WorldWideScience

Sample records for behavior surface properties

  1. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Effect of temperature on the behavior of surface properties of alcohols in aqueous solution

    International Nuclear Information System (INIS)

    Romero, Carmen M.; Jimenez, Eulogio; Suarez, Felipe

    2009-01-01

    The influence of temperature on the behavior of surface properties of aqueous solutions has often been used to obtain information about solute structural effects on water. In this work, we present experimental results for surface tension of aqueous solutions of n-pentanol, n-hexanol, n-heptanol, and n-octanol at T = (283.15, 288.15, 293.15, 298.15, 303.15, and 308.15) K at several concentrations. The results were used to evaluate the limiting experimental slopes of surface tension with respect to mole fraction and the hydrophobicity constant of the Connors model at each temperature. The thermodynamic behavior of aqueous alcohol solutions is discussed in terms of the effect of the hydrocarbon chain on water structure. The temperature dependence of the limiting slopes of surface tension with respect to mole fraction, as well as the hydrophobicity constant derived from surface measurements, is interpreted in terms of alcohol hydration

  3. Surface properties and corrosion behavior of Co-Cr alloy fabricated with selective laser melting technique.

    Science.gov (United States)

    Xin, Xian-zhen; Chen, Jie; Xiang, Nan; Wei, Bin

    2013-01-01

    We sought to study the corrosion behavior and surface properties of a commercial cobalt-chromium (Co-Cr) alloy which was fabricated with selective laser melting (SLM) technique. For this purpose, specimens were fabricated using different techniques, such as SLM system and casting methods. Surface hardness testing, microstructure observation, surface analysis using X-ray photoelectron spectroscopy (XPS) and electrochemical corrosion test were carried out to evaluate the corrosion properties and surface properties of the specimens. We found that microstructure of SLM specimens was more homogeneous than that of cast specimens. The mean surface hardness values of SLM and cast specimens were 458.3 and 384.8, respectively; SLM specimens showed higher values than cast ones in hardness. Both specimens exhibited no differences in their electrochemical corrosion properties in the artificial saliva through potentiodynamic curves and EIS, and no significant difference via XPS. Therefore, we concluded that within the scope of this study, SLM-fabricated restorations revealed good surface properties, such as proper hardness, homogeneous microstructure, and also showed sufficient corrosion resistance which could meet the needs of dental clinics.

  4. d-α-tocopherol nanoemulsions: Size properties, rheological behavior, surface tension, osmolarity and cytotoxicity

    Directory of Open Access Journals (Sweden)

    M.C. Teixeira

    2017-02-01

    Full Text Available The aim of this study was the assessment of the physicochemical stability of d-α-tocopherol formulated in medium chain triglyceride nanoemulsions, stabilized with Tween®80 and Lipoid®S75 as surfactant and co-surfactant, respectively. d-α-tocopherol was selected as active ingredient because of its well-recognized interesting anti-oxidant properties (such as radical scavenger for food and pharmaceutical industries. A series of nanoemulsions of mean droplet size below 90 nm (polydispersity index < 0.15 have been produced by high-pressure homogenization, and their surface electrical charge (zeta potential, pH, surface tension, osmolarity, and rheological behavior, were characterized as a function of the d-α-tocopherol loading. In vitro studies in Caco-2 cell lines confirmed the safety profile of the developed nanoemulsions with percentage of cell viability above 90% for all formulations.

  5. The relationship between the particle properties, mechanical behavior, and surface roughness of some pharmaceutical excipient compacts

    International Nuclear Information System (INIS)

    Narayan, Padma; Hancock, Bruno C.

    2003-01-01

    Several common pharmaceutical excipient powders were compacted at a constant solid fraction (SF) in order to study the relationship between powder properties, compact surface roughness, and compact mechanical properties such as hardness, elasticity, and brittleness. The materials used in this study included microcrystalline cellulose (MCC), fumaric acid, mannitol, lactose monohydrate, spray dried lactose, sucrose, and dibasic calcium phosphate dihydrate. A slow consolidation process was used to make compacts at a SF of 0.85 (typical for most pharmaceutical tablets) from single excipient components. A model was proposed to describe the surface roughness of compacts based on the brittle or ductile deformation tendencies of the powder materials. The roughness profile would also be dependent upon the magnitude of the compression stress in relation to the yield stress (onset of irreversible deformation) values of the excipients. It was hypothesized that brittle materials would produce smooth compacts with high surface variability due to particle fracture, and the converse would apply for ductile materials. Compact surfaces should be smoother if the materials were compressed above their yield pressure values. Non-contact optical profilometry was used along with scanning electron microscopy to quantify and characterize the surface morphology of the excipient compacts. The roughness parameters R a (average roughness), R q (RMS roughness), R q /R a (ratio describing surface variability), and R sk (skewness) were found to correlate with the deformation properties of the excipients. Brittle materials such as lactose, sucrose, and calcium phosphate produced compacts with low values of R a and R q , high variability, and negative R sk . The opposite was found with plastic materials such as MCC, mannitol, and fumaric acid. The highly negative skewness values for brittle material compacts may indicate their propensity to be vulnerable to cracks or surface defects. These findings

  6. Effect of Extracellular Polymeric Substances on Surface Properties and Attachment Behavior of Acidithiobacillus ferrooxidans

    Directory of Open Access Journals (Sweden)

    Qian Li

    2016-09-01

    Full Text Available Bacterial contact leaching of ores is more effective than non-contact leaching. Adhesion is the first step for leaching bacteria to form a biofilm on a mineral surface. Extracellular polymeric substances (EPS are pivotal for mediating bacterial adhesion to a substratum. In order to clarify the role of EPS, we measured the adhesion forces between chalcopyrite-, sulfur- or FeSO4·7H2O-grown cells of Acidithiobacillus ferrooxidans and chalcopyrite by an atomic force microscope (AFM before and after EPS removal. Surface properties of these cells were assessed by measurements of the contact angle, zeta potential, Fourier transform infrared spectroscopy (FTIR and acid-base titration. Bacterial attachment to chalcopyrite was monitored for 140 min. The results indicate that the EPS control the surface properties of the cells. In addition, the surface properties are decisive for adhesion. The adhesion forces and the amounts of attached cells decreased dramatically after removing EPS, which was not dependent on the preculture.

  7. Effect of perfluorodecyltrichlorosilane on the surface properties and anti-corrosion behavior of poly(dimethylsiloxane)-ZnO coatings

    Science.gov (United States)

    Arukalam, Innocent O.; Meng, Meijiang; Xiao, Haigang; Ma, Yuantai; Oguzie, Emeka E.; Li, Ying

    2018-03-01

    Poly(dimethylsiloxane)-ZnO coatings modified with different amounts of perfluorodecyltrichlorosilane (FDTS) were prepared using sol-gel technique. The results of field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) examinations showed that the surface structures and roughness of the coatings were respectively influenced by the increasing addition of FDTS. The water contact angle measurements showed maximum value of 130.52° with the 0.10 g FDTS-modified coating sample. The X-ray photoelectron spectroscopy (XPS) results indicated the coatings' hydrophobicity was also influenced by surface chemistry. The FTIR-ATR characterization results showed there was remarkable increase in the crystallinity of 0.10 g FDTS-modified coating after modification, and was confirmed by differential scanning calorimetry (DSC) analysis of crystallization temperature and the X-ray diffraction (XRD) results with an estimation of 71.29% percent crystallinity. The mechanical properties of the coatings were also conducted. The EIS measurements for anti-corrosion behavior showed that 0.10 g FDTS-modified coating had the highest barrier performance and lowest rate of degradation. Indeed, the obtained data have demonstrated that 0.10 g (≈ 0.18%) FDTS produced the most significantly effect on the surface and barrier properties of the coatings and thus, can effectively be used for anti-corrosion application in the marine environments.

  8. Electrochemical Characteristics of Layered Transition Metal Oxide Cathode Materials for Lithium Ion Batteries: Surface, Bulk Behavior, and Thermal Properties.

    Science.gov (United States)

    Tian, Chixia; Lin, Feng; Doeff, Marca M

    2018-01-16

    Layered lithium transition metal oxides, in particular, NMCs (LiNi x Co y Mn z O 2 ) represent a family of prominent lithium ion battery cathode materials with the potential to increase energy densities and lifetime, reduce costs, and improve safety for electric vehicles and grid storage. Our work has focused on various strategies to improve performance and to understand the limitations to these strategies, which include altering compositions, utilizing cation substitutions, and charging to higher than usual potentials in cells. Understanding the effects of these strategies on surface and bulk behavior and correlating structure-performance relationships advance our understanding of NMC materials. This also provides information relevant to the efficacy of various approaches toward ensuring reliable operation of these materials in batteries intended for demanding traction and grid storage applications. In this Account, we start by comparing NMCs to the isostructural LiCoO 2 cathode, which is widely used in consumer batteries. Effects of changing the metal content (Ni, Mn, Co) upon structure and performance of NMCs are briefly discussed. Our early work on the effects of partial substitution of Al, Fe, and Ti for Co on the electrochemical and bulk structural properties is then covered. The original aim of this work was to reduce the Co content (and thus the raw materials cost) and to determine the effect of the substitutions on the electrochemical and bulk structural properties. More recently, we have turned to the application of synchrotron and advanced microscopy techniques to understand both bulk and surface characteristics of the NMCs. Via nanoscale-to-macroscale spectroscopy and atomically resolved imaging techniques, we were able to determine that the surfaces of NMC undergo heterogeneous reconstruction from a layered structure to rock salt under a variety of conditions. Interestingly, formation of rock salt also occurs under abuse conditions. The surface

  9. Correlation of water vapor adsorption behavior of wood with surface thermodynamic properties

    Science.gov (United States)

    Mandla A. Tshabalala; Agnes R. Denes; R. Sam. Williams

    1999-01-01

    To improve the overall performance of wood-plastic composites, appropriate technologies are needed to control moisture sorption and to improve the interaction of wood fiber with selected hydrophobic matrices. The objective of this study was to determine the surface thermodynamic characteristics of a wood fiber and to correlate those characteristics with the fiberas...

  10. Effect of surface topography and bioactive properties on early adhesion and growth behavior of mouse preosteoblast MC3T3-E1 cells.

    Science.gov (United States)

    Li, Na; Chen, Gang; Liu, Jue; Xia, Yang; Chen, Hanbang; Tang, Hui; Zhang, Feimin; Gu, Ning

    2014-10-08

    The effects of bioactive properties and surface topography of biomaterials on the adhesion and spreading properties of mouse preosteoblast MC3T3-E1 cells was investigated by preparation of different surfaces. Poly lactic-co-glycolic acid (PLGA) electrospun fibers (ES) were produced as a porous rough surface. In our study, coverslips were used as a substrate for the immobilization of 3,4-dihydroxyphenylalanine (DOPA) and collagen type I (COL I) in the preparation of bioactive surfaces. In addition, COL I was immobilized onto porous electrospun fibers surfaces (E-COL) to investigate the combined effects of bioactive molecules and topography. Untreated coverslips were used as controls. Early adhesion and growth behavior of MC3T3-E1 cells cultured on the different surfaces were studied at 6, 12, and 24 h. Evaluation of cell adhesion and morphological changes showed that the all the surfaces were favorable for promoting the adhesion and spreading of cells. CCK-8 assays and flow cytometry revealed that both topography and bioactive properties were favorable for cell growth. Analysis of β1, α1, α2, α5, α10 and α11 integrin expression levels by immunofluorescence, real-time RT-PCR, and Western blot and indicated that surface topography plays an important role in the early stage of cell adhesion. However, the influence of topography and bioactive properties of surfaces on integrins is variable. Compared with any of the topographic or bioactive properties in isolation, the combined effect of both types of properties provided an advantage for the growth and spreading of MC3T3-E1 cells. This study provides a new insight into the functions and effects of topographic and bioactive modifications of surfaces at the interface between cells and biomaterials for tissue engineering.

  11. Conformity of macroscopic behavior to local properties in the catalytic ammonia synthesis and oscillatory reactions on metal surfaces

    OpenAIRE

    Cholach, A. R.

    2016-01-01

    Unique catalytic potential of metal surfaces has encouraged a great number of basic and applied studies. The manuscript highlights the general regularities in a field on the grounds of strong interrelation between catalytic, kinetic and thermodynamic behaviour of the reaction system. The trials of the catalytic NH3 synthesis and the oscillatory NO+H2 reaction have revealed that the thermodynamics of the local structure determines the properties and multiplicity of the reaction intermediates e...

  12. Surface treatments for improved performance and properties

    International Nuclear Information System (INIS)

    Burke, J.J.; Weiss, V.

    1982-01-01

    This book considers the characteristics, structures, and properties of surfaces. Divides the subject into the physical and chemical characteristics of metallic and nonmetallic surfaces, emerging surface modification techniques, surface structure and mechanical properties, and relationships between properties and processing for nonmetallic materials. Explores various methods of surface modification that can produce improved materials properties. Discusses such wide-ranging topics as the characterization of surfaces, reaction kinetics, the chemistry of gaseous hydrogen embrittlement, the effect of surface modification on corrosion, protection against high-temperature corrosion of surfaces, the effect of high temperatures developed during plating on the microstructure and microhardness of steel, near-surface modifications that will improve the crack-tolerant behavior of high-strength alloys, fretting corrosion and fretting fatigue, surface treatments for enhanced bonding between inorganic surfaces and polymers, and the relationships between surface structure, ceramic processing, and mechanical properties. Recommended for workers and researchers in materials science, surface science, and mechanical engineering. Constitutes the proceedings of the Twenty-sixth Sagamore Army Materials Research Conference (entitled ''Surface Treatments for Improved Performance and Properties'') held in New York in 1979

  13. Interfacial behavior and mechanical properties of aluminum foam joint fabricated by surface self-abrasion fluxless soldering

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Long, E-mail: wanlong178@163.com; Huang, Yongxian; Huang, Tifang; Lv, Zongliang; Feng, Jicai

    2016-06-25

    Fluxless soldering with surface self-abrasion has been developed for joining aluminum foams with metallic bonding. The effect of the self-abrasion on the wettability of molten solder alloy and mechanical properties is determined by microstructural observation, tension and compression tests. No apparent macroscopic deformation and collapse of foam structure are observed adjacent to the joint interface. The average tensile strength of the joints is about 14% higher than that of aluminum foam, and the compressive strength can reach 200% of that of aluminum foam. The deformation mechanisms and energy absorbing characteristics of aluminum foam and the joint are investigated. The aluminum foam joint fails primarily by bending, crushing, and compaction of cell walls and cracking of the solder seam. The interdiffusion process is explained based on thermodynamic equations. - Highlights: • Fluxless soldering with surface self-abrasion is developed for joining aluminum foam. • Excellent metallic bonding has been informed between foam cores. • The aluminum foam joint has excellent mechanical properties. • The joining mechanism of solder alloy and aluminum foam is explained.

  14. A systematic study of mechanical properties, corrosion behavior and biocompatibility of AZ31B Mg alloy after ultrasonic nanocrystal surface modification.

    Science.gov (United States)

    Hou, Xiaoning; Qin, Haifeng; Gao, Hongyu; Mankoci, Steven; Zhang, Ruixia; Zhou, Xianfeng; Ren, Zhencheng; Doll, Gary L; Martini, Ashlie; Sahai, Nita; Dong, Yalin; Ye, Chang

    2017-09-01

    Magnesium alloys have tremendous potential for biomedical applications due to their good biocompatibility, osteoconductivity, and degradability, but can be limited by their poor mechanical properties and fast corrosion in the physiological environment. In this study, ultrasonic nanocrystal surface modification (UNSM), a recently developed surface processing technique that utilizes ultrasonic impacts to induce plastic strain on metal surfaces, was applied to an AZ31B magnesium (Mg) alloy. The mechanical properties, corrosion resistance, and biocompatibility of the alloy after UNSM treatment were studied systematically. Significant improvement in hardness, yield stress and wear resistance was achieved after the UNSM treatment. In addition, the corrosion behavior of UNSM-treated AZ31B was not compromised compared with the untreated samples, as demonstrated by the weight loss and released element concentrations of Mg and Al after immersion in alpha-minimum essential medium (α-MEM) for 24h. The in vitro biocompatibility of the AZ31B Mg alloys toward adipose-derived stem cells (ADSCs) before and after UNSM processing was also evaluated using a cell culture study. Comparable cell attachments were achieved between the two groups. These studies showed that UNSM could significantly improve the mechanical properties of Mg alloys without compromising their corrosion rate and biocompatibility in vitro. These findings suggest that UNSM is a promising method to treat biodegradable Mg alloys for orthopaedic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Zhang, Hua; Zhang, Xia-Guang; Wei, Jie; Wang, Chen; Chen, Shu; Sun, Han-Lei; Wang, Ya-Hao; Chen, Bing-Hui; Yang, Zhi-Lin; Wu, De-Yin; Li, Jian-Feng; Tian, Zhong-Qun

    2017-08-02

    Insightful understanding of how interfacial structures and properties affect catalytic processes is one of the most challenging issues in heterogeneous catalysis. Here, the essential roles of Pt-Au and Pt-oxide-Au interfaces on the activation of H 2 and the hydrogenation of para-nitrothiophenol (pNTP) were studied at molecular level by in situ surface-enhanced Raman spectroscopy (SERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). Pt-Au and Pt-oxide-Au interfaces were fabricated through the synthesis of Pt-on-Au and Pt-on-SHINs nanocomposites. Direct spectroscopic evidence demonstrates that the atomic hydrogen species generated on the Pt nanocatalysts can spill over from Pt to Au via the Pt-Au and Pt-TiO 2 -Au interfaces, but would be blocked at the Pt-SiO 2 -Au interfaces, leading to the different reaction pathways and product selectivity on Pt-on-Au and Pt-on-SHINs nanocomposites. Such findings have also been verified by the density functional theory calculation. In addition, it is found that nanocatalysts assembled on pinhole-free shell-isolated nanoparticles (Pt-on-pinhole-free-SHINs) can override the influence of the Au core on the reaction and can be applied as promising platforms for the in situ study of heterogeneous catalysis. This work offers a concrete example of how SERS/SHINERS elucidate details about in situ reaction and helps to dig out the fundamental role of interfaces in catalysis.

  16. Defined wetting properties of optical surfaces

    Science.gov (United States)

    Felde, Nadja; Coriand, Luisa; Schröder, Sven; Duparré, Angela; Tünnermann, Andreas

    2017-10-01

    Optical surfaces equipped with specific functional properties have attracted increasing importance over the last decades. In the light of cost reduction, hydrophobic self-cleaning behavior is aspired. On the other side, hydrophilic properties are interesting due to their anti-fog effect. It has become well known that such wetting states are significantly affected by the surface morphology. For optical surfaces, however, this fact poses a problem, as surface roughness can induce light scattering. The generation of optical surfaces with specific wetting properties, hence, requires a profound understanding of the relation between the wetting and the structural surface properties. Thus, our work concentrates on a reliable acquisition of roughness data over a wide spatial frequency range as well as on the comprehensive description of the wetting states, which is needed for the establishment of such correlations. We will present our advanced wetting analysis for nanorough optical surfaces, extended by a vibration-based procedure, which is mainly for understanding and tailoring the wetting behavior of various solid-liquid systems in research and industry. Utilizing the relationships between surface roughness and wetting, it will be demonstrated how different wetting states for hydrophobicity and hydrophilicity can be realized on optical surfaces with minimized scatter losses.

  17. Surface properties of beached plastics.

    Science.gov (United States)

    Fotopoulou, Kalliopi N; Karapanagioti, Hrissi K

    2015-07-01

    Studying plastic characteristics in the marine environment is important to better understand interaction between plastics and the environment. In the present study, high-density polyethylene (HDPE), polyethylene terephalate (PET), and polyvinyl chloride (PVC) samples were collected from the coastal environment in order to study their surface properties. Surface properties such as surface functional groups, surface topography, point of zero charge, and color change are important factors that change during degradation. Eroded HDPE demonstrated an altered surface topography and color and new functional groups. Eroded PET surface was uneven, yellow, and occasionally, colonized by microbes. A decrease in Fourier transform infrared (FTIR) peaks was observed for eroded PET suggesting that degradation had occurred. For eroded PVC, its surface became more lamellar and a new FTIR peak was observed. These surface properties were obtained due to degradation and could be used to explain the interaction between plastics, microbes, and pollutants.

  18. Surface properties of HMX crystal

    Science.gov (United States)

    Yee, R. Y.; Adicoff, A.; Dibble, E. J.

    1980-01-01

    The surface properties of Beta-HMX crystals were studied. The surface energies of three principal crystal faces were obtained by measuring contact angles with several reference liquids. The surface energies and polarity of the three crystal faces are found to be different.

  19. Salt effects on the air/solution interfacial properties of PEO-containing copolymers: equilibrium, adsorption kinetics and surface rheological behavior.

    Science.gov (United States)

    Llamas, Sara; Mendoza, Alma J; Guzmán, Eduardo; Ortega, Francisco; Rubio, Ramón G

    2013-06-15

    Lithium cations are known to form complexes with the oxygen atoms of poly(oxyethylene) chains. The effect of Li(+) on the surface properties of three block-copolymers containing poly(oxyethylene) (PEO) have been studied. Two types of copolymers have been studied, a water soluble one of the pluronic family, PEO-b-PPO-b-PEO, PPO being poly(propyleneoxyde), and two water insoluble ones: PEO-b-PS and PEO-b-PS-b-PEO, PS being polystyrene. In the case of the pluronic the adsorption kinetics, the equilibrium surface tension isotherm and the aqueous/air surface rheology have been measured, while for the two insoluble copolymers only the surface pressure and the surface rheology have been studied. In all the cases two different Li(+) concentrations have been used. As in the absence of lithium ions, the adsorption kinetics of pluronic solutions shows two processes, and becomes faster as [Li(+)] increases. The kinetics is not diffusion controlled. For a given pluronic concentration the equilibrium surface pressure increases with [Li(+)], and the isotherms show two surface phase transitions, though less marked than for [Li(+)]=0. A similar behavior was found for the equilibrium isotherms of PEO-b-PS and PEO-b-PS-b-PEO. The surface elasticity of these two copolymers was found to increase with [Li(+)] over the whole surface concentration and frequency ranges studied. A smaller effect was found in the case of the pluronic solutions. The results of the pluronic solutions were modeled using a recent theory that takes into account that the molecules can be adsorbed at the surface in two different states. The theory gives a good fit for the adsorption kinetics and a reasonably good prediction of the equilibrium isotherms for low and intermediate concentrations of pluronic. However, the theory is not able to reproduce the isotherm for [Li(+)]=0. Only a semi-quantitative prediction of the surface elasticity is obtained for [pluronic]≤1×10(-3) mM. Copyright © 2013 Elsevier Inc. All

  20. Critical behavior of collapsing surfaces

    DEFF Research Database (Denmark)

    Olsen, Kasper; Sourdis, C.

    2009-01-01

    We consider the mean curvature evolution of rotationally symmetric surfaces. Using numerical methods, we detect critical behavior at the threshold of singularity formation resembling that of gravitational collapse. In particular, the mean curvature simulation of a one-parameter family of initial...

  1. Behavior of Aluminum Based Coagulants in Treatment of Surface Water–Assessment of Chemical and Microbiological Properties of Treated Water

    Directory of Open Access Journals (Sweden)

    Spînu (Gologan Daniela

    2014-03-01

    Full Text Available Pre-polymerized inorganic aluminum coagulants have high efficiency in reducing turbidity, total, dissolved, biodegradable organic carbon and microbiological content of surface waters used for drinking, while obtaining low concentrations of residual aluminum after the coagulation phase. Correlation between turbidity raw water and coagulant dose is logarithmic being influenced by temperature and organic content of surface waters. The coagulant’s effect on the organic content of the raw water is closely related to the microbiological concentration and can thus determine the mathematical correlations between the two types of parameters after the coagulation-flocculation stage that can be used to assess the water biostability coagulant action.

  2. Vesta surface thermal properties map

    Science.gov (United States)

    Capria, Maria Teresa; Tosi, F.; De Santis, Maria Cristina; Capaccioni, F.; Ammannito, E.; Frigeri, A.; Zambon, F; Fonte, S.; Palomba, E.; Turrini, D.; Titus, T.N.; Schroder, S.E.; Toplis, M.J.; Liu, J.Y.; Combe, J.-P.; Raymond, C.A.; Russell, C.T.

    2014-01-01

    The first ever regional thermal properties map of Vesta has been derived from the temperatures retrieved by infrared data by the mission Dawn. The low average value of thermal inertia, 30 ± 10 J m−2 s−0.5 K−1, indicates a surface covered by a fine regolith. A range of thermal inertia values suggesting terrains with different physical properties has been determined. The lower thermal inertia of the regions north of the equator suggests that they are covered by an older, more processed surface. A few specific areas have higher than average thermal inertia values, indicative of a more compact material. The highest thermal inertia value has been determined on the Marcia crater, known for its pitted terrain and the presence of hydroxyl in the ejecta. Our results suggest that this type of terrain can be the result of soil compaction following the degassing of a local subsurface reservoir of volatiles.

  3. Anodes for Lithium-Ion Batteries Based on Type I Silicon Clathrate Ba8Al16Si30- Role of Processing on Surface Properties and Electrochemical Behavior.

    Science.gov (United States)

    Zhao, Ran; Bobev, Svilen; Krishna, Lakshmi; Yang, Ting; Weller, J Mark; Jing, Hangkun; Chan, Candace K

    2017-11-29

    Type I silicon clathrates based on Ba 8 Al y Si 46-y (8 lithium-ion batteries and display electrochemical properties that are distinct from those found in conventional silicon anodes. Processing steps such as ball-milling (typically used to reduce the particle size) and acid/base treatment (used to remove nonclathrate impurities) may modify the clathrate surface structure or introduce defects, which could affect the observed electrochemical properties. In this work, we perform a systematic investigation of Ba 8 Al y Si 46-y clathrates with y ≈ 16, i.e, having a composition near Ba 8 Al 16 Si 30 , which perfectly satisfies the Zintl condition. The roles of ball-milling and acid/base treatment were investigated using electrochemical, X-ray diffraction, electron microscopy, X-ray photoelectron and Raman spectroscopy analysis. The results showed that acid/base treatment removed impurities from the synthesis, but also led to formation of a surface oxide layer that inhibited lithiation. Ball-milling could remove the surface oxide and result in the formation of an amorphous surface layer, with the observed charge storage capacity correlated with the thickness of this amorphous layer. According to the XRD and electrochemical analysis, all lithiation/delithiation processes are proposed to occur in single phase reactions at the surface with no discernible changes to the crystal structure in the bulk. Electrochemical impedance spectroscopy results suggest that the mechanism of lithiation is through surface-dominated, Faradaic processes. This suggests that for off-stoichiometric clathrates, as we studied in our previous work, Li + insertion at defects or vacancies on the framework may be the origin of reversible Li cycling. However, for clathrates Ba 8 Al y Si 46-y with y ≈ 16, Li insertion in the structure is unfavorable and low capacities are observed unless amorphous surface layers are introduced by ball-milling.

  4. Surface sensing behavior and band edge properties of AgAlS2: Experimental observations in optical, chemical, and thermoreflectance spectroscopy

    Directory of Open Access Journals (Sweden)

    Ching-Hwa Ho

    2012-06-01

    Full Text Available Optical examination of a chaocogenide compound AgAlS2 which can spontaneously transfer to a AgAlO2 oxide has been investigated by thermoreflectance (TR spectroscopy herein. The single crystals of AgAlS2 were grown by chemical vapor transport (CVT method using ICl3 as a transport agent sealed in evacuated quartz tubes. The as-grown AgAlS2 crystals essentially possess a transparent and white color in vacuum. The crystal surface of AgAlS2 becomes darkened and brownish when putting AgAlS2 into atmosphere for reacting with water vapor or hydrogen gas. Undergoing the chemical reaction process, oxygen deficient AgAlO2-2x with brownish and reddish-like color on surface of AgAlS2 forms. The transition energy of deficient AgAlO2-2x was evaluated by TR experiment. The value was determined to be ∼2.452 eV at 300 K. If the sample is kept dry and moved away from moisture, AgAlS2 crystal can stop forming more deficient AgAlO2-2x surface oxides. The experimental TR spectra for the surface-reacted sample show clearly two transition features at EW=2.452 eV for deficient AgAlO2-2x and EU=3.186 eV for AgAlS2, respectively. The EU transition belongs to direct band-edge exciton of AgAlS2. Alternatively, for surface-oxidation process of AgAlS2 lasting for a long time, a AgAlO2 crystal with yellowish color will eventually form. The TR measurements show mainly a ground-state band edge exciton of E OX 1 detected for AgAlO2. The energy was determined to be E OX 1=2.792 eV at 300 K. The valence-band electronic structure of AgAlS2 has been detailed characterized using polarized-thermoreflectance (PTR measurements in the temperature range between 30 and 340 K. Physical chemistry behaviors of AgAlS2 and AgAlO2 have been comprehensively studied via detailed analyses of PTR and TR spectra. Based on the experimental analyses, optical and chemical behaviors of the AgAlS2 crystals under atmosphere are realized. A possible optical-detecting scheme for using AgAlS2 as a humidity

  5. Physicochemical properties of concentrated Martian surface waters

    Science.gov (United States)

    Tosca, Nicholas J.; McLennan, Scott M.; Lamb, Michael P.; Grotzinger, John P.

    2011-05-01

    Understanding the processes controlling chemical sedimentation is an important step in deciphering paleoclimatic conditions from the rock records preserved on both Earth and Mars. Clear evidence for subaqueous sedimentation at Meridiani Planum, widespread saline mineral deposits in the Valles Marineris region, and the possible role of saline waters in forming recent geomorphologic features all underscore the need to understand the physical properties of highly concentrated solutions on Mars in addition to, and as a function of, their distinct chemistry. Using thermodynamic models predicting saline mineral solubility, we generate likely brine compositions ranging from bicarbonate-dominated to sulfate-dominated and predict their saline mineralogy. For each brine composition, we then estimate a number of thermal, transport, and colligative properties using established models that have been developed for highly concentrated multicomponent electrolyte solutions. The available experimental data and theoretical models that allow estimation of these physicochemical properties encompass, for the most part, much of the anticipated variation in chemistry for likely Martian brines. These estimates allow significant progress in building a detailed analysis of physical sedimentation at the ancient Martian surface and allow more accurate predictions of thermal behavior and the diffusive transport of matter through chemically distinct solutions under comparatively nonstandard conditions.

  6. Laboratory investigation of constitutive property scaling behavior

    International Nuclear Information System (INIS)

    Tidwell, V.C.

    1994-01-01

    Because many constitutive rock properties must be measured at one scale but applied at another, scaling behavior is an issue facing many applied disciplines, including the petroleum industry. A research program has been established to investigate and a quantify scaling behavior through systematic physical experimentation, with the aim of developing and testing models that describe scaling behavior in a quantitative manner. Scaling of constitutive rock properties is investigated through physical experimentation involving the collection of gas-permeability data measured over a range of discrete scales. The approach is to systematically isolate those factors that influence property scaling and investigate their relative contributions to overall scaling behavior. Two blocks of rock, each exhibiting differing heterogeneity structure. have recently been examined. The two samples were found to yield different scaling behavior, as exhibited by changes in the distribution functions and semi-variograms. Simple models have been fit to the measured scaling behavior that are of similar functional form but of different magnitude

  7. Surface active monomers synthesis, properties, and application

    CERN Document Server

    Borzenkov, Mykola

    2014-01-01

    This brief includes information on the background?of and development of synthesis of various types of surface active monomers. The authors explain the importance of utilization of surface active monomers for creation of surface active polymers? and the various biomedical applications of such compounds . This brief introduces techniques for the synthesis of novel types of surface active monomers, their colloidal and polymerizable properties and application for needs of medicine and biology.

  8. Static and Dynamic Wetting Behavior of Triglycerides on Solid Surfaces.

    Science.gov (United States)

    Michalski; Saramago

    2000-07-15

    Triglyceride wetting properties on solid surfaces of different hydro-phobicities were investigated using three different methods, namely, the sessile drop method for static contact angle measurements, the Wilhelmy method for dynamic contact angle measurements, and the captive bubble method to investigate thin triglyceride film stability. For solid surfaces having a surface free energy higher than the surface tension of triglycerides (tributyrin, tricaprylin, and triolein), a qualitative correlation was observed between wetting and solid/triglyceride relative hydrophobicities. On surfaces presenting extreme hydrophobic or hydrophilic properties, medium-chain triglycerides had a behavior similar to that of long-chain unsaturated ones. On a high-energy surface (glass), tricaprylin showed an autophobic effect subsequent to molecular adsorption in trident conformation on the solid, observed with the three methods. Thin triglyceride films between an air bubble and a solid surface were stable for a short time, for solids with a surface free energy larger than the triglyceride surface tension. If the solid surface had a lower surface free energy, the thin film collapsed after a time interval which increased with triglyceride viscosity. Copyright 2000 Academic Press.

  9. Surface composition and surface properties of water hyacinth ...

    African Journals Online (AJOL)

    The surface composition and surface properties of water hyacinth (Eichhornia crassipes) root biomass were studied before and after extraction with dilute nitric acid and toluene/ethanol (2/1, v/v) followed by ethanol, using Fourier Transform Infra-red (FT-IR) spectroscopy, thermogravimetric analysis, x-ray diffraction, ...

  10. The unusual properties of beryllium surfaces

    International Nuclear Information System (INIS)

    Stumpf, R.; Hannon, J.B.

    1994-01-01

    Be is a ''marginal metal.'' The stable phase, hcp-Be, has a low Fermi-level density of states and very anisotropic structural and elastic properties, similar to a semiconductor's. At the Be(0001) surface, surface states drastically increase the Fermi-level density of states. The different nature of bonding in bulk-Be and at the Be(0001) surface explains the large outward relaxation. The presence of surface states causes large surface core-level shifts by inducing a higher electrostatic potential in the surface layers and by improving the screening at the surface. The authors experimental and theoretical investigations of atomic vibrations at the Be(0001) surface demonstrate clearly that Be screening of atomic motion by the surface states makes the surface phonon dispersion fundamentally different from that of the bulk. Properties of Be(0001) are so different from those of the bulk that the surface can be considered a new ''phase'' of beryllium with unique electronic and structural characteristics. For comparison they also study Be(11 bar 20), a very open surface without important surface states. Be(11 bar 20) is the only clean s-p metal surface known to reconstruct (1 x 3 missing row reconstruction)

  11. Metrology and properties of engineering surfaces

    CERN Document Server

    Greenwood, J; Chetwynd, D

    2001-01-01

    Metrology and Properties of Engineering Surfaces provides in a single volume a comprehensive and authoritative treatment of the crucial topics involved in the metrology and properties of engineering surfaces. The subject matter is a central issue in manufacturing technology, since the quality and reliability of manufactured components depend greatly upon the selection and qualities of the appropriate materials as ascertained through measurement. The book can in broad terms be split into two parts; the first deals with the metrology of engineering surfaces and covers the important issues relating to the measurement and characterization of surfaces in both two and three dimensions. This covers topics such as filtering, power spectral densities, autocorrelation functions and the use of Fractals in topography. A significant proportion is dedicated to the calibration of scanning probe microscopes using the latest techniques. The remainder of the book deals with the properties of engineering surfaces and covers a w...

  12. Cells behaviors and genotoxicity on topological surface

    International Nuclear Information System (INIS)

    Yang, N.; Yang, M.K.; Bi, S.X.; Chen, L.; Zhu, Z.Y.; Gao, Y.T.; Du, Z.

    2013-01-01

    To investigate different cells behaviors and genotoxicity, which were driven by specific microenvironments, three patterned surfaces (pillars, wide grooves and narrow grooves) and one smooth surface were prepared by template-based technique. Vinculin is a membrane-cytoskeletal protein in focal adhesion plaques and associates with cell–cell and cell–matrix junctions, which can promote cell adhesion and spreading. The immunofluorescence staining of vinculin revealed that the narrow grooves patterned substrate was favorable for L929 cell adhesion. For cell multiplication, the narrow grooves surface was fitted for the proliferation of L929, L02 and MSC cells, the pillars surface was only in favor of L929 cells to proliferate during 7 days of cell cultivation. Cell genetic toxicity was evaluated by cellular micronuclei test (MNT). The results indicated that topological surfaces were more suitable for L929 cells to proliferate and maintain the stability of genome. On the contrary, the narrow grooves surface induced higher micronuclei ratio of L02 and MSC cells than other surfaces. With the comprehensive results of cell multiplication and MNT, it was concluded that the wide grooves surface was best fitted for L02 cells to proliferate and have less DNA damages, and the smooth surface was optimum for the research of MSC cells in vitro. - Highlights: • Different cells behaviors on microstructure surfaces were discussed in this paper. • The expression of cell protein of Vinculin was studied in this research. • Cellular micronuclei test was applied to evaluate cells' genotoxicity. • Cell genotoxicity was first studied in the research field of topological surfaces

  13. Surface elastic properties in silicon nanoparticles

    Science.gov (United States)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  14. Excimer laser surface modification: Process and properties

    Energy Technology Data Exchange (ETDEWEB)

    Jervis, T.R.; Nastasi, M. [Los Alamos National Lab., NM (United States); Hirvonen, J.P. [Technical Research Institute, Espoo (Finland). Metallurgy Lab.

    1992-12-01

    Surface modification can improve materials for structural, tribological, and corrosion applications. Excimer laser light has been shown to provide a rapid means of modifying surfaces through heat treating, surface zone refining, and mixing. Laser pulses at modest power levels can easily melt the surfaces of many materials. Mixing within the molten layer or with the gas ambient may occur, if thermodynamically allowed, followed by rapid solidification. The high temperatures allow the system to overcome kinetic barriers found in some ion mixing experiments. Alternatively, surface zone refinement may result from repeated melting-solidification cycles. Ultraviolet laser light couples energy efficiently to the surface of metallic and ceramic materials. The nature of the modification that follows depends on the properties of the surface and substrate materials. Alloying from both gas and predeposited layer sources has been observed in metals, semiconductors, and ceramics as has surface enrichment of Cr by zone refinement of stainless steel. Rapid solidification after melting often results in the formation of nonequilibrium phases, including amorphous materials. Improved surface properties, including tribology and corrosion resistance, are observed in these materials.

  15. Poly (d/l) lactide/polycaprolactone/bioactive glasss nanocomposites materials for anterior cruciate ligament reconstruction screws: The effect of glass surface functionalization on mechanical properties and cell behaviors.

    Science.gov (United States)

    Esmaeilzadeh, Javad; Hesaraki, Saeed; Hadavi, Seyed Mohammad-Mehdi; Ebrahimzadeh, Mohammad Hosein; Esfandeh, Masoud

    2017-08-01

    In this paper, different nanocomposites made of a polymer blend (80% of PDLLA and 20% of PCL in w/w) and various amounts of a sol-gel derived bioactive glass nanoparticles (0, 1, 3 and 6wt%) were prepared using a solvent-evaporation technique. The morphology, mechanical properties and osteoblastic cell behaviors of the nanocomposites were evaluated. According to the early results, addition of bioactive glass nanoparticles to the polymer matrix reduced the tensile and flexural strength because of a non-uniform distribution of the nanoparticles. Thus, a homogeneous dispersion was obtained by surface modification of the glass nanoparticles using (3-aminopropyl)triethoxysilane as a coupling agent. The results showed that the tensile and flexural strength of the nanocomposite were improved by the nanoparticle functionalization, however the glass content was a crucial factor. The maximum tensile and flexural strength values of 38MPa and 94MPa were obtained for the polymer matrix loaded with 3wt% of the modified nanofiller and further increase of filler content led to sever agglomeration and hence a reduction of the mechanical properties. The obtained mechanical properties are favorable for anterior cruciate ligament reconstruction screws. Besides, the results of cell culture using human osteoblastic cells illustrated better cell attachment and cell growth of the nanocomposites compared to the neat polymer blend. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Surface Properties of TNOs: Preliminary Statistical Analysis

    Science.gov (United States)

    Antonieta Barucci, Maria; Fornasier, S.; Alvarez-Cantal, A.; de Bergh, C.; Merlin, F.; DeMeo, F.; Dumas, C.

    2009-09-01

    An overview of the surface properties based on the last results obtained during the Large Program performed at ESO-VLT (2007-2008) will be presented. Simultaneous high quality visible and near-infrared spectroscopy and photometry have been carried out on 40 objects with various dynamical properties, using FORS1 (V), ISAAC (J) and SINFONI (H+K bands) mounted respectively at UT2, UT1 and UT4 VLT-ESO telescopes (Cerro Paranal, Chile). For spectroscopy we computed the spectral slope for each object and searched for possible rotational inhomogeneities. A few objects show features in their visible spectra such as Eris, whose spectral bands are displaced with respect to pure methane-ice. We identify new faint absorption features on 10199 Chariklo and 42355 Typhon, possibly due to the presence of aqueous altered materials. The H+K band spectroscopy was performed with the new instrument SINFONI which is a 3D integral field spectrometer. While some objects show no diagnostic spectral bands, others reveal surface deposits of ices of H2O, CH3OH, CH4, and N2. To investigate the surface properties of these bodies, a radiative transfer model has been applied to interpret the entire 0.4-2.4 micron spectral region. The diversity of the spectra suggests that these objects represent a substantial range of bulk compositions. These different surface compositions can be diagnostic of original compositional diversity, interior source and/or different evolution with different physical processes affecting the surfaces. A statistical analysis is in progress to investigate the correlation of the TNOs’ surface properties with size and dynamical properties.

  17. Enhancement of surface properties for coal beneficiation

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  18. Electrochemical behavior of bioactive coatings on cp-Ti surface for dental application.

    Science.gov (United States)

    Marques, Isabella da Silva Vieira; Barão, Valentim Adelino Ricardo; da Cruz, Nilson Cristino; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Ricomini-Filho, Antonio Pedro; Sukotjo, Cortino; Mathew, Mathew T

    2015-11-01

    The surface characteristics and electrochemical properties of bioactive coatings produced by plasma electrolytic oxidation (PEO) with calcium, phosphorous, silicon and silver on commercially pure titanium were evaluated. PEO treatment produced a porous oxide layer, which improved the surface topography, and enriched the surface chemistry with bioactive elements, responsible for mimicking bone surface. The surfaces with higher calcium concentration presented antibacterial and biocompability properties with better responses for corrosion and barrier properties, due to the presence of rutile crystalline structure. PEO may be a promising surface treatment option to improve the electrochemical behavior of dental implants mitigating treatment failures.

  19. The control mechanism of surface traps on surface charge behavior in alumina-filled epoxy composites

    International Nuclear Information System (INIS)

    Li, Chuanyang; Hu, Jun; Lin, Chuanjie; He, Jinliang

    2016-01-01

    To investigate the role surface traps play in the charge injection and transfer behavior of alumina-filled epoxy composites, surface traps with different trap levels are introduced by different surface modification methods which include dielectric barrier discharges plasma, direct fluorination, and Cr 2 O 3 coating. The resulting surface physicochemical characteristics of experimental samples were observed using atomic force microscopy, scanning electron microscopy and fourier transform infrared spectroscopy. The surface potential under dc voltage was detected and the trap level distribution was measured. The results suggest that the surface morphology of the experimental samples differs dramatically after treatment with different surface modification methods. Different surface trap distributions directly determine the charge injection and transfer property along the surface. Shallow traps with trap level of 1.03–1.11 eV and 1.06–1.13 eV introduced by plasma and fluorination modifications are conducive for charge transport along the insulating surface, and the surface potential can be modified, producing a smoother potential curve. The Cr 2 O 3 coating can introduce a large number of deep traps with energy levels ranging from 1.09 to 1.15 eV. These can prevent charge injection through the reversed electric field formed by intensive trapped charges in the Cr 2 O 3 coatings. (paper)

  20. Cell behavior on microparticles with different surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853 (China); Fu Xiaobing, E-mail: fuxiaobing@vip.sina.co [Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853 (China); Burns Institute, The First Affiliated Hospital, General Hospital of PLA, Trauma Center of Postgraduate Medical College, Beijing 100037 (China)

    2010-03-18

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  1. Mechanical and tribological properties of ion beam-processed surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kodali, Padma [Univ. of Maryland, College Park, MD (United States)

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness.

  2. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  3. Surface active properties of lipid nanocapsules.

    Directory of Open Access Journals (Sweden)

    Celia R A Mouzouvi

    Full Text Available Lipid nanocapsules (LNCs are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively, as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC that was 10-fold higher than the critical micellar concentration (CMC of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  4. Solid Lubrication Fundamentals and Applications. Properties of Clean Surfaces: Adhesion, Friction, and Wear

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1998-01-01

    This chapter presents the adhesion, friction, and wear behaviors of smooth, atomically clean surfaces of solid-solid couples, such as metal-ceramic couples, in a clean environment. Surface and bulk properties, which determine the adhesion, friction, and wear behaviors of solid-solid couples, are described. The primary emphasis is on the nature and character of the metal, especially its surface energy and ductility. Also, the mechanisms of friction and wear for clean, smooth surfaces are stated.

  5. Characterizing the statistical properties of protein surfaces

    Science.gov (United States)

    Bak, Ji Hyun; Bitbol, Anne-Florence; Bialek, William

    Proteins and their interactions form the body of the signaling transduction pathway in many living systems. In order to ensure the accuracy as well as the specificity of signaling, it is crucial that proteins recognize their correct interaction partners. How difficult, then, is it for a protein to discriminate its correct interaction partner(s) from the possibly large set of other proteins it may encounter in the cell? An important ingredient of recognition is shape complementarity. The ensemble of protein shapes should be constrained by the need for maintaining functional interactions while avoiding spurious ones. To address this aspect of protein recognition, we consider the ensemble of proteins in terms of the shapes of their surfaces. We take into account the high-resolution structures of E.coli non-DNA-binding cytoplasmic proteins, retrieved from the Protein Data Bank. We aim to characterize the statistical properties of the protein surfaces at two levels: First, we study the intrinsic dimensionality at the level of the ensemble of the surface objects. Second, at the level of the individual surfaces, we determine the scale of shape variation. We further discuss how the dimensionality of the shape space is linked to the statistical properties of individual protein surfaces. Jhb and WB acknowledge support from National Science Foundation Grants PHY-1305525 and PHY-1521553. AFB acknowledges support from the Human Frontier Science Program.

  6. Welcome to Surface Topography: Metrology and Properties

    Science.gov (United States)

    Leach, Richard

    2013-11-01

    I am delighted to welcome readers to this inaugural issue of Surface Topography: Metrology and Properties (STMP). In these days of citation indexes and academic reviews, it is a tough, and maybe a brave, job to start a new journal. But the subject area has never been more active and we are seeing genuine breakthroughs in the use of surfaces to control functional performance. Most manufactured parts rely on some form of control of their surface characteristics. The surface is usually defined as that feature on a component or device, which interacts with either the environment in which it is housed (or in which the device operates), or with another surface. The surface topography and material characteristics of a part can affect how fluids interact with it, how the part looks and feels and how two bearing parts will slide together. The need to control, and hence measure, surface features is becoming increasingly important as we move into a miniaturized world. Surface features can become the dominant functional features of a part and may become large in comparison to the overall size of an object. Research into surface texture measurement and characterization has been carried out for over a century and is now more active than ever, especially as new areal surface texture specification standards begin to be introduced. The range of disciplines for which the function of a surface relates to its topography is very diverse; from metal sheet manufacturing to art restoration, from plastic electronics to forensics. Until now, there has been no obvious publishing venue to bring together all these applications with the underlying research and theory, or to unite those working in academia with engineering and industry. Hence the creation of Surface Topography: Metrology and Properties . STMP will publish the best work being done across this broad discipline in one journal, helping researchers to share common themes and highlighting and promoting the extraordinary benefits this

  7. Surface and mechanical properties of polypropylene/clay nanocomposite

    Directory of Open Access Journals (Sweden)

    Dibaei Asl Husein

    2013-01-01

    Full Text Available Huge consumption of polypropylene in the industries like automotive motivates academic and industrial R&Ds to find new and excellent approaches to improve the mechanical properties of this polymer, which has no degradation effect on other required performance properties like impact resistance, controlled crystallinity, toughness and shrinkage. Nowadays, nanoparticles play a key role in improving the mechanical and surface properties of polypropylene. In this study, three compositions of "Polypropylene/nanoclay", containing 0%, 2% and 5% of nanoclay were prepared in internal mixer. For characterizing the nanoclay dispersion in polymer bulk, TEM and XRD tests were used. For scratch resistance test, scratch lines were created on the load of 900 grain on sheets and SEM images were taken and compared with neat PP scratch image. Crystallinity and mechanical behavior were studied. The results showed that mechanical properties and scratch resistance of the composites have been improved.

  8. Oxides Surfaces and Novel Electronic Properties

    Science.gov (United States)

    Koirala, Pratik

    The scope of this thesis extends to the study of surface structures and electronic properties in a number of complex oxides. The c(6x2) surface reconstruction on SrTiO3 (001) was solved using a combination of plan view transmission electron microscopy imaging, atomic resolution secondary electron imaging, and density functional theory calculations. This work provided fundamental insights on the effects of dielectric screening in secondary electron generation. A thorough analysis on the limitation and functionality of transmission plan view imaging showed that the kinematical approximations used in the separation of top and bottom surfaces is only valid in thin samples (˜5 nm or less for SrTiO3). The presence of an inversion center in the surface structure also made separation of the top and bottom surfaces more robust. Surface studies of two other oxides, KTaO3 and NdGaO3, provided understanding on the mechanism of surface heterogeneity and segregation. In the case of KTaO3, selective ion sputtering and the loss of K resulted in large stoichiometric variations at the surface. Annealing of such samples led to the formation of a potassium deficient tetragonal phase (K 6Ta10.8O30) on the surface. A similar phenomenon was also observed in NdGaO3. Exploratory surface studies of the rare earth scandates (ReScO3 , Re = Gd, Tb, Dy) led to the observation of large flexoelectric bending inside an electron microscope. Thin rods of these scandates bent by up to 90 degree under a focused electron beam; the bending was fully reversible. Ex-situ measurements of flexoelectric coe cient performed by an- other graduate student, Christopher Mizzi, confirmed that the scandates have a large flexocoupling voltage (˜42 V). Electronic structure of the lanthanide scandates was studied using temperature depen- dent X-ray photoelectron spectroscopy and hybrid density functional theory calculations. The amount of charging under X-ray illumination was greatly reduced with increasing

  9. Droplet impinging behavior on surfaces: Part II - Water on aluminium and cast iron surfaces

    Science.gov (United States)

    Sangavi, S.; Balaji, S.; Mithran, N.; Venkatesan, M.

    2016-09-01

    Droplet cooling of metal surfaces is an important area of research in industrial applications such as material quenching, nozzle spraying, etc. Fluids (water) act as an excellent agent in heat transfer to remove excess heat in various processes by convection and conduction. Such cooling process varies the material properties. The bubbles formed during droplet impinging on the surface act as heat sink and causes variation of height and spreading radius of the droplet with increase in temperature. In the present work, an experimental study of the droplet impinging behavior on Aluminium and Cast iron surfaces is reported. The water droplets are made to fall on the surface of the specimens from a specific height, which also influences the spreading radius. The effect of temperature on droplet height and droplet spreading radius is detailed.

  10. Hydrodynamic slip length as a surface property

    Science.gov (United States)

    Ramos-Alvarado, Bladimir; Kumar, Satish; Peterson, G. P.

    2016-02-01

    Equilibrium and nonequilibrium molecular dynamics simulations were conducted in order to evaluate the hypothesis that the hydrodynamic slip length is a surface property. The system under investigation was water confined between two graphite layers to form nanochannels of different sizes (3-8 nm). The water-carbon interaction potential was calibrated by matching wettability experiments of graphitic-carbon surfaces free of airborne hydrocarbon contamination. Three equilibrium theories were used to calculate the hydrodynamic slip length. It was found that one of the recently reported equilibrium theories for the calculation of the slip length featured confinement effects, while the others resulted in calculations significantly hindered by the large margin of error observed between independent simulations. The hydrodynamic slip length was found to be channel-size independent using equilibrium calculations, i.e., suggesting a consistency with the definition of a surface property, for 5-nm channels and larger. The analysis of the individual trajectories of liquid particles revealed that the reason for observing confinement effects in 3-nm nanochannels is the high mobility of the bulk particles. Nonequilibrium calculations were not consistently affected by size but by noisiness in the smallest systems.

  11. The influence of surface curvature on polymer behavior at inorganic surfaces

    Science.gov (United States)

    Nunnery, Grady A.

    Nanoscale surfaces were examined in order to determine the influence of surface curvature on polymer behavior at polymer-ceramic interfaces, as well as the influence of nanoparticles in cellulosic media. Poly(methyl methacrylate) and block copolymers thereof were adsorbed onto porous alumina substrates of various pore sizes in order to determine how polymer and copolymer adsorption behavior at nanoscale surfaces differs from adsorption onto flat surfaces. It was determined that chain density on concave surfaces dramatically decreases as curvature increases in much the same way that it does on convex surfaces (e.g. on the surface of nanoparticles), and physical models are provided to explain this similarity. Diblock copolymer adsorption is observed to vary dramatically with solvent quality and block asymmetry and can be correlated with the surface curvature very similarly to the adsorptive behavior of homopolymers on those same surfaces. The addition of nanoparticles to cellulosic media was investigated as a means to significantly modify the properties of cellulosic composites with minimal additions of nanoparticles. Although cellulose is among the most abundant polymers on earth, its primary uses are limited to bulk commodity goods, such as paper and textiles. This work demonstrates a simple means to control cellulosic fluid viscosity, thereby increasing the versatility of these biopolymers in additional applications with higher value-added potential. The formation of iron-cellulosic nanocomposites by the in-situ thermolysis of metal carbonyls to form metallic nanoparticles was performed and was analyzed by viscometry among other techniques. It was determined that the nanocomposites that were formed exhibited significantly increased viscosity, up to the point of gelation. Additionally, an introduction to the expansive field of nanocomposites is provided, including how and why composite properties change abruptly as filler size approaches the nanoscale. An extensive

  12. Surface properties of copper based cermet materials

    International Nuclear Information System (INIS)

    Voinea, M.; Vladuta, C.; Bogatu, C.; Duta, A.

    2008-01-01

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO x cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO x was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components

  13. Surface properties of copper based cermet materials

    Energy Technology Data Exchange (ETDEWEB)

    Voinea, M. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)], E-mail: m.voinea@unitbv.ro; Vladuta, C.; Bogatu, C.; Duta, A. [The Centre: Product Design for Sustainable Development, Transilvania University of Brasov, Eroilor 29, 500036 (Romania)

    2008-08-25

    The paper presents the characterization of the surface properties of copper based cermets obtained by two different techniques: spray pyrolysis deposition (SPD) and electrodeposition. Copper acetate was used as precursor of Cu/CuO{sub x} cermet. The surface morphology was tailored by adding copolymers of maleic anhydride with controlled hydrophobia. The films morphology of Cu/CuO{sub x} was assessed using contact angle measurements and AFM analysis. The porous structures obtained via SPD lead to higher liquid adsorption rate than the electrodeposited films. A highly polar liquid - water is recommended as testing liquid in contact angle measurements, for estimating the porosity of copper based cermets, while glycerol can be used to distinguish among ionic and metal predominant structures. Thus, contact angle measurements can be used for a primary evaluation of the films morphology and, on the other hand, of the ratio between the cermet components.

  14. Oxidative nanopatterning of titanium generates mesoporous surfaces with antimicrobial properties

    Directory of Open Access Journals (Sweden)

    Variola F

    2014-05-01

    Full Text Available Fabio Variola,1,2 Sylvia Francis Zalzal,3 Annie Leduc,3 Jean Barbeau,3 Antonio Nanci31Faculty of Engineering, Department of Mechanical Engineering, 2Faculty of Science, Department of Physics, University of Ottawa, Ottawa, ON, 3Faculty of Dental Medicine, Université de Montréal, Montreal, QC, CanadaAbstract: Mesoporous surfaces generated by oxidative nanopatterning have the capacity to selectively regulate cell behavior, but their impact on microorganisms has not yet been explored. The main objective of this study was to test the effects of such surfaces on the adherence of two common bacteria and one yeast strain that are responsible for nosocomial infections in clinical settings and biomedical applications. In addition, because surface characteristics are known to affect bacterial adhesion, we further characterized the physicochemical properties of the mesoporous surfaces. Focused ion beam (FIB was used to generate ultrathin sections for elemental analysis by energy-dispersive X-ray spectroscopy (EDS, nanobeam electron diffraction (NBED, and high-angle annular dark field (HAADF scanning transmission electron microscopy (STEM imaging. The adherence of Staphylococcus aureus, Escherichia coli and Candida albicans onto titanium disks with mesoporous and polished surfaces was compared. Disks with the two surfaces side-by-side were also used for direct visual comparison. Qualitative and quantitative results from this study indicate that bacterial adhesion is significantly hindered by the mesoporous surface. In addition, we provide evidence that it alters structural parameters of C. albicans that determine its invasiveness potential, suggesting that microorganisms can sense and respond to the mesoporous surface. Our findings demonstrate the efficiency of a simple chemical oxidative treatment in generating nanotextured surfaces with antimicrobial capacity with potential applications in the implant manufacturing industry and hospital setting

  15. Surface, structural and tensile properties of proton beam irradiated zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo, E-mail: yongskim@hanyang.ac.kr

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 10{sup 13} to 1 × 10{sup 16} protons/cm{sup 2}. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples’ surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson–Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  16. Surface, structural and tensile properties of proton beam irradiated zirconium

    Science.gov (United States)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  17. Magnetic properties of Martian surface material

    Science.gov (United States)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  18. Surface orientation effects on bending properties of surgical mesh are independent of tensile properties.

    Science.gov (United States)

    Simon, David D; Andrews, Sharon M; Robinson-Zeigler, Rebecca; Valdes, Thelma; Woods, Terry O

    2018-02-01

    Current mechanical testing of surgical mesh focuses primarily on tensile properties even though implanted devices are not subjected to pure tensile loads. Our objective was to determine the flexural (bending) properties of surgical mesh and determine if they correlate with mesh tensile properties. The flexural rigidity values of 11 different surgical mesh designs were determined along three textile directions (machine, cross-machine, and 45° to machine; n = 5 for each) using ASTM D1388-14 while tracking surface orientation. Tensile testing was also performed on the same specimens using ASTM D882-12. Linear regressions were performed to compare mesh flexural rigidity to mesh thickness, areal mass density, filament diameter, ultimate tensile strength, and maximum extension. Of 33 mesh specimen groups, 30 had significant differences in flexural rigidity values when comparing surface orientations (top and bottom). Flexural rigidity and mesh tensile properties also varied with textile direction (machine and cross-machine). There was no strong correlation between the flexural and tensile properties, with mesh thickness having the best overall correlation with flexural rigidity. Currently, surface orientation is not indicated on marketed surgical mesh, and a single mesh may behave differently depending on the direction of loading. The lack of correlation between flexural stiffness and tensile properties indicates the need to examine mesh bending stiffness to provide a more comprehensive understanding of surgical mesh mechanical behaviors. Further investigation is needed to determine if these flexural properties result in the surgical mesh behaving mechanically different depending on implantation direction. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 854-862, 2018. © 2017 Wiley Periodicals, Inc.

  19. Structure, electronic properties, and aggregation behavior of hydroxylated carbon nanotubes.

    Science.gov (United States)

    López-Oyama, A B; Silva-Molina, R A; Ruíz-García, J; Gámez-Corrales, R; Guirado-López, R A

    2014-11-07

    We present a combined experimental and theoretical study to analyze the structure, electronic properties, and aggregation behavior of hydroxylated multiwalled carbon nanotubes (OH-MWCNT). Our MWCNTs have average diameters of ~2 nm, lengths of approximately 100-300 nm, and a hydroxyl surface coverage θ~0.1. When deposited on the air/water interface the OH-MWCNTs are partially soluble and the floating units interact and link with each other forming extended foam-like carbon networks. Surface pressure-area isotherms of the nanotube films are performed using the Langmuir balance method at different equilibration times. The films are transferred into a mica substrate and atomic force microscopy images show that the foam like structure is preserved and reveals fine details of their microstructure. Density functional theory calculations performed on model hydroxylated carbon nanotubes show that low energy atomic configurations are found when the OH groups form molecular islands on the nanotube's surface. This patchy behavior for the OH species is expected to produce nanotubes having reduced wettabilities, in line with experimental observations. OH doping yields nanotubes having small HOMO-LUMO energy gaps and generates a nanotube → OH direction for the charge transfer leading to the existence of more hole carriers in the structures. Our synthesized OH-MWCNTs might have promising applications.

  20. Probing Anisotropic Surface Properties and Surface Forces of Fluorite Crystals.

    Science.gov (United States)

    Gao, Zhiyong; Xie, Lei; Cui, Xin; Hu, Yuehua; Sun, Wei; Zeng, Hongbo

    2018-02-20

    Fluorite is the most important mineral source for producing fluorine-based chemicals and materials in a wide range of engineering and technological applications. In this work, atomic force microscopy was employed, for the first time, to probe the surface interactions and adhesion energy of model oleic acid (a commonly used surface modification organics for fluorite) molecules on fluorite surfaces with different orientations in both air and aqueous solutions at different pH conditions. Fitted with the Derjaguin-Landau-Verwey-Overbeek theory, the force results during surface approaching demonstrate the anisotropy in the surface charge of different orientations, with the {111} surface exhibiting a higher magnitude of surface charge, which could be attributed to the difference in the atomic composition. The adhesion measured during surface retraction shows that model oleic acid molecules have a stronger adhesion with the {100} surface than with the {111} surface in both air and aqueous solutions. The anisotropic adhesion energy was analyzed in relation to the surface atom (especially calcium) activity, which was supported by the surface free energy results calculated based on a three-probe-liquid method. Each calcium atom on the {100} surface with four dangling bonds is more active than the calcium atom on the {111} surface with only one dangling bond, supported by a larger value of the Lewis acid component for the {100} surface. The model oleic acid molecules present in the ionic form at pH 9 exhibit a higher adhesion energy with fluorite surfaces as compared to their molecular form at pH 6, which was related to the surface activity of different forms. The adhesion energy measured in solution is much lower than that in air, indicating that the solvent exerts an important influence on the interactions of organic molecules with mineral surfaces. The results provide useful information on the fundamental understanding of surface interactions and adhesion energy of organic

  1. Effective macroscopic adhesive contact behavior induced by small surface roughness

    Science.gov (United States)

    Kesari, Haneesh; Lew, Adrian J.

    2011-12-01

    In this paper we study a model contact problem involving adhesive elastic frictionless contact between rough surfaces. The problem's most notable feature is that it captures the phenomenon of depth-dependent-hysteresis (DDH) (e.g., see Kesari et al., 2010), which refers to the observation of different contact forces during the loading and unloading stages of a contact experiment. We specifically study contact between a rigid axi-symmetric punch and an elastic half-space. The roughness is represented as arbitrary periodic undulations in the punch's radial profile. These undulations induce multiple equilibrium contact regions between the bodies at each indentation-depth. Assuming that the system evolves so as to minimize its potential energy, we show that different equilibrium contact regions are selected during the loading and unloading stages at each indentation-depth, giving rise to DDH. When the period and amplitude of our model's roughness is reduced, we show that the evolution of the contact force and radius with the indentation-depth can be approximated with simpler curves, the effective macroscopic behavior, which we compute. Remarkably, the effective behavior depends solely on the amplitude and period of the model's roughness. The effective behavior is useful for estimating material properties from contact experiments displaying DDH. We show one such example here. Using the effective behavior for a particular roughness model (sinusoidal) we analyze the energy loss during a loading/unloading cycle, finding that roughness can toughen the interface. We also estimate the energy barriers between the different equilibrium contact regions at a fixed indentation-depth, which can be used to assess the importance of ambient energy fluctuations on DDH.

  2. Determining Surface Material Properties Using Satellite Imaging

    Science.gov (United States)

    Gloudeman, C.; Gerace, A. D.

    2017-12-01

    Knowledge of soil moisture content is necessary for drought monitoring, crop irrigation, and water runoff. Remote sensing techniques provide a more efficient alternative to traditional field measurements for determining soil moisture content. Thermal infrared sensors from Landsat, MODIS Aqua & Terra, and AVHRR MetOp A & B satellites were used to find thermal inertia, which is highly correlated with soil moisture. A diurnal cycle is converted from band effective radiance to Land Surface Temperature (LST) using Planck's Law for blackbody radiation and a modified split-window algorithm. The THERM model for finding expected LST is then used to determine the material properties. A second approach was used to calculate apparent thermal inertia and soil moisture content from day/ night pairs of LST. For this method, only the MODIS Aqua LST product was used.To this end, we have observed clear differences in moisture between areas of vegetation and sand and between different crop fields. Our results indicate that matching the observed data with the THERM model could be improved with increased satellite measurements.

  3. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  4. Near-surface modifications for improved crack tolerant behavior of high strength alloys: trends and prospects

    International Nuclear Information System (INIS)

    Hettche, L.R.; Rath, B.B.

    1982-01-01

    The purpose of this chapter is to examine the potential of surface modifications in improving the crack tolerant behavior of high strength alloys. Provides a critique of two of the most promising and versatile techniques: ion implantation and laser beam surface processing. Discusses crack tolerant properties; engineering characterization; publication trends and Department of Defense interests; and emergent surface modification techniques. Finds that the efficiency with which high strength alloys can be incorporated into a structure or component is dependent on the following crack tolerant properties: fracture toughness, fatigue resistance, sustained loading cracking resistance, fretting fatigue resistance, and hydrogen embrittlement resistance. Concludes that ion implantation and laser surface processing coupled with other advanced metallurgical procedures and fracture mechanic analyses provide the means to optimize both the bulk and surface controlled crack tolerant properties

  5. Metabolic behavior of cell surface biotinylated proteins

    International Nuclear Information System (INIS)

    Hare, J.F.; Lee, E.

    1989-01-01

    The turnover of proteins on the surface of cultured mammalian cells was measured by a new approach. Reactive free amino or sulfhydryl groups on surface-accessible proteins were derivatized with biotinyl reagents and the proteins solubilized from culture dishes with detergent. Solubilized, biotinylated proteins were then adsorbed onto streptavidin-agarose, released with sodium dodecyl sulfate and mercaptoethanol, and separated on polyacrylamide gels. Biotin-epsilon-aminocaproic acid N-hydroxysuccinimide ester (BNHS) or N-biotinoyl-N'-(maleimidohexanoyl)hydrazine (BM) were the derivatizing agents. Only 10-12 bands were adsorbed onto streptavidin-agarose from undervatized cells or from derivatized cells treated with free avidin at 4 degrees C. Two-dimensional isoelectric focusing-sodium dodecyl sulfate gel electrophoresis resolved greater than 100 BNHS-derivatized proteins and greater than 40 BM-derivatized proteins. There appeared to be little overlap between the two groups of derivatized proteins. Short-term pulse-chase studies showed an accumulation of label into both groups of biotinylated proteins up until 1-2 h of chase and a rapid decrease over the next 1-5 h. Delayed appearance of labeled protein at the cell surface was attributed to transit time from site of synthesis. The unexpected and unexplained rapid disappearance of pulse-labeled proteins from the cell surface was invariant for all two-dimensionally resolved proteins and was sensitive to temperature reduction to 18 degrees C. Long-term pulse-chase experiments beginning 4-8 h after the initiation of chase showed the disappearance of derivatized proteins to be a simple first-order process having a half-life of 115 h in the case of BNHS-derivatized proteins and 30 h in the case of BM-derivatized proteins

  6. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    Energy Technology Data Exchange (ETDEWEB)

    Lollobrigida, V. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F. [Istituto Nazionale di Ricerca Metrologica (INRIM), I-10135 Torino (Italy); Borgatti, F. [CNR, Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), I-40129 Bologna (Italy); Torelli, P.; Panaccione, G. [CNR, Istituto Officina dei Materiali (IOM), Lab. TASC, I-34149 Trieste (Italy); Tortora, L. [Laboratorio di Analisi di Superficie, Dipartimento di Matematica e Fisica, Università Roma Tre, I-00146 Rome (Italy); Dipartimento di Ingegneria Meccanica, Università Tor Vergata, I-00133 Rome (Italy); Stefani, G.; Offi, F. [Dipartimento di Scienze, Università Roma Tre, I-00146 Rome (Italy)

    2014-05-28

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  7. Chemical, electronic, and magnetic structure of LaFeCoSi alloy: Surface and bulk properties

    International Nuclear Information System (INIS)

    Lollobrigida, V.; Basso, V.; Kuepferling, M.; Coïsson, M.; Olivetti, E. S.; Celegato, F.; Borgatti, F.; Torelli, P.; Panaccione, G.; Tortora, L.; Stefani, G.; Offi, F.

    2014-01-01

    We investigate the chemical, electronic, and magnetic structure of the magnetocaloric LaFeCoSi compound with bulk and surface sensitive techniques. We put in evidence that the surface retains a soft ferromagnetic behavior at temperatures higher than the Curie temperature of the bulk due to the presence of Fe clusters at the surface only. This peculiar magnetic surface effect is attributed to the exchange interaction between the ferromagnetic Fe clusters located at the surface and the bulk magnetocaloric alloy, and it is used here to monitor the magnetic properties of the alloy itself.

  8. Morphology and electronic properties of silicon carbide surfaces

    Science.gov (United States)

    Nie, Shu

    2007-12-01

    Several issues related to SiC surfaces are studied in the thesis using scanning tunneling microscopy/spectroscopy (STM/S) and atomic force microscopy (AFM). Specific surfaces examined include electropolished SiC, epitaxial graphene on SiC, and vicinal (i.e. slightly miscut from a low-index direction) SiC that have been subjected to high temperature hydrogen-etching. The electropolished surfaces are meant to mimic electrochemically etched SiC, which forms a porous network. The chemical treatment of the surface is similar between electropolishing and electrochemical etching, but the etching conditions are slightly different such that the former produces a flat surface (that is amenable to STM study) whereas the latter produces a complex 3-dimensional porous network. We have used these porous SiC layers as semi-permeable membranes in a biosensor, and we find that the material is quite biocompatible. The purpose of the STM/STS study is to investigate the surface properties of the SiC on the atomic scale in an effort to explain this biocompatibility. The observed tunneling spectra are found to be very asymmetric, with a usual amount of current at positive voltages but no observable current at negative voltages. We propose that this behavior is due to surface charge accumulating on an incompletely passivated surface. Measurements on SiC surfaces prepared by various amounts of hydrogen-etching are used to support this interpretation. Comparison with tunneling computations reveals a density of about 10 13 cm-2 fixed charges on both the electro-polished and the H-etched surfaces. The relatively insulating nature observed on the electro-polished SiC surface may provide an explanation for the biocompatibility of the surface. Graphene, a monolayer of carbon, is a new material for electronic devices. Epitaxial graphene on SiC is fabricated by the Si sublimation method in which a substrate is heated up to about 1350°C in ultra-high vacuum (UHV). The formation of the graphene is

  9. Modification of surface properties of copper-refractory metal alloys

    Science.gov (United States)

    Verhoeven, J.D.; Gibson, E.D.

    1993-10-12

    The surface properties of copper-refractory metal (CU-RF) alloy bodies are modified by heat treatments which cause the refractory metal to form a coating on the exterior surfaces of the alloy body. The alloys have a copper matrix with particles or dendrites of the refractory metal dispersed therein, which may be niobium, vanadium, tantalum, chromium, molybdenum, or tungsten. The surface properties of the bodies are changed from those of copper to that of the refractory metal.

  10. Impact of surface coal mining on soil hydraulic properties

    Science.gov (United States)

    X. Liu; J. Q. Wu; P. W. Conrad; S. Dun; C. S. Todd; R. L. McNearny; William Elliot; H. Rhee; P. Clark

    2016-01-01

    Soil erosion is strongly related to soil hydraulic properties. Understanding how surface coal mining affects these properties is therefore important in developing effective management practices to control erosion during reclamation. To determine the impact of mining activities on soil hydraulic properties, soils from undisturbed areas, areas of roughly graded mine...

  11. The Surface Chemical Properties of Novel High Surface Area Solids ...

    African Journals Online (AJOL)

    during zeolite synthesis.22 Because raw fly ash has large quanti- ties of a host of elements, many of these will act as nucleation sites, which results in many small crystals rather than a few large ones. Acid etching removed the needle-like structures on the particle surfaces, revealing a porous underlying structure. (Fig. 1c).

  12. Rent-seeking behaviors in property development: A literature review

    Science.gov (United States)

    Ali, Suhaila; Aziz, Abdul Rashid Abdul

    2017-11-01

    This paper reviews the literature on rent-seeking behaviors in property development, and discusses three major areas: (1) definition and concept of rent-seeking; (2) factors for the rent-seeking behavior appeared; and (3) the impact of rent-seeking behaviors, particularly on property development. In general, there is no exact word that can define what rent-seeking is. It is found that from the reviewed studies that a few researches have adopted search tasks to predict rent-seeking behavior effects in the economy and the respective economic performance. Based on the findings of the review, rent-seeking behavior increases social cost and this might lead to problems such as corruption. This paper paves the way for future studies in examining rent-seeking behaviors in the Malaysian property development, especially for targeted actions to be taken to alleviate upward pressure on home prices.

  13. Friction behaviors of rough chromium surfaces under starving lubrication conditions

    Science.gov (United States)

    Liu, Derong; Yan, Bo; Shen, Bin; Liu, Lei; Hu, Wenbin

    2018-01-01

    Surface texturing has become an effective method for improving the tribological properties of mechanical components under the oil lubrication. In this study, a rough surface, with the bumps arranged in a random array, was prepared by means of electrodeposition. A post-grinding and polishing processing was employed to fabricate flat areas for tribological tests under conformal contact. Compared with the smooth surfaces, the rough surface improves the load capacity of coatings at high loads. The effects of rough surfaces on friction reduction become more pronounced at higher speeds and lower normal loads due to the transition of lubricant regime from the boundary to mixed lubrication.

  14. Antifouling polymer brushes displaying antithrombogenic surface properties

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Sheikh, S.; Blaszykowski, C.; Pop-Georgievski, Ognen; Fedorov, K.; Thompson, M.; Rodriguez-Emmenegger, Cesar

    2016-01-01

    Roč. 17, č. 3 (2016), s. 1179-1185 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polymer brushes * surface characterization * antifouling surfaces Subject RIV: BO - Biophysics Impact factor: 5.246, year: 2016

  15. Influence of neutral surface position on the nonlinear stability behavior of functionally graded plates

    Science.gov (United States)

    Prakash, T.; Singha, M. K.; Ganapathi, M.

    2009-02-01

    Nonlinear behavior of functionally graded material (FGM) skew plates under in-plane load is investigated here using a shear deformable finite element method. The material is graded in the thickness direction and a simple power law based on the rule of mixture is used to estimate the effective material properties. The neutral surface position for such FGM plates is determined and the first order shear deformation theory based on exact neutral surface position is employed here. The present model is compared with the conventional mid-surface based formulation, which uses extension-bending coupling matrix to include the noncoincidence of neutral surface with the geometric mid-surface for unsymmetric plates. The nonlinear governing equations are solved through Newton Raphson technique. The nonlinear behavior of FGM skew plates under compressive and tensile in-plane load are examined considering different system parameters such as constituent gradient index, boundary condition, thickness-to-span ratio and skew angle.

  16. Microstructure evolution and tribological properties of acrylonitrile-butadiene rubber surface modified by atmospheric plasma treatment

    Science.gov (United States)

    Shen, Ming-xue; Zhang, Zhao-xiang; Peng, Xu-dong; Lin, Xiu-zhou

    2017-09-01

    For the purpose of prolonging the service life for rubber sealing elements, the frictional behavior of acrylonitrile-butadiene rubber (NBR) surface by dielectric barrier discharge plasma treatments was investigated in this paper. Surface microstructure and chemical composition were measured by atomic force microscopy, field-emission scanning electron microscopy, and X-ray photoelectron spectroscopy, respectively. Water contact angles of the modified rubber surface were also measured to evaluate the correlation between surface wettability and tribological properties. The results show that plasma treatments can improve the properties of the NBR against friction and wear effectively, the surface microstructure and roughness of plasma-modified NBR surface had an important influence on the surface tribological behavior, and the wear depth first decreased and then increased along with the change of plasma treatment time. It was found that the wettability of the modified surface was gradually improved, which was mainly due to the change of the chemical composition after the treatment. This study suggests that the plasma treatment could effectively improve the tribological properties of the NBR surface, and also provides information for developing wear-resistant NBR for industrial applications.

  17. Tuning antimicrobial properties of biomimetic nanopatterned surfaces.

    Science.gov (United States)

    Michalska, Martyna; Gambacorta, Francesca; Divan, Ralu; Aranson, Igor S; Sokolov, Andrey; Noirot, Philippe; Laible, Philip D

    2018-04-05

    Nature has amassed an impressive array of structures that afford protection from microbial colonization/infection when displayed on the exterior surfaces of organisms. Here, controlled variation of the features of mimetics derived from etched silicon allows for tuning of their antimicrobial efficacy. Materials with nanopillars up to 7 μm in length are extremely effective against a wide range of microbial species and exceed the performance of natural surfaces; in contrast, materials with shorter/blunter nanopillars (<2 μm) selectively killed specific species. Using a combination of microscopies, the mechanisms by which bacteria are killed are demonstrated, emphasizing the dependence upon pillar density and tip geometry. Additionally, real-time imaging reveals how cells are immobilized and killed rapidly. Generic or selective protection from microbial colonization could be conferred to surfaces [for, e.g., internal medicine, implants (joint, dental, and cosmetic), food preparation, and the agricultural industry] patterned with these materials as coatings.

  18. Structural and electronic properties of hydrosilylated silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Baumer, A.

    2005-11-15

    The structural and electronic properties of alkyl-terminated Si surfaces prepared by thermallyinduced hydrosilylation have been studied in detail in the preceding chapters. Various surfaces have been used for the functionalization ranging from crystalline Si over amorphous hydrogenated Si to nanoscaled materials such as Si nanowires and nanoparticles. In each case, the alkyl-terminated surfaces have been compared to the native oxidized and H-terminated surfaces. (orig.)

  19. Composition and physical properties of Enceladus' surface

    Science.gov (United States)

    Brown, R.H.; Clark, R.N.; Buratti, B.J.; Cruikshank, D.P.; Barnes, J.W.; Mastrapa, R.M.E.; Bauer, J.; Newman, S.; Momary, T.; Baines, K.H.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Combes, M.; Coradini, A.; Drossart, P.; Formisano, V.; Jaumann, R.; Langavin, Y.; Matson, D.L.; McCord, T.B.; Nelson, R.M.; Nicholson, P.D.; Sicardy, B.; Sotin, Christophe

    2006-01-01

    Observations of Saturn's satellite Enceladus using Cassini's Visual and Infrared Mapping Spectrometer instrument were obtained during three flybys of Enceladus in 2005. Enceladus' surface is composed mostly of nearly pure water ice except near its south pole, where there are light organics, CO2, and amorphous and crystalline water ice, particularly in the region dubbed the "tiger stripes." An upper limit of 5 precipitable nanometers is derived for CO in the atmospheric column above Enceladus, and 2% for NH 3 in global surface deposits. Upper limits of 140 kelvin (for a filled pixel) are derived for the temperatures in the tiger stripes.

  20. Manganese phospate physical chemistry and surface properties

    International Nuclear Information System (INIS)

    Najera R, N.; Romero G, E. T.

    2008-01-01

    This paper presents the methodology for the manganese phosphate (III) synthesis (MnP0 4 H 2 0) from manganese chloride. The physicochemical characterization was carried out by: X-ray diffraction, scanning electron microscopy, infrared analysis and thermal gravimetric analysis. The surface characterization is obtained through the determination of surface area, point of zero charge and kinetics of moisture. As a phosphate compound of a metal with low oxidation state is a promising compound for removal pollutants from water and soil, can be used for the potential construction of containment barriers for radioactive wastes. (Author)

  1. Surface properties of topological insulator Bi2Se3 nanoparticles separated by impedance spectroscopy

    Science.gov (United States)

    Choi, Dong Min; Lee, Kyu Won; Jeon, Gi Wan; Kim, Do Wan; Lee, Cheol Eui

    2017-06-01

    We have separated the surface and bulk electrical properties of the Bi2Se3 nanoparticles by means of impedance spectroscopy. An equivalent circuit analysis of the complex impedance data comprising two separate resistance components, RB and RS, and two separate inductance components, LB and LS, enabled us to separate the bulk and surface properties of the topological insulator. One of the resistance components, RS, attributed to the surface, showed no temperature dependence, whereas the other, RB, attributed to the bulk, showed a weak metallic behavior. With increasing surface-to-bulk ratio by mixing with insulating Al2O3 nanoparticles up to the ratio of 1:1, the surface resistivity showed decrease up to ˜70%, whereas the bulk resistivity showed increase up to ˜150%. While the bulk state showed increasing electrical resistivity up to 200% with aging up to 30 days, the surface state resistivity did not show an aging effect.

  2. surface properties of electrochemically reduced viscose rayon ...

    African Journals Online (AJOL)

    DJFLEX

    A viscose rayon based activated carbon cloth (ACC) was electrochemically reduced under a wide ... Electrochemical reduction resulted in a loss of 28% BET surface .... electrodes. As shown in. Figure 1. Schematic of the electrochemical cell used for electrochemical reduction. Figure 1, the anodes were placed at equal.

  3. SURFACE PROPERTIES AND CATALYTIC PERFORMANCE OF Pt ...

    African Journals Online (AJOL)

    Perovskite-type La2 –xSrxCoO4 mixed oxides have been prepared by calcination at various temperatures of precipitates obtained from aqueous solutions in the presence of citric or ethylenediamintetraacetic (EDTA) acids, and have been studied by X-ray diffraction (XRD), surface area (BET) measurements, temperature ...

  4. Wetting Properties of Molecularly Rough Surfaces

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Martin; Malijevský, Alexandr; Lísal, Martin

    2015-01-01

    Roč. 143, č. 10 (2015), s. 104701 ISSN 0021-9606 R&D Projects: GA ČR GA13-09914S; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : contant-angle * solid-surface * dynamics Subject RIV: BJ - Thermodynamics Impact factor: 2.894, year: 2015

  5. [Biological properties of Lactobacillus surface proteins].

    Science.gov (United States)

    Buda, Barbara; Dylus, Ewa; Górska-Frączek, Sabina; Brzozowska, Ewa; Gamian, Andrzej

    2013-04-04

    Lactobacillus, a genus of Gram-positive bacteria, includes many strains of probiotic microflora. Probiotics, by definition, are living microorganisms that exert beneficial effects on the host organism. The morphology and physiology of the Lactobacillus bacterial genus are described. The structure of the cell wall of Gram-positive bacteria is discussed. The surface S-layer of Lactobacillus composed of proteins (SLP) with low molecular mass is presented. Cell surface proteins participating in the regulation of growth and survival of the intestinal epithelium cells are characterized. The influence of stress factors such as increased temperature, pH, and enzymes of gastric and pancreatic juice on SLP expression is described. The ability of binding of heavy metal ions by S-layer proteins is discussed. The characteristics of these structures, including the ability to adhere to epithelial cells, and the inhibition of invasion of pathogenic microflora of type Shigella, Salmonella, Escherichia coli and Clostridium and their toxins, are presented. 

  6. Sputtering properties of tungsten 'fuzzy' surfaces

    International Nuclear Information System (INIS)

    Nishijima, D.; Baldwin, M.J.; Doerner, R.P.; Yu, J.H.

    2011-01-01

    Sputtering yields of He-induced W 'fuzzy' surfaces bombarded by Ar have been measured in the linear divertor plasma simulator PISCES-B. It is found that the sputtering yield of a fuzzy surface, Y fuzzy , decreases with increasing fuzzy layer thickness, L, and saturates at ∼10% of that of a smooth surface, Y smooth , at L > 1 μm. The reduction in the sputtering yield is suspected to be due mainly to the porous structure of fuzz, since the ratio, Y fuzzy /Y smooth follows (1 - p fuzz ), where p fuzz is the fuzz porosity. Further, Y fuzzy /Y smooth is observed to increase with incident ion energy, E i . This may be explained by an energy dependent change in the angular distribution of sputtered W atoms, since at lower E i , the angular distribution is observed to become more butterfly-shaped. That is, a larger fraction of sputtered W atoms can line-of-sight deposit/stick onto neighboring fuzz nanostructures for lower E i butterfly distributions, resulting in lower ratio of Y fuzzy /Y smooth .

  7. Surface conditions and viscoelastic properties of the denture liner Permaflex.

    Science.gov (United States)

    Buch, D; Beal, Y

    1995-01-01

    This in vitro study evaluated the viscoelastic properties of Permaflex compared to other soft lining materials. The surface condition of this material was also investigated under both laboratory and simulated clinical conditions and with and without the application of a varnish. The tests provided practical instructions for the use of Permaflex, which showed good adaptive properties to stress and surface condition initially and after adjustment.

  8. Crystal structures, Hirshfeld surface analysis, thermal behavior and dielectric properties of a new organic-inorganic hybrid [C6H10(NH3)2]Cu2Cl8

    Science.gov (United States)

    Salah, Najet; Hamdi, Besma; Bouzidia, Nabaa; Salah, Abdelhamid Ben

    2017-12-01

    A novel organic-inorganic hybrid sample [C6H10(NH3)2]Cu2Cl8 has been prepared under mild hydrothermal conditions and characterized by single crystal X-ray diffraction, Hirshfeld surface analysis, FT-IR,NMR and UV-Vis spectroscopies, differential scanning calorimetric and dielectric measurement. It is crystallized in the monoclinic system with P21/c space group. The cohesion and stabilization of the structure are provided by the hydrogen bond interactions, (Nsbnd H⋯Cl and Csbnd H⋯Cl), between [C6H10(NH3)2]2+ cation and [Cu2Cl8]2- anion. The Hirschfeld surface analysis has been performed to explore the behavior of these weak interactions. The presence of different functional groups and the nature of their vibrations were identified by FT-IR and Solid state NMR. The thermal study revealed that this compound undergoes two structural phase transitions around 353 and 376 K. Electrical measurements of our compounds have been investigated using complex impedance spectroscopy (CIS) in the frequency and temperature range 331-399 K and 200 Hz-5 MHz, respectively. The AC conductivity is explained using the correlated barrier hopping model (CBH) conduction mechanism. The nature of DC conductivity variation suggests Arrhenius type of electrical conductivity. A relationship between crystal structure and ionic conductivity was established and discussed. Finally, the real and imaginary parts of the permittivity constant are analyzed with the Cole-Cole formalism and the optical spectra indicate that the compound has a direct band gap (3.14 eV) due to direct transition. The wide band gap is due to low defect concentration in the grown crystal, which is more useful for the laser/optical applications.

  9. Self-generation of colligative properties at hydrophilic surfaces

    OpenAIRE

    Chaplin, Martin

    2012-01-01

    The generally accepted view of osmotic pressure is that it is a colligative property, along with freezing point depression, boiling point elevation and vapour pressure lowering. These properties ideally depend on the concentration of dissolved solute molecules. Osmotic pressure, however, is also generated, without any solute, at hydrophilic surfaces. Here is presented a rationale and explanation for this phenomenon.

  10. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, Wilma K.; Datta, Rabin; Talma, Auke; Noordermeer, Jacobus W.M.; van Ooij, W.J.

    2009-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  11. Tailoring Silica Surface Properties by Plasma Polymerization for Elastomer Applications

    NARCIS (Netherlands)

    Tiwari, M.; Dierkes, W.K.; Datta, R.N.; Talma, A.G.; Noordermeer, J.W.M.; van Ooij, W.J.

    2011-01-01

    The surface properties of reinforcing fillers are a crucial factor for dispersion and filler–polymer interaction in rubber compounds, as they strongly influence the final vulcanized properties of the rubber article. Silica is gaining more and more importance as reinforcing filler for rubbers, as it

  12. Theoretical studies of mutual diffusivities and surface properties in ...

    Indian Academy of Sciences (India)

    properties, thus underlining the importance of thermodynamic studies for liquid binary alloys. In this study, the transport and surface properties of Cd–Ga liquid alloys are determined from energetics and derivatives from experimental thermodynamic data. Cd–Ga alloys have been studied by many authors [14–16]. The alloy ...

  13. Electrostatic behavior of the charge-regulated bacterial cell surface.

    Science.gov (United States)

    Hong, Yongsuk; Brown, Derick G

    2008-05-06

    The electrostatic behavior of the charge-regulated surfaces of Gram-negative Escherichia coli and Gram-positive Bacillus brevis was studied using numerical modeling in conjunction with potentiometric titration and electrophoretic mobility data as a function of solution pH and electrolyte composition. Assuming a polyelectrolytic polymeric bacterial cell surface, these experimental and numerical analyses were used to determine the effective site numbers of cell surface acid-base functional groups and Ca(2+) sorption coefficients. Using effective site concentrations determined from 1:1 electrolyte (NaCl) experimental data, the charge-regulation model was able to replicate the effects of 2:1 electrolyte (CaCl(2)), both alone and as a mixture with NaCl, on the measured zeta potential using a single Ca(2+) surface binding constant for each of the bacterial species. This knowledge is vital for understanding how cells respond to changes in solution pH and electrolyte composition as well as how they interact with other surfaces. The latter is especially important due to the widespread use of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory in the interpretation of bacterial adhesion. As surface charge and surface potential both vary on a charge-regulated surface, accurate modeling of bacterial interactions with surfaces ultimately requires use of an electrostatic model that accounts for the charge-regulated nature of the cell surface.

  14. Surface properties and microporosity of polyhydroxybutyrate under scanning electron microscopy

    International Nuclear Information System (INIS)

    Raouf, A.A.; Samsudin, A.R.; Samian, R.; Akool, K.; Abdullah, N.

    2004-01-01

    This study was designed to investigate the surface properties especially surface porosity of polyhydroxybutyrate (PHB) using scanning electron microscopy. PHB granules were sprinkled on the double-sided sticky tape attached on a SEM aluminium stub and sputtered with gold (10nm thickness) in a Polaron SC515 Coater, following which the samples were placed into the SEM specimen chamber for viewing and recording. Scanning electron micrographs with different magnification of PHB surface revealed multiple pores with different sizes. (Author)

  15. Effects of surface treatment on the properties of UV coating

    OpenAIRE

    Guo, Xiaolei; Li, Rongrong; Teng, Yu; Cao, Pingxiang; Wang, Xiaodong (Alice); Ji, Futang

    2015-01-01

    The influence of the surface treatment of raw medium-density fiberboard on the properties of 1st ultraviolet putty coating film and the effects of primer coating arrangement on the qualities of 1st ultraviolet primer film were investigated. With regard to surface roughness and the recorded adhesion of the coating film, there were significant variations when the surface treatment was modified or when the coating arrangement was changed. The findings led to the conclusion that there was a close...

  16. Geographic, seasonal, and diurnal surface behavior of harbor porpoises

    DEFF Research Database (Denmark)

    Teilmann, Jonas; Christiansen, C.T.; Kjellerup, Sanne

    2013-01-01

    are essential information on the status and management of the species. Thirty-five free-ranging harbor porpoises (Phocoena phocoena) were tracked in the region between the Baltic and the North Sea for 25-349 d using Argos satellite transmitters. No differences were found in surface behavior between geographical...... areas or the size of the animals. Slight differences were found between the two sexes and time of day. Surface time peaked in April, where 6% was spent with the transmitter above surface and 61.5% between 0 and 2 m depth, while the minimum values occurred in February (3.4% and 42.5%, respectively......). The analyses reveal that individual variation among porpoises is the most important factor in explaining variation in surface rates. However, the large number of animals documented in the present study covering a wide range of age and sex groups justifies the use of the seasonal average surface times...

  17. Droplet impact behavior on heated micro-patterned surfaces

    Science.gov (United States)

    Zhang, Wenbin; Yu, Tongxu; Fan, Jing; Sun, Weijie; Cao, Zexian

    2016-03-01

    Impact behavior of droplets on a surface is an intriguing research topic, and its control should be very useful in diverse industrial applications. We investigated the impact behavior of water droplets on the textured and chemically treated surface of silicon and obtained the impact mode map on the parameter plane subtended by the Weber number (up to 85) and temperature (up to 320 °C). The patterns comprise of micropillars (14 μm in height) in square lattice with a lattice constant of 10 and 20 μm, and the surface was further made superhydrophobic by coating with graphene nanosheets. Six distinct impact modes are identified. It was found that the impact mode map can be dramatically altered by modifying the texture and chemistry of the surface, and the observations are well explained with regard to heat transfer, vapor/bubble generation and vapor flow beneath the droplet. Instability in the droplet arising from the mismatch between vapor generation rate and exhaust conditions is the dominant factor in determining the impact mode. Our results revealed more facts and features of the droplet impact phenomenon and can be very useful for target-oriented surface design towards precise control of droplet impact behavior on heated substrates.

  18. Tribological behaviors of UHMWPE composites with different counter surface morphologies

    Science.gov (United States)

    Wang, Yanzhen; Yin, Zhongwei; Li, Hulin; Gao, Gengyuan

    2017-12-01

    The influence of counter surface morphologies on hybrid glass fiber (GF) and carbon fiber (CF) filled ultrahigh molecular weight polyethylene (UHMWPE) were studied under various contact pressure and sliding speed against GCr15 steel in dry condition. The goals were to investigate the tribological behavior of GF/CF/UHMWPE composite as a kind of water lubricated journal bearing material. The friction and wear behavior of composites were examined using a pin-on-disc tribometer. The morphologies of the worn surface were examined by scanning electron microscopy (SEM) and laser 3D micro-imaging and profile measurement. Generally, the wear rate and friction coefficient of composites increase as the increment of counter surface roughness. The friction coefficient increases firstly and then decrease with an increase in sliding speed and contact pressure for counterface with Ra=0.2 and 3.5 μm, while the friction coefficient decreased for counterface with Ra=0.6 μm.

  19. Dynamic superhydrophobic behavior in scalable random textured polymeric surfaces

    Science.gov (United States)

    Moreira, David; Park, Sung-hoon; Lee, Sangeui; Verma, Neil; Bandaru, Prabhakar R.

    2016-03-01

    Superhydrophobic (SH) surfaces, created from hydrophobic materials with micro- or nano- roughness, trap air pockets in the interstices of the roughness, leading, in fluid flow conditions, to shear-free regions with finite interfacial fluid velocity and reduced resistance to flow. Significant attention has been given to SH conditions on ordered, periodic surfaces. However, in practical terms, random surfaces are more applicable due to their relative ease of fabrication. We investigate SH behavior on a novel durable polymeric rough surface created through a scalable roll-coating process with varying micro-scale roughness through velocity and pressure drop measurements. We introduce a new method to construct the velocity profile over SH surfaces with significant roughness in microchannels. Slip length was measured as a function of differing roughness and interstitial air conditions, with roughness and air fraction parameters obtained through direct visualization. The slip length was matched to scaling laws with good agreement. Roughness at high air fractions led to a reduced pressure drop and higher velocities, demonstrating the effectiveness of the considered surface in terms of reduced resistance to flow. We conclude that the observed air fraction under flow conditions is the primary factor determining the response in fluid flow. Such behavior correlated well with the hydrophobic or superhydrophobic response, indicating significant potential for practical use in enhancing fluid flow efficiency.

  20. The turmeric protective properties at ethanol-induced behavioral disorders.

    Directory of Open Access Journals (Sweden)

    Goldina I.A.

    2017-03-01

    Full Text Available The aim of the study was to determine the effect of mechanically modified turmeric extract on the parameters of orienting-exploratory behavior in mice with chronic ethanol consumption. Material and methods. Mice behavior was assessed in the "open field" test. In the both control groups the animals received water or 10% ethanol solution; in the test group — turmeric extract in 10% ethanol solution. Amount of blood mononuclear cells, thymocytes, and splenocytes were estimated. Results. Analysis of the behavioral parameters in animals after chronic exposure to ethanol showed suppression of motor and exploratory components of the behavior. In mice that received both ethanol and turmeric extract recorded behavior parameters were significantly higher than in the group of animals who received ethanol only. It was shown that the turmeric extract enhances the amount of blood immune cells. Conclusion. Mechanically modified turmeric extract possesses protective properties against ethanol-induced behavioral disorders.

  1. Investigation of the surface adsorption and biotribological properties of mucins

    DEFF Research Database (Denmark)

    Madsen, Jan Busk

    to a surface. However, in other instances the inverse properties are desirable. Mucins are found on epithelial surfaces throughout the body and are a key component of the mucus barrier. Here, they facilitate friction reduction, thus lowering the impact of physical abrasions, but they also act as a physical...... and their aqueous lubrication properties have led to them being proposed as possible biocompatible lubricants. In this thesis, we investigate the biotribological properties of two commercially available mucins on the soft, elastomeric and hydrophobic surface of PDMS under different conditions. Due to the presence...... of a significant amount of non-mucin biomolecules in the commercial mucins, a mild single column protein purification protocol was established. In the mucin biotribology community, many employ the mucins either “as received” or after dialysis. It was therefore investigated how the established purification process...

  2. Effective modification of particle surface properties using ultrasonic water mist

    DEFF Research Database (Denmark)

    Genina, Natalja; Räikkönen, Heikki; Heinämäki, Jyrki

    2009-01-01

    The goal of the present study was to design a new technique to modify particle surface properties and, through that, to improve flowability of poorly flowing drug thiamine hydrochloride and pharmaceutical sugar lactose monohydrate of two different grades. The powdered particles were supplied...... properties. It was found that rapid exposition of pharmaceutical materials by water mist resulted in the improvement of powder technical properties. The evident changes in flowability of coarser lactose were obviously due to smoothing of particle surface and decreasing in the level of fines with very slight...... increment in particle size. The changes in thiamine powder flow were mainly due to narrowing in particle size distribution where the tendency for better flow of finer lactose was related to surface and size modifications. The aqueous mist application did not cause any alteration of the crystal structures...

  3. Bioadsorption Behavior of Rhodococcus Opacus on the Surface of Calcium and Magnesium Minerals

    Science.gov (United States)

    Li, Hongxu; Zhang, Mingming; Li, Chao; Yang, Xie; Li, An; Zhang, Lifeng

    2015-02-01

    The surface properties of minerals can be influenced and changed by microbial activities when microorganisms adhere to the mineral surface. The change of mineral surface properties and thus mineral floatability can be used to separate gangues from valuable minerals. This study investigated the Rhodococcus opacus ( R. opacus) adsorption behavior on the surfaces of calcite, serpentine, and dolomite by bioadhesive test, contact angle measurements, Zeta potential, Fourier transform infrared spectroscopy (FTIR) spectra, and scanning electron microscopy (SEM). The results showed that R. opacus could be absorbed well onto the surfaces of calcite, serpentine, and dolomite in a few minutes, with adsorption rate up to 96%. The cell adsorption was dependent on the pH value and the most suitable pH is 7.2, whereas no significant influence of temperature on adsorption was found. Increasing pulp density could provide more adsorption sites to R. opacus cells and increase the adsorption rate consequently. The contact angle of three minerals decreased after R. opacus attached, which indicated that the dispersibility of the mineral surface was improved and in favor of being separated. Zeta potential measurements showed that the cell with the charge was opposite to that of minerals on a broad of pH value. The SEM images showed that R. opacus attached very tightly onto the mineral surface, with a large number of small mineral particles gathered around the cell. FTIR spectra showed the presence of polymer groups on the cell wall that could have given a net charge on the mineral surface.

  4. Molecular dynamics for lateral surface adhesion and peeling behavior of single-walled carbon nanotubes on gold surfaces

    International Nuclear Information System (INIS)

    Huang, Pei-Hsing

    2011-01-01

    Highlights: ► Adhesion and peeling behaviors of SWCNTs are investigated by detailed, fully atomistic MD simulations. ► Adhesion energy of SWCNTs are discussed. ► Dynamical behaviors of SWCNTs in low temperature adhesion are analyzed. ► Adhesion strengths of SWCNTs obtained from MD simulations are compared with the predictions of Hamaker theory and JKR model. - Abstract: Functional gecko-inspired adhesives have attracted a lot of research attention in the last decade. In this work, the lateral surface adhesion and normal peeling-off behavior of single-walled carbon nanotubes (SWCNTs) on gold substrates are investigated by performing detailed, fully atomistic molecular dynamics (MD) simulations. The effects of the diameter and adhered length of CNTs on the adhesive properties were systematically examined. The simulation results indicate that adhesion energies between the SWCNTs and the Au surface varied from 220 to 320 mJ m −2 over the reported chirality range. The adhesion forces on the lateral surface and the tip of the nanotubes obtained from MD simulations agree very well with the predictions of Hamaker theory and Johnson–Kendall–Roberts (JKR) model. The analyses of covalent bonds indicate that the SWCNTs exhibited excellent flexibility and extensibility when adhering at low temperatures (∼100 K). This mechanism substantially increases adhesion time compared to that obtained at higher temperatures (300–700 K), which makes SWCNTs promising for biomimetic adhesives in ultra-low temperature surroundings.

  5. Relating Silica Scaling in Reverse Osmosis to Membrane Surface Properties.

    Science.gov (United States)

    Tong, Tiezheng; Zhao, Song; Boo, Chanhee; Hashmi, Sara M; Elimelech, Menachem

    2017-04-18

    We investigated the relationship between membrane surface properties and silica scaling in reverse osmosis (RO). The effects of membrane hydrophilicity, free energy for heterogeneous nucleation, and surface charge on silica scaling were examined by comparing thin-film composite polyamide membranes grafted with a variety of polymers. Results show that the rate of silica scaling was independent of both membrane hydrophilicity and free energy for heterogeneous nucleation. In contrast, membrane surface charge demonstrated a strong correlation with the extent of silica scaling (R 2 > 0.95, p scaling, whereas a more negative membrane surface charge led to reduced scaling. This observation suggests that deposition of negatively charged silica species on the membrane surface plays a critical role in silica scale formation. Our findings provide fundamental insights into the mechanisms governing silica scaling in reverse osmosis and highlight the potential of membrane surface modification as a strategy to reduce silica scaling.

  6. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  7. Different swimming behaviors of sterlet (Acipenser ruthenus) spermatozoa close to solid and free surfaces.

    Science.gov (United States)

    Boryshpolets, S; Cosson, J; Bondarenko, V; Gillies, E; Rodina, M; Dzyuba, B; Linhart, O

    2013-01-01

    Spermatozoa tend to swim near surfaces. Such attraction toward surface vicinity was approximated by the force-dipole theoretical approach and hydrodynamic modeling, but the physical parameters of surfaces have not usually been included in these models and their effect on sperm mobility remains unknown. In spermatozoa, changes in wave parameters, together with rotation around their longitudinal axis and circling appear when movement takes place close to surfaces. Here we show, by analysis of microscopy images (including high-speed video), a strong influence of the liquid-solid interface on sterlet spermatozoa motility characteristics compared with motility near the liquid-gas interface. Sperm cells swam at 16% lower velocity near a liquid-solid interface, rotating at a stable frequency of 25 Hz, each 180° rotation corresponding to one beat cycle and circling clockwise (when observed from top). In case of spermatozoa close to a water-air interface, rotation and circling were sporadic and irregular. Sterlet spermatozoa movement near a surface affects their velocity and possibly causes rotation. These behaviors are highly dependent on the level of suppleness of the interface, as has been previously predicted by modeling. Our results enhance the understanding of how surfaces influence fish spermatozoa motility. These insights on the effects of surfaces on fish spermatozoa motility imply that widely used methods rating sperm motility, such as computer-assisted sperm analysis, might lead to erroneous results. Further study of sperm motility near surfaces is urgently needed to correct our rating methods and better understand sperm behavior in natural conditions. Improved evaluation of sperm motility behavior near surfaces could be used to determine physical properties of aquatic interfaces with various surfaces composed of different materials. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Mechanical Properties and Deformation Behavior of Bulk Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Alexander Yu. Churyumov

    2012-12-01

    Full Text Available Metallic glasses demonstrate unique properties, including large elastic limit and high strength, which make them attractive for practical applications. Unlike crystalline alloys, metallic glasses, in general, do not exhibit a strain hardening effect, while plastic deformation at room temperature is localized in narrow shear bands. Room-temperature mechanical properties and deformation behavior of bulk metallic glassy samples and the crystal-glassy composites are reviewed in the present paper.

  9. The surface properties of biopolymer-coated fruit: A review

    Directory of Open Access Journals (Sweden)

    Diana Cristina Moncayo Martinez

    2013-09-01

    Full Text Available Environmental conservation concerns have led to research and development regarding biodegradable materials from biopolymers, leading to new formulations for edible films and coatings for preserving the quality of fresh fruit and vegetables. Determining fruit skin surface properties for a given coating solution has led to predicting coating efficiency. Wetting was studied by considering spreading, adhesion and cohesion and measuring the contact angle, thus optimising the coating formulation in terms of biopolymer, plasticiser, surfactant, antimicrobial and antioxidant concentration. This work reviews the equations for determining fruit surface properties by using polar and dispersive interaction calculations and by determining the contact angle.

  10. Properties of water surface discharge at different pulse repetition rates

    International Nuclear Information System (INIS)

    Ruma,; Yoshihara, K.; Hosseini, S. H. R.; Sakugawa, T.; Akiyama, H.; Akiyama, M.; Lukeš, P.

    2014-01-01

    The properties of water surface discharge plasma for variety of pulse repetition rates are investigated. A magnetic pulse compression (MPC) pulsed power modulator able to deliver pulse repetition rates up to 1000 Hz, with 0.5 J per pulse energy output at 25 kV, was used as the pulsed power source. Positive pulse with a point-to-plane electrode configuration was used for the experiments. The concentration and production yield of hydrogen peroxide (H 2 O 2 ) were quantitatively measured and orange II organic dye was treated, to evaluate the chemical properties of the discharge reactor. Experimental results show that the physical and chemical properties of water surface discharge are not influenced by pulse repetition rate, very different from those observed for under water discharge. The production yield of H 2 O 2 and degradation rate per pulse of the dye did not significantly vary at different pulse repetition rates under a constant discharge mode on water surface. In addition, the solution temperature, pH, and conductivity for both water surface and underwater discharge reactors were measured to compare their plasma properties for different pulse repetition rates. The results confirm that surface discharge can be employed at high pulse repetition rates as a reliable and advantageous method for industrial and environmental decontamination applications.

  11. BIOPHYSICAL PROPERTIES OF NUCLEIC ACIDS AT SURFACES RELEVANT TO MICROARRAY PERFORMANCE

    Science.gov (United States)

    Rao, Archana N.; Grainger, David W.

    2014-01-01

    Both clinical and analytical metrics produced by microarray-based assay technology have recognized problems in reproducibility, reliability and analytical sensitivity. These issues are often attributed to poor understanding and control of nucleic acid behaviors and properties at solid-liquid interfaces. Nucleic acid hybridization, central to DNA and RNA microarray formats, depends on the properties and behaviors of single strand (ss) nucleic acids (e.g., probe oligomeric DNA) bound to surfaces. ssDNA’s persistence length, radius of gyration, electrostatics, conformations on different surfaces and under various assay conditions, its chain flexibility and curvature, charging effects in ionic solutions, and fluorescent labeling all influence its physical chemistry and hybridization under assay conditions. Nucleic acid (e.g., both RNA and DNA) target interactions with immobilized ssDNA strands are highly impacted by these biophysical states. Furthermore, the kinetics, thermodynamics, and enthalpic and entropic contributions to DNA hybridization reflect global probe/target structures and interaction dynamics. Here we review several biophysical issues relevant to oligomeric nucleic acid molecular behaviors at surfaces and their influences on duplex formation that influence microarray assay performance. Correlation of biophysical aspects of single and double-stranded nucleic acids with their complexes in bulk solution is common. Such analysis at surfaces is not commonly reported, despite its importance to microarray assays. We seek to provide further insight into nucleic acid-surface challenges facing microarray diagnostic formats that have hindered their clinical adoption and compromise their research quality and value as genomics tools. PMID:24765522

  12. Surface plasma functionalization influences macrophage behavior on carbon nanowalls

    Energy Technology Data Exchange (ETDEWEB)

    Ion, Raluca [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Vizireanu, Sorin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Stancu, Claudia Elena [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Luculescu, Catalin [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania); Cimpean, Anisoara, E-mail: anisoara.cimpean@bio.unibuc.ro [University of Bucharest, Department of Biochemistry and Molecular Biology, 91-95 Spl. Independentei, 050095 Bucharest (Romania); Dinescu, Gheorghe [National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor, PO Box MG-36, 077125, Magurele, Bucharest (Romania)

    2015-03-01

    The surfaces of carbon nanowall samples as scaffolds for tissue engineering applications were treated with oxygen or nitrogen plasma to improve their wettability and to functionalize their surfaces with different functional groups. X-ray photoelectron spectroscopy and water contact angle results illustrated the effective conversion of the carbon nanowall surfaces from hydrophobic to hydrophilic and the incorporation of various amounts of carbon, oxygen and nitrogen functional groups during the treatments. The early inflammatory responses elicited by un-treated and modified carbon nanowall surfaces were investigated by quantifying tumor necrosis factor-alpha and macrophage inflammatory protein-1 alpha released by attached RAW 264.7 macrophage cells. Scanning electron microscopy and fluorescence studies were employed to investigate the changes in macrophage morphology and adhesive properties, while MTT assay was used to quantify cell proliferation. All samples sustained macrophage adhesion and growth. In addition, nitrogen plasma treatment was more beneficial for cell adhesion in comparison with un-modified carbon nanowall surfaces. Instead, oxygen plasma functionalization led to increased macrophage adhesion and spreading suggesting a more activated phenotype, confirmed by elevated cytokine release. Thus, our findings showed that the chemical surface alterations which occur as a result of plasma treatment, independent of surface wettability, affect macrophage response in vitro. - Highlights: • N{sub 2} and O{sub 2} plasma treatments alter the CNW surface chemistry and wettability. • Cells seeded on CNW scaffolds are viable and metabolically active. • Surface functional groups, independent of surface wettability, affect cell response. • O{sub 2} plasma treatment of CNW leads to a more activated macrophage phenotype.

  13. Influence of surface roughness on the friction property of textured surface

    OpenAIRE

    Yuankai Zhou; Hua Zhu; Wenqian Zhang; Xue Zuo; Yan Li; Jianhua Yang

    2015-01-01

    In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in ...

  14. Ergodic properties and thermodynamic behavior of elementary reversible cellular automata. I. Basic properties

    International Nuclear Information System (INIS)

    Takesue, Shinji

    1989-01-01

    This is the first part of a series devoted to the study of thermodynamic behavior of large dynamical systems with the use of a family of full-discrete and conservative models named elementary reversible cellular automata (ERCAs). In this paper, basic properties such as conservation laws and phase space structure are investigated in preparation for the later studies. ERCAs are a family of one-dimensional reversible cellular automata having two Boolean variables on each site. Reflection and Boolean conjugation symmetries divide them into 88 equivalence classes. For each rule, additive conserved quantities written in a certain form are regarded as a kind of energy, if they exist. By the aid of the discreteness of the variables, every ERCA satisfies the Liouville theorem or the preservation of phase space volume. Thus, if an energy exists in the above sense, statistical mechanics of the model can formally be constructed. If a locally defined quantity is conserved, however, it prevents the realization of statistical mechanics. The existence of such a quantity is examined for each class and a number of rules which have at least one energy but no local conservation laws are selected as hopeful candidates for the realization of thermodynamic behavior. In addition, the phase space structure of ERCAs is analyzed by enumerating cycles exactly in the phase space for systems of comparatively small sizes. As a result, it is revealed that a finite ERCA is not ergodic, that is, a large number of orbits coexist on an energy surface. It is argued that this fact does not necessarily mean the failure of thermodynamic behavior on the basis of an analogy with the ergodic nature of infinite systems

  15. Effect of surface oxidation on thermomechanical behavior of NiTi shape memory alloy wire

    Science.gov (United States)

    Ng, Ching Wei; Mahmud, Abdus Samad

    2017-12-01

    Nickel titanium (NiTi) alloy is a unique alloy that exhibits special behavior that recovers fully its shape after being deformed to beyond elastic region. However, this alloy is sensitive to any changes of its composition and introduction of inclusion in its matrix. Heat treatment of NiTi shape memory alloy to above 600 °C leads to the formation of the titanium oxide (TiO2) layer. Titanium oxide is a ceramic material that does not exhibit shape memory behaviors and possess different mechanical properties than that of NiTi alloy, thus disturbs the shape memory behavior of the alloy. In this work, the effect of formation of TiO2 surface oxide layer towards the thermal phase transformation and stress-induced deformation behaviors of the NiTi alloy were studied. The NiTi wire with composition of Ti-50.6 at% Ni was subjected to thermal oxidation at 600 °C to 900 °C for 30 and 60 minutes. The formation of the surface oxide layers was characterized by using the Scanning Electron Microscope (SEM). The effect of surface oxide layers with different thickness towards the thermal phase transformation behavior was studied by using the Differential Scanning Calorimeter (DSC). The effect of surface oxidation towards the stress-induced deformation behavior was studied through the tensile deformation test. The stress-induced deformation behavior and the shape memory recovery of the NiTi wire under tensile deformation were found to be affected marginally by the formation of thick TiO2 layer.

  16. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  17. Enhancement of surface properties for coal beneficiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Chander, S.; Aplan, F.F.

    1992-01-30

    This report will focus on means of pyrite removal from coal using surface-based coal cleaning technologies. The major subjects being addressed in this study are the natural and modulated surface properties of coal and pyrite and how they may best be utilized to facilitate their separation using advanced surface-based coal cleaning technology. Emphasis is based on modified flotation and oil agglomerative processes and the basic principles involved. The four areas being addressed are: (1) Collectorless flotation of pyrite; (2) Modulation of pyrite and coal hydrophobicity; (3) Emulsion processes and principles; (4) Evaluation of coal hydrophobicity.

  18. Statistical behavior of the tensile property of heated cotton fiber

    Science.gov (United States)

    The temperature dependence of the tensile property of single cotton fiber was studied in the range of 160-300°C using Favimat test, and its statistical behavior was interpreted in terms of structural changes. The tenacity of control cotton fiber was well described by the single Weibull distribution,...

  19. Behavioral effects of Euphorbia hirta L.: sedative and anxiolytic properties.

    Science.gov (United States)

    Lanhers, M C; Fleurentin, J; Cabalion, P; Rolland, A; Dorfman, P; Misslin, R; Pelt, J M

    1990-05-01

    Lyophilised aqueous extract of Euphorbia hirta L. (Euphorbiaceae) has been evaluated for behavioral effects in mice. The extract did not induce any toxic effect when it was administered i.p. and orally. Sedative properties could be confirmed with high doses (100 mg of dried plant/kg, and more), by a decrease of behavioral parameters measured in non-familiar environment tests (activitest and staircase test), whereas anticonflict effects appeared at lower doses (12.5 and 25 mg of dried plant/kg), by an enhancement of behavioral parameters measured in the staircase test and in the light/dark choice situation test. These findings validate the traditional use of E. hirta as a sedative and reveal original anxiolytic properties.

  20. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients.

    Science.gov (United States)

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-21

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.

  1. Peculiar surface behavior of some ionic liquids based on active pharmaceutical ingredients

    Science.gov (United States)

    Restolho, José; Mata, José Luis; Saramago, Benilde

    2011-02-01

    The ionic liquids based on biologically active cations and anions, commonly designated by ionic liquids based on active pharmaceutical ingredients (ILs-APIs), are interesting compounds for use in pharmaceutical applications. Lidocaine docusate, ranitidine docusate, and didecyldimethylammonium ibuprofen are examples of promising ILs-APIs that were recently synthesized. They were submitted to biological testing and calorimetric measurements, but nothing is known about their surface properties. In this work, we measured the surface tension and the contact angles on both hydrophilic and hydrophobic surfaces in a temperature range as wide as possible. Based on the wettability data, the polarity fractions were estimated using the Fowkes theory. The peculiar surface behavior observed was tentatively attributed to the presence of mesophases.

  2. Laser alloying of aluminium to improve surface properties - MSSA 2010

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-07-01

    Full Text Available Aluminium is vastly used in industry due to its low cost, light weight and excellent workability, but lacks in wear resistance and hardness. Laser alloying is used to improve the surface properties such as hardness by modifying the composition...

  3. Behavior of a Liquid Bridge between Nonparallel Hydrophobic Surfaces.

    Science.gov (United States)

    Ataei, Mohammadmehdi; Chen, Huanchen; Amirfazli, Alidad

    2017-12-26

    When a liquid bridge is formed between two nonparallel identical surfaces, it can move along the surfaces. Literature indicates that the direction of bridge movement is governed by the wettability of surfaces. When the surfaces are hydrophilic, the motion of the bridge is always toward the cusp (intersection of the plane of the two bounding surfaces). On the other hand, the movement is hitherto thought to be always pointing away from the cusp when the surfaces are hydrophobic. In this study, through experiments, numerical simulations, and analytical reasoning, we demonstrate that for hydrophobic surfaces, wettability is not the only factor determining the direction of the motion. A new geometrical parameter, i.e., confinement (cf), was defined as the ratio of the distance of the farthest contact point of the bridge to the cusp, and that of the closest contact point to the cusp. The direction of the motion depends on the amount of confinement (cf). When the distance between the surfaces is large (resulting in a small cf), the bridge tends to move toward the cusp through a pinning/depinning mechanism of contact lines. When the distance between the surfaces is small (large cf), the bridge tends to move away from the cusp. For a specific system, a maximum cf value (cf max ) exists. A sliding behavior (i.e., simultaneous advancing on the wider side and receding on the narrower side) can also be seen when a liquid bridge is compressed such that the cf exceeds the cf max . Contact angle hysteresis (CAH) is identified as an underpinning phenomenon that together with cf fundamentally explains the movement of a trapped liquid between two hydrophobic surfaces. If there is no CAH, however, i.e., the case of ideal hydrophobic surfaces, the cf will be a constant; we show that the bridge slides toward the cusp when it is stretched, while it slides away from the cusp when it is compressed (note sliding motion is different from motion due to pinning/depinning mechanism of contact

  4. Experimental Analysis of Grease Friction Properties on Sliding Textured Surfaces

    Directory of Open Access Journals (Sweden)

    Xijun Hua

    2017-10-01

    Full Text Available There is comprehensive work on the tribological properties and lubrication mechanisms of oil lubricant used on textured surfaces, however the use of grease lubrication on textured surfaces is rather new. This research article presents an experimental study of the frictional behaviours of grease lubricated sliding contact under mixed lubrication conditions. The influences of surface texture parameters on the frictional properties were investigated using a disc-on-ring tribometer. The results showed that the friction coefficient is largely dependent on texture parameters, with higher and lower texture density resulting in a higher friction coefficient at a fixed texture depth. The sample with texture density of 15% and texture depth of 19 μm exhibited the best friction properties in all experimental conditions because it can store more grease and trap wear debris. The reduction of friction is mainly attributable to the formation of a stable grease lubrication film composed of oil film, transfer film and deposited film, and the hydrodynamic pressure effect of the surface texture, which increases the mating gap and reduces the probability of asperity contact. This result will help in understanding the tribological behaviour of grease on a textured surface and in predicting the lubrication conditions of sliding bearings for better operation in any machinery.

  5. Study of surface tension and surface properties of binary alcohol/n-alkyl acetate mixtures.

    Science.gov (United States)

    Rafati, Amir Abbas; Ghasemian, Ensieh

    2008-12-15

    The Butler equation is employed to describe quantitatively the nature, properties, and compositions of surface layers in binary liquid mixtures. Bulk mole fraction, surface molar area, and surface tension of pure components are necessary inputs for this equation. In addition, the UNIFAC group contribution method is applied to account for the nonideality of the bulk liquid as well as that of the surface layer. The average relative error obtained from the comparison of experimental and calculated surface tension values for 12 binary systems is less than 1%. Therefore, the model has good accuracy in comparison with other predictive equations. In addition to finding more information about the surface structure of binary mixtures, surface mole fraction was calculated using relative Gibbs adsorption values and an extended Langmuir model (EL). The obtained results show a good consistency between two models employed, i.e., the Gibbs adsorption model and EL model, based on the UNIFAC method.

  6. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  7. Electron beam irradiation effects on the mechanical, thermal and surface properties of a fluoroelastomer

    International Nuclear Information System (INIS)

    Giovedi, Claudia; Pino, Eddy Segura; Rossi, Marcelo Rabello; Machado, Luci Diva Brocardo

    2007-01-01

    Fluoroelastomer can be used as a sealing material for different purposes. The aim of this work is the evaluation of the effects of the ionizing radiation of an electron beam (EB) on the mechanical, thermal and surface properties of a commercial fluoroelastomer containing carbon black and inorganic fillers. The material was irradiated with overall doses between 10 and 250 kGy. Tensile strength (stress and strain at break), hardness (Shore A) and compression set were evaluated. Thermal behavior was evaluated by thermogravimetric analysis and differential scanning calorimetry. Surface modifications were inspected using scanning electron microscopy (SEM) and optical microscopy. The experiments have shown that EB irradiation promotes beneficial changes in the fluoroelastomer tensile strength behavior while compression set remain constant and the glass transition temperature increases. The SEM micrographs have shown compactness in the irradiated samples, although optical observations showed no surface morphology changes

  8. Structural stability and the electronic and magnetic properties of ferrimagnetic Mn4N(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Takeuchi, Noboru

    2017-01-01

    Highlights: • Surface formation energy calculations demonstrate a N-dependent stability. • The magnetic alignment of these surfaces remains bulk-like, in a ferrimagnetic fashion. • A ferrimagnetic behavior in both structures is confirmed by density of states calculations. - Abstract: We have carried out spin-polarized first principles calculations to describe the surface stability and the electronic and magnetic properties of Mn 4 N(0 0 1) surfaces. Results show two different surface terminations with different N content. The surface formation energies indicate that for manganese rich conditions the most stable structure is a MnN terminated surface. Whereas, from intermediate to nitrogen rich conditions, a MnN terminated surface with excess of nitrogen atoms is the most favorable. The stability of these surfaces can be traced to the formation of Mn–N bonds at the surface. The stable surfaces are Ferrimagnetic along the direction perpendicular to the surface, retaining a bulk-like behavior. However, there is a decrease in the Mn magnetic moments due to the presence of the surface. Density of states shows an asymmetric behavior, inherent of a Ferrimagnetic state. Finally, the surfaces are metallic with the main contributions around the Fermi level coming from the Mn-d orbitals. The knowledge about the atomic arrangements of the Mn 4 N surfaces may serve to explain and understand the formation of more complex and technologically applicable ferromagnetic/ferrimagnetic and antiferromagnetic/ferrimagnetic heterostructures.

  9. Irradiation effects on the mechanical and thermal properties and surface tension of plasticised PVC

    International Nuclear Information System (INIS)

    Bellili, Nadira; Djidjelli, Hocine; Boukerrou, Amar

    2013-01-01

    Irradiation effects on the mechanical and thermal properties and surface tension of plasticised PVC. The mechanical and thermal behavior of 1 mm thick sheets of plasticised PVC after gamma irradiation at doses of 10 and 70 kGy was studied and compared to untreated PVC. The use of gamma irradiation treatment as plasticised PVC induces better mechanical properties, good thermal stability, with an increase in its wettability as compared to untreated PVC. The results showed that gamma irradiation PVC film improved mechanical properties. Young's modulus and tensile strength increased respectively from 297 MPa to 189 and 24 to 28 MPa, respectively, and the ultimate elongation increased from 124 to 154%. The gamma irradiation of the polyvinyl chloride caused significant increase of the surface tension, from 3 mN/m for the unirradiated to 5 to 11 mN/m up to 10 after irradiation at 70 kGy. (authors)

  10. A Method to Simulate the Observed Surface Properties of Proton Irradiated Silicon Strip Sensors

    CERN Document Server

    INSPIRE-00335524; Bhardwaj, A.; Dalal, R.; Eber, R.; Eichhorn, T.; Lalwani, K.; Messineo, A.; Printz, M.; Ranjan, K.

    2015-04-23

    During the scheduled high luminosity upgrade of LHC, the world's largest particle physics accelerator at CERN, the position sensitive silicon detectors installed in the vertex and tracking part of the CMS experiment will face more intense radiation environment than the present system was designed for. To upgrade the tracker to required performance level, extensive measurements and simulations studies have already been carried out. A defect model of Synopsys Sentaurus TCAD simulation package for the bulk properties of proton irradiated devices has been producing simulations closely matching with measurements of silicon strip detectors. However, the model does not provide expected behavior due to the fluence increased surface damage. The solution requires an approach that does not affect the accurate bulk properties produced by the proton model, but only adds to it the required radiation induced properties close to the surface. These include the observed position dependency of the strip detector's charge collec...

  11. High temperature oxidation behavior of AISI 304L stainless steel—Effect of surface working operations

    International Nuclear Information System (INIS)

    Ghosh, Swati; Kumar, M. Kiran; Kain, Vivekanand

    2013-01-01

    Highlights: ► Surface working resulted in thinner oxide on the surface. ► Oxides on machined/ground surfaces richer in Cr, higher in specific resistivity. ► Additional ionic transport process at the metal-oxide for ground sample established. ► Presence of fragmented grains and martensite influenced oxide nature/morphology. - Abstract: The oxidation behavior of grade 304L stainless steel (SS) subjected to different surface finishing (machining and grinding) operations was followed in situ by contact electric resistance (CER) and electrochemical impedance spectroscopy (EIS) measurements using controlled distance electrochemistry (CDE) technique in high purity water (conductivity −1 ) at 300 °C and 10 MPa in an autoclave connected to a recirculation loop system. The results highlight the distinct differences in the oxidation behavior of surface worked material as compared to solution annealed material in terms of specific resistivity and low frequency Warburg impedance. The resultant oxide layer was characterized for (a) elemental analyses by glow discharge optical emission spectroscopy (GDOES) and (b) morphology by scanning electron microscopy (SEM). Oxide layers with higher specific resistivity and chromium content were formed in case of machined and ground conditions. Presence of an additional ionic transport process has also been identified for the ground condition at the metal/oxide interface. These differences in electrochemical properties and distinct morphological features of the oxide layer as a result of surface working were attributed to the prevalence of heavily fragmented grain structure and presence of martensite.

  12. Surface effects and discontinuity behavior in nano-systems composed of Prussian blue analogues

    Science.gov (United States)

    Drissi, L. B.; Zriouel, S.; Bahmad, L.

    2018-04-01

    Magnetic properties and hysteresis loops of a nano-ferrimagnetic surface-bulk Prussian blue analogues (PBA) have been studied by means of Monte Carlo simulations. We have reported the effects of the magnetic and the crystal fields, as well as the intermediate and the bulk couplings, the temperature and the size on the phase diagram, the magnetization, the susceptibility, the hysteresis loops, the critical and the discontinuity temperatures of the model. The thermal dependence of the coercivity and the remanent magnetization are also discussed. This study shows a number of characteristic behaviors, such as the discontinuities in the magnetizations, the existence of Q- and N-types behaviors in the Néel classification nomenclature and the occurrence of single and triple hysteresis loops with high number of step-like plateaus. The obtained results make ferrimagnetic surface-bulk PBA useful for technological applications such as thermo-optical recording.

  13. Effect of surface oxidation on the nm-scale wear behavior of a metallic glass

    International Nuclear Information System (INIS)

    Caron, A.; Louzguine-Luzguin, D. V.; Sharma, P.; Inoue, A.; Shluger, A.; Fecht, H.-J.

    2011-01-01

    Metallic glasses are good candidates for applications in micromechanical systems. With size reduction of mechanical components into the micrometer and submicrometer range, the native surface oxide layer starts playing an important role in contact mechanical applications of metallic glasses. We use atomic force microscopy to investigate the wear behavior of the Ni 62 Nb 38 metallic glass with a native oxide layer and with an oxide grown after annealing in air. After the annealing, the wear rate is found to have significantly decreased. Also the dependency of the specific wear on the velocity is found to be linear in the case of the as spun sample while it follows a power law in the case of the sample annealed in air. We discuss these results in relation to the friction behavior and properties of the surface oxide layer obtained on the same alloy.

  14. [Corrosion resistant properties of different anodized microtopographies on titanium surfaces].

    Science.gov (United States)

    Fangjun, Huo; Li, Xie; Xingye, Tong; Yueting, Wang; Weihua, Guo; Weidong, Tian

    2015-12-01

    To investigate the corrosion resistant properties of titanium samples prepared by anodic oxidation with different surface morphologies. Pure titanium substrates were treated by anodic oxidation to obtain porous titanium films in micron, submicron, and micron-submicron scales. The surface morphologies, coating cross-sectional morphologies, crystalline structures, and surface roughness of these samples were characterized. Electrochemical technique was used to measure the corrosion potential (Ecorr), current density of corrosion (Icorr), and polarization resistance (Rp) of these samples in a simulated body fluid. Pure titanium could be modified to exhibit different surface morphologies by the anodic oxidation technique. The Tafel curve results showed that the technique can improve the corrosion resistance of pure titanium. Furthermore, the corrosion resistance varied with different surface morphologies. The submicron porous surface sample demonstrated the best corrosion resistance, with maximal Ecorr and Rp and minimal Icorr. Anodic oxidation technology can improve the corrosion resistance of pure titanium in a simulated body fluid. The submicron porous surface sample exhibited the best corrosion resistance because of its small surface area and thick barrier layer.

  15. Switching behavior of double-decker single molecule magnets on a metal surface

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yingshuang; Schwoebel, Joerg; Hoffmann, Germar; Brede, Jens; Wiesendanger, Roland [University of Hamburg, Hamburg (Germany); Dillulo, Andrew [Ohio University, Athens (United States); Klyatskaya, Svetlana [Karlsruhe Institute of Technology, Karlsruhe (Germany); Ruben, Mario [Karlsruhe Institute of Technology, Karlsruhe (Germany); Universite de Strasbourg, Strasbourg (France)

    2011-07-01

    Single molecule magnets (SMM) are most promising materials for spin based molecular electronics. Due to their large magnetic anisotropy stabilized by inside chemical bonds, SMM can potentially be used for information storage at the single molecule level. For applications, it is of importance to adsorb the SMM onto surfaces and to study their subsequent conformational, electronic and magnetic properties. We have investigated the adsorption behavior of Tb and Dy based double-decker SMM on an Ir(111) surface with low temperature scanning tunneling microscopy and spectroscopy. It is found that Tb double-decker molecules bind tightly to the Ir(111) surface. By resonantly injecting tunneling electrons into its LUMO or HOMO state, the Tb double-decker molecule can be switched from a four-lobed structure to an eight-lobed structure. After switching, energy positions of the HOMO and LUMO states both shift closer to the Fermi level. Dy double-decker molecules also exhibit the same switching properties on the Ir(111) surface. The switching behavior of the molecules is tentatively attributed to a conformational change of the double-decker molecular frame.

  16. Enhancing the Properties of Carbon and Gold Substrates by Surface Modification

    Energy Technology Data Exchange (ETDEWEB)

    Harnisch, Jennifer Anne [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    The properties of both carbon and gold substrates are easily affected by the judicious choice of a surface modification protocol. Several such processes for altering surface composition have been published in literature. The research presented in this thesis primarily focuses on the development of on-column methods to modify carbon stationary phases used in electrochemically modulated liquid chromatography (EMLC). To this end, both porous graphitic carbon (PGC) and glassy carbon (GC) particles have been modified on-column by the electroreduction of arenediazonium salts and the oxidation of arylacetate anions (the Kolbe reaction). Once modified, the carbon stationary phases show enhanced chromatographic performance both in conventional liquid chromatographic columns and EMLC columns. Additionally, one may also exploit the creation of aryl films to by electroreduction of arenediazonium salts in the creation of nanostructured materials. The formation of mercaptobenzene film on the surface of a GC electrode provides a linking platform for the chemisorption of gold nanoparticles. After deposition of nanoparticles, the surface chemistry of the gold can be further altered by self-assembled monolayer (SAM) formation via the chemisorption of a second thiol species. Finally, the properties of gold films can be altered such that they display carbon-like behavior through the formation of benzenehexathiol (BHT) SAMs. BHT chemisorbs to the gold surface in a previously unprecedented planar fashion. Carbon and gold substrates can be chemically altered by several methodologies resulting in new surface properties. The development of modification protocols and their application in the analytical arena is considered herein.

  17. Investigation of magnetorheological elastomer surface properties by atomic force microscopy

    International Nuclear Information System (INIS)

    Iacobescu, G.E.; Balasoiu, M.; Bica, I.

    2012-01-01

    Magnetorheological elastomers consist of a natural or synthetic rubber matrix interspersed with micron-sized ferromagnetic particles. The magnetoelastic properties of such a composite are not merely a sum of elasticity of the polymer and stiffness and magnetic properties of the filler, but also the result of a complex synergy of several effects, relevant at different length scales and detectable by different techniques. In the present work we investigate the microstructures, the surface magnetic properties and the elastic properties of new isotropic and anisotropic magnetorheological elastomer prepared using silicone rubber and soft magnetic carbonyl iron microspheres. The measurements were performed by atomic force microscopy in the following modes: standard imaging-non-contact atomic force microscopy, magnetic force microscopy and nanoindentation. A comparative study for the samples with different particle concentrations and strength of magnetic field applied during the polymerization process is developed

  18. Surface modification and fatigue behavior of nitinol for load bearing implants

    Science.gov (United States)

    Bernard, Sheldon A.

    Musculoskeletal disorders are recognized amongst the most significant human health problems that exist today. Even though considerable research and development has gone towards understanding musculoskeletal disorders, there is still lack of bone replacement materials that are appropriate for restoring lost structures and functions, particularly for load-bearing applications. Many materials on the market today, such as titanium and stainless steel, suffer from significantly higher modulus than natural bone and low bioactivity leading to stress shielding and implant loosening over longer time use. Nitinol (NiTi) is an equiatomic intermetallic compound of nickel and titanium whose unique biomechanical and biological properties contributed to its increasing use as a biomaterial. An innovative method for creating dense and porous net shape NiTi alloy parts has been developed to improve biological properties while maintaining comparable or better mechanical properties than commercial materials that are currently in use. Laser engineered net shaping (LENS(TM)) and surface electrochemistry modification was used to create dense/porous samples and micro textured surfaces on NiTi parts, respectively. Porous implants are known to promote cell adhesion and have a low elastic modulus, a combination that can significantly increase the life of an implant. However, porosity can significantly reduce the fatigue life of an implant, and very little work has been reported on the fatigue behavior of bulk porous metals, specifically on porous nitinol alloy. High-cycle rotating bending and compression-compression fatigue behavior of porous NiTi fabricated using LENS(TM) were studied. In cyclic compression loading, plastic strain increased with increasing porosity and it was evident that maximum strain was achieved during the first 50000 cycles and remained constant throughout the remaining loading. No failures were observed due to loading up to 150% of the yield strength. When subjected

  19. Contact Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oil-infused Graphite Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Cyuan-Jhang; Li, Yueh-Feng [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Woon, Wei-Yen [Department of Physics, National Central University, Jhongli 320, Taiwan (China); Sheng, Yu-Jane, E-mail: yjsheng@ntu.edu.tw [Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan (China); Tsao, Heng-Kwong, E-mail: hktsao@cc.ncu.edu.tw [Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan (China); Department of Physics, National Central University, Jhongli 320, Taiwan (China)

    2016-11-01

    Highlights: • Contact angle hysteresis(CAH) on four graphitic surfacesisinvestigated. • The hysteresis loopof water drops on the polished graphite sheetshowsparticularly small receding contact angle. • The significant CAH observed on CVD graphene and highly oriented pyrolytic graphite is attributed mainly to adhesion hysteresis. • An oil-infused surface of a graphite sheet is produced by imbibition of hexadecane into its porous structure. • The hysteresis-free property for water drops on such a surface is examined and quantitatively explained. - Abstract: Contact angle hysteresis (CAH) on graphitic surfaces, including chemical vapor deposition (CVD) graphene, reduced electrophoretic deposition (EPD) graphene, highly oriented pyrolytic graphite (HOPG), and polished graphite sheet, has been investigated. The hysteresis loops of water drops on the first three samples are similar but the receding contact angle is particularly small for the polished graphite sheet.The significant CAH observed on CVD graphene and HOPG associated with atom-scale roughness has to be attributed mainly to adhesion hysteresis (surface relaxation), instead of roughness or defects.The difference of the wetting behavior among those four graphitic samples has been further demonstrated by hexadecane drops. On the surface of HOPG or CVD graphene,the contact line expands continuously with time, indicating total wetting for which the contact angle does not exist and contact line pinning disappears. In contrast, on the surface of reduced EPD graphene, spontaneous spreading is halted by spikes on it and partial wetting with small contact angle (θ≈4°) is obtained. On the surface of polished graphite sheet, the superlipophilicity and porous structure are demonstrated by imbibition and capillary rise of hexadecane. Consequently, an oil-infused graphite surface can be fabricated and the ultralow CAH of water (∆θ≈2°) is achieved.

  20. A new approach of tailoring wetting properties of TiO2 nanotubular surfaces

    KAUST Repository

    Isimjan, Tayirjan T.

    2012-11-01

    TiO2 nanotube layers were grown on a Ti surface by electrochemical anodization. As prepared, these layers showed a superhydrophilic wetting behavior. Modified with 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PTES), the layers showed a superhydrophobic behavior. We demonstrate how to change the surface characteristics of the TiO2 nanotube layers in order to achieve any desirable degree of hydrophobicity between 100° to 170°. The treated superhydrophobic TiO2 nanotube layers have an advanced contact angle exceeding 165°, a receding angle more than 155°and a slide angle less than 5°. It is found that the surface morphology of the film which depends on anodization time among other variables, has a great influence on the superhydrophobic properties of the surface after PTES treatment. The hydrodynamic properties of the surface are discussed in terms of both Cassie and Wenzel mechanisms. The layers are characterized with dynamic contact angle measurements, SEM, and XPS analyses. © 2012 American Scientific Publishers.

  1. Behavior of osteoblastic cells cultured on titanium and structured zirconia surfaces

    Science.gov (United States)

    Depprich, Rita; Ommerborn, Michelle; Zipprich, Holger; Naujoks, Christian; Handschel, Jörg; Wiesmann, Hans-Peter; Kübler, Norbert R; Meyer, Ulrich

    2008-01-01

    Background Osseointegration is crucial for the long-term success of dental implants and depends on the tissue reaction at the tissue-implant interface. Mechanical properties and biocompatibility make zirconia a suitable material for dental implants, although surface processings are still problematic. The aim of the present study was to compare osteoblast behavior on structured zirconia and titanium surfaces under standardized conditions. Methods The surface characteristics were determined by scanning electron microscopy (SEM). In primary bovine osteoblasts attachment kinetics, proliferation rate and synthesis of bone-associated proteins were tested on different surfaces. Results The results demonstrated that the proliferation rate of cells was significantly higher on zirconia surfaces than on titanium surfaces (p zirconia and titanium surfaces. Conclusion The study demonstrates distinct effects of the surface composition on osteoblasts in culture. Zirconia improves cell proliferation significantly during the first days of culture, but it does not improve attachment and adhesion strength. Both materials do not differ with respect to protein synthesis or ultrastructural appearance of osteoblasts. Zirconium oxide may therefore be a suitable material for dental implants. PMID:19063728

  2. Surface and subsurface hydrogen: adsorption properties on transition metals and near-surface alloys.

    Science.gov (United States)

    Greeley, Jeff; Mavrikakis, Manos

    2005-03-03

    Periodic, self-consistent DFT-GGA calculations are used to study the thermochemical properties of both surface and subsurface atomic hydrogen on a variety of pure metals and near-surface alloys (NSAs). For surface hydrogen on pure metals, calculated site preferences, adsorption geometries, vibrational frequencies, and binding energies are reported and are found to be in good agreement with available experimental data. On NSAs, defined as alloys wherein a solute is present near the surface of a host metal in a composition different from the bulk composition, surface hydrogen generally binds more weakly than it binds to the pure-metal components composing the alloys. Some of the NSAs even possess the unusual property of binding hydrogen as weakly as the noble metals while, at the same time, dissociating H(2) much more easily. On both NSAs and pure metals, formation of surface hydrogen is generally exothermic with respect to H(2)(g). In contrast, formation of subsurface hydrogen is typically endothermic with respect to gas-phase H(2) (the only exception to this general statement is found for pure Pd). As with surface H, subsurface H typically binds more weakly to NSAs than to the corresponding pure-metal components of the alloys. The diffusion barrier for hydrogen from surface to subsurface sites, however, is usually lower on NSAs compared to the pure-metal components, suggesting that population of subsurface sites may occur more rapidly on NSAs.

  3. Corrosion behavior, mechanical properties, and long-term aging of nickel-plated uranium

    International Nuclear Information System (INIS)

    Dini, J.W.; Johnson, H.R.; Schoenfelder, C.W.

    1976-01-01

    The behavior of nickel-plated uranium upon exposure to moist nitrogen was evaluated. Plating thicknesses of 0.051 mm (2 mil) were adequate to prevent corrosion. Specimens with thinner coats showed some corrosion and some reduction in mechanical properties during subsequent testing. Plated samples exposed to dry air at ambient pressure for 10 y showed no corrosion and no degradation of mechanical properties. Surface and bulk hydrogen content, as well as free hydrogen generated during the test, were measured to determine the extent of corrosion. Results support an earlier proposed mechanism for uranium corrosion at low humidities

  4. Microstructure and properties of cast iron after laser surface hardening

    Directory of Open Access Journals (Sweden)

    Stanislav

    2013-12-01

    Full Text Available Laser surface hardening of cast iron is not trivial due to the material’s heterogeneity and coarse-grained microstructure, particularly in massive castings. Despite that, hardening of heavy moulds for automotive industry is in high demand. The present paper summarises the findings collected over several years of study of materials structure and surface properties. Phase transformations in the vicinity of graphite are described using examples from production of body parts in automotive industry. The description relates to formation of martensite and carbide-based phases, which leads to hardness values above 65 HRC and to excellent abrasion resistance.

  5. Chitosan/titanium dioxide nanocomposite coatings: Rheological behavior and surface application to cellulosic paper.

    Science.gov (United States)

    Tang, Yanjun; Hu, Xiulan; Zhang, Xinqi; Guo, Daliang; Zhang, Junhua; Kong, Fangong

    2016-10-20

    Incorporation of nanofillers into a polymeric matrix has received much attention as a route to reinforced polymer nanocomposites. In the present work, an environmentally friendly chitosan (CTS)/titanium dioxide (TiO2) nanocomposite coating was designed/prepared and subsequently employed for imparting antibacterium and improved mechanical properties to cellulosic paper via surface coating. Effect of TiO2 nanoparticle loadings on the rheological behavior of nanocomposite coatings was investigated. Surface application of CTS/TiO2 nanocomposite coatings to cellulosic paper was performed, and the antibacterial activity and mechanical properties of surface-coated cellulosic paper were examined. Results showed that the increased TiO2 nanoparticle loadings decreased the viscosity and dynamic viscoelasticity of the as-prepared coatings, and improved the antibacterial activity and mechanical properties of surface-coated cellulosic paper. The optimum loading of TiO2 nanoparticles was identified at 10%. This work suggested that CTS/TiO2 nanocomposite coatings may have the potential to be used as a promising antibacterial protective coating for paper packaging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  7. Friction Properties of Surface-Fluorinated Carbon Nanotubes

    Science.gov (United States)

    Wal, R. L. Vander; Miyoshi, K.; Street, K. W.; Tomasek, A. J.; Peng, H.; Liu, Y.; Margrave, J. L.; Khabashesku, V. N.

    2005-01-01

    Surface modification of the tubular or sphere-shaped carbon nanoparticles through chemical treatment, e.g., fluorination, is expected to significantly affect their friction properties. In this study, a direct fluorination of the graphene-built tubular (single-walled carbon nanotubes) structures has been carried out to obtain a series of fluorinated nanotubes (fluoronanotubes) with variable C(n)F (n =2-20) stoichiometries. The friction coefficients for fluoronanotubes, as well as pristine and chemically cut nanotubes, were found to reach values as low as 0.002-0.07, according to evaluation tests run in contact with sapphire in air of about 40% relative humidity on a ball-on-disk tribometer which provided an unidirectional sliding friction motion. These preliminary results demonstrate ultra-low friction properties and show a promise in applications of surface modified nanocarbons as a solid lubricant.

  8. Surface properties of Ti-6Al-4V alloy part I: Surface roughness and apparent surface free energy.

    Science.gov (United States)

    Yan, Yingdi; Chibowski, Emil; Szcześ, Aleksandra

    2017-01-01

    Titanium (Ti) and its alloys are the most often used implants material in dental treatment and orthopedics. Topography and wettability of its surface play important role in film formation, protein adhesion, following osseointegration and even duration of inserted implant. In this paper, we prepared Ti-6Al-4V alloy samples using different smoothing and polishing materials as well the air plasma treatment, on which contact angles of water, formamide and diiodomethane were measured. Then the apparent surface free energy was calculated using four different approaches (CAH, LWAB, O-W and Neumann's Equation of State). From LWAB approach the components of surface free energy were obtained, which shed more light on the wetting properties of samples surface. The surface roughness of the prepared samples was investigated with the help of optical profilometer and AFM. It was interesting whether the surface roughness affects the apparent surface free energy. It was found that both polar interactions the electron donor parameter of the energy and the work of water adhesion increased with decreasing roughness of the surfaces. Moreover, short time plasma treatment (1min) caused decrease in the surface hydrophilic character, while longer time (10min) treatment caused significant increase in the polar interactions and the work of water adhesion. Although Ti-6Al-4V alloy has been investigated many times, to our knowledge, so far no paper has been published in which surface roughness and changes in the surface free energy of the alloy were compared in the quantitative way in such large extent. This novel approach deliver better knowledge about the surface properties of differently smoothed and polished samples which may be helpful to facilitate cell adhesion, proliferation and mineralization. Therefore the results obtained present also potentially practical meaning. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  10. Corrosion behavior of super-hydrophobic surface on copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tao; Chen Shougang; Cheng Sha; Tian Jintao; Chang Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)], E-mail: yys2003@ouc.edu.cn

    2007-11-01

    A novel super-hydrophobic film was prepared by myristic acid (n-tetradecanoic) chemically adsorbed onto the copper wafer. The film formation and its structure were characterized by means of water contact angle measurement, Fourier transformation infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The static contact angle for water on the surface of this organic film was measured to be as high as 158{sup o}. The formation of a composite interface composed of the flower-like surface nanostructures, water droplet and air trapped in the crevices was suggested to be responsible for the superior water-repellent property. The corrosion behavior of the super-hydrophobic surface was investigated with potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Due to the 'air valleys' and 'capillarity' effects, the corrosion resistance of the material was improved remarkably.

  11. Corrosion behavior of super-hydrophobic surface on copper in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Chen, Shougang; Cheng, Sha; Tian, Jintao; Chang, Xueting; Yin, Yansheng [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2007-11-01

    A novel super-hydrophobic film was prepared by myristic acid (n-tetradecanoic) chemically adsorbed onto the copper wafer. The film formation and its structure were characterized by means of water contact angle measurement, Fourier transformation infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The static contact angle for water on the surface of this organic film was measured to be as high as 158 . The formation of a composite interface composed of the flower-like surface nanostructures, water droplet and air trapped in the crevices was suggested to be responsible for the superior water-repellent property. The corrosion behavior of the super-hydrophobic surface was investigated with potentiodynamic polarization measurements and electrochemical impedance spectroscopy. Due to the 'air valleys' and 'capillarity' effects, the corrosion resistance of the material was improved remarkably. (author)

  12. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications

    OpenAIRE

    Issa, Bashar; Obaidat, Ihab M.; Albiss, Borhan A.; Haik, Yousef

    2013-01-01

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10–100 μm), viruses, genes, down to proteins (3–50 nm). The opti...

  13. Further studies of the effects of oxidation on the surface properties of coal and coal pyrite

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Miguel Nicolas [Univ. of California, Berkeley, CA (United States)

    1994-01-01

    The objective of this research was to investigate the oxidation behavior of coal and coal pyrite and to correlate the changes in the surface properties induced by oxidation, along with the intrinsic physical and chemical properties of these organic and inorganic materials, with the behavior in physical coal cleaning processes. This provide more fundamental knowledge for understanding the way in which different factors interact in a medium as heterogeneous as coal. Fourteen coal samples of different ranks ranging from high to medium sulfur content were studied by dry oxidation tests at different temperatures and humidities, and by wet oxidation tests using different oxidizing agents. The concentration of surface oxygen functional groups was determined by ion-exchange methods. The changes in the coal composition with oxidation were analyzed by spectroscopic techniques. The wettability of as-received and oxidized coal and coal pyrite samples was assessed by film flotation tests. The electrokinetic behavior of different coals and coal pyrite samples was studied by electrokinetic tests using electrophoresis. Possible oxidation mechanisms have been proposed to explain the changes on the coal surface induced by different oxidation treatments.

  14. First-principles study of the surface properties of U-Mo system

    Energy Technology Data Exchange (ETDEWEB)

    Mei, Zhi-Gang; Liang, Linyun; Yacout, Abdellatif M.

    2018-02-01

    U-Mo alloys are promising fuels for future high-performance research reactors with low enriched uranium. Surface properties, such as surface energy, are important inputs for mesoscale simulations (e.g., phase field method) of fission gas bubble behaviors in irradiated nuclear fuels. The lack of surface energies of U-Mo alloys prevents an accurate modeling of the morphology of gas bubbles and gas bubble-induced fuel swelling. To this end, we study the surface properties of U-Mo system, including bcc Mo, alpha-U, gamma-U, and gamma U-Mo alloys. All surfaces up to a maximum Miller index of three and two are calculated for cubic Mo and gamma-U and non-cubic alpha-U, respectively. The equilibrium crystal shapes of bcc Mo, alpha-U and gamma-U are constructed using the calculated surface energies. The dominant surface orientations and the area fraction of each facet are determined from the constructed equilibrium crystal shape. The disordered gamma U-Mo alloys are simulated using the Special Quasirandom Structure method. The (1 1 0) and (1 0 0) surface energies of gamma U-7Mo and U-10Mo alloys are predicted to lie between those of gamma-U and bcc Mo, following a linear combination of the two constituents' surface energies. To better compare with future measurements of surface energies, the area fraction weighted surface energies of alpha-U, gamma-U and gamma U-7Mo and U-10Mo alloys are also predicted. (C) 2017 Published by Elsevier B.V.

  15. Modification of titanium alloys surface properties by plasma electrolytic oxidation (PEO) and influence on biological response.

    Science.gov (United States)

    Echeverry-Rendón, Mónica; Galvis, Oscar; Aguirre, Robinson; Robledo, Sara; Castaño, Juan Guillermo; Echeverría, Félix

    2017-09-27

    Surface characteristics can mediate biological interaction improving or affecting the tissue integration after implantation of a biomaterial. Features such as topography, wettability, surface energy and chemistry can be key determinants for interactions between cells and materials. Plasma electrolytic oxidation (PEO) is a technique used to control this kind of parameters by the addition of chemical species and the production of different morphologies on the surfaces of titanium and its alloys. With the purpose to improve the biological response, surfaces of c.p titanium and Ti6Al4V were modified by using PEO. Different electrolytes, voltages, current densities and anodizing times were tested in order to obtain surfaces with different characteristics. The obtained materials were characterized by different techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM) and glow discharge optical emission spectroscopy (GDOES). Wettability of the obtained surfaces were measured and the corresponding surface energies were calculated. Superhydrophilic surfaces with contact angles of about 0 degrees were obtained without any other treatment but PEO and this condition in some cases remains stable after several weeks of anodizing; crystal phase composition (anatase-rutile) of the anodic surface appears to be critical for obtaining this property. Finally, in order to verify the biological effect of these surfaces, osteoblast were seeded on the samples. It was found that cell behavior improves as SFE (surface free energy) and coating porosity increases whereas it is affected negatively by roughness. Techniques for surface modification allow changes in the coatings such as surface energy, roughness and porosity. As a consequence of this, biological response can be altered. In this paper, surfaces of c.p Ti and Ti6Al4V were modified by using plasma electrolytic oxidation (PEO) in order to accelerate the cell adhesion process.

  16. Electrokinetic Properties of TiO2 Nanotubular Surfaces

    Science.gov (United States)

    Lorenzetti, Martina; Gongadze, Ekaterina; Kulkarni, Mukta; Junkar, Ita; Iglič, Aleš

    2016-08-01

    Surface charge is one of the most significant properties for the characterisation of a biomaterial, being a key parameter in the interaction of the body implant with the surrounding living tissues. The present study concerns the systematic assessment of the surface charge of electrochemically anodized TiO2 nanotubular surfaces, proposed as coating material for Ti body implants. Biologically relevant electrolytes (NaCl, PBS, cell medium) were chosen to simulate the physiological conditions. The measurements were accomplished as titration curves at low electrolytic concentration (10-3 M) and as single points at fixed pH but at various electrolytic concentrations (up to 0.1 M). The results showed that all the surfaces were negatively charged at physiological pH. However, the zeta potential values were dependent on the electrolytic conditions (electrolyte ion concentration, multivalence of the electrolyte ions, etc.) and on the surface characteristics (nanotubes top diameter, average porosity, exposed surface area, wettability, affinity to specific ions, etc.). Accordingly, various explanations were proposed to support the different experimental data among the surfaces. Theoretical model of electric double layer which takes into account the asymmetric finite size of ions in electrolyte and orientational ordering of water dipoles was modified according to our specific system in order to interpret the experimental data. Experimental results were in agreement with the theoretical predictions. Overall, our results contribute to enrich the state-of-art on the characterisation of nanostructured implant surfaces at the bio-interface, especially in case of topographically porous and rough surfaces.

  17. Mineralization behavior and interface properties of BG-PVA/bone composite implants in simulated body fluid.

    Science.gov (United States)

    Ma, Yanxuan; Zheng, Yudong; Huang, Xiaoshan; Xi, Tingfei; Lin, Xiaodan; Han, Dongfei; Song, Wenhui

    2010-04-01

    Due to the non-bioactivity and poor conjunction performance of present cartilage prostheses, the main work here is to develop the bioactive glass-polyvinyl alcohol hydrogel articular cartilage/bone (BG-PVA/bone) composite implants. The essential criterion for a biomaterial to bond with living bone is well-matched mechanical properties as well as biocompatibility and bioactivity. In vitro studies on the formation of a surface layer of carbonate hydroxyl apatite (HCA) and the corresponding variation of the properties of biomaterials are imperative for their clinical application. In this paper, the mineralization behavior and variation of the interface properties of BG-PVA/bone composites were studied in vitro by using simulated body fluid (SBF). The mineralization and HCA layer formed on the interface between the BG-PVA hydrogel and bone in SBF could provide the composites with bioactivity and firmer combination. The compression property, shear strength and interface morphology of BG-PVA/bone composite implants varying with the immersion time in SBF were characterized. Also, the influence laws of the immersion time, content of BG in the composites and aperture of bones to the mineralization behavior and interface properties were investigated. The good mineralization behavior and enhanced conjunction performance of BG-PVA/bone composites demonstrated that this kind of composite implant might be more appropriate cartilage replacements.

  18. Surface field of forces and protein adsorption behavior of poly(hydroxyethylmethacrylate) films deposited from plasma.

    Science.gov (United States)

    Morra, M; Cassinelli, C

    1995-01-01

    Polymeric films were deposited from hydroxyethylmethacrylate (HEMA) plasma on non-woven poly(butyleneterephtalate) (PBT) filter materials. To test the effect of deposition conditions on surface properties, film were deposited using a constant monomer flow rate and a discharge power ranging from 40-100 W. Surface composition and surface energetics were evaluated by Electron Spectroscopy for Chemical Analysis (ESCA) and contact angle measurement, respectively. Albumin (Alb) and fibrinogen (Fg) adsorption from single protein solutions to the plasma-coated filters was measured. Results illustrate the marked effects of the deposition condition on the surface composition, the surface field of forces, and the protein adsorption behavior. The latter is modeled by the application of the Good-van Oss-Chaudhury theory of Lewis acid-base contribution to interfacial energetics. Materials endowed with widely different properties are obtained from the same monomer and different deposition conditions, a result that must be taken into account both in the production step, to assure constant quality, and in the development of specifically tailored materials.

  19. Microstructure and surface properties of fibrous and ground cellulosic substrates.

    Science.gov (United States)

    Csiszár, Emília; Fekete, Erika

    2011-07-05

    Cotton and linen fibers were ground in a ball-mill, and the effect of grinding on the microstructure and surface properties of the fibers was determined by combining a couple of simple tests with powerful techniques of surface and structure analysis. Results clearly proved that the effect of grinding on cotton fiber was much less severe than on linen. For both fibers, the degree of polymerization reduced (by 14.5% and 30.5% for cotton and linen, respectively) with a simultaneous increase in copper number. The increased water sorption capacity of the ground substrates was in good agreement with the X-ray results, which proved a less perfect crystalline structure in the ground samples. Data from XPS and SEM-EDS methods revealed that the concentration of oxygen atoms (bonded especially in acetal and/or carbonyl groups) on the ground surfaces increased significantly, resulting in an increase in oxygen/carbon atomic ratio (XPS data: from 0.11 to 0.14 and from 0.16 to 0.29 for cotton and linen, respectively). Although grinding created new surfaces rich in O atoms, the probable higher energy of the surface could not be measured by IGC, most likely due to the limited adsorption of the n-alkane probes on the less perfect crystalline surfaces. © 2011 American Chemical Society

  20. Effect of Surface Treatment on the Properties of Wool Fabric

    Science.gov (United States)

    Kan, C. W.; Yuen, C. W. M.; Chan, C. K.; Lau, M. P.

    Wool fiber is commonly used in textile industry, however, it has some technical problems which affect the quality and performance of the finished products such as felting shrinkage, handle, lustre, pilling, and dyeability. These problems may be attributed mainly in the presence of wool scales on the fiber surface. Recently, chemical treatments such as oxidation and reduction are the commonly used descaling methods in the industry. However, as a result of the pollution caused by various chemical treatments, physical treatment such as low temperature plasma (LTP) treatment has been introduced recently because it is similarly capable of achieving a comparable descaling effect. Most of the discussions on the applications of LTP treatment on wool fiber were focused on applying this technique for improving the surface wettability and shrink resistance. Meanwhile, little discussion has been made on the mechanical properties, thermal properties, and the air permeability. In this paper, wool fabric was treated with LTP treatment with the use of a non-polymerizing gas, namely oxygen. After the LTP treatment, the fabrics low-stress mechanical properties, air permeability, and thermal properties were evaluated and discussed.

  1. Radiative Properties of Smoke and Aerosol Over Land Surfaces

    Science.gov (United States)

    King, Michael D.

    2000-01-01

    This talk discusses smoke and aerosol's radiative properties with particular attention to distinguishing the measurement over clear sky from clouds over land, sea, snow, etc. surfaces, using MODIS Airborne Simulator data from (Brazil, arctic sea ice and tundra and southern Africa, west Africa, and other ecosystems. This talk also discusses the surface bidirectional reflectance using Cloud Absorption Radiometer, BRDF measurements of Saudi Arabian desert, Persian Gulf, cerrado and rain forests in Brazil, sea ice, tundra, Atlantic Ocean, Great Dismal Swamp, Kuwait oil fire smoke. Recent upgrades to instrument (new TOMS UVA channels at 340 and 380 planned use in Africa (SAFARI 2000) and possibly for MEIDEX will also be discussed. This talk also plans to discuss the spectral variation of surface reflectance over land and the sensitivity of off-nadir view angles to correlation between visible near-infrared reflectance for use in remote sensing of aerosol over land.

  2. Ice sintering timescales at the surface of Europa and implications for surface properties

    Science.gov (United States)

    Phillips, C. B.; Molaro, J.; Meirion-Griffith, G.

    2017-12-01

    The planned exploration of Europa by NASA's Europa Clipper Mission and the possibility of a future Europa lander have driven the need to characterize its surface strength, roughness, porosity, thermal conductivity, and regolith depth in order to accurately interpret remote sensing data and develop appropriate spacecraft landing systems. Many processes contribute to Europa's landscape evolution, such as sputtering, mass wasting, thermal segregation, and impact gardening, driving the creation and distribution of icy regolith across the surface. While the efficacy of these processes are not well constrained, any amount of regolith emplaced at the surface will undergo subsequent processing due to sintering. Ice sintering is a form of frost metamorphism whereby contacting ice grains experience the diffusion of material into their contact region, forming a "neck" between them and densifying over time. Over long enough timescales, ice aggregates will sinter into solid material, which may contribute to the incorporation of non-ice material into Europa's subsurface and help to drive subsurface chemistry. Sintering also interacts with other processes, adding to the complexity of icy surface evolution. For example, sputtering preferentially removes larger grains and may enhance sintering rates, and changes in ice porosity may affect the response of the surface to micrometeorite impacts. Quantifying the effects of ice sintering will allow us to predict the microstructural properties of Europa's surface at spacecraft scales. To this end, we have modeled pressure-less (no overburden) sintering of spherical water-ice grains and validated the results with a laboratory experiment. We also modeled ice at the surface of Europa to obtain a first-order approximation of the sintering timescale and surface properties. Preliminary results indicate that ice grains will experience neck growth but not significant densification over Europa's surface age, suggesting that loose surface ice

  3. Surface Properties of Photo-Oxidized Bituminous Coals: Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    Natural weathering has a detrimental effect on the hydrophobic nature of coal, which in turn can influence clean-coal recovery during flotation. Few techniques are available that can establish the quality of coal surfaces and that have a short analysis time to provide input for process control. Luminescence emissions which can be quantified with an optical microscope and photometer system, are measurably influenced by degree of weathering as well as by mild storage deterioration. In addition, it has been shown that when vitrinite is irradiated with a relatively high intensity flux of violet- or ultraviolet- light in the presence of air, photo-oxidation of the surface occurs. The combination of measuring the change in luminescence emission intensity with degree of surface oxidation provided the impetus for the current investigation. The principal aim of this research was to determine whether clear correlations could be established among surface oxygen functionality, hydrophobicity induced by photo-oxidation, and measurements of luminescence intensity and alteration. If successful, the project would result in quantitative luminescence techniques based on optical microscopy that would provide a measure of the changes in surface properties as a function of oxidation and relate them to coal cleanability. Two analytical techniques were designed to achieve these goals. Polished surfaces of vitrain bands or a narrow size fraction of powdered vitrain concentrates were photo-oxidized using violet or ultraviolet light fluxes and then changes in surface properties and chemistry were measured using a variety of near-surface analytical techniques. Results from this investigation demonstrate that quantitative luminescence intensity measurements can be performed on fracture surfaces of bituminous rank coals (vitrains) and that the data obtained do reveal significant variations depending upon the level of surface oxidation. Photo-oxidation induced by violet or ultraviolet light

  4. Surface Charge and Ion Sorption Properties of Titanium Dioxide

    Science.gov (United States)

    Ridley, M. K.; Machesky, M. L.; Wesolowski, D. J.; Finnegan, M. P.; Palmer, D. A.

    2001-12-01

    The interaction of submicron metal oxide particles with natural aqueous solutions results in the hydroxylation of surface sites, which impart a pH-dependent surface charge. The charged submicron particles influence processes such as nanoparticle assembly and alteration, crystal growth rates and morphologies, colloid flocculation, and contaminant transport. The surface charge and ion sorption properties of metal-oxide particles may be studied by potentiometric titrations, using hydrogen-electrode concentration-cells or traditional glass electrodes and an autotitrator. These techniques have been used to quantify the adsorption of various ions (Na+, Rb+, Ca2+, Sr2+, Cl-) on rutile, at ionic strengths up to 1.0 molality and temperatures to 250° C. The crystalline rutile used in these studies is less than 400 nm in diameter, has a BET surface area of 17 m2/g, and the 110 and 100 faces predominate. The negative surface charge of the rutile was enhanced by increasing temperature, increasing ionic strength, and decreasing the ionic radii of the electrolyte cation. Moreover, the addition of a divalent cation significantly enhances the negative charge of the rutile surface. These data have been rationalized with the MUSIC model of Hiemestra and van Riemsdijk, and a Basic Stern layer description of the electric double layer (EDL). Model fitting of the experimental data provides binding constants for the adsorbed counterions and divalent cations, and capacitance values as well as corresponding electrical potential values of the binding planes. Recently, new studies have been initiated to determine particle size affects on the proton induced surface charge and ion sorption properties of titanium dioxide. In these studies, anatase with a BET surface area of 40 and 100 m2/g (primary particle sizes of 40 and 10 nm, respectively) is being investigated. The complexity of both the experimental and modeling procedures increases with decreasing particle size. For example, the fine

  5. Effects of short-time heat treatment and subsequent chemical surface treatment on the mechanical properties, low-cycle fatigue behavior and corrosion resistance of a Ni-Ti (50.9 at.% Ni) biomedical alloy wire used for the manufacture of stents

    International Nuclear Information System (INIS)

    Vojtech, D.; Voderova, M.; Kubasek, J.; Novak, P.; Seda, P.; Michalcova, A.; Fojt, J.; Hanus, J.; Mestek, O.

    2011-01-01

    Research highlights: → Effect of short-time heat treatments on functional properties of a NiTi alloy. → Negative effect of heat treatments on corrosion resistance. → Positive effect of heat treatments on fatigue life. → Positive influence of chemical treatment on both fatigue and corrosion resistance. - Abstract: Cold-drawn and straight-annealed NiTi wires (50.9% Ni) with a tensile strength of 1650 MPa were subjected to heat treatments at 450, 510 and 600 deg. C for 10 min in air to simulate the shape-setting process in the manufacture of stents. Afterwards, the wires were chemically etched in acidic baths containing HF, HNO 3 and H 2 O, followed by boiling in water. Variations in the internal structure, surface state and chemistry and transformation behavior of the wires due to these treatments were examined in detail by scanning and transmission electron microscopy, energy dispersion spectrometry, glow discharge spectrometry, X-ray photoelectron spectroscopy and differential scanning calorimetry. Mechanical properties were determined by tensile tests, and low-cycle fatigue behavior was measured by bend-type cyclic loading tests. Corrosion behavior was assessed by immersion tests and potentiodynamic measurements. A high tensile strength of the wire was shown to be attributable to a very fine-grained structure and work hardening. Heat treatment at 450-510 deg. C/10 min did not significantly affect the tensile strength of the wire. At 600 deg. C/10 min, the strength decreased by about 600 MPa due to recrystallization. The transformation temperatures first slightly increased after heat treatment at 450 deg. C and then reduced after treatments at higher temperatures due to changes in the composition of the B2 phase. The fatigue life was observed to prolong with both heat treatment and chemical etching. In contrast, the corrosion resistance worsened with heat treatment, but it improved significantly upon chemical etching. The observed behaviors are discussed in

  6. Effects of surface functionalization on the electronic and structural properties of carbon nanotubes: A computational approach

    Science.gov (United States)

    Ribeiro, M. S.; Pascoini, A. L.; Knupp, W. G.; Camps, I.

    2017-12-01

    Carbon nanotubes (CNTs) have important electronic, mechanical and optical properties. These features may be different when comparing a pristine nanotube with other presenting its surface functionalized. These changes can be explored in areas of research and application, such as construction of nanodevices that act as sensors and filters. Following this idea, in the current work, we present the results from a systematic study of CNT's surface functionalized with hydroxyl and carboxyl groups. Using the entropy as selection criterion, we filtered a library of 10k stochastically generated complexes for each functional concentration (5, 10, 15, 20 and 25%). The structurally related parameters (root-mean-square deviation, entropy, and volume/area) have a monotonic relationship with functionalization concentration. Differently, the electronic parameters (frontier molecular orbital energies, electronic gap, molecular hardness, and electrophilicity index) present and oscillatory behavior. For a set of concentrations, the nanotubes present spin polarized properties that can be used in spintronics.

  7. Influence of surface roughness on the friction property of textured surface

    Directory of Open Access Journals (Sweden)

    Yuankai Zhou

    2015-02-01

    Full Text Available In contrast with dimple textures, surface roughness is a texture at the micro-scale, essentially which will influence the load-bearing capacity of lubricant film. The numerical simulation was carried out to investigate the influence of surface roughness on friction property of textured surface. The lubricant film pressure was obtained using the method of computational fluid dynamics according to geometric model of round dimple, and the renormalization-group k–ε turbulent model was adopted in the computation. The numerical simulation results suggest that there is an optimum dimensionless surface roughness, and near this value, the maximum load-bearing capacity can be achieved. The load-bearing capacity is determined by the surface texture, the surface roughness, and the interaction between them. To get information of friction coefficient, the experiments were conducted. This experiment was used to evaluate the simulation. The experimental results show that for the frequency of 4 and 6 Hz, friction coefficient decreases at first and then increases with decreasing surface roughness, which indicates that there exists the optimum region of surface roughness leading to the best friction reduction effect, and it becomes larger when area fractions increase from 2% to 10%. The experimental results agree well with the simulation results.

  8. Phase behavior of charged colloids on spherical surfaces

    Science.gov (United States)

    Kelleher, Colm; Guerra, Rodrigo; Chaikin, Paul

    For a broad class of 2D materials, the transition from isotropic fluid to crystalline solid is described by the theory of melting due to Kosterlitz, Thouless, Halperin, Nelson and Young. According to this theory, long-range order is achieved via elimination of the topological defects which proliferate in the fluid phase. However, many natural and man-made 2D systems posses spatial curvature and/or non-trivial topology, which require the presence of defects, even at T = 0 . In principle, the presence of these defects could profoundly affect the phase behavior of such a system. In this presentation, we describe experiments and simulations we have performed on repulsive particles which are bound to the surface of a sphere. We observe spatial structures and inhomogeneous dynamics that cannot be captured by the measures traditionally used to describe flat-space phase behavior. We show that ordering is achieved by a novel mechanism: sequestration of topological defects into freely-terminating grain boundaries (``scars''), and simultaneous spatial organization of the scars themselves on the vertices of an icosahedron. The emergence of icosahedral order coincides with the localization of mobility into isolated ``lakes'' of fluid or glassy particles, situated at the icosahedron vertices.

  9. Magnetic nanoparticles: surface effects and properties related to biomedicine applications.

    Science.gov (United States)

    Issa, Bashar; Obaidat, Ihab M; Albiss, Borhan A; Haik, Yousef

    2013-10-25

    Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g., chemical and physical) with controllable sizes enabling their comparison to biological organisms from cells (10-100 μm), viruses, genes, down to proteins (3-50 nm). The optimization of the nanoparticles' size, size distribution, agglomeration, coating, and shapes along with their unique magnetic properties prompted the application of nanoparticles of this type in diverse fields. Biomedicine is one of these fields where intensive research is currently being conducted. In this review, we will discuss the magnetic properties of nanoparticles which are directly related to their applications in biomedicine. We will focus mainly on surface effects and ferrite nanoparticles, and on one diagnostic application of magnetic nanoparticles as magnetic resonance imaging contrast agents.

  10. Mechanical properties and surface characteristics of three archwire alloys.

    Science.gov (United States)

    Krishnan, Vinod; Kumar, K Jyothindra

    2004-12-01

    Recent developments in material science have presented newer archwire materials as well as improvements in the properties of existing ones. Proper selection and understanding of the biomechanical requirement of each case requires proper characterization studies on archwire alloys. The present study characterizes and compares three orthodontic archwire alloys, stainless steel, beta titanium alloy (TMA), and a newly introduced titanium alloy (TiMolium), for the parameters (1) ultimate tensile strength (UTS), 0.02% offset yield strength (YS), and modulus of elasticity (E); (2) load deflection characteristics; (3) frictional properties; (4) surface characteristics and (5) elemental analysis for TiMolium. Seven specimens of each archwire alloy were used for evaluating each parameter. An instron universal testing machine was used for tensile testing, three-point bend testing, and evaluation of frictional characteristics. Scanning electron microscope was used for surface evaluation and X-ray fluorescence for elemental analysis of TiMolium wire specimens. Stainless steel was the strongest archwire alloy with high UTS, E, 0.02% offset YS, and less friction at the archwire-bracket interface. TMA wires exhibited better load deflection characteristics with less stiffness than the other two wires. The surface of TMA appeared rough and exhibited very high values for friction at the archwire-bracket interface. TiMolium appeared to be an alpha-beta titanium alloy composed of titanium, aluminum, and vanadium and intermediate in nature for all the parameters evaluated.

  11. The influence of surface reflectance anisotropy on estimation of soil properties

    Science.gov (United States)

    Bartholomeus, Harm; Roosjen, Peter; Clevers, Jan

    2014-05-01

    The spatial variation in soil properties is an important factor for agricultural management. Unmanned airborne vehicles (UAV's) equipped with a hyperspectral mapping system may provide these data, but anisotropic reflectance effects may have an influence on the derived soil properties. Besides influencing the reflectance, angular observations may deliver added information about soil properties. We investigated the anisotropic behavior of 59 soil samples with a large variation in soil composition, by measuring their reflectance (350-2500 nm) over 92 different angles using a robot-based laboratory goniometer system. The results show that the anisotropic behavior of the soils influences the measured reflectance significantly, which limits the accurate prediction of soil properties (OM and clay especially). However, prediction accuracies of OM increase when spectra are measured under specific angles. Prediction accuracies further increase when a combination of observation angles is being used. Apart from that, using UAV's the wavelength range is limited to about 1000 nm. In general, this will decrease the model performance, but our results show that this effect can largely be compensated by combining multiple observation angles. Altogether, we demonstrate that surface anisotropy influences the prediction of soil properties negatively. This effect can be reduced by combining spectra acquired under different angles. Moreover, predictions can be improved if combinations of different observation angles are used.

  12. Contribution of polarimetric imaging for the characterization of fibrous surface properties at different scales

    Science.gov (United States)

    Tourlonias, Michel; Bigué, Laurent; Bueno, Marie-Ange

    2010-01-01

    The point in using polarimetric imaging for surface characterization is highlighted in this paper. A method for the evaluation of nonwoven surface properties at microscopic and macroscopic scales is described. This method is based on a polarimetric apparatus and various image processing operations are then performed depending on the studied scale. Polarimetric imaging applied to nonwovens, particularly degree of polarization imaging, highlights texture inhomogeneities. At both scales, image processing techniques were designed to analyze surface zones of different textures. At the macroscopic scale, a basic image processing was developed in order to detect the nonwoven manufacturing process defects. Moreover at the microscopic scale, i.e. at the fiber scale, image processing was adapted to evaluate fiber orientation within nonwovens, which is known to be an important information for mechanical behavior prediction.

  13. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layer physical properties

    Directory of Open Access Journals (Sweden)

    J.-M. Friedt

    2016-12-01

    Full Text Available We use an instrument combining optical (surface plasmon resonance and acoustic (Love mode surface acoustic wave device real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition and surfactant adsorption, the bound mass and its physical properties – density and optical index – are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70±20% water and are 16±3 to 19±3 nm thick for bulk concentrations ranging from 30 to 300 μg/ml. Fibrinogen layers include 50±10% water for layer thicknesses in the 6±1.5 to 13±2 nm range when the bulk concentration is in the 46 to 460 μg/ml range. Keywords: surface acoustic wave, surface plasmon resonance, collagen, fibrinogen, density, thickness

  14. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  15. Lipophilic phytosterol derivatives: synthesis, thermal property and nanoemulsion behavior

    DEFF Research Database (Denmark)

    Panpipat, Worawan; Xu, Xuebing; Guo, Zheng

    Phytosterols and their esters have been reported as a cholesterol lowering agent in human. However, natural phytosterols have a low solubility in both water and fat resulting in a poor absorption in intestine. To improve the intestinal absorption and bioavailability of phytosterols, conversion...... of phytosterols into enzyme-liable lipophilic derivatives, such as fatty acid esters was one of the possible strategies. Differences in molecular structures of modified phytosterols may result in the differences in their thermal and micelling behaviors. Therefore, the objectives of this study were to improve...... the productive yield of a series of -sitosteryl fatty acid esters (C2-C18) and to investigate the thermal property and nano-emulsion behaviors of those compounds. This work reported a novel approach to synthesize phytosterol (-sitosterol as a model) fatty acid ester by employing Candida antarctica lipase...

  16. Microstructure and surface mechanical properties of pulse electrodeposited nickel

    Energy Technology Data Exchange (ETDEWEB)

    Ul-Hamid, A., E-mail: anwar@kfupm.edu.sa [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia); Dafalla, H.; Quddus, A.; Saricimen, H.; Al-Hadhrami, L.M. [Center of Research Excellence in Corrosion (CoRE-C), Research Institute, King Fahd University of Petroleum and Minerals, P.O. Box 1073, Dhahran 31261 (Saudi Arabia)

    2011-09-01

    The surface of carbon steel was modified by electrochemical deposition of Ni in a standard Watt's bath using dc and pulse plating electrodeposition. The aim was to compare the microstructure and surface mechanical properties of the deposit obtained by both techniques. Materials characterization was conducted using field emission scanning electron microscope fitted with scanning transmission electron detector, atomic force microscope and X-ray diffractometer. Nanoindentation hardness, elastic modulus, adhesion, coefficients of friction and wear rates were determined for both dc and pulse electrodeposits. Experimental results indicate that pulse electrodeposition produced finer Ni grains compared to dc plating. Size of Ni grains increased with deposition. Both dc and pulse deposition resulted in grain growth in preferred (2 0 0) orientation. However, presence of Ni (1 1 1) grains increased in deposits produced by pulse deposition. Pulse plated Ni exhibited higher hardness, creep and coefficient of friction and lower modulus of elasticity compared to dc plated Ni.

  17. Surface Properties of Metal Hydroxide Microparticles in the Ambient Air

    Directory of Open Access Journals (Sweden)

    Zakharenko Valery

    2017-01-01

    Full Text Available The adsorption and photoadsorption properties of Mg(OH2 and Ca(OH2 microparticles in the ambient air were investigated. The compositional analysis of an adsorption layer of microparticles was carried out. The kinetics of photodesorption of molecules from microcrystal surfaces and the interaction of HCFC-22 (CHF2Cl in the dark and under light were studied. Quantum yields and their spectral dependencies were determined for CO2 photodesorption, O2 and CO photoadsorption. The effect of weakly bound CO displacement from the surface of microparticles was revealed during dark adsorption of HCFC-22. It is supposed that adsorbed CO is formed as a result of atmospheric CO2 reduction after the break of Mg—OH bonds. In case of calcium hydroxide, CO is generated during the interaction of calcium hydroxide with carbon dioxide in the presence of water.

  18. Molecular dynamics simulations on surface properties of silicon dioxide melts

    CERN Document Server

    Röder, A

    2000-01-01

    In the present thesis the surface properties of a silicon dioxide melt were studied. As first systems drops (i.e. sytems without periodic boundary conditions) of N=432, 1536, as well as 4608 atoms were considered. The second analyzed geometry corresponds to that of a thin film, i. e. periodic boundary conditions in x- and y-direction were present, while in z-direction one had a free surface. In this case a system of N=1152 atoms was considered. As model potential the two-body potential proposed by Beest, Kramer, and van Santen was applied. For both geometries five temperatures were considered, which lied in the range of 3000 K

  19. Surface properties of poly(imide-co-siloxane) block copolymers

    Czech Academy of Sciences Publication Activity Database

    Novák, I.; Sysel, P.; Chodák, I.; Špírková, Milena; Janigová, I.

    2009-01-01

    Roč. 103, č. 13 (2009), s76-s78 ISSN 0009-2770. [PMA 2009 &20th SRC . Bratislava, 21.04.2009/23.04.2009] R&D Projects: GA AV ČR IAA100100622; GA AV ČR IAA400500505 Grant - others:Slovak Scientific Agency(SK) VEGA2/7103/27 Institutional research plan: CEZ:AV0Z40500505 Keywords : Poly(imide-siloxane) * surface properties * morphology Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.717, year: 2009 http://www.chemicke-listy.cz/docs/full/2009_13_s058-s081.pdf

  20. Surface property modification of coatings via self-stratification

    Science.gov (United States)

    Pieper, Robert Joseph

    Biological fouling occurs everywhere in the marine environment and is a significant problem for marine vessels. Anti-fouling coatings have been used effectively to prevent fouling; however, these coatings harm non-targeted sea-life. Fouling-release coatings (FRC) appear to be an alternative way to combat fouling. FRC do not necessarily prevent the settlement of marine organisms but rather allow their easy removal with application of shear to the coatings surface. These coatings must be non-toxic, non-leaching, have low surface energy, low modulus, and durability to provide easy removal of marine organisms. Here the goal is to develop FRC based on thermosetting siloxane-polyurethane, amphiphilic polyurethane, and zwitterionic/amphiphilic polyurethane systems. A combinatorial high-throughput approach has been taken in order to explore the variables that may affect the performance of the final coatings. Libraries of acrylic polyols were synthesized using combinatorial high-throughput techniques by either batch or semi-batch processes. The design of the experiments for the batch and semi-batch processes were done combinatorially to explore a range of compositions and various reaction process variables that cannot be accomplished or are not suitable for single reaction experiments. Characterization of Rapid-GPC, high-throughput DSC, and gravimetrically calculated percent solids verified the effects of different reaction conditions on the MW, glass transition temperatures, and percent conversion of the different compositions of acrylic polyols. Coatings were characterized for their surface energy, pseudobarnacle pull-off adhesion, and were subjected to bioassays including marine bacteria, algae, and barnacles. From the performance properties results the acrylic polyol containing 20% hydroxyethyl acrylate and 80% butyl acrylate was selected for further siloxane-polyurethane formulations and were subjected to the same physical, mechanical, and performance testing

  1. Molluscicidal properties and selective toxicity of surface-active agents

    Science.gov (United States)

    Visser, S. A.

    1965-01-01

    Of over 100 commercially produced surface-active agents tested against the bilharziasis vector snail Biomphalaria sudanica, 13 were found to possess considerable and highly selective molluscicidal properties at concentrations of less than 1 ppm for exposures of 48 hours. Against crustacea, fish, water plants, mosquito larvae, mice, and the eggs of B. sudanica, the toxicities of the 13 surfactants were slight. The chemicals did not appear to be absorbed by organic matter to any appreciable extent. It is thought that the toxicity to B. sudanica is of both a chemical and a physical nature. PMID:5294185

  2. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    Science.gov (United States)

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  3. Fracture behavior of short circumferentially surface-cracked pipe

    International Nuclear Information System (INIS)

    Krishnaswamy, P.; Scott, P.; Mohan, R.

    1995-11-01

    This topical report summarizes the work performed for the Nuclear Regulatory Comniission's (NRC) research program entitled ''Short Cracks in Piping and Piping Welds'' that specifically focuses on pipes with short, circumferential surface cracks. The following details are provided in this report: (i) material property deteminations, (ii) pipe fracture experiments, (iii) development, modification and validation of fracture analysis methods, and (iv) impact of this work on the ASME Section XI Flaw Evaluation Procedures. The material properties developed and used in the analysis of the experiments are included in this report and have been implemented into the NRC's PIFRAC database. Six full-scale pipe experiments were conducted during this program. The analyses methods reported here fall into three categories (i) limit-load approaches, (ii) design criteria, and (iii) elastic-plastic fracture methods. These methods were evaluated by comparing the analytical predictions with experimental data. The results, using 44 pipe experiments from this and other programs, showed that the SC.TNP1 and DPZP analyses were the most accurate in predicting maximum load. New Z-factors were developed using these methods. These are being considered for updating the ASME Section XI criteria

  4. Modification of polyvinyl alcohol surface properties by ion implantation

    Energy Technology Data Exchange (ETDEWEB)

    Pukhova, I.V., E-mail: ivpuhova@mail.ru [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Kurzina, I.A. [National Research Tomsk State University, 36 Lenin Ave, Tomsk 634050 (Russian Federation); Savkin, K.P. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation); Laput, O.A. [National Research Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050 (Russian Federation); Oks, E.M. [Institute of High Current Electronics, 2/3 Akademichesky Ave, Tomsk 634055 (Russian Federation)

    2017-05-15

    We describe our investigations of the surface physicochemical properties of polyvinyl alcohol modified by silver, argon and carbon ion implantation to doses of 1 × 10{sup 14}, 1 × 10{sup 15} and 1 × 10{sup 16} ion/cm{sup 2} and energies of 20 keV (for C and Ar) and 40 keV (for Ag). Infrared spectroscopy (IRS) indicates that destructive processes accompanied by chemical bond (−C=O) generation are induced by implantation, and X-ray photoelectron spectroscopy (XPS) analysis indicates that the implanted silver is in a metallic Ag3d state without stable chemical bond formation with polymer chains. Ion implantation is found to affect the surface energy: the polar component increases while the dispersion part decreases with increasing implantation dose. Surface roughness is greater after ion implantation and the hydrophobicity increases with increasing dose, for all ion species. We find that ion implantation of Ag, Ar and C leads to a reduction in the polymer microhardness by a factor of five, while the surface electrical resistivity declines modestly.

  5. Engineered Surface Properties of Porous Tungsten from Cryogenic Machining

    Science.gov (United States)

    Schoop, Julius Malte

    Porous tungsten is used to manufacture dispenser cathodes due to it refractory properties. Surface porosity is critical to functional performance of dispenser cathodes because it allows for an impregnated ceramic compound to migrate to the emitting surface, lowering its work function. Likewise, surface roughness is important because it is necessary to ensure uniform wetting of the molten impregnate during high temperature service. Current industry practice to achieve surface roughness and surface porosity requirements involves the use of a plastic infiltrant during machining. After machining, the infiltrant is baked and the cathode pellet is impregnated. In this context, cryogenic machining is investigated as a substitutionary process for the current plastic infiltration process. Along with significant reductions in cycle time and resource use, surface quality of cryogenically machined un-infiltrated (as-sintered) porous tungsten has been shown to significantly outperform dry machining. The present study is focused on examining the relationship between machining parameters and cooling condition on the as-machined surface integrity of porous tungsten. The effects of cryogenic pre-cooling, rake angle, cutting speed, depth of cut and feed are all taken into consideration with respect to machining-induced surface morphology. Cermet and Polycrystalline diamond (PCD) cutting tools are used to develop high performance cryogenic machining of porous tungsten. Dry and pre-heated machining were investigated as a means to allow for ductile mode machining, yet severe tool-wear and undesirable smearing limited the feasibility of these approaches. By using modified PCD cutting tools, high speed machining of porous tungsten at cutting speeds up to 400 m/min is achieved for the first time. Beyond a critical speed, brittle fracture and built-up edge are eliminated as the result of a brittle to ductile transition. A model of critical chip thickness ( hc ) effects based on cutting

  6. Physico-chemical properties of PDMS surfaces suitable as substrates for cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Raczkowska, Joanna, E-mail: joanna.raczkowska@uj.edu.pl [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Prauzner-Bechcicki, Szymon [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Lukes, Jaroslav; Sepitka, Josef [Czech Technical University in Prague, Faculty of Mechanical Engineering, Technicka 4, 16607 Prague (Czech Republic); Bernasik, Andrzej [Faculty of Physics and Applied Computer Science, AGH - University of Science and Technology, Reymonta 19, 30-049 Kraków (Poland); Awsiuk, Kamil [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland); Paluszkiewicz, Czesława; Pabijan, Joanna; Lekka, Małgorzata [Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków (Poland); Budkowski, Andrzej [The Marian Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-428 Kraków (Poland)

    2016-12-15

    Highlights: • Series of PDMS substrates with monotonically tuned elasticity were produced. • Method to estimate PDMS stiffness based on AFM force-distance curves was shown. • No change in surface properties of PDMS other than elasticity was demonstrated. • MTT performed for cancer cells showed impact of PDMS elasticity on cells behavior. - Abstract: Elastic properties of the substrate have profound effect on adhesion and proliferation of cells. Here, we introduce a method to produce polydimethylsiloxane (PDMS) substrates with stiffness tuned monotonically from 1.67 to 0.24 MPa, by the time of UV irradiation adjusted up to 5 h. The Young’s modulus (determined by using nanoindenter) scales linearly with stiffness calculated using AFM-based force spectroscopy data. Such a relation enables the determination of the Young modulus from AFM force – distance curves also when the Herz model is not applicable. Our findings demonstrate that surface properties of PDMS substrates are not affected by the applied methodology of tuning substrate elasticity. Finally, the colorimetric proliferation assay (MTT) carried out for non-malignant (HCV29) and cancerous (T24) bladder cancer cells depicted a significant contribution of PDMS substrate elasticity to the behavior of cells. The softer PDMS substrate demonstrated excellent cytocompatibility whereas the stiff one is more cell-repellent.

  7. Estimation of the Surface Properties of Styrene-Acrylonitrile Random Copolymers from Contact Angle Measurements.

    Science.gov (United States)

    Adão; Saramago; Fernandes

    1999-09-01

    The surface free energy per unit area of a solid, gamma(S), is a fundamental property of materials and determines their surface and interfacial behavior in processes like wetting and adhesion. In this study the gamma(S) of a series of styrene-acrylonitrile random copolymers is evaluated. Three different approaches are used to determine the components in which the surface free energy can be decomposed. Using the geometric and the harmonic mean approach, the dispersive, gamma(d), and polar, gamma(p), components of the solid surface free energy were determined and compared to the Lifshitz-van der Waals, gamma(LW), and acid-base, gamma(AB), components using the approach developed by C. J. van Oss et al. (1987, Adv. Colloid Interface Sci. 28, 35). The acid-base approach was also used to evaluate the work of adhesion of the test liquids: water, glycerol, and thiodiglycol. It was found that the contact angles of these liquids follow closely the predictions of Cassie equation. The evaluation of the surface free energy components on one hand and the relative magnitude of the work of adhesion components on the other hand, suggest that below 50% of acrylonitrile the polystyrene repeating units are preferentially at the surface. Above 50% of acrylonitrile the segregation of the low-energy homopolymer at the surface decreases. Copyright 1999 Academic Press.

  8. Cesium Eluate Evaporation Solubility and Physical Property Behavior

    International Nuclear Information System (INIS)

    Pierce, R.A.

    2003-01-01

    The baseline flowsheet for low activity waste (LAW) in the Hanford River Protection Project (RPP) Waste Treatment Plant (WTP) includes pretreatment of supernatant by removing cesium using ion exchange. When the ion exchange column is loaded, the cesium will be eluted with a 0.5M nitric acid (HNO3) solution to allow the column to be conditioned for re-use. The cesium eluate solution will then be concentrated in a vacuum evaporator to minimize storage volume and recycle HNO3. To prevent the formation of solids during storage of the evaporator bottoms, criteria have been set for limiting the concentration of the evaporator product to 80 percent of saturation at 25 degrees C. A fundamental element of predicting evaporator product solubility is to collect data that can be used to estimate key operating parameters. The data must be able to predict evaporator behavior for a range of eluate concentrations that are evaporated to the point of precipitation. Parameters that were selected for modeling include solubility, density, viscosity, thermal conductivity, and heat capacity. Of central importance is identifying the effect of varying feed components on overall solubility. The point of solubility defines the upper limit for eluate evaporation operations and liquid storage. The solubility point also defines those chemical compounds that have the greatest effects on physical properties. Third, solubility behavior identifies intermediate points where physical property data should be measured for the database. Physical property data (density, viscosity, thermal conductivity, and heat capacity) may be an integral part of tracking evaporator operations as they progress toward their end point. Once the data have been collected, statistical design software can develop mathematical equations that estimate solubility and other physical properties

  9. Tribological Behavior of Coating Cr Layer on 40Cr after Surface Electron Beam Pretreatment

    Science.gov (United States)

    Hu, J. J.; Wang, J.; Jiang, P.; Xu, H. B.; Li, H.; Hou, T. F.

    2017-12-01

    In this study,the friction and wear behavior of PVD coatings which were treated by 5 different processes,based on gear material-40Cr. Analyzing the effects of treating the gear material with electron beam in combination with magnetron sputtering on it,for dry friction and wear properties.The result showed that the electron beam pretreated substrate was useful to improve the tribological performance of coating material.Furthermore, the surface roughness of coating, the bonding force between substrate and coating as well as the load are the main factors affecting the tribological performance of this coating. Most importantly, the contribution of plowing effect on friction coefficient should be considered when the surface roughness is high.

  10. An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics.

    Science.gov (United States)

    Lin, Lihua; Shen, Mingyue; Liu, Suchen; Tang, Wei; Wang, Zhijun; Xie, Mingyong; Xie, Jianhua

    2018-02-01

    Polysaccharide from Mesona chinensis is becoming increasingly attractive focus because of its gelling property and biological activities. In this study, the rheological properties of an acidic heteropolysaccharide from Mesona chinensis (MCP) were investigated in dilute and semidilute solutions. Dynamic rheology was systematically conducted to investigate the effects of concentration, temperature, pH values, salts and freeze-thaw variations on the rheological properties of MCP. Results showed that the rheological properties of MCP exhibited pseudoplastic characteristic and "gel-like" behavior by the flow behavior detection. A closed hysteresis loop was formed when the MCP concentration reached 4%, and the Gel was generated when the MCP concentration reached 5%. The storage modulu (G') and loss modulu (G″) of MCP solution were increased with increasing oscillation frequency at concentration of 4% and 5%. The phase angel (tanδ) was less than 1, indicating MCP was a weak gel in linear viscoelastic region. The gel exhibited favourable textural properties when MCP at concentration 5%. The scanning electron microscope (SEM) verified MCP had a unique lotus leaf-like shape with some small irregular round-like rods surface morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Electronic properties of semiconductor surfaces and metal/semiconductor interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tallarida, M.

    2005-05-15

    This thesis reports investigations of the electronic properties of a semiconductor surface (silicon carbide), a reactive metal/semiconductor interface (manganese/silicon) and a non-reactive metal/semiconductor interface (aluminum-magnesium alloy/silicon). The (2 x 1) reconstruction of the 6H-SiC(0001) surface has been obtained by cleaving the sample along the (0001) direction. This reconstruction has not been observed up to now for this compound, and has been compared with those of similar elemental semiconductors of the fourth group of the periodic table. This comparison has been carried out by making use of photoemission spectroscopy, analyzing the core level shifts of both Si 2p and C 1s core levels in terms of charge transfer between atoms of both elements and in different chemical environments. From this comparison, a difference between the reconstruction on the Si-terminated and the C-terminated surface was established, due to the ionic nature of the Si-C bond. The growth of manganese films on Si(111) in the 1-5 ML thickness range has been studied by means of LEED, STM and photoemission spectroscopy. By the complementary use of these surface science techniques, two different phases have been observed for two thickness regimes (<1 ML and >1 ML), which exhibit a different electronic character. The two reconstructions, the (1 x 1)-phase and the ({radical}3 x {radical}3)R30 -phase, are due to silicide formation, as observed in core level spectroscopy. The growth proceeds via island formation in the monolayer regime, while the thicker films show flat layers interrupted by deep holes. On the basis of STM investigations, this growth mode has been attributed to strain due to lattice mismatch between the substrate and the silicide. Co-deposition of Al and Mg onto a Si(111) substrate at low temperature (100K) resulted in the formation of thin alloy films. By varying the relative content of both elements, the thin films exhibited different electronic properties

  12. Calculated Fermi surface properties of LaSn3 and YSn3 under pressure

    International Nuclear Information System (INIS)

    Kanchana, V.

    2012-01-01

    The electronic structure, Fermi surface and elastic properties of the iso-structural and iso-electronic LaSn 3 and YSn 3 intermetallic compounds are studied under pressure within the frame work of density functional theory including spin-orbit coupling. The LaSn 3 Fermi surface consists of two sheets, of which the second is very complex. Under pressure a third sheet appears around compression V/V 0 =0.94, while a small topology changes in the second sheet is seen at compression V/V 0 =0.90. This may be in accordance with the anomalous behavior in the superconducting transition temperature observed in LaSn 3 , which has been suggested to reflect a Fermi surface topological transition, along with a non-monotonic pressure dependence of the density of states at the Fermi level. The similar behavior is not observed in YSn 3 for which the Fermi surface includes three sheets already at ambient conditions, and the topology remains unchanged under pressure. The reason for the difference in behavior between LaSn 3 and YSn 3 is the role of spin-orbit coupling and the hybridization of La-4f state with the Sn-p state in the vicinity of the Fermi level, which is well explained using the band structure calculation. The elastic constants and related mechanical properties are calculated at ambient as well as at elevated pressures. The elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. (author)

  13. Superhydrophobic properties induced by sol-gel routes on copper surfaces

    Science.gov (United States)

    Raimondo, M.; Veronesi, F.; Boveri, G.; Guarini, G.; Motta, A.; Zanoni, R.

    2017-11-01

    Superhydrophobic surfaces are attracting increasing attention in different fields such as energy, transportation, building industry and electronics, as they exhibit many interesting properties such as high water repellence, anti-fogging, anti-corrosion, anti-fouling and self-cleaning abilities. Here, superhydrophobic nanostructured hybrid materials obtained by depositing alumina nanoparticles on copper surfaces via dip coating in Al2O3 sol are presented. Two different preparation routes were explored, based on either an alcoholic or an aqueous Al2O3 sol, and the resulting wetting properties were compared. Wettability measurements showed that when the alcoholic sol is used superhydrophobicity is attained, with values of water contact angle very close to the upper limit of 180°, while highly hydrophobic coatings are obtained with the aqueous sol. These findings were further supported by electron microscopy and X-ray photoelectron spectroscopy, which revealed that the surface layer deposited on Cu is more homogenous and richer in alumina nanoparticles when the alcoholic sol was used. Durability of the superhydrophobic coating was assessed by performing ageing tests in chemically aggressive environments. A remarkable resistance is displayed by the superhydrophobic coating in acid environment, while alkaline conditions severely affect its properties. Such behaviors were investigated by XPS and FE-SEM measurements, which disclosed the nature of the surface reactions under the different conditions tested. The present results underline that a thorough investigation of surface morphology, chemical composition and wetting properties reveals their strongly connection and helps optimizing the combination of substrate nanostructuring and suitable chemical coating for an improved durability in different aggressive environments.

  14. Controllable surface morphology and properties via mist polymerization on a plasma-treated polymethyl methacrylate surface.

    Science.gov (United States)

    Wan, S J; Wang, L; Xu, X J; Zhao, C H; Liu, X D

    2014-02-14

    Surface modification by grafting polymers on solid materials is an important strategy used to improve surface properties. This article reports that under appropriate conditions, very thin layers with desired morphologies may be constructed on a plasma-treated substrate by feeding a small quantity of a monomer with a mist stream carrying droplets produced from monomer solutions. We investigate the effects of process parameters that affect layer morphology, including exposure time to the mist stream, concentration of the monomer solution, and solvent selectivity. For a methyl methacrylate solution in ethanol, nanoparticles are uniformly grown with increasing monomer concentration or exposure time and finally form a porous layer at 3.65 mol L(-1) for 30 min. Decreasing solvent polarity not only affects surface morphology, but also increases hydrophobicity of the resulting surface. With 2,2,3,4,4,4-hexafluorobutyl methacrylate as the monomer, SEM and AFM micrographs indicated that mist polymerization results in numerous microspheres on the activated surface. These experimental results were interpreted by a mechanism in terms of an in situ polymerization accompanied by a phase transformation of the resulting polymer. Specifically, plasma treatment provides highly active cations and radicals to initiate very rapid polymerization, and the resulting polymers are consequently deposited from the liquid onto the surface under phase transition mechanisms.

  15. Yttrium ion implantation on the surface properties of magnesium

    International Nuclear Information System (INIS)

    Wang, X.M.; Zeng, X.Q.; Wu, G.S.; Yao, S.S.

    2006-01-01

    Owing to their excellent physical and mechanical properties, magnesium and its alloys are receiving more attention. However, their application has been limited to the high reactivity and the poor corrosion resistance. The aim of the study was to investigate the beneficial effects of ion-implanted yttrium using a MEVVA ion implanter on the surface properties of pure magnesium. Isothermal oxidation tests in pure O 2 at 673 and 773 K up to 90 min indicated that the oxidation resistance of magnesium had been significantly improved. Surface morphology of the oxide scale was analyzed using scanning electron microscope (SEM). Auger electron spectroscopy (AES) and X-ray diffraction (XRD) analyses indicated that the implanted layer was mainly composed of MgO and Y 2 O 3 , and the implanted layer with a duplex structure could decrease the inward diffusion of oxygen and reduce the outward diffusion of Mg 2+ , which led to improving the oxidation resistance of magnesium. Potentiodynamic polarization curves were used to evaluate the corrosion resistance of the implanted magnesium. The results show yttrium implantation could enhance the corrosion resistance of implanted magnesium compared with that of pure magnesium

  16. Improved antifouling properties of photobioreactors by surface grafted sulfobetaine polymers.

    Science.gov (United States)

    Wang, Dongwei; Wu, Xia; Long, Lixia; Yuan, Xubo; Zhang, Qinghua; Xue, Shengzhang; Wen, Shumei; Yan, Chenghu; Wang, Jianming; Cong, Wei

    2017-11-01

    To improve the antifouling (AF) properties of photobioreactors (PBR) for microalgal cultivation, using trihydroxymethyl aminomethane (tris) as the linking agent, a series of polyethylene (PE) films grafted with sulfobetaine (PE-SBMA) with grafting density ranging from 23.11 to 112 μg cm -2 were prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). It was found that the contact angle of PE-SBMA films decreased with the increase in the grafting density. When the grafting density was 101.33 μg cm -2 , it reached 67.27°. Compared with the PE film, the adsorption of protein on the PE-SBMA film decreased by 79.84% and the total weight of solid and absorbed microalgae decreased by 54.58 and 81.69%, respectively. Moreover, the transmittance of PE-SBMA film recovered to 86.03% of the initial value after cleaning, while that of the PE film recovered to only 47.27%. The results demonstrate that the AF properties of PE films were greatly improved on polySBMA-grafted surfaces.

  17. Surface structure, crystallographic and ice-nucleating properties of cellulose

    Science.gov (United States)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest

  18. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    Science.gov (United States)

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  19. Systematical characterization of phase behaviors and membrane properties of fatty acid/didecyldimethylammonium bromide vesicles.

    Science.gov (United States)

    Suga, Keishi; Yokoi, Tomoya; Kondo, Dai; Hayashi, Keita; Morita, Seiichi; Okamoto, Yukihiro; Shimanouchi, Toshinori; Umakoshi, Hiroshi

    2014-11-04

    Fatty acids (FAs) are known to form vesicle structures, depending on the surrounding pH conditions. In this study, we prepared vesicles by mixing FAs and a cationic surfactant, and then investigated their physicochemical properties using fluorescence spectroscopy and dielectric dispersion analysis (DDA). The assemblies formed from oleic acid (OA) and linoleic acid (LA) were modified by adding didecyldimethylammonium bromide (DDAB). The phase state of FA/DDAB mixtures was investigated with pH titration curves and turbidity measurements. The trigonal diagram of FA/ionized FA/DDAB was successfully drawn to understand the phase behaviors of FA/DDAB systems. The analysis of fluidities in the interior of the membrane with use of 1,6-diphenyl-1,3,5-hexatriene (DPH) indicated that the membrane fluidities of OA/DDAB and LA/DDAB at pH 8.5 slightly decreased in proportion to the molar ratio of DDAB in FA/DDAB systems. The fluorescent probe 6-lauroyl-2-dimethylamino naphthalene (Laurdan) indicated that the LA vesicle possessed a dehydrated surface, while the OA vesicle surface was hydrated. Modification of LA vesicles with DDAB induced the hydration of membrane surfaces, whereas modification of OA vesicles by DDAB had the opposite effect. DDA analysis indicated that the membrane surfaces were hydrated in the presence of DDAB, suggesting that the surface properties of FA vesicles are tunable by DDAB modification.

  20. Surface properties, solubility and dissolution kinetics of bamboo phytoliths

    Science.gov (United States)

    Fraysse, Fabrice; Pokrovsky, Oleg S.; Schott, Jacques; Meunier, Jean-Dominique

    2006-04-01

    Although phytoliths, constituted mainly by micrometric opal, exhibit an important control on silicon cycle in superficial continental environments, their thermodynamic properties and reactivity in aqueous solution are still poorly known. In this work, we determined the solubility and dissolution rates of bamboo phytoliths collected in the Réunion Island and characterized their surface properties via electrophoretic measurements and potentiometric titrations in a wide range of pH. The solubility product of "soil" phytoliths ( pKsp0=2.74 at 25 °C) is equal to that of vitreous silica and is 17 times higher than that of quartz. Similarly, the enthalpy of phytoliths dissolution reaction (ΔHr25-80°C=10.85kJ/mol) is close to that of amorphous silica but is significantly lower than the enthalpy of quartz dissolution. Electrophoretic measurements yield isoelectric point pH IEP = 1.2 ± 0.1 and 2.5 ± 0.2 for "soil" (native) and "heated" (450 °C heating to remove organic matter) phytoliths, respectively. Surface acid-base titrations allowed generation of a 2-p K surface complexation model. Phytoliths dissolution rates, measured in mixed-flow reactors at far from equilibrium conditions at 2 ⩽ pH ⩽ 12, were found to be intermediate between those of quartz and vitreous silica. The dissolution rate dependence on pH was modeled within the concept of surface coordination theory using the equation: R=k1·{>SiOH2+}n+k2·{>SiOH0}+k3·{>SiO-}m, where {> i} stands for the concentration of the surface species present at the SiO 2-H 2O interface, ki are the rate constants of the three parallel reactions and n and m represent the order of the proton- and hydroxy-promoted reactions, respectively. It follows from the results of this study that phytoliths dissolution rates exhibit a minimum at pH ˜ 3. This can explain their good preservation in the acidic soil horizons of Réunion Island. In terms of silicon biogeochemical cycle, phytoliths represent a large buffering reservoir

  1. Surface properties of SAR11 bacteria facilitate grazing avoidance.

    Science.gov (United States)

    Dadon-Pilosof, Ayelet; Conley, Keats R; Jacobi, Yuval; Haber, Markus; Lombard, Fabien; Sutherland, Kelly R; Steindler, Laura; Tikochinski, Yaron; Richter, Michael; Glöckner, Frank Oliver; Suzuki, Marcelino T; West, Nyree J; Genin, Amatzia; Yahel, Gitai

    2017-12-01

    Oceanic ecosystems are dominated by minute microorganisms that play a major role in food webs and biogeochemical cycles 1 . Many microorganisms thrive in the dilute environment due to their capacity to locate, attach to, and use patches of nutrients and organic matter 2,3 . We propose that some free-living planktonic bacteria have traded their ability to stick to nutrient-rich organic particles for a non-stick cell surface that helps them evade predation by mucous filter feeders. We used a combination of in situ sampling techniques and next-generation sequencing to study the biological filtration of microorganisms at the phylotype level. Our data indicate that some marine bacteria, most notably the highly abundant Pelagibacter ubique and most other members of the SAR 11 clade of the Alphaproteobacteria, can evade filtration by slipping through the mucous nets of both pelagic and benthic tunicates. While 0.3 µm polystyrene beads and other similarly-sized bacteria were efficiently filtered, SAR11 members were not captured. Reversed-phase chromatography revealed that most SAR11 bacteria have a much less hydrophobic cell surface than that of other planktonic bacteria. Our data call for a reconsideration of the role of surface properties in biological filtration and predator-prey interactions in aquatic systems.

  2. Identification of rheological properties of human body surface tissue.

    Science.gov (United States)

    Benevicius, Vincas; Gaidys, Rimvydas; Ostasevicius, Vytautas; Marozas, Vaidotas

    2014-04-11

    According to World Health Organization obesity is one of the greatest public health challenges of the 21st century. It has tripled since the 1980s and the numbers of those affected continue to rise at an alarming rate, especially among children. There are number of devices that act as a prevention measure to boost person's motivation for physical activity and its levels. The placement of these devices is not restricted thus the measurement errors that appear because of the body rheology, clothes, etc. cannot be eliminated. The main objective of this work is to introduce a tool that can be applied directly to process measured accelerations so human body surface tissue induced errors can be reduced. Both the modeling and experimental techniques are proposed to identify body tissue rheological properties and prelate them to body mass index. Multi-level computational model composed from measurement device model and human body surface tissue rheological model is developed. Human body surface tissue induced inaccuracies can increase the magnitude of measured accelerations up to 34% when accelerations of the magnitude of up to 27 m/s(2) are measured. Although the timeframe of those disruptions are short - up to 0.2 s - they still result in increased overall measurement error. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Electrochemical Behavior Of Bioactive Coatings On Cp-ti Surface For Dental Application.

    OpenAIRE

    Marques, Isabella da Silva Vieira; Barão, Valentim Adelino Ricardo; da Cruz, Nilson Cristino; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Ricomini-Filho, Antonio Pedro; Sukotjo, Cortino; Mathew, Mathew T

    2016-01-01

    The surface characteristics and electrochemical properties of bioactive coatings produced by plasma electrolytic oxidation (PEO) with calcium, phosphorous, silicon and silver on commercially pure titanium were evaluated. PEO treatment produced a porous oxide layer, which improved the surface topography, and enriched the surface chemistry with bioactive elements, responsible for mimicking bone surface. The surfaces with higher calcium concentration presented antibacterial and biocompatibility ...

  4. Tribological Properties of Surface-Textured and Plasma-Nitrided Pure Titanium Under Oil Lubrication Condition

    Science.gov (United States)

    Zhang, Baosen; Dong, Qiangsheng; Ba, Zhixin; Wang, Zhangzhong; Shi, Hancheng; Xue, Yanting

    2018-01-01

    Plasma nitriding was conducted as post-treatment for surface texture on pure titanium to obtain a continuous nitriding layer. Supersonic fine particles bombarding (SFPB) was carried out to prepare surface texture. The surface morphologies and chemical composition were analyzed using scanning electron microscope and energy disperse spectroscopy. The microstructures of modified layers were characterized by transmission electron microscope. The tribological properties of surface-textured and duplex-treated pure titanium under oil lubrication condition were systematically investigated in the ball-on-plate reciprocating mode. The effects of applied load and sliding velocity on the tribological behavior were analyzed. The results show that after duplex treatments, the grains size in modified layer becomes slightly larger, and hardness is obviously improved. Wear resistance of duplex-treated pure titanium is significantly improved referenced to untreated and surface-textured pure titanium, which is 3.22 times as much as untreated pure titanium and 2.15 times of that for surface-textured pure titanium, respectively.

  5. Monitoring polymer properties using shear horizontal surface acoustic waves.

    Science.gov (United States)

    Gallimore, Dana Y; Millard, Paul J; Pereira da Cunha, Mauricio

    2009-10-01

    Real-time, nondestructive methods for monitoring polymer film properties are increasingly important in the development and fabrication of modern polymer-containing products. Online testing of industrial polymer films during preparation and conditioning is required to minimize material and energy consumption, improve the product quality, increase the production rate, and reduce the number of product rejects. It is well-known that shear horizontal surface acoustic wave (SH-SAW) propagation is sensitive to mass changes as well as to the mechanical properties of attached materials. In this work, the SH-SAW was used to monitor polymer property changes primarily dictated by variations in the viscoelasticity. The viscoelastic properties of a negative photoresist film were monitored throughout the ultraviolet (UV) light-induced polymer cross-linking process using SH-SAW delay line devices. Changes in the polymer film mass and viscoelasticity caused by UV exposure produced variations in the phase velocity and attenuation of the SH-SAW propagating in the structure. Based on measured polymer-coated delay line scattering transmission responses (S(21)) and the measured polymer layer thickness and density, the viscoelastic constants c(44) and eta(44) were extracted. The polymer thickness was found to decrease 0.6% during UV curing, while variations in the polymer density were determined to be insignificant. Changes of 6% in c(44) and 22% in eta(44) during the cross-linking process were observed, showing the sensitivity of the SH-SAW phase velocity and attenuation to changes in the polymer film viscoelasticity. These results indicate the potential for SH-SAW devices as online monitoring sensors for polymer film processing.

  6. Modifying zirconia solid electrolyte surface property to enhance oxide transport

    Energy Technology Data Exchange (ETDEWEB)

    Liaw, B.Y.; Song, S.Y. [Univ. of Hawaii, Honolulu, HI (United States)

    1996-12-31

    Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.

  7. Anticoagulation and endothelial cell behaviors of heparin-loaded graphene oxide coating on titanium surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Chang-Jiang, E-mail: panchangjiang@hyit.edu.cn [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China); Pang, Li-Qun [Department of General Surgery, Huai' an First People' s Hospital, Nanjing Medical University, Huai' an 223300 (China); Gao, Fei [Zhejiang Zylox Medical Devices Co., Ltd., Hangzhou 310000 (China); Wang, Ya-Nan; Liu, Tao; Ye, Wei; Hou, Yan-Hua [Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huai' an 223003 (China)

    2016-06-01

    Owing to its unique physical and chemical properties, graphene oxide (GO) has attracted tremendous interest in many fields including biomaterials and biomedicine. The purpose of the present study is to investigate the endothelial cell behaviors and anticoagulation of heparin-loaded GO coating on the titanium surface. To this end, the titanium surface was firstly covered by the polydopamine coating followed by the deposition of the GO coating. Heparin was finally loaded on the GO coating to improve the blood compatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) indicated that the heparin-loaded GO coating was successfully created on the titanium surface. The scanning electron microscopy (SEM) images indicated that a relative uniform GO coating consisting of multilayer GO sheets was formed on the substrate. The hydrophilicity of the titanium surface was enhanced after the deposition of GO and further improved significantly by the loading heparin. The GO coating can enhance the endothelial cell adhesion and proliferation as compared with polydopamine coating and the blank titanium. Loading heparin on the GO coating can significantly reduce the platelet adhesion and prolong the activated partial thromboplastin time (APTT) while not influence the endothelial cell adhesion and proliferation. Therefore, the heparin-loaded GO coating can simultaneously enhance the cytocompatibility to endothelial cells and blood compatibility of biomaterials. Because the polydopamine coating can be easily prepared on most of biomaterials including polymer, ceramics and metal, thus the approach of the present study may open up a new window of promising an effective and efficient way to promote endothelialization and improve the blood compatibility of blood-contact biomedical devices such as intravascular stents. - Highlights: • Heparin-loaded graphene oxide coating was

  8. Micromechanical and surface adhesive properties of single saccharomyces cerevisiae cells

    Science.gov (United States)

    Farzi, Bahman; Cetinkaya, Cetin

    2017-09-01

    The adhesion and mechanical properties of a biological cell (e.g. cell membrane elasticity and adhesiveness) are often strong indicators for the state of its health. Many existing techniques for determining mechanical properties of cells require direct physical contact with a single cell or a group of cells. Physical contact with the cell can trigger complex mechanotransduction mechanisms, leading to cellular responses, and consequently interfering with measurement accuracy. In the current work, based on ultrasonic excitation and interferometric (optical) motion detection, a non-contact method for characterizing the adhesion and mechanical properties of single cells is presented. It is experimentally demonstrated that the rocking (rigid body) motion and internal vibrational resonance frequencies of a single saccharomyces cerevisiae (SC) (baker’s yeast) cell can be acquired with the current approach, and the Young’s modulus and surface tension of the cell membrane as well as surface adhesion energy can be extracted from the values of these acquired resonance frequencies. The detected resonance frequency ranges for single SC cells include a rocking (rigid body) frequency of 330  ±  70 kHz and two breathing resonance frequencies of 1.53  ±  0.12 and 2.02  ±  0.31 MHz. Based on these values, the average work-of-adhesion of SC cells on a silicon substrate in aqueous medium is extracted, for the first time, as WASC-Si=16.2+/- 3.8 mJ {{m}-2} . Similarly, the surface tension and the Young’s modulus of the SC cell wall are predicted as {{σ }SC}=0.16+/- 0.02 N {{m}-1} and {{E}SC}= 9.20  ±  2.80 MPa, respectively. These results are compared to those reported in the literature by utilizing various methods, and good agreements are found. The current approach eliminates the measurement inaccuracies associated with the physical contact. Exciting and detecting cell dynamics at micro-second time-scales is significantly faster than the

  9. Structure and optical properties of water covered Cu(110) surfaces

    International Nuclear Information System (INIS)

    Baghbanpourasl, A.

    2014-01-01

    In this thesis structural and optical properties of the water covered Cu(110) surface is studied using density functional theory within independent particle approximation. Several stable adsorption structures are studied such as water clusters (monomer, dimer, trimer, tetramer and pentamer), different hexagonal monolayers, partially dissociated water monolayers and three different types of chains among them a chain that consists of pentagon rings. For a copper surface in contact with water vapor, the energetically stable H 2 O/OH adsorbed structures are compared thermodynamically using adsorption free energy (change of free energy due to adsorption). Several phase diagrams with respect to temperature and pressure are calculated. It is found that among the large number of energetically stable structures (i.e. structures with positive adsorption energy ) only limited number of them are thermodynamically stable. These thermodynamically stable structures are the class of almost energetically degenerate hexagonal overlayers, one type of partially dissociated water structure that contains Bjerrum defect in the hydrogen bond network and pentagon chain. Since hydrogen atoms are light weight their vibrational effects can be considerable. Zero point vibration decreases the adsorption energy up to 0.1 eV and free energy of adsorbed molecules arising from vibrational degree of freedom can go up to -0.2 eV per adsorbed molecule at 500 Kelvin. However zero point energy and vibrational free energy of adsorbed molecules do not alter relative stability of the adsorbed structures. To account for the long range van der Waals interactions, a semi-empirical scheme is applied. Reflectance Anisotropy Spectroscopy (RAS) is a fast and non destructive optical method that can be used to prob the surface in different conditions such as vacuum and electro-chemical environment. Elasto-optic coeficients of bulk are calculated from first principles and the change of the RA spectrum of the bare Cu

  10. Which catchment properties determine runoff behavior in small catchments?

    Science.gov (United States)

    Thomas, B. D.; Lischeid, G.; Steidl, J.; Dannowski, R.

    2012-04-01

    The complexity of Pleistocene landscape and various anthropogenic influences complicate the classification of runoff characteristics of small catchments in northeast Germany. Such a classification would be of use for scientists and water managers in order to estimate the catchments' vulnerability regarding floods and low flows, transfer results to ungauged catchments as well as planning of measures to adapt to climate change. The objective of our study is the use of dimensional reduction technique solely on discharge time series in order to classify runoff behavior of small catchments (Health and Consumer Protection of the Federal State of Brandenburg. Principal Component Analysis was applied to reduce dimensionality to as few principal components as possible explaining still most of the variance in the data. Additionally, meteorological data and catchment properties derived from hydrogeologic, soil and land use maps were included to better understand the results and to check hypotheses about underlying processes and driving forces. The first six components exhibited an eigenvalue exceeding one and explained 73% of the total variance. Analysis of the loadings and comparison with meteorological and catchment properties allowed assigning runoff generating processes to the principal components. The first principal component represented the mean runoff behavior of the time series from all catchments. Further components could be related to precipitation patterns that exhibited a northwest-southeast and southwest-northeast gradient, a higher evapotranspiration by wetlands and river lakes, water management activities and specific behavior or measurement errors at single gauges. Despite our hypothesis that soil, groundwater and land use properties are crucial to understand discharge patterns at small catchments the results show that precipitation patterns and the area of river lakes and wetlands explain most of the variance in our data set. Our method was suited to extract

  11. Influence of the structural properties on the pseudocritical magnetic behavior of single-wall ferromagnetic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Salazar-Enriquez, C.D. [PCM Computational Applications, Universidad Nacional de Colombia - Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [PCM Computational Applications, Universidad Nacional de Colombia - Sede Manizales, A.A. 127 Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulacion Gplus, Instituto de Fisica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)

    2012-04-15

    In this work we address the influence of the crystalline structure, concretely when the system under study is formed by square or hexagonal unit cells, upon the magnetic properties and pseudocritical behavior of single-wall ferromagnetic nanotubes. We focus not only on the effect of the geometrical shape of the unit cell but also on their dimensions. The model employed is based on the Monte Carlo method, the Metropolis dynamics and a nearest neighbors classical Heisenberg Hamiltonian. Magnetization per magnetic site, magnetic susceptibility, specific heat and magnetic energy were computed. These properties were computed varying the system size, unit cell dimension and temperature. The dependence of the nearest neighbor exchange integral on the nanotubes geometrical characteristics is also discussed. Results revealed a strong influence of the system topology on the magnetic properties caused by the difference in the coordination number between square and hexagonal unit cell. Moreover, the nanotubes diameter influence on magnetic properties is only observed at very low values, when the distance between atoms is less than it, presented by the 2D sheet. On the other hand, it was concluded that the surface-related finite-size effects do not influence the magnetic nanotubes properties, contrary to the case of other nano-systems as thin films and nanoparticles among others. - Highlights: Black-Right-Pointing-Pointer Unit cell geometry has strong influence on the magnetic properties in ferromagnetic nanotubes. Black-Right-Pointing-Pointer The nanotube diameter increase produces a decrease of interaction between nearest neighbor. Black-Right-Pointing-Pointer Surface-related finite-size effects do not influence the magnetic nanotubes properties.

  12. Structural, electronic and magnetic properties of Mn3N2(0 0 1) surfaces

    International Nuclear Information System (INIS)

    Guerrero-Sánchez, J.; Mandru, Andrada-Oana; Wang, Kangkang; Takeuchi, Noboru; Cocoletzi, Gregorio H.; Smith, Arthur R.

    2015-01-01

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn 3 N 2 (0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  13. Corrosion properties of sealing surface material for RPV under abnormal working conditions

    International Nuclear Information System (INIS)

    Liu Jinhua; Wen Yan; Zhang Xuemei; Hou Songmin; Gong Bin; He Yanchun

    2012-01-01

    Based on the corrosion issue of sealing surface material for RPV in some nuclear projects, the corrosion properties of sealing surface material for RPV under abnormal working conditions were investigated. The corrosion behavior of 308L stainless steel were studied by using autoclave in different contents of Cl - solutions, and these samples were observed and analyzed by means of the metalloscope and Scanning electron microscope (SEM). Results show that no pitting, crevice and stress corrosion occurred, when the content of Cl - was lower than 1 mg/L at the temperatures of 270℃ and the pressure of 5.5 MPa. However, with the increase of the content of Cl - , the susceptibility to pitting, crevice and stress corrosion of 308L was enhanced remarkably. (authors)

  14. A Theoretical Analysis of Potential Extinction Properties of Behavior-Specific Manual Restraint

    Science.gov (United States)

    Cipani, Ennio; Thomas, Melvin; Martin, Daniel

    2007-01-01

    This paper will examine possible extinction properties of behavior-specific manual restraint. It will analyze the possibility of extinction being produced via restraint with respect to the target behavior's possible environmental functions. The theoretical analysis will involve the analysis of behavioral properties of restraint during two temporal…

  15. A decade of silicone hydrogel development: surface properties, mechanical properties, and ocular compatibility.

    Science.gov (United States)

    Tighe, Brian J

    2013-01-01

    Since the initial launch of silicone hydrogel lenses, there has been a considerable broadening in the range of available commercial material properties. The very mobile silicon-oxygen bonds convey distinctive surface and mechanical properties on silicone hydrogels, in which advantages of enhanced oxygen permeability, reduced protein deposition, and modest frictional interaction are balanced by increased lipid and elastic response. There are now some 15 silicone hydrogel material variants available to practitioners; arguably, the changes that have taken place have been strongly influenced by feedback based on clinical experience. Water content is one of the most influential properties, and the decade has seen a progressive rise from lotrafilcon-A (24%) to efrofilcon-A (74%). Moduli have decreased over the same period from 1.4 to 0.3 MPa, but not solely as a result of changes in water content. Surface properties do not correlate directly with water content, and ingenious approaches have been used to achieve desirable improvements (e.g., greater lubricity and lower contact angle hysteresis). This is demonstrated by comparing the hysteresis value of the earliest (lotrafilcon-A, >40°) and most recent (delefilcon-A, silicone hydrogels. Although wettability is important, it is not of itself a good predictor of ocular response because this involves a much wider range of physicochemical and biochemical factors. The interference of the lens with ocular dynamics is complex leading separately to tissue-material interactions involving anterior and posterior lens surfaces. The biochemical consequences of these interactions may hold the key to a greater understanding of ocular incompatibility and end of day discomfort.

  16. E. coli Surface Properties Differ between Stream Water and Sediment Environments

    Directory of Open Access Journals (Sweden)

    Xiao Liang

    2016-11-01

    Full Text Available The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10mM and 22˚C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity and extracellular polymeric substance (EPS composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli. A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli. Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli.

  17. E. coli Surface Properties Differ between Stream Water and Sediment Environments.

    Science.gov (United States)

    Liang, Xiao; Liao, Chunyu; Thompson, Michael L; Soupir, Michelle L; Jarboe, Laura R; Dixon, Philip M

    2016-01-01

    The importance of E. coli as an indicator organism in fresh water has led to numerous studies focusing on cell properties and transport behavior. However, previous studies have been unable to assess if differences in E. coli cell surface properties and genomic variation are associated with different environmental habitats. In this study, we investigated the variation in characteristics of E. coli obtained from stream water and stream bottom sediments. Cell properties were measured for 77 genomically different E. coli strains (44 strains isolated from sediments and 33 strains isolated from water) under common stream conditions in the Upper Midwestern United States: pH 8.0, ionic strength 10 mM and 22°C. Measured cell properties include hydrophobicity, zeta potential, net charge, total acidity, and extracellular polymeric substance (EPS) composition. Our results indicate that stream sediment E. coli had significantly greater hydrophobicity, greater EPS protein content and EPS sugar content, less negative net charge, and higher point of zero charge than stream water E. coli . A significant positive correlation was observed between hydrophobicity and EPS protein for stream sediment E. coli but not for stream water E. coli . Additionally, E. coli surviving in the same habitat tended to have significantly larger (GTG) 5 genome similarity. After accounting for the intrinsic impact from the genome, environmental habitat was determined to be a factor influencing some cell surface properties, such as hydrophobicity. The diversity of cell properties and its resulting impact on particle interactions should be considered for environmental fate and transport modeling of aquatic indicator organisms such as E. coli .

  18. Evaluation of Fatigue Behavior and Surface Characteristics of Aluminum Alloy 2024 T6 After Electric Discharge Machining

    Science.gov (United States)

    Mehmood, Shahid; Shah, Masood; Pasha, Riffat Asim; Sultan, Amir

    2017-10-01

    The effect of electric discharge machining (EDM) on surface quality and consequently on the fatigue performance of Al 2024 T6 is investigated. Five levels of discharge current are analyzed, while all other electrical and nonelectrical parameters are kept constant. At each discharge current level, dog-bone specimens are machined by generating a peripheral notch at the center. The fatigue tests are performed on four-point rotating bending machine at room temperature. For comparison purposes, fatigue tests are also performed on the conventionally machined specimens. Linearized SN curves for 95% failure probability and with four different confidence levels (75, 90, 95 and 99%) are plotted for each discharge current level as well as for conventionally machined specimens. These plots show that the electric discharge machined (EDMed) specimens give inferior fatigue behavior as compared to conventionally machined specimen. Moreover, discharge current inversely affects the fatigue life, and this influence is highly pronounced at lower stresses. The EDMed surfaces are characterized by surface properties that could be responsible for change in fatigue life such as surface morphology, surface roughness, white layer thickness, microhardness and residual stresses. It is found that all these surface properties are affected by changing discharge current level. However, change in fatigue life by discharge current could not be associated independently to any single surface property.

  19. Effect of surface energy of solid surfaces on the micro- and macroscopic properties of adsorbed BSA and lysozyme.

    Science.gov (United States)

    Sharma, Indu; Pattanayek, Sudip K

    2017-07-01

    The surface energy, a macroscopic property, depends on the chemical functionality and micro- and macroscopic roughness of the surface. The adsorption of two widely used proteins bovine serum albumin (BSA) and lysozyme on surfaces of four different chemical functionalities were done to find out the interrelation between macroscopic and microscopic properties. We have observed the secondary structure of protein after its adsorption. In addition, we observed the variation of surface energy of proteins due to variation in adsorption time, change in protein concentration and effect of a mixture of proteins. Surfaces of three different chemical functionalities namely, amine, hydroxyl and octyl were obtained through self-assembled monolayer on silica surfaces and were tested for responses towards adsorption of lysozyme and BSA. The adsorbed lysozyme has higher surface energy than the adsorbed BSA on amine and octyl surfaces. On hydroxyl functional surface, the surface energy due to the adsorbed lysozyme or BSA increases slowly with time. The surface energy of the adsorbed protein increases gradually with increasing protein concentration on hydrophobic surfaces. On hydrophilic surfaces, with increasing BSA concentration in bulk solution, the surface energy of the adsorbed protein on GPTMS and amine surfaces is maximum at 1μM concentration. During the adsorption from a mixture of BSA and lysozyme on octyl surface, first lysozyme adsorbs and subsequent BSA adsorption leads to a high surface energy. Copyright © 2016. Published by Elsevier B.V.

  20. The vibrational and buckling behaviors of piezoelectric nanobeams with surface effects

    International Nuclear Information System (INIS)

    Yan, Z; Jiang, L Y

    2011-01-01

    In this work, the influence of surface effects, including residual surface stress, surface elasticity and surface piezoelectricity, on the vibrational and buckling behaviors of piezoelectric nanobeams is investigated by using the Euler-Bernoulli beam theory. The surface effects are incorporated by applying the surface piezoelectricity model and the generalized Young-Laplace equations. The results demonstrate that surface effects play a significant role in predicting these behaviors. It is found that the influence of the residual surface stress and the surface piezoelectricity on the resonant frequencies and the critical electric potential for buckling is more prominent than the surface elasticity. The nanobeam boundary conditions are also found to influence the surface effects on these parameters. This study also shows that the resonant frequencies can be tuned by adjusting the applied electrical load. The present study is envisaged to provide useful insights for the design and applications of piezoelectric-beam-based nanodevices.

  1. Adaptive Surface Modeling of Soil Properties in Complex Landforms

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-06-01

    Full Text Available Abstract: Spatial discontinuity often causes poor accuracy when a single model is used for the surface modeling of soil properties in complex geomorphic areas. Here we present a method for adaptive surface modeling of combined secondary variables to improve prediction accuracy during the interpolation of soil properties (ASM-SP. Using various secondary variables and multiple base interpolation models, ASM-SP was used to interpolate soil K+ in a typical complex geomorphic area (Qinghai Lake Basin, China. Five methods, including inverse distance weighting (IDW, ordinary kriging (OK, and OK combined with different secondary variables (e.g., OK-Landuse, OK-Geology, and OK-Soil, were used to validate the proposed method. The mean error (ME, mean absolute error (MAE, root mean square error (RMSE, mean relative error (MRE, and accuracy (AC were used as evaluation indicators. Results showed that: (1 The OK interpolation result is spatially smooth and has a weak bull's-eye effect, and the IDW has a stronger ‘bull’s-eye’ effect, relatively. They both have obvious deficiencies in depicting spatial variability of soil K+. (2 The methods incorporating combinations of different secondary variables (e.g., ASM-SP, OK-Landuse, OK-Geology, and OK-Soil were associated with lower estimation bias. Compared with IDW, OK, OK-Landuse, OK-Geology, and OK-Soil, the accuracy of ASM-SP increased by 13.63%, 10.85%, 9.98%, 8.32%, and 7.66%, respectively. Furthermore, ASM-SP was more stable, with lower MEs, MAEs, RMSEs, and MREs. (3 ASM-SP presents more details than others in the abrupt boundary, which can render the result consistent with the true secondary variables. In conclusion, ASM-SP can not only consider the nonlinear relationship between secondary variables and soil properties, but can also adaptively combine the advantages of multiple models, which contributes to making the spatial interpolation of soil K+ more reasonable.

  2. Control of cell behavior on PTFE surface using ion beam irradiation

    International Nuclear Information System (INIS)

    Kitamura, Akane; Kobayashi, Tomohiro; Meguro, Takashi; Suzuki, Akihiro; Terai, Takayuki

    2009-01-01

    A polytetrafluoroethylene (PTFE) surface is smooth and biologically inert, so that cells cannot attach to it. Ion beam irradiation of the PTFE surface forms micropores and a melted layer, and the surface is finally covered with a large number of small protrusions. Recently, we found that cells could adhere to this irradiated PTFE surface and spread over the surface. Because of their peculiar attachment behavior, these surfaces can be used as biological tools. However, the factors regulating cell adhesion are still unclear, although some new functional groups formed by irradiation seem to contribute to this adhesion. To control cell behavior on PTFE surfaces, we must determine the effects of the outermost irradiated surface on cell adhesion. In this study, we removed the thin melted surface layer by postirradiation annealing and investigated cell behavior on the surface. On the surface irradiated with 3 x 10 16 ions/cm 2 , cells spread only on the remaining parts of the melted layer. From these results, it is clear that the melted layer had a capacity for cell attachment. When the surface covered with protrusions was irradiated with a fluence of 1 x 10 17 ions/cm 2 , the distribution of cells changed after the annealing process from 'sheet shaped' into multicellular aggregates with diameters of around 50 μm. These results indicate that we can control cell behavior on PTFE surfaces covered with protrusions using irradiation and subsequent annealing. Multicellular spheroids can be fabricated for tissue engineering using this surface.

  3. A Facile Method to Modify the Characteristics and Corrosion Behavior of 304 Stainless Steel by Surface Nanostructuring toward Biomedical Applications.

    Science.gov (United States)

    Thangaraj, Balusamy; Nellaiappan, Sankara Narayanan T S; Kulandaivelu, Ravichandran; Lee, Min Ho; Nishimura, Toshiyasu

    2015-08-19

    The study addresses how surface nanostructuring of AISI 304 stainless steel (SS) by surface mechanical attrition treatment (SMAT) influences its characteristic properties and corrosion behavior in Ringer's solution. SMAT of 304 SS induced plastic deformation, enabled surface nanocrystallization, refined the grain size, transformed the austenite phase to strain induced α'-martensite phase, increased the surface roughness, induced defects/dislocations, imparted compressive residual stresses at the surface, decreased the contact angle, and increased surface energy. The change in properties of 304 SS following treatment using 5 and 8 mm ⌀ balls for 15, 30, 45, and 60 min has caused a deleterious influence on its corrosion resistance in Ringer's solution, while an improvement in corrosion behavior is observed for those treated using 2 mm ⌀ balls. The increase in surface roughness, transformation of the austenite to α'-martensite phase, a higher extent of deformation, and the presence of larger number of defects/dislocations are main factors responsible for the lower corrosion resistance observed for 304 SS treated using 5 and 8 mm ⌀ balls in Ringer's solution. In spite of having these attributes with a relatively lower extent, 304 SS treated using 2 mm ⌀ balls offered a better corrosion resistance and exhibits a better passivity. For those treated using 2 mm ⌀ balls, the ability of the nanocrystalline surface to promote passivation outweighs the deleterious influences caused by the limited amount of deformation and defects/dislocations. Based on the findings of this study, it is recommend that SMAT of 304 SS using 2 mm ⌀ balls for 15-30 min is the optimum condition to achieve the suitable surface profile, surface characteristics with better corrosion resistance.

  4. Thermal stability, swelling behavior and CO 2 absorption properties of Nanoscale Ionic Materials (NIMs)

    KAUST Repository

    Andrew Lin, Kun-Yi

    2014-11-11

    © The Royal Society of Chemistry 2015. Nanoscale Ionic Materials (NIMs) consist of a nanoscale core, a corona of charged brushes tethered on the surface of the core, and a canopy of the oppositely charged species linked to the corona. Unlike conventional polymeric nanocomposites, NIMs can display liquid-like behavior in the absence of solvents, have a negligible vapor pressure and exhibit unique solvation properties. These features enable NIMs to be a promising CO2 capture material. To optimize NIMs for CO2 capture, their structure-property relationships were examined by investigating the roles of the canopy and the core in their thermal stability, and thermally- and CO2-induced swelling behaviors. NIMs with different canopy sizes and core fractions were synthesized and their thermal stability as well as thermally- and CO2-induced swelling behaviors were determined using thermogravimetry, and ATR FT-IR and Raman spectroscopies. It was found that the ionic bonds between the canopy and the corona, as well as covalent bonds between the corona and the core significantly improved the thermal stability compared to pure polymer and polymer/nanofiller mixtures. A smaller canopy size and a larger core fraction led to a greater enhancement in thermal stability. This thermal stability enhancement was responsible for the long-term thermal stability of NIMs over 100 temperature swing cycles. Owing to their ordered structure, NIMs swelled less when heated or when they adsorbed CO2 compared to their corresponding polymers. This journal is

  5. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites.

    Science.gov (United States)

    Espino-Pérez, Etzael; Bras, Julien; Almeida, Giana; Plessis, Cédric; Belgacem, Naceur; Perré, Patrick; Domenek, Sandra

    2018-03-01

    Nanocomposites are an opportunity to increase the performance of polymer membranes by fine-tuning their morphology. In particular, the understanding of the contribution of the polymer matrix/nanofiller interface to the overall transport properties is key to design membranes with tailored selective and adsorptive properties. In that aim, cellulose nanocrystals (CNC)/polylactide (PLA) nanocomposites were fabricated with chemically designed interfaces, which were ensuring the compatibility between the constituents and impacting the mass transport mechanism. A detailed analysis of the mass transport behaviour of different permeants in CNC/PLA nanocomposites was carried out as a function of their chemical affinity to grafted CNC surfaces. Penetrants (O 2 and cyclohexane), which were found to slightly interact with the constituents of the nanocomposites, provided information on the small tortuosity effect of CNC on diffusive mass transport. The mass transport of water (highly interacting with CNC) and anisole (interacting only with designed CNC surfaces) exhibited non-Fickian, Case II behaviour. The water vapour caused significant swelling of the CNC, which created a preferential pathway for mass transport. CNC surface grafting could attenuate this phenomenon and decrease the water transport rate. Anisole, an aromatic organic vapour, became reversibly trapped at the specifically designed CNC/PLA interface, but without any swelling or creation of an accelerated pathway. This caused the decrease of the overall mass transport rate. The latter finding could open a way to the creation of materials with specifically designed barrier properties by designing nanocomposites interfaces with specific interactions towards permeants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Influence of surface treatment on the oxidation behavior of zirconium and zircaloy-4

    International Nuclear Information System (INIS)

    Costa, I.; Ramanathan, L.V.

    1986-01-01

    The influence of fluoride concentration in surface treatment solutions on the oxidation behavior of Zr and Zircaloy-4 in the temperature range 350-760 0 C have been studied by means of thermogravimetric analysis. Two solutions containing different concentrations of hydrofluoric acid have been used for surface treatments, following which surface roughness measurements were also carried out. The influence of fluoride ion concentration on oxidation behavior has been found to be significant at higher temperatures. (Author) [pt

  7. Bacterial cell surface properties: role of loosely bound extracellular polymeric substances (LB-EPS).

    Science.gov (United States)

    Zhao, Wenqiang; Yang, Shanshan; Huang, Qiaoyun; Cai, Peng

    2015-04-01

    This study investigated the effect of loosely bound extracellular polymeric substances (LB-EPS) on the comprehensive surface properties of four bacteria (Bacillus subtilis, Streptococcus suis, Escherichia coli and Pseudomonas putida). The removal of LB-EPS from bacterial surfaces by high-speed centrifugation (12,000×g) was confirmed by SEM images. Viability tests showed that the percentages of viable cells ranged from 95.9% to 98.0%, and no significant difference was found after treatment (P>0.05). FTIR spectra revealed the presence of phosphodiester, carboxylic, phosphate, and amino functional groups on bacteria surfaces, and the removal of LB-EPS did not alter the types of cell surface functional groups. Potentiometric titration results suggested the total site concentrations on the intact bacteria were higher than those on LB-EPS free bacteria. Most of the acidity constants (pKa) were almost identical, except the increased pKa values of phosphodiester groups on LB-EPS free S. suis and E. coli surfaces. The electrophoretic mobilities and hydrodynamic diameters of the intact and LB-EPS free bacteria were statistically unchanged (P>0.05), indicating LB-EPS had no influence on the net surface charges and size distribution of bacteria. However, LB-ESP could enhance cell aggregation processes. The four LB-EPS free bacteria all exhibited fewer hydrophobicity values (26.1-65.0%) as compared to the intact cells (47.4-69.3%), suggesting the removal of uncharged nonpolar compounds (e.g., carbohydrates) in LB-EPS. These findings improve our understanding of the changes in cell surface characterizations induced by LB-EPS, and have important implications for assessing the role of LB-EPS in bacterial adhesion and transport behaviors. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Bactericidal behavior of Cu-containing stainless steel surfaces

    Science.gov (United States)

    Zhang, Xiangyu; Huang, Xiaobo; Ma, Yong; Lin, Naiming; Fan, Ailan; Tang, Bin

    2012-10-01

    Stainless steels are one of the most common materials used in health care environments. However, the lack of antibacterial advantage has limited their use in practical application. In this paper, antibacterial stainless steel surfaces with different Cu contents have been prepared by plasma surface alloying technology (PSAT). The steel surface with Cu content 90 wt.% (Cu-SS) exhibits strong bactericidal activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 3 h. Although the Cu-containing surface with Cu content 2.5 wt.% (CuNi-SS) can also kill all tested bacteria, this process needs 12 h. SEM observation of the bacterial morphology and an agarose gel electrophoresis were performed to study the antibacterial mechanism of Cu-containing stainless steel surfaces against E. coli. The results indicated that Cu ions are released when the Cu-containing surfaces are in contact with bacterial and disrupt the cell membranes, killing the bacteria. The toxicity of Cu-alloyed surfaces does not cause damage to the bacterial DNA. These results provide a scientific explanation for the antimicrobial applications of Cu-containing stainless steel. The surfaces with different antibacterial abilities could be used as hygienic surfaces in healthcare-associated settings according to the diverse requirement of bactericidal activities.

  9. Facile Adhesion-Tuning of Superhydrophobic Surfaces between "Lotus" and "Petal" Effect and Their Influence on Icing and Deicing Properties.

    Science.gov (United States)

    Nine, Md J; Tung, Tran Thanh; Alotaibi, Faisal; Tran, Diana N H; Losic, Dusan

    2017-03-08

    Adhesion behavior of superhydrophobic (SH) surfaces is an active research field related to various engineering applications in controlled microdroplet transportation, self-cleaning, deicing, biochemical separation, tissue engineering, and water harvesting. Herein, we report a facile approach to control droplet adhesion, bouncing and rolling on properties of SH surfaces by tuning their air-gap and roughness-height by altering the concentrations of poly dimethyl-siloxane (PDMS). The optimal use of PDMS (4-16 wt %) in a dual-scale (nano- and microparticles) composite enables control of the specific surface area (SSA), pore volume, and roughness of matrices that result in a well-controlled adhesion between water droplets and SH surfaces. The sliding angles of these surfaces were tuned to be varied between 2 ± 1 and 87 ± 2°, which are attributed to the transformation of the contact type between droplet and surface from "point contact" to "area contact". We further explored the effectiveness of these low and high adhesive SH surfaces in icing and deicing actions, which provides a new insight into design highly efficient and low-cost ice-release surface for cold temperature applications. Low adhesion (lotus effect) surface with higher pore-volume exhibited relatively excellent ice-release properties with significant icing delay ability principally attributed to the large air gap in the coating matrix than SH matrix with high adhesion (petal effect).

  10. Surface electromyography assessment of back muscle intrinsic properties.

    Science.gov (United States)

    Larivière, Christian; Arsenault, A Bertrand; Gravel, Denis; Gagnon, Denis; Loisel, Patrick

    2003-08-01

    The purpose of this study was to assess (1) the reliability and (2) the sensitivity to low back pain status and gender of different EMG indices developed for the assessment of back muscle weakness, muscle fiber composition and fatigability. Healthy subjects (men and women) and chronic low back pain patients (men only) performed, in a static dynamometer, maximal and submaximal static trunk extension tasks (short and long duration) to assess weakness, fiber composition and fatigue. Surface EMG signals were recorded from four (bilateral) pairs of back muscles and three pairs of abdominal muscles. To assess reliability of the different EMG parameters, 40 male volunteers (20 controls and 20 chronic low back pain patients) were assessed on three occasions. Reliable EMG indices were achieved for both healthy and chronic low back pain subjects when specific measurement strategies were applied. The EMG parameters used to quantify weakness and fiber composition were insensitive to low back status and gender. The EMG fatigue parameters did not detect differences between genders but unexpectedly, healthy men showed higher fatigability than back pain patients. This result was attributed to the smaller absolute load that was attributed to the patients, a load that was defined relative to their maximal strength, a problematic measure with this population. An attempt was made to predict maximal back strength from anthropometric measurements but this prediction was prone to errors. The main difficulties and some potential solutions related to the assessment of back muscle intrinsic properties were discussed.

  11. Tailoring Novel PTFE Surface Properties: Promoting Cell Adhesion and Antifouling Properties via a Wet Chemical Approach.

    Science.gov (United States)

    Gabriel, Matthias; Niederer, Kerstin; Becker, Marc; Raynaud, Christophe Michel; Vahl, Christian-Friedrich; Frey, Holger

    2016-05-18

    Many biomaterials used for tissue engineering applications lack cell-adhesiveness and, in addition, are prone to nonspecific adsorption of proteins. This is especially important for blood-contacting devices such as vascular grafts and valves where appropriate surface properties should inhibit the initial attachment of platelets and promote endothelial cell colonization. As a consequence, the long-term outcome of the implants would be improved and the need for anticoagulation therapy could be reduced or even abolished. Polytetrafluoroethylene (PTFE), a frequently used polymer for various medical applications, was wet-chemically activated and subsequently modified by grafting the endothelial cell (EC) specific peptide arginine-glutamic acid-aspartic acid-valine (REDV) using a bifunctional polyethylene glycol (PEG)-spacer (known to reduce platelet and nonspecific protein adhesion). Modified and control surfaces were both evaluated in terms of EC adhesion, colonization, and the attachment of platelets. In addition, samples underwent bacterial challenges. The results strongly suggested that PEG-mediated peptide immobilization renders PTFE an excellent substrate for cellular growth while simultaneously endowing the material with antifouling properties.

  12. The structure and properties of fluorite crystal surfaces

    OpenAIRE

    Tasker, P.

    1980-01-01

    The surface energies, tensions and structure of the (111) and (110) surfaces of CaF2, SrF2, BaF2 and UO2, ThO2, PrO2, PuO2, CeO2 have been calculated using an ionic shell model. The surface energies for the natural cleavage plane (111) are compared with the available experimental data and agree well. The surface tensions indicate a compressive stress in both surfaces. The surface structures show increasing relaxation with increasing ion size and the rumpling of the (110) surface indicates a q...

  13. Investigation of surface properties of physico-chemically modified natural fibres using inverse gas chromatography

    CSIR Research Space (South Africa)

    Cordeiro, N

    2011-01-01

    Full Text Available Inverse gas chromatography (IGC) is a suitable method to determine surface energy of natural fibres when compared to wetting techniques. In the present study, the surface properties of raw and modified lignocellulosic fibres have been investigated...

  14. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  15. Determination of Mechanical and Surface Properties of Semicrystalline Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites

    National Research Council Canada - National Science Library

    Moody, Laura E; Marchant, Darrell; Grabow, Wade W; Lee, Andre Y; Mabry, Joseph M

    2005-01-01

    INTRODUCTION: (1) Nanomodification of semicrystalline polymers -- unequalled thermal, mechanical and surface properties at low volume fractions that cannot be obtained using conventional fillers; (2...

  16. Determination of Mechanical and Surface Properties of Semicrystalline Polyhedral Oligomeric Silsequioxane (POSS) Nanocomposites

    National Research Council Canada - National Science Library

    Moody, Laura E; Marchant, Darrell; Grabow, Wade W; Lee, Andre Y; Mabry, Joseph M

    2005-01-01

    .... This study examines the ability of POSS to improve the mechanical and surface properties of three semicrystalline polymers, fluorinated ethylene-propylene (FEP), poly(vinylidene fluoride) (PVDF...

  17. Geotechnical properties of surface sediments in the INDEX area

    Digital Repository Service at National Institute of Oceanography (India)

    Khadge, N.H.

    As a part of the environmental impact assessment studies, geotechnical properties of sediments were determined in the Central Indian Basin. The undrained shear strength and index properties of the siliceous sediments were determined on 20 box cores...

  18. Mechanical and Electro-Chemical Properties of Laser Surface Alloyed AISI 304 Stainless Steel with WC+Ni+NiCr

    Science.gov (United States)

    Majumdar, J. D.

    In the present study, a detailed evaluation of wear and corrosion resistance properties of laser surface alloyed of AISI 304 stainless steel with WC+Ni+NiCr (in the ratio of 70:15:15) has been undertaken. Laser processing has been carried out using a 5 kW continuous wave (CW) Nd:YAG laser (at a beam diameter of 3 mm) by surface melting and simultaneous deposition of precursor powder mixture in the melt zone (at a flow rate of 10 mg/s) and using Ar shroud at a gas flow rate of 5 l/min. Followed by laser processing, a detailed evaluation of fretting wear behavior has been conducted against WC surface. Finally, the corrosion property is measured using a potentiodynamic polarization testing unit in a 3.56 wt.% NaCl solution. The wear resistance property is significantly improved due to laser surface alloying which is attributed to the improvement in surface microhardness to 1350 VHN as compared to 220 VHN of as-received γ-stainless steel substrate. The mechanism of wear is established. The pitting corrosion resistance property is also improved due to the presence of Ni and Cr in solution and homogenization of microstructure due to laser processing.

  19. Modeling the Acid-Base Properties of Montmorillonite Edge Surfaces.

    Science.gov (United States)

    Tournassat, Christophe; Davis, James A; Chiaberge, Christophe; Grangeon, Sylvain; Bourg, Ian C

    2016-12-20

    The surface reactivity of clay minerals remains challenging to characterize because of a duality of adsorption surfaces and mechanisms that does not exist in the case of simple oxide surfaces: edge surfaces of clay minerals have a variable proton surface charge arising from hydroxyl functional groups, whereas basal surfaces have a permanent negative charge arising from isomorphic substitutions. Hence, the relationship between surface charge and surface potential on edge surfaces cannot be described using the Gouy-Chapman relation, because of a spillover of negative electrostatic potential from the basal surface onto the edge surface. While surface complexation models can be modified to account for these features, a predictive fit of experimental data was not possible until recently, because of uncertainty regarding the densities and intrinsic pK a values of edge functional groups. Here, we reexamine this problem in light of new knowledge on intrinsic pK a values obtained over the past decade using ab initio molecular dynamics simulations, and we propose a new formalism to describe edge functional groups. Our simulation results yield reasonable predictions of the best available experimental acid-base titration data.

  20. Effects of Surface Treatments of Montmorillonite Nanoclay on Cure Behavior of Diglycidyl Ether of Bisphenol A Epoxy Resin

    International Nuclear Information System (INIS)

    Tcherbi-Narteh, A.; Hosur, M.V.; Triggs, E.; Jelaani, S.

    2013-01-01

    Diglycidyl ether of Bisphenol A (DGEBA) based SC-15 epoxy resin was modified with three different commercially available montmorillonite (MMT) nanoclay: Nanomer I.28E and Cloisite 10A and 30B. Cure behavior of nanocomposites was studied using a variety of techniques. Primary focus of this study was to investigate influence of different surface modifications of MMT nanoclay on rheological properties and cure behavior of SC-15 epoxy resin. By adding MMT to SC-15 epoxy resin, chemistry of the epoxy is altered leading to changes in rheological properties and ultimately enthalpy and activation energy of reactions. Addition of Nanomer I.28E delayed gelation, while Cloisite 10A and 30B accelerated gelation, regardless of the curing temperature. Activation energy of reaction was lower with the addition of Nanomer I.28E and Cloisite 10A and higher for Cloisite 30B compared to neat SC-15 epoxy composite.

  1. Preparation and Wetting Behavior of Lyophobic Surface on Zinc Substrate

    Directory of Open Access Journals (Sweden)

    HAN Xiang-xiang

    2018-03-01

    Full Text Available Micro-nano structure on zinc substrate was fabricated through the combination of chemical etching with hydrochloric acid aqueous solution and hydrothermal reaction. After modification with perfluorooctanoic solution, the lyophobic surface was prepared. The phase composition, microstructure, chemical composition, and wettability of the as-obtained surface were investigated by X-ray diffractometer, scanning electron microscope, Fourier transform infrared spectrometer, and contact angle tester. The results show that a layer of ZnO nano-rods grows on the surface of the submicrometer structure, and exhibits good resistance to water impact and stability under the combined action of low surface energy material. When hydrochloric acid concentration is 1.0mol/L and hydrothermal reaction temperature is 95℃, the lyophobic surface possesses the best morphology of ZnO nano-rods. The maximum contact angles of distilled water and peanut oil are 154.65° and 144.65°, respectively, and the sliding angle is less than 10°.

  2. Surface Behavior of Rhodamin and Tartrazine on Silica-Cellulose Sol-Gel Surfaces by Thin Layer Elution

    Directory of Open Access Journals (Sweden)

    Surjani Wonorahardjo

    2016-05-01

    Full Text Available Physical and chemical interactions are the principles for different types of separation systems as the equillibrium dynamics on surface plays a key-role. Surface modification is a way for selective separation at interfaces. Moreover, synthesis of gel silica by a sol-gel method is preferred due to the homogeneity and surface feature easily controlled. Cellulose can be added in situ to modified the silica features during the process. Further application for to study interaction of rhodamin and tartrazine in its surface and their solubilities in mobile phase explains the possibility for their separation. This paper devoted to evaluate the surface behavior in term of adsorption and desorption of tartrazine and rhodamin on silica-cellulose thin layer in different mobile phase. Some carrier liquids applied such as methanol, acetone, n-hexane and chloroform. The result proves tartrazine and rhodamin is separated and have different behavior in different mobile phase. The retardation factors (Rf of the mixtures suggest complexity behavior on silica-cellulose surface.

  3. Properties that influence the specific surface areas of carbon nanotubes and nanofibers.

    Science.gov (United States)

    Birch, M Eileen; Ruda-Eberenz, Toni A; Chai, Ming; Andrews, Ronnee; Hatfield, Randal L

    2013-11-01

    Commercially available carbon nanotubes and nanofibers were analyzed to examine possible relationships between their Brunauer-Emmett-Teller specific surface areas (SSAs) and their physical and chemical properties. Properties found to influence surface area were number of walls/diameter, impurities, and surface functionalization with hydroxyl and carboxyl groups. Characterization by electron microscopy, energy-dispersive X-ray spectrometry, thermogravimetric analysis, and elemental analysis indicates that SSA can provide insight on carbon nanomaterials properties, which can differ vastly depending on synthesis parameters and post-production treatments. In this study, how different properties may influence surface area is discussed. The materials examined have a wide range of surface areas. The measured surface areas differed from product specifications, to varying degrees, and between similar products. Findings emphasize the multiple factors that influence surface area and mark its utility in carbon nanomaterial characterization, a prerequisite to understanding their potential applications and toxicities. Implications for occupational monitoring are discussed.

  4. Impurities and Electronic Property Variations of Natural MoS 2 Crystal Surfaces

    KAUST Repository

    Addou, Rafik

    2015-09-22

    Room temperature X-ray photoelectron spectroscopy (XPS), inductively coupled plasma mass spectrometry (ICPMS), high resolution Rutherford backscattering spectrometry (HR-RBS), Kelvin probe method, and scanning tunneling microscopy (STM) are employed to study the properties of a freshly exfoliated surface of geological MoS2 crystals. Our findings reveal that the semiconductor 2H-MoS2 exhibits both n- and p-type behavior, and the work function as measured by the Kelvin probe is found to vary from 4.4 to 5.3 eV. The presence of impurities in parts-per-million (ppm) and a surface defect density of up to 8% of the total area could explain the variation of the Fermi level position. High resolution RBS data also show a large variation in the MoSx composition (1.8 < x < 2.05) at the surface. Thus, the variation in the conductivity, the work function, and stoichiometry across small areas of MoS2 will have to be controlled during crystal growth in order to provide high quality uniform materials for future device fabrication. © 2015 American Chemical Society.

  5. Fracture behavior of circumferentially surface-cracked elbows. Technical report, October 1993--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M. [and others

    1996-12-01

    This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed.

  6. Fracture behavior of circumferentially surface-cracked elbows. Technical report, October 1993--March 1996

    International Nuclear Information System (INIS)

    Kilinski, T.; Mohan, R.; Rudland, D.; Fleming, M.

    1996-12-01

    This report presents the results from Task 2 of the Second International Piping Integrity Research Group (IPIRG-2) program. The focus of the Task 2 work was directed towards furthering the understanding of the fracture behavior of long-radius elbows. This was accomplished through a combined analytical and experimental program. J-estimation schemes were developed for both axial and circumferential surface cracks in elbows. Large-scale, quasi-static and dynamic, pipe-system, elbow fracture experiments under combined pressure and bending loads were performed on elbows containing an internal surface crack at the extrados. In conjunction with the elbow experiments, material property data were developed for the A106-90 carbon steel and WP304L stainless steel elbow materials investigated. A comparison of the experimental data with the maximum stress predictions using existing straight pipe fracture prediction analysis methods, and elbow fracture prediction methods developed in this program was performed. This analysis was directed at addressing the concerns regarding the validity of using analysis predictions developed for straight pipe to predict the fracture stresses of cracked elbows. Finally, a simplified fitting flaw acceptance criteria incorporating ASME B2 stress indices and straight pipe, circumferential-crack analysis was developed

  7. Effect of Surface Impulsive Thermal Loads on Fatigue Behavior of Constant Volume Propulsion Engine Combustor Materials

    National Research Council Canada - National Science Library

    Zhu, Dongming

    2004-01-01

    .... In this study, a simulated engine test rig has been established to evaluate thermal fatigue behavior of a candidate engine combustor material, Haynes 188, under superimposed CO2 laser surface impulsive thermal loads (30 to 100 Hz...

  8. Theoretical studies of growth processes and electronic properties of nanostructures on surfaces

    Science.gov (United States)

    Mo, Yina

    Low dimensional nanostructures have been of particular interest because of their potential applications in both theoretical studies and industrial use. Although great efforts have been put into obtaining better understanding of the formation and properties of these materials, many questions still remain unanswered. This thesis work has focused on theoretical studies of (1) the growth processes of magnetic nanowires on transition-metal surfaces, (2) the dynamics of pentacene thin-film growth and island structures on inert surfaces, and (3) our proposal of a new type of semiconducting nanotube. In the first study, we elucidated a novel and intriguing kinetic pathway for the formation of Fe nanowires on the upper edge of a monatomic-layer-high step on Cu(111) using first-principles calculations. The identification of a hidden fundamental Fe basal line within the Cu steps prior to the formation of the apparent upper step edge Fe wire produces a totally different view of step-decorating wire structures and offers new possibilities for the study of the properties of these wires. Subsequent experiments with scanning tunneling microscopy unambiguously established the essential role of embedded Fe atoms as precursors to monatomic wire growth. A more general study of adatom behavior near transition-metal step edges illustrated a systematic trend in the adatom energetics and kinetics, resulted from the electronic interactions between the adatom and the surfaces. This work opens the possibility of controlled manufacturing of one-dimensional nanowires. In the second study, we investigated pentacene thin-films on H-diamond, H-silica and OH-silica surfaces via force field molecular dynamics simulations. Pentacene island structures on these surfaces were identified and found to have a 90-degree rotation relative to the structure proposed by some experimental groups. Our work may facilitate the design and control of experimental pentacene thin-film growth, and thus the development

  9. Surface modification, microstructure and mechanical properties of investment cast superalloy

    OpenAIRE

    M. Zielińska; K. Kubiak; J. Sieniawski

    2009-01-01

    Purpose: The aim of this work is to determine physical and chemical properties of cobalt aluminate (CoAl2O4) modifiers produced by different companies and the influence of different types of modifiers on the grain size, the microstructure and mechanical properties of high temperature creep resisting superalloy René 77.Design/methodology/approach: The first stage of the research work took over the investigations of physical and chemical properties of cobalt aluminate manufactured by three diff...

  10. Novel procedure to enhance PLA surface properties by chitosan irreversible immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Stoleru, Elena; Dumitriu, Raluca Petronela [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Munteanu, Bogdanel Silvestru [“Al. I. Cuza” University, Faculty of Physics, 11 Carol I Blvd., 700506 Iasi (Romania); Zaharescu, Traian [INCDIE ICPE CA, Bucharest (Romania); Tănase, Elisabeta Elena; Mitelut, Amalia [Industrial Biotechnology Department, Faculty of Biotechnology – USAMV Bucharest (Romania); Ailiesei, Gabriela-Liliana [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania); Vasile, Cornelia, E-mail: cvasile@icmpp.ro [Petru Poni Institute of Macromolecular Chemistry, Grigore Ghica Voda Alley, 41A, 700487 Iasi (Romania)

    2016-03-30

    Graphical abstract: - Highlights: • PLA requires functionalization prior to surface attaching chitosan. • Chitosan with different molecular weights was grafted onto PLA surface. • Antibacterial, antifungal, antioxidant PLA-based materials are obtained. • Nano-fibers coatings obtained by electrospinning of high molecular weight chitosan. - Abstract: A novel two step procedure was applied for poly(lactic acid) (PLA) functionalization consisting in the exposure to cold radiofrequency plasma in nitrogen atmosphere or to gamma irradiation followed by “grafting to” of a chitosan layer using carbodiimide chemistry. The adhesion and stability of the deposited surface layer was assured by plasma/gamma irradiation treatment while the chitosan layer offers antifungal/antibacterial/antioxidant activities. Chitosan with different viscosities/deacetylation degree was deposited by electrospinning or immersion methods. Correlations between rheological behavior of chitosan solutions and chitosan layer deposition conditions are made. The PLA surface properties were investigated by water contact angle measurements, ATR-FTIR spectroscopy, AFM, chemiluminiscence, etc. It has been established that the surface roughness increases direct proportional with cold plasma duration and gamma irradiation dose and further increases by chitosan coating which at its turn depends on chitosan characteristics (viscosity and deacetylation degree) and method of deposition. Nano-fibers with relatively homogeneous and reproducible features are obtained by electrospinning of highly viscous chitosan while with the other two types of chitosan both microparticles and nano-fibers are formed. The chitosan coating obtained by immersion is more homogenous and compact and has a better antibacterial activity than the electrospun layer as fiber meshes.

  11. Biomechanical Properties of Murine Meniscus Surface via AFM-based Nanoindentation

    Science.gov (United States)

    Li, Qing; Doyran, Basak; Gamer, Laura W.; Lu, X. Lucas; Qin, Ling; Ortiz, Christine; Grodzinsky, Alan J.; Rosen, Vicki; Han, Lin

    2015-01-01

    This study aimed to quantify the biomechanical properties of murine meniscus surface. Atomic force microscopy (AFM)-based nanoindentation was performed on the central region, proximal side of menisci from 6- to 24-week old male C57BL/6 mice using microspherical tips (Rtip ≈ 5 μm) in PBS. A unique, linear correlation between indentation depth, D, and response force, F, was found on menisci from all age groups. This non-Hertzian behavior is likely due to the dominance of tensile resistance by the collagen fibril bundles on meniscus surface that are mostly aligned along the circumferential direction observed on 12-week old menisci. The indentation resistance was calculated as both the effective stiffness, Sind = dF/dD, and the effective modulus, Eind, via the isotropic Hertz model. Values of Sind and Eind were found to depend on indentation rate, suggesting the existence of poro-viscoelasticity. These values do not significantly vary with anatomical sites, lateral versus medial compartments, or mouse age. In addition, Eind of meniscus surface (e.g., 6.1 ± 0.8 MPa for 12 weeks of age, mean ± SEM, n = 13) was found to be significantly higher than those of meniscus surfaces in other species, and of murine articular cartilage surface (1.4 ± 0.1 MPa, n = 6). In summary, these results provided the first direct mechanical knowledge of murine knee meniscus tissues. We expect this understanding to serve as a mechanics-based benchmark for further probing the developmental biology and osteoarthritis symptoms of meniscus in various murine models. PMID:25817332

  12. Superplastic Grade Titanium Alloy: Comparative Evaluation of Mechanical Properties, Microstructure, and Fracture Behavior

    Directory of Open Access Journals (Sweden)

    K. V. Sudhakar

    2016-01-01

    Full Text Available In this investigation, static fracture, microstructure, and the mechanical behavior of SP-700 alloy (a superplastic grade were evaluated and compared with two other titanium alloys. The comparisons were made in terms of suitably designed heat treatment cycles. The heat treatment cycles included annealing and a combination of solutionizing and aging treatments for all three alloys. Tensile properties were determined using MTS Landmark Servohydraulic Test System. Tensile tested samples’ fracture surfaces were investigated with LEO-VP SEM instrument. Ti-15-3-3-3 alloy exhibited relatively a higher combination of strength and ductility in comparison to the other two alloys. All three types of titanium alloys demonstrated a very good level of tensile strength and ductility suitable for applications in military and biomedical fields.

  13. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: its environmental implications.

    Science.gov (United States)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, Qunshan; Yan, Changzhou; Liu, Feng

    2011-09-15

    Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO(2) (Enano-TiO(2)) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO(2). In this study, Enano-TiO(2) was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO(2) particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S(max)). Contrarily, the fill of Enano-TiO(2) particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO(2). Enano-TiO(2) would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO(2) and/or similar ENPs. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. The outermost surface properties of silk fibroin films reflect ethanol-treatment conditions used in biomaterial preparation.

    Science.gov (United States)

    Terada, Dohiko; Yokoyama, Yoshiyuki; Hattori, Shinya; Kobayashi, Hisatoshi; Tamada, Yasushi

    2016-01-01

    Silk fibroin has attracted interest as a biomaterial, given its many excellent properties. Cell attachment to silk substrates is usually weaker than to standard culture dishes, and cells cultured on silk films or hydrogels typically form spheroids and micro-aggregates. However, too little is known about the higher order structures and behavior of fibroin under different conditions to explain the features of silk fibroin as a culture substrate. For instance, different biomaterial surfaces, with distinct effects on cell culture, can be achieved by varying the conditions of crystallization by alcohol immersion. Here, we show that treatment of fibroin film with 90% ethanol has a harder surface than the <80% ethanol-treated fibroin, to which individual cells prefer to attach (and then expand on the surface), rather than to aggregate. We discuss the influence of alcohol concentration on the surface properties, based on surface analysis of the films. The surface analysis involved assessment of static and dynamic contact angles, zeta potential, changes in crystallinity and microscopic morphology of electrospun fibers, and texture changes of the outermost surface at a nanometer-scale captured by a scanning probe microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Surface properties of adsorption layers formed from triterpenoid and steroid saponins

    NARCIS (Netherlands)

    Pagureva, N.; Tcholakova, S.; Golemanov, K.; Denkov, N.; Pelan, E.; Stoyanov, S.D.

    2016-01-01

    Saponins are natural surfactants with non-trivial surface and aggregation properties which find numerous important applications in several areas (food, pharma, cosmetic and others). In the current paper we study the surface properties of ten saponin extracts, having different molecular structure

  16. Effect of nanocoating with rhamnogalacturonan-I on surface properties and osteoblasts response

    DEFF Research Database (Denmark)

    Gurzawska, Katarzyna Aleksandra; Svava, Rikke; Syberg, Susanne

    2012-01-01

    -I) on surface properties and osteoblasts response. Three different RG-Is from apple and lupin pectins were modified and coated on amino-functionalized tissue culture polystyrene plates (aminated TCPS). Surface properties were evaluated by scanning electron microscopy, contact angle measurement, atomic force...

  17. Unraveling the size distributions of surface properties for purple soil and yellow soil.

    Science.gov (United States)

    Tang, Ying; Li, Hang; Liu, Xinmin; Zhu, Hualing; Tian, Rui

    2015-06-01

    Soils contain diverse colloidal particles whose properties are pertinent to ecological and human health, whereas few investigations systematically analyze the surface properties of these particles. The objective of this study was to elucidate the surface properties of particles within targeted size ranges (i.e. >10, 1-10, 0.5-1, 0.2-0.5 and soil (Entisol) and a yellow soil (Ultisol) using the combined determination method. The mineralogy of corresponding particle-size fractions was determined by X-ray diffraction. We found that up to 80% of the specific surface area and 85% of the surface charge of the entire soil came from colloidal-sized particles (soil had a larger specific surface area, stronger electrostatic field, and higher surface charge than the yellow soil due to differences in mineralogy. Likewise, the differences in surface properties among the various particle-size fractions can also be ascribed to mineralogy. Our results indicated that soil surface properties were essentially determined by the colloidal-sized particles, and the soil properties. The composition of clay minerals within the diverse particle-size fractions could fully explain the size distributions of surface properties. Copyright © 2015. Published by Elsevier B.V.

  18. Performance of fire behavior fuel models developed for the Rothermel Surface Fire Spread Model

    Science.gov (United States)

    Robert Ziel; W. Matt Jolly

    2009-01-01

    In 2005, 40 new fire behavior fuel models were published for use with the Rothermel Surface Fire Spread Model. These new models are intended to augment the original 13 developed in 1972 and 1976. As a compiled set of quantitative fuel descriptions that serve as input to the Rothermel model, the selected fire behavior fuel model has always been critical to the resulting...

  19. Standard fire behavior fuel models: a comprehensive set for use with Rothermel's surface fire spread model

    Science.gov (United States)

    Joe H. Scott; Robert E. Burgan

    2005-01-01

    This report describes a new set of standard fire behavior fuel models for use with Rothermel's surface fire spread model and the relationship of the new set to the original set of 13 fire behavior fuel models. To assist with transition to using the new fuel models, a fuel model selection guide, fuel model crosswalk, and set of fuel model photos are provided.

  20. Investigations of the Electronic Properties and Surface Structures of Aluminium-Rich Quasicrystalline Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, Jason A. [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    equations. Transport behavior is described in terms of charge carriers and the mean-free time between carrier collisions. It is concluded that the mean-free time is much longer in the periodic direction than in the aperiodic direction. This difference produces the observed anisotropy in thermal transport. The third study presented a detailed analysis of the reversible, sputter-induced phase transformation which occurs on the 5-fold surface of an icosahedral Al-Cu-Fe quasicrystal. Reflection high-energy electron diffraction (RHEED), x-ray photoemission spectroscopy (XPS), and ultra-violet photoemission spectroscopy (UPS) data were collected as a function of annealing temperature and were used to probe surface structure, surface composition, and electronic structure, respectively. The composition and structure of the sputtered surface are consistent with a transformation to the β-Al-Cu-Fe cubic structure, and shows a sharp metallic cut-off in the spectral intensity of the electronic structure at the Fermi edge. Upon annealing the surface reverts to a quasicrystalline composition and structure. This transformation has been correlated with a reduction in the spectral intensity of the electronic structure at the Fermi level. This data clearly demonstrates that the observed reduction is intrinsic to a quasicrystalline surface. It is concluded that this is due to the opening of a pseudo-gap in the electronic density of states as the surface reverts from β-Al-Cu-Fe to quasicrystalline.

  1. Automated Surface Classification of SRF Cavities for the Investigation of the Influence of Surface Properties onto the Operational Performance

    International Nuclear Information System (INIS)

    Wenskat, Marc

    2015-07-01

    Superconducting niobium radio-frequency cavities are fundamental for the European XFEL and the International Linear Collider. To use the operational advantages of superconducting cavities, the inner surface has to fulfill quite demanding requirements. The surface roughness and cleanliness improved over the last decades and with them, the achieved maximal accelerating field. Still, limitations of the maximal achieved accelerating field are observed, which are not explained by localized geometrical defects or impurities. The scope of this thesis is a better understanding of these limitations in defect free cavities based on global, rather than local, surface properties. For this goal, more than 30 cavities underwent subsequent surface treatments, cold RF tests and optical inspections within the ILC-HiGrade research program and the XFEL cavity production. An algorithm was developed which allows an automated surface characterization based on an optical inspection robot. This algorithm delivers a set of optical surface properties, which describes the inner cavity surface. These optical surface properties deliver a framework for a quality assurance of the fabrication procedures. Furthermore, they shows promising results for a better understanding of the observed limitations in defect free cavities.

  2. [Surface Property and Sorption Characteristics of Phosphorus onto Surface Sediments in Sanggou Bay].

    Science.gov (United States)

    Zhu, Jia-mei; Cao, Xiao-yan; Liu, Su-mei; Wang, Li-sha; Yang, Gui-peng; Ge, Cheng-feng; Lu, Min

    2016-02-15

    Kinetic curves and isotherms were investigated to study the sorption mechanism of phosphorus onto the sediments of Sanggou Bay, together with the surface charge properties of sediments and the forms of phosphorus studied. The results showed that the sorption including a fast process and a slow one, and could be described by a two-compartment first order equation. The thermodynamic isotherms were well fitted with a modified Langmuir equation. The maximum adsorption capacity was larger in summer than in spring, and the smaller particle size was favorable to the sorption. The maximum adsorption capacities (Qm) were 0.0471-0.1230 mg x g(-1), and the zero equilibrium phosphorus concentration (EPC0) of the sediments ranged from 0.0596 mg x L(-1) to 0.1927 mg x L(-1), which indicated that the sediments from Sanggou Bay were sources of phosphorus. Inorganic phosphorus (IP) was the main form of total phosphorus (TP). The contents of exchangeable or loosely absorbed P and Fe-bound P increased significantly in the samples after sorption. The sorption process involved physical sorption and chemical sorption, with the former being the predominant.

  3. Effects of engineered nano-titanium dioxide on pore surface properties and phosphorus adsorption of sediment: Its environmental implications

    International Nuclear Information System (INIS)

    Luo, Zhuanxi; Wang, Zhenhong; Wei, QunShan; Yan, Changzhou; Liu, Feng

    2011-01-01

    Highlights: → The attachment of Enano-TiO 2 to surface enhanced markedly sediment BET surface area and t-Plot external surface area. → The fill of Enano-TiO 2 into the micropores reduced significantly the sediment t-Plot micropore surface area. → Enano-TiO 2 could increase sediment phosphorus (P) adsorption maximum and decrease in sediment P binding energy. → P would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . - Abstract: Understanding the environmental safety and human health implications of engineered nanoparticles (ENPs) is of worldwide importance. As an important ENPs, engineered nano-TiO 2 (Enano-TiO 2 ) may have been substantially deposited in aquatic sediments because of its widely uses. Sediment pore surface properties would be thus significantly influenced due to the large surface area of Enano-TiO 2 . In this study, Enano-TiO 2 was found to greatly impact on sediment pore surface properties. The attachment of Enano-TiO 2 particles to sediment surfaces enhanced markedly BET specific surface area and t-Plot external specific surface area, and thereby increased sediment phosphorus (P) adsorption maximum (S max ). Contrarily, the fill of Enano-TiO 2 particles into the micropores of sediments could significantly reduce t-Plot micropore specific surface area, and cause slight decrease in sediment P binding energy (K). Clearly, P sorbed in sediment would be easily released because of the decreasing P binding energy of the sediment with elevated Enano-TiO 2 . Enano-TiO 2 would thus cause aggravated endogenous pollution in water if such sediment was re-suspended on disturbance. The results obtained in this study contribute to our increasing knowledge of how to regulate physicochemical behavior of pollutants in sediments under the influences of Enano-TiO 2 and/or similar ENPs.

  4. Synthesis, surface characterization and optical properties of 3 ...

    Indian Academy of Sciences (India)

    3-Thiopropionic acid (TPA) capped ZnS:Cu nanocrystals have been successfully synthesized by simple aqueous method. Powder X-ray diffraction (XRD) studies revealed the particle size to be 4.2 nm. Surface characterization of the nanocrystals by FTIR spectroscopy has been done and the structure for surface bound TPA ...

  5. Synthesis, surface characterization and optical properties of 3

    Indian Academy of Sciences (India)

    3-Thiopropionic acid (TPA) capped ZnS:Cu nanocrystals have been successfully synthesized by simple aqueous method. Powder X-ray diffraction (XRD) studies revealed the particle size to be 4.2 nm. Surface characterization of the nanocrystals by FTIR spectroscopy has been done and the structure for surface bound TPA ...

  6. Dynamic surface properties of poly(methylalkyldiallylammonium chloride) solutions

    Czech Academy of Sciences Publication Activity Database

    Novikova, A. A.; Vlasov, P. S.; Lin, S.-Y.; Sedláková, Zdeňka; Noskov, B. A.

    2017-01-01

    Roč. 80, November (2017), s. 122-127 ISSN 1876-1070 Institutional support: RVO:61389013 Keywords : polymer solutions * dynamic surface tension * dilational surface rheology Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.217, year: 2016

  7. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within...

  8. A facile method for simulating randomly rough membrane surface associated with interface behaviors

    Science.gov (United States)

    Qu, Xiaolu; Cai, Xiang; Zhang, Meijia; Lin, Hongjun; Leihong, Zhao; Liao, Bao-Qiang

    2018-01-01

    Modeling rough surfaces has emerged as a distinct discipline of considerable research interest in interface behaviors including membrane fouling. In this paper, a facile method was proposed to simulate rough membrane surface morphology. Natural membrane surface was found to be randomly rough, and its height distribution obeys Gaussian distribution. A new method which combines spectrum method, Gaussian distribution and Fourier transform technique was deduced. Simulation of the rough membrane surface showed high similarity in terms of statistical roughness and height distribution between the simulated surface and the real membrane surface, indicating feasibility of the new method. It was found that, correlation length (l) and the number of superposed ridges (N) are key parameters affecting the simulated membrane surface morphology. This new method has evident advantages over conventional modeling methods The proposed method for randomly rough membrane surface modeling could be potentially used to quantify the interfacial interactions between two rough surfaces, giving implications for membrane fouling mitigation.

  9. Optical properties of single semiconductor nanowires and nanowire ensembles. Probing surface physics by photoluminescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pfueller, Carsten

    2011-06-27

    This thesis presents a detailed investigation of the optical properties of semiconductor nanowires (NWs) in general and single GaN NWs and GaN NW ensembles in particular by photoluminescence (PL) spectroscopy. NWs are often considered as potential building blocks for future nanometer-scaled devices. This vision is based on several attractive features that are generally ascribed to NWs. For instance, they are expected to grow virtually free of strain and defects even on substrates with a large structural mismatch. In the first part of the thesis, some of these expectations are examined using semiconductor NWs of different materials. On the basis of the temperature-dependent PL of Au- and selfassisted GaAs/(Al,Ga)As core-shell NWs, the influence of foreign catalyst particles on the optical properties of NWs is investigated. For the Au-assisted NWs, we find a thermally activated, nonradiative recombination channel, possibly related to Auatoms incorporated from the catalyst. These results indicate the limited suitability of catalyst-assisted NWs for optoelectronic applications. The effect of the substrate choice is studied by comparing the PL of ZnO NWs grown on Si, Al{sub 2}O{sub 3}, and ZnO substrates. Their virtually identical optical characteristics indicate that the synthesis of NWs may indeed overcome the constraints that limit the heteroepitaxial deposition of thin films. The major part of this thesis discusses the optical properties of GaN NWs grown on Si substrates. The investigation of the PL of single GaN NWs and GaN NW ensembles reveals the significance of their large surface-to-volume ratio. Differences in the recombination behavior of GaNNW ensembles and GaN layers are observed. First, the large surface-to-volume ratio is discussed to be responsible for the different recombination mechanisms apparent in NWs. Second, certain optical features are only found in the PL of GaN NWs, but not in that of GaN layers. An unexpected broadening of the donor

  10. Surface Roughening Behavior of 6063 Aluminum Alloy during Bulging by Spun Tubes

    Directory of Open Access Journals (Sweden)

    Yang Cai

    2017-03-01

    Full Text Available Severe surface roughening during the hydroforming of aluminum alloy parts can produce surface defects that severely restrict their application in the automobile and aerospace industry. To understand the relation between strain, grain size and surface roughness under biaxial stress conditions, hydro-bulging tests of aluminum alloy tubes were carried out, and the tubes with different grain sizes were prepared by a spinning and annealing process. The surface roughness was measured by a laser scanning confocal microscope to evaluate the surface roughening macroscopical behavior, and the corresponding microstructures were observed using electron back-scattered diffraction (EBSD to reveal the roughening microscopic behavior. The results obtained show that the surface roughness increased with both strain and grain size under biaxial stress. No surface defects were observed on the surface when the grain size was less than 105 μm if the strain was less than 18%, or when the grain size was between 130 and 175 μm if the strain was less than 15.88% and 7.15%, respectively. The surface roughening microscopic behavior was identified as an inhomogeneous grain size distribution, which became more pronounced with increasing grain size and resulted in greater local deformation. Concentrated grain orientation also results in severe inhomogeneous deformation during plastics deformation, and serious surface roughening.

  11. Manipulation of fluids in three-dimensional porous photonic structures with patterned surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Aizenberg, Joanna; Burgess, Ian; Mishchenko, Lidiya; Hatton, Benjamin; Loncar, Marko

    2017-12-26

    A three-dimensional porous photonic structure, whose internal pore surfaces can be provided with desired surface properties in a spatially selective manner with arbitrary patterns, and methods for making the same are described. When exposed to a fluid (e.g., via immersion or wicking), the fluid can selectively penetrate the regions of the structure with compatible surface properties. Broad applications, for example in security, encryption and document authentication, as well as in areas such as simple microfluidics and diagnostics, are anticipated.

  12. Trends in the chemical properties in early transition metal carbide surfaces: A density functional study

    DEFF Research Database (Denmark)

    Kitchin, J.R.; Nørskov, Jens Kehlet; Barteau, M.A.

    2005-01-01

    In this paper we present density functional theory (DFT) investigations of the physical, chemical and electronic structure properties of several close-packed surfaces of early transition metal carbides, including beta-Mo2C(0 0 0 1), and the (1 1 1) surfaces of TiC, VC, NbC, and TaC. The results...... are in excellent agreement with experimental values of lattice constants and bulk moduli. The adsorption of atomic hydrogen is used as a probe to compare the chemical properties of various carbide surfaces. Hydrogen adsorbs more strongly to the metal-terminated carbide surfaces than to the corresponding closest......-packed pure metal surfaces, due to the tensile strain induced in the carbide surfaces upon incorporation of carbon into the lattice. Hydrogen atoms were found to adsorb more weakly on carbide surfaces than on the corresponding closest-packed pure metal surfaces only when there were surface carbon atoms...

  13. Electron Beam Irradiation Effect on the Mechanical, Thermal and Surface Properties of Fluoroelastomer

    International Nuclear Information System (INIS)

    Machado, L. D. B.

    2006-01-01

    Fluoroelastomer is a polymer used as a sealing material due to some excellent properties comparing to other elastomers, such as resistance to high temperatures and to aggressive chemical substances. The aim of this work was to evaluate the effect of the ionizing radiation of electron beam (EB) on the mechanical, thermal and surface properties of this elastomeric material. The fluoroelastomer studied in this work was a commercial product obtained by a conventional curing process, containing carbon black and other inorganic fillers. This material was irradiated with energetic electrons and the overall doses were 10, 25, 50, 75, 100, 125, 150, 175, 200 and 250 kGy. The evaluated mechanical properties were tensile strength (stress and strain at break), hardness (Shore A) and compression set. Thermogravimetric analysis (TG) and differential scanning calorimetry (DSC) were used to evaluate the thermal behavior of the irradiated material. Surface modification on the fracture specimens was verified with scanning electron microscopy (SEM) and using an optical microscope on line to a computer. Tensile strength tests have shown that the tensile stress at break increases 34 % and total strain decreases considerably, from 347 % to 109 %, in the range of radiation dose applied. Shore A hardness values increase 15 % in the range of radiation dose studied. The compression set data showed that the values remain stable independent of the radiation dose applied. Thermogravimetric curves showed that there are no large variations on the onset temperatures for all samples in the range of radiation doses applied. On the other hand, DCS curves showed a progressive increase of the glass transition temperature, from 3.3 degree for non-irradiated sample to 12.9 degree for sample irradiated with 250 kGy. SEM micrographs showed a more homogeneous morphological aspect of the fracture surfaces with the increase of the applied dose. The results have shown that EB radiation, in the studied

  14. On the surface magnetism induced atypical ferromagnetic behavior of cerium oxide (CeO2) nanoparticles

    Science.gov (United States)

    Sakara, M.; Arumugam, S.; Tripathy, S.; Balakumar, S.

    2012-06-01

    An investigation was made on the intrinsic ferromagnetic behavior of nano sized cerium oxide (ceria). The nanosized ceria was prepared by modified sol gel method with crystallite size around 7nm. Structural analysis was done by XRD which showed a single phase, impurity free fluorite type crystal structured of nano ceria. The morphological analysis by FESEM technique showed agglomerated nature of nanoparticles due to their high surface energy. The surface and bulk information was obtained from UV and visible Raman analysis. From Raman studies it was observed that the large surface defect which was the prime reason for the induced surface magnetism in the nano ceria. From magnetization studies by VSM, it was found that if magnetism was associated with the surface defects of the material. The ferromagnetic behavior of nanosized ceria is still under debate. An attempt has taken to explain the same with emphasizing the surface magnetism of ceria nanoparticles.

  15. Erosion behavior of hard surface coatings/inserts

    International Nuclear Information System (INIS)

    Levy, A.V.; Bakker, T.W.

    1983-01-01

    This chapter attempts to determine the basic erosion behavior of several of the most promising refractory hard metal coatings and bodies that are currently either in development or commercial use. Discusses experimental conditions and metallographic analysis. Concludes that all of the materials tested eroded in a brittle manner, undergoing more erosion at a 90 0 impingement angle than a 30 0 angle; the CNTD SiC (hard) had the best erosion resistance; the coating materials had a peak erosion rate at the beginning of erosion; the amount of apparent plastic deformation that occurred in some of the materials can be related to the amount and condition of the metallic phases in the materials; and the large grain size near the coatingsubstrate interface of the CNTD SiC (hard) that eroded preferentially could be related to an instability in the deposition process that occurred near the initiation of deposition

  16. An expert system to characterize the surface morphological properties according to their functionalities

    International Nuclear Information System (INIS)

    Bigerelle, M; Mathia, T; Iost, A; Correvits, T; Anselme, K

    2011-01-01

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  17. An expert system to characterize the surface morphological properties according to their functionalities

    Energy Technology Data Exchange (ETDEWEB)

    Bigerelle, M [Laboratoire Roberval, UMR 6253, UTC/CNRS, UTC Centre de Recherches de Royallieu BP 20529, 60205 Compiegne France stol BS1 6BE (United Kingdom); Mathia, T [Laboratoire de Tribologie et Dynamique des Systemes, UMR 5513, Ecole Centrale de Lyon, 36 Av Guy de Collongue, 69134 Ecully Cedex (France); Iost, A [Laboratoire de Mecanique de Lille, UMR CNRS 8107, Arts et Metiers ParisTech - Lille, 8, boulevard Louis XIV 59046 Lille (France); Correvits, T [Laboratoire de Metrologie. Arts et Metiers ParisTech, ENSAM, 8 boulevard Louis XIV, 59046 LILLE Cedex (France); Anselme, K, E-mail: maxence.bigerelle@utc.fr [Institut De Sciences Des Materiaux De Mulhouse, CNRS LRC 7228, 15, rue Jean Starcky, Universite De Haute-Alsace, BP 2488, 68057 Mulhouse (France)

    2011-08-19

    In this paper we propose a new methodology to characterize the morphological properties of a surface in relation with its functionality (tribological properties, surface coating adhesion, brightness, wettability...). We create a software based on experimental design and surface profile recording. Using an appropriate database structure, the roughness parameters are automatically computed at different scales. The surface files are saved in a hard disk directory and roughness parameters are computed at different scales. Finally, a statistical analysis system proposes the roughness parameter (or the pair of roughness parameters) that better describe(s) the functionality of the surface and the spatial scales at which the parameter(s) is (are) the more relevant.

  18. Influence of surface activated carbon nano fibres on mechanical properties of poly ether ketone (PEK)

    Science.gov (United States)

    Ajeesh, G.; Bhowmik, S.; Sivakumar, V.; Varshney, L.

    2017-05-01

    This investigation highlights different surface functionalization processes of Carbon Nano Fibres (CNF’s) and their effects on mechanical properties of Polyetherketone (PEK) nano composite. Surfaces of CNF’s were modified by low pressure plasma process. There is a significant change in physico-chemical characteristics of CNF’s after low plasma treatment as evident from Transmission Electron Microscopy (TEM) and Fourier Transform infrared Spectroscopic (FTIR) studies. Significant modification in surface morphology and oxygen functionalities are observed as a result of surface modification. There is a significant increase in mechanical properties of high performance polymeric nano composites when surface functionalized CNF’s are dispersed in polymeric matrix.

  19. Investigation of some properties of Nylon-6 surface treated by corona discharge in helium

    International Nuclear Information System (INIS)

    Dumitrascu, N.; Surdu, S.; Popa, Gh.; Raileanu, D.

    1996-01-01

    In this work an easy and less expensive method of treatment has been used by corona discharge. This allows to modify the surface properties and especially to improve the compatibility of polymers with biological tissue. The Nylon-6 as a test material was chosen. A scanning electron microscope to visualize the morphology of the morphology of the surface and an IR spectrophotometer able to identify the amide groups and other as well, have been used. Morphology of the treated surface by corona discharge emphasis an etching an etching and/or a crosslinking of amorphous domains, generally important to improve the properties as wetting, dyeing, adhesion, etc. Over all treated surface there is significant blood compatible properties without the need of heparinization of surface. The treated surface influences the biological behaviour of micro-organisms, respectively, that surface is a favourable medium for division of cells and may increase their lifetime. (authors)

  20. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...... surfaces in use have changed - for instance to road surface types with less noise from wheel passages. Because of this, a co-operation between the road administrations of the Nordic countries (abbreviated NMF) decided to construct a portable instrument to be used on selections of traffic roads within...

  1. Behavior of plasma facing surface in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2002-01-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  2. Behavior of plasma facing surfaces in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2003-01-01

    Material probes have been installed at the inner walls along the poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was thoroughly cleaned by helium glow discharge conditioning. For the 3rd and 4th campaigns, graphite tiles were installed over the entire divertor strike region, and then the wall condition was significantly changed compared to the case of a stainless steel wall. Graphite erosion took place during the main discharges and the eroded carbon was deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, the amount of retained discharge gases such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristic of the LHD wall is a large retention of helium gas since the wall temperature is limited to below 368 K. In order to reduce the recycling of discharge gas, wall heating before the experimental campaign and surface heating between the main discharge shots are planned. (author)

  3. Behavior of plasma facing surface in the large helical device

    International Nuclear Information System (INIS)

    Hino, T.; Nobuta, Y.; Sagara, A.

    2002-10-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each the campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  4. Behavior of plasma facing surface in the large helical device

    Energy Technology Data Exchange (ETDEWEB)

    Hino, T.; Nobuta, Y. [Hokkaido Univ., Dept. of Nuclear Engineering, Sapporo, Hokkaido (Japan); Sagara, A. [National Inst. for Fusion Science, Toki, Gifu (Japan)] [and others

    2002-11-01

    Material probes have been installed at the inner walls along poloidal direction in LHD from the first experimental campaign. After each campaign, the impurity deposition and the gas retention have been examined to clarify the plasma surface interaction and the degree of wall cleaning. In the 2nd campaign, the entire wall was considerably cleaned by helium glow discharge conditionings. For the 3rd and 4th campaigns, graphite tiles were installed at entire divertor strike region, and then the wall condition significantly changed compared to the case of stainless steel wall. The erosion of graphite took place during the main discharges and the eroded carbon deposited on the entire wall. In particular, the deposition thickness was large at the wall far from the plasma. Since the entire wall was well carbonized, amount of retained discharge gas such as H and He became large. In particular, the helium retention was large at the position close to the anodes used for helium glow discharge cleanings. One characteristics of the LHD wall is a large retention of helium gas since the wall temperature is limited below 368 K. In order to reduce the recycling of discharge gas, the wall heating before the experimental campaign and the surface heating between the main discharge shots are planned. (author)

  5. Comparative study on two different seal surface structure for reactor pressure vessel sealing behavior

    International Nuclear Information System (INIS)

    Chen Jun; Xiong Guangming; Deng Xiaoyun

    2014-01-01

    The seal surface structure is very important to reactor pressure vessel (RPV) sealing behavior. In this paper, two 3-D RPV sealing analysis finite models have been established with different seal surface structures, in order to study the influence of two structures. The separation of RPV upper and lower flanges, bolt loads and etc. are obtained, which are used to evaluate the sealing behavior of the RPV. Meanwhile, the comparative analysis of safety margin of two seal surface structural had been done, which provides the theoretical basis for RPV seal structure design optimization. (authors)

  6. Spectral reflectance of surface soils: Relationships with some soil properties

    Science.gov (United States)

    Kiesewetter, C. H.

    1983-01-01

    Using a published atlas of reflectance curves and physicochemical properties of soils, a statistical analysis was carried out. Reflectance bands which correspond to five of the wavebands used by NASA's Thematic Mapper were examined for relationships to specific soil properties. The properties considered in this study include: Sand Content, Silt Content, Clay Content, Organic Matter Content, Cation Exchange Capacity, Iron Oxide Content and Moisture Content. Regression of these seven properties on the mean values of five TM bands produced results that indicate that the predictability of the properties can be increased by stratifying the data. The data was stratified by parent material, taxonomic order, temperature zone, moisture zone and climate (combined temperature and moisture). The best results were obtained when the sample was examined by climatic classes. The middle Infra-red bands, 5 and 7, as well as the visible bands, 2 and 3, are significant in the model. The near Infra-red band, band 4, is almost as useful and should be included in any studies. General linear modeling procedures examined relationships of the seven properties with certain wavebands in the stratified samples.

  7. Surface stoichiometry of zinc sulfide and its effect on the adsorption behaviors of xanthate

    Directory of Open Access Journals (Sweden)

    Wang Meng

    2011-11-01

    Full Text Available Abstract In this paper, the surface stoichiometry, acid-base properties as well as the adsorption of xanthate at ZnS surfaces were studied by means of potentiometric titration, adsorption and solution speciation modeling. The surface proton binding site was determined by using Gran plot to evaluate the potentiometric titration data. Testing results implied that for stoichiometric surfaces of zinc sulfide, the proton and hydroxide determine the surface charge. For the nonstoichiometric surfaces, the surface charge is controlled by proton, hydroxide, zinc and sulfide ions depending on specific conditions. The xanthate adsorption decreases with increasing solution pH, which indicates an ion exchange reaction at the surfaces. Based on experimental results, the surface protonation, deprotonation, stoichiometry and xanthate adsorption mechanism were discussed.

  8. Symmetric scaling properties in global surface air temperature anomalies

    Science.gov (United States)

    Varotsos, Costas A.; Efstathiou, Maria N.

    2015-08-01

    We have recently suggested "long-term memory" or internal long-range correlation within the time-series of land-surface air temperature (LSAT) anomalies in both hemispheres. For example, an increasing trend in the LSAT anomalies is followed by another one at a different time in a power-law fashion. However, our previous research was mainly focused on the overall long-term persistence, while in the present study, the upward and downward scaling dynamics of the LSAT anomalies are analysed, separately. Our results show that no significant fluctuation differences were found between the increments and decrements in LSAT anomalies, over the whole Earth and over each hemisphere, individually. On the contrary, the combination of land-surface air and sea-surface water temperature anomalies seemed to cause a departure from symmetry and the increments in the land and sea surface temperature anomalies appear to be more persistent than the decrements.

  9. Laboratory Determination of Thermal Protection System Materials Surface Catalytic Properties

    Science.gov (United States)

    2007-07-01

    Zalar, A., "Recombination of Neutral Hydrogen Atoms on AISI 304 Stainless Steel Surface," Applied Surface Science, Vol. 144-145, 1999, pp. 399-403. 57...and test environments. Typically, these fits contain only the temperature dependence of the loss probability, with no information on pressure or...generated in the MESOX test facility in the PROMES-CNRS laboratory on a variety of ceramic materials.47-50 The MESOX facility uses a flow tube

  10. Structure and properties of GMA surfaced armour plates

    OpenAIRE

    A. Klimpel; K. Luksa; M. Burda

    2010-01-01

    Purpose: In the combat vehicles many materials can be used for the armour. Application of the monolithic armour plates in light combat vehicles is limited by the high armour weigh. Introduction of the layered armour plates is a way to limit the vehicle weight. In the paper test results of graded and nanostructural GMA surfaced armour plates are presented.Design/methodology/approach: Metallographic structure, chemical composition and hardness of surfaced layers were investigated in order to ex...

  11. Thermal repellent properties of surface coating using silica

    Science.gov (United States)

    Lee, Y. Y.; Halim, M. S.; Aminudin, E.; Guntor, N. A.

    2017-11-01

    Extensive land development in urban areas is completely altering the surface profile of human living environment. As cities growing rapidly, impervious building and paved surfaces are replacing the natural landscape. In the developing countries with tropical climate, large masses of building elements, such as brick wall and concrete members, absorb and store large amount of heat, which in turn radiate back to the surrounding air during the night time. This bubble of heat is known as urban heat island (UHI). The use of high albedo urban surfaces is an inexpensive measure that can reduce surrounded temperature. Thus, the main focus of this study is to investigate the ability of silica, SiO2, with high albedo value, to be used as a thermal-repelled surface coating for brick wall. Three different silica coatings were used, namely silicone resin, silicone wax and rain repellent and one exterior commercial paint (jota shield paint) that commercially available in the market were applied on small-scale brick wall models. An uncoated sample also had been fabricated as a control sample for comparison. These models were placed at the outdoor space for solar exposure. Outdoor environment measurement was carried out where the ambient temperature, surface temperature, relative humidity and UV reflectance were recorded. The effect of different type of surface coating on temperature variation of the surface brick wall and the thermal performance of coatings as potential of heat reduction for brick wall have been studied. Based on the results, model with silicone resin achieved the lowest surface temperature which indicated that SiO2 can be potentially used to reduce heat absorption on the brick wall and further retains indoor passive thermal comfortability.

  12. Effects of modified surfaces produced at plasma-facing surface on hydrogen release behavior in the LHD

    Directory of Open Access Journals (Sweden)

    Y. Nobuta

    2017-08-01

    Full Text Available In the present study, an additional deuterium (D ion irradiation was performed against long-term samples mounted on the helical coil can and in the outer private region in the LHD during the 17th experimental campaign. Based on the release behavior of the D and hydrogen (H retained during the experimental campaign, the difference of release behavior at the top surface and in bulk of modified surfaces is discussed. Almost all samples on the helical coil can were erosion-dominant and some samples were covered with boron or carbon, while a very thick carbon films were formed in the outer private region. In the erosion-dominant area, the D desorbed at much lower temperatures compared to that of H retained during the LHD plasma operation. For the samples covered with boron, the D tended to desorb at lower temperatures compared to H. For the carbon deposition samples, the D desorbed at much higher temperatures compared to no deposition and boron-covered samples, which was very similar to that of H. The D retention capabilities at the top surface of carbon and boron films were 2–3 times higher than no deposition area. The results indicate that the retention and release behavior at the top surface of the modified layer can be different from that of bulk substrate material.

  13. Hemolytic properties of synthetic nano- and porous silica particles: the effect of surface properties and the protection by the plasma corona.

    Science.gov (United States)

    Shi, J; Hedberg, Y; Lundin, M; Odnevall Wallinder, I; Karlsson, H L; Möller, L

    2012-09-01

    Novel silica materials incorporating nanotechnology are promising materials for biomedical applications, but their novel properties may also bring unforeseen behavior in biological systems. Micro-size silica is well documented to induce hemolysis, but little is known about the hemolytic activities of nanostructured silica materials. In this study, the hemolytic properties of synthetic amorphous silica nanoparticles with primary sizes of 7-14 nm (hydrophilic vs. hydrophobic), 5-15 nm, 20 nm and 50 nm, and model meso/macroporous silica particles with pore diameters of 40 nm and 170 nm are investigated. A crystalline silica sample (0.5-10 μm) is included for benchmarking purposes. Special emphasis is given to investigations of how the temperature and solution complexity (solvent, plasma), as well as the physicochemical properties (such as size, surface charge, hydrophobicity and other surface properties), link to the hemolytic activities of these particles. Results suggests the potential importance of small size and large external surface area, as well as surface charge/structure, in the hemolysis of silica particles. Furthermore, a significant correlation is observed between the hemolytic profile of red blood cells and the cytotoxicity profile of human promyelocytic leukemia cells (HL-60) induced by nano- and porous silica particles, suggesting a potential universal mechanism of action. Importantly, the results generated suggest that the protective effect of plasma towards silica nanoparticle-induced hemolysis as well as cytotoxicity is primarily due to the protein/lipid layer shielding the silica particle surface. These results will assist the rational design of hemocompatible silica particles for biomedical applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Impact of surface porosity and topography on the mechanical behavior of high strength biomedical polymers.

    Science.gov (United States)

    Evans, Nathan T; Irvin, Cameron W; Safranski, David L; Gall, Ken

    2016-06-01

    The ability to control the surface topography of orthopedic implant materials is desired to improve osseointegration but is often at the expense of mechanical performance in load bearing environments. Here we investigate the effects of surface modifications, roughness and porosity, on the mechanical properties of a set of polymers with diverse chemistry and structure. Both roughness and surface porosity resulted in samples with lower strength, failure strain and fatigue life due to stress concentrations at the surface; however, the decrease in ductility and fatigue strength were greater than the decrease in monotonic strength. The fatigue properties of the injection molded polymers did not correlate with yield strength as would be traditionally observed in metals. Rather, the fatigue properties and the capacity to maintain properties with the introduction of surface porosity correlated with the fracture toughness of the polymers. Polymer structure impacted the materials relative capacity to maintain monotonic and cyclic properties in the face of surface texture and porosity. Generally, amorphous polymers with large ratios of upper to lower yield points demonstrated a more significant drop in ductility and fatigue strength with the introduction of porosity compared to crystalline polymers with smaller ratios in their upper to lower yield strength. The latter materials have more effective dissipation mechanisms to minimize the impact of surface porosity on both monotonic and cyclic damage. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Biocompatibility and Surface Properties of TiO2 Thin Films Deposited by DC Magnetron Sputtering

    Science.gov (United States)

    López-Huerta, Francisco; Cervantes, Blanca; González, Octavio; Hernández-Torres, Julián; García-González, Leandro; Vega, Rosario; Herrera-May, Agustín L.; Soto, Enrique

    2014-01-01

    We present the study of the biocompatibility and surface properties of titanium dioxide (TiO2) thin films deposited by direct current magnetron sputtering. These films are deposited on a quartz substrate at room temperature and annealed with different temperatures (100, 300, 500, 800 and 1100 °C). The biocompatibility of the TiO2 thin films is analyzed using primary cultures of dorsal root ganglion (DRG) of Wistar rats, whose neurons are incubated on the TiO2 thin films and on a control substrate during 18 to 24 h. These neurons are activated by electrical stimuli and its ionic currents and action potential activity recorded. Through X-ray diffraction (XRD), the surface of TiO2 thin films showed a good quality, homogeneity and roughness. The XRD results showed the anatase to rutile phase transition in TiO2 thin films at temperatures between 500 and 1100 °C. This phase had a grain size from 15 to 38 nm, which allowed a suitable structural and crystal phase stability of the TiO2 thin films for low and high temperature. The biocompatibility experiments of these films indicated that they were appropriated for culture of living neurons which displayed normal electrical behavior. PMID:28788667

  16. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface.

    Science.gov (United States)

    Pu, Xia; Li, Guangji; Huang, Hanlu

    2016-04-15

    Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS)-embedded elastomeric stamping (PEES) method. Scanning electron microscopy (SEM) was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface. © 2016. Published by The Company of Biologists Ltd.

  17. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    Directory of Open Access Journals (Sweden)

    Xia Pu

    2016-04-01

    Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.

  18. Effect of titanium surface characteristics on the behavior and function of oral fibroblasts.

    Science.gov (United States)

    Att, Wael; Yamada, Masahiro; Ogawa, Takahiro

    2009-01-01

    The purpose of this study was to evaluate the effect of different titanium surface characteristics on the behavior and function of oral fibroblasts as well as the deposition pattern of collagen within the extracellular matrix. Titanium surfaces created by machining, acid etching with sulfuric acid (AE1), or acid etching with hydrofluoric acid (AE2) were analyzed using scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy. Rat oral fibroblasts were cultured on different surfaces. Cell spread and morphology of extracellular matrix were evaluated using SEM. Attachment and proliferation of cells were examined by comparing the numbers of attached to detached cells and cell count, respectively. Gene expression was analyzed via reverse transcriptase polymerase chain reaction. Collagen production and deposition were examined via a Sirius red-based stain assay and confocal laser scanning microscopy. The machined surface showed a flat profile with isotropic grooves, the AE1 surface showed a uniformly microscale roughened surface, and the AE2 surface had a grooved profile with intermediate surface roughness. The AE2 surface contained fluoride atoms (2.45%+/-0.44% as F/Ti atomic ratio). Cell attachment was significantly weaker on the machined surface than on the AE1 and AE2 surfaces, whereas no differences were observed between the AE1 and AE2 surfaces. The cell counts on the machined and AE2 surfaces were higher, with a parallel orientation, whereas the cell count was lower and randomly distributed on the AE1 surface. The expression level of fibroblastic genes was similar among surfaces for all time points tested. Collagen production was highest on the machined surface, followed by AE2 and AE1 surfaces. Collagen deposition displayed a parallel pattern on the machined surface, while it was multidirectional on the AE1 and AE2 surfaces. The surface characteristics of titanium affect attachment, spread, and proliferative activity of oral fibroblasts as well

  19. Mechanical properties and deformation behavior of Ti-5Cr-xFe alloys

    International Nuclear Information System (INIS)

    Ho, W.-F.; Pan, C.-H.; Wu, S.-C.; Hsu, H.-C.

    2009-01-01

    The effects of iron on the mechanical properties and deformation behavior of a Ti-5Cr-based system were studied with emphasis on improving the strength/modulus ratio. As-cast Ti-5Cr and a series of Ti-5Cr-xFe (x = 0.1, 0.5, 1, 3 and 5 mass%) alloys prepared by using a dental cast machine were investigated. X-ray diffraction (XRD) for phase analysis was conducted with a diffractometer. Three-point bending tests were performed to evaluate the mechanical properties of all specimens. The fractured surfaces were observed by using scanning electron microscopy (SEM). Moreover, the surface morphology of a post-bending unetched specimen was examined by using an optical microscope. The experimental results indicated that only Ti-5Cr-3Fe and Ti-5Cr-5Fe alloys exhibited ductile properties. The bending moduli of the Ti-5Cr-3Fe and Ti-5Cr-5Fe alloys without an ω phase were lower than those of the Ti-5Cr and Ti-5Cr-xFe alloys with an ω phase. The Ti-5Cr-3Fe alloy exhibited highest bending strength/modulus ratios as large as 25.1, being higher than those of commercially pure titanium (c.p. Ti) by 195% and of the Ti-5Cr alloy by 132%. Moreover, the Ti-5Cr-5Fe alloy also had highest ratios as large as 24.6, being higher than those of c.p. Ti by 189% and of the Ti-5Cr alloy by 128%. Furthermore, the elastically recoverable angles of the Ti-5Cr-3Fe (31.5 deg.) and Ti-5Cr-5Fe (29.6 deg.) alloys were greater than those of c.p. Ti (2.7 deg.) by as much as 1067% and 996%, respectively. The optical micrographs indicated that the surfaces of the Ti-5Cr-3Fe and Ti-5Cr-5Fe alloys were covered with many slip bands. In the current search for better implant materials, the low modulus, ductile property, excellent elastic recovery capability and reasonably high strength (or high strength/modulus ratio) β phase Ti-5Cr-3Fe and Ti-5Cr-5Fe alloys seem to be promising candidates

  20. Ion beam application for improved polymer surface properties

    International Nuclear Information System (INIS)

    Lee, E.H.; Rao, G.R.; Lewis, M.B.; Mansur, L.K.

    1992-01-01

    Various polymeric materials were subjected to bombardment by different energetic ions with energies ranging from 200 to 1000 keV. Tests showed substantial improvements in hardness, wear resistance, oxidation resistance, resistance to chemicals, and electrical conductivity. The magnitude of property changes was strongly dependent upon ion species, energy, dose, and polymer structure. Both hardness and electrical conductivity increased with ion energy and dose. These properties were apparently related to the effectiveness of cross-linking. Ion species with a large electronic stopping cross-section are expected to produce more crosslinking. It is believed that the polymer property improvements are commensurate with the extent of crosslinking, which is responsible for the formation of three-dimensionally-connected, carbon-rich, rigid networks. 22 refs, 5 figs

  1. Nanocrystal and surface alloy properties of bimetallic Gold-Platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    Mott Derrick

    2006-01-01

    Full Text Available AbstractWe report on the correlation between the nanocrystal and surface alloy properties with the bimetallic composition of gold-platinum(AuPt nanoparticles. The fundamental understanding of whether the AuPt nanocrystal core is alloyed or phase-segregated and how the surface binding properties are correlated with the nanoscale bimetallic properties is important not only for the exploitation of catalytic activity of the nanoscale bimetallic catalysts, but also to the general exploration of the surface or interfacial reactivities of bimetallic or multimetallic nanoparticles. The AuPt nanoparticles are shown to exhibit not only single-phase alloy character in the nanocrystal, but also bimetallic alloy property on the surface. The nanocrystal and surface alloy properties are directly correlated with the bimetallic composition. The FTIR probing of CO adsorption on the bimetallic nanoparticles supported on silica reveals that the surface binding sites are dependent on the bimetallic composition. The analysis of this dependence further led to the conclusion that the relative Au-atop and Pt-atop sites for the linear CO adsorption on the nanoparticle surface are not only correlated with the bimetallic composition, but also with the electronic effect as a result of the d-band shift of Pt in the bimetallic nanocrystals, which is the first demonstration of the nanoscale core-surface property correlation for the bimetallic nanoparticles over a wide range of bimetallic composition.

  2. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    Science.gov (United States)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  3. Surface electronic properties of discontinuous Pd films during hydrogen exposure

    International Nuclear Information System (INIS)

    Zhao, Ming; Nagata, Shinji; Shikama, Tatsuo; Inouye, Aichi; Yamamoto, Shunya; Yoshikawa, Masahito

    2011-01-01

    This paper explored the change in the surface resistance of the discontinuous palladium (Pd) films during hydrogen exposure. In our experiments, we observed a remarkable rise in the electrical resistance of the discontinuous film which consists of nano-sized particles, when it was exposed to thin hydrogen. By studying the resistance change ratio before and after hydrogen exposure, we have found that it demonstrates an inverse exponential relationship with the ratio of on-film particle radius to the inter island separation. This suggests that the change in the film resistance under hydrogen exposure is primarily associated with the variation of surface work function which is caused by the hydrogen absorption on the Pd surface. (author)

  4. Producing the surface structures with required properties with the help of concentrated fluxes of particles

    International Nuclear Information System (INIS)

    Li, I.P.; Rukhlyada, N.Ya.

    2005-01-01

    Pulsed plasma treatment has been proposed for modification of the surface layers of metal-matrix-porous cathodes and parts of electronic-vacuum devices. Surface plasma treatment leads to improvement of thermal emission properties of effective cathodes: work function decreases, secondary electron emission coefficient increases, and surface emission uniformity improves. With the help of pulse plasma, surface smoothing as well as formation of composite coatings can be done [ru

  5. Permeation Behavior and Physical Properties of Natural Rubber Nanocomposites

    National Research Council Canada - National Science Library

    Zukas, Walter; Sennett, Michael; Welsh, Elizabeth; Rodriguez, Axel; Ziegler, David; Touchet, Paul

    2004-01-01

    .... A study was carried out to examine the effects of varying nanoparticle morphology and composition on the mechanical and barrier properties of polymer nanocomposites made with natural rubber (NR...

  6. Effects of Chemical Surface Treatment on Mechanical Properties of ...

    African Journals Online (AJOL)

    The morphology of the materials was studied using scanning electron microscopy (SEM). The fibre chemical modification improves its adhesion to the matrix as well as the mechanical properties of the composites. Keywords: Scanning Electron Microscopy, Sisal fiber, Tensile test, Unsaturated polyester resin ...

  7. Humidity Sensing Properties of Surface Modified Polyaniline Metal Oxide Composites

    Directory of Open Access Journals (Sweden)

    S. C. Nagaraju

    2014-01-01

    Full Text Available Polyaniline- (PANI praseodymium Oxide (Pr2O3 composites have been synthesized by in situ polymerization method with different weight percentages. The synthesized composites have been characterized by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The temperature dependent conductivity shows that the conductivity is due to the hopping of polarons and bipolarons. These composites show negative thermal coefficient (α behavior as a function of temperature, which is characteristic behavior of semiconducting materials. Sensor studies have been carried out by two-probe method and found that the sensitivity increases with increase in % RH. It is noticed that stability increase is due to the presence of Pr2O3 in polyaniline up to 30 wt%. A fast recovery and response time along with high sensitivity make these composites suitable for humidity sensors.

  8. Research of Surface Properties of Fillers for Polymers

    OpenAIRE

    Semakina, Olga Konstantinovna; Phomenko, A. N.; Leonteva, A. A.; Rymanova, Irina Evgenievna

    2015-01-01

    The behavior of filler particles in the polymer matrix on a physical model representing the suspension of solid particles in the apolar liquid has been studied. Relative sedimentation volumes of powder components included in the polymer composition for the cable insulation in liquids of different polarity have been identified. The dependence of the effect of hygroscopic powder fillers on the relative sedimentation volume of powders and a ratio of wetting has been studied. It has been found th...

  9. [Research on surface modification and bio-tribological properties of artificial joint].

    Science.gov (United States)

    Pan, Yusong; Wang, Jing; Ding, Guoxin

    2012-06-01

    The bio-tribological properties of an artificial joint can be obviously improved by surface modification technologies. In this paper, the benefits and disadvantages of various surface modification methods-such as surface coating, plasma treatment, surface texture and surface grafting modification-are discussed. The aim of surface coating and/or plasma treatment is to improve the surface hardness of the materials, thus enhancing the wear resistance of artificial joints. However, these technologies do not effectively alleviate stress concentration of material in the short times in which artificial joints bear physiological impact load, resulting in easy fracture. Surface texture serves mainly to improve the lubrication properties through micro-concavities on the material surface for storage lubricant. Surface texturing can realize improvements in bio-tribological properties, but it does not enhance the impact resistance of the joint. Surface grafting modification is implemented mainly by grafting hydrophilic or other specific functional groups to improve the surface hydrophilicity and wetability, thus enhancing lubricating performance and reducing the coefficient of friction.

  10. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    Directory of Open Access Journals (Sweden)

    Miguel Duarte

    Full Text Available Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  11. Adsorption behavior of Fe atoms on a naphthalocyanine monolayer on Ag(111) surface

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Linghao; Wu, Rongting; Bao, Deliang; Ren, Junhai; Zhang, Yanfang; Zhang, Haigang; Huang, Li; Wang, Yeliang; Du, Shixuan; Huan, Qing; Gao, Hong-Jun

    2015-05-29

    Adsorption behavior of Fe atoms on a metal-free naphthalocyanine (H2Nc) monolayer on Ag(111) surface at room temperature has been investigated using scanning tunneling microscopy combined with density functional theory (DFT) based calculations. We found that the Fe atoms adsorbed at the centers of H2Nc molecules and formed Fe-H2Nc complexes at low coverage. DFT calculations show that the configuration of Fe at the center of a molecule is the most stable site, in good agreement with the experimental observations. After an Fe-H2Nc complex monolayer was formed, the extra Fe atoms self-assembled to Fe clusters of uniform size and adsorbed dispersively at the interstitial positions of Fe-H2Nc complex monolayer. Furthermore, the H2Nc monolayer grown on Ag(111) could be a good template to grow dispersed magnetic metal atoms and clusters at room temperature for further investigation of their magnetism-related properties.

  12. Evolution of Collective Behaviors for a Real Swarm of Aquatic Surface Robots.

    Science.gov (United States)

    Duarte, Miguel; Costa, Vasco; Gomes, Jorge; Rodrigues, Tiago; Silva, Fernando; Oliveira, Sancho Moura; Christensen, Anders Lyhne

    2016-01-01

    Swarm robotics is a promising approach for the coordination of large numbers of robots. While previous studies have shown that evolutionary robotics techniques can be applied to obtain robust and efficient self-organized behaviors for robot swarms, most studies have been conducted in simulation, and the few that have been conducted on real robots have been confined to laboratory environments. In this paper, we demonstrate for the first time a swarm robotics system with evolved control successfully operating in a real and uncontrolled environment. We evolve neural network-based controllers in simulation for canonical swarm robotics tasks, namely homing, dispersion, clustering, and monitoring. We then assess the performance of the controllers on a real swarm of up to ten aquatic surface robots. Our results show that the evolved controllers transfer successfully to real robots and achieve a performance similar to the performance obtained in simulation. We validate that the evolved controllers display key properties of swarm intelligence-based control, namely scalability, flexibility, and robustness on the real swarm. We conclude with a proof-of-concept experiment in which the swarm performs a complete environmental monitoring task by combining multiple evolved controllers.

  13. The surface layer of austempered ductile iron investment castings properties

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2009-01-01

    Full Text Available The article presents a unique process of carbonnitriding and nitriding the precision casting surfaces of austempered ductile iron. The results of the research are pointing that adequate process parameters allow to obtain multiple increase of wear resistance and a significant increase of corrosion resistance. Also, changes of cast microstructure and hardness are presented.

  14. An instrument for the measurement of road surface reflection properties

    DEFF Research Database (Denmark)

    Corell, Dennis Dan; Sørensen, K.

    2017-01-01

    Road surface reflection data in the form of standard r-tables serve as input for design calculations of road lighting installations on traffic roads. However, in several countries the use of the standard r-tables has not been verified by measurement in a long period of time, while the types of road...

  15. Tailoring of morphology and surface properties of syndiotactic polystyrene aerogels.

    Science.gov (United States)

    Wang, Xiao; Jana, Sadhan C

    2013-05-07

    This study evaluates a method for rendering syndiotactic polystyrene (sPS) aerogels hydrophilic using polyethylene oxide (PEO) of different molecular weights. The highly porous sPS aerogels are inherently hydrophobic although applications involving absorption of moisture and removal of particulate solids may benefit from the high surface area of sPS aerogels provided some degree of hydrophilicity is induced in these materials. In this work, sPS gels are prepared by thermo-reversible gelation in tetrahydrofuran in the presence of PEO. The gels are dried under supercritical conditions to obtain aerogels. The aerogels are characterized by scanning electron microscopy, nitrogen-adsorption porosimetry, helium pycnometry, and contact angle measurements. The data reveal that the pore structures and surface energy can be controlled by varying the concentration and molecular weight of PEO and using different cooling rates during thermo-reversible gelation. In the first case, sPS aerogels, aerogels containing PEO of a low molecular weight or low concentration show superhydrophobic surface presenting the "lotus effect". In the second case, PEO at a higher concentration or with higher molecular weight forms phase-separated domains yielding new hydrophilic macropores (>10 μm) in the aerogel structures. These macropores contribute to the superhydrophobic surface with the "petal effect". The cooling rate during gelation shows a strong influence on these two cases.

  16. Tyre - Road Noise, Surface Characteristics and Material Properties

    NARCIS (Netherlands)

    Li, M.

    2013-01-01

    Noise levels due to road traffic have reached intolerable high levels in and around many urban areas all around the world. Because of health reasons and reasons of well- being these noise levels have to be reduced. The noise produced from the interaction between the rolling tyre and road surface is

  17. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...

  18. Hydrophobic and Electrostatic Cell Surface Properties of Thermophilic Dairy Streptococci

    NARCIS (Netherlands)

    Van der Mei, HC; de Vries, Jacob; Busscher, HJ

    1993-01-01

    Microbial adhesion to hydrocarbons (MATH) and microelectrophoresis were done in 10 mM potassium phosphate solutions to characterize the surfaces of thermophilic dairy streptococci, isolated from pasteurizers. Regardless of whether they were grown (in M17 broth) with lactose, sucrose, or glucose

  19. Tuning Acoustic Wave Properties by Mechanical Resonators on a Surface

    DEFF Research Database (Denmark)

    Dühring, Maria Bayard; Laude, Vincent; Khelif, Abdelkrim

    Vibrations generated by high aspects ratio electrodes are studied by the finite element method. It is found that the modes are combined of a surface wave and vibration in the electrodes. For increasing aspect ratio most of the mechanical energy is confined to the electrodes which act as mechanical...

  20. Surface-bound microgels - From physicochemical properties to biomedical applications

    DEFF Research Database (Denmark)

    Nyström, Lina; Malmsten, Martin

    2016-01-01

    Microgels offer robust and facile approaches for surface modification, as well as opportunities to introduce biological functionality by loading such structures with bioactive agents, e.g., in the context of drug delivery, functional biomaterials, and biosensors. As such, they provide a versatile...

  1. Investigations Of Powder Surface Properties Of Drug Substances ...

    African Journals Online (AJOL)

    In this study, Inverse Gas Chromatography (IGC) was used to characterize the surface energetics of different batches of two drug substances (Salmetrol Xinafoate, SX and Fluticasone Propionate, FP) manufactured under identical conditions. The results obtained demonstrate the potential of IGC technique to reveal ...

  2. Modification of surface properties of LLDPE by water plasma discharge

    International Nuclear Information System (INIS)

    Chantara Thevy Ratnam; Hill, D.J.T.; Firas Rasoul; Whittaker, A.K.; Imelda Keen

    2007-01-01

    Linear low density polyethylene (LLDPE) surface was modified by water plasma treatment. The LLDPE surface was treated at 10 and 20 W discharge power at various exposure times. A laboratory scale Megatherm radio frequency (RF) plasma apparatus that operates at 27 MHz was used to generate the water plasmas. The changes in chemical structure of the LLDPE polymeric chain upon plasma treatment were characterized by FTIR and XPS techniques. The selectivity of trifluoroacetic anhydride (TFAA) toward hydroxyl groups is used to quantify the hydroxyl groups formed on the polymer surface upon plasma treatment. After exposition to the plasma discharge a decline in water contact angle were observed. FTIR and XPS measurements indicate an oxidation of degraded polymeric chains and creation of hydroxyl, carbonyl, ether, ester and carboxyl groups. Chemical derivatization with TFAA of water plasma treated polymer surfaces has shown that under the conditions employed, a very small (less than 5%) of the oxygen introduced by the water plasma treatment was present as hydroxyl group. (Author)

  3. Electrical properties of Titan's surface from Cassini RADAR scatterometer measurements

    Science.gov (United States)

    Wye, Lauren C.; Zebker, Howard A.; Ostro, Steven J.; West, Richard D.; Gim, Yonggyu; Lorenz, Ralph D.; The Cassini Radar Team

    2007-06-01

    We report regional-scale low-resolution backscatter images of Titan's surface acquired by the Cassini RADAR scatterometer at a wavelength of 2.18-cm. We find that the average angular dependence of the backscatter from large regions and from specific surface features is consistent with a model composed of a quasi-specular Hagfors term plus a diffuse cosine component. A Gaussian quasi-specular term also fits the data, but less well than the Hagfors term. We derive values for the mean dielectric constant and root-mean-square (rms) slope of the surface from the quasi-specular term, which we ascribe to scattering from the surface interface only. The diffuse term accommodates contributions from volume scattering, multiple scattering, or wavelength-scale near-surface structure. The Hagfors model results imply a surface with regional mean dielectric constants between 1.9 and 3.6 and regional surface roughness that varies between 5.3° and 13.4° in rms-slope. Dielectric constants between 2 and 3 are expected for a surface composed of solid simple hydrocarbons, water ice, or a mixture of both. Smaller dielectric constants, between 1.6 and 1.9, are consistent with liquid hydrocarbons, while larger dielectric constants, near 4.5, may indicate the presence of water-ammonia ice [Lorenz, R.D., 1998. Icarus 136, 344-348] or organic heteropolymers [Thompson, W.R., Squyres, S.W., 1990. Icarus 86, 336-354]. We present backscatter images corrected for angular effects using the model residuals, which show strong features that correspond roughly to those in 0.94-μm ISS images. We model the localized backscatter from specific features to estimate dielectric constant and rms slope when the angular coverage is within the quasi-specular part of the backscatter curve. Only two apparent surface features are scanned with angular coverage sufficient for accurate modeling. Data from the bright albedo feature Quivira suggests a dielectric constant near 2.8 and rms slope near 10.1°. The dark

  4. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  5. Effects of heating rate on slow pyrolysis behavior, kinetic parameters and products properties of moso bamboo.

    Science.gov (United States)

    Chen, Dengyu; Zhou, Jianbin; Zhang, Qisheng

    2014-10-01

    Effects of heating rate on slow pyrolysis behaviors, kinetic parameters, and products properties of moso bamboo were investigated in this study. Pyrolysis experiments were performed up to 700 °C at heating rates of 5, 10, 20, and 30 °C/min using thermogravimetric analysis (TGA) and a lab-scale fixed bed pyrolysis reactor. The results show that the onset and offset temperatures of the main devolatilization stage of thermogravimetry/derivative thermogravimetry (TG/DTG) curves obviously shift toward the high-temperature range, and the activation energy values increase with increasing heating rate. The heating rate has different effects on the pyrolysis products properties, including biochar (element content, proximate analysis, specific surface area, heating value), bio-oil (water content, chemical composition), and non-condensable gas. The solid yields from the fixed bed pyrolysis reactor are noticeably different from those of TGA mainly because the thermal hysteresis of the sample in the fixed bed pyrolysis reactor is more thorough. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Comparison of mechanical properties of surface layers with use of nanoindentation and microindentation tests

    Directory of Open Access Journals (Sweden)

    M. Zeleňák

    2012-07-01

    Full Text Available The objective of the paper is a mutual comparison of different methods for evaluation of mechanical properties of surface layers. Mechanical properties were tested with the use of nanoindentation and microindentation tests. Different loads and constant deformation speed were used in both cases. For the evaluation of mechanical properties, the AISI 304 type Chromium-Nickel steel commonly used in mechanical engineering industry was tested. Knowledge of relations and differences between nano and micromechanical properties is necessary for understanding of mechanical processes continuously occurring in surface layers during cutting processes.

  7. Incident energy dependence of scattering behavior of water molecules on Si (100) and graphite surfaces

    Science.gov (United States)

    Kihara, G.; Kotsubo, Y.; Yoshimoto, Y.; Kinefuchi, I.; Takagi, S.

    2016-11-01

    The interaction between water molecules and solid surfaces has a great impact on water vapor flows in nanostructures. We conduct molecular beam scattering experiments covering the incident energy range corresponding to the thermal energy at room temperature to investigate the scattering behavior of water molecules on silicon and graphite surfaces. The incident energy dependence of the scattering distributions exhibits opposite trends on these surfaces. Molecular dynamics simulations reveal that the difference is caused by the inertia effect of the incident molecules and the surface corrugations.

  8. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    Myszka D.

    2013-03-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found that the traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  9. New Possibilities of Shaping the Surface Properties in Austempered Ductile Iron Castings

    Directory of Open Access Journals (Sweden)

    D. Myszka

    2013-01-01

    Full Text Available The paper presents recent developments concerning the formation of surface layer in austempered ductile iron castings. It was found thatthe traditional methods used to change the properties of the surface layer, i.e. the effect of protective atmosphere during austenitising or shot peening, are not fully satisfactory to meet the demands of commercial applications. Therefore, new ways to shape the surface layer and the surface properties of austempered ductile iron castings are searched for, to mention only detonation spraying, carbonitriding, CVD methods, etc.

  10. Surface-Segregation-Induced Nanopapillae on FDTS-Blended PDMS Film and Implications in Wettability, Adhesion, and Friction Behaviors.

    Science.gov (United States)

    Pan, Zihe; Peng, Ran; Tang, Juntao; Chen, Li; Cheng, Fangqin; Zhao, Boxin

    2018-02-28

    Polymer composites have been extensively used to tune the surface property (e.g., wettability, friction, and adhesion) for its advantages of cost-effectiveness, high efficiency, and ease of fabrication. In this work, different amount of trichloro(1H,1H,2H,2H-perfluorooctyl)silane (FDTS) was added into poly(dimethylsiloxane) elastomer to prepare polymer composite films and were selected as a model to illustrate the effects of surface segregation on surface topology, wettability, friction, and adhesion. The results show that the added FDTS forms aggregations and increasing the content of FDTS leads to the difficulty of air bubble elimination, increase in viscosity, and drop in transparency. Driven by the differences of chemical potential, FDTS aggregations migrate to the air-polymer interface, resulting in surface enrichment and formation of nanopapillae (1-200 nm). This phenomenon becomes more significant with the increment in FDTS. The change in surface composition and structure generates profound effects on wettability, friction, and adhesion. The addition of FDTS makes the surface relatively oleophobic and further increasing the content of FDTS does not helpful in improving the oleophobicity due to the notable aggregation. Friction forces first grow with the increasing content of FDTS and then decline after the maximum point at 1.0 wt % of FDTS, which is attributed to the generated regular larger nanopappillae at high concentration. However, these larger nanopapillae lead to the increase in adhesion because more interactions are formed. The findings demonstrate the behaviors of FDTS in polymer composites and provide important guidance for controlling the formation of nanostructures via aggregation and phase segregation and exploring their implications on surface properties.

  11. Synthesis and surface active properties of cationic surface active agents from crude rice bran oil

    Directory of Open Access Journals (Sweden)

    El-Dougdoug, W. I. A.

    1999-10-01

    Full Text Available Cationic surfactants of 2-hidroxy-3-(2- alkylamidopolyethyl amino propane-1-triethylammonium hydroxides (ix-xuia-d were prepared from fatty acids (ia-d [palmitic, stearic, oleic, linoleic acid] and mixed fatty acids of crude rice bran oil ie [RBO]. The reaction of these acids with ethylenediamine, diethylenetriamine, triethylenetetramine andletraethylenepentamine (iia-d produced (iii-viia-d. The produced amidopolyethylamine (iii-viia-d reacted with 2-epoxypropylenetriethylammonium chloride (viii to give the cationic surfactants (ix-xiiia-d . The produced derivatives were purified and characterized by microanalysis, molecular weight determination, infra-red (IR, and proton nuclear magnetic resonance (1H NMR spectra. The surface active properties and inhibition efficiency of the prepared cationic surfactants were determined.

    Se han preparado tensioactivos catiónicos de hidróxidos de! 2-hidroxi-3-(2-alquilamidopolietilamino propano-1;trietilamonio (ix-xiiia-d a partir de los ácidos grasos (ia-d [ácido palmítico, esteárico, oleico y linoleico] y mezclas de ácidos grasos de aceite de germen de arroz crudo ie [RBO]. La reacción de estos ácidos con etilenodiamina, dietilenotriamina, trietilenotetramina y tetraetilenopentamina (iia-d produjo los compuestos (iv-viia-d . Los amidopolietilaminos producidos (iii-viia-d reaccionaron con el cloruro de 2-epoxipropilenotrietilamonio (viii para dar los tensioactivos catiónicos (ix-xiiia-d. Los derivados producidos se purificaron y caracterizaron por microanálisis, determinación del peso molecular, espectros de infrarrojo (IR y resonancia magnética nuclear de protón (1H NMR. Se determinaron las propiedades tensioactivas y la eficacia de inhibición de los tensioactivos cati

  12. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    International Nuclear Information System (INIS)

    Crusius, Johann-Philipp; Hassel, Egon; Hellmann, Robert; Bich, Eckard

    2014-01-01

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C 2 H 4 O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide

  13. Intermolecular potential energy surface and thermophysical properties of ethylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Crusius, Johann-Philipp, E-mail: johann-philipp.crusius@uni-rostock.de; Hassel, Egon [Lehrstuhl für Technische Thermodynamik, Universität Rostock, 18059 Rostock (Germany); Hellmann, Robert; Bich, Eckard [Institut für Chemie, Universität Rostock, 18059 Rostock (Germany)

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C{sub 2}H{sub 4}O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  14. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was emp...

  15. Application of Anodization Process for Cast Aluminium Surface Properties Enhancement

    Directory of Open Access Journals (Sweden)

    Włodarczyk-Fligier A.

    2016-09-01

    Full Text Available An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.

  16. Reflection properties of hydrogen ions at helium irradiated tungsten surfaces

    International Nuclear Information System (INIS)

    Doi, K; Tawada, Y; Kato, S; Sasao, M; Kenmotsu, T; Wada, M; Lee, H T; Ueda, Y; Tanaka, N; Kisaki, M; Nishiura, M; Matsumoto, Y; Yamaoka, H

    2016-01-01

    Nanostructured W surfaces prepared by He bombardment exhibit characteristic angular distributions of hydrogen ion reflection upon injection of 1 keV H + beam. A magnetic momentum analyzer that can move in the vacuum chamber has measured the angular dependence of the intensity and the energy of reflected ions. Broader angular distributions were observed for He-irradiated tungsten samples compared with that of the intrinsic polycrystalline W. Both intensity and energy of reflected ions decreased in the following order: the polycrystalline W, the He-bubble containing W, and the fuzz W. Classical trajectory Monte Carlo simulations based on Atomic Collision in Amorphous Target code suggests that lower atom density near the surface can make the reflection coefficients lower due to increasing number of collisions. (paper)

  17. Red mud carbonation using carbon dioxide: Effects of carbonate and calcium ions on goethite surface properties and settling.

    Science.gov (United States)

    Liang, Gaojie; Chen, Wenmi; Nguyen, Anh V; Nguyen, Tuan A H

    2018-05-01

    Carbonation using CO 2 appears as an attractive solution for disposing of red mud suspensions, an aluminum industry hazardous waste since it also offers an option for CO 2 sequestration. Here we report the novel findings that CO 3 2- together with Ca 2+ can significantly affect the surface properties and settling of goethite, a major component of red mud. Specifically, their effects on the goethite surface chemistry, colloidal interaction forces and settling in alkaline solutions are investigated. The surface potential becomes more negative by the formation of carbonate inner-sphere complexes on goethite surface. It is consistent with the strong repulsion, decreased particle size and settling velocity with increased carbonate concentrations as measured by atomic force microscopy, particle size analysis, and particle settling. Adding Ca 2+ that forms outer-sphere complexes with pre-adsorbed carbonate changes goethite surface charge negligibly. Changing repulsion to the attraction between goethite surfaces by increasing calcium dosage indicates the surface bridging, in accordance with the increased settling velocity. The adverse effect of carbonate on goethite flocculation is probably due to its specific chemisorption and competition with flocculants. By forming outer-sphere complexes together with the flocculant-calcium bridging effect, calcium ions can eliminate the negative influence of carbonate and improve the flocculation of goethite particles. These findings contribute to a better understanding of goethite particle interaction with salt ions and flocculants in controlling the particle behavior in the handling processes, including the red mud carbonation. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Science.gov (United States)

    Lorite, Gabriela S; Janissen, Richard; Clerici, João H; Rodrigues, Carolina M; Tomaz, Juarez P; Mizaikoff, Boris; Kranz, Christine; de Souza, Alessandra A; Cotta, Mônica A

    2013-01-01

    The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si) and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  19. Tailoring the Surface Properties of Coatings Through Self-Stratification

    Science.gov (United States)

    2016-10-13

    Introduction Marine biofouling is the unwanted accumulation, attachment and growth of microorganisms , plants and animals on surfaces submerged in...like proteins and polysaccharides,1 accumulation of microorganisms like diatoms and bacteria, settlement of algal species and finally attachment of...Abrasion experiment The abrasion set up was made up of a long plastic plank, with a handle on one end and sponge attached to it on the opposite side

  20. Atomic interactions at the (100) diamond surface and the impact of surface and interface changes on the electronic transport properties

    Science.gov (United States)

    Deferme, Wim

    Centuries and centuries already, diamond is a material that speaks to ones imagination. Till the 18th century it was only mined in India, after it was also found in Brazil and South-Africa. But along the fascinating properties of diamond, it is also a very interesting material for industry. After the discovery at the end of the 18th century that diamond consists of carbon, it took until the 50's of the previous century before research groups from Russia, Japan and the USA were able to reproduce the growth process of diamond. In 1989 it was discovered that the surface of intrinsic, insulation diamond can be made conductive by hydrogenating the surface. It was clear that not only hydrogen at the surface but also the so called "adsorbates" were responsible for this conductivity. It was still not completely clear what was the influence of other species (like oxygen) on the mechanism of surface conductivity and therefore in this thesis the influence of oxygen on the electronic transport properties of atomically flat diamond are researched. Besides the growth of atomically flat diamond with the use of CVD (chemical vapour deposition) en the study of the grown surfaces with characterising techniques such as AFM (atomic force microscopy) and STM (scanning tunnelling microscopy), the study of the surface treatment with plasma techniques is the main topic of this thesis. The influence of oxygen on the surface conductivity is studied and with the ToF (Time-of-Flight) technique the transport properties of the freestanding diamond are examined. With a short laserflash, electrons and holes are created at the diamond/aluminium interface and due to an electric field (up to 500V) the charge carriers are translated to the back contact. In this way the influence of the surface and the changes at the aluminum contacts is studied leading to very interesting results.

  1. The Influence of the Tool Surface Texture on Friction and the Surface Layers Properties of Formed Component

    Directory of Open Access Journals (Sweden)

    Jana Šugárová

    2018-03-01

    Full Text Available The morphological texturing of forming tool surfaces has high potential to reduce friction and tool wear and also has impact on the surface layers properties of formed material. In order to understand the effect of different types of tool textures, produced by nanosecond fibre laser, on the tribological conditions at the interface tool-formed material and on the integrity of formed part surface layers, the series of experimental investigations have been carried out. The coefficient of friction for different texture parameters (individual feature shape, including the depth profile of the cavities and orientation of the features relative to the material flow was evaluated via a Ring Test and the surface layers integrity of formed material (surface roughness and subsurface micro hardness was also experimentally analysed. The results showed a positive effect of surface texturing on the friction coefficients and the strain hardening of test samples material. Application of surface texture consisting of dimple-like depressions arranged in radial layout contributed to the most significant friction reduction of about 40%. On the other hand, this surface texture contributed to the increase of surface roughness parameters, Ra parameter increased from 0.49 μm to 2.19 μm and the Rz parameter increased from 0.99 μm to 16.79 μm.

  2. Behavior of osteoblasts on TI surface with two different coating designed for orthodontic devices.

    Science.gov (United States)

    Fleischmann, Leonardo; Crismani, Adriano; Falkensammer, Frank; Bantleon, Hans-Peter; Rausch-Fan, Xiaohui; Andrukhov, Oleh

    2015-01-01

    In the present study we coated Ti surfaces with polytetrafluorethylene (PTFE) and titanium nitride (TiN) and investigated in vitro the behavior of osteoblasts on these surfaces. MG-63 osteoblasts were cultured on titanium discs with different surface treatment: uncoated Ti6Al4V, TiN-coated, PTFE-coated. Cell viability/proliferation was detected by MTT assay. Gene-expression levels of alkaline phosphatase (ALP), osteocalcin (OC), type I collagen, receptor activator of nuclear factor-kappa-B ligand (RANKL), and osteoprotegerin (OPG) were determined by qPCR. Cell behavior on different surfaces was observed by time-lapse microscopy. Cells grown on PTFE-coated Ti surface exhibited delayed surface attachment and decreased proliferation after 48 h. However, after 168 h of culture cells grown on PTFE-coated surface exhibited higher viability/proliferation, higher expression levels of ALP and OC, and higher OPG/RANKL ratio compared to uncoated surface. No effect of TiN-coating on any investigated parameter was found. Our results shows that PTFE coating exhibits no toxic effect on MG-63 cells and slightly stimulates expression of several genes associated with osteogenesis. We propose that PTFE coating could be considered as a possible choice for a surface treatment of temporary skeletal anchorage devices in orthodontics.

  3. STRUCTURAL AND PHYSICOCHEMICAL SURFACE-PROPERTIES OF SERRATIA-MARCESCENS STRAINS

    NARCIS (Netherlands)

    VANDERMEI, HC; COWAN, MM; GENET, MJ; ROUXHET, PG; BUSSCHER, HJ

    1992-01-01

    Serratia marcescens is an important pathogen with noteworthy hydrophobicity characteristics as assessed by microbial adhesion to hydrocarbons. However, the present knowledge on the surface characteristics of S. marcescens strains does not include physicochemical properties relevant for adhesion such

  4. Fluorination effects on the thermodynamic, thermophysical and surface properties of ionic liquids

    International Nuclear Information System (INIS)

    Vieira, N.S.M.; Luís, A.; Reis, P.M.; Carvalho, P.J.; Lopes-da-Silva, J.A.; Esperança, J.M.S.S.; Araújo, J.M.M.; Rebelo, L.P.N.; Freire, M.G.; Pereiro, A.B.

    2016-01-01

    Highlights: • Surface tension of fluorinated ionic liquids. • Thermophysical properties of fluorinated ionic liquids. • Thermal properties and thermodynamic functions. - Abstract: This paper reports the thermal, thermodynamic, thermophysical and surface properties of eight ionic liquids with fluorinated alkyl side chain lengths equal or greater than four carbon atoms. Melting and decomposition temperatures were determined together with experimental densities, surface tensions, refractive indices, dynamic viscosities and ionic conductivities in a temperature interval ranging from (293.15 to 353.15) K. The surface properties of these fluorinated ionic liquids were discussed and several thermodynamic functions, as well as critical temperatures, were estimated. Coefficients of isobaric thermal expansion, molecular volumes and free volume effects were calculated from experimental values of density and refractive index and compared with previous data. Finally, Walden plots were used to evaluate the ionicity of the investigated ionic liquids.

  5. Multilayered nanoclusters of platinum and gold: insights on electrodeposition pathways, electrocatalysis, surface and bulk compositional properties

    CSIR Research Space (South Africa)

    Mkwizu, TS

    2013-06-01

    Full Text Available Electrochemical, surface and bulk compositional properties of multilayered nanoclusters of Pt and Au, electrochemically deposited on glassy carbon under conditions involving sequential surface–limited redox–replacement reactions (performed at open...

  6. Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids.

    Science.gov (United States)

    Georgiev, Georgi As; Yokoi, Norihiko; Ivanova, Slavyana; Tonchev, Vesselin; Nencheva, Yana; Krastev, Rumen

    2014-08-14

    The surface properties of human meibomian lipids (MGS), the major constituent of the tear film (TF) lipid layer, are of key importance for TF stability. The dynamic interfacial properties of films by MGS from normal eyes (nMGS) and eyes with meibomian gland dysfunction (dMGS) were studied using a Langmuir surface balance. The behavior of the samples during dynamic area changes was evaluated by surface pressure-area isotherms and isocycles. The surface dilatational rheology of the films was examined in the frequency range 10(-5) to 1 Hz by the stress-relaxation method. A significant difference was found, with dMGS showing slow viscosity-dominated relaxation at 10(-4) to 10(-3) Hz, whereas nMGS remained predominantly elastic over the whole range. A Cole-Cole plot revealed two characteristic processes contributing to the relaxation, fast (on the scale of characteristic time τ 100 s), the latter prevailing in dMGS films. Brewster angle microscopy revealed better spreading of nMGS at the air-water interface, whereas dMGS layers were non-uniform and patchy. The distinctions in the interfacial properties of the films in vitro correlated with the accelerated degradation of meibum layer pattern at the air-tear interface and with the decreased stability of TF in vivo. These results, and also recent findings on the modest capability of meibum to suppress the evaporation of the aqueous subphase, suggest the need for a re-evaluation of the role of MGS. The probable key function of meibomian lipids might be to form viscoelastic films capable of opposing dilation of the air-tear interface. The impact of temperature on the meibum surface properties is discussed in terms of its possible effect on the normal structure of the film.

  7. Effects of Surface Modification of MWCNT on the Mechanical and Electrical Properties of Fluoro Elastomer/MWCNT Nanocomposites

    Directory of Open Access Journals (Sweden)

    Tao Xu

    2012-01-01

    Full Text Available Surface modification is a good way to improve the surface activity and interfacial strength of multiwalled carbon nanotubes (MWCNTs when used as fillers in the polymer composites. Among the reported methods for nanotube modification, mixed acid oxidation and plasma treatment is often used by introducing polar groups to the sidewall of MWCNT successfully. The purpose of this study is to evaluate the effect of different surface modification of MWCNT on the mechanical property and electrical conductivity of Fluoro-elastomer (FE/MWCNT nanocomposites. MWCNTs were surface modified by mixed oxidation and CF4 plasma treatment and then used to reinforce the fluoro elastomer (FE, a copolymer of trifluorochloroethylene and polyvinylidene fluoride. FE/MWCNT composite films were prepared from mixture solutions of ethylacetate and butylacetate, using untreated CNTs (UCNTs, acid-modified CNTs (ACNTs, and CF4 plasma-modified CNT (FCNTs. In each case, MWCNT content was 0.01 wt%, 0.05 wt%, 0.1 wt%, and 0.2 wt% with respect to the polymer. Morphology and mechanical properties were characterized by using scanning electron microscopy (SEM, Raman spectroscopy, as well as dynamic mechanical tests. The SEM results indicated that dispersion of ACNTs and especially FCNTs in FE was better than that of UCNTs. DMA indicated mechanical properties of FCNT composites were improved over ACNT and UCNT filled FE. The resulting electrical properties of the composites ranged from dielectric behavior to bulk conductivities of 10-2 Sm-1 and were found to depend strongly on the surface modification methods of MWCNTs.

  8. Study on the surface constitute properties of high-speed end milling aluminum alloy

    Science.gov (United States)

    Huang, Xiaoming; Li, Hongwei; Yumeng, Ma

    2017-09-01

    The physical and mechanical properties of the metal surface will change after the metal cutting processing. The comprehensive study of the influence of machining parameters on surface constitute properties are necessary. A high-speed milling experiment by means of orthogonal method with four factors was conducted for aluminum alloy7050-T7451. The surface constitutive properties of the Al-Alloy surface were measured using SSM-B4000TM stress-strain microprobe system. Based on all the load-depth curves obtained, the characteristics parameters such as strain hardening exponent n and yield strength σy of the milling surface are calculated. The effect of cutting speed, feed rate, and width and depth of cut on n and σy was investigated using the ANOVA techniques. The affecting degree of milling parameters on n and σy was v>fz> ap < ae. The influence of milling parameters on n and σ y was described and discussed.

  9. Theoretical Modeling of Mechanical Behavior and Release Properties of Microcapsules

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2015-01-01

    Microcapsules in food often have a shell with a complex microstructure; the mechanical and structural properties of these shells affect the response of the capsules to deforming forces and the release kinetics of encapsulated components. In this chapter we will discuss a number of models which are

  10. Power Law Behavior of Structural Properties of Protein Gels

    NARCIS (Netherlands)

    Verheul, Marleen; Roefs, Sebastianus P.F.M.; Mellema, J.; Kruif, Kees G.

    1998-01-01

    Whey proteins are globular, heat-sensitive proteins. The gel structure, the formation of this structure, and the rheological properties of particulate whey protein isolate (WPI) gels have been investigated. On increasing the NaCl concentration, the permeability of the WPI gels increased, indicating

  11. Behavior on approach to surface prey by larvae of Toxorhynchites amboinensis and T. brevipalpis (Diptera: Culicidae).

    Science.gov (United States)

    Linley, J R

    1995-01-01

    Behavior of Toxorhynchites amboinensis (Doleschall) and Toxorhynchites brevipalpis (Theobald) larvae (starved 48 h) as they approach and capture surface prey is described quantitatively from videotaped records. Of 106 T. amboinensis and 82 T. brevipalpis larvae observed, 84.9 and 97.6%, respectively, responded to the presence of surface prey within 2 min (most Toxorhynchites larvae are able to assess both the angle to surface prey and its distance and that they interpolate this information to optimize the approach path. The degree of refinement in this behavior indicates that it is well adapted to take advantage of the important surface food source in nature. In this phase of their feeding, Toxorhynchites larvae are active hunters and are not entirely the passive ambush predators they have seemed to be from many studies that have used other mosquito larvae as (subsurface) prey.

  12. Effect of gamma irradiation on the behavioral properties of crotoxin

    Directory of Open Access Journals (Sweden)

    E.G. Moreira

    1997-02-01

    Full Text Available Crotoxin has been detoxified with gamma radiation in order to improve crotalic antiserum production. Nevertheless, present knowledge of the biological characteristics of irradiated crotoxin is insufficient to propose it as an immunizing agent. Crotoxin is known to increase the emotional state of rats and to decrease their exploratory behavior (Moreira EG, Nascimento N, Rosa GJM, Rogero JR and Vassilieff VS (1996 Brazilian Journal of Medical and Biological Research, 29: 629-632. Therefore, we decided 1 to evaluate the effects of crotoxin in the social interaction test, which has been widely used for the evaluation of anxiogenic drugs, and 2 to determine if irradiated crotoxin induces behavioral alterations similar to those of crotoxin in the social interaction, open-field and hole-board tests. Male Wistar rats (180-220 g were used. Crotoxin (100, 250, and 500 µg/kg was injected intraperitoneally 2 h before the social interaction test. Similarly, irradiated crotoxin (2000 Gy gamma radiation from a 60Co source was administered at the doses of 100, 250, and 500 µg/kg for the hole-board test, and at the doses of 1000 and 2500 µg/kg for the open-field and social interaction tests. ANOVA complemented with the Dunnett test was used for statistical analysis (P<0.05. Crotoxin decreased the social interaction time (s at the doses of 100, 250 and 500 µg/kg (means ± SEM from 51.6 ± 4.4 to 32.6 ± 3.7, 28.0 ± 3.6 and 31.6 ± 4.4, respectively. Irradiated crotoxin did not induce behavioral alterations. These results indicate that 1 crotoxin may be an anxiogenic compound, and 2 in contrast to crotoxin, irradiated crotoxin was unable to induce behavioral alterations, which makes it a promising compound for the production of crotalic antiserum

  13. Microstructure and surface properties of lignocellulosic-based activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Garcia, P., E-mail: pegonzal@quim.ucm.es [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain); Centeno, T.A. [Instituto Nacional del Carbon-CSIC, Apartado 73, E-33080 Oviedo (Spain); Urones-Garrote, E. [Centro Nacional de Microscopia Electronica, Universidad Complutense, E-28040, Madrid (Spain); Avila-Brande, D.; Otero-Diaz, L.C. [Departamento de Quimica Inorganica, Facultad de Ciencias Quimicas, Universidad Complutense, E-28040, Madrid (Spain)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Activated carbons were produced by KOH activation at 700 Degree-Sign C. Black-Right-Pointing-Pointer The observed nanostructure consists of highly disordered graphene-like layers with sp{sup 2} bond content Almost-Equal-To 95%. Black-Right-Pointing-Pointer Textural parameters show high surface area ( Almost-Equal-To 1000 m{sup 2}/g) and pore width of 1.3-1.8 nm. Black-Right-Pointing-Pointer Specific capacitance reaches values as high as 161 F/g. - Abstract: Low cost activated carbons have been produced via chemical activation, by using KOH at 700 Degree-Sign C, from the bamboo species Guadua Angustifolia and Bambusa Vulgaris Striata and the residues from shells of the fruits of Castanea Sativa and Juglans Regia as carbon precursors. The scanning electron microscopy micrographs show the conservation of the precursor shape in the case of the Guadua Angustifolia and Bambusa Vulgaris Striata activated carbons. Transmission electron microscopy analyses reveal that these materials consist of carbon platelet-like particles with variable length and thickness, formed by highly disordered graphene-like layers with sp{sup 2} content Almost-Equal-To 95% and average mass density of 1.65 g/cm{sup 3} (25% below standard graphite). Textural parameters indicate a high porosity development with surface areas ranging from 850 to 1100 m{sup 2}/g and average pore width centered in the supermicropores range (1.3-1.8 nm). The electrochemical performance of the activated carbons shows specific capacitance values at low current density (1 mA/cm{sup 2}) as high as 161 F/g in the Juglans Regia activated carbon, as a result of its textural parameters and the presence of pseudocapacitance derived from surface oxygenated acidic groups (mainly quinones and ethers) identified in this activated carbon.

  14. Physicochemical changes of microbe and solid surface properties during biofilm formation

    Science.gov (United States)

    Sfaelou, Stavroula; Vakros, John; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2013-04-01

    .9 for PVA gel and MBBR, respectively. These values differ both from the pzc values found for PVA biocarriers (pzc = 9.4; no pzc value was obtained for MBBR as expected based on its hydrophobic nature and the absence of surface groups with acid-base behavior) and the pzc value of activated sludge (activated sludge mixed liquor: pzc = 8.0 to 8.2, solid activated sludge: pzc = 7.2 to 7.3). These results lead us to the conclusion that the formed biofilms have different acid-base behavior and properties in relation to the activated sludge and the biocarriers. This fact is in accordance to previous studies, where biofilm-associated cells can be differentiated from their suspended counterparts due to the generation of an extracellular polymeric substance (EPS) matrix. One other possible explanation is that the complicated processes of the biofilm formation can alter the distribution of different cells in the sludge compared with the cell distribution in the suspended unsupported sludge.

  15. Boundary properties of solutions of equations of minimal surface kind

    Science.gov (United States)

    Miklyukov, V. M.

    2001-10-01

    Generalized solutions of equations of minimal-surface type are studied. It is shown that a solution makes at most countably many jumps at the boundary. In particular, a solution defined in the exterior of a disc extends by continuity to the boundary circle everywhere outside a countable point set. An estimate of the sum of certain non-local characteristics of the jumps of a solution at the boundary is presented. A result similar to Fatou's theorem on angular boundary values is proved.

  16. Mechanical Properties of Glass Surfaces Coated with Tin Oxide

    DEFF Research Database (Denmark)

    Swindlehurst, W. E.; Cantor, B.

    1978-01-01

    The effect of tin oxide coatings on the coefficient of friction and fracture strength of glass surfaces is studied. Experiments were performed partly on commercially treated glass bottles and partly on laboratory prepared microscope slides. Coatings were applied in the laboratory by decomposition...... of tin tetrachloride on industrial soda glass at ~800K to thicknesses of ~3×10-8 and 3×10 -7 m, commercially by the `titanising' process on industrial soda glass at ~800K to a thickness of ~3.10-9 m, and in the laboratory by radio frequency sputtering from tin oxide powder over a range of glass...

  17. Properties of water surface discharge at different pulse repetition rates

    Czech Academy of Sciences Publication Activity Database

    Ruma, R.; Hosseini, S.H.R.; Yoshihara, K.; Akiyama, M.; Sakugawa, T.; Lukeš, Petr; Akiyama, H.

    2014-01-01

    Roč. 116, č. 12 (2014), s. 123304-123304 ISSN 0021-8979 Grant - others:Rada Programu interní podpory projektů mezinárodní spolupráce AV ČR(CZ) M100431203 Program:M Institutional support: RVO:61389021 Keywords : plasma in air * water surface discharge * pulse frequency * hydrogen peroxide * organic dye Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.183, year: 2014 http://dx.doi.org/ 10.1063/1.4896266

  18. Physicochemical properties of functional surfaces in pitchers of the carnivorous plant Nepenthes alata Blanco (Nepenthaceae).

    Science.gov (United States)

    Gorb, E V; Gorb, S N

    2006-11-01

    Pitchers of the carnivorous plant Nepenthes alata are highly specialized organs adapted to attract, capture, and digest animals, mostly insects. They consist of several well distinguishable zones, differing in macro-morphology, surface microstructure, and functions. Since physicochemical properties of these surfaces may influence insect adhesion, we measured contact angles of non-polar (diiodomethane) and polar liquids (water and ethylene glycol) and estimated the free surface energy of 1) the lid, 2) the peristome, 3) the waxy surface of the slippery zone, and 4) the glandular surface of the digestive zone in N. alata pitchers. As a control, the external surface of the pitcher, as well as abaxial and adaxial surfaces of the leaf blade, was measured. Both leaf surfaces, both lid surfaces, and the external pitcher surface showed similar contact angles and had rather high values of surface free energy with relatively high dispersion component. These surfaces are considered to support strong adhesion forces based on the capillary interaction, and by this, to promote successful attachment of insects. The waxy surface is almost unwettable, has extremely low surface energy, and therefore, must essentially decrease insect adhesion. Both the peristome and glandular surfaces are wetted readily with both non-polar and polar liquids and have very high surface energy with a predominating polar component. These properties result in the preclusion of insect adhesion due to the hydrophilic lubricating film covering the surfaces. The obtained results support field observations and laboratory experiments of previous authors that demonstrated the possible role of different pitcher surfaces in insect trapping and retention.

  19. Effects of surface preparation on the properties of metal/CdTe junctions

    International Nuclear Information System (INIS)

    Werthen, J.G.; Haering, J.; Fahrenbruch, A.L.; Bube, R.H.

    1983-01-01

    The effects of surface preparation on the properties of single crystal CdTe junctions have been investigated through characterization of metal/CdTe junctions. Oriented surfaces include air-cleaved (110) surfaces, bromine-in-methanol etched (110) and (111) surfaces, and bromine-in-methanol etched surfaces subjected to a hydrogen heat treatment. Surface photovoltage measurements of the surfaces indicate larger band bending on the etched surfaces than on the cleaved and heat treated surfaces. X-ray photoelectron spectroscopy analysis verifies that excess Te remains after bromine-in-methanol etching and that cleaving leaves a stoichiometric surface. Hydrogen heat treatment of an etched CdTe surface restores a stoichiometric cleaved-like surface from that altered by the etching process. The barrier height for metal/CdTe junctions formed on cleaved surfaces depends on metal work function and reaches 0.99 V in an Al/CdTe junction and 0.87 V in a Cr/CdTe junction. Junctions formed with different metals on etched (110) surfaces result in barrier heights of 0.55--0.65 V with no dependence of the barrier height on the metal work function being observed, due to the presence of an etch-induced layer that partially governs the properties the surface. Heat treatment of an etched surface results in metal/CdTe junctions with characteristics similar to those of junctions formed on cleaved surfaces, and dependence of barrier height on metal work function is again observed, indicating the removal of an etch-induced layer by the heat treatment and the production of a junction similar to that on the cleaved surface

  20. Effect of inulin on the physicochemical properties, flow behavior and probiotic survival of frozen yogurt.

    Science.gov (United States)

    Rezaei, Rahil; Khomeiri, Morteza; Aalami, Mehran; Kashaninejad, Mahdi

    2014-10-01

    This study investigated the effect of inulin (0, 1 and 2 %), on some physicochemical properties of frozen yogurt, as well as its effect on flow behavior and probiotic survival. The results showed that the addition of inulin improved overrun, viscosity and melting properties significantly (p yogurt with 2 % inulin had the most appealing sensory characteristics. The flow behavior of all samples showed their pseudoplastic nature; power law was the best model to predict their flow behavior. In terms of probiotic survival, the sample with 2 % inulin significantly improved the viability of Lactobacillus acidophilus and Bifidobacterium lactis.

  1. Impact of Surface Treatment on the Structural and Electronic Properties of Polished CdZnTe Surfaces for Radiation Detectors

    Science.gov (United States)

    Tari, Suleyman; Aqariden, F.; Chang, Y.; Grein, C.; Li, Jin; Kioussis, N.

    2013-11-01

    We present the effects of surface treatments on the structural and electronic properties of chemomechanically polished Cd0.9Zn0.1Te before contact deposition. Specifically, polished CdZnTe (CZT) samples were treated with four distinct chemical etchants: (1) bromine methanol (BM), (2) bromine in lactic acid, (3) bromine in methanol followed by bromine-20% lactic acid in ethylene glycol, and (4) hydrochloric acid (HCl). The surface structure and surface electronic properties were studied with atomic force microscopy (AFM) and x-ray photoelectron spectroscopy (XPS). AFM images showed that three of the four etchants significantly altered the surface morphology and structure of CZT. All etchants created smoother surfaces; however, all except HCl also introduced high densities of defects. HCl was found to not affect the surface structure. XPS measurements indicated that a thick, ˜3 nm to 4 nm, TeO2 layer formed about 1 h after etching; hence, it is very important to process devices immediately after etching to prevent oxide formation.

  2. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan, E-mail: likunquan1987@gmail.com; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang, E-mail: hqli1979@gmail.com; Lai, Xuejun, E-mail: msxjlai@scut.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Superhydrophobic iron surfaces were prepared by etching and replacement method. • The fabrication process was simple, time-saving and inexpensive. • Galvanic replacement method was more favorable to create roughness on iron surface. • The superhydrophobic iron surface showed excellent anti-icing properties. - Abstract: Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO{sub 3}) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO{sub 3} concentration had little effect on the wetting behavior, but a high AgNO{sub 3} concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for

  3. Dynamic behavior of water droplets and flashover characteristics on a superhydrophobic silicone rubber surface

    Science.gov (United States)

    Li, Yufeng; Jin, Haiyun; Nie, Shichao; Zhang, Peng; Gao, Naikui

    2017-05-01

    In this paper, a superhydrophobic surface is used to increase the flashover voltage when water droplets are present on a silicone rubber surface. The dynamic behavior of a water droplet and the associated flashover characteristics are studied on common and superhydrophobic silicone rubber surfaces under a high DC voltage. On common silicone rubber, the droplet elongates and the flashover voltage decreases with increasing droplet volume and conductivity. In contrast, the droplet slides off the superhydrophobic surface, leading to an increased flashover voltage. This droplet sliding is due to the low adhesion of the superhydrophobic surface and a sufficiently high electrostatic force provided by the DC voltage. Experimental results show that a superhydrophobic surface is effective at inhibiting flashover.

  4. Biological properties of Lactobacillus surface proteins 

    Directory of Open Access Journals (Sweden)

    Barbara Buda

    2013-04-01

    Full Text Available Lactobacillus, a genus of Gram-positive bacteria, includes many strains of probiotic microflora. Probiotics, by definition, are living microorganisms that exert beneficial effects on the host organism. The morphology and physiology of the Lactobacillus bacterial genus are described. The structure of the cell wall of Gram-positive bacteria is discussed. The surface S-layer of Lactobacillus composed of proteins (SLP with low molecular mass is presented. Cell surface proteins participating in the regulation of growth and survival of the intestinal epithelium cells are characterized. The influence of stress factors such as increased temperature, pH, and enzymes of gastric and pancreatic juice on SLP expression is described. The ability of binding of heavy metal ions by S-layer proteins is discussed. The characteristics of these structures, including the ability to adhere to epithelial cells, and the inhibition of invasion of pathogenic microflora of type Shigella, Salmonella, Escherichia coli and Clostridium and their toxins, are presented. 

  5. Assessment of soil compaction properties based on surface wave techniques

    Science.gov (United States)

    Jihan Syamimi Jafri, Nur; Rahim, Mohd Asri Ab; Zahid, Mohd Zulham Affandi Mohd; Faizah Bawadi, Nor; Munsif Ahmad, Muhammad; Faizal Mansor, Ahmad; Omar, Wan Mohd Sabki Wan

    2018-03-01

    Soil compaction plays an important role in every construction activities to reduce risks of any damage. Traditionally, methods of assessing compaction include field tests and invasive penetration tests for compacted areas have great limitations, which caused time-consuming in evaluating large areas. Thus, this study proposed the possibility of using non-invasive surface wave method like Multi-channel Analysis of Surface Wave (MASW) as a useful tool for assessing soil compaction. The aim of this study was to determine the shear wave velocity profiles and field density of compacted soils under varying compaction efforts by using MASW method. Pre and post compaction of MASW survey were conducted at Pauh Campus, UniMAP after applying rolling compaction with variation of passes (2, 6 and 10). Each seismic data was recorded by GEODE seismograph. Sand replacement test was conducted for each survey line to obtain the field density data. All seismic data were processed using SeisImager/SW software. The results show the shear wave velocity profiles increase with the number of passes from 0 to 6 passes, but decrease after 10 passes. This method could attract the interest of geotechnical community, as it can be an alternative tool to the standard test for assessing of soil compaction in the field operation.

  6. Surface properties of thermally treated composite wood panels

    Science.gov (United States)

    Croitoru, Catalin; Spirchez, Cosmin; Lunguleasa, Aurel; Cristea, Daniel; Roata, Ionut Claudiu; Pop, Mihai Alin; Bedo, Tibor; Stanciu, Elena Manuela; Pascu, Alexandru

    2018-04-01

    Composite finger-jointed spruce and oak wood panels have been thermally treated under standard pressure and oxygen content conditions at two different temperatures, 180 °C and respectively 200 °C for short time periods (3 and 5 h). Due to the thermally-aided chemical restructuration of the wood components, a decrease in water uptake and volumetric swelling values with up to 45% for spruce and 35% for oak have been registered, comparing to the reference samples. In relation to water resistance, a 15% increase of the dispersive component of the surface energy has been registered for the thermal-treated spruce panels, which impedes water spreading on the surface. The thermal-treated wood presents superior resistance to accelerated UV exposure and subsequently, with up to 10% higher Brinell hardness values than reference wood. The proposed thermal treatment improves the durability of the finger-jointed wood through a more economically and environmental friendly method than traditional impregnation, with minimal degradative impact on the structural components of wood.

  7. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    International Nuclear Information System (INIS)

    Diwan, R.M.

    1990-01-01

    The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed

  8. A study of hydrogen environment effects on microstructure property behavior of NASA-23 alloy and related alloy systems

    Science.gov (United States)

    Diwan, Ravinder M.

    1990-01-01

    This work is part of the overall advanced main combustion chamber (AMCC) casting characterization program of the Materials and Processes Laboratory of the Marshall Space Flight Center. The influence of hydrogen on the tensile properties and ductility behavior of NASA-23 alloy were analyzed. NASA-23 and other referenced alloys in cast and hipped conditions were solution treated and aged under selected conditions and characterized using optical metallography, scanning electron microscopy, and electron microprobe analysis techniques. The yield strength of NASA-23 is not affected much by hydrogen under tensile tests carried at 5000 psig conditions; however, the ultimate strength and ductility properties are degraded. This implies that the physical mechanisms operating would be related to the plastic deformation process. The fracture surfaces characteristics of NASA-23 specimens tensile tested in hydrogen, helium, and air were also analyzed. These revealed surface cracks around specimen periphery with the fracture surface showing a combination of intergranular and transgranular modes of fracture. It is seen that the specimens charged in hydrogen seem to favor a more brittle fracture mode in comparison to air and helium charged specimens. The AMCC casting characterization program is to be analyzed for their hydrogen behavior. As a result of this program, the basic microstructural factors and fracture characteristics in some cases were analyzed.

  9. Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions

    Science.gov (United States)

    Zhang, Zhihui; Shao, Feixian; Liang, Yunhong; Lin, Pengyu; Tong, Xin; Ren, Luquan

    2017-07-01

    Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.

  10. Content of needs as classification criteria of unlawful property behavior of children

    Directory of Open Access Journals (Sweden)

    Ustinov D.V.

    2018-03-01

    Full Text Available The article presents a classification of motives unlawful property behavior by criterion content needs teenager and younker, which are satisfied during criminal acts, encroaching other's ownership. Detection this needs allows identify and implement events of recidivist crimes prevention also take action early prophylaxis with considering individual characteristics of personality. Besides in article lead shot description experimental projective technique, serving for diagnosis real and potential motives committing property crimes by children. Consider the results of study of motivational sphere of juvenal offender and low-abiding minor by dint of presented technique. Analyzed dominant motives unlawful property behavior different categories minors with considering age features.

  11. Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite

    NARCIS (Netherlands)

    Wei, S.Y.; Tan, W.F.; Liu, F.; Zhao, W.; Weng, L.

    2014-01-01

    In soils goethite and kaolinite are often cemented together as a binary association, which has a significant influence on the physical and chemical properties of soils. In this study, the surface properties and phosphate adsorption of goethite, kaolinite, goethite-kaolinite association (GKA) and

  12. Evaluating non-stick properties of different surface materials for contact frying

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens

    2011-01-01

    to evaluate non-stick and cleaning properties of the coatings. In accordance with industry standards pancake was selected as the food model for the non-stick properties. The performance of different frying surfaces (stainless steel, aluminium, PTFE (polytetrafluoroethylene) and three ceramic coatings with two...

  13. Fundamental study of FC-72 pool boiling surface temperature fluctuations and bubble behavior

    Science.gov (United States)

    Griffin, Alison R.

    A heater designed to monitor surface temperature fluctuations during pool boiling experiments while the bubbles were simultaneously being observed has been fabricated and tested. The heat source was a transparent indium tin oxide (ITO) layer commercially deposited on a fused quartz substrate. Four copper-nickel thin film thermocouples (TFTCs) on the heater surface measured the surface temperature, while a thin layer of sapphire or fused silica provided electrical insulation between the TFTCs and the ITO. The TFTCs were micro-fabricated using the liftoff process to deposit the nickel and copper metal films. The TFTC elements were 50 mum wide and overlapped to form a 25 mum by 25 mum junction. TFTC voltages were recorded by a DAQ at a sampling rate of 50 kHz. A high-speed CCD camera recorded bubble images from below the heater at 2000 frames/second. A trigger sent to the camera by the DAQ synchronized the bubble images and the surface temperature data. As the bubbles and their contact rings grew over the TFTC junction, correlations between bubble behavior and surface temperature changes were demonstrated. On the heaters with fused silica insulation layers, 1--2°C temperature drops on the order of 1 ms occurred as the contact ring moved over the TFTC junction during bubble growth and as the contact ring moved back over the TFTC junction during bubble departure. These temperature drops during bubble growth and departure were due to microlayer evaporation and liquid rewetting the heated surface, respectively. Microlayer evaporation was not distinguished as the primary method of heat removal from the surface. Heaters with sapphire insulation layers did not display the measurable temperature drops observed with the fused silica heaters. The large thermal diffusivity of the sapphire compared to the fused silica was determined as the reason for the absence of these temperature drops. These findings were confirmed by a comparison of temperature drops in a 2-D simulation of

  14. Surface chemical functionalities affect the behavior of human adipose-derived stem cells in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xujie [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State key laboratory of new ceramics and fine processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Bachhuka, Akash [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); Vasilev, Krasimir [Mawson Institute, University of South Australia, Mawson Lakes 5095 (Australia); School of Advanced Manufacturing, University of South Australia, Mawson Lakes 5095 (Australia)

    2013-04-01

    This study examines the effect of surface chemical functionalities on the behavior of human adipose-derived stem cells (hASCs) in vitro. Plasma polymerized films rich in amine (-NH{sub 2}), carboxyl (-COOH) and methyl (-CH{sub 3}), were generated on hydroxyapatite (HAp) substrates. The surface chemical functionalities were characterized by X-ray photoelectron spectroscopy (XPS). The ability of different substrates to absorb proteins was evaluated. The results showed that substrates modified with hydrophilic functional group (-COOH and -NH{sub 2}) can absorb more proteins than these modified with more hydrophobic functional group (-CH{sub 3}). The behavior of human adipose-derived stem cells (hASCs) cultured on different substrates was investigated in vitro: cell counting kit-8 (CCK-8) analysis was used to characterize cell proliferation, scanning electronic microscopy (SEM) analysis was used to characterize cell morphology and alkaline phosphatase (ALP) activity analysis was used to account for differentiation. The results of this study demonstrated that the -NH{sub 2} modified surfaces encourage osteogenic differentiation; the -COOH modified surfaces promote cell adhesion and spreading and the -CH{sub 3} modified surfaces have the lowest ability to induce osteogenic differentiation. These findings confirmed that the surface chemical states of biomaterials can affect the behavior of hASCs in vitro.

  15. Mechanical properties and impact behavior of a microcellular structural foam

    Directory of Open Access Journals (Sweden)

    M. Avalle

    Full Text Available Structural foams are a relatively new class of materials with peculiar characteristics that make them very attractive in some energy absorption applications. They are currently used for packaging to protect goods from damage during transportation in the case of accidental impacts. Structural foams, in fact, have sufficient mechanical strength even with reduced weight: the balance between the two antagonist requirements demonstrates that these materials are profitable. Structural foams are generally made of microcellular materials, obtained by polymers where voids at the microscopic level are created. Although the processing technologies and some of the material properties, including mechanical, are well known, very little is established for what concerns dynamic impact properties, for the design of energy absorbing components made of microcellular foams. The paper reports a number of experimental results, in different loading conditions and loading speed, which will be a basis for the structural modeling.

  16. Characterization of Polymer Surfaces by the Use of Different Wetting Theories Regarding Acid-Base Properties

    Directory of Open Access Journals (Sweden)

    Eduard Kraus

    2017-01-01

    Full Text Available The existing wetting methods for the determination of acid-base properties on solid surfaces are discussed. Striving for a better understanding of the adhesive polymer interactions in adhesively joined polymers, the methods of Berger and van Oss-Chaudhury-Good were found as the most suitable methods for the investigation of wetting on solid polymer surfaces. Methods of nonlinear systems by Della Volpe and Siboni were adapted and evaluated on plastic surfaces. In the context of these investigations various data of the surface free energy as well as its components have been identified for a number of polymer surfaces by application of spatial equation solutions.

  17. Multiple surface properties of worn RGP lenses and adhesion of Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Bruinsma, Gerda; Rustema-Abbing, M; de Vries, Jacob; Busscher, HJ; van der Linden, M.L.; Hooymans, JMM; van der Mei, HC

    The aim of this study is to determine rigid gas permeable (RGP) lens surface properties prior to and after wear that are influential on adhesion of Pseudomonas aeruginosa. After 10 and 50 days of wear and after end-stage use, lenses were collected for determination of physico-chemical surface

  18. Surface and bulk dissolution properties, and selectivity of DNA-linked nanoparticle assemblies

    NARCIS (Netherlands)

    Lukatsky, D.B.; Frenkel, D.

    2005-01-01

    Using a simple mean-field model, we analyze the surface and bulk dissolution properties of DNA-linked nanoparticle assemblies. We find that the dissolution temperature and the sharpness of the dissolution profiles increase with the grafting density of the single-stranded DNA "probes" on the surface

  19. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    NARCIS (Netherlands)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and

  20. Adhesion of coagulase-negative staphylococci grouped according to physico-chemical surface properties

    NARCIS (Netherlands)

    van der Mei, HC; van de Belt-Gritter, B; Reid, G; Bialkowska-Hobrzanska, H; Busscher, HJ

    1997-01-01

    Physico-chemical cell surface properties of 23 coagulase-negative staphylococcal strains, including contact angles, zeta potentials and elemental cell surface composition were measured, together with the adhesion of all strains to hexadecane, The data were employed in a hierarchical cluster

  1. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    International Nuclear Information System (INIS)

    Pei Xianqiang; Li Yan; Wang Qihua; Sun Xiaojun

    2009-01-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation

  2. Reaction Kinetic Parameters and Surface Thermodynamic Properties of Cu2O Nanocubes

    Directory of Open Access Journals (Sweden)

    Xingxing Li

    2015-07-01

    Full Text Available Cuprous oxide (Cu2O nanocubes were synthesized by reducing Cu(OH2 in the presence of sodium citrate at room temperature. The samples were characterized in detail by field-emission scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, X-ray powder diffraction, and N2 absorption (BET specific surface area. The equations for acquiring reaction kinetic parameters and surface thermodynamic properties of Cu2O nanocubes were deduced by establishment of the relations between thermodynamic functions of Cu2O nanocubes and these of the bulk Cu2O. Combined with thermochemical cycle, transition state theory, basic theory of chemical thermodynamics, and in situ microcalorimetry, reaction kinetic parameters, specific surface enthalpy, specific surface Gibbs free energy, and specific surface entropy of Cu2O nanocubes were successfully determined. We also introduced a universal route for gaining reaction kinetic parameters and surface thermodynamic properties of nanomaterials.

  3. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    Energy Technology Data Exchange (ETDEWEB)

    Pei Xianqiang [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China); Li Yan [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China); Graduate school of the Chinese Academy of Sciences, Beijing 100039 (China); Wang Qihua [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China)], E-mail: Wangqh@lzb.ac.cn; Sun Xiaojun [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000 (China)

    2009-03-15

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to 'carpet-like' structure after irradiation.

  4. Effects of atomic oxygen irradiation on the surface properties of phenolphthalein poly(ether sulfone)

    Science.gov (United States)

    Pei, Xianqiang; Li, Yan; Wang, Qihua; Sun, Xiaojun

    2009-03-01

    To study the effects of low earth orbit environment on the surface properties of polymers, phenolphthalein poly(ether sulfone) (PES-C) blocks were irradiated by atomic oxygen in a ground-based simulation system. The surface properties of the pristine and irradiated blocks were studied by attenuated total-reflection FTIR (FTIR-ATR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM). It was found that atomic oxygen irradiation induced the destruction of PES-C molecular chains, including the scission and oxidation of PES-C molecular chains, as evidenced by FTIR and XPS results. The scission of PES-C molecular chains decreased the relative concentration of C in the surface, while the oxidation increased the relative concentration of O in the surface. The changes in surface chemical structure and composition also changed the surface morphology of the block, which shifted from smooth structure before irradiation to "carpet-like" structure after irradiation.

  5. Surface Functionalization of Thin-Film Composite Membranes with Copper Nanoparticles for Antimicrobial Surface Properties

    KAUST Repository

    Ben-Sasson, Moshe

    2014-01-07

    Biofouling is a major operational challenge in reverse osmosis (RO) desalination, motivating a search for improved biofouling control strategies. Copper, long known for its antibacterial activity and relatively low cost, is an attractive potential biocidal agent. In this paper, we present a method for loading copper nanoparticles (Cu-NPs) on the surface of a thin-film composite (TFC) polyamide RO membrane. Cu-NPs were synthesized using polyethyleneimine (PEI) as a capping agent, resulting in particles with an average radius of 34 nm and a copper content between 39 and 49 wt.%. The positive charge of the Cu-NPs imparted by the PEI allowed a simple electrostatic functionalization of the negatively charged RO membrane. We confirmed functionalization and irreversible binding of the Cu-NPs to the membrane surface with SEM and XPS after exposing the membrane to bath sonication. We also demonstrated that Cu-NP functionalization can be repeated after the Cu-NPs dissolve from the membrane surface. The Cu-NP functionalization had minimal impact on the intrinsic membrane transport parameters. Surface hydrophilicity and surface roughness were also maintained, and the membrane surface charge became positive after functionalization. The functionalized membrane exhibited significant antibacterial activity, leading to an 80-95% reduction in the number of attached live bacteria for three different model bacterial strains. Challenges associated with this functionalization method and its implementation in RO desalination are discussed. © 2013 American Chemical Society.

  6. PROPERTIES AND BEHAVIOR OF 238PU RELEVANT TO DECONTAMINATION OF BUILDING 235-F

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A.; Kane, M.

    2009-11-24

    This report was prepared to document the physical, chemical and radiological properties of plutonium oxide materials that were processed in the Plutonium Fuel Form Facility (PuFF) in building 235-F at the Savannah River Plant (now known as the Savannah River Site) in the late 1970s and early 1980s. An understanding of these properties is needed to support current project planning for the safe and effective decontamination and deactivation (D&D) of PuFF. The PuFF mission was production of heat sources to power Radioisotope Thermoelectric Generators (RTGs) used in space craft. The specification for the PuO{sub 2} used to fabricate the heat sources required that the isotopic content of the plutonium be 83 {+-} 1% Pu-238 due to its high decay heat of 0.57 W/g. The high specific activity of Pu-238 (17.1 Ci/g) due to alpha decay makes this material very difficult to manage. The production process produced micron-sized particles which proved difficult to contain during operations, creating personnel contamination concerns and resulting in the expenditure of significant resources to decontaminate spaces after loss of material containment. This report examines high {sup 238}Pu-content material properties relevant to the D&D of PuFF. These relevant properties are those that contribute to the mobility of the material. Physical properties which produce or maintain small particle size work to increase particle mobility. Early workers with {sup 238}PuO{sub 2} felt that, unlike most small particles, Pu-238 oxide particles would not naturally agglomerate to form larger, less mobile particles. It was thought that the heat generated by the particles would prevent water molecules from binding to the particle surface. Particles covered with bound water tend to agglomerate more easily. However, it is now understood that the self-heating effect is not sufficient to prevent adsorption of water on particle surfaces and thus would not prevent agglomeration of particles. Operational

  7. Macroscopic behavior and microscopic magnetic properties of nanocarbon

    Energy Technology Data Exchange (ETDEWEB)

    Lähderanta, E., E-mail: Erkki.Lahderanta@lut.fi [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Ryzhov, V.A. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lashkul, A.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Galimov, D.M. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); South Ural State University, 454080 Chelyabinsk (Russian Federation); Titkov, A.N. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Matveev, V.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Saint-Petersburg State University, Saint-Petersburg 198504 (Russian Federation); Mokeev, M.V. [Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg (Russian Federation); Kurbakov, A.I. [Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lisunov, K.G. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Institute of Applied Physics ASM, Academiei Str., 5, MD 2028 Kishinev (Moldova, Republic of)

    2015-06-01

    Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1–7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below ~50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, B{sub c} (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, M{sub s}, and the blocking temperature, T{sub b}, are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of B{sub c} and M{sub s} are noticeably increased. - Highlights: • We have investigated powder and glassy samples with carbon nanoparticles. • They include an undoped sample and those doped with Ag, Au and Co. • Neutron diffraction study reveals amorphous structure of Au- and Co-doped samples. • Composition and molecular structure of Au-doped sample was investigated with NMR. • Magnetic behavior is typical of an assembly of partially blocked magnetic nanoparticles.

  8. Controlling Propagation Properties of Surface Plasmon Polariton at Terahertz Frequency

    Science.gov (United States)

    Gupta, Barun

    Despite great scientific exploration since the 1900s, the terahertz range is one of the least explored regions of electromagnetic spectrum today. In the field of plasmonics, texturing and patterning allows for control over electromagnetic waves bound to the interface between a metal and the adjacent dielectric medium. The surface plasmon-polaritons (SPPs) display unique dispersion characteristics that depend upon the plasma frequency of the medium. In the long wavelength regime, where metals are highly conductive, such texturing can create an effective medium that can be characterized by an effective plasma frequency that is determined by the geometrical parameters of the surface structure. The terahertz (THz) spectral range offers unique opportunities to utilize such materials. This thesis describes a number of terahertz plasmonic devices, both passive and active, fabricated using different techniques. As an example, inkjet printing is exploited for fabricating two-dimensional plasmonic devices. In this case, we demonstrated the terahertz plasmonic structures in which the conductivity of the metallic film is varied spatially in order to further control the plasmonic response. Using a commercially available inkjet printers, in which one cartridge is filled with conductive silver ink and a second cartridge is filled with resistive carbon ink, computer generated drawings of plasmonic structures are printed in which the individual printed dots can have differing amounts of the two inks, thereby creating a spatial variation in the conductivity. The inkjet printing technique is limited to the two-dimensional structurers. In order to expand the capability of printing complex terahertz devices, which cannot otherwise be fabricated using standard fabricating techniques, we employed 3D printing techniques. 3D printing techniques using polymers to print out the complex structures. In the realm of active plasmonic devices, a wide range of innovative approaches have been

  9. Microstructures, surface properties, and topotactic transitions of manganite nanorods.

    Science.gov (United States)

    Gao, Tao; Krumeich, Frank; Nesper, Reinhard; Fjellvåg, Helmer; Norby, Poul

    2009-07-06

    Manganite (gamma-MnOOH) nanorods with typical diameters of 20-500 nm and lengths of several micrometers were prepared by reacting KMnO(4) and ethanol under hydrothermal conditions. Synchrotron X-ray diffraction (XRD) reveal that the gamma-MnOOH nanorods crystallize in the monoclinic space group P2(1)/c with unit cell dimensions a = 5.2983(3) A, b = 5.2782(2) A, c = 5.3067(3) A, and beta = 114.401(2) degrees . Transmission electron microscopy shows that the gamma-MnOOH nanorods are single crystalline and that lateral attachment occurs for primary rods elongated along 101. X-ray photoelectron spectroscopy studies indicate that the surfaces of the gamma-MnOOH nanorods are hydrogen deficient and compensated by surface complexation. The Raman scattering spectrum features five main contributions at 360, 389, 530, 558, and 623 cm(-1) along with four weak ones at 266, 453, 492, and 734 cm(-1), attributed to Mn-O vibrations within MnO(6) octahedral frameworks. The structural stability of the gamma-MnOOH nanorods was discussed by means of in situ time-resolved synchrotron XRD. The monoclinic gamma-MnOOH nanorods transform into tetragonal beta-MnO(2) upon heating in air at about 200 degrees C. The reaction is topotactic and shows distinctive differences from those seen for bulk counterparts. A metastable, intermediate phase is observed, possibly connected with hydrogen release via the interstitial (1 x 1) tunnels of the gamma-MnOOH nanorods.

  10. First Principle Calculation of Electronic, Optical Properties and Photocatalytic Potential of CuO Surfaces

    OpenAIRE

    Ahmad, Faozan

    2016-01-01

    We have performed DFT calculations of electronic structure, optical properties and photocatalytic potential of the low-index surfaces of CuO. Photocatalytic reaction on the surface of semiconductor requires the appropriate band edge of the semiconductor surface to drive redox reactions. The calculation begins with the electronic structure of bulk system; it aims to determine realistic input parameters and band gap prediction. CuO is an antiferromagnetic material with strong electronic correla...

  11. Surface-active and electrophysical semiconductors properties of the CdTe-CdSe system

    Science.gov (United States)

    Kirovskaya, I. A.; Bukashkina, T. L.; Ekkert, R. V.; Ushakov, O. V.; Kolesnikov, L. V.; Matyash, Yu I.

    2018-01-01

    Surface properties (acid-base, adsorptive, electrophysical) of binary and multicomponent semiconductors of the CdTe-CdSe system have been holistically studied. Changing patterns of the studied surface properties correlated among themselves and with changing patterns of the bulk physical and chemical properties have been revealed. The nature of active centers, acid-base, adsorptive and electronic interactions mechanisms have been determined with due account for local and collective factors The most active discovered adsorbents are recommended as primary transducers of CO trace impurities measuring cells.

  12. The effect of surface layer properties on bendability of ultra-high strength steel

    Science.gov (United States)

    Arola, Anna-Maija; Kaijalainen, Antti; Kesti, Vili

    2016-10-01

    Bendability is an important property for ultra-high strength steel because air-bending is the most common forming process for the material. In this paper the bendability of two ultra-high strength steels with similar mechanical properties but different bendability was investigated using tensile testing with optical strain measurements. The tensile tests were conducted also for specimens cut from the surface layer and the middle layer of the sheet. It was discovered that the mechanical properties of the surface of the sheet affect the bendability in great manner.

  13. Biochar production from coffee residues: Optimization of surface characteristics and sorptive behavior

    Science.gov (United States)

    Fotopoulou, Kalliopi; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.

    2015-04-01

    Biochar with high surface area is a promising sorbent for environmental remediation and is produced by heating biomass in an oxygen-limited environment. Knowing the surface characteristics increases our understanding of biochar interactions with pollutants. The hypothesis of the present study is that by controlling pyrolysis conditions, the surface characteristics and subsequently the sorption behavior of produced biochars can be optimized. Coffee residues were dried overnight at 50oC and then pyrolized into a gradient furnace at 850oC. Different solid/oxygen ratios during pyrolysis were tested as well as the up scaling of the process. The biochars produced were systematically characterized for their surface characteristics such as BET surface area, open surface area, pore and micropore volume, and average pore size. The effect of pyrolysis on the biochar suspension pH was examined with the mass addition technique that involves the addition of increasing amounts of the biochar to bottles containing 0.1 M NaNO3. FTIR analysis was used in order to determine the functional groups of the coffee residue and of the biochars. The macrostructure of the biochars was visualized by Scanning Electron Microscopy (SEM). Total Carbon (TC) in the samples was determined by Carlo Erba Elemental Analyzer CHNS, EO 1108 after calibration with standard samples. The sorption behavior of produced biochars was tested with two different pollutants (Hg(II), phenanthrene) using batch reactors with the same initial single-compound solution and the same mass of coffee residue and different biochars. The biochars produced exhibited a wide range of surface area from 21 to 770 m2/g and open surface area due to macropores from 21 to 65 m2/g. This suggests that the surface area in the biochars with high surface area results from the formation of pores. Actually for the biochar with the highest surface area, it was calculated that up to 90

  14. Preparation of polybutylene terephthalate/silica nanocomposites by melt compounding: Evaluation of surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Hajiraissi, Roozbeh [Young Researchers Club, Islamic Azad University, Bushehr Branch, Bushehr (Iran, Islamic Republic of); Parvinzadeh, Mazeyar, E-mail: mparvinzadeh@gmail.com [Department of Textile, Islamic Azad University, Shahre Rey Branch, Tehran (Iran, Islamic Republic of)

    2011-08-01

    Influence of nanosilica on surface properties of poly(butylene terephthalate) was investigated by the use of Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), contact angle measurement (CAM), scanning electron microscopy (SEM) and reflectance spectroscopy (RS). FTIR results indicated that surface groups of silica have some interfacial interactions and bonding with carboxyl or hydroxyl end groups of PBT chains. AFM and SEM figures of the resultant nanocomposites illustrated increased surface roughness compared to pure PBT. Optical properties of nanocomposite films were finally determined by the aid of reflectance spectrophotometer.

  15. The Effects of Surface Roughness on the Apparent Thermal and Optical Properties of the Moon

    Science.gov (United States)

    Rubanenko, L.; Hayne, P. O.; Paige, D. A.

    2017-12-01

    The thermal inertia and albedo of airless planetary bodies such as the Moon can be inferred by measuring the surface temperatures and solar reflectance. However, roughness below the instrument resolution can affect these measured parameters. Scattering and IR emission from warm slopes onto colder slopes change the surface cooling rate, while shadowing and directional scattering change the reflectance. The importance of these effects grows with increasing solar incidence and emission angles, and during solar eclipses during which the insolation decreases rapidly. The high-quality data gathered by the Lunar Reconnaissance Orbiter (LRO) mission during the last seven years provides us with a unique opportunity to study these effects. Previous works have either adopted a simplified roughness model composed of a single slope, or an illumination model that does not account for subsurface conduction. Our approach incorporates data with simulations conducted using a coupled thermal and illumination model. First, we model the surface temperature distribution below the instrument resolution, considering two realizations: a cratered surface and a Gaussian random surface. Then, we fit the rough surface brightness temperature distribution to that of a flat surface with effective thermal and optical properties to find they differ from the original properties by up to 20% due to the added surface roughness. In the future, this will help to better constrain the intrinsic physical properties of the surface on both the Moon and Mercury and also other airless bodies such as asteroids.

  16. Spreading properties of cosmetic emollients: Use of synthetic skin surface to elucidate structural effect.

    Science.gov (United States)

    Douguet, Marine; Picard, Céline; Savary, Géraldine; Merlaud, Fabien; Loubat-Bouleuc, Nathalie; Grisel, Michel

    2017-06-01

    The study focuses on the impact of structural and physicochemical properties of emollients on their spreadability. Fifty-three emollients, among which esters, silicones, vegetable and mineral oils, have been characterized. Their viscosity, surface tension, density and spreadability have been measured. Vitro-skin ® , an artificial skin substitute, was used as an artificial porous substrate to measure spreadability. Two different methods have been selected to characterize spreadability, namely contact angle and spreading value. Dynamic contact angle measurements showed that emollient spreadability is first governed by spontaneous spreading and that, in a second phase, absorption and migration into the porous substrate becomes the driver of the extension of the spreading area. Statistical analysis of physicochemical and spreading value data revealed that viscosity has a major impact on the spreading behavior of emollients whatever their chemical type. A special emphasis was placed on the ester family in which chemical diversity is very wide. The results highlighted a difference between "high viscosity esters" for which viscosity is the main factor impacting spreadability and "low viscosity esters" for which structural variations (mono/diester, saturated/unsaturated chain, linear/branched chain) have to be considered in addition to viscosity. Linear regressions were used to express spreading value as a function of viscosity for each of the four emollient families tested (esters, silicones, vegetable and mineral oils). These regressions allowed the development of reliable predictive models as a powerful tool for formulators to forecast spreadability of emollients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Surface fractal dimensions and textural properties of mesoporous alkaline-earth hydroxyapatites

    Energy Technology Data Exchange (ETDEWEB)

    Vilchis-Granados, J. [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico); Granados-Correa, F., E-mail: francisco.granados@inin.gob.mx [Instituto Nacional de Investigaciones Nucleares, Departamento de Química, A.P. 18-1027, Col. Escandón, Delegación Miguel Hidalgo, C.P. 11801, México, DF (Mexico); Barrera-Díaz, C.E. [Universidad Autónoma del Estado de México, Facultad de Química, Av. Paseo Colón esquina con Paseo Tollocan s/n Toluca, México (Mexico)

    2013-08-15

    This work examines the surface fractal dimensions (D{sub f}) and textural properties of three different alkaline-earth hydroxyapatites. Calcium, strontium and barium hydroxyapatite compounds were successfully synthesized via chemical precipitation method and characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, Fourier transform infrared spectroscopy, and N{sub 2}-physisorption measurements. Surface fractal dimensions were determined using single N{sub 2}-adsorption/desorption isotherms method to quantify the irregular surface of as-prepared compounds. The obtained materials were also characterized through their surface hydroxyl group content, determined by the mass titration method. It was found that the D{sub f} values for the three materials covered the range of 0.77 ± 0.04–2.33 ± 0.11; these results indicated that the materials tend to have smooth surfaces, except the irregular surface of barium hydroxyapatite. Moreover, regarding the synthesized calcium hydroxyapatite exhibited better textural properties compared with the synthesized strontium and barium hydroxyapatites for adsorbent purposes. However, barium hydroxyapatite shows irregular surface, indicating a high population of active sites across the surface, in comparison with the others studied hydroxyapatites. Finally, the results showed a linear correlation between the surface hydroxyl group content at the external surface of materials and their surface fractal dimensions.

  18. Specific surface area behavior of a dissolving population of particles. Augmenting Mercer Dissolution Theory

    International Nuclear Information System (INIS)

    Scripsick, R.C.; Rothenberg, S.J.

    1986-01-01

    Specific surface area (Sp) measurements were made on two uranium oxide aerosol materials before and after in vitro dissolution studies were performed on the materials. The results of these Sp measurements were evaluated relative to predictions made from extending Mercer dissolution theory to describe the Sp behavior of a dissolving population of particles

  19. Effect of electropulsing on surface mechanical properties and microstructure of AISI 304 stainless steel during ultrasonic surface rolling process

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haibo [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China); Song, Guolin [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Tang, Guoyi, E-mail: tanggy@mail.tsinghua.edu.cn [Advanced Materials Institute, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Advanced Materials, Tsinghua University, Beijing 100084 (China)

    2016-04-26

    The present work integrates 3D digital optical microscopy (OM), nano-indentation, X-ray diffraction (XRD), scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) to systematically investigate the effect of electropulsing on the surface mechanical properties and microstructure of AISI 304 stainless steel during the ultrasonic surface rolling process (USRP). Compared with the original USRP, the introduction of electropulsing with optimal parameters can effectively facilitate surface crack healing and improve surface hardness and wear resistance dramatically, and the residual compressive stress is further enhanced. Meanwhile, more martensite phase and fewer deformation twins can be found in the strengthened layer. Rapid improvement of the surface mechanical properties should be attributed to the ultra-refined grains, accelerated martensitic phase transformation and suppressed deformation twining induced by the coupling effect of USRP and electropulsing. The high strain rate given by USRP, increased stacking fault energy and accelerated dislocation mobility caused by electropulsing are likely the primary intrinsic reasons for the observed phenomena.

  20. How Changes in Cell Mechanical Properties Induce Cancerous Behavior

    Science.gov (United States)

    Katira, Parag; Zaman, Muhammad H.; Bonnecaze, Roger T.

    2012-01-01

    Tumor growth and metastasis are ultimately mechanical processes involving cell migration and uncontrolled division. Using a 3D discrete model of cells, we show that increased compliance as observed for cancer cells causes them to grow at a much faster rate compared to surrounding healthy cells. We also show how changes in intercellular binding influence tumor malignancy and metastatic potential. These findings suggest that changes in the mechanical properties of cancer cells is the proximate cause of uncontrolled division and migration and various biochemical factors drive cancer progression via this mechanism.

  1. Surface Antibacterial Properties of Four Tooth-Colored Restorative Materials

    Directory of Open Access Journals (Sweden)

    F. Shirani

    2008-03-01

    Full Text Available Objective: This study investigated the antibacterial properties of an ion-releasing resin composite (Degufill, a hybrid resin composite (InTen-S, a compomer (Compoglass F and a resin-modified glass ionomer (Vitremer against streptococcus mutans.Materials and Methods: The bacteria were derived from the dental plaque and cultured on blood agar plates. Eppendorf tubes were filled by unset restorative materials. A narrow conical cavity was created in the center of each material, prior to curing and the bacterial suspension was placed into each cavity. Each tube was incubated for the selected time pe-riods of 8, 24, 48 hours and 5 days and the procedure was repeated five times. After the incubation period, the suspensions were removed and the number of viable bacteria was evaluated. The data were analyzed using two-way ANOVA, one-way ANOVA and Tukey HSD tests.Results: After the incubation periods of 8, 24 and 48 hours, all restorative materials ex-cept InTen-S showed significant growth inhibition when compared to the control group. There was a significant difference in the number of bacterial colonies in different incuba-tion periods. The interaction between the materials and time intervals was also significant (P<0.05.Conclusion: The method used in this study was almost successful in ranking restorative dental materials according to their antibacterial effects. InTen-S showed no inhibitory ef-fect on bacterial growth, while other materials, especially Vitremer, showed considerable antibacterial effects.

  2. Properties and behavior of quartz for the silicon process

    Energy Technology Data Exchange (ETDEWEB)

    Aasly, Kurt

    2008-07-01

    This PhD-thesis is a result of the study on important properties of quartz as a raw material for the metallurgical production of ferrosilicon and silicon metal. This includes defining mechanical properties important for the size reduction experienced during transport and storage and thermo-mechanical properties of quartz that is important for how the quartz reacts to the high temperatures experienced as it is charged on the furnace. Additionally, softening properties of quartz have been briefly discussed in some of the papers. Another important goal has been to test analytical and experimental methods for investigating the various properties. The investigations of important factors for the mechanical properties of ores and industrial minerals have been carried out as a literature study. The mining operation and transport from mine to smelter has been discussed and several factors that are significant for achieving best possible mechanical properties of the quartz have been identified. The most important factors are related to production in the mine and processing plant, which should be carefully planned to minimize the amount of blast-induced damage in the rock and thus achieve the best possible mechanical strength of the raw material. The amount of fines can be minimized by controlling the handling of the raw materials during the transport and storage. It is especially important to avoid high drops, both high single drops and accumulated height of all the drops in total. Investigations of the thermo-mechanical properties of quartz have been carried out by using different experimental and characterization methods. The petrographic investigations of the raw materials by polarized light microscopy have been important. Thermo-mechanical investigations have been high-temperature microthermometry and shock heating of quartz samples in an induction furnace with subsequent investigations of the heated material. The subsequent investigation included polarized- and

  3. Nonlinear Surface Dilatational Rheology and Foaming Behavior of Protein and Protein Fibrillar Aggregates in the Presence of Natural Surfactant.

    Science.gov (United States)

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-04-19

    The surface and foaming properties of native soy glycinin (11S) and its heat-induced fibrillar aggregates, in the presence of natural surfactant steviol glycoside (STE), were investigated and compared at pH 7.0 to determine the impact of protein structure modification on protein-surfactant interfacial interactions. The adsorption at, and nonlinear dilatational rheological behavior of, the air-water interface were studied by combining drop shape analysis tensiometry, ellipsometry, and large-amplitude oscillatory dilatational rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. The heat treatment generates a mixture of long fibrils and unconverted peptides. The presence of small peptides in 11S fibril samples resulted in a faster adsorption kinetics than that of native 11S. The addition of STE affected the adsorption of 11S significantly, whereas no apparent effect on the adsorption of the 11S fibril-peptide system was observed. The rheological response of interfaces stabilized by 11S-STE mixtures also differed significantly from the response for 11S fibril-peptide-STE mixtures. For 11S, the STE reduces the degree of strain hardening in extension and increases strain hardening in compression, suggesting the interfacial structure may change from a surface gel to a mixed phase of protein patches and STE domains. The foams generated from the mixtures displayed comparable foam stability to that of pure 11S. For 11S fibril-peptide mixtures STE only significantly affects the response in extension, where the degree of strain softening is decreased compared to the pure fibril-peptide system. The foam stability of the fibril-peptide system was significantly reduced by STE. These findings indicate that fibrillization of globular proteins could be a potential strategy to modify the complex surface and foaming behaviors of protein-surfactant mixtures.

  4. Surface structure and properties of plant seed oil bodies.

    Science.gov (United States)

    Tzen, J T; Huang, A H

    1992-04-01

    Storage triacylglycerols (TAG) in plant seeds are present in small discrete intracellular organelles called oil bodies. An oil body has a matrix of TAG, which is surrounded by phospholipids (PL) and alkaline proteins, termed oleosins. Oil bodies isolated from mature maize (Zea mays) embryos maintained their discreteness, but coalesced after treatment with trypsin but not with phospholipase A2 or C. Phospholipase A2 or C exerted its activity on oil bodies only after the exposed portion of oleosins had been removed by trypsin. Attempts were made to reconstitute oil bodies from their constituents. TAG, either extracted from oil bodies or of a 1:2 molar mixture of triolein and trilinolein, in a dilute buffer were sonicated to produce droplets of sizes similar to those of oil bodies; these droplets were unstable and coalesced rapidly. Addition of oil body PL or dioleoyl phosphatidylcholine, with or without charged stearylamine/stearic acid, or oleosins, to the medium before sonication provided limited stabilization effects to the TAG droplets. High stability was achieved only when the TAG were sonicated with both oil body PL (or dioleoyl phosphatidylcholine) and oleosins of proportions similar to or higher than those in the native oil bodies. These stabilized droplets were similar to the isolated oil bodies in chemical properties, and can be considered as reconstituted oil bodies. Reconstituted oil bodies were also produced from TAG of a 1:2 molar mixture of triolein and trilinolein, dioleoyl phosphatidylcholine, and oleosins from rice (Oryza sativa), wheat (Triticum aestivum), rapeseed (Brassica napus), soybean (Glycine max), or jojoba (Simmondsia chinensis). It is concluded that both oleosins and PL are required to stabilize the oil bodies and that oleosins prevent oil bodies from coalescing by providing steric hindrance. A structural model of an oil body is presented. The current findings on seed oil bodies could be extended to the intracellular storage lipid

  5. The influence of surface functionalisation on the electrical properties and thermal stability of nanodiamonds

    Energy Technology Data Exchange (ETDEWEB)

    Welch, Joseph O; Li, Pei; Chaudhary, Aysha; Edgington, Robert; Jackman, Richard B., E-mail: r.jackman@ucl.ac.uk [London Centre for Nanotechnology and the Department of Electronic and Electrical Engineering, University College London, 17-19 Gordon Street, London WC1H 0AH (United Kingdom)

    2014-10-07

    Detonation nanodiamond (ND) has recently emerged as a useful new class of diamond material. However, to date there has been little investigation of the electrical properties of this material. Due to the nanoscale dimensions, the surface functionalisation of the individual ND is of particular importance to the characteristics of ND films. Here, hydrogen and oxygen termination of ND, verified using Fourier transform infrared spectroscopy, are shown to strongly influence the electronic properties of NDs. Hydrogen terminated ND exhibiting a far greater resilience to thermal decomposition when compared to the oxygen terminated NDs. Moreover, H-NDs also displayed so-called “surface conductivity,” a property displayed by hydrogen-terminated bulk diamond films, whilst O-NDs display properties high resistivity. These results indicate that under the correct conditions ND layers can display similar electrical properties to “bulk” diamond thin films.

  6. Improvement of Surface Properties of CP-Titanium by Thermo-Chemical Treatment (TCT) Process

    International Nuclear Information System (INIS)

    Jeong, Hyeon-Gyeong; Hur, Bo-Young; Lee, Dong-Geun; Lee, Yong-Tai; Yaskiv, O.

    2011-01-01

    The thermo-chemical treatment (TCT) process was applied to achieve surface hardening of CP titanium. The following three different surface modification conditions were tested so that the best surface hardening process could be selected:(a) PVD, (b) TCT+PVD, and (c) TCT+Aging+PVD. These specimens were tested and analyzed in terms of surface roughness, wear, friction coefficient, and the gradient of hardening from the surface of the matrix. The three test conditions were all beneficial to improve the surface hardness of CP titanium. Moreover, the TCT treated specimens, that is, (b) and (c), showed significantly improved surface hardness and low friction coefficients through the thickness up to 100um. This is due to the functionally gradient hardened surface improvement by the diffused interstitial elements. The hardened surface also showed improvement in bonding between the PVD and TCT surface, and this leads to improvement in wear resistance. However, TCT after aging treatment did not show much improvement in surface properties compared to TCT only. For the best surface hardening on CP titanium, TCT+PVD has advantages in surface durability and economics.

  7. Structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Sánchez, J., E-mail: guerrero@ifuap.buap.mx [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Mandru, Andrada-Oana; Wang, Kangkang [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Takeuchi, Noboru [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States); Centro de Nanociencias y Nanotecnologia, Universidad Nacional Autónoma de México, Apartado Postal 14, Ensenada, Baja California, Codigo Postal 22800 (Mexico); Cocoletzi, Gregorio H. [Benemérita Universidad Autónoma de Puebla, Instituto de Física “Ing Luis Rivera Terrazas”, Apartado Postal J-48, Puebla 72570 (Mexico); Smith, Arthur R. [Department of Physics and Astronomy, Nanoscale and Quantum Phenomena Institute, Ohio University, Athens, OH 45701 (United States)

    2015-11-15

    Graphical abstract: - Abstract: Spin-polarized first-principles total energy calculations have been performed to study the structural, electronic and magnetic properties of Mn{sub 3}N{sub 2}(0 0 1) surfaces. It is found that three surface terminations are energetically stable, in agreement with previous scanning tunneling microscopy experiments that have found three different electronic contrasts in their images. It is also found that in all three cases, the topmost layer has a MnN stoichiometry. Density of states calculations show a metallic behavior for all the stable structures with the most important contribution close to the Fermi level coming from the Mn-d orbitals. Our Tersoff–Hamann scanning tunneling microscopy simulations are in good agreement with previous experimental results.

  8. Experimental study on surface properties of the PMMA used in high power spark gaps

    Science.gov (United States)

    Han, Ruoyu; Wu, Jiawei; Ding, Weidong; Liu, Yunfei; Gou, Yang

    2017-10-01

    This paper studies the surface properties of the Polymethylmethacrylate (PMMA) insulator samples used in high power spark gaps. Experiments on surface morphology, surface profile, surface chemical composition and surface leakage current were performed. Metal particles ejected in tangent direction of discharge spots were researched on the sample surface. Three kinds of distinct bands were found on the surface after 1500 shots: colorless and transparent sinking band, black band, and grey powdered coating band. The thickness of the coating band was tens of microns and the maximum radial erosion rate was about 10 μm/C. Surface content analysis indicated that the powdered coating was a mixture of decomposed insulator material and electrode material oxides. In addition, leakage current significantly depended on water content in the chamber and presented an U-shape curve distribution along the insulator surface, in keeping with the amount of powdered coating due to shock waves. Possible reasons of the surface property changes were discussed. Electroconductive oxides of low valence states of Cu and W produced by the reactions between electrode materials and arc plasmas were considered to be the cause of dielectric performance degradation.

  9. Surface antireflection properties of GaN nanostructures with various effective refractive index profiles.

    Science.gov (United States)

    Han, Lu; Zhao, Hongping

    2014-12-29

    GaN nanostructures with various effective refractive index profiles (Linear, Cubic, and Quintic functions) were numerically studied as broadband omnidirectional antireflection structures for concentrator photovoltaics by using three-dimensional finite difference time domain (3D-FDTD) method. Effective medium theory was used to design the surface structures corresponding to different refractive index profiles. Surface antireflection properties were calculated and analyzed for incident light with wavelength, polarization and angle dependences. The surface antireflection properties of GaN nanostructures based on six-sided pyramid with both uniform and non-uniform patterns were also investigated. Results indicate a significant dependence of the surface antireflection on the refractive index profiles of surface nanostructures as well as their pattern uniformity. The GaN nanostructures with linear refractive index profile show the best performance to be used as broadband omnidirectional antireflection structures.

  10. Replication of surfaces of natural leaves for enhanced micro-scale tribological property

    Energy Technology Data Exchange (ETDEWEB)

    Singh, R. Arvind [Microsystem Research Center, Future Technology Research Division, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Yoon, Eui-Sung [Microsystem Research Center, Future Technology Research Division, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of)]. E-mail: esyoon@kist.re.kr; Kim, Hong Joon [Microsystem Research Center, Future Technology Research Division, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Kim, Jinseok [Microsystem Research Center, Future Technology Research Division, Korea Institute of Science and Technology, Seoul 130-650 (Korea, Republic of); Jeong, Hoon Eui [School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-742 (Korea, Republic of); Suh, Kahp Y. [School of Mechanical and Aerospace Engineering and Institute of Advanced Machinery and Design, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2007-05-16

    In this paper, we report on the replication of surfaces of Lotus and Colocasia leaves onto thin polymeric films using a capillarity-directed soft lithographic technique. The replication was carried out on poly(methyl methacrylate) (PMMA) film spin coated on silicon wafer using poly(dimethyl siloxane) (PDMS) molds. The friction properties of the replicated surfaces were investigated at micro-scale in comparison with those of PMMA thin film and uncoated silicon wafer. The coefficients of friction of the replicated surfaces were almost five times lower than those of the PMMA thin film and four times lower than those of the uncoated silicon wafer. The superior micro-tribological properties of the replicated surfaces could be attributed to the reduced real area of contact projected by the surfaces.

  11. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2017-12-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  12. Design, development and applications of novel techniques for studying surface mechanical properties

    Science.gov (United States)

    Miyoshi, Kazuhisa

    1989-01-01

    Research is reviewed for the adhesion, friction, and micromechanical properties of materials and examples of the results presented. The ceramic and metallic materials studied include silicon carbide, aluminum oxide, and iron-base amorphous alloys. The design and operation of a torsion balance adapted for study of adhesion from the Cavendish balance are discussed first. The pull-off force (adhesion) and shear force (friction) required to break the interfacial junctions between contacting surfaces of the materials were examined at various temperatures in a vacuum. The surface chemistry of the materials was analyzed by X-ray photoelectron spectroscopy. Properties and environmental conditions of the surface regions which affect adhesion and friction-such as surface segregation, composition, crystal structure, surface chemistry, and temperature were also studied.

  13. Effect of Build Angle on Surface Properties of Nickel Superalloys Processed by Selective Laser Melting

    Science.gov (United States)

    Covarrubias, Ernesto E.; Eshraghi, Mohsen

    2018-03-01

    Aerospace, automotive, and medical industries use selective laser melting (SLM) to produce complex parts through solidifying successive layers of powder. This additive manufacturing technique has many advantages, but one of the biggest challenges facing this process is the resulting surface quality of the as-built parts. The purpose of this research was to study the surface properties of Inconel 718 alloys fabricated by SLM. The effect of build angle on the surface properties of as-built parts was investigated. Two sets of sample geometries including cube and rectangular artifacts were considered in the study. It was found that, for angles between 15° and 75°, theoretical calculations based on the "stair-step" effect were consistent with the experimental results. Downskin surfaces showed higher average roughness values compared to the upskin surfaces. No significant difference was found between the average roughness values measured from cube and rectangular test artifacts.

  14. Influence of viscoelastic property on laser-generated surface acoustic waves in coating-substrate systems

    International Nuclear Information System (INIS)

    Sun Hongxiang; Zhang Shuyi; Xu Baiqiang

    2011-01-01

    Taking account of the viscoelasticity of materials, the pulsed laser generation of surface acoustic waves in coating-substrate systems has been investigated quantitatively by using the finite element method. The displacement spectra of the surface acoustic waves have been calculated in frequency domain for different coating-substrate systems, in which the viscoelastic properties of the coatings and substrates are considered separately. Meanwhile, the temporal displacement waveforms have been obtained by applying inverse fast Fourier transforms. The numerical results of the normal surface displacements are presented for different configurations: a single plate, a slow coating on a fast substrate, and a fast coating on a slow substrate. The influences of the viscoelastic properties of the coating and the substrate on the attenuation of the surface acoustic waves have been studied. In addition, the influence of the coating thickness on the attenuation of the surface acoustic waves has been also investigated in detail.

  15. Effect of droplet size on the droplet behavior on the heterogeneous surface

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ho Yeon; Son, Sung Wan; Ha, ManYeong [Pusan National University, Busan (Korea, Republic of); Park, Yong Gap [Pusan National University, Busan (Korea, Republic of)

    2017-06-15

    The characteristics of a three-dimensional hemispherical droplet on a heterogeneous surface were studied using the Lattice Boltzmann method (LBM). The hydrophilic surface has a hydrophobic part at the center. The hemispherical droplets are located at the center of the heterogeneous surface. According to the contact angles of hydrophilic and hydrophobic bottom surfaces, the droplet either separates or reaches a new equilibrium state. The separation time varies according to the change in droplet size, and it affects the status of droplet separation. The droplet separation behavior was investigated by analyzing the velocity vector around the phase boundary line. The shape and separation time of a droplet are determined by the contact angle of each surface. The speed of droplet separation increases as the difference in contact angle increases between the hydrophobic surface and hydrophilic surface. The separation status and the separation time of a droplet are also determined by the change of the droplet size. As the size of the droplet decreases, the effect of surface tension decreases, and the separation time of the droplet also decreases. On the other hand, as the droplet becomes larger, the effect of surface tension increases and the time required for the droplet to separate also increases.

  16. Comparison of the Fouling Release Properties of Hydrophobic Fluorinated and Hydrophilic PEGylated Block Copolymer Surfaces

    International Nuclear Information System (INIS)

    Krishnan, S.; Wang, N.; Ober, C.; Finlay, J.; Callow, M.; Callow, J.; Hexemer, A.; Sohn, K.; Kramer, E.; Fischer, D.

    2006-01-01

    To understand the role of surface wettability in adhesion of cells, the attachment of two different marine algae was studied on hydrophobic and hydrophilic polymer surfaces. Adhesion of cells of the diatom Navicula and sporelings (young plants) of the green macroalga Ulva to an underwater surface is mainly by interactions between the surface and the adhesive exopolymers, which the cells secrete upon settlement and during subsequent colonization and growth. Two types of block copolymers, one with poly(ethylene glycol) side-chains and the other with liquid crystalline, fluorinated side-chains, were used to prepare the hydrophilic and hydrophobic surfaces, respectively. The formation of a liquid crystalline smectic phase in the latter inhibited molecular reorganization at the surface, which is generally an issue when a highly hydrophobic surface is in contact with water. The adhesion strength was assessed by the fraction of settled cells (Navicula) or biomass (Ulva) that detached from the surface in a water flow channel with a wall shear stress of 53 Pa. The two species exhibited opposite adhesion behavior on the same sets of surfaces. While Navicula cells released more easily from hydrophilic surfaces, Ulva sporelings showed higher removal from hydrophobic surfaces. This highlights the importance of differences in cell-surface interactions in determining the strength of adhesion of cells to substrates

  17. Inverse gas chromatography as a method for determination of surface properties of binding materials

    Science.gov (United States)

    Yu, Jihai; Lu, Xiaolei; Yang, Chunxia; Du, Baoli; Wang, Shuxian; Ye, Zhengmao

    2017-09-01

    Inverse gas chromatography (IGC) is a promising measurement technique for investigating the surface properties of binding materials, which are the major influence element for the adsorption performance of superplasticizer. In this work, using the IGC method, blast furnace slag (BFS), sulphoaluminate cement (SAC) and portland cement (P·O) are employed to systematically evaluate the corresponding dispersive component (γsd), specific surface free energy (γsab), and acid-base properties. The obtained results show that γsd contributes to a major section of the surface free energy in the three binding materials, suggesting they are of a relatively low polarity. Compared to the two kinds of cements, the BFS possesses the highest dispersive and specific surface free energies (the values are 45.01 mJ/m2 and 11.68 mJ/m2, respectively), and also exhibits a wider distribution range of γsd, indicating their surfaces are heterogeneous. For acid-base properties, the results indicate the surfaces of three samples are basic in nature. In addition, the adsorption investigation shows that per unit surface of BFS adsorbs the most superplasticizer molecules, which indicates the higher surface free energies is beneficial to the superplasticizer adsorption.

  18. Quantification of physical (roughness) and chemical (dielectric constant) leaf surface properties relevant to wettability and adhesion.

    Science.gov (United States)

    Nairn, Justin J; Forster, W Alison; van Leeuwen, Rebecca M

    2011-12-01

    Spray droplet adhesion is dependent not only on formulation and droplet parameters but also on the surface properties (physical and chemical) of the leaf. Quantifying these leaf surface properties would aid understanding and modelling of adhesion, helping to optimise spray formulations. Fractal dimensions (FDs) were used to quantify the relative leaf surface roughness of ten plant species. Static droplet contact angles were measured on each leaf surface, and wetting tension was calculated. Chemical profiles of the leaf surfaces were developed by evaluating contact angle behaviour relative to solution dielectric constants. The FDs of Cryo-SEM micrographs taken at 300× magnification gave the best correlation with adhesion. The wetting tension intercept had a strong relationship with mean adhesion, and successfully accounted for the wettability of the outlier species. The microroughness of the leaf surface, as revealed by Cryo-SEM, can be quantified by fractal dimension analysis. However, the wetting tension intercept is a more useful universal measure of the surface properties of the leaf (including roughness) as they pertain to adhesion. The slope of the wetting tension versus dielectric constant plot allowed preliminary quantification of the chemical contribution of leaf surface dielectric behaviour to adhesion. Copyright © 2011 Society of Chemical Industry.

  19. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D

    2008-11-01

    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  20. Scaling behavior and morphological properties of the interfaces obtained by the multilayer deposition process

    International Nuclear Information System (INIS)

    Achik, I.; Boughaleb, Y.; Hader, A.; Sbiaai, K.; Hajjaji, A.

    2013-01-01

    The aim of the present work was to study numerically the scaling behavior and the morphological properties of the interfaces generated by the multilayer deposition process. We have noticed that, in the case where the ratio of the surface diffusion coefficient to the deposition rate reaches high values D/F > > 1, the interface consists of mound structures. By using the dynamic scaling, we have shown that the height–height correlation function scales with time t and length l as G(l,t) ∼ l α f(t/l α/β ) with β = 0.25 ± 0.05 and α = 0.51 ± 0.02. These exponent values are equal to the ones predicted by the Edwards–Wilkinson approach. Besides, our results are in agreement with the growth system of Cu/Cu(100) at 300 K which has been characterized in more detail by a combined scanning tunneling microscopy and spot profile analysis — low energy electronic diffusion study. Moreover, by considering two different methods, we have examined the fractal aspect of the obtained interfaces. - Highlights: • The adlayer interfaces present mound morphologies. • The adlayer interfaces scale with the Family–Vicsek law. • The critical exponents (α, β) are in agreement with those of Edwards–Wilkinson approach

  1. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields.

    Science.gov (United States)

    Jeon, Seongbeom; Subbiah, Ramesh; Bonaedy, Taufik; Van, Seyoung; Park, Kwideok; Yun, Kyusik

    2018-02-01

    Magnetic nanoparticles (MNPs) are used as contrast agents and targeted drug delivery systems (TDDS) due to their favorable size, surface charge, and magnetic properties. Unfortunately, the toxicity associated with MNPs limits their biological applications. Surface functionalization of MNPs with selective polymers alters the surface chemistry to impart better biocompatibility. We report the preparation of surface functionalized MNPs using iron oxide NPs (MNPs), poly (lactic-co-glycolic acid) (PLGA), and sodium alginate via co-precipitation, emulsification, and electro-spraying, respectively. The NPs are in the nanosize range and negatively charged. Morphological and structural analyses affirm the surface functionalized nanostructure of the NPs. The surface functionalized MNPs are biocompatible, and demonstrate enhanced intracellular delivery under an applied magnetic field (H), which evinces the targeting ability of MNPs. After NP treatment, the physico-mechanical properties of fibroblasts are decided by the selective MNP uptake under "on" or "off" magnetic field conditions. We envision potential use of biocompatible surface functionalized MNP for intracellular-, targeted-DDS, imaging, and for investigating cellular mechanics. © 2017 Wiley Periodicals, Inc.

  2. Bacterial spoilers of food: behavior, fitness and functional properties.

    Science.gov (United States)

    Remenant, Benoît; Jaffrès, Emmanuel; Dousset, Xavier; Pilet, Marie-France; Zagorec, Monique

    2015-02-01

    Most food products are highly perishable as they constitute a rich nutrient source for microbial development. Among the microorganisms contaminating food, some present metabolic activities leading to spoilage. In addition to hygienic rules to reduce contamination, various treatments are applied during production and storage to avoid the growth of unwanted microbes. The nature and appearance of spoilage therefore depend on the physiological state of spoilers and on their ability to resist the processing/storage conditions and flourish on the food matrix. Spoilage also relies on the interactions between the microorganisms composing the ecosystems encountered in food. The recent rapid increase in publicly available bacterial genome sequences, as well as the access to high-throughput methods, should lead to a better understanding of spoiler behavior and to the possibility of decreasing food spoilage. This review lists the main bacterial species identified as food spoilers, their ability to develop during storage and/or processing, and the functions potentially involved in spoilage. We have also compiled an inventory of the available genome sequences of species encompassing spoilage strains. Combining in silico analysis of genome sequences with experimental data is proposed in order to understand and thus control the bacterial spoilage of food better. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Mechanical Properties and Brittle Behavior of Silica Aerogels

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2015-12-01

    Full Text Available Sets of silica gels: aerogels, xerogels and sintered aerogels, have been studied in the objective to understand the mechanical behavior of these highly porous solids. The mechanical behaviour of gels is described in terms of elastic and brittle materials, like glasses or ceramics. The magnitude of the elastic and rupture modulus is several orders of magnitude lower compared to dense glass. The mechanical behaviours (elastic and brittle are related to the same kinds of gel characteristics: pore volume, silanol content and pore size. Elastic modulus depends strongly on the volume fraction of pores and on the condensation reaction between silanols. Concerning the brittleness features: rupture modulus and toughness, it is shown that pores size plays an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size is related to the pore size. Weibull’s theory is used to show the statistical nature of flaw. Moreover, stress corrosion behaviour is studied as a function of environmental conditions (water and alcoholic atmosphere and temperature.

  4. Behavioral and neural properties of social reinforcement learning.

    Science.gov (United States)

    Jones, Rebecca M; Somerville, Leah H; Li, Jian; Ruberry, Erika J; Libby, Victoria; Glover, Gary; Voss, Henning U; Ballon, Douglas J; Casey, B J

    2011-09-14

    Social learning is critical for engaging in complex interactions with other individuals. Learning from positive social exchanges, such as acceptance from peers, may be similar to basic reinforcement learning. We formally test this hypothesis by developing a novel paradigm that is based on work in nonhuman primates and human imaging studies of reinforcement learning. The probability of receiving positive social reinforcement from three distinct peers was parametrically manipulated while brain activity was recorded in healthy adults using event-related functional magnetic resonance imaging. Over the course of the experiment, participants responded more quickly to faces of peers who provided more frequent positive social reinforcement, and rated them as more likeable. Modeling trial-by-trial learning showed ventral striatum and orbital frontal cortex activity correlated positively with forming expectations about receiving social reinforcement. Rostral anterior cingulate cortex activity tracked positively with modulations of expected value of the cues (peers). Together, the findings across three levels of analysis--social preferences, response latencies, and modeling neural responses--are consistent with reinforcement learning theory and nonhuman primate electrophysiological studies of reward. This work highlights the fundamental influence of acceptance by one's peers in altering subsequent behavior.

  5. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.

    Science.gov (United States)

    Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong

    2017-10-01

    Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on

  6. Deformation and breakup behavior of a small droplet impinging upon a hot surface

    International Nuclear Information System (INIS)

    Senda, Jiro; Takeuchi, Kiichiro; Miki, Hideo; Yamada, Koji.

    1986-01-01

    The phenomenon of a small droplet impinging upon a hot surface is applied in various industries. Such applications are divided into those employing atomization by the impingement of the droplet and those employing the heat transfer from surface to the droplet. The purpose of this paper is to obtain fundamental information concerning the heat transfer process and breakup behavior characteristics of individual small droplets impinging upon a hot surface. A uniform sized water droplets array at room temperature under atmospheric pressure was produced by the vibratory method to impinge upon a heated flat copper surface. And then, the deformation and the breakup behavior owing to the impingement of the droplet in observed by means of a drum camera recording highspeed microscopic photographs. The transient change in the diameter of the radial film which is formed after the droplet impinges on a surface is adjusted with the Weber number, and it is revealed that contact resistance in solid-liquid interface varies with surface temperature. The breakup form of the impinged droplet is classified into 7 types : R, RB, B, N, H, V, and F. The changes in the Sauter mean diameter of breakup droplets and the volume distribution of breakup droplets are examined. (author)

  7. Microstructure and surface chemistry of amorphous alloys important to their friction and wear behavior

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1986-01-01

    An investigation was conducted to examine the microstructure and surface chemistry of amorphous alloys, and their effects on tribological behavior. The results indicate that the surface oxide layers present on amorphous alloys are effective in providing low friction and a protective film against wear in air. Clustering and crystallization in amorphous alloys can be enhanced as a result of plastic flow during the sliding process at a low sliding velocity, at room temperature. Clusters or crystallines with sizes to 150 nm and a diffused honeycomb-shaped structure are produced on sizes to 150 nm and a diffused honeycomb-shaped structure are produced on the wear surface. Temperature effects lead to drastic changes in surface chemistry and friction behavior of the alloys at temperatures to 750 C. Contaminants can come from the bulk of the alloys to the surface upon heating and impart to the surface oxides at 350 C and boron nitride above 500 C. The oxides increase friction while the boron nitride reduces friction drastically in vacuum.

  8. Diffuse coplanar surface barrier discharge -- basic properties and its application in surface treatment of nonwovens

    Science.gov (United States)

    Kovacik, Dusan; Rahel, Jozef; Kubincova, Jana; Zahoranova, Anna; Cernak, Mirko

    2009-10-01

    In recent years, low temperature atmospheric pressure plasma surface treatments have become a hot topic because of the potential of fast and efficient in-line processing fabrication without expensive vacuum equipment. A major problem of atmospheric pressure treatment in air is insufficient treatment uniformity because, particularly at the higher plasma power densities, the air plasma has the tendency of filamentation and transition into an arc discharge. Diffuse coplanar surface barrier discharge (DCSBD) plasma source has been developed to overcome these problems. This type of discharge enables to generate macroscopically homogeneous thin (˜ 0.3 mm) plasma layer with power density of some 100 W/cm^3 practically in any gas without admixture of He. It was found that the ambient air plasma of DCSBD is capable to make lightweight polypropylene nonwoven fabrics permanently hydrophilic, without any pinholing and with low power consumption of some 1 kWh/kg.

  9. Study on the cold and hot properties of medicinal herbs by thermotropism in mice behavior.

    Science.gov (United States)

    Zhao, Yan-Ling; Wang, Jia-Bo; Xiao, Xiao-He; Zhao, Hai-ping; Zhou, Can-ping; Zhang, Xue-ru; Ren, Yong-shen; Jia, Lei

    2011-02-16

    It is a common sense that chewing a mint leaf causes a cold feeling, while masticating a piece of ginger root is associated with a hot sensation. The Traditional Chinese Medicine has termed this phenomenon as cold and hot properties of herbs and applied them in treating certain human diseases successfully for thousands of years. Here, we have developed an Animal Thermotropism Behavior Surveillance System, and by using this device and other approaches, we not only verified the existence of, but also characterized and quantitated the cold and hot properties of medicinal herbs in animal behavioral experiments. The results suggested that the hot and cold properties of herbal drugs indeed correlated with the alteration of animal behavior in search for residence temperature. Copyright © 2010. Published by Elsevier Ireland Ltd.

  10. Bacterial surface appendages strongly impact nanomechanical and electrokinetic properties of Escherichia coli cells subjected to osmotic stress.

    Directory of Open Access Journals (Sweden)

    Grégory Francius

    Full Text Available The physicochemical properties and dynamics of bacterial envelope, play a major role in bacterial activity. In this study, the morphological, nanomechanical and electrohydrodynamic properties of Escherichia coli K-12 mutant cells were thoroughly investigated as a function of bulk medium ionic strength using atomic force microscopy (AFM and electrokinetics (electrophoresis. Bacteria were differing according to genetic alterations controlling the production of different surface appendages (short and rigid Ag43 adhesins, longer and more flexible type 1 fimbriae and F pilus. From the analysis of the spatially resolved force curves, it is shown that cells elasticity and turgor pressure are not only depending on bulk salt concentration but also on the presence/absence and nature of surface appendage. In 1 mM KNO(3, cells without appendages or cells surrounded by Ag43 exhibit large Young moduli and turgor pressures (∼700-900 kPa and ∼100-300 kPa respectively. Under similar ionic strength condition, a dramatic ∼50% to ∼70% decrease of these nanomechanical parameters was evidenced for cells with appendages. Qualitatively, such dependence of nanomechanical behavior on surface organization remains when increasing medium salt content to 100 mM, even though, quantitatively, differences are marked to a much smaller extent. Additionally, for a given surface appendage, the magnitude of the nanomechanical parameters decreases significantly when increasing bulk salt concentration. This effect is ascribed to a bacterial exoosmotic water loss resulting in a combined contraction of bacterial cytoplasm together with an electrostatically-driven shrinkage of the surface appendages. The former process is demonstrated upon AFM analysis, while the latter, inaccessible upon AFM imaging, is inferred from electrophoretic data interpreted according to advanced soft particle electrokinetic theory. Altogether, AFM and electrokinetic results clearly demonstrate the

  11. ODMBP: Behavior Forwarding for Multiple Property Destinations in Mobile Social Networks

    Directory of Open Access Journals (Sweden)

    Jia Xu

    2016-01-01

    Full Text Available The smartphones are widely available in recent years. Wireless networks and personalized mobile devices are deeply integrated and embedded in our lives. The behavior based forwarding has become a new transmission paradigm for supporting many novel applications. However, the commodities, services, and individuals usually have multiple properties of their interests and behaviors. In this paper, we profile these multiple properties and propose an Opportunistic Dissemination Protocol based on Multiple Behavior Profile, ODMBP, in mobile social networks. We first map the interest space to the behavior space and extract the multiple behavior profiles from the behavior space. Then, we propose the correlation computing model based on the principle of BM25 to calculate the correlation metric of multiple behavior profiles. The correlation metric is used to forward the message to the users who are more similar to the target in our protocol. ODMBP consists of three stages: user initialization, gradient ascent, and group spread. Through extensive simulations, we demonstrate that the proposed multiple behavior profile and correlation computing model are correct and efficient. Compared to other classical routing protocols, ODMBP can significantly improve the performance in the aspect of delivery ratio, delay, and overhead ratio.

  12. Multipulse nanosecond laser irradiation of silicon for the investigation of surface morphology and photoelectric properties

    Science.gov (United States)

    Sardar, Maryam; Chen, Jun; Ullah, Zaka; Jelani, Mohsan; Tabassum, Aasma; Cheng, Ju; Sun, Yuxiang; Lu, Jian

    2017-12-01

    We irradiate the single crystal boron-doped silicon (Si) with different number of laser pulses at constant fluence (7.5 J cm-2) in ambient air using Nd:YAG laser and examine its surface morphology and photoelectric properties in details. The results obtained from optical micrographs reveal the increase in heat affected zone (HAZ) and melted area of laser irradiated Si with increasing number of laser pulses. The SEM micrographs evidence the formation of various surface morphologies like laser induced periodic surface structures, crater, microcracks, clusters, cavities, pores, trapped bubbles, nucleation sites, micro-bumps, redeposited material and micro- and nano-particles on the surface of irradiated Si. The surface profilometry analysis informs that the depth of crater is increased with increase in number of incident laser pulses. The spectroscopic ellipsometry reveals that the multipulse irradiation of Si changes its optical properties (refractive index and extinction coefficient). The current-voltage (I-V) characteristic curves of laser irradiated Si show that although the multipulse laser irradiation produces considerable number of surface defects and damages, the electrical properties of Si are well sustained after the multipulse irradiation. The current findings suggest that the multipulse irradiation can be an effective way to tune the optical properties of Si for the fabrication of wide range of optoelectronic devices.

  13. Study on magnetic property and fracture behavior of magnetic materials

    International Nuclear Information System (INIS)

    Miya, Kenzo; Demachi, Kazuyuki; Aoto, Kazumi; Nagae, Yuji

    2002-04-01

    Establishment of evaluation methods of material degradation before crack initiation is needed very much to enhance the reliability of structural components. We remark magnetic methods in this report. Our objectives are to reveal the relation between degradation and magnetic property and to develop evaluation methods of material degradation, especially plastic deformation and stress corrosion cracking (SCC). In the former part of this report, evaluation methods for plastic deformation are discussed. At first, the study that shows the relation between the magnetic flux leakage and plastic deformation is reviewed. We developed the inverse analysis method of magnetization to specify the degradation distribution. Moreover, we propose inverse analysis of magnetic susceptibility for quantitative evaluation. In the latter part, the topic is SCC. We measured the magnetic flux leakage from the sample induced a SCC crack (Inconel 600). Inconel 600 is a paramagnetic material at room temperature but the sample shows ferromagnetic and the magnetic flux leakage was changed near the SCC crack. The possibility of detection of a SCC crack is shown by the inverse analysis result from the magnetic flux leakage. Finally, it is recognized by observation of the micro magnetic distributions by using a magnetic force microscope that the magnetization has relation with chromium depletion near grain boundaries and it is weak near the SCC crack. From these results, the magnetic method is very effective for evaluation of degradation. (author)

  14. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Haiyan [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Peng, Jianke [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Fu, Li, E-mail: fuli@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Wang, Xincheng [Shaanxi Key Laboratory of Friction Welding Technologies, Xi’an 710072 (China); Xie, Yan [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-04-15

    Graphical abstract: - Highlights: • The wetting angle of lead free solder on Cu was reduced by surface microstructure. • The wetting form of Sn-Ag-Cu solder on Cu was “non-composite surface”. • The experimental results had a sound fit with the theoretical calculation. - Abstract: In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  15. Solder wetting behavior enhancement via laser-textured surface microcosmic topography

    International Nuclear Information System (INIS)

    Chen, Haiyan; Peng, Jianke; Fu, Li; Wang, Xincheng; Xie, Yan

    2016-01-01

    Graphical abstract: - Highlights: • The wetting angle of lead free solder on Cu was reduced by surface microstructure. • The wetting form of Sn-Ag-Cu solder on Cu was “non-composite surface”. • The experimental results had a sound fit with the theoretical calculation. - Abstract: In order to reduce or even replace the use of Sn-Pb solder in electronics industry, the laser-textured surface microstructures were used to enhance the wetting behavior of lead free solder during soldering. According to wetting theory and Sn-Ag-Cu lead free solder performance, we calculated and designed four microcosmic structures with the similar shape and different sizes to control the wetting behavior of lead free solder. The micro-structured surfaces with different dimensions were processed on copper plates by fiber femtosecond laser, and the effect of microstructures on wetting behavior was verified experimentally. The results showed that the wetting angle of Sn-Ag-Cu solder on the copper plate with microstructures decreased effectively compared with that on the smooth copper plate. The wetting angles had a sound fit with the theoretical values calculated by wetting model. The novel method provided a feasible route for adjusting the wetting behavior of solders and optimizing solders system.

  16. Evaporation of tiny water aggregation on solid surfaces with different wetting properties.

    Science.gov (United States)

    Wang, Shen; Tu, Yusong; Wan, Rongzheng; Fang, Haiping

    2012-11-29

    The evaporation of a tiny amount of water on the solid surface with different wettabilities has been studied by molecular dynamics simulations. From nonequilibrium MD simulations, we found that, as the surface changed from hydrophobic to hydrophilic, the evaporation speed did not show a monotonic decrease as intuitively expected, but increased first, and then decreased after it reached a maximum value. The analysis of the simulation trajectory and calculation of the surface water interaction illustrate that the competition between the number of water molecules on the water-gas surface from where the water molecules can evaporate and the potential barrier to prevent those water molecules from evaporating results in the unexpected behavior of the evaporation. This finding is helpful in understanding the evaporation on biological surfaces, designing artificial surfaces of ultrafast water evaporating, or preserving water in soil.

  17. How do features of dressage arenas influence training surface properties which are potentially associated with lameness?

    Science.gov (United States)

    Murray, Rachel C; Walters, Juli; Snart, Hannah; Dyson, Sue; Parkin, Tim

    2010-11-01

    Results from a previous study indicated that there are specific arena surface characteristics that are associated with an increased likelihood of lameness in dressage horses. It is important to understand what modifiable arena factors lead to these detrimental surface characteristics. The aim of this study was to describe the use of training surfaces and arenas for United Kingdom dressage horses and to investigate any relationships between arena/surface variables and detrimental surface characteristics. Data from a questionnaire returned by 22.5% of all 11,363 registered members of British Dressage were used for the study. Univariate and multivariable logistic regression models were developed with each of the previously identified surface characteristics as dependent variables. Respondents reported that the majority of arenas were privately owned, sized 20 × 40 m and had a sand and rubber surface. The results indicated that wax-coated and sand and rubber surfaces were associated with less detrimental surface properties than sand, sand and PVC, woodchips or grass. Woodchips were most strongly associated with the detrimental characteristic of slipping, and sand with tripping. The findings indicated that any arena surface should have a base, with limestone the recommended surface, and that crushed concrete was best avoided. This information supported previous studies in racehorses that indicated that surface maintenance is essential, especially when many horses are using an arena daily. Problems were less likely if an arena was privately owned. Copyright © 2010. Published by Elsevier Ltd.

  18. JOB BEHAVIORAL FACTORS AND TURNOVER INTENTION: EVIDENCE FROM SIME DARBY PROPERTY LIMITED

    OpenAIRE

    Amran Awang; Abdul Razak Amir; Wirda Osman

    2013-01-01

    Some job behavioral factors are utilized to examine their relationship with turnover intention among 201 employees in Sime Darby Property (Malaysia) Limited. Job satisfaction, job stress, organizational commitment, job enrichment and person-organization fit are the job behavioral factors selected for the study. The variables used in the study justify the reliability scores consistent with indicators in previous studies. Research methodology justifies the quantitative requirements ...

  19. Influence of Laser Shock Texturing on W9 Steel Surface Friction Property

    Science.gov (United States)

    Fan, Yujie; Cui, Pengfei; Zhou, Jianzhong; Dai, Yibin; Guo, Erbin; Tang, Deye

    2017-09-01

    To improve surface friction property of high speed steel, micro-dent arrays on W9Mo3Cr4V surface were produced by laser shock processing. Friction test was conducted on smooth surface and texturing surface and effect of surface texturing density on friction property was studied. The results show that, under the same condition, friction coefficient of textured surface is lower than smooth surface with dent area density less than 6%, wear mass loss, width and depth of wear scar are smaller; Wear resistance of the surface is the best and the friction coefficient is the smallest when dent area density is 2.2%; Friction coefficient, wear mass loss, width and depth of wear scar increase correspondingly as density of dent area increases when dent area density is more than 2.2%. Abrasive wear and adhesive wear, oxidative wear appear in the wear process. Reasonable control of geometric parameters of surface texturing induced by laser shock processing is helpful to improve friction performance.

  20. Effects of air dielectric barrier discharge plasma treatment time on surface properties of PBO fiber

    International Nuclear Information System (INIS)

    Wang Qian; Chen Ping; Jia Caixia; Chen, Mingxin; Li Bin

    2011-01-01

    In this paper, the effects of air dielectric barrier discharge (DBD) plasma treatment time on surface properties of poly(p-phenylene benzobisoxazole) (PBO) fiber were investigated. The surface characteristics of PBO fiber before and after the plasma treatments were analyzed by dynamic contact angle (DCA) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). DCA measurements indicated that the surface wettability of PBO fiber was improved significantly by increasing the fiber surface free energy via air DBD plasma treatments. The results were confirmed by the improvement of adhesion of a kind of thermoplastic resin to PBO fiber which was observed by SEM, showing that more resin was adhering evenly to the fiber surface. AFM measurement revealed that the surface topography of PBO fiber became more complicated and the surface roughness was greatly enhanced after the plasma treatments, and XPS analysis showed that some new polar groups (e.g. -O-C=O) were introduced on plasma treated PBO fiber surface. The results of this study also showed that the surface properties of PBO fiber changed with the elongation of plasma treatment time.

  1. Structural and electronic properties of low-index stoichiometric BiOI surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wen-Wu; Zhao, Zong-Yan, E-mail: zzy@kmust.edu.cn

    2017-06-01

    As promising photocatalyst driven by visible-light, BiOI has attracted more and more attention in the past years. However, the surface structure and properties of BiOI that is the most important place for the photocatalytic have not been investigated in details. To this end, density functional theory was performed to calculate the structural and electronic properties of four low-index stoichiometric surfaces of BiOI. It is found that the relaxation of the low-index BiOI surfaces are relatively small, especially the (001) surface. Thus, the surface energies of BiOI are very relatively small. Moreover, there are a few surface states below the bottom of conduction band in the first layer except the (001) surface, which maybe capture the photo-excited carriers. In all of the most stable terminated planes, all the dangling bonds are cleaved from the broken Bi-O bonds. In the case of (001) surface, the dangling bond density of Bi atoms for the (001) surface is zero per square nano. Therefore, the (001) surface is thermodynamically lowest-energy surface of BiOI, and it is the predominant surface (51.4%). As a final remark, the dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. Finally, the equilibrium morphology of BiOI was also proposed and provided, which is determined through the Wulff construction. These results will help us to better understand the underlying photocatalytic mechanism that is related to BiOI surfaces, and provide theoretical support for some experimental studies about BiOI-based photocatalyst in future. - Highlights: • Four low-index BiOI surfaces have been calculated by DFT method. • The relaxations of the low-index BiOI surfaces are relatively small. • There are a few surface states below the bottom of conduction band in the first layer. • The dangling bonds density of bismuth atoms determines not only the surface energy, but also the surface relaxation. • The thermodynamic

  2. Effects of surface material, ventilation, and human behavior on indirect contact transmission risk of respiratory infection.

    Science.gov (United States)

    Sze-To, Gin Nam; Yang, Yang; Kwan, Joseph K C; Yu, Samuel C T; Chao, Christopher Y H

    2014-05-01

    Infectious particles can be deposited on surfaces. Susceptible persons who contacted these contaminated surfaces may transfer the pathogens to their mucous membranes via hands, leading to a risk of respiratory infection. The exposure and infection risk contributed by this transmission route depend on indoor surface material, ventilation, and human behavior. In this study, quantitative infection risk assessments were used to compare the significances of these factors. The risks of three pathogens, influenza A virus, respiratory syncytial virus (RSV), and rhinovirus, in an aircraft cabin and in a hospital ward were assessed. Results showed that reducing the contact rate is relatively more effective than increasing the ventilation rate to lower the infection risk. Nonfabric surface materials were found to be much more favorable in the indirect contact transmission for RSV and rhinovirus than fabric surface materials. In the cases considered in this study, halving the ventilation rate and doubling the hand contact rate to surfaces and the hand contact rate to mucous membranes would increase the risk by 3.7-16.2%, 34.4-94.2%, and 24.1-117.7%, respectively. Contacting contaminated nonfabric surfaces may pose an indirect contact risk up to three orders of magnitude higher than that of contacting contaminated fabric surfaces. These findings provide more consideration for infection control and building environmental design. © 2013 Society for Risk Analysis.

  3. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    Energy Technology Data Exchange (ETDEWEB)

    Carran, Richard S.; Ghosh, Arun, E-mail: Arun.Ghosh@agresearch.co.nz; Dyer, Jolon M.

    2013-12-15

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na{sup +} and Ca{sup 2+} exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  4. Optical properties study of silicone polymer PDMS substrate surfaces modified by plasma treatment

    Science.gov (United States)

    Zahid, A.; Dai, B.; Hong, R.; Zhang, D.

    2017-10-01

    In this study, PDMS (polydimethylsiloxane) substrates with a half-plain, half-rough surface were prepared on a plain and rough fused silica glass substrate using a molding technique. The molded PDMS surface morphology was changed into a half-smooth and half-rough surface after peeling. The modified PDMS surfaces’ optical properties were inspected with and without treatment. The treatment is exposed by oxygen plasma (15 W) for 3 min in a vacuum, down to a pressure of six torr, using a vacuum pump. An atomic force microscope (AMF) and interferometer (white light) indicated that the plasma O2 treatment increased the formation of the plain surface and decreased the formation of the rough surface. The optical properties via a spectrophotometer (lambda) show the resonance from 300 nm to 1200 nm on the rough surface, which is considered to be a faithful reproduction for transmittance and reflectance. The Raman spectra and FDTD simulation results are in excellent agreement; not to be confused with metal local surface plasmon resonances (LSPRs). The Raman spectra peaks and hotspot are the results of the PDMS Si-O backbone. The PDMS substrate presented the diversity of the optical properties, which makes the substrate complementary to various optical applications.

  5. The effects of zeolite molecular sieve based surface treatments on the properties of wool fabrics

    Science.gov (United States)

    Carran, Richard S.; Ghosh, Arun; Dyer, Jolon M.

    2013-12-01

    Wool is a natural composite fiber, with keratin and keratin-associated proteins as the key molecular components. The outermost surface of wool fibers comprises a hydrophobic lipid layer that can lead to unsatisfactory processing and properties of fabric products. In this study, molecular sieve 5A, a Na+ and Ca2+ exchanged type A zeolite with a 1:1 Si:Al ratio was integrated onto the surface of wool using 3-mercaptopropyl trimethoxy silane. The resultant surface morphology, hydrophilicity and mechanical performance of the treated wool fabrics were then evaluated. Notably, the surface hydrophilicity of wool was observed to increase dramatically. When wool was treated with a dispersion of 2 wt% acetic acid, 2.5 wt% zeolite and 0.3 wt% or more silane, the water contact angle was observed to decrease from an average value of 148° to 0° over a period of approximately 30 s. Scanning electron microscopic imaging indicated good coverage of the wool surface with zeolite particles, with infrared spectroscopic evaluation indicating strong bonding of the dealuminated zeolite to wool keratins. This application of zeolite showed no adverse effects on the tensile and other mechanical properties of the fabric. This study indicates that zeolite-based treatment is a potentially efficient approach to increasing the surface hydrophilicity and modifying other key surface properties of wool and wool fabrics.

  6. Simulation of an oil film at the sea surface and its radiometric properties in the SWIR

    Science.gov (United States)

    Schwenger, Frédéric; Van Eijk, Alexander M. J.

    2017-10-01

    The knowledge of the optical contrast of an oil layer on the sea under various surface roughness conditions is of great interest for oil slick monitoring techniques. This paper presents a 3D simulation of a dynamic sea surface contaminated by a floating oil film. The simulation considers the damping influence of oil on the ocean waves and its physical properties. It calculates the radiance contrast of the sea surface polluted by the oil film in relation to a clean sea surface for the SWIR spectral band. Our computer simulation combines the 3D simulation of a maritime scene (open clear sea/clear sky) with an oil film at the sea surface. The basic geometry of a clean sea surface is modeled by a composition of smooth wind driven gravity waves. Oil on the sea surface attenuates the capillary and short gravity waves modulating the wave power density spectrum of these waves. The radiance of the maritime scene is calculated in the SWIR spectral band with the emitted sea surface radiance and the specularly reflected sky radiance as components. Wave hiding and shadowing, especially occurring at low viewing angles, are considered. The specular reflection of the sky radiance at the clean sea surface is modeled by an analytical statistical bidirectional reflectance distribution function (BRDF) of the sea surface. For oil at the sea surface, a specific BRDF is used influenced by the reduced surface roughness, i.e., the modulated wave density spectrum. The radiance contrast of an oil film in relation to the clean sea surface is calculated for different viewing angles, wind speeds, and oil types characterized by their specific physical properties.

  7. Biofouling behavior and performance of forward osmosis membranes with bioinspired surface modification in osmotic membrane bioreactor.

    Science.gov (United States)

    Li, Fang; Cheng, Qianxun; Tian, Qing; Yang, Bo; Chen, Qianyuan

    2016-07-01

    Forward osmosis (FO) has received considerable interest for water and energy related applications in recent years. Biofouling behavior and performance of cellulose triacetate (CTA) forward osmosis membranes with bioinspired surface modification via polydopamine (PD) coating and poly (ethylene glycol) (PEG) grafting (PD-g-PEG) in a submerged osmotic membrane bioreactor (OMBR) were investigated in this work. The modified membranes exhibited lower flux decline than the pristine one in OMBR, confirming that the bioinspired surface modification improved the antifouling ability of the CTA FO membrane. The result showed that the decline of membrane flux related to the increase of the salinity and MLSS concentration of the mixed liquid. It was concluded that the antifouling ability of modified membranes ascribed to the change of surface morphology in addition to the improvement of membrane hydrophilicity. The bioinspired surface modifications might improve the anti-adhesion for the biopolymers and biocake. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Adhesion defective BHK cell mutant has cell surface heparan sulfate proteoglycan of altered properties

    DEFF Research Database (Denmark)

    Couchman, J R; Austria, R; Woods, A

    1988-01-01

    In the light of accumulating data that implicate cell surface heparan sulfate proteoglycans (HSPGs) with a role in cell interactions with extracellular matrix molecules such as fibronectin, we have compared the properties of these molecules in wild-type BHK cells and an adhesion-defective ricin......-resistant mutant (RicR14). Our results showed that the mutant, unlike BHK cells, cannot form focal adhesions when adherent to planar substrates in the presence of serum. Furthermore, while both cell lines possess similar amounts of cell surface HSPG with hydrophobic properties, that of RicR14 cells had decreased...... sulfation, reduced affinity for fibronectin and decreased half-life on the cell surface when compared to the normal counterpart. Our conclusions based on this data are that these altered properties may, in part, account for the adhesion defect in the ricin-resistant mutant. Whether this results from...

  9. Understanding the wetting properties of nanostructured selenium coatings: the role of nanostructured surface roughness and air-pocket formation

    Directory of Open Access Journals (Sweden)

    Tran PA

    2013-05-01

    Full Text Available Phong A Tran,1,2 Thomas J Webster31Department of Chemical and Biomolecular Engineering, University of Melbourne, Melbourne, VIC, Australia; 2The Particulate Fluid Processing Centre, University of Melbourne, Melbourne, VIC, Australia; 3Department of Chemical Engineering and Program in Bioengineering, Northeastern University, Boston, MA, USAAbstract: Wetting properties of biomaterials, in particular nanomaterials, play an important role, as these influence interactions with biological elements, such as proteins, bacteria, and cells. In this study, the wetting phenomenon of titanium substrates coated with selenium nanoparticles was studied using experimental and mathematical modeling tools. Importantly, these selenium-coated titanium substrates were previously reported to increase select protein adsorption (such as vitronectin and fibronectin, to decrease bacteria growth, and increase bone cell growth. Increased selenium nanoparticle coating density resulted in higher contact angles but remained within the hydrophilic regime. This trend was found in disagreement with the Wenzel model, which is widely used to understand the wetting properties of rough surfaces. The trend also did not fit well with the Cassie–Baxter model, which was developed to understand the wetting properties of composite surfaces. A modified wetting model was thus proposed in this study, to understand the contributing factors of material properties to the hydrophilicity/hydrophobicity of these nanostructured selenium-coated surfaces. The analysis and model created in this study can be useful in designing and/or understanding the wetting behavior of numerous biomedical materials and in turn, biological events (such as protein adsorption as well as bacteria and mammalian cell functions.Keywords: hydrophilicity, hydrophobicity, Wenzel model, Cassie–Baxter model, free energy, implant material, proteins, cells, bacteria

  10. XPS and FTIR investigation of the surface properties of different prepared titania nano-powders

    DEFF Research Database (Denmark)

    Jensen, Henrik; Solovyev, Alexey; Lie, Zheshen

    2005-01-01

    Surface studies of nano-sized TiO2 powders prepared by different methods showed that the preparation method had great impact on the surface properties. XPS measurements showed that the oxygen composition was related to the preparation method. The chloride method yielded the lowest amount of surface...... oxygen (29%) and sol–gel prepared powder showed the greatest amount of surface oxygen (66%) in the form of surface hydroxyl groups. The remaining oxygen was identified as lattice oxygen. The powder prepared by the sol–gel method contained carbon impurities originating from residual alkoxy groups....... Supercritical sol–gel prepared powder and powder prepared by the sulphate method revealed same trends regarding oxygen composition with 44–47% being surface oxygen; neither contained carbon impurities. The results obtained from XPS were confirmed by FTIR measurements....

  11. Interactions of light with rough dielectric surfaces - Spectral reflectance and polarimetric properties

    Science.gov (United States)

    Yon, S. A.; Pieters, C. M.

    1988-01-01

    The nature of the interactions of visible and NIR radiation with the surfaces of rock and mineral samples was investigated by measuring the reflectance and the polarization properties of scattered and reflected light for slab samples of obsidian and fine-grained basalt, prepared to controlled surface roughness. It is shown that the degree to which radiation can penetrate a surface and then scatter back out, an essential criterion for mineralogic determinations based on reflectance spectra, depends not only upon the composition of the material, but also on its physical condition such as sample grain size and surface roughness. Comparison of the experimentally measured reflectance and polarization from smooth and rough slab materials with the predicted models indicates that single Fresnel reflections are responsible for the largest part of the reflected intensity resulting from interactions with the surfaces of dielectric materials; multiple Fresnel reflections are much less important for such surfaces.

  12. Influence of Surface Properties and Impact Conditions on Adhesion of Insect Residues

    Science.gov (United States)

    Wohl, Christopher J.; Smith, Joseph G.; Connell, John W.; Siochi, Emilie J.; Doss, Jereme R.; Shanahan, Michelle H.; Penner, Ronald K.

    2015-01-01

    Insect residues can cause premature transition to turbulent flow on laminar flow airfoils. Engineered surfaces that mitigate the adhesion of insect residues provide, therefore, a route to more efficient aerodynamics and reduced fuel burn rates. Areal coverage and heights of residues depend not only on surface properties, but also on impact conditions. We report high speed photography of fruit fly impacts at different angles of inclination on a rigid aluminum surface, optical microscopy and profilometry, and contact angle goniometry to support the design of engineered surfaces. For the polyurethane and epoxy coatings studied, some of which exhibited superhydrophobicity, it was determined that impact angle and surface compositions play critical roles in the efficacy of these surfaces to reduce insect residue adhesion.

  13. Effect of thermal annealing on the surface properties of electrospun polymer fibers.

    Science.gov (United States)

    Chen, Jiun-Tai; Chen, Wan-Ling; Fan, Ping-Wen; Yao, I-Chun

    2014-02-01

    Electrospun polymer fibers are gaining importance because of their unique properties and applications in areas such as drug delivery, catalysis, or tissue engineering. Most studies to control the morphology and properties of electrospun polymer fibers focus on changing the electrospinning conditions. The effects of post-treatment processes on the morphology and properties of electrospun polymer fibers, however, are little studied. Here, the effect of thermal annealing on the surface properties of electrospun polymer fibers is investigated. Poly(methyl methacrylate) and polystyrene fibers are fist prepared by electrospinning, followed by thermal annealing processes. Upon thermal annealing, the surface roughness of the electrospun polymer fibers decreases. The driving force of the smoothing process is the minimization of the interfacial energy between polymer fibers and air. The water contact angles of the annealed polymer fibers also decrease with the annealing time. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of plasma nitriding time on surface properties of hard chromium electroplated AISI 1010 steel

    International Nuclear Information System (INIS)

    Kocabas, Mustafa; Uelker, Suekrue

    2015-01-01

    Properties of steel can be enhanced by surface treatments such as coating. In some cases, further treatments such as nitriding can also be used in order to get even better results. In order to investigate the properties of nitride layer on hard Cr coated AISI 1010 steel, substrates were electroplated to form hard Cr coatings. Then hard Cr coatings were plasma nitrided at 700 C for 3 h, 5 h and 7 h and nitride phases on the coatings were investigated by X-ray diffraction analysis. The layer thickness and surface properties of nitride films were investigated by scanning electron microscopy. The hardness and adhesion properties of Cr-N phases were examined using nano indentation and Daimler-Benz Rockwell C adhesion tests. The highest measured hardness was 24.1 GPa and all the three samples exhibited poor adhesion.

  15. Effect of Sisal Fiber Surface Treatment on Properties of Sisal Fiber Reinforced Polylactide Composites

    Directory of Open Access Journals (Sweden)

    Zhaoqian Li

    2011-01-01

    Full Text Available Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA. The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.

  16. Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites.

    Science.gov (United States)

    Khoshkava, V; Kamal, M R

    2013-09-09

    Dispersion quality and polymer-filler interaction are important factors in determining the final properties of polymer nanocomposites. Surface energy of nanocrystalline cellulose (NCC) and some polymers (polypropylene, PP, and polylactic acid, PLA) was measured at room and high temperatures. NCC had higher polarity and surface energy than PP and PLA at room temperature but had a lower surface energy at higher temperatures. The effect of surface modification with alkenyl succinic anhydride (ASA) on NCC surface energy at room and high temperature was studied. Total surface energy of NCC was lowered after surface modification. Thermodynamic work of adhesion for PP/NCC and PLA/NCC was lowered by NCC surface modification. A thermodynamic analysis is proposed to estimate the dispersion energy, based on surface energy measurements at room and high temperatures. Also, a dispersion factor is defined to provide a quantitative indication of the dispersibility of nanoparticles in a polymer matrix under various conditions. The required dispersion energy was reduced by lowering the interfacial tension. On the other hand, it increased as the quality of NCC dispersion (i.e., the nanoparticle surface area) in the system was improved. Surface modification of NCC with ASA had a negative effect on the compatibility between NCC and PLA, whereas it had a positive influence on compatibility between PP and NCC.

  17. Ionic liquids influence on the surface properties of electron beam irradiated wood

    International Nuclear Information System (INIS)

    Croitoru, Catalin; Patachia, Silvia; Doroftei, Florica; Parparita, Elena; Vasile, Cornelia

    2014-01-01

    Highlights: • Wood veneers impregnated with three imidazolium-based ionic liquids and irradiated with electron beam were studied by FTIR-ATR, SEM/EDX, AFM, contact angle and image analysis. • ILs preserve the surface properties of the wood (surface energy, roughness, color) upon irradiation, in comparison with the reference wood, but the surface composition is changed by treatment with IL-s, mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. • Under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface. - Abstract: In this paper, the influence of three imidazolium-based ionic liquids (1-butyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium hexafluorophosphate and 1-hexyl-3-methylimidazolium chloride) on the structure and surface properties of sycamore maple (Acer pseudoplatanus) veneers submitted to electron beam irradiation with a dose of 50 kGy has been studied by using Fourier transform infrared spectroscopy, as well as image, scanning electron microscopy/SEM/EDX, atomic force microscopy and contact angle analysis. The experimental results have proven that the studied ionic liquids determine a better preservation of the structural features of wood (cellulose crystallinity index and lignin concentration on the surface) as well as some of surface properties such as surface energy, roughness, color upon irradiation with electron beam, in comparison with the reference wood, but surface composition is changed by treatment with imidazolium-based ionic liquids mainly with 1-butyl-3-methylimidazolium tetrafluoroborate. Also, under electron beam irradiation covalent bonding of the imidazolium moiety to wood determines a higher resistance to water penetration and spreading on the surface

  18. Synthesis of Some New Quaternary Ammonium Compounds Evaluation of their Surface properties and Solubilization Activity

    International Nuclear Information System (INIS)

    Ismail, D.A.; Mohamed, A.S.; Mohamed, M.Z.

    2004-01-01

    Four cationic surfactants were prepared by condensing fatty acid methyl diethanolamine derivatives (C 6 , C I0 , C I2 , C I8 ) with stoichiometric amounts of trimethyl chlorosilane. The surface properties and parameters were investigated to find the relationship between the structure of the hydrophobic portion of such compounds and their efficiency toward solubilization. The properties studied included surface excess concentration (Γ m ax), critical micelle concentration (cmc). free energy of micellization (ΔG ο m ic) and adsorption (ΔG ο a ds) in addition to the surface tension (γ c mc) at cmc and effectiveness (Π c mc). The values of Γ m ax, ΔG ο mic and ΔG ο a ds were found to increase with increasing number of chain length. while cmc and minimum surface area occupied by one molecule (A m in) were decreased. Solubilization effect of these surfactants on paraffin oil as a non polar solubilizate and biodegradability were studied

  19. Effect of surface roughness scattering on the transport properties of a 2DEG

    International Nuclear Information System (INIS)

    Yarar, Z.

    2004-01-01

    In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for various auto-correlation functions. Gaussian, exponential and Lorentzian auto-correlation functions are used to represent surface roughness. Poisson and Schrodinger equations are solved self consistently at the hetero interface to find the energy levels, the wave functions corresponding to each level and electron concentrations at each level. Using these wave functions and the auto-correlation functions mentioned above, the scattering rates due to surface roughness are calculated. Scattering rates resulting from acoustic and optical phonons are also calculated. These rates are used to study the transport properties of the two dimensional electrons using ensemble Monte Carlo method at various temperatures. Emphasis is given to the effect of surface roughness scattering on the transport properties of the electrons

  20. A new theoretical approach to adsorption desorption behavior of Ga on GaAs surfaces

    Science.gov (United States)

    Kangawa, Y.; Ito, T.; Taguchi, A.; Shiraishi, K.; Ohachi, T.

    2001-11-01

    We propose a new theoretical approach for studying adsorption-desorption behavior of atoms on semiconductor surfaces. The new theoretical approach based on the ab initio calculations incorporates the free energy of gas phase; therefore we can calculate how adsorption and desorption depends on growth temperature and beam equivalent pressure (BEP). The versatility of the new theoretical approach was confirmed by the calculation of Ga adsorption-desorption transition temperatures and transition BEPs on the GaAs(0 0 1)-(4×2)β2 Ga-rich surface. This new approach is feasible to predict how adsorption and desorption depend on the growth conditions.

  1. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  2. Generic strong coupling behavior of Cooper pairs in the surface of superfluid nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pillet, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France); Sandulescu, N. [DPTA/Service de Physique nucleaire, CEA/DAM Ile de France, BP12, F-91680 Bruyeres-le-Chatel (France)]|[Institute of Physics and Nuclear Engineering, 76900 Bucharest (Romania)]|[Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France); Schuck, P. [Institut de Physique Nucleaire, CNRS, UMR 8608, Orsay, F-91406 (France)]|[Universite Paris-Sud, Orsay, F-91505 (France)

    2007-01-15

    With realistic HFB calculations, using the D1S Gogny force, we reveal a generic behavior of concentration of small sized Cooper pairs (2-3 fm) in the surface of superfluid nuclei. This study confirms and extends previous results given in the literature that use more schematic approaches. It is shown that the strong concentration of pair probability of small Cooper pairs in the nuclear surface is a quite general and generic feature and that nuclear pairing is much closer to the strong coupling regime than previously assumed.

  3. Research on the surface chemical behavior of uranium metal in hydrogen atmosphere by XPS

    International Nuclear Information System (INIS)

    Fu Xiaoguo; Wang Xiaolin; Yu Yong; Zhao Zhengping

    2001-01-01

    The surface chemical behavior clean uranium metal in hydrogen atmosphere at 100 and 200 degree C is studied by X-ray photoelectron spectroscopy (XPS), respectively. It leads to hydriding reaction when the hydrogen exposure is 12.0 Pa·s, and the U4f 7/2 binding energy of UH 3 is found to be 378.7 eV. The higher temperature (200 degree C) is beneficial to UH 3 formation at the same hydrogen exposures. XPS elemental depth profiles indicate that the distribution of uranium surface layer is UO 2 , UH 3 and U after exposure to 174.2 Pa·s hydrogen

  4. Preparation, Surface Properties, and Therapeutic Applications of Gold Nanoparticles in Biomedicine.

    Science.gov (United States)

    Panahi, Yunes; Mohammadhosseini, Majid; Nejati-Koshki, Kazem; Abadi, Azam Jafari Najaf; Moafi, Hadi Fallah; Akbarzadeh, Abolfazl; Farshbaf, Masoud

    2017-02-01

    Gold nanoparticles (AuNPs) due to their unique properties and manifold surface functionalities have been applied in bio-nanotechnology. The application of GNPs in recent medical and biological research is very extensive. Especially it involves applications such as detection and photothermalysis of microorganisms and cancer stem cells, biosensors; optical bio-imaging and observing of cells and these nanostructures also serve as practical platforms for therapeutic agents. In this review we studied all therapeutic applications of gold nanoparticles in biomedicine, synthesis methods, and surface properties. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Elastic properties of boron carbide films via surface acoustic waves measured by Brillouin light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Salas, E.; Jimenez-Villacorta, F.; Jimenez Rioboo, R.J.; Prieto, C. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Sanchez-Marcos, J. [Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientificas, Cantoblanco, 28049 Madrid (Spain); Departamento de Quimica-Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Munoz-Martin, A.; Prieto, J.E.; Joco, V. [Centro de Microanalisis de Materiales, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2013-03-15

    Surface acoustic wave (SAW) velocity has been determined by high resolution Brillouin light scattering to study the mechano-elastic properties of boron carbide films prepared by radio frequency (RF) sputtering. The comparison of experimentally observed elastic behaviour with simulations made by considering film composition obtained from elastic recoil detection analysis-time of flight (ERDA-ToF) spectroscopy allows establishing that elastic properties are determined by that of crystalline boron carbide with a lessening of the SAW velocity values due to surface oxidation. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Investigation of antimicrobial activity and morphological properties of metal coated textile surfaces

    International Nuclear Information System (INIS)

    Aslan, Necdet; Sen, Tuba; Senturk, Kenan; Corukhlu, Turgay; Varturk, Ipek; Seker, S.; Shahidi, S.; Korachi, May; Dobrovolskiy, A.M.; Tsiolko, V.V.; Matsevich, S.V.; Keskin, S.S.

    2014-01-01

    The results of investigation antimicrobial and surface properties of the textiles metal coated by means of magnetron or the cleaning-deposition system, which is based on sequentially arranged DC anode layer accelerator and hollow cathode, are presented. The antimicrobial properties against bacteria E. coli and S. aureus of cotton and polyester/cotton textiles coated by Cu, Ti and Ag with the use of two different systems were examined and compared.

  7. Tribological Behavior of Oil-Lubricated Laser Textured Steel Surfaces in Conformal Flat and Non-Conformal Contacts

    Energy Technology Data Exchange (ETDEWEB)

    Kovalchenko, A. M. [Inst. for Problems of Materials Science, Dept. 7, 3 Krzhizhanovsky Street, Kyiv 03142, UA (Corresponding author), e-mail: andrii.kovalchenko@gatech.edu; Erdemir, A. [Argonne National Lab., Energy Systems Division, 9700 South Cass Avenue, Argonne, IL 60439 US; Ajayi, O. O. [Argonne National Lab., Energy Systems Division, 9700 South Cass Avenue, Argonne, IL 60439 US; Etsion, I. [Technion-Israel Inst. of Technology, Dept. of Mechanical Engineering, Haifa 32000, IL

    2017-01-30

    Changing the surface texture of sliding surfaces is an effective way to manipulate friction and wear of lubricated surfaces. Having realized its potential, we have done very extensive studies on the effects of laser surface texturing (LST, which involves the creation of an array of microdimples on a surface) on friction and wear behavior of oil-lubricated steel surfaces in the early 2000s. In this paper, we reviewed some of our research accomplishments and assessed future directions of the laser texturing field in many diverse industrial applications. Our studies specifically addressed the impact of laser texturing on friction and wear of both the flat conformal and initial non-conformal point contact configurations using a pin-on-disk test rig under fully-flooded synthetic oil lubricants with different viscosities. Electrical resistance measurement between pin and LST disks was also used to determine the operating lubrication regimes in relation to friction. In conformal contact, we confirmed that LST could significantly expand the operating conditions for hydrodynamic lubrication to significantly much higher loads and slower speeds. In particular, with LST and higher viscosity oils, the low-friction full hydrodynamic regime was shifted to the far left in the Stribeck diagram. Overall, the beneficial effects of laser surface texturing were more pronounced at higher speeds and loads and with higher viscosity oil. LST was also observed to reduce the magnitude of friction coefficients in the boundary regime. For the non-conformal contact configuration, we determined that LST would produce more abrasive wear on the rubbing counterface compared to the untreated surfaces due to a reduction in lubricant fluid film thickness, as well as the highly uneven and rough nature of the textured surfaces. However, this higher initial wear rate has led to faster generation of a conformal contact, and thus transition from the high-friction boundary to lower friction mixed

  8. Surface crystallization and magnetic properties of amorphous Fe80B20 alloy

    International Nuclear Information System (INIS)

    Vavassori, P.; Ronconi, F.; Puppin, E.

    1997-01-01

    We have studied the effects of surface crystallization on the magnetic properties of Fe 80 B 20 amorphous alloys. The surface magnetic properties have been studied with magneto-optic Kerr measurements, while those of bulk with a vibrating sample magnetometer. This study reveals that surface crystallization is similar to the bulk process but occurs at a lower temperature. At variance with previous results on other iron-based amorphous alloys the surface crystalline layer does not induce bulk magnetic hardening. Furthermore, both the remanence to saturation ratio and the bulk magnetic anisotropy do not show appreciable variations after the formation of the surface crystalline layer. The Curie temperature of the surface layer is lower with respect to the bulk of the sample. These effects can be explained by a lower boron concentration in the surface region of the as-cast amorphous alloy. Measurements of the chemical composition confirm a reduction of boron concentration in the surface region. copyright 1997 American Institute of Physics

  9. A robust superhydrophobic surface and origins of its self-cleaning properties

    Science.gov (United States)

    Li, Hao; Yu, Sirong

    2017-10-01

    A hierarchical surface was fabricated by electrodeposition of copper coating and chemical oxidation to form copper oxide, and the surface energy was lowered by chemical modification. The optimum parameters including seven days of chemical modification, 0.12 mol/L of (NH4)2S2O8, 2.5 mol/L of KOH and 60 °C of oxidation temperature were used to fabricate the superhydrophobic surface with a water contact angle up to around 160° and a sliding angle about 3° on a steel substrate. Silver mirror effect and simple calculation showed that the wetting state between a water droplet and the hierarchical superhydrophobic surface was the Cassie state. This superhydrophobic surface had excellent self-cleaning properties for two different sizes (∼ 50 μm and 150 μm) of fly-ash cenospheres, and we gave the reason for its self-cleaning properties by the force involved at the interface. We also investigated the dynamics of water droplets impinging onto the superhydrophobic surface with different impact velocities, ranging from 0.31 m/s to 1.71 m/s, and found that all the water droplets could rebound from the superhydrophobic surface, with no trace of adhesion. In addition, a variety of tests were performed to assess the robustness of the superhydrophobic surfaces.

  10. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  11. Effect of Leaf Surface Chemical Properties on Efficacy of Sanitizer for Rotavirus Inactivation

    OpenAIRE

    Fuzawa, Miyu; Ku, Kang-Mo; Palma-Salgado, Sindy Paola; Nagasaka, Kenya; Feng, Hao; Juvik, John A.; Sano, Daisuke; Shisler, Joanna L.; Nguyen, Thanh H.

    2016-01-01

    The use of sanitizers is essential for produce safety. However, little is known about how sanitizer efficacy varies with respect to the chemical surface properties of produce. To answer this question, the disinfection efficacies of an oxidant-based sanitizer and a new surfactant-based sanitizer for porcine rotavirus (PRV) strain OSU were examined. PRV was attached to the leaf surfaces of two kale cultivars with high epicuticular wax contents and one cultivar of endive with a low epicuticular ...

  12. Probing the surface profile and friction behavior of heterogeneous polymers: a molecular dynamics study

    Science.gov (United States)

    Dai, L.; Sorkin, V.; Zhang, Y. W.

    2017-04-01

    We perform molecular dynamics simulations to investigate molecular structure alternation and friction behavior of heterogeneous polymer (perfluoropolyether) surfaces using a nanoscale probing tip (tetrahedral amorphous carbon). It is found that depending on the magnitude of the applied normal force, three regimes exist: the shallow depth-sensing (SDS), deep depth-sensing (DDS), and transitional depth-sensing (TDS) regimes; TDS is between SDS and DDS. In SDS, the tip is floating on the polymer surface and there is insignificant permanent alternation in the polymer structure due to largely recoverable atomic deformations, and the surface roughness profile can be accurately measured. In DDS, the tip is plowing through the polymer surface and there is significant permanent alternation in the molecular structure. In this regime, the lateral friction force rises sharply and fluctuates violently when overcoming surface pile-ups. In SDS, the friction can be described by a modified Amonton’s law including the adhesion effect; meanwhile, in DDS, the adhesion effect is negligible but the friction coefficient is significantly higher. The underlying reason for the difference in these regimes rests upon different contributions by the repulsion and attraction forces between the tip and polymer surfaces to the friction force. Our findings here reveal important insights into lateral depth-sensing on heterogeneous polymer surfaces and may help improve the precision of depth-sensing devices.

  13. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Science.gov (United States)

    Tarazanova, Mariya; Huppertz, Thom; Beerthuyzen, Marke; van Schalkwijk, Saskia; Janssen, Patrick; Wels, Michiel; Kok, Jan; Bachmann, Herwig

    2017-01-01

    Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities. PMID:28936202

  14. Cell Surface Properties of Lactococcus lactis Reveal Milk Protein Binding Specifically Evolved in Dairy Isolates

    Directory of Open Access Journals (Sweden)

    Mariya Tarazanova

    2017-09-01

    Full Text Available Surface properties of bacteria are determined by the molecular composition of the cell wall and they are important for interactions of cells with their environment. Well-known examples of bacterial interactions with surfaces are biofilm formation and the fermentation of solid materials like food and feed. Lactococcus lactis is broadly used for the fermentation of cheese and buttermilk and it is primarily isolated from either plant material or the dairy environment. In this study, we characterized surface hydrophobicity, charge, emulsification properties, and the attachment to milk proteins of 55 L. lactis strains in stationary and exponential growth phases. The attachment to milk protein was assessed through a newly developed flow cytometry-based protocol. Besides finding a high degree of biodiversity, phenotype-genotype matching allowed the identification of candidate genes involved in the modification of the cell surface. Overexpression and gene deletion analysis allowed to verify the predictions for three identified proteins that altered surface hydrophobicity and attachment of milk proteins. The data also showed that lactococci isolated from a dairy environment bind higher amounts of milk proteins when compared to plant isolates. It remains to be determined whether the alteration of surface properties also has potential to alter starter culture functionalities.

  15. Preservation of surface-dependent properties of viral antigens following immobilization on particulate ceramic delivery vehicles.

    Science.gov (United States)

    Kossovsky, N; Gelman, A; Sponsler, E; Rajguru, S; Torres, M; Mena, E; Ly, K; Festekjian, A

    1995-05-01

    B-cell stimulation for the purpose of evoking an effective neutralizing humoral immune response is a surface phenomenon that is exquisitely specific to antigen conformation. Consequently, successful delivery of antigen, such as would be desired in a vaccine, entails preservation of an antigen's apparent native surface (conformational) properties. Prior to testing the actual vaccinating efficacy of delivered antigens, the surface properties could be assessed through a variety of in vitro and in vivo assays in which the measurement standard would be the properties of the antigens in their native state (whole virus). Using surface modified nanocrystalline carbon and calcium-phosphate ceramic particulates (carbon ceramics and brushite), we evaluated the surface activity of immobilized non-nuclear material extracted from HIV-1. Physical characterization showed that the particles with immobilized antigen ("HIV decoys") measured 50 nm in diameter (HIV = 50-100 nm) and exhibited the same zeta potentials as whole (live) HIV. In vitro testing showed that the HIV decoys were recognized by both conformationally nonspecific and specific monoclonal antibodies, were recognized by human IgG from HIV antibody-positive patients, and could promote surface agglomeration among malignant T-cells similar to live HIV. Last, in vivo testing in three vaccinated animal species showed that the HIV decoys elicited humoral and cellular immune responses similar to that evoked by whole (live) HIV.

  16. Mean-field behavior for the survival probability and the point-to-surface connectivