during self-tickling and being tickled during wakefulness, imagination, and lucid dreaming. Our results, though highly preliminary, indicate that in the special case of lucid control dreams, the difference between self-tickling and being tickled by another is obliterated, with both self- and other produced tickles receiving similar ratings as self-tickling during wakefulness. This leads us to the speculative conclusion that in lucid control dreams, sensory attenuation for self-produced tickles spreads to those produced by non-self dream characters. These preliminary results provide the backdrop for a more general theoretical and metatheoretical discussion of tickling in lucid dreams in a predictive processing framework. We argue that the primary value of our study lies not so much in our results, which are subject to important limitations, but rather in the fact that they enable a new theoretical perspective on the relationship between sensory attenuation, the self-other distinction and agency, as well as suggest new questions for future research. In particular, the example of tickling during lucid dreaming raises the question of whether sensory attenuation and the self-other distinction can be simulated largely independently of external sensory input. PMID:25278861

  16. Megascale processes: Natural disasters and human behavior

    Science.gov (United States)

    Kieffer, S.W.; Barton, P.; Chesworth, W.; Palmer, A.R.; Reitan, P.; Zen, E.-A.

    2009-01-01

    Megascale geologic processes, such as earthquakes, tsunamis, volcanic eruptions, floods, and meteoritic impacts have occurred intermittently throughout geologic time, and perhaps on several planets. Unlike other catastrophes discussed in this volume, a unique process is unfolding on Earth, one in which humans may be the driving agent of megadisasters. Although local effects on population clusters may have been catastrophic in the past, human societies have never been interconnected globally at the scale that currently exists. We review some megascale processes and their effects in the past, and compare present conditions and possible outcomes. We then propose that human behavior itself is having effects on the planet that are comparable to, or greater than, these natural disasters. Yet, unlike geologic processes, human behavior is potentially under our control. Because the effects of our behavior threaten the stability, or perhaps even existence, of a civilized society, we call for the creation of a body to institute coherent global, credible, scientifi cally based action that is sensitive to political, economic, religious, and cultural values. The goal would be to institute aggressive monitoring, identify and understand trends, predict their consequences, and suggest and evaluate alternative actions to attempt to rescue ourselves and our ecosystems from catastrophe. We provide a template modeled after several existing national and international bodies. ?? 2009 The Geological Society of America.

  17. Sensory modulation in preterm children: Theoretical perspective and systematic review.

    Directory of Open Access Journals (Sweden)

    Tinka Bröring

    Full Text Available Neurodevelopmental sequelae in preterm born children are generally considered to result from cerebral white matter damage and noxious effects of environmental factors in the neonatal intensive care unit (NICU. Cerebral white matter damage is associated with sensory processing problems in terms of registration, integration and modulation. However, research into sensory processing problems and, in particular, sensory modulation problems, is scarce in preterm children.This review aims to integrate available evidence on sensory modulation problems in preterm infants and children (<37 weeks of gestation and their association with neurocognitive and behavioral problems.Relevant studies were extracted from PubMed, EMBASE.com and PsycINFO following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines. Selection criteria included assessment of sensory modulation in preterm born children (<37 weeks of gestation or with prematurity as a risk factor.Eighteen studies were included. Results of this review support the presence of sensory modulation problems in preterm children. Although prematurity may distort various aspects of sensory modulation, the nature and severity of sensory modulation problems differ widely between studies.Sensory modulation problems may play a key role in understanding neurocognitive and behavioral sequelae in preterm children. Some support is found for a dose-response relationship between both white matter brain injury and length of NICU stay and sensory modulation problems.

  18. Ultra-High Temperature Effect on Bioactive Compounds and Sensory Attributes of Orange Juice Compared with Traditional Processing

    Directory of Open Access Journals (Sweden)

    Zvaigzne Gaļina

    2017-12-01

    Full Text Available Orange juices are an important source of bioactive compounds. Because of its unique combination of sensory attributes and nutritional value, orange juice is the world’s most popular fruit juice. Orange (Citrus sinensis juice of Greek Navel variety was used in this study. The impact of Conventional Thermal Pasteurisation (94 °C/30' (CTP and alternative Ultra-High Temperature (UHT (130 °C/2' processing on bioactive compounds and antioxidant capacity changes of fresh Navel orange juice was investigated. Sensory attributes of processed juices were evaluated. Results showed that using technologies CTP and UHT orange juice Navel significantly changed vitamin C concentration in comparison with fresh orange juice. The highest concentration of antioxidants (vitamin C, total phenols, hesperidin and carotenoids was observed in orange juice Navel produced by UHT technology. Sensory results indicated that characteristics of the orange juice obtained using UHT technology were more liked than the CTP heat treated juice. UHT technology emerges as an advantageous alternative process to preserve bioactive compounds in orange juice.

  19. Sensory system plasticity in a visually specialized, nocturnal spider.

    Science.gov (United States)

    Stafstrom, Jay A; Michalik, Peter; Hebets, Eileen A

    2017-04-21

    The interplay between an animal's environmental niche and its behavior can influence the evolutionary form and function of its sensory systems. While intraspecific variation in sensory systems has been documented across distant taxa, fewer studies have investigated how changes in behavior might relate to plasticity in sensory systems across developmental time. To investigate the relationships among behavior, peripheral sensory structures, and central processing regions in the brain, we take advantage of a dramatic within-species shift of behavior in a nocturnal, net-casting spider (Deinopis spinosa), where males cease visually-mediated foraging upon maturation. We compared eye diameters and brain region volumes across sex and life stage, the latter through micro-computed X-ray tomography. We show that mature males possess altered peripheral visual morphology when compared to their juvenile counterparts, as well as juvenile and mature females. Matching peripheral sensory structure modifications, we uncovered differences in relative investment in both lower-order and higher-order processing regions in the brain responsible for visual processing. Our study provides evidence for sensory system plasticity when individuals dramatically change behavior across life stages, uncovering new avenues of inquiry focusing on altered reliance of specific sensory information when entering a new behavioral niche.

  20. Modifications in the chemical compounds and sensorial attributes of Engraulis anchoita fillet during marinating process

    Directory of Open Access Journals (Sweden)

    Maria Isabel Yeannes

    2008-12-01

    Full Text Available Marinated fish are fish products preserved by the combined action of salt and organic acids. The objective of this work was to analyze the variations in the chemical compounds of anchovy fillets that give them sensorial characteristics during the marinating process of Engraulis anchoita. The protein content decreased slightly and the TVB-N level decreased significantly in both the brining and marinating stages. In the marinating stage an increase in the total free aminoacids was observed. The NBV level in the brining and marinating solutions increased during these stages due to the solubilization of the non-protein nitrogenous compounds and the degradation of some protein compounds.The decrease of the contents of protein and TVB-N, and the increase of the acidity and the free aminoacids content during the marinating process give the marinated fillets the characteristic texture and aroma.Peixes marinados são produtos obtidos pela ação combinada de sal e ácidos orgânicos. O presente estudo teve como objetivo avaliar as alterações químicas e sensoriais em filés de anchoita (Engraulis anchoita durante o processo de marinado. O conteúdo de proteína apresentou decréscimo significativo durante a salga. O teor de Bases Voláteis Totais-N-BVT, apresentou uma diminuição considerável durante a salga e marinacão. Na fase de marinado, foi observado um aumento em aminoácidos livres totais. Foi constatada a presença de N-BVT na salmoura e na solução oriunda do processo de obtenção de marinado, devido à solubilização de nitrogênio não protéico, que podem ter sido acrescidos de alguns compostos de degradação protéica. A redução do conteúdo de proteína e N-BVT e o aumento de acidez e de aminoácidos livres gerados durante ou processo de elaboração do marinado fazem com que os filés marinados adquiram textura e aroma característicos.

  1. Restricted and Repetitive Behaviours, Sensory Processing and Cognitive Style in Children with Autism Spectrum Disorders

    Science.gov (United States)

    Chen, Yu-Han; Rodgers, Jacqui; McConachie, Helen

    2009-01-01

    Many individuals with autism tend to focus on details. It has been suggested that this cognitive style may underlie the presence of stereotyped routines, repetitive interests and behaviours, and both relate in some way to sensory abnormalities. Twenty-nine children with diagnosis of high functioning autism or Asperger syndrome completed the…

  2. Progress in the Understanding of Sensory and Perceptual Processes in Early Infancy.

    Science.gov (United States)

    Haith, Marshall M.

    1990-01-01

    Focuses on investigations of infant sensation and perception over the past 25 years. Describes the knowledge base concerning the sensory and perceptual world of the infant in the mid-1960s. Methodological highlights in the study of vision and audition are covered. (RJC)

  3. Audio-motor but not visuo-motor temporal recalibration speeds up sensory processing

    NARCIS (Netherlands)

    Sugano, Y.; Keetels, M.N.; Vroomen, J.; Mouraux, André

    2017-01-01

    Perception of synchrony between one's own action (a finger tap) and the sensory feedback thereof (a visual flash or an auditory pip) can be recalibrated after exposure to an artificially inserted delay between them (temporal recalibration effect: TRE). TRE might be mediated by a compensatory shift

  4. Sensory aspects of trail-following behaviors in the Asian longhorned beetle, Anoplophora glabripennis

    Science.gov (United States)

    Fern Graves; Thomas C. Baker; Aijun Zhang; Melody Keena; Kelli Hoover

    2016-01-01

    Anoplophora glabripennis has a complex suite of mate-finding behaviors, the functions of which are not entirely understood. These behaviors are elicited by a number of factors, including visual and chemical cues. Chemical cues include a maleproduced volatile semiochemical acting as a long-range sex pheromone, a femaleproduced cuticular hydrocarbon...

  5. Automated Tracking of Animal Posture and Movement during Exploration and Sensory Orientation Behaviors

    NARCIS (Netherlands)

    Gomez-Marin, A.; Partoune, N.; Stephens, G.J.; Louis, M.

    2012-01-01

    Background: The nervous functions of an organism are primarily reflected in the behavior it is capable of. Measuring behavior quantitatively, at high-resolution and in an automated fashion provides valuable information about the underlying neural circuit computation. Accordingly, computer-vision

  6. Shared and Divergent Auditory and Tactile Processing in Children with Autism and Children with Sensory Processing Dysfunction Relative to Typically Developing Peers.

    Science.gov (United States)

    Demopoulos, Carly; Brandes-Aitken, Annie N; Desai, Shivani S; Hill, Susanna S; Antovich, Ashley D; Harris, Julia; Marco, Elysa J

    2015-07-01

    The aim of this study was to compare sensory processing in typically developing children (TDC), children with Autism Spectrum Disorder (ASD), and those with sensory processing dysfunction (SPD) in the absence of an ASD. Performance-based measures of auditory and tactile processing were compared between male children ages 8-12 years assigned to an ASD (N=20), SPD (N=15), or TDC group (N=19). Both the SPD and ASD groups were impaired relative to the TDC group on a performance-based measure of tactile processing (right-handed graphesthesia). In contrast, only the ASD group showed significant impairment on an auditory processing index assessing dichotic listening, temporal patterning, and auditory discrimination. Furthermore, this impaired auditory processing was associated with parent-rated communication skills for both the ASD group and the combined study sample. No significant group differences were detected on measures of left-handed graphesthesia, tactile sensitivity, or form discrimination; however, more participants in the SPD group demonstrated a higher tactile detection threshold (60%) compared to the TDC (26.7%) and ASD groups (35%). This study provides support for use of performance-based measures in the assessment of children with ASD and SPD and highlights the need to better understand how sensory processing affects the higher order cognitive abilities associated with ASD, such as verbal and non-verbal communication, regardless of diagnostic classification.

  7. New insights into the brain, braincase, and ear region of tyrannosaurs (Dinosauria, Theropoda), with implications for sensory organization and behavior.

    Science.gov (United States)

    Witmer, Lawrence M; Ridgely, Ryan C

    2009-09-01

    The braincase region of tyrannosaurs was investigated to provide insights on anatomical attributes relevant to inferences of sensory biology and behavior. CT scanning focused on three specimens of Tyrannosaurus rex, a juvenile Gorgosaurus, and the controversial Cleveland skull (CMNH 7541). Analysis shows that the cerebral hemispheres were enlarged, but conflicting information on the optic lobes suggests that brain conformation was not fully avian. Previous estimates of olfactory bulb size for T. rex were much too large, but even the corrected sizes are relatively larger than other theropods, suggesting that odor detection was indeed of particular importance to tyrannosaurs. The inner ears show a number of coelurosaurian traits, such as elongate and rounded and rostral, lateral semicircular canals, and incipient twisting of the common crus, which we interpret to be related to enhanced reflexes coordinating rapid eye and head movements. The cochlea is elongate, which, coupled with the finding of extensive tympanic pneumaticity, supports the inference of behavioral emphasis of low-frequency sounds. Three main groups of sinuses pneumatized the braincase, and there are a number of perhaps systematically relevant differences. Orientation of the endosseous labyrinth reveals that alert head postures of T. rex and Gorgosaurus were somewhat depressed below the horizontal, but the Cleveland skull had a very strongly down-turned posture. It is concluded that tyrannosaur sensory biology is consistent with their predatory coelurosaurian heritage, with emphasis on relatively quick, coordinated eye and head movements, and probably sensitive low-frequency hearing; tyrannosaurs apomorphically enhanced their olfactory apparatus. The taxonomic status of the Cleveland skull remains unresolved. (c) 2009 Wiley-Liss, Inc.

  8. Atypical central pain processing in sensory modulation disorder: absence of temporal summation and higher after-sensation.

    Science.gov (United States)

    Bar-Shalita, T; Vatine, J-J; Yarnitsky, D; Parush, S; Weissman-Fogel, I

    2014-02-01

    Sensory over-responsivity (SOR), a subtype of the proposed sensory modulation disorder (SMD), is characterized by over-responsiveness to stimuli in several sensory modalities. SMD individuals demonstrate abnormal responses to naturally occurring stimuli in a manner that interferes with daily life participation. Previous psychophysical testing of the somatosensory system revealed that SOR individuals rated pain sensations higher than controls, demonstrating hyperalgesia that can be centrally mediated. Temporal summation (TS) of second pain and after-sensation are manifestations of central sensitization; therefore, this study explored these measures for better characterization of central pain processing in SOR. Twelve SOR adults and 12 healthy controls participated. TS was produced by a train of fifteen repetitive heat pulses, 0.7 s duration each, and 2 s of inter-stimulus interval, applied to the thenar-eminence, while four pain ratings were obtained. An after-sensation was then measured for 5 min, obtaining six pain ratings. No TS of pain was indicated in the SOR group (SOR: p = 0.36; control: p sensation, individuals with SOR continued to report pain for the duration of the 5 min measured (p = 0.002). These results demonstrate an atypical response pattern, suggesting alteration in pain processing and/or modulation at a central level in individuals with SOR. These possible neural changes may manifest themselves as interference with daily functioning as well as shed light on some of the between-subject variability seen in psychophysical testing in non-painful subjects.

  9. Sensory-motor processing in substantia nigra pars reticulata in conscious cats.

    Science.gov (United States)

    Schwarz, M; Sontag, K H; Wand, P

    1984-02-01

    on s.n.r. neurones, taken together with previous findings on nigral influences on spinal motor circuitry, indicate that the s.n.r. represents an output station of the basal ganglia which is involved in the subconscious processing of convergent multimodal sensory information and which participates in setting appropriate gains and biasses of spinal motor neuronal systems to adequately deal with changing motor requirements.

  10. Effects of Prenatal Sensory-Evoked Arousal on Postnatal Behavior and Perceptual Responsiveness in Bobwhite Quail (Colinus virginianus)

    OpenAIRE

    Reynolds, Gregory Durelle

    2002-01-01

    Prenatal sensory stimulation can have facilitative or interfering effects upon subsequent perceptual learning and development in bobwhite quail. Exposure to moderate amounts of unimodal prenatal sensory stimulation has been shown to accelerate early intersensory responsiveness, while exposure to concurrent prenatal bimodal sensory stimulation has been shown to interfere with perceptual learning and development. An immediate mechanism that may underlie this developmental intersensory interfe...

  11. The effects of interstimulus interval on sensory gating and on preattentive auditory memory in the oddball paradigm. Can magnitude of the sensory gating affect preattentive auditory comparison process?

    Science.gov (United States)

    Ermutlu, M Numan; Demiralp, Tamer; Karamürsel, Sacit

    2007-01-22

    P50, and mismatch negativity (MMN) are components of event-related potentials (ERP) reflecting sensory gating and preattentive auditory memory, respectively. Interstimulus interval (ISI) is an important determinant of the amplitudes of these components and N1. In the present study the interrelation between stimulus gating and preattentive auditory sensory memory were investigated as a function of ISI in 1.5, 2.5 and 3.5s in 15 healthy volunteered participants. ISI factor affected the N1 peak amplitude significantly. MMN amplitude in 2.5s ISI was significantly smaller compared to 1.5 and 3.5s ISI. ISI X stimuli interaction on P50 amplitude was statistically significant. P50 amplitudes to deviant stimuli in 2.5s ISI were larger than the P50 amplitudes in other ISIs. P50 difference (P50d) waveform amplitude correlated significantly with MMN amplitude. The results suggest that: (i) auditory sensory gating could affect preattentive auditory sensory memory by supplying input to the comparator mechanism; (ii) 2.5s ISI is important in displaying the sensory gating and preattentive auditory sensory memory relation.

  12. When noise is beneficial for sensory encoding: Noise adaptation can improve face processing.

    Science.gov (United States)

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Redies, Christoph; Németh, Kornél; Kovács, Gyula

    2017-10-01

    The presence of noise usually impairs the processing of a stimulus. Here, we studied the effects of noise on face processing and show, for the first time, that adaptation to noise patterns has beneficial effects on face perception. We used noiseless faces that were either surrounded by random noise or presented on a uniform background as stimuli. In addition, the faces were either preceded by noise adaptors or not. Moreover, we varied the statistics of the noise so that its spectral slope either matched that of the faces or it was steeper or shallower. Results of parallel ERP recordings showed that the background noise reduces the amplitude of the face-evoked N170, indicating less intensive face processing. Adaptation to a noise pattern, however, led to reduced P1 and enhanced N170 amplitudes as well as to a better behavioral performance in two of the three noise conditions. This effect was also augmented by the presence of background noise around the target stimuli. Additionally, the spectral slope of the noise pattern affected the size of the P1, N170 and P2 amplitudes. We reason that the observed effects are due to the selective adaptation of noise-sensitive neurons present in the face-processing cortical areas, which may enhance the signal-to-noise-ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Breach of sensory integration in children and youth

    Directory of Open Access Journals (Sweden)

    Radziyevska Mariya.

    2012-04-01

    Full Text Available From the first moments of life, the child acquires the experience of being in the world around him through the senses such as touch, balance, proprioception, taste, sight, hearing and smell. The development of sensory integration of individual processes helps to effectively carry out every activity and function in society. Changes in the quality and quantity of sensory information may lead to sensory integration disorder child, which is immediately reflected in his behavior. In this paper we have presented information on the levels of sensory integration and testing of samples with a simple touch of activities that can be done without special equipment, both at home and in child care. Dissemination of knowledge about the processes of sensory integration, both among doctors, teachers, physiotherapists, occupational therapists and psychology as well as parents can contribute to early diagnosis of problems in children sensory-social development, further impeding the normal functioning of the child in society.

  14. Behavior of radioactive elements in ironmaking process

    International Nuclear Information System (INIS)

    Kitamura, Shin-ya; Sato, Mitsuru; Sakakibara, Mizuo; Nogami, Hiroshi; Hasegawa, Akira

    2009-01-01

    During the decommissioning phase of a nuclear power plant, a large amount of steel scrap is generated. Such scrap can be recycled if its radioactivity can be reduced to a level lower than the clearance level by decreasing the radioactive element content. It has been clarified that the radioactivity of steel is in proportion to Co content. Although the behavior of Co in iron and steel making processes has been already discussed, the behavior of the other radioactive elements, i.e., Sc, Eu, Cs were not clarified. In this study, the behaviors of these radioactive elements in ironmaking processes were examined by instrumental neutron activation analysis, and the following results were obtained: (1) Iron ore and serpentine were the main sources of Co, iron ore and coke were the main sources of Sc and Eu, and coke and pellets were the main sources of Cs. (2) Iron ore contained 3-15 ppm of Co, 1-4 ppm of Sc, and less than 1 ppm of Eu and Cs. (3) Only Co was contained in hot metal, and Sc was contained in slag. (author)

  15. The relationship between sensory processing patterns, alexithymia, traumatic childhood experiences, and quality of life among patients with unipolar and bipolar disorders.

    Science.gov (United States)

    Serafini, Gianluca; Gonda, Xenia; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Engel-Yeger, Batya

    2016-12-01

    Several studies documented the involvement of sensory perception in emotional processes. The long-term consequences of traumatic experiences and alexithymia have been demonstrated as well. However, the role of extreme sensory processing patterns, traumatic childhood experiences, and alexithymia has not been thoroughly examined in major affective disorders. The present study aimed to: (1) compare unipolar/bipolar patients with regard to their sensory processing patterns, alexithymia, childhood traumatic experiences and quality of life; (2) examine the correlations between sensory processing patterns and childhood traumatic experiences; (3) investigate the relative contribution of diagnostic groups (unipolar/bipolar), sensory processing patterns, alexithymia, and childhood traumatic experiences in predicting quality of life. The sample included 336 participants, 197 with unipolar and 139 with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale, Childhood Trauma Questionnaire (CTQ), Beck Depression Inventory (BDI)-II, and Short Form 12 Health Survey version 2 (SF-12). Bipolar patients showed significantly higher physical neglect, emotional abuse, and emotional neglect compared with unipolar patients. Both in unipolar and bipolar groups, lower registration of sensory input as well as hypersensitivity correlated with enhanced childhood trauma events. Reduced sensory sensitivity accounted for 11% of the variance in physical health composite score (PCS) of SF-12 whereas reduced depression accounted for 8% of the variance in mental health composite score (MCS). Furthermore, elevated MCS was predicted by depression, physical and emotional neglect. Sensory processing patterns and childhood traumatic experiences may specifically characterize individuals with major affective disorders and play a role in the prediction of their quality of life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Comparative effect of high pressure processing and traditional thermal treatment on the physicochemical, microbiology, and sensory analysis of olive jam

    Directory of Open Access Journals (Sweden)

    Delgado-Adamez, J.

    2013-09-01

    Full Text Available In the present work the effect of the processing by high hydrostatic pressures (HPP was assessed as an alternative to the thermal treatment of pasteurization in olive jam. The effects of both treatments on the product after processing were compared and stability during storage under refrigeration was assessed through the characterization of physicochemical, microbiological and sensory aspects. To assess the effect of processing, two HPP treatments (450 and 600MPa and thermal pasteurization (80 °C for 20 min were applied, comparing them with the unprocessed product. HPP 600MPa versus the rest of treatments showed a reduction in microorganisms, greater clarity and less browning, and sensory acceptance. The shelf-life of the refrigerated product would indicate the feasibility of the application of the HPP technology for food with similar shelf-life to that obtained with the traditional treatment of pasteurization, but with a better sensory quality.En el presente trabajo se valoró el efecto del procesado por altas presiones hidrostáticas (HPP como método alternativo al tratamiento térmico de pasteurización en la mermelada de aceitunas. Para ello se comparó el efecto de ambos tratamientos sobre el producto procesado y se evaluó su estabilidad durante el almacenamiento en refrigeración, mediante la caracterización de los aspectos físico-químicos, microbiológicos, y sensoriales. Para evaluar el efecto del procesado, se aplicaron dos tratamientos de HPP (450 y 600MPa y otro de pasteurización térmica (80 °C durante 20 min, comparándose con el producto no procesado. Las muestras tratadas con HPP 600MPa presentaron, frente al resto de tratamientos una reducción en la presencia de microorganismos, mayor claridad y menor pardeamiento, y una mayor aceptación sensorial. El estudio de la vida útil del producto en refrigeración, indicaría la viabilidad de la aplicación de la tecnología de HPP para obtener alimentos con vida útil similar

  17. Sensory correlations in autism.

    Science.gov (United States)

    Kern, Janet K; Trivedi, Madhukar H; Grannemann, Bruce D; Garver, Carolyn R; Johnson, Danny G; Andrews, Alonzo A; Savla, Jayshree S; Mehta, Jyutika A; Schroeder, Jennifer L

    2007-03-01

    This study examined the relationship between auditory, visual, touch, and oral sensory dysfunction in autism and their relationship to multisensory dysfunction and severity of autism. The Sensory Profile was completed on 104 persons with a diagnosis of autism, 3 to 56 years of age. Analysis showed a significant correlation between the different processing modalities using total scores. Analysis also showed a significant correlation between processing modalities for both high and low thresholds, with the exception that auditory high threshold processing did not correlate with oral low threshold or touch low threshold processing. Examination of the different age groups suggests that sensory disturbance correlates with severity of autism in children, but not in adolescents and adults. Evidence from this study suggests that: all the main modalities and multisensory processing appear to be affected; sensory processing dysfunction in autism is global in nature; and sensory processing problems need to be considered part of the disorder.

  18. Influence of the diabetic neuropathy on the behavior of electromyographic and sensorial responses in treadmill gait.

    Science.gov (United States)

    Sacco, I C N; Amadio, A C

    2003-06-01

    We describe and interpret self-cadence treadmill walking by neuropathic diabetic subjects under biomechanical and somatosensorial considerations. EMG variables during stance phase of neuropathic diabetic subjects were acquired and analyzed. We also evaluated sensorial and motor aspects of the feet and legs. The experimental procedures are divided as follows: (a) determination of the sensitive cronaxie and pain tolerance in selected plantar areas, (b) determination and description of temporal aspects of EMG patterns of the vastus lateralis, tibialis anterior and lateral gastrocnemius of both sides during treadmill walking. We analyze and compare the results of the sensitive cronaxie, pain tolerance and the EMG parameters obtained by two experimental groups: diabetic neuropathic (n=20) and non-diabetic control subjects (n=20). The somatosensorial responses and pain tolerance threshold in the diabetic neuropathic group were significantly higher and considered far from the normal patterns. The EMG responses of the thigh and leg muscles in the diabetic neuropathic group were delayed if compared to the normal recruitment pattern, especially the tibialis anterior and vastus lateralis. These findings lead us to conclude that probably central and/or peripheral control mechanisms of the gait of neuropathic diabetic patients are altered due to somatosensorial and motor deficits. The mechanism of load reduction during walking was considered inefficient because of the activation delay of the vastus lateralis and tibialis anterior. We have concluded that the peripheral diabetic neuropathy damages not only somatosensorial and motor sources but also intrinsic mechanisms of motor control leading to alterations in the ankle efficiency in gait. This resulting distal inefficiency compromises some of the principal requirements for gait, such as progression and balance. This investigation is based on an innovating thematic approach involving the diabetic peripheral neuropathy. This

  19. Hyperoxia-triggered aversion behavior in Drosophila foraging larvae is mediated by sensory detection of hydrogen peroxide.

    Science.gov (United States)

    Kim, Myung Jun; Ainsley, Joshua A; Carder, Justin W; Johnson, Wayne A

    2013-12-01

    Reactive oxygen species (ROS) in excess have been implicated in numerous chronic illnesses, including asthma, diabetes, aging, cardiovascular disease, and neurodegenerative illness. However, at lower concentrations, ROS can also serve essential routine functions as part of cellular signal transduction pathways. As products of atmospheric oxygen, ROS-mediated signals can function to coordinate external environmental conditions with growth and development. A central challenge has been a mechanistic distinction between the toxic effects of oxidative stress and endogenous ROS functions occurring at much lower concentrations. Drosophila larval aerotactic behavioral assays revealed strong developmentally regulated aversion to mild hyperoxia mediated by H2O2-dependent activation of class IV multidendritic (mdIV) sensory neurons expressing the Degenerin/epithelial Na(+) channel subunit, Pickpocket1 (PPK1). Electrophysiological recordings in foraging-stage larvae (78-84 h after egg laying [AEL]) demonstrated PPK1-dependent activation of mdIV neurons by nanomolar levels of H2O2 well below levels normally associated with oxidative stress. Acute sensitivity was reduced > 100-fold during the larval developmental transition to wandering stage (> 96 h AEL), corresponding to a loss of hyperoxia aversion behavior during the same period. Degradation of endogenous H2O2 by transgenic overexpression of catalase in larval epidermis caused a suppression of hyperoxia aversion behavior. Conversely, disruption of endogenous catalase activity using a UAS-CatRNAi transposon resulted in an enhanced hyperoxia-aversive response. These results demonstrate an essential role for low-level endogenous H2O2 as an environment-derived signal coordinating developmental behavioral transitions.

  20. Parent-reported problem behavior among children with sensory disabilities attending elementary regular schools

    NARCIS (Netherlands)

    Maes, B; Grietens, H

    2004-01-01

    Parent-reported problem behaviors of 94 children with visual and auditory disabilities, attending elementary regular schools, were compared with problems reported in a general population sample of nondisabled children. Both samples were matched by means of a pairwise matching procedure, taking into

  1. Production and characterization of curcumin microcrystals and evaluation of the antimicrobial and sensory aspects in minimally processed carrots.

    Science.gov (United States)

    Silva, Anderson Clayton da; Santos, Priscila Dayane de Freitas; Palazzi, Nicole Campezato; Leimann, Fernanda Vitória; Fuchs, Renata Hernandez Barros; Bracht, Lívia; Gonçalves, Odinei Hess

    2017-05-24

    Nontoxic conserving agents are in demand by the food industry due to consumers concern about synthetic conservatives, especially in minimally processed food. The antimicrobial activity of curcumin, a natural phenolic compound, has been extensively investigated but hydrophobicity is an issue when applying curcumin to foodstuff. The objective of this work was to evaluate curcumin microcrystals as an antimicrobial agent in minimally processed carrots. The antimicrobial activity of curcumin microcrystals was evaluated in vitro against Gram-positive (Bacillus cereus and Staphylococcus aureus) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) microorganisms, showing a statistically significant (p processed carrots. Sensory analyses were carried out showing no significant difference (p processed carrots without causing noticeable differences that could be detected by the consumer. One may conclude that the analyses of the minimally processed carrots demonstrated that curcumin microcrystals are a suitable natural compound to inhibit the natural microbiota of carrots from a statistical point of view.

  2. The Role of Sensory Perception, Emotionality and Lifeworld in Auditory Word Processing: Evidence from Congenital Blindness and Synesthesia.

    Science.gov (United States)

    Papadopoulos, Judith; Domahs, Frank; Kauschke, Christina

    2017-12-01

    Although it has been established that human beings process concrete and abstract words differently, it is still a matter of debate what factors contribute to this difference. Since concrete concepts are closely tied to sensory perception, perceptual experience seems to play an important role in their processing. The present study investigated the processing of nouns during an auditory lexical decision task. Participants came from three populations differing in their visual-perceptual experience: congenitally blind persons, word-color synesthetes, and sighted non-synesthetes. Specifically, three features with potential relevance to concreteness were manipulated: sensory perception, emotionality, and Husserlian lifeworld, a concept related to the inner versus the outer world of the self. In addition to a classical concreteness effect, our results revealed a significant effect of lifeworld: words that are closely linked to the internal states of humans were processed faster than words referring to the outside world. When lifeworld was introduced as predictor, there was no effect of emotionality. Concerning participants' perceptual experience, an interaction between participant group and item characteristics was found: the effects of both concreteness and lifeworld were more pronounced for blind compared to sighted participants. We will discuss the results in the context of embodied semantics, and we will propose an approach to concreteness based on the individual's bodily experience and the relatedness of a given concept to the self.

  3. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism: An EEG Power and BOLD fMRI Investigation

    Science.gov (United States)

    Hames, Elizabeth’ C.; Murphy, Brandi; Rajmohan, Ravi; Anderson, Ronald C.; Baker, Mary; Zupancic, Stephen; O’Boyle, Michael; Richman, David

    2016-01-01

    Electroencephalography (EEG) and blood oxygen level dependent functional magnetic resonance imagining (BOLD fMRI) assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD) and 10 neurotypical (NT) controls between the ages of 20–28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block vs. the second presentation of a visual stimulus in an all visual block (AA2-VV2).We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs. PMID:27148020

  4. [Effects of increased temperature on the sensory transduction process induced by frog ampullar receptors].

    Science.gov (United States)

    Zucca, G; Valli, P; Casella, C

    1982-03-15

    The function of the sensory organ in semicircular canals of the frog has been tested, at increasing temperatures from 20 to 34 degrees C, by recording the ampullar (Adc) and nerve (Ndc) potentials together with the afferent discharge of impulses in the VIII nerve fibres. The amplitude of the receptor potential increases by increasing the temperature up to 30 degrees C. Postsynaptic potentials and propragated spikes, by converse, are only slightly modified between 20-28 degrees C and are drastically depressed over 28 degrees C. The results are discussed also in connection with the possible use of the enzimatic pretreatment of the preparations to facilitate the insertion of microelectrodes in labyrinthine cells.

  5. Assessment of anodal and cathodal transcranial direct current stimulation (tDCS) on MMN-indexed auditory sensory processing.

    Science.gov (United States)

    Impey, Danielle; de la Salle, Sara; Knott, Verner

    2016-06-01

    Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which uses a very weak constant current to temporarily excite (anodal stimulation) or inhibit (cathodal stimulation) activity in the brain area of interest via small electrodes placed on the scalp. Currently, tDCS of the frontal cortex is being used as a tool to investigate cognition in healthy controls and to improve symptoms in neurological and psychiatric patients. tDCS has been found to facilitate cognitive performance on measures of attention, memory, and frontal-executive functions. Recently, a short session of anodal tDCS over the temporal lobe has been shown to increase auditory sensory processing as indexed by the Mismatch Negativity (MMN) event-related potential (ERP). This preliminary pilot study examined the separate and interacting effects of both anodal and cathodal tDCS on MMN-indexed auditory pitch discrimination. In a randomized, double blind design, the MMN was assessed before (baseline) and after tDCS (2mA, 20min) in 2 separate sessions, one involving 'sham' stimulation (the device is turned off), followed by anodal stimulation (to temporarily excite cortical activity locally), and one involving cathodal stimulation (to temporarily decrease cortical activity locally), followed by anodal stimulation. Results demonstrated that anodal tDCS over the temporal cortex increased MMN-indexed auditory detection of pitch deviance, and while cathodal tDCS decreased auditory discrimination in baseline-stratified groups, subsequent anodal stimulation did not significantly alter MMN amplitudes. These findings strengthen the position that tDCS effects on cognition extend to the neural processing of sensory input and raise the possibility that this neuromodulatory technique may be useful for investigating sensory processing deficits in clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Directory of Open Access Journals (Sweden)

    Yishi Liu

    2011-03-01

    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  7. Physicochemical characteristics and sensory profile of honey samples from stingless bees (Apidae: Meliponinae submitted to a dehumidification process

    Directory of Open Access Journals (Sweden)

    Carlos A.L. Carvalho

    2009-03-01

    Full Text Available This study was conducted to evaluate the effect of a dehumidification process on the physicochemical and sensory characteristics of stingless-bee honey. Melipona scutellaris and M. quadrifasciata honey samples were submitted to a dehumidification process and to physicochemical (reducing sugars, apparent sucrose, moisture, diastatic activity, hydroxymethylfurfural, ash, pH, acidity, and electric conductivity and sensory evaluations (fluidity, color, aroma, crystallization,flavor,and acceptability. The results indicated that the dehumidification process does not interfere with honey quality and acceptability.Este estudo foi conduzido com o objetivo de avaliar o efeito do processo de desumidificação sobre as características físico-químicas e sensoriais do mel das abelhas sem ferrão. Amostras de méis de Melipona scutellaris e M. quadrifasciata foram submetidas ao processo de desumidificação, passando em seguida por avaliações físico-químicas (açúcares redutores, sacarose aparente, umidade, atividade diastásica, hidroximetilfurfural, cinzas, pH, acidez e condutividade elétrica e sensoriais (fluidez, cor, aroma, cristalização, sabor e aceitabilidade. Os resultados indicaram que o processo de desumidificação não interfere na qualidade e aceitabilidade do mel.

  8. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana

    Directory of Open Access Journals (Sweden)

    Hideki Nakagawa

    2012-08-01

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r2 = 0.5741, P0.05. Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r2 = 0.1459, P<0.05. This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r2 = 0.1145, P<0.05. Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  9. Motor planning modulates sensory-motor control of collision avoidance behavior in the bullfrog, Rana catesbeiana.

    Science.gov (United States)

    Nakagawa, Hideki; Nishida, Yuuya

    2012-11-15

    In this study, we examined the collision avoidance behavior of the frog, Rana catesbeiana to an approaching object in the upper visual field. The angular velocity of the frog's escape turn showed a significant positive correlation with the turn angle (r(2) = 0.5741, P0.05). Thus, the frog was not able to control the velocity of the large escape turns accurately and did not complete the behavior within a constant time. In the latter case, there was a small but significant positive correlation between the threshold angular size and the angular velocity (r(2) = 0.1459, P<0.05). This suggests that the threshold is controlled to compensate for the insufficient escape velocity achieved during large turn angles, and could explain a significant negative correlation between the turn angle and the threshold angular size (r(2) = 0.1145, P<0.05). Thus, it is likely that the threshold angular size is also controlled by the turn angle and is modulated by motor planning.

  10. Biomimetic smart sensors for autonomous robotic behavior II: vestibular processing

    Science.gov (United States)

    Xue, Shuwan; Deligeorges, Socrates; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Limited autonomous behaviors are fast becoming a critical capability in the field of robotics as robotic applications are used in more complicated and interactive environments. As additional sensory capabilities are added to robotic platforms, sensor fusion to enhance and facilitate autonomous behavior becomes increasingly important. Using biology as a model, the equivalent of a vestibular system needs to be created in order to orient the system within its environment and allow multi-modal sensor fusion. In mammals, the vestibular system plays a central role in physiological homeostasis and sensory information integration (Fuller et al, Neuroscience 129 (2004) 461-471). At the level of the Superior Colliculus in the brain, there is multimodal sensory integration across visual, auditory, somatosensory, and vestibular inputs (Wallace et al, J Neurophysiol 80 (1998) 1006-1010), with the vestibular component contributing a strong reference frame gating input. Using a simple model for the deep layers of the Superior Colliculus, an off-the-shelf 3-axis solid state gyroscope and accelerometer was used as the equivalent representation of the vestibular system. The acceleration and rotational measurements are used to determine the relationship between a local reference frame of a robotic platform (an iRobot Packbot®) and the inertial reference frame (the outside world), with the simulated vestibular input tightly coupled with the acoustic and optical inputs. Field testing of the robotic platform using acoustics to cue optical sensors coupled through a biomimetic vestibular model for "slew to cue" gunfire detection have shown great promise.

  11. Regulatory processes of hunger motivated behavior.

    Science.gov (United States)

    Lénárd, L; Karádi, Z

    2012-01-01

    While food intake and body weight are under homeostatic regulation, eating is a highly motivated and reinforced behavior that induces feelings of gratification and pleasure. The chemical senses (taste and odor) and their evaluation are essential to these functions. Brainstem and limbic glucose-monitoring (GM) neurons receiving neurochemical information from the periphery and from the local brain milieu are important controlling hunger motivation, and brain gut peptides have a modulatory role on this function. The hypothalamic and limbic forebrain areas are responsible for evaluation of reward quality and related emotions. They are innervated by the mesolimbic dopaminergic system (MLDS) and majority of GM neurons are also influenced by dopamine. Via dopamine release, the MLDS plays an essential role in rewarding-reinforcing processes of feeding and addiction. The GM network and the MLDS in the limbic system represent essential elements in the neural substrate of motivation.

  12. Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (ERP) study.

    Science.gov (United States)

    Keshavarz, Behrang; Berti, Stefan

    2014-02-01

    Illusory self-motion (known as vection) describes the sensation of ego-motion in the absence of physical movement. Vection typically occurs in stationary observers being exposed to visual information that suggest self-motion (e.g. simulators, virtual reality). In the present study, we tested whether sensory integration of visual information triggers vection: participants (N=13) perceived patterns of moving altered black-and-white vertical stripes on a screen that was divided into a central and a surrounding peripheral visual field. In both fields the pattern was either moving or stationary, resulting in four combinations of central and peripheral motions: (1) central and peripheral stripes moved into the same direction, (2) central and peripheral stripes moved in opposite directions, or (3) either the central or (4) the peripheral stripes were stable while the other stripes were in motion. This stimulation induced vection: Results showed significantly higher vection ratings when the stationary center of the pattern was surrounded by a moving periphery. Event-related potentials mirrored this finding: The occipital N2 was largest with stationary central and moving peripheral stripes. Our findings suggest that sensory integration of peripheral and central visual information triggers the perception of vection. Furthermore, we found evidence that neural processes precede the subjective perception of vection strength prior to the actual onset of vection. We will discuss our findings with respect to the role of stimulus eccentricity, stimulus' depth, and neural correlates involved during the genesis of vection. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Making Sense of Protists – aspects of phototaxis and chemo sensory behavior

    DEFF Research Database (Denmark)

    Moldrup, Morten

    vacuoles following engulfment. Our results show a novel trophic pathway at the base of planktonic food web which reverses the typical flux of organic matter. Behavioural observations of K. armiger have also revealed a novel mechanism for faunal kills by this phototrophic microalga. The red tide ciliate....... This is maintained although the expected peak in the near UV range is missing probably due to some sort of shading/filtering of harmful UV radiation. Interestingly, the phototaxis could be temporarily overruled by tactile stimuli. After physical contact with the light guide the cells escaped the area. They may do...... pellets was studied for 3 species of mixotrophic dinoflagellates and 4 species of heterotrophic dinoflagellates using a combination of video recordings of feeding behavior and classic incubation experiments. Fecal pellets offered were produced by adult Acartia tonsa on Rhodomonas salina as a food source...

  14. Making Sense of Protists – aspects of phototaxis and chemo sensory behavior

    DEFF Research Database (Denmark)

    Moldrup, Morten

    pellets was studied for 3 species of mixotrophic dinoflagellates and 4 species of heterotrophic dinoflagellates using a combination of video recordings of feeding behavior and classic incubation experiments. Fecal pellets offered were produced by adult Acartia tonsa on Rhodomonas salina as a food source...... “protozoan filter” for fecal pellets in the water column. The photosynthetic dinoflagellate Karlodinium is known to form massive blooms worldwide and often these are associated with fish kills. Here we show that Karlodinum armiger can reverse the traditional trophic pathway from primary producers to copepods...... through a feeding tube. The common copepod Acartia tonsa was immobilised within a few hours and died 12 hours after exposure to ecologically relevant bloom cell densities in the laboratory. Karlodinium armiger increases its growth rate when exposed to copepods and most cells contain large visible food...

  15. Processed beetroot (Beta vulgaris L. as a natural antioxidant in mayonnaise: Effects on physical stability, texture and sensory attributes

    Directory of Open Access Journals (Sweden)

    Vassilios Raikos

    2016-12-01

    Full Text Available The oxidative and physical stability of the reformulated mayonnaise with processed beetroot was investigated and compared with a control (mayonnaise without beetroot and a commercially available product. Processing of beetroot had an impact on the structural integrity of the antioxidants present. Microwaving (960 W for 7 min was advantageous for preserving the betalain and polyphenol content of beetroot compared to roasting (180 °C for 90 min and boiling (100 °C for 30 min. The oxidative stability of mayonnaise samples was determined by Rancimat and the thiobarbituric (TBA assay. The addition of microwaved beetroot significantly enhanced the oxidative stability of mayonnaise at the end of a storage period of 4 weeks (4 °C. Although no significant differences (P > 0.05 were detected between the mayonnaise samples containing beetroot and the commercial control, the latter was less susceptible to oxidation during storage. The turbiscan stability index (TSI revealed that the commercial mayonnaise was less prone to destabilization phenomena. All the textural parameters increased with the incorporation of beetroot. The sensory evaluation revealed that, with the exception of graininess and uniformity, most of the sensory attributes are preserved if not improved with the addition of beetroot.

  16. The functional BDNF Val66Met polymorphism affects functions of pre-attentive visual sensory memory processes.

    Science.gov (United States)

    Beste, Christian; Schneider, Daniel; Epplen, Jörg T; Arning, Larissa

    2011-01-01

    The brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is involved in nerve growth and survival. Especially, a single nucleotide polymorphism (SNP) in the BDNF gene, Val66Met, has gained a lot of attention, because of its effect on activity-dependent BDNF secretion and its link to impaired memory processes. We hypothesize that the BDNF Val66Met polymorphism may have modulatory effects on the visual sensory (iconic) memory performance. Two hundred and eleven healthy German students (106 female and 105 male) were included in the data analysis. Since BDNF is also discussed to be involved in the pathogenesis of depression, we additionally tested for possible interactions with depressive mood. The BDNF Val66Met polymorphism significantly influenced iconic-memory performance, with the combined Val/Met-Met/Met genotype group revealing less time stability of information stored in iconic memory than the Val/Val group. Furthermore, this stability was positively correlated with depressive mood exclusively in the Val/Val genotype group. Thus, these results show that the BDNF Val66Met polymorphism has an effect on pre-attentive visual sensory memory processes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  17. Sensorimotor function of the upper-airway muscles and respiratory sensory processing in untreated obstructive sleep apnea.

    Science.gov (United States)

    Eckert, Danny J; Lo, Yu L; Saboisky, Julian P; Jordan, Amy S; White, David P; Malhotra, Atul

    2011-12-01

    Numerous studies have demonstrated upper-airway neuromuscular abnormalities during wakefulness in snorers and obstructive sleep apnea (OSA) patients. However, the functional role of sensorimotor impairment in OSA pathogenesis/disease progression and its potential effects on protective upper-airway reflexes, measures of respiratory sensory processing, and force characteristics remain unclear. This study aimed to gain physiological insight into the potential role of sensorimotor impairment in OSA pathogenesis/disease progression by comparing sensory processing properties (respiratory-related evoked potentials; RREP), functionally important protective reflexes (genioglossus and tensor palatini) across a range of negative pressures (brief pulses and entrained iron lung ventilation), and tongue force and time to task failure characteristics between 12 untreated OSA patients and 13 controls. We hypothesized that abnormalities in these measures would be present in OSA patients. Upper-airway reflexes (e.g., genioglossus onset latency, 20 ± 1 vs. 19 ± 2 ms, P = 0.82), early RREP components (e.g., P1 latency 25 ± 2 vs. 25 ± 1 ms, P = 0.78), and the slope of epiglottic pressure vs. genioglossus activity during iron lung ventilation (-0.68 ± 1.0 vs. -0.80 ± 2.0 cmH(2)O/%max, P = 0.59) were not different between patients and controls. Maximal tongue protrusion force was greater in OSA patients vs. controls (35 ± 2 vs. 27 ± 2 N, P muscles, which could contribute to disease progression.

  18. Upper gastrointestinal dysmotility after spinal cord injury: Is diminished vagal sensory processing one culprit?

    Directory of Open Access Journals (Sweden)

    Gregory M Holmes

    2012-07-01

    Full Text Available Despite the widely recognized prevalence of gastric, colonic and anorectal dysfunction after SCI, significant knowledge gaps persist regarding the mechanisms leading to post-SCI gastrointestinal (GI impairments. Briefly, the regulation of GI function is governed by a mix of parasympathetic, sympathetic and enteric neurocircuitry. Unlike the intestines, the stomach is dominated by parasympathetic (vagal control whereby gastric sensory information is transmitted via the afferent vagus nerve to neurons of the nucleus tractus solitarius (NTS. The NTS integrates this sensory information with signals from throughout the CNS. Glutamatergic and GABAergic NTS neurons project to other nuclei, including the preganglionic parasympathetic neurons of the dorsal motor nucleus of the vagus (DMV. Finally, axons from the DMV project to gastric myenteric neurons, again, through the efferent vagus nerve. SCI interrupts descending input to the lumbosacral spinal cord neurons that modulate colonic motility and evacuation reflexes. In contrast, vagal neurocircuitry remains anatomically intact after injury. This review presents evidence that unlike the post-SCI loss of supraspinal control which leads to colonic and anorectal dysfunction, gastric dysmotility occurs as an indirect or secondary pathology following SCI. Specifically, emerging data points toward diminished sensitivity of vagal afferents to GI neuroactive peptides, neurotransmitters and, possibly, macronutrients. The neurophysiological properties of rat vagal afferent neurons are highly plastic and can be altered by injury or energy balance. A reduction of vagal afferent signaling to NTS neurons may ultimately bias NTS output toward unregulated GABAergic transmission onto gastric-projecting DMV neurons. The resulting gastroinhibitory signal may be one mechanism leading to upper GI dysmotility following SCI.

  19. Sensory dynamics of intense microwave irradiation: A comparative study of aversive behaviors by mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Justesen, D.R.

    1981-10-01

    The results of two experiments are reported, the first on 24 mice and 14 rats, all experimentally naive, that were observed for evidence of adventitious escape from faradic shock or from a potentially lethal, 2450-MHz microwave field in a multi-mode cavity. All of ten rats irradiated at a whole-body-averaged dose rate of 60 mW/g convulsed and expired, presumably from radiation-induced hyperpyrexia. Eight of ten mice irradiated at 60 mW/g survived the four sessions of irradiation, but reliable evidence of escape learning was not observed. The data of the second experiment, which was a pilot study of four rats with an extensive history of exposure to intense but intermittently applied microwave fields, revealed that the animals learned to thermoregulate behaviorally by locomoting in and out of the safe-area circle. A strong relation between dose rate (30, 60, and 120 mW/g) and proportion of time spent in the safe area was observed (r = .97). Post-exposure means of colonic temperature during three sets of sessions under the different rates of energy dosing were highly stable and averaged 39.6 deg C.

  20. Behavior of coal chlorine in cokemaking process

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Seiji [Nippon Steel Corporation, Environment & Process Technology Center, 20-1, Shintomi, Futtsu, Chiba 293-8511, (Japan)

    2010-09-01

    The behavior of coal chlorine in metallurgical cokemaking process was investigated. Various coals were carbonized (heat-treated) in a nitrogen atmosphere and the ratio of the chlorine in the heat-treated sample to that in the coal was defined as the chlorine residue ratio. The release of chlorine from coal during carbonization is a slow process and the chlorine residue ratio decreased with increasing the heat-treatment temperature, increasing the soaking time, and decreasing the heating rate. It increased with increasing the Ca content in coal and with an addition of CaO. This is because chlorine in coal is released as HCl, which is trapped in coke again in the form of CaCl{sub 2}. The chlorine residue ratio of coke produced in an actual coke oven was higher than that of coke produced in a laboratory scale tube furnace. This is because released gas from coal has more chances to contact with calcium in the actual coke oven than in the tube furnace. Moreover, the removal of chlorine from NaCl was promoted by the co-carbonization of NaCl with coal, which implies that H{sub 2}O derived from coal decomposition may help chlorine to be released. (author)

  1. Interfacing sensory input with motor output: does the control architecture converge to a serial process along a single channel?

    Science.gov (United States)

    van de Kamp, Cornelis; Gawthrop, Peter J; Gollee, Henrik; Lakie, Martin; Loram, Ian D

    2013-01-01

    Modular organization in control architecture may underlie the versatility of human motor control; but the nature of the interface relating sensory input through task-selection in the space of performance variables to control actions in the space of the elemental variables is currently unknown. Our central question is whether the control architecture converges to a serial process along a single channel? In discrete reaction time experiments, psychologists have firmly associated a serial single channel hypothesis with refractoriness and response selection [psychological refractory period (PRP)]. Recently, we developed a methodology and evidence identifying refractoriness in sustained control of an external single degree-of-freedom system. We hypothesize that multi-segmental whole-body control also shows refractoriness. Eight participants controlled their whole body to ensure a head marker tracked a target as fast and accurately as possible. Analysis showed enhanced delays in response to stimuli with close temporal proximity to the preceding stimulus. Consistent with our preceding work, this evidence is incompatible with control as a linear time invariant process. This evidence is consistent with a single-channel serial ballistic process within the intermittent control paradigm with an intermittent interval of around 0.5 s. A control architecture reproducing intentional human movement control must reproduce refractoriness. Intermittent control is designed to provide computational time for an online optimization process and is appropriate for flexible adaptive control. For human motor control we suggest that parallel sensory input converges to a serial, single channel process involving planning, selection, and temporal inhibition of alternative responses prior to low dimensional motor output. Such design could aid robots to reproduce the flexibility of human control.

  2. Probabilistic sensory recoding.

    Science.gov (United States)

    Jazayeri, Mehrdad

    2008-08-01

    A hallmark of higher brain functions is the ability to contemplate the world rather than to respond reflexively to it. To do so, the nervous system makes use of a modular architecture in which sensory representations are dissociated from areas that control actions. This flexibility however necessitates a recoding scheme that would put sensory information to use in the control of behavior. Sensory recoding faces two important challenges. First, recoding must take into account the inherent variability of sensory responses. Second, it must be flexible enough to satisfy the requirements of different perceptual goals. Recent progress in theory, psychophysics, and neurophysiology indicate that cortical circuitry might meet these challenges by evaluating sensory signals probabilistically.

  3. Flavor characteristics of the juices from fresh market tomatoes differentiated from those from processing tomatoes by combined analysis of volatile profiles with sensory evaluation.

    Science.gov (United States)

    Iijima, Yoko; Iwasaki, Yumi; Otagiri, Yuji; Tsugawa, Hiroshi; Sato, Tsuneo; Otomo, Hiroe; Sekine, Yukio; Obata, Akio

    2016-12-01

    Various commercial tomato juices with different flavors are available at markets worldwide. To clarify the marker compounds related to the flavor characteristics of tomato juice, we analyzed 15 pure commercial tomato juices by a combination of volatile profiling and sensory evaluation. The correlations among volatiles and the relationship between volatiles and sensory descriptors were elucidated by multivariate analyses. Consequently, the tomato juices made from fresh market tomatoes (including the popular Japanese tomato variety "Momotaro") were clearly separated from other juices made from processing tomatoes, by both the volatile composition and sensory profiles. cis-3-Hexenol, hexanal, and apocarotenoids negatively contributed to the juices from fresh market tomatoes, whereas Strecker aldehydes and furfural showed positive contributions to the juices. Accordingly, the sensory characteristics of juices from fresh market tomatoes were related to cooked and fruity flavors but not to green or fresh notes.

  4. Effect of Soaking, Cooking, Germination and Fermentation Processing on Physical Properties and Sensory Evaluation of Sorghum Biscuits

    Directory of Open Access Journals (Sweden)

    Abd El-Moneim M. R. AFIFY

    2015-03-01

    Full Text Available Three white sorghum varieties (named ‘Dorado’,‘Shandaweel-6’ and ‘Giza-15’ were investigated for grain characteristics and processed whole meal flour (via soaking, cooked, germinated and fermented sorghum. ‘Giza-15’ variety was the highest one in 1,000 kernel weight and hectolitre, followed by ‘Dorado’ and ‘Shandaweel-6’ that were significant lower. Sorghum varieties were non-significant different in L scales. ‘Giza-15’ was the highest variety in a and b scales. Sorghum varieties were significant different in c scales and non-significant different in h scales. Shandaweel-6 recorded the highest value in water holding capacity (WHC.‘Giza-15’recorded the highest variety in oil holding capacity (OHC. The most significant increase in WHO was after fermentation treatment, followed by cooking treatment. Regarding OHC, the most significant increase was after germination treatment. Biscuits prepared from 50% whole meal flour of raw, soaked, cooked, germinated and fermented sorghum were evaluated for sensory and physical characteristics. The sensory results showed that 50% sorghum whole meal flour could be incorporated to prepare acceptable quality biscuits. The diameter of sorghum biscuits increased, while the diameter of wheat biscuits decreased. Hardness of sorghum biscuits was significant decreased in all treatments compared with wheat biscuits. Hardness of germinated sorghum biscuits was close to wheat biscuits values.

  5. The effect of bacon pump retention levels following thermal processing on bacon slice composition and sensory characteristics.

    Science.gov (United States)

    Sivendiran, T; Wang, L M; Huang, S; Bohrer, B M

    2018-03-10

    The objective was to evaluate the effect of belly pump uptake and cook yield during processing on bacon slice composition and sensory attributes. A total of forty-four bellies were commercially sourced and randomly assigned to two experiments. Each experiment consisted of one smokehouse cooking cycle. Within each experiment, bellies were separated at the medial point and one belly half was assigned to a high pump uptake treatment (HIGH; target of 30% uptake) and the remaining belly half was assigned to a normal pump uptake treatment (NORM; target of 15% uptake). In experiment-1, cook yields were 107.79% for the HIGH bellies and 101.52% for the NORM bellies. In experiment-2, cook yields were 97.41% for the HIGH bellies and 94.74% for the NORM bellies. Overall, bacon slice composition and sensory attributes of bacon from bellies with greater pump retention were largely unaffected, accordingly it was concluded that cook yields ranging in level of pump retention does not affect most attributes of bacon. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Chemical-sensory properties and consumer preference of hibiscus beverages produced by improved industrial processes.

    Science.gov (United States)

    Monteiro, Maria João P; Costa, Ana Isabel A; Fliedel, Geneviève; Cissé, Mady; Bechoff, Aurélie; Pallet, Dominique; Tomlins, Keith; Pintado, Maria Manuela E

    2017-06-15

    The need to increase sustainability and add value to traditional foods claiming health benefits led to the introduction of key improvements in the production of hibiscus beverages in Senegal. The physicochemical and sensory properties of three resulting products (an under-vacuum concentrate, a dilute-to-taste syrup and a ready-to-drink infusion) were assessed, vis-à-vis those of conventionally manufactured beverages, and their impact on local consumer preference determined (n=146). New beverages had more intense, redder colour and higher monomeric anthocyanin content, total phenolic content and antioxidant capacity. Moreover, their colour evaluations by trained panellists were mainly linked to colour density and anthocyanin/polyphenol content, while flavour assessments were associated to titratable acidity and sugar-to-acid ratio. Consumer evaluations, in turn, were driven by the beverages' red colour intensity, aroma strength and balance between sweetness and acidity. This explained why they overwhelmingly preferred the under-vacuum concentrate, regardless of their age, gender or frequency of hibiscus beverage consumption. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Identification, quantification, and sensory characterization of steviol glycosides from differently processed Stevia rebaudiana commercial extracts.

    Science.gov (United States)

    Espinoza, María Inés; Vincken, Jean-Paul; Sanders, Mark; Castro, Cristian; Stieger, Markus; Agosin, Eduardo

    2014-12-10

    Stevia rebaudiana is known for its sweet-tasting ent-kaurene diterpenoid glycosides. Several manufacturing strategies are currently employed to obtain Stevia sweeteners with the lowest possible off-flavors. The chemical composition of four commercial S. rebaudiana extracts, obtained by different technologies, was characterized using UHPLC-ESI-MS(n). The composition of one of the ethanol-crystallized extracts (EC2) was entirely rebaudioside A, whereas the enzymatically modified (EM) extract contained the lowest concentration of this compound (2.7 mg/100 mg). The membrane-purified (MP) extract had the highest content of minor natural steviol glycosides (23.7 mg/100 mg total extract) versus an average of 2.4 mg/100 mg total extract for the EC samples. Thirteen trained panelists evaluated sweetness, bitterness, licorice, and metallic attributes of all four extracts. The highest licorice intensity (p ≤ 0.05) was found for MP. Both samples EC1 and EC2, despite their different chemical compositions, showed no significant differences in sensory perception.

  8. Meaning in meaninglessness: The propensity to perceive meaningful patterns in coincident events and randomly arranged stimuli is linked to enhanced attention in early sensory processing.

    Science.gov (United States)

    Rominger, Christian; Schulter, Günter; Fink, Andreas; Weiss, Elisabeth M; Papousek, Ilona

    2018-05-01

    Perception of objectively independent events or stimuli as being significantly connected and the associated proneness to perceive meaningful patterns constitute part of the positive symptoms of schizophrenia, which are associated with altered attentional processes in lateralized speech perception. Since perceiving meaningful patterns is to some extent already prevalent in the general population, the aim of the study was to investigate whether the propensity to experience meaningful patterns in co-occurring events and random stimuli may be associated with similar altered attentional processes in lateralized speech perception. Self-reported and behavioral indicators of the perception of meaningful patterns were assessed in non-clinical individuals, along with EEG auditory evoked potentials during the performance of an attention related lateralized speech perception task (Dichotic Listening Test). A greater propensity to perceive meaningful patterns was associated with higher N1 amplitudes of the evoked potentials to the onset of the dichotically presented consonant-vowel syllables, indicating enhanced automatic attention in early sensory processing. The study suggests that more basic mechanisms in how people associate events may play a greater role in the cognitive biases that are manifest in personality expressions such as positive schizotypy, rather than that positive schizotypy moderates these cognitive biases directly. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. An EEG study on the effects of induced spiritual experiences on somatosensory processing and sensory suppresion

    NARCIS (Netherlands)

    van Elk, M.

    2014-01-01

    In the present EEG study a placebo God Helmet was used to induce spiritual experiences in the lab, by boosting the expectations and suggestibility of participants. At a behavioral level it was found that instructions regarding whether the helmet was turned on or off were not effective, but that

  10. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism.

    Directory of Open Access Journals (Sweden)

    Chiara Cantiani

    Full Text Available This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV or minimally-verbal (MV children with Autism Spectrum Disorder (ASD. Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD.

  11. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism

    Science.gov (United States)

    Cantiani, Chiara; Choudhury, Naseem A.; Yu, Yan H.; Shafer, Valerie L.; Schwartz, Richard G.; Benasich, April A.

    2016-01-01

    This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD. PMID:27560378

  12. Association of Sensory Processing and Cognitive Deficits in Children with Autism Spectrum Disorders – Pioneer Study in Saudi Arabia

    OpenAIRE

    Rana M. Zeina; Laila AL-Ayadhi; Shahid Bashir

    2014-01-01

    The association between sensory problems and cognitive abilities has been studied in individuals with Autism Spectrum Disorders (ASDs). In this study, we used a Neuropsychological Test to evaluate memory and attention in ASDs children with sensory problems compared to the ASDs children without sensory problems. Four visual memory tests of Cambridge Neuropsychological Test Automated Battery (CANTAB) including Big/little circle (BLC), Simple Reaction Time (SRT) Intra /Extra dimensional set shif...

  13. Mucus trail tracking in a predatory snail: olfactory processing retooled to serve a novel sensory modality

    OpenAIRE

    Patel, Kinjal; Shaheen, Nagma; Witherspoon, Jessica; Robinson, Natallia; Harrington, Melissa A

    2013-01-01

    Introduction The rosy wolfsnail (Euglandina rosea), a predatory land snail, finds prey snails and potential mates by following their mucus trails. Euglandina have evolved unique, mobile lip extensions that detect mucus and aid in following trails. Currently, little is known of the neural substrates of the trail-following behavior. Methods To investigate the neural correlates of trail following we used tract-tracing experiments in which nerves were backfilled with either nickel-lysine or Lucif...

  14. Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor, and feedback processes

    Science.gov (United States)

    Gupta, Daya S.

    2014-01-01

    The processing of time intervals in the sub- to supra-second range by the brain is critical for the interaction of primates with their surroundings in activities, such as foraging and hunting. For an accurate processing of time intervals by the brain, representation of physical time within neuronal circuits is necessary. I propose that time dimension of the physical surrounding is represented in the brain by different types of neuronal oscillators, generating spikes or spike bursts at regular intervals. The proposed oscillators include the pacemaker neurons, tonic inputs, and synchronized excitation and inhibition of inter-connected neurons. Oscillators, which are built inside various circuits of brain, help to form modular clocks, processing time intervals or other temporal characteristics specific to functions of a circuit. Relative or absolute duration is represented within neuronal oscillators by “neural temporal unit,” defined as the interval between regularly occurring spikes or spike bursts. Oscillator output is processed to produce changes in activities of neurons, named frequency modulator neuron, wired within a separate module, represented by the rate of change in frequency, and frequency of activities, proposed to encode time intervals. Inbuilt oscillators are calibrated by (a) feedback processes, (b) input of time intervals resulting from rhythmic external sensory stimulation, and (c) synchronous effects of feedback processes and evoked sensory activity. A single active clock is proposed per circuit, which is calibrated by one or more mechanisms. Multiple calibration mechanisms, inbuilt oscillators, and the presence of modular connections prevent a complete loss of interval timing functions of the brain. PMID:25136321

  15. Processing of sub- and supra-second intervals in the primate brain results from the calibration of neuronal oscillators via sensory, motor and feedback processes

    Directory of Open Access Journals (Sweden)

    Daya Shankar Gupta

    2014-08-01

    Full Text Available The processing of time intervals in the sub- to supra-second range by the brain is critical for the interaction of primates with their surroundings in activities, such as foraging and hunting. For an accurate processing of time intervals by the brain, representation of the physical time within neuronal circuits is necessary. I propose that time-dimension of the physical surrounding is represented in the brain by different types of neuronal oscillators, generating spikes or spike bursts at regular intervals. The proposed oscillators include the pacemaker neurons, tonic inputs and synchronized excitation and inhibition of inter-connected neurons. Oscillators, which are built inside various circuits of brain, help to form modular clocks, processing time intervals or other temporal characteristics specific to functions of a circuit. Relative or absolute duration is represented within neuronal oscillators by ‘neural temporal unit’, defined as the interval between regularly occurring spikes or spike bursts. Oscillator output is processed to produce changes in activities of neurons, named frequency modulator neuron, wired within a separate module, represented by the rate of change in frequency, and frequency of activities, proposed to encode time intervals. Inbuilt oscillators are calibrated by (a feedback processes (b input of time intervals resulting from rhythmic external sensory stimulation and (c synchronous effects of feedback processes and evoked sensory activity. A single active clock is proposed per circuit, which is calibrated by one or more mechanisms. Multiple calibration mechanisms, inbuilt oscillators and the presence of modular connections prevent a complete loss of interval timing functions of the brain.

  16. Phytochemical, sensory attributes and aroma stability of dense phase carbon dioxide processed Hibiscus sabdariffa beverage during storage.

    Science.gov (United States)

    Ramírez-Rodrigues, Milena M; Plaza, Maria L; Azeredo, Alberto; Balaban, Murat O; Marshall, Maurice R

    2012-10-01

    The effect of dense phase carbon dioxide (DPCD) processing (34.5 MPa, 8% CO₂, 6.5 min, and 40 °C) on phytochemical, sensory and aroma compounds of hibiscus beverage was compared to a conventional thermal process (HTST) (75 °C for 15 s) and a control (untreated beverage) during refrigerated storage (4 °C). The overall likeability of the hibiscus beverage for all treatments was not affected by storage up to week 5. DPCD process retained more aroma volatiles as compared to HTST. Aroma profiles in the beverages were mainly composed of alcohols and aldehydes with 1-octen-3-ol, decanal, octanal, 1-hexanol, and nonanal as the compounds with the highest relative percentage peak areas. A loss of only 9% anthocyanins was observed for the DPCD processed hibiscus beverage. Phytochemical profiles in the hibiscus beverage included caffeoylquinic acids, anthocyanins, and flavonols. No major changes in total phenolics and antioxidant capacity occurred during the 14 weeks of storage. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders.

    Science.gov (United States)

    Acevedo, Bianca; Aron, Elaine; Pospos, Sarah; Jessen, Dana

    2018-04-19

    During the past decade, research on the biological basis of sensory processing sensitivity (SPS)-a genetically based trait associated with greater sensitivity and responsivity to environmental and social stimuli-has burgeoned. As researchers try to characterize this trait, it is still unclear how SPS is distinct from seemingly related clinical disorders that have overlapping symptoms, such as sensitivity to the environment and hyper-responsiveness to incoming stimuli. Thus, in this review, we compare the neural regions implicated in SPS with those found in fMRI studies of-Autism Spectrum Disorder (ASD), Schizophrenia (SZ) and Post-Traumatic Stress Disorder (PTSD) to elucidate the neural markers and cardinal features of SPS versus these seemingly related clinical disorders. We propose that SPS is a stable trait that is characterized by greater empathy, awareness, responsivity and depth of processing to salient stimuli. We conclude that SPS is distinct from ASD, SZ and PTSD in that in response to social and emotional stimuli, SPS differentially engages brain regions involved in reward processing, memory, physiological homeostasis, self-other processing, empathy and awareness. We suggest that this serves species survival via deep integration and memory for environmental and social information that may subserve well-being and cooperation.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'. © 2018 The Authors.

  18. Volatile, anthocyanidin, quality and sensory changes in rabbiteye blueberry from whole fruit through pilot plant juice processing.

    Science.gov (United States)

    Beaulieu, John C; Stein-Chisholm, Rebecca E; Lloyd, Steven W; Bett-Garber, Karen L; Grimm, Casey C; Watson, Michael A; Lea, Jeanne M

    2017-01-01

    High antioxidant content and keen marketing have increased blueberry demand and increased local production which in turn mandates new uses for abundant harvests. Pilot scale processes were employed to investigate the anthocyanidin profiles, qualitative volatile compositions, and sensorial attributes in not-from-concentrate (NFC) 'Tifblue' rabbiteye blueberry juices. Processing prior to pasteurization generally resulted in increased L * and hue angle color, while a * , b * , and C * decreased. After 4 months pasteurized storage, non-clarified juice (NCP) lost 73.8% of total volatiles compared with 70.9% in clarified juice (CJP). There was a total anthocyanidin decrease of 84.5% and 85.5% after 4 months storage in NCP and CJP, respectively. Storage itself resulted in only 14.2% and 7.2% anthocyanidin loss after pasteurization in NCP and CJP. Storage significantly affected nine flavor properties in juices; however, there were no significant differences in the blueberry, strawberry, purple grape, floral, sweet aroma, or sweet tastes between processed and stored juices. NFC pasteurized blueberry juices maintained desirable flavors even though highly significant volatile and anthocyanidin losses occurred through processing. Maintenance of color and flavor indicate that NFC juices could have an advantage over more abusive methods often used in commercial juice operations. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  19. The effects of varenicline on sensory gating and exploratory behavior with pretreatment with nicotinic or 5-HT3A receptor antagonists.

    Science.gov (United States)

    Kucinski, Aaron; Wersinger, Scott; Stachowiak, Ewa K; Becker, Chani; Lippiello, Pat; Bencherif, Merouane; Stachowiak, Michal K

    2015-02-01

    Individuals with schizophrenia smoke at high frequency relative to the general population. Despite the harmful effects of cigarette smoking, smoking among schizophrenic patients improves cognitive impairments not addressed or worsened by common neuroleptics. Varenicline, a nonselective neuronal nicotinic receptor (NNR) agonist and full agonist of 5-HT3A receptors, helps reduce smoking among schizophrenic patients. To determine whether varenicline also improves a cognitive symptom of schizophrenia, namely, impaired sensory gating, a transgenic mouse with schizophrenia, th-fgfr1(tk-), was used. Varenicline dose-dependently increased prepulse inhibition (PPI) of the startle response, a measure of sensory gating, in th-fgfr1(tk-) mice and normalized PPI deficits relative to nontransgenic controls. With the highest dose (10 mg/kg), however, there was a robust elevation of PPI and startle response, as well as reduced exploratory behavior in the open field and elevated plus maze. Pretreatment with the nonspecific NNR antagonist mecamylamine attenuated the exaggerated PPI response and, similar to the 5-HT3A receptor antagonist ondansetron, it prevented the reduction in exploratory behavior. Collectively, these results indicate that varenicline at low-to-moderate doses may be beneficial against impaired sensory gating in schizophrenia; however, higher doses may induce anxiogenic effects, which can be prevented with antagonists of NNRs or 5-HT3A receptors.

  20. Non-linear stimulus-response behavior of the human stance control system is predicted by optimization of a system with sensory and motor noise.

    Science.gov (United States)

    van der Kooij, Herman; Peterka, Robert J

    2011-06-01

    We developed a theory of human stance control that predicted (1) how subjects re-weight their utilization of proprioceptive and graviceptive orientation information in experiments where eyes closed stance was perturbed by surface-tilt stimuli with different amplitudes, (2) the experimentally observed increase in body sway variability (i.e. the "remnant" body sway that could not be attributed to the stimulus) with increasing surface-tilt amplitude, (3) neural controller feedback gains that determine the amount of corrective torque generated in relation to sensory cues signaling body orientation, and (4) the magnitude and structure of spontaneous body sway. Responses to surface-tilt perturbations with different amplitudes were interpreted using a feedback control model to determine control parameters and changes in these parameters with stimulus amplitude. Different combinations of internal sensory and/or motor noise sources were added to the model to identify the properties of noise sources that were able to account for the experimental remnant sway characteristics. Various behavioral criteria were investigated to determine if optimization of these criteria could predict the identified model parameters and amplitude-dependent parameter changes. Robust findings were that remnant sway characteristics were best predicted by models that included both sensory and motor noise, the graviceptive noise magnitude was about ten times larger than the proprioceptive noise, and noise sources with signal-dependent properties provided better explanations of remnant sway. Overall results indicate that humans dynamically weight sensory system contributions to stance control and tune their corrective responses to minimize the energetic effects of sensory noise and external stimuli.

  1. Evolution of a sensory novelty: tympanic ears and the associated neural processing

    DEFF Research Database (Denmark)

    Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2008-01-01

    sensitivity and directionality at low frequencies. Therefore, tetrapod auditory processing may originally have been organized into low- and high-frequency streams, where only the high-frequency processing was mediated by tympanic input. The closure of the middle ear cavity in mammals and some birds...

  2. Experiments in Animal Behavior

    Science.gov (United States)

    Polt, James M.

    1971-01-01

    Describes experiments in conditioning, sensory processes, social behavior, imprinting, innate preferences for color and form, and discrimination learning suitable for secondary school students. Mealworms, crickets, and chicks are used as subjects. (AL)

  3. Factors in sensory processing of prosody in schizotypal personality disorder: an fMRI experiment.

    Science.gov (United States)

    Dickey, Chandlee C; Morocz, Istvan A; Minney, Daniel; Niznikiewicz, Margaret A; Voglmaier, Martina M; Panych, Lawrence P; Khan, Usman; Zacks, Rayna; Terry, Douglas P; Shenton, Martha E; McCarley, Robert W

    2010-08-01

    Persons diagnosed with schizophrenia demonstrate deficits in prosody recognition. To examine prosody along the schizophrenia spectrum, antipsychotic-naïve schizotypal personality disorder (SPD) subjects and healthy control subjects were compared. It was hypothesized that SPD subjects would perform more poorly; with cognitive and demographic factors contributing to the poor performance. The superior temporal gyrus (STG) was selected as the region-of-interest (ROI) given its known abnormalities in SPD and its important role in the processing of prosody. SPD and healthy comparison (HC) subjects were matched on age, IQ, and parental social-economic status (PSES). Cognitive measures included the Speech Sound Perception Test (SSPT) to examine phonological processing (SPD=68, HC=74) and the Verbal Fluency task to examine executive functioning (SPD=129, HC=138). The main experiment was a novel fMRI task of prosody identification using semantically neutral sentences spoken with emotional prosody (SPD=16, HC=13). Finally, volumetric measurement of the superior temporal sulcus (STS), a key region for processing prosody, and partially overlapping with the STG, was performed (SPD=30, HC=30). Phonological processing and executive functioning were both impaired in SPD subjects compared with HC subjects. Contrary to the prediction, SPD subjects, as a group, were similar to HC subjects in terms of correctly indentifying the emotion conveyed and reaction time. Within the SPD group, prosody identification accuracy was influenced by executive functioning, IQ and perhaps PSES, relationships not found with HC subjects. Phonological perception aided prosody identification in both diagnostic groups. As expected, both groups activated the STG while performing the prosody identification task. However, SPD subjects may have been less "efficient" in their recruitment of STG neurons. Finally, SPD subjects demonstrated a trend toward smaller STS volumes on the left, particularly the lower bank

  4. Multiple Decoupled CPGs with Local Sensory Feedback for Adaptive Locomotion Behaviors of Bio-inspired Walking Robots

    DEFF Research Database (Denmark)

    Shaker Barikhan, Subhi; Wörgötter, Florentin; Manoonpong, Poramate

    2014-01-01

    and the environment through local sensory feedback of each leg. Simulation results show that this bio-inspired approach generates self-organizing emergent locomotion allowing the robot to adaptively form regular patterns, to stably walk while pushing an object with its front legs or performing multiple stepping......Walking animals show versatile locomotion. They can also adapt their movement according to the changes of their morphology and the environmental conditions. These emergent properties are realized by biomechanics, distributed central pattern generators (CPGs), local sensory feedback...

  5. Neuromorphic sensory systems.

    Science.gov (United States)

    Liu, Shih-Chii; Delbruck, Tobi

    2010-06-01

    Biology provides examples of efficient machines which greatly outperform conventional technology. Designers in neuromorphic engineering aim to construct electronic systems with the same efficient style of computation. This task requires a melding of novel engineering principles with knowledge gleaned from neuroscience. We discuss recent progress in realizing neuromorphic sensory systems which mimic the biological retina and cochlea, and subsequent sensor processing. The main trends are the increasing number of sensors and sensory systems that communicate through asynchronous digital signals analogous to neural spikes; the improved performance and usability of these sensors; and novel sensory processing methods which capitalize on the timing of spikes from these sensors. Experiments using these sensors can impact how we think the brain processes sensory information. 2010 Elsevier Ltd. All rights reserved.

  6. Effect of process modification on the physio-chemical and sensory ...

    African Journals Online (AJOL)

    SERVER

    2007-08-20

    Aug 20, 2007 ... Okoro Casmir Chukwuemeka. Department of Food Technology Yaba, College of Technology, Lagos, Nigeria. E-mail: emoko102003@yahoo.com. Accepted 7 May, 2007. A modified cassava processing method was used for the production of fufu flour and the flour obtained was compared analytically with ...

  7. Touch Processing and Social Behavior in ASD

    Science.gov (United States)

    Miguel, Helga O.; Sampaio, Adriana; Martínez-Regueiro, Rocío; Gómez-Guerrero, Lorena; López-Dóriga, Cristina Gutiérrez; Gómez, Sonia; Carracedo, Ángel; Fernández-Prieto, Montse

    2017-01-01

    Abnormal patterns of touch processing have been linked to core symptoms in ASD. This study examined the relation between tactile processing patterns and social problems in 44 children and adolescents with ASD, aged 6-14 (M = 8.39 ± 2.35). Multiple linear regression indicated significant associations between touch processing and social problems. No…

  8. Sensory Processing Abilities and Their Relation to Participation in Leisure Activities among Children with High-Functioning Autism Spectrum Disorder (HFASD)

    Science.gov (United States)

    Hochhauser, Michal; Engel-Yeger, Batya

    2010-01-01

    Children with autism may have atypical sensory processing abilities, which are known to impact child's performance and participation. However, lack of information exists regarding the expression of these abilities in specific groups on the spectrum, as children with high-functioning autism spectrum disorder (HFASD). This study aimed to…

  9. The Relationship between Sensory Processing Difficulties and Behaviour in Children Aged 5-9 Who Are at Risk of Developing Conduct Disorder

    Science.gov (United States)

    Fox, Cara; Snow, Pamela C.; Holland, Kerry

    2014-01-01

    Behavioural problems in childhood are common, with significant and wide-ranging implications for individuals, families and the community. There is some evidence that sensory processing difficulties are associated with behavioural problems in children with disabilities such as autism spectrum disorders (ASDs) and attention-deficit/hyperactivity…

  10. Effects of yoga on patients in an adolescent mental health hospital and the relationship between those effects and the patients' sensory-processing patterns.

    Science.gov (United States)

    Re, Pamela; McConnell, John W; Reidinger, Gloria; Schweit, Ronnie; Hendron, Angela

    2014-11-01

    This study investigated the effects of yoga as a sensory regulation tool in reducing adolescent distress in an acute care psychiatric hospital. This was a descriptive, correlational pre-intervention/post-intervention design conducted in a mental health hospital over 5 months from mid-January to mid-June 2012. The population consisted of a convenience sample of 75 adolescent mental health unit inpatients and partial-hospitalization patients 12-18 years of age who participated in two or more yoga sessions. Patient charts provided Diagnostic and Statistical Manual of Mental Disorders-IV Axes I-V diagnosis, gender, and age. Dependent variables were pulse and Subjective Units of Disturbance Scale scores, which were recorded before and after each yoga class. The Adult/Adolescent Sensory Profile provided a measure of patient sensory-processing preference levels that were related to the pulse and Subjective Units of Disturbance Scale results. Yoga sessions significantly improved patient pulse and self-reported distress ratings regardless of gender or sensory profile levels. This article contributes to research on the therapeutic effects of yoga as a sensory regulation intervention in the treatment of psychiatrically hospitalized adolescents. Yoga has the potential to help adolescents in an acute care psychiatric hospital learn to soothe themselves, to regulate their emotions, and to find relief from emotional distress while hospitalized. © 2014 Wiley Periodicals, Inc.

  11. How To Naturalize Sensory Consciousness and Intentionality Within A Process Monism With Normativity Gradient

    DEFF Research Database (Denmark)

    Seibt, Johanna

    2016-01-01

    that can be associated with more or less rudimentary forms of sensing, map-making, navigating, imaging, mental languaging, verbal languaging, and scientific research. I argue that the logical irreducibility of normative content is merely temporary—if content is functioning, science will, in the long run...... processes can one solve the deepest problem for a naturalist approach: how to bring information—from difference making to normative content—into nature....

  12. A disturbance in sensory processing on the affected side of the body increases limb pain in complex regional pain syndrome.

    Science.gov (United States)

    Drummond, Peter D; Finch, Philip M

    2014-04-01

    The aim of this study was to determine whether a central disturbance in somatosensory processing contributes to limb pain in complex regional pain syndrome (CRPS). In 37 patients with CRPS, the effect of cooling the ipsilateral forehead on pain in the affected limb was compared with the effect of cooling the contralateral forehead. In addition, symptoms associated with cold-evoked limb pain were explored. Limb pain generally increased when the ipsilateral side of the forehead was cooled but did not change when the contralateral side of the forehead was cooled. Increases were greatest in patients with heightened sensitivity to cold, brushing, and pressure-pain in the ipsilateral forehead, in patients with heightened sensitivity to pressure-pain in the limbs, and in patients with chronic symptoms. In contrast, sensitivity to light touch was diminished in the CRPS-affected limb of patients whose limb pain remained unchanged or decreased during ipsilateral forehead cooling. These preliminary findings suggest that a central disturbance in sensory processing and pain modulation, which extends beyond the affected limb to the ipsilateral forehead, contributes to symptoms in a subgroup of patients with CRPS.

  13. Differences in the Transmission of Sensory Input into Motor Output between Introverts and Extraverts: Behavioral and Psychophysiological Analyses

    Science.gov (United States)

    Stahl, J.; Rammsayer, T.

    2004-01-01

    The present study was designed to investigate extraversion-related individual differences in the speed of transmission of sensory input into motor output. In a sample of 16 introverted and 16 extraverted female volunteers, event-related potentials, lateralized readiness potentials (LRPs), and electromyogram (EMG) were recorded as participants…

  14. Development of the “Highly Sensitive Dog” questionnaire to evaluate the personality dimension “Sensory Processing Sensitivity” in dogs

    Science.gov (United States)

    Asher, Lucy; Furrer, Sibylle; Lechner, Isabel; Würbel, Hanno; Melotti, Luca

    2017-01-01

    In humans, the personality dimension ‘sensory processing sensitivity (SPS)’, also referred to as “high sensitivity”, involves deeper processing of sensory information, which can be associated with physiological and behavioral overarousal. However, it has not been studied up to now whether this dimension also exists in other species. SPS can influence how people perceive the environment and how this affects them, thus a similar dimension in animals would be highly relevant with respect to animal welfare. We therefore explored whether SPS translates to dogs, one of the primary model species in personality research. A 32-item questionnaire to assess the “highly sensitive dog score” (HSD-s) was developed based on the “highly sensitive person” (HSP) questionnaire. A large-scale, international online survey was conducted, including the HSD questionnaire, as well as questions on fearfulness, neuroticism, “demographic” (e.g. dog sex, age, weight; age at adoption, etc.) and “human” factors (e.g. owner age, sex, profession, communication style, etc.), and the HSP questionnaire. Data were analyzed using linear mixed effect models with forward stepwise selection to test prediction of HSD-s by the above-mentioned factors, with country of residence and dog breed treated as random effects. A total of 3647 questionnaires were fully completed. HSD-, fearfulness, neuroticism and HSP-scores showed good internal consistencies, and HSD-s only moderately correlated with fearfulness and neuroticism scores, paralleling previous findings in humans. Intra- (N = 447) and inter-rater (N = 120) reliabilities were good. Demographic and human factors, including HSP score, explained only a small amount of the variance of HSD-s. A PCA analysis identified three subtraits of SPS, comparable to human findings. Overall, the measured personality dimension in dogs showed good internal consistency, partial independence from fearfulness and neuroticism, and good intra- and inter

  15. Effects of hand posture on preparatory control processes and sensory modulations in tactile-spatial attention.

    Science.gov (United States)

    Eimer, Martin; Forster, Bettina; Fieger, Anne; Harbich, Stefanie

    2004-03-01

    Event-related brain potentials (ERPs) were measured to investigate spatial coordinate systems involved in the control of preparatory tactile-spatial orienting, and in subsequent attentional modulations of somatosensory processing. On each trial, a visual precue directed attention to the left or right hand, where infrequent tactile targets had to be detected. Hands were positioned either close together or wide apart. ERPs were recorded in the cue-target interval and in response to attended and unattended tactile non-targets. A frontal anterior directing attention negativity (ADAN) and a posterior late directing attention positivity (LDAP) were elicited in the cue-target interval contralateral to the direction of an attentional shift. The ADAN was unaffected by hand posture, but the LDAP was attenuated when hands were close together. N140 amplitudes were enhanced in response to tactile stimuli presented to the attended hand, and this effect was more pronounced when hands were wide apart. ADAN and LDAP are linked to separable anterior and posterior attentional control systems, which use coordinate systems based on somatotopic and external space, respectively. Effects of spatial attention on somatosensory stimulus processing are affected by variations in body posture. Our results demonstrate that representations of body locations in external space play a central role in the control of tactile attention.

  16. Irradiating of Bulk Soybeans: Influence on Their Functional and Sensory Properties for Soyfood Processing

    Science.gov (United States)

    Chia, Chiew-Ling; Wilson, Lester A.; Boylston, Terri; Perchonok, Michele; French, Stephen

    2006-01-01

    Soybeans were chosen for lunar and planetary missions, where soybeans will be supplied in bulk or grown locally, due to their nutritive value and ability to produce oil and protein for further food applications. However, soybeans must be processed into foods prior to consumption. Radiation that soybeans would be exposed to during bulk storage prior to and during a Mars mission may influence their germination and functional properties. The influence of radiation includes the affect of surface pasteurization to ensure the astronauts safety from food-borne illnesses (HACCP, CCP), and the affect of the amount of radiation the soybeans receive during a Mars mission. Decreases in the amount of natural antioxidants free radical formation, and oxidation-induced changes in the soybean will influence the nutritional value, texture, color, and aroma of soyfoods. The objective of this study was to determine the influence of pasteurization and sterilization surface radiation on whole soybeans using gamma and electron beam radiation. The influence of 0, 1, 5, 10, and 30kGy on microbial load, germination rate, ease of processing, and quality of soymilk and tofu were determined. Surface radiation of whole dry soybeans using electron beam or gamma rays from 1-30kGy did provide microbial safety for the astronauts. However, the lower dose levels had surviving yeasts and molds. These doses caused oxidative changes that resulted in soymilk and tofu with rancid aromas. GC-MS of the aroma compounds using SPME Headspace confirmed the presence of lipid oxidation compounds. Soybean germination ability was reduced as radiation dosage increased. While lower doses may reduce these problems, the ability to insure microbial safety of bulk soybeans will be lost. Counter measures could include vacuum packaging, nitrogen flushing, added antioxidants, and radiating under freezing conditions. Doses below 1kGy need to be investigated further to determine the influence of the radiation encountered

  17. Thermal nociceptive threshold testing detects altered sensory processing in broiler chickens with spontaneous lameness.

    Directory of Open Access Journals (Sweden)

    Becky Hothersall

    Full Text Available Lameness is common in commercially reared broiler chickens but relationships between lameness and pain (and thus bird welfare have proved complex, partly because lameness is often partially confounded with factors such as bodyweight, sex and pathology. Thermal nociceptive threshold (TNT testing explores the neural processing of noxious stimuli, and so can contribute to our understanding of pain. Using an acute model of experimentally induced articular pain, we recently demonstrated that TNT was reduced in lame broiler chickens, and was subsequently attenuated by administration of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs. This study extended these findings to a large sample of commercial broilers. It examined factors affecting thermal threshold (Part 1 and the effect of an NSAID drug (meloxicam, 5 mg/kg and of an opioid (butorphanol; 4 mg/kg (Part 2. Spontaneously lame and matched non-lame birds (n=167 from commercial farms were exposed to ramped thermal stimulations via a probe attached to the lateral aspect of the tarsometatarsus. Baseline skin temperature and temperature at which a behavioural avoidance response occurred (threshold were recorded. In Part 1 bird characteristics influencing threshold were modelled; In Part 2 the effect of subcutaneous administration of meloxicam or butorphanol was investigated. Unexpectedly, after accounting for other influences, lameness increased threshold significantly (Part 1. In Part 2, meloxicam affected threshold differentially: it increased further in lame birds and decreased in non-lame birds. No effect of butorphanol was detected. Baseline skin temperature was also consistently a significant predictor of threshold. Overall, lameness significantly influenced threshold after other bird characteristics were taken into account. This, and a differential effect of meloxicam on lame birds, suggests that nociceptive processing may be altered in lame birds, though mechanisms for this require further

  18. The Significance of Memory in Sensory Cortex.

    Science.gov (United States)

    Muckli, Lars; Petro, Lucy S

    2017-05-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. The significance of memory in sensory cortex

    OpenAIRE

    Muckli, Lars; Petro, Lucy S.

    2017-01-01

    Early sensory cortex is typically investigated in response to sensory stimulation, masking the contribution of internal signals. Recently, van Kerkoerle and colleagues reported that attention and memory signals segregate from sensory signals within specific layers of primary visual cortex, providing insight into the role of internal signals in sensory processing.

  20. The Sensory Neocortex and Associative Memory.

    Science.gov (United States)

    Aschauer, Dominik; Rumpel, Simon

    2018-01-01

    Most behaviors in mammals are directly or indirectly guided by prior experience and therefore depend on the ability of our brains to form memories. The ability to form an association between an initially possibly neutral sensory stimulus and its behavioral relevance is essential for our ability to navigate in a changing environment. The formation of a memory is a complex process involving many areas of the brain. In this chapter we review classic and recent work that has shed light on the specific contribution of sensory cortical areas to the formation of associative memories. We discuss synaptic and circuit mechanisms that mediate plastic adaptations of functional properties in individual neurons as well as larger neuronal populations forming topographically organized representations. Furthermore, we describe commonly used behavioral paradigms that are used to study the mechanisms of memory formation. We focus on the auditory modality that is receiving increasing attention for the study of associative memory in rodent model systems. We argue that sensory cortical areas may play an important role for the memory-dependent categorical recognition of previously encountered sensory stimuli.

  1. Physicochemical and sensory evaluation of some cooking banana (Musa spp.) for boiling and frying process.

    Science.gov (United States)

    Belayneh, M; Workneh, T S; Belew, D

    2014-12-01

    Experiments were conducted to study physicochemical properties of four cooking banana varieties (Cardaba, Nijiru, Matoke and Kitawira) and to determine their suitability for chips processing and boiling quality. A randomized complete block design with three replications was employed. Pulp to peel ratio, pulp firmness (before and after), total soluble solids, pH, titratable acidity, ascorbic acid, ease of peeling, pulp water absorption, duration of cooking (or boiling) and dry matter are the most important parameters to evaluate the quality of cooking banana including plantain. The different variety affected the fruit physical characteristics significantly (P ≤ 0.05). The Cardaba varieties fruit was found to be the heaviest and the longest. The Kitawira and Nijiru varieties had the smallest, shortest and thinnest fruit. The Cardaba contained 88 % more edible portions per unit fresh weight than the peel. The Nijiru, Matoke and Kitawira contained more pulp weight than peel weight. Most fruit chemical quality parameters were significantly (P ≤ 0.05) affected by the varieties. Similarly, the boiling and chips qualities were significantly (P ≤ 0.05) affected by varieties. Among others, the Cardaba variety was found to have high fruit weight, fruit length, fruit girth, fruit volume, total soluble solids, ascorbic acid, dry matter and low total titratable acidity. Thus, Cardaba provided the best quality boiled pulp which can serve for diversified culinary purposes. Generally, the Nijiru, Kitawira and Matoke varieties were found to be superior to produce acceptable quality chips. These varieties are recommended for chips development by food processors in Ethiopia.

  2. Attention Deficit Hyperactivity Disorder, Sensory Processing Disorder, and Overexcitabilities: Similar Behaviors, Different Diagnoses

    Science.gov (United States)

    Shive, Lauren

    2013-01-01

    Although ADHD may be overdiagnosed in gifted children, ADHD and other disabilities can also be overlooked in this population. Young children in particular may be able to compensate for their disabilities to the point where these weaknesses are effectively masked by their giftedness, delaying a diagnosis and intervention. Such twice-exceptional…

  3. A theoretically based index of consciousness independent of sensory processing and behavior.

    Science.gov (United States)

    Casali, Adenauer G; Gosseries, Olivia; Rosanova, Mario; Boly, Mélanie; Sarasso, Simone; Casali, Karina R; Casarotto, Silvia; Bruno, Marie-Aurélie; Laureys, Steven; Tononi, Giulio; Massimini, Marcello

    2013-08-14

    One challenging aspect of the clinical assessment of brain-injured, unresponsive patients is the lack of an objective measure of consciousness that is independent of the subject's ability to interact with the external environment. Theoretical considerations suggest that consciousness depends on the brain's ability to support complex activity patterns that are, at once, distributed among interacting cortical areas (integrated) and differentiated in space and time (information-rich). We introduce and test a theory-driven index of the level of consciousness called the perturbational complexity index (PCI). PCI is calculated by (i) perturbing the cortex with transcranial magnetic stimulation (TMS) to engage distributed interactions in the brain (integration) and (ii) compressing the spatiotemporal pattern of these electrocortical responses to measure their algorithmic complexity (information). We test PCI on a large data set of TMS-evoked potentials recorded in healthy subjects during wakefulness, dreaming, nonrapid eye movement sleep, and different levels of sedation induced by anesthetic agents (midazolam, xenon, and propofol), as well as in patients who had emerged from coma (vegetative state, minimally conscious state, and locked-in syndrome). PCI reliably discriminated the level of consciousness in single individuals during wakefulness, sleep, and anesthesia, as well as in patients who had emerged from coma and recovered a minimal level of consciousness. PCI can potentially be used for objective determination of the level of consciousness at the bedside.

  4. Habits of the Sensory System and Mental Health: Understanding Sensory Dissonance.

    Science.gov (United States)

    Bailliard, Antoine L

    2015-01-01

    In occupational therapy, research has studied sensory function predominantly in relation to sensory disorders. There is a gap in the literature exploring how sensory experiences affect mental health. This study sought to provide a phenomenological understanding of how people relate experiences of sensory dissonance to their mental health. Ten immigrants from Latin America participated in semistructured interviews and video observations of their occupational behavior. Participants' experiences of sensory dissonance provoked negative mental states and distress. Participants reported poor mental health following sensory experiences that were incongruent with their habits of sensing. They also intentionally used sensory anchors to induce positive mental states and connect with past occupational experiences. Occupational therapy practitioners should be mindful of how sensory environments can facilitate or impede intervention. Practitioners are encouraged to harness clients' sensory habits and use sensory anchors as a form of sensory scaffolding to facilitate therapeutic gains. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  5. Lack of increased immediate early gene expression in rats reinstating cocaine-seeking behavior to discrete sensory cues.

    Science.gov (United States)

    Riedy, Matthew D; Keefe, Kristen A

    2013-01-01

    Drug-seeking behavior elicited by drug-associated cues contributes to relapse in addiction; however, whether relapse elicited by drug-associated conditioned reinforcers (CR) versus discriminative stimuli (DS) involves distinct or overlapping neuronal populations is unknown. To address this question, we developed a novel cocaine self-administration and cue-induced reinstatement paradigm that exposed the same rats to distinct cocaine-associated CR and DS. Rats were trained to self-administer cocaine in separate sessions. In one, a DS signaled cocaine availability; in the other, cocaine delivery was paired with a different CR. After extinction training and reinstatement testing, where both cues were presented in separate sessions, rats were sacrificed and processed for cellular analysis of temporal activity by fluorescent in situ hybridization (CatFISH) for activity regulated cytoskeleton-associated protein (Arc) mRNA and for radioactive in situ hybridization for Arc and zif268 mRNAs. CatFISH did not reveal significant changes in Arc mRNA expression. Similar results were obtained with radioactive in situ hybridization. We have shown that while rats reinstate drug seeking in response to temporally discrete presentations of distinct drug-associated cues, such reinstatement is not associated with increased transcriptional activation of Arc or zif268 mRNAs, suggesting that expression of these genes may not be necessary for cue-induced reinstatement of drug-seeking behavior.

  6. Lack of increased immediate early gene expression in rats reinstating cocaine-seeking behavior to discrete sensory cues.

    Directory of Open Access Journals (Sweden)

    Matthew D Riedy

    Full Text Available Drug-seeking behavior elicited by drug-associated cues contributes to relapse in addiction; however, whether relapse elicited by drug-associated conditioned reinforcers (CR versus discriminative stimuli (DS involves distinct or overlapping neuronal populations is unknown. To address this question, we developed a novel cocaine self-administration and cue-induced reinstatement paradigm that exposed the same rats to distinct cocaine-associated CR and DS. Rats were trained to self-administer cocaine in separate sessions. In one, a DS signaled cocaine availability; in the other, cocaine delivery was paired with a different CR. After extinction training and reinstatement testing, where both cues were presented in separate sessions, rats were sacrificed and processed for cellular analysis of temporal activity by fluorescent in situ hybridization (CatFISH for activity regulated cytoskeleton-associated protein (Arc mRNA and for radioactive in situ hybridization for Arc and zif268 mRNAs. CatFISH did not reveal significant changes in Arc mRNA expression. Similar results were obtained with radioactive in situ hybridization. We have shown that while rats reinstate drug seeking in response to temporally discrete presentations of distinct drug-associated cues, such reinstatement is not associated with increased transcriptional activation of Arc or zif268 mRNAs, suggesting that expression of these genes may not be necessary for cue-induced reinstatement of drug-seeking behavior.

  7. Relato de caso: privação sensorial de estímulos e comportamentos autísticos Case report: deprivation of sensory stimuli and autistic behaviors

    Directory of Open Access Journals (Sweden)

    Ana Cristina de Castro Coelho

    2008-03-01

    deprived from stimulus due to maternal negligence. A male two-year-old child was assessed and followed by the team of a University's Speech and Language Pathology (SLP Clinic. He was diagnosed with language disorder as part of a global development disorder, and referred to language therapy. Due to the fact that the child had nutritional and global development deficits, he was also referred to medical care and to an institution specialized in autistic patients. Throughout the SLP intervention process, the child showed increase of eye contact, acceptance of body contact, more interest in objects, beginning of vocalizations and decrease of the repetitive movements. However, the therapeutic results were limited by the problematic setting. Intervention was carried out with collaboration from the daycare facilities that the child attended and also from other assistance organs, since there was a formal denunciation regarding the mother's negligence. This case report aims to show that, in severe cases, a global intervention, with involvement of several health professionals, is necessary to provide the development of all the impaired aspects. Family support is fundamental to the child's development, thus, it is not possible to state whether the subject's behaviors were determined by the deprivation of sensory stimulus or by the severity of the autism. Therefore, investigation and intervention work must be continued.

  8. Diffuse affect as regulator of attitude and behavior processes

    NARCIS (Netherlands)

    Hermsen, B.J.M.

    2007-01-01

    The influence of diffuse affect (or mood) on automatic attitude activation and the attitude behavior link was examined. Positive mood induces an intuitive processing style, while negative mood elicits a rather deliberative and cautious processing style. Due to a cautious processing style in negative

  9. Automatic recognition of lactating sow behaviors through depth image processing

    Science.gov (United States)

    Manual observation and classification of animal behaviors is laborious, time-consuming, and of limited ability to process large amount of data. A computer vision-based system was developed that automatically recognizes sow behaviors (lying, sitting, standing, kneeling, feeding, drinking, and shiftin...

  10. Behavior based safety process - a pragmatic approach

    International Nuclear Information System (INIS)

    Sharma, R.K.; Malaikar, N.L.; Belokar, S.G.; Arora, Yashpal

    2009-01-01

    Materials handling, processing and storage of hazardous chemicals has grown exponentially. The chemical industries has reacted to the situation by introducing numerous safety systems such as IS18001, 'HAZOP', safety audits, risk assessment, training etc, which has reduced hazards and improved safety performance, but has not totally eliminated exposure to the hazards. These safety systems aim to bring change in attitude of the persons which is difficult to change or control. However, behaviour of plant personnel can be controlled or improved upon, which should be our aim. (author)

  11. Rethinking behavioral health processes by using design for six sigma.

    Science.gov (United States)

    Lucas, Anthony G; Primus, Kelly; Kovach, Jamison V; Fredendall, Lawrence D

    2015-02-01

    Clinical evidence-based practices are strongly encouraged and commonly utilized in the behavioral health community. However, evidence-based practices that are related to quality improvement processes, such as Design for Six Sigma, are often not used in behavioral health care. This column describes the unique partnership formed between a behavioral health care provider in the greater Pittsburgh area, a nonprofit oversight and monitoring agency for behavioral health services, and academic researchers. The authors detail how the partnership used the multistep process outlined in Design for Six Sigma to completely redesign the provider's intake process. Implementation of the redesigned process increased access to care, decreased bad debt and uncollected funds, and improved cash flow--while consumer satisfaction remained high.

  12. Sensory Processing in Children with Autism Spectrum Disorder and/or Attention Deficit Hyperactivity Disorder in the Home and Classroom Contexts

    Directory of Open Access Journals (Sweden)

    Pilar Sanz-Cervera

    2017-10-01

    Full Text Available Children with neurodevelopmental disorders often show impairments in sensory processing (SP and higher functions. The main objective of this study was to compare SP, praxis and social participation (SOC in four groups of children: ASD Group (n = 21, ADHD Group (n = 21, ASD+ADHD Group (n = 21, and Comparison Group (n = 27. Participants were the parents and teachers of these children who were 5–8 years old (M = 6.32. They completed the Sensory Processing Measure (SPM to evaluate the sensory profile, praxis and SOC of the children in both the home and classroom contexts. In the home context, the most affected was the ASD+ADHD group. The ADHD group obtained higher scores than the ASD group on the Body Awareness (BOD subscale, indicating a higher level of dysfunction. The ASD group, however, did not obtain higher scores than the ADHD group on any subscale. In the classroom context, the most affected were the two ASD groups: the ASD+ADHD group obtained higher scores than the ADHD group on the Hearing (HEA and Social Participation (SOC subscales, and the ASD group obtained higher scores than the ADHD group on the SOC subscale. Regarding sensory modalities, difficulties in proprioception seem to be more characteristic to the ADHD condition. As for higher-level functioning, social difficulties seem to be more characteristic to the ASD condition. Differences between the two contexts were only found in the ASD group, which could be related to contextual hyperselectivity, an inherent autistic feature. Despite possible individual differences, specific intervention programs should be developed to improve the sensory challenges faced by children with different diagnoses.

  13. Sensory Processing in Children with Autism Spectrum Disorder and/or Attention Deficit Hyperactivity Disorder in the Home and Classroom Contexts.

    Science.gov (United States)

    Sanz-Cervera, Pilar; Pastor-Cerezuela, Gemma; González-Sala, Francisco; Tárraga-Mínguez, Raúl; Fernández-Andrés, Maria-Inmaculada

    2017-01-01

    Children with neurodevelopmental disorders often show impairments in sensory processing (SP) and higher functions. The main objective of this study was to compare SP, praxis and social participation (SOC) in four groups of children: ASD Group ( n = 21), ADHD Group ( n = 21), ASD+ADHD Group ( n = 21), and Comparison Group ( n = 27). Participants were the parents and teachers of these children who were 5-8 years old ( M = 6.32). They completed the Sensory Processing Measure (SPM) to evaluate the sensory profile, praxis and SOC of the children in both the home and classroom contexts. In the home context, the most affected was the ASD+ADHD group. The ADHD group obtained higher scores than the ASD group on the Body Awareness (BOD) subscale, indicating a higher level of dysfunction. The ASD group, however, did not obtain higher scores than the ADHD group on any subscale. In the classroom context, the most affected were the two ASD groups: the ASD+ADHD group obtained higher scores than the ADHD group on the Hearing (HEA) and Social Participation (SOC) subscales, and the ASD group obtained higher scores than the ADHD group on the SOC subscale. Regarding sensory modalities, difficulties in proprioception seem to be more characteristic to the ADHD condition. As for higher-level functioning, social difficulties seem to be more characteristic to the ASD condition. Differences between the two contexts were only found in the ASD group, which could be related to contextual hyperselectivity, an inherent autistic feature. Despite possible individual differences, specific intervention programs should be developed to improve the sensory challenges faced by children with different diagnoses.

  14. Sensory processing in children with Autism Spectrum Disorder: Relationship with non-verbal IQ, autism severity and Attention Deficit/Hyperactivity Disorder symptomatology.

    Science.gov (United States)

    Sanz-Cervera, Pilar; Pastor-Cerezuela, Gemma; Fernández-Andrés, Maria-Inmaculada; Tárraga-Mínguez, Raul

    2015-01-01

    The main objective of this study was to analyze in a sample of children with ASD the relationship between sensory processing, social participation and praxis impairments and some of the child's characteristics, such as non-verbal IQ, severity of ASD symptoms and the number of ADHD symptoms (inattention and hyperactivity/impulsivity), both in the home and main-classroom environments. Participants were the parents and teachers of 41 children with ASD from 5 to 8 years old (M=6.09). They completed the Sensory Processing Measure (SPM) to evaluate sensory processing, social participation and praxis; the Gilliam Autism Rating Scale (GARS-2) to evaluate autism severity; and a set of items (the DSM-IV-TR criteria) to evaluate the number of inattention and hyperactivity/impulsivity symptoms in the child. Non-verbal IQ - measured by the Raven's Coloured Progressive Matrices Test - did not show a relationship with any of the SPM variables. The SPM variables were significant predictors of autism severity and had similar weights in the two environments. In the case of ADHD symptoms, the SPM variables had a greater weight in the home than in the classroom environment, and they were significant predictors of both inattention and hyperactivity/impulsivity - especially inattention - only in the family context. The moderate association between inattention and auditory processing found in the main-classroom suggests the possible utility of certain measures aimed to simplify any classroom's acoustic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Role of secondary sensory cortices in emotional memory storage and retrieval in rats.

    Science.gov (United States)

    Sacco, Tiziana; Sacchetti, Benedetto

    2010-08-06

    Visual, acoustic, and olfactory stimuli associated with a highly charged emotional situation take on the affective qualities of that situation. Where the emotional meaning of a given sensory experience is stored is a matter of debate. We found that excitotoxic lesions of auditory, visual, or olfactory secondary sensory cortices impaired remote, but not recent, fear memories in rats. Amnesia was modality-specific and not due to an interference with sensory or emotional processes. In these sites, memory persistence was dependent on ongoing protein kinase Mzeta activity and was associated with an increased activity of layers II-IV, thus suggesting a synaptic strengthening of corticocortical connections. Lesions of the same areas left intact the memory of sensory stimuli not associated with any emotional charge. We propose that secondary sensory cortices support memory storage and retrieval of sensory stimuli that have acquired a behavioral salience with the experience.

  16. Behavioral Signal Processing: Deriving Human Behavioral Informatics From Speech and Language

    Science.gov (United States)

    Narayanan, Shrikanth; Georgiou, Panayiotis G.

    2013-01-01

    The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practice across a variety of domains from commerce to healthcare rely on speech- and language-based informatics for crucial assessment and diagnostic information and for planning and tracking response to an intervention. In this paper, we describe some of the opportunities as well as emerging methodologies and applications of human behavioral signal processing (BSP) technology and algorithms for quantitatively understanding and modeling typical, atypical, and distressed human behavior with a specific focus on speech- and language-based communicative, affective, and social behavior. We describe the three important BSP components of acquiring behavioral data in an ecologically valid manner across laboratory to real-world settings, extracting and analyzing behavioral cues from measured data, and developing models offering predictive and decision-making support. We highlight both the foundational speech and language processing building blocks as well as the novel processing and modeling opportunities. Using examples drawn from specific real-world applications ranging from literacy assessment and autism diagnostics to psychotherapy for addiction and marital well being, we illustrate behavioral informatics applications of these signal processing techniques that contribute to quantifying higher level, often subjectively described, human behavior in a domain-sensitive fashion. PMID:24039277

  17. BEHAVIOR OF MERCURY DURING DWPF CHEMICAL PROCESS CELL PROCESSING

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J.; Koopman, D.

    2012-04-09

    The Defense Waste Processing Facility has experienced significant issues with the stripping and recovery of mercury in the Chemical Processing Cell (CPC). The stripping rate has been inconsistent, often resulting in extended processing times to remove mercury to the required endpoint concentration. The recovery of mercury in the Mercury Water Wash Tank has never been high, and has decreased significantly since the Mercury Water Wash Tank was replaced after the seventh batch of Sludge Batch 5. Since this time, essentially no recovery of mercury has been seen. Pertinent literature was reviewed, previous lab-scale data on mercury stripping and recovery was examined, and new lab-scale CPC Sludge Receipt and Adjustment Tank (SRAT) runs were conducted. For previous lab-scale data, many of the runs with sufficient mercury recovery data were examined to determine what factors affect the stripping and recovery of mercury and to improve closure of the mercury material balance. Ten new lab-scale SRAT runs (HG runs) were performed to examine the effects of acid stoichiometry, sludge solids concentration, antifoam concentration, form of mercury added to simulant, presence of a SRAT heel, operation of the SRAT condenser at higher than prototypic temperature, varying noble metals from none to very high concentrations, and higher agitation rate. Data from simulant runs from SB6, SB7a, glycolic/formic, and the HG tests showed that a significant amount of Hg metal was found on the vessel bottom at the end of tests. Material balance closure improved from 12-71% to 48-93% when this segregated Hg was considered. The amount of Hg segregated as elemental Hg on the vessel bottom was 4-77% of the amount added. The highest recovery of mercury in the offgas system generally correlated with the highest retention of Hg in the slurry. Low retention in the slurry (high segregation on the vessel bottom) resulted in low recovery in the offgas system. High agitation rates appear to result in lower

  18. The third-stimulus temporal discrimination threshold: focusing on the temporal processing of sensory input within primary somatosensory cortex.

    Science.gov (United States)

    Leodori, Giorgio; Formica, Alessandra; Zhu, Xiaoying; Conte, Antonella; Belvisi, Daniele; Cruccu, Giorgio; Hallett, Mark; Berardelli, Alfredo

    2017-10-01

    The somatosensory temporal discrimination threshold (STDT) has been used in recent years to investigate time processing of sensory information, but little is known about the physiological correlates of somatosensory temporal discrimination. The objective of this study was to investigate whether the time interval required to discriminate between two stimuli varies according to the number of stimuli in the task. We used the third-stimulus temporal discrimination threshold (ThirdDT), defined as the shortest time interval at which an individual distinguishes a third stimulus following a pair of stimuli delivered at the STDT. The STDT and ThirdDT were assessed in 31 healthy subjects. In a subgroup of 10 subjects, we evaluated the effects of the stimuli intensity on the ThirdDT. In a subgroup of 16 subjects, we evaluated the effects of S1 continuous theta-burst stimulation (S1-cTBS) on the STDT and ThirdDT. Results show that ThirdDT is shorter than STDT. We found a positive correlation between STDT and ThirdDT values. As long as the stimulus intensity was within the perceivable and painless range, it did not affect ThirdDT values. S1-cTBS significantly affected both STDT and ThirdDT, although the latter was affected to a greater extent and for a longer period of time. We conclude that the interval needed to discriminate between time-separated tactile stimuli is related to the number of stimuli used in the task. STDT and ThirdDT are encoded in S1, probably by a shared tactile temporal encoding mechanism whose performance rapidly changes during the perception process. ThirdDT is a new method to measure somatosensory temporal discrimination. NEW & NOTEWORTHY To investigate whether the time interval required to discriminate between stimuli varies according to changes in the stimulation pattern, we used the third-stimulus temporal discrimination threshold (ThirdDT). We found that the somatosensory temporal discrimination acuity varies according to the number of stimuli in the

  19. Combustion behavior of spent solvent in a submerged combustion process

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide.

    1993-10-01

    An experimental study has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. A bench-scale equipment of submerged combustor having combustion capacity of 1.39 liter of tri-n-butyl phosphate (TBP) per hour was used to obtain process data such as the distribution behavior of radioactive nuclides in the submerged combustion process. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of TBP and/or n-dodecane, and on the distribution behaviors of combustion products such as ruthenium and iodine in the submerged combustion process. (author)

  20. Effectiveness of sensory integration program in motor skills in ...

    African Journals Online (AJOL)

    Background: Autism spectrum disorders (ASDs) represent an extensive category of conditions that had a variety of deficits. Dysfunctions of perceptual and sensory processing as well as interaction and neurological functioning result in various functional behavior limitations. Aim: The present study aimed to determine the ...

  1. Commutative Prospect Theory and Stopped Behavioral Processes for Fair Gambles

    OpenAIRE

    Cadogan, Godfrey

    2010-01-01

    We augment Tversky and Khaneman (1992) (“TK92”) Cumulative Prospect Theory (“CPT”) function space with a sample space for “states of nature”, and depict a commutative map of behavior on the augmented space. In particular, we use a homotopy lifting property to mimic behavioral stochastic processes arising from deformation of stochastic choice into outcome. A psychological distance metric (in the class of Dudley-Talagrand inequalities) popularized by Norman (1968); Nosofsky and Palmeri (1997), ...

  2. Exploring the Influence of an E-Learning Sensory Processing-Based Module for Graduate Level Occupational Therapy Students on Clinical Reasoning: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Bryan M. Gee

    2017-01-01

    Full Text Available The purpose of this study was to explore the effectiveness of a series of online, module-based instructional reusable learning objects (RLOs targeted at entry-level, 1st year, Master of Occupational Therapy students. The content of the RLOs addressed knowledge and implementation of A SECRET, a parental reasoning approach for children with a sensory processing disorder, specifically sensory over responsiveness. Nine RLOs were developed and embedded within a commonly used learning management system. Participants (n=8 were evaluated regarding their ability to discriminate between appropriate and inappropriate A SECRET strategies using a selected-response assessment. The participants’ overall average score was 68%, a positive finding given the novelty of the instruction, assessment, and the content.

  3. Using the theory of planned behavior to determine factors influencing processed foods consumption behavior

    Science.gov (United States)

    Kim, Og Yeon; Shim, Soonmi

    2014-01-01

    BACKGROUND/OBJECTIVES The purpose of this study is to identify how level of information affected intention, using the Theory of Planned Behavior. SUBJECTS/METHODS The study was conducted survey in diverse community centers and shopping malls in Seoul, which yielded N = 209 datasets. To compare processed foods consumption behavior, we divided samples into two groups based on level of information about food additives (whether respondents felt that information on food additives was sufficient or not). We analyzed differences in attitudes toward food additives and toward purchasing processed foods, subjective norms, perceived behavioral control, and behavioral intentions to processed foods between sufficient information group and lack information group. RESULTS The results confirmed that more than 78% of respondents thought information on food additives was insufficient. However, the group who felt information was sufficient had more positive attitudes about consuming processed foods and behavioral intentions than the group who thought information was inadequate. This study found people who consider that they have sufficient information on food additives tend to have more positive attitudes toward processed foods and intention to consume processed foods. CONCLUSIONS This study suggests increasing needs for nutrition education on the appropriate use of processed foods. Designing useful nutrition education requires a good understanding of factors which influence on processed foods consumption. PMID:24944779

  4. Using the theory of planned behavior to determine factors influencing processed foods consumption behavior.

    Science.gov (United States)

    Seo, Sunhee; Kim, Og Yeon; Shim, Soonmi

    2014-06-01

    The purpose of this study is to identify how level of information affected intention, using the Theory of Planned Behavior. The study was conducted survey in diverse community centers and shopping malls in Seoul, which yielded N = 209 datasets. To compare processed foods consumption behavior, we divided samples into two groups based on level of information about food additives (whether respondents felt that information on food additives was sufficient or not). We analyzed differences in attitudes toward food additives and toward purchasing processed foods, subjective norms, perceived behavioral control, and behavioral intentions to processed foods between sufficient information group and lack information group. The results confirmed that more than 78% of respondents thought information on food additives was insufficient. However, the group who felt information was sufficient had more positive attitudes about consuming processed foods and behavioral intentions than the group who thought information was inadequate. This study found people who consider that they have sufficient information on food additives tend to have more positive attitudes toward processed foods and intention to consume processed foods. This study suggests increasing needs for nutrition education on the appropriate use of processed foods. Designing useful nutrition education requires a good understanding of factors which influence on processed foods consumption.

  5. Measuring Sensory Reactivity in Autism Spectrum Disorder: Application and Simplification of a Clinician-Administered Sensory Observation Scale

    Science.gov (United States)

    Tavassoli, Teresa; Bellesheim, Katherine; Siper, Paige M.; Wang, A. Ting; Halpern, Danielle; Gorenstein, Michelle; Grodberg, David; Kolevzon, Alexander; Buxbaum, Joseph D.

    2016-01-01

    Sensory reactivity is a new DSM-5 criterion for autism spectrum disorder (ASD). The current study aims to validate a clinician-administered sensory observation in ASD, the Sensory Processing Scale Assessment (SPS). The SPS and the Short Sensory Profile (SSP) parent-report were used to measure sensory reactivity in children with ASD (n = 35) and…

  6. Effects of Exogenous Enzymatic Treatment During Processing on the Sensory Quality of Summer Tieguanyin Oolong Tea from the Chinese Anxi County

    Directory of Open Access Journals (Sweden)

    Xue-Bo Zhang

    2015-01-01

    Full Text Available In order to att enuate the bitt er taste and improve the aroma of the summer tieguanyin oolong tea from the Chinese Anxi county, the eff ects of processing treatment with exogenous laccase and α-galactosidase on tea sensory quality and related compounds were investigated. The solutio ns of laccase and/or α-galactosidase were sprayed on the tea leaves before the fi rst drying process. The sensory evaluation results showed that the sensory quality of the tea was signifi cantly enhanced with the enzymatic treatment. The combined application of laccase a t 8.25 and α- galactosidase at 22 U per kg of fresh tea shoots achieved the most satisfying sensory quality. Further analysis of fl avour-related constituents was carried out by HPLC and GC-MS. The HPLC analysis showed that the contents of catechins and total polyphen ols were reduced, compared to the untreated group, by 11.9 and 13.3 % respectively, and the total soluble sugars and water extract content were increased by 19.4 and 6.6 % respectively, aft er the treatment with both enzymes. The decrease of catechins and total polyphenols reduced the bitt erness and astringency of the summer tea, while the increase of total soluble sugars and water extract content improved the sweetness and mellow taste. The aromatic compound data from GC-MS showed that the total essential oil content in these tea samples co-treated with laccase and α-galactos idase increased significantly, in which aldehydes, alcohols, esters and alkenes increased by 23.28, 37.05, 20.10 and 38.99 %, respectively. Our data suggest that the exogenous enzymatic treatment can enhance the summer oolong tea quality, especially its taste and aroma.

  7. Effects of Exogenous Enzymatic Treatment During Processing on the Sensory Quality of Summer Tieguanyin Oolong Tea from the Chinese Anxi County.

    Science.gov (United States)

    Zhang, Xue-Bo; Du, Xian-Feng

    2015-06-01

    In order to attenuate the bitter taste and improve the aroma of the summer tieguanyin oolong tea from the Chinese Anxi county, the effects of processing treatment with exogenous laccase and α-galactosidase on tea sensory quality and related compounds were investigated. The solutions of laccase and/or α-galactosidase were sprayed on the tea leaves before the first drying process. The sensory evaluation results showed that the sensory quality of the tea was significantly enhanced with the enzymatic treatment. The combined application of laccase at 8.25 and α-galactosidase at 22 U per kg of fresh tea shoots achieved the most satisfying sensory quality. Further analysis of flavour-related constituents was carried out by HPLC and GC-MS. The HPLC analysis showed that the contents of catechins and total polyphenols were reduced, compared to the untreated group, by 11.9 and 13.3% respectively, and the total soluble sugars and water extract content were increased by 19.4 and 6.6% respectively, after the treatment with both enzymes. The decrease of catechins and total polyphenols reduced the bitterness and astringency of the summer tea, while the increase of total soluble sugars and water extract content improved the sweetness and mellow taste. The aromatic compound data from GC-MS showed that the total essential oil content in these tea samples co-treated with laccase and α-galactosidase increased significantly, in which aldehydes, alcohols, esters and alkenes increased by 23.28, 37.05, 20.10 and 38.99%, respectively. Our data suggest that the exogenous enzymatic treatment can enhance the summer oolong tea quality, especially its taste and aroma.

  8. Tickle me, I think I might be dreaming! Sensory attenuation, self-other distinction, and predictive processing in lucid dreams

    OpenAIRE

    Windt, Jennifer M.; Harkness, Dominic L.; Lenggenhager, Bigna

    2014-01-01

    The contrast between self- and other-produced tickles, as a special case of sensory attenuation for self-produced actions, has long been a target of empirical research. While in standard wake states it is nearly impossible to tickle oneself, there are interesting exceptions. Notably, participants awakened from REM (rapid eye movement-) sleep dreams are able to tickle themselves. So far, however, the question of whether it is possible to tickle oneself and be tickled by another in the dream st...

  9. Sensory and physico-chemical characteristics of desserts prepared with egg products processed by freeze and spray drying

    Directory of Open Access Journals (Sweden)

    Marcelo Nunes de Jesús

    2013-09-01

    Full Text Available In this work, three freeze-dried (FD egg products (whole egg (WE, egg yolk (EY and egg white (EW were obtained and the acceptability of confections prepared with each was evaluated. Sensory analyses for confections were performed by hedonic testing with fifty panelists in each evaluation. The studied confections were: Condensed Milk Pudding (P, Quindim (Q and Meringue (M. The results obtained for confections made with FD egg products were compared with the achieved through other formulations of the same desserts made with fresh (F or spray-dried (SD egg products. The sensory analysis results for confections made with FD egg products showed good acceptance by panelists. A principal component analysis of the sensory evaluation data was carried out to identify similarities between the different egg products. The PCA supported the conclusion that FD egg products can substitute their fresh and SD counterparts in dessert formulations with good acceptability while keeping the advantages conferred by the freeze-drying method.

  10. Reward maximization justifies the transition from sensory selection at childhood to sensory integration at adulthood.

    Science.gov (United States)

    Daee, Pedram; Mirian, Maryam S; Ahmadabadi, Majid Nili

    2014-01-01

    In a multisensory task, human adults integrate information from different sensory modalities--behaviorally in an optimal Bayesian fashion--while children mostly rely on a single sensor modality for decision making. The reason behind this change of behavior over age and the process behind learning the required statistics for optimal integration are still unclear and have not been justified by the conventional Bayesian modeling. We propose an interactive multisensory learning framework without making any prior assumptions about the sensory models. In this framework, learning in every modality and in their joint space is done in parallel using a single-step reinforcement learning method. A simple statistical test on confidence intervals on the mean of reward distributions is used to select the most informative source of information among the individual modalities and the joint space. Analyses of the method and the simulation results on a multimodal localization task show that the learning system autonomously starts with sensory selection and gradually switches to sensory integration. This is because, relying more on modalities--i.e. selection--at early learning steps (childhood) is more rewarding than favoring decisions learned in the joint space since, smaller state-space in modalities results in faster learning in every individual modality. In contrast, after gaining sufficient experiences (adulthood), the quality of learning in the joint space matures while learning in modalities suffers from insufficient accuracy due to perceptual aliasing. It results in tighter confidence interval for the joint space and consequently causes a smooth shift from selection to integration. It suggests that sensory selection and integration are emergent behavior and both are outputs of a single reward maximization process; i.e. the transition is not a preprogrammed phenomenon.

  11. Thermal Processing Alters the Chemical Quality and Sensory Characteristics of Sweetsop (Annona squamosa L.) and Soursop (Annona muricata L.) Pulp and Nectar.

    Science.gov (United States)

    Baskaran, Revathy; Ravi, Ramasamy; Rajarathnam, Somasundaram

    2016-01-01

    The objective of this study was to investigate the effect of thermal processing on the chemical quality and sensory characteristics of Annona squamosa L. and Annona muricata L. fruit pulps and nectar. The fruit pulps were pasteurized at 85 °C for 20 min and nectar prepared as per Food Safety and Standards Authority of India (FSSAI) specifications. The chemical composition of fresh and heated pulps of A. squamosa and A. muricata showed that compared to fresh, the chemical profile and sensory profile changed in heated samples and nectar. The free and bound phenolics of A. squamosa increased in heated pulp (127.61 to 217.22 mg/100 g and 150.34 to 239.74 mg/100 g, respectively), while in A. muricata, free phenolics increased very marginally from 31.73 to 33.74 mg/100 g and bound phenolics decreased from 111.11 to 86.91 mg/100 g. This increase in phenolic content may be attributed to the perception of bitterness and astringency in A. squamosa pulp on heating. In electronic tongue studies, principal component analysis (PCA) confirmed that the fresh and heated pulps had different scores, as indicated by sensory analysis using qualitative descriptive analysis (QDA). E-tongue analysis of samples discriminated the volatile compounds released from the heated A. squamosa and A. muricata fruit pulps and nectar in their respective PCA plots by forming different clusters. © 2015 Institute of Food Technologists®

  12. The interaction of positive and negative sensory feedback loops in dynamic regulation of a motor pattern.

    Science.gov (United States)

    Ausborn, Jessica; Wolf, Harald; Stein, Wolfgang

    2009-10-01

    In many rhythmic behaviors, phasic sensory feedback modifies the motor pattern. This modification is assumed to depend on feedback sign (positive vs. negative). While on a phenomenological level feedback sign is well defined, many sensory pathways also process antagonistic, and possibly contradictory, sensory information. We here model the locust flight pattern generator and proprioceptive feedback provided by the tegula wing receptor to test the functional significance of sensory pathways processing antagonistic information. We demonstrate that the tegula provides delayed positive feedback via interneuron 301, while all other pathways provide negative feedback. Contradictory to previous assumptions, the increase of wing beat frequency when the tegula is activated during flight is due to the positive feedback. By use of an abstract model we reveal that the regulation of motor pattern frequency by sensory feedback critically depends on the interaction of positive and negative feedback, and thus on the weighting of antagonistic pathways.

  13. AVALIAÇÃO SENSORIAL DO SUCO DE MAÇÃ PROCESSADO COM CASCA DE ARROZ COMO COADJUVANTE DE PRENSAGEM SENSORIAL EVALUATION OF APPLE JUICE PROCESSED TOGETHER WITH RICE HULL AS PRESSING AID

    Directory of Open Access Journals (Sweden)

    Raul VICENZI

    2001-12-01

    Full Text Available Suco de maçã da variedade Fuji processado com casca de arroz como auxiliar na prensagem foi avaliado sensorialmente. Na prensagem foi utilizada pressão de trabalho de 150 e 200kgf/cm² sobre a polpa triturada e adicionado casca de arroz nas concentrações de 0; 1; 3 e 5%. Após o processamento foram efetuadas avaliações de rendimento e sensoriais por equipe de julgadores treinados. A maior concentração de casca de arroz proporcionou maior incremento no rendimento de extração do suco de maçã, superior às médias das testemunhas. Na pressão de 150kgf/cm² a testemunha obteve um rendimento de 59,91%, enquanto a concentração com 5% de casca de arroz teve um rendimento de 76,09%. Para a pressão de 200kgf/cm², a testemunha apresentou média de 66,52% e a concentração com 5% de casca de arroz obteve o maior rendimento de extração, média de 73,19%. Na avaliação sensorial, observa-se diferença significativa entre as testemunhas e os tratamentos, especialmente quanto aos atributos cor, odor e sabor. Na qualidade geral, os sucos obtidos com o tratamento testemunha foram considerados de melhor qualidade que aqueles obtidos com os tratamentos onde foi adicionado auxiliar de prensagem casca de arroz, indicando que este tratamento influencia negativamente na qualidade final do produto.The apple juice of the Fuji variety went through a sensorial evaluation in which it was processed together with rice hull that served as a pressing aid. The triturated pulp was pressed under a working pressure of 150 and 200kgf/cm² and rice hull was added in a concentration of 0; 1; 3 and 5%. A group of trained testers submitted the product of the process to sensory and yield evaluations. The highest concentration of rice hull provided higher increase in the yield of the apple juice extraction, higher than the average of the witnesses. Using a working pressure of 150kgf/cm² the yield obtained with the witness was of 59.91% while the 5% rice hull

  14. Maternal Behavior Predicts Infant Neurophysiological and Behavioral Attention Processes in the First Year

    Science.gov (United States)

    Swingler, Margaret M.; Perry, Nicole B.; Calkins, Susan D.; Bell, Martha Ann

    2017-01-01

    We apply a biopsychosocial conceptualization to attention development in the 1st year and examine the role of neurophysiological and social processes on the development of early attention processes. We tested whether maternal behavior measured during 2 mother-child interaction tasks when infants (N = 388) were 5 months predicted infant medial…

  15. Clients' Emotional Processing in Psychotherapy: A Comparison between Cognitive-Behavioral and Process-Experiential Therapies

    Science.gov (United States)

    Watson, Jeanne C.; Bedard, Danielle L.

    2006-01-01

    The authors compared clients' emotional processing in good and bad outcome cases in cognitive behavioral therapy (CBT) and process-experiential therapy (PET) and investigated whether clients' emotional processing increases over the course of therapy. Twenty minutes from each of 3 sessions from 40 clients were rated on the Experiencing Scale. A 2 *…

  16. The Descending Diencephalic Dopamine System Is Tuned to Sensory Stimuli.

    Science.gov (United States)

    Reinig, Sebastian; Driever, Wolfgang; Arrenberg, Aristides B

    2017-02-06

    The vertebrate diencephalic A11 system provides the sole dopaminergic innervation of hindbrain and spinal cord and has been implicated in modulation of locomotion and sensory processes. However, the exact contributions of sensory stimuli and motor behavior to A11 dopaminergic activity remain unclear. We recorded cellular calcium activity in four anatomically distinct posterior tubercular A11-type dopaminergic subgroups and two adjacent hypothalamic dopaminergic groups in GCaMP7a-transgenic, semi-restrained zebrafish larvae. Our analyses reveal the contributions of different sensory modalities and motor states to dopaminergic activity. Each posterior tubercular and hypothalamic subgroup showed distinct activity patterns, while activity was synchronous within individual subgroups. Caudal and dorsomedial hypothalamic dopaminergic neurons are activated following vigorous tail movements and stay active for about 10 s, revealing predominantly post-motor activity. In contrast, posterior tubercular dopaminergic neurons are predominantly sensory driven, with subgroups differentially responding to different tactile or visual sensory modalities. In the anterior subgroups, neuronal response magnitudes are tuned to tactile stimulus intensities, revealing features similar to sensory systems. We identify the lateral line system as source for this tactile tuning. In contrast, the posterior subgroup is responsive to distinct moving visual stimuli. Specifically, translational forward stimuli, which may indicate insufficient rheotaxis and drift, induce dopaminergic activity, but backward or rotational stimuli not. The activation of posterior tubercular dopaminergic neurons by sensory stimuli, and their projections onto peripheral mechanosensory systems, suggests a participation of A11-type neurons in the feedback regulation of sensory systems. Together with the adjacent hypothalamic neurons, they may serve to set basic behavioral states. Copyright © 2017 Elsevier Ltd. All rights

  17. Dyadic Processes in Early Marriage: Attributions, Behavior, and Marital Quality

    Science.gov (United States)

    Durtschi, Jared A.; Fincham, Frank D.; Cui, Ming; Lorenz, Frederick O.; Conger, Rand D.

    2011-01-01

    Marital processes in early marriage are important for understanding couples' future marital quality. Spouses' attributions about a partner's behavior have been linked to marital quality, yet the mechanisms underlying this association remain largely unknown. When we used couple data from the Family Transitions Project (N = 280 couples) across the…

  18. Beyond behaviorism: on the automaticity of higher mental processes.

    Science.gov (United States)

    Bargh, J A; Ferguson, M J

    2000-11-01

    The first 100 years of experimental psychology were dominated by 2 major schools of thought: behaviorism and cognitive science. Here the authors consider the common philosophical commitment to determinism by both schools, and how the radical behaviorists' thesis of the determined nature of higher mental processes is being pursued today in social cognition research on automaticity. In harmony with "dual process" models in contemporary cognitive science, which equate determined processes with those that are automatic and which require no intervening conscious choice or guidance, as opposed to "controlled" processes which do, the social cognition research on the automaticity of higher mental processes provides compelling evidence for the determinism of those processes. This research has revealed that social interaction, evaluation and judgment, and the operation of internal goal structures can all proceed without the intervention of conscious acts of will and guidance of the process.

  19. Visual, Auditory, and Cross Modal Sensory Processing in Adults with Autism:An EEG Power and BOLD fMRI Investigation

    Directory of Open Access Journals (Sweden)

    Elizabeth C Hames

    2016-04-01

    Full Text Available Electroencephalography (EEG and Blood Oxygen Level Dependent Functional Magnetic Resonance Imagining (BOLD fMRI assessed the neurocorrelates of sensory processing of visual and auditory stimuli in 11 adults with autism (ASD and 10 neurotypical (NT controls between the ages of 20-28. We hypothesized that ASD performance on combined audiovisual trials would be less accurate with observable decreased EEG power across frontal, temporal, and occipital channels and decreased BOLD fMRI activity in these same regions; reflecting deficits in key sensory processing areas. Analysis focused on EEG power, BOLD fMRI, and accuracy. Lower EEG beta power and lower left auditory cortex fMRI activity were seen in ASD compared to NT when they were presented with auditory stimuli as demonstrated by contrasting the activity from the second presentation of an auditory stimulus in an all auditory block versus the second presentation of a visual stimulus in an all visual block (AA2­VV2. We conclude that in ASD, combined audiovisual processing is more similar than unimodal processing to NTs.

  20. Cognitive dysfunction in the dystrophin-deficient mouse model of Duchenne muscular dystrophy: A reappraisal from sensory to executive processes.

    Science.gov (United States)

    Chaussenot, Rémi; Edeline, Jean-Marc; Le Bec, Benoit; El Massioui, Nicole; Laroche, Serge; Vaillend, Cyrille

    2015-10-01

    Duchenne muscular dystrophy (DMD) is associated with language disabilities and deficits in learning and memory, leading to intellectual disability in a patient subpopulation. Recent studies suggest the presence of broader deficits affecting information processing, short-term memory and executive functions. While the absence of the full-length dystrophin (Dp427) is a common feature in all patients, variable mutation profiles may additionally alter distinct dystrophin-gene products encoded by separate promoters. However, the nature of the cognitive dysfunctions specifically associated with the loss of distinct brain dystrophins is unclear. Here we show that the loss of the full-length brain dystrophin in mdx mice does not modify the perception and sensorimotor gating of auditory inputs, as assessed using auditory brainstem recordings and prepulse inhibition of startle reflex. In contrast, both acquisition and long-term retention of cued and trace fear memories were impaired in mdx mice, suggesting alteration in a functional circuit including the amygdala. Spatial learning in the water maze revealed reduced path efficiency, suggesting qualitative alteration in mdx mice learning strategy. However, spatial working memory performance and cognitive flexibility challenged in various behavioral paradigms in water and radial-arm mazes were unimpaired. The full-length brain dystrophin therefore appears to play a role during acquisition of associative learning as well as in general processes involved in memory consolidation, but no overt involvement in working memory and/or executive functions could be demonstrated in spatial learning tasks. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Weakly electric fish display behavioral responses to envelopes naturally occurring during movement: implications for neural processing.

    Science.gov (United States)

    Metzen, Michael G; Chacron, Maurice J

    2014-04-15

    How the brain processes natural sensory input remains an important and poorly understood problem in neuroscience. The efficient coding hypothesis asserts that the brain's coding strategies are adapted to the statistics of natural stimuli in order to efficiently process them, thereby optimizing their perception by the organism. Here we examined whether gymnotiform weakly electric fish displayed behavioral responses that are adapted to the statistics of the natural electrosensory envelopes. Previous studies have shown that the envelopes resulting from movement tend to consist of low (Hz) temporal frequencies and are behaviorally relevant whereas those resulting from social interactions consist of higher (>1 Hz) temporal frequencies that can thus mask more behaviorally relevant signals. We found that the self-generated electric organ discharge frequency follows the detailed time course of the envelope around a mean value that is positively offset with respect to its baseline value for temporal frequencies between 0.001 Hz and 1 Hz. The frequency-following component of this behavioral response decreased in magnitude as a power law as a function of the envelope frequency and was negligible for envelope frequencies above 1 Hz. In contrast, the offset component was relatively constant and somewhat increased for envelope frequencies above 1 Hz. Thus, our results show that weakly electric fish display behavioral responses that track the detailed time course of low but not high frequency envelope stimuli. Furthermore, we found that the magnitude of the frequency-following behavioral response matches, in a one-to-one fashion, the spectral power of natural second-order stimulus attributes observed during movement. Indeed, both decayed as a power law with the same exponent for temporal frequencies spanning three orders of magnitude. Thus, our findings suggest that the neural coding strategies used by weakly electric fish perceive the detailed time course of movement envelopes

  2. Perfil sensorial e aceitação de melão amarelo minimamente processado submetido a tratamentos químicos Sensory profile and consumer acceptance of minimally processed melon submitted to chemical treatments

    Directory of Open Access Journals (Sweden)

    Ana Carolina Almeida Miguel

    2010-09-01

    Full Text Available Este estudo teve como objetivo traçar o perfil sensorial ao longo do período de armazenamento e determinar a aceitação global de melões amarelos minimamente processados (submetidos a tratamentos químicos e os impactos desse processamento sobre a aceitação do produto pelo consumidor. Frutos selecionados, lavados e sanificados foram minimamente processados em forma de cubos, divididos em quatro lotes que constaram de: testemunha, tratados com solução de cloreto de cálcio (1%, tratados com ácido ascórbico (1% e revestidos com alginato de sódio (1%. Esses cubos foram acondicionados em bandejas de tereftalato de polietileno (PET com tampa e armazenados a 5 ± 1 ºC e 73 ± 5% UR por um período de 8 dias. No 1º, 3º, 5º e 8º dias após o processamento, os melões foram avaliados sensorialmente, utilizando a Análise Descritiva Quantitativa (ADQ, por uma equipe de 8 provadores treinados. O teste de aceitação pelo consumidor foi conduzido em laboratório, com 50 provadores não treinados, utilizando as escalas: hedônica e de intenção de compra; além da frequência de consumo. A ADQ mostrou que os tratamentos testados não apresentaram efeito no prolongamento da vida útil dos melões amarelos minimamente processados. Os descritores que mais traduziram a qualidade do fruto submetido aos tratamentos químicos testados foram: aparência de fresco e brilhante; odor de fresco e característico; sabor ácido, salgado, amargo, fresco, característico, adstringente, aguado e estranho. O teste com os consumidores indicou que os melões tratados com cloreto de cálcio e com ácido ascórbico foram os mais aceitos pelos provadores e revelou que não houve diferença quanto à intenção de compra.The objective of this work was to trace the sensory profile during storage and to determine the global acceptance of minimally processed melon samples submitted to chemical treatments as well as to evaluate the impacts on the acceptance of the

  3. A comparison of a modified sequential oral sensory approach to an applied behavior-analytic approach in the treatment of food selectivity in children with autism spectrum disorder.

    Science.gov (United States)

    Peterson, Kathryn M; Piazza, Cathleen C; Volkert, Valerie M

    2016-09-01

    Treatments of pediatric feeding disorders based on applied behavior analysis (ABA) have the most empirical support in the research literature (Volkert & Piazza, 2012); however, professionals often recommend, and caregivers often use, treatments that have limited empirical support. In the current investigation, we compared a modified sequential oral sensory approach (M-SOS; Benson, Parke, Gannon, & Muñoz, 2013) to an ABA approach for the treatment of the food selectivity of 6 children with autism. We randomly assigned 3 children to ABA and 3 children to M-SOS and compared the effects of treatment in a multiple baseline design across novel, healthy target foods. We used a multielement design to assess treatment generalization. Consumption of target foods increased for children who received ABA, but not for children who received M-SOS. We subsequently implemented ABA with the children for whom M-SOS was not effective and observed a potential treatment generalization effect during ABA when M-SOS preceded ABA. © 2016 Society for the Experimental Analysis of Behavior.

  4. The neural basis of central proprioceptive processing in older versus younger adults: an important sensory role for right putamen.

    Science.gov (United States)

    Goble, Daniel J; Coxon, James P; Van Impe, Annouchka; Geurts, Monique; Van Hecke, Wim; Sunaert, Stefan; Wenderoth, Nicole; Swinnen, Stephan P

    2012-04-01

    Our sense of body position and movement independent of vision (i.e., proprioception) relies on muscle spindle feedback and is vital for performing motor acts. In this study, we first sought to elucidate age-related differences in the central processing of proprioceptive information by stimulating foot muscle spindles and by measuring neural activation with functional magnetic resonance imaging. We found that healthy older adults activated a similar, distributed network of primary somatosensory and secondary-associative cortical brain regions as young individuals during the vibration-induced muscle spindle stimulation. A significant decrease in neural activity was also found in a cluster of right putamen voxels for the older age group when compared with the younger age group. Given these differences, we performed two additional analyses within each group that quantified the degree to which age-dependent activity was related to (1) brain structure and (2) a behavioral measure of proprioceptive ability. Using diffusion tensor imaging, older (but not younger) adults with higher mean fractional anisotropy were found to have increased right putamen neural activity. Age-dependent right putamen activity seen during tendon vibration was also correlated with a behavioral test of proprioceptive ability measuring ankle joint position sense in both young and old age groups. Partial correlation tests determined that the relationship between elderly joint position sense and neural activity in right putamen was mediated by brain structure, but not vice versa. These results suggest that structural differences within the right putamen are related to reduced activation in the elderly and potentially serve as biomarker of proprioceptive sensibility in older adults. Copyright © 2011 Wiley Periodicals, Inc.

  5. Personality determinants of manipulative behavior in the negotiation process

    Directory of Open Access Journals (Sweden)

    Ludmila V. Matveeva

    2012-01-01

    Full Text Available Negotiations are an inalienable component of human society in the modernworld, so studying those personal characteristics of negotiators that infl uencetheir choice of negotiating strategy, tactics, and style is relevant and signifi cant.Knowledge of the patterns of a partner’s choice of one strategy of behavior or anotherinfl uences on successful negotiation process and assists in achieving goals.We did research on the connections among level of anxiety, motivation to succeedand to avoid failure, and self-esteem to the level of Machiavellianism. This articlediscusses the personal characteristics that infl uence the choice of manipulativetactics of behavior in negotiations.

  6. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    Energy Technology Data Exchange (ETDEWEB)

    Jain, V. [Savannah River Remediation, LLC., Aiken, SC (United States); Shah, H. [Savannah River Remediation, LLC., Aiken, SC (United States). Sludge and Salt Planning; Bannochie, C. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Wilmarth, W. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-07-25

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  7. Mercury Phase II Study - Mercury Behavior in Salt Processing Flowsheet

    International Nuclear Information System (INIS)

    Jain, V.; Shah, H.; Wilmarth, W. R.

    2016-01-01

    Mercury (Hg) in the Savannah River Site Liquid Waste System (LWS) originated from decades of canyon processing where it was used as a catalyst for dissolving the aluminum cladding of reactor fuel. Approximately 60 metric tons of mercury is currently present throughout the LWS. Mercury has long been a consideration in the LWS, from both hazard and processing perspectives. In February 2015, a Mercury Program Team was established at the request of the Department of Energy to develop a comprehensive action plan for long-term management and removal of mercury. Evaluation was focused in two Phases. Phase I activities assessed the Liquid Waste inventory and chemical processing behavior using a system-by-system review methodology, and determined the speciation of the different mercury forms (Hg+, Hg++, elemental Hg, organomercury, and soluble versus insoluble mercury) within the LWS. Phase II activities are building on the Phase I activities, and results of the LWS flowsheet evaluations will be summarized in three reports: Mercury Behavior in the Salt Processing Flowsheet (i.e. this report); Mercury Behavior in the Defense Waste Processing Facility (DWPF) Flowsheet; and Mercury behavior in the Tank Farm Flowsheet (Evaporator Operations). The evaluation of the mercury behavior in the salt processing flowsheet indicates, inter alia, the following: (1) In the assembled Salt Batches 7, 8 and 9 in Tank 21, the total mercury is mostly soluble with methylmercury (MHg) contributing over 50% of the total mercury. Based on the analyses of samples from 2H Evaporator feed and drop tanks (Tanks 38/43), the source of MHg in Salt Batches 7, 8 and 9 can be attributed to the 2H evaporator concentrate used in assembling the salt batches. The 2H Evaporator is used to evaporate DWPF recycle water. (2) Comparison of data between Tank 21/49, Salt Solution Feed Tank (SSFT), Decontaminated Salt Solution Hold Tank (DSSHT), and Tank 50 samples suggests that the total mercury as well as speciated

  8. Sensory aspects of movement disorders

    Science.gov (United States)

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2016-01-01

    Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796

  9. Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes

    Directory of Open Access Journals (Sweden)

    Soojun Kim

    2015-01-01

    Full Text Available The aim of this study is to identify and evaluate chaotic behavior in hydro-meteorological processes. This study poses the two hypotheses to identify chaotic behavior of the processes. First, assume that the input data is the significant factor to provide chaotic characteristics to output data. Second, assume that the system itself is the significant factor to provide chaotic characteristics to output data. For solving this issue, hydro-meteorological time series such as precipitation, air temperature, discharge, and storage volume were collected in the Great Salt Lake and Bear River Basin, USA. The time series in the period of approximately one year were extracted from the original series using the wavelet transform. The generated time series from summation of sine functions were fitted to each series and used for investigating the hypotheses. Then artificial neural networks had been built for modeling the reservoir system and the correlation dimension was analyzed for the evaluation of chaotic behavior between inputs and outputs. From the results, we found that the chaotic characteristic of the storage volume which is output is likely a byproduct of the chaotic behavior of the reservoir system itself rather than that of the input data.

  10. Sensory Pattern Contributions to Developmental Performance in Children With Autism Spectrum Disorder.

    Science.gov (United States)

    Tomchek, Scott D; Little, Lauren M; Dunn, Winnie

    2015-01-01

    Sensory processing differences in preschool-age children with autism spectrum disorder (ASD) affect their engagement in everyday activities, thereby influencing opportunities to practice and develop skills such as social communication and adaptive behavior. The purpose of this study was to investigate the extent to which specific sensory processing patterns relate to aspects of development (i.e., adaptive behavior, expressive and receptive language, fine and gross motor skills, social behavior) in a sample of preschool-age children with ASD (N=400). A retrospective chart review was used to gather clinical data. Results suggest that sensory processing patterns differentially affect children's developmental skills and adaptive behavior. Certain sensory processing patterns predicted children's development of language, motor, and adaptive skills. These findings have clear implications for occupational therapy practice with young children with ASD. Practitioners should consider how sensory processing in ASD both supports and limits children's ability to engage in social communication and learning opportunities. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  11. Assessment of auditory sensory processing in a neurodevelopmental animal model of schizophrenia-Gating of auditory-evoked potentials and prepulse inhibition

    DEFF Research Database (Denmark)

    Broberg, Brian Villumsen; Oranje, Bob; Yding, Birte

    2010-01-01

    The use of translational approaches to validate animal models is needed for the development of treatments that can effectively alleviate cognitive impairments associated with schizophrenia, which are unsuccessfully treated by the current available therapies. Deficits in pre-attentive stages...... of sensory information processing seen in schizophrenia patients, can be assessed by highly homologues methods in both humans and rodents, evident by the prepulse inhibition (PPI) of the auditory startle response and the P50 (termed P1 here) suppression paradigms. Treatment with the NMDA receptor antagonist...... findings confirm measures of early information processing to show high resemblance between rodents and humans, and indicate that early postnatal PCP-treated rats show deficits in pre-attentional processing, which are distinct from those observed in schizophrenia patients....

  12. Maturational Constraints on Functional Specializations for Language Processing: ERP and Behavioral Evidence in Bilingual Speakers.

    Science.gov (United States)

    Weber-Fox, C M; Neville, H J

    1996-01-01

    Changes in several postnatal maturational processes during neural development have been implicated as potential mechanisms underlying critical period phenomena. Lenneberg hypothesized that maturational processes similar to those that govern sensory and motor development may also constrain capabilities for normal language acquisition. Our goal, using a bilingual model, was to investigate the hypothesis that maturational constraints may have different effects upon the development of the functional specializations of distinct sub within language. Subjects were 61 adult Chinese/English bilinguals who were exposed to English at different points in development: 1-3, 4-6, 7-10, 11-13, and after 16 years of age. Event-related brain potentials (ERPs) and behavioral responses were obtained as subjects read sentences that included semantic anomalies, three types of syntactic violations (phrase structure, specificity constraint, and subjacency constraint), and their controls. The accuracy in judging the grammaticality for the different types of syntactic rules and their associated ERPs was affected by delays in second language exposure as short as 1-3 years. By comparison the N400 response and the judgment accuracies in detecting semantic anomalies were altered only in subjects who were exposed to English after 11-13 and 16 years of age, respectively. Further, the type of changes occurring in ERPs with delays in exposure were qualitatively different for semantic and syntactic processing. All groups displayed a significant N400 effect in response to semantic anomalies, however, the peak latencies of the N400 elicited in bilinguals who were exposed to English between 11-13 and >16 years occurred later, suggesting a slight slowing in processing. For syntactic processing. the ERP differences associated with delays in exposure to English were observed in the morphology and distribution of components. Our findings are consistent with the view that maturational changes significantly

  13. The Efficiency of Sensory Integration Interventions in Preterm Infants.

    Science.gov (United States)

    Pekçetin, Serkan; Akı, Esra; Üstünyurt, Zeynep; Kayıhan, Hülya

    2016-10-01

    This study aimed to explore the effects of individualized sensory integration interventions on the sensory processing functions of preterm infants. Thirty-four preterm infants (intervention group) at a corrected age of seven months and 34 term infants (control group) were included. The preterm infants underwent an eight-week sensory integration intervention. Before and after the intervention, the preterm infants' sensory processing functions were evaluated using the Test of Sensory Functions in Infants and compared with those of term infants. Preterm infants had significantly poorer sensory processing function preintervention when compared with term infants. There was a significant improvement in preterm infants' sensory processing functions after the sensory integration intervention. In conclusion, preterm infants should be evaluated for sensory processing disorders and individualized sensory integration interventions should be implemented. © The Author(s) 2016.

  14. Effects of degraded sensory input on memory for speech: behavioral data and a test of biologically constrained computational models.

    Science.gov (United States)

    Piquado, Tepring; Cousins, Katheryn A Q; Wingfield, Arthur; Miller, Paul

    2010-12-13

    Poor hearing acuity reduces memory for spoken words, even when the words are presented with enough clarity for correct recognition. An "effortful hypothesis" suggests that the perceptual effort needed for recognition draws from resources that would otherwise be available for encoding the word in memory. To assess this hypothesis, we conducted a behavioral task requiring immediate free recall of word-lists, some of which contained an acoustically masked word that was just above perceptual threshold. Results show that masking a word reduces the recall of that word and words prior to it, as well as weakening the linking associations between the masked and prior words. In contrast, recall probabilities of words following the masked word are not affected. To account for this effect we conducted computational simulations testing two classes of models: Associative Linking Models and Short-Term Memory Buffer Models. Only a model that integrated both contextual linking and buffer components matched all of the effects of masking observed in our behavioral data. In this Linking-Buffer Model, the masked word disrupts a short-term memory buffer, causing associative links of words in the buffer to be weakened, affecting memory for the masked word and the word prior to it, while allowing links of words following the masked word to be spared. We suggest that these data account for the so-called "effortful hypothesis", where distorted input has a detrimental impact on prior information stored in short-term memory. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Lateralized ERP components related to spatial orienting: discriminating the direction of attention from processing sensory aspects of the cue.

    Science.gov (United States)

    Jongen, Ellen M M; Smulders, Fren T Y; Van der Heiden, Joep S H

    2007-11-01

    Two spatial cueing experiments were conducted to examine the functional significance of lateralized ERP components after cue-onset and to discriminate components related to sensory cue aspects and components related to the direction of attention. In Experiment 1, a simple detection task was presented. In Experiment 2, attentional selection was augmented. Two unimodal visual cueing tasks were presented using nonlateralized line cues and lateralized arrow cues. Lateralized cue effects and modulation after stimulus onset were stronger in Experiment 2. An early posterior component was related to the physical shape of arrows. A posterior negativity (EDAN) may be related to the encoding of direction from arrow cues. An anterior negativity (ADAN) and a posterior positivity (LDAP) were related to the direction of attention. The ADAN was delayed when it was more difficult to derive cue meaning. Finally, the data suggested an overlap of the LDAP and the EDAN.

  16. Instrumental texture and sensory evaluation of fermented dairy beverages processed with reconstituted goat whey powder and a co-culture of Streptococcus thermophilus and Lactobacillus casei

    Directory of Open Access Journals (Sweden)

    Áurea Marcela de Souza Pereira

    2018-01-01

    Full Text Available The effects of Lactobacillus casei BGP93 used as adjunct culture on the physicochemical, textural and sensory characteristics of a dairy beverage processed with goat Coalho cheese whey powder and Streptococcus thermophilus TA-40 as starter (ST-LC beverage were investigated in comparison to a control product (ST beverage without L. casei. No significant differences were observed between the ST and ST-LC trials concerning the acidification pattern throughout the fermentation process (P>0.05. Post-acidification was also not observed for both trials since their pH values were maintained stable, without significant differences during 21 days at 4 ± 1 °C. This pH stability reinforced the maintenance of firmness, consistency, cohesiveness and viscosity index without significant differences between the sampling periods throughout the whole storage in both trials, and also that no significant difference was verified between the ST and ST-LC beverages in the sensory evaluation (P>0.05.

  17. Chemical, sensory and rheological properties of porridges from processed sorghum (Sorghum bicolor), bambara groundnut (Vigna subterranea L. Verdc) and sweet potato (Ipomoea batatas) flours.

    Science.gov (United States)

    Nnam, N M

    2001-01-01

    The chemical, sensory and rheological properties of porridges made from blends of sprouted sorghum, bambara groundnuts and fermented sweet potatoes were examined. Sorghum and bambara groundnuts were sprouted for 48 h while sweet potatoes were fermented for the same period. Blends were formulated from the processed ingredients in the ratio of 60:40:0, 57:42:1, 55:44:1 and 52:46:2 (protein basis) of sorghum, bambara groundnuts and sweet potatoes. Porridges were prepared from the composite flours and the traditional sorghum complementary food. Standard assay methods were used to evaluate the flours for nutrient composition. The porridges were also tested for sensory properties and viscosity. Processing increased the levels of most of the nutrients evaluated. Relative to the sorghum traditional complementary food, the composite flours had higher levels of lipids, protein, ash, crude fiber and minerals (p < 0.05). The porridges from the composite flours were generally liked slightly by the panelists and were about seven times less viscous than the porridge from the traditional sorghum complementary food. Use of the composite flours, particularly the 52:46:2 blend, as a traditional complementary food should be encouraged in Nigeria especially with the increasing cost of commercial complementary foods.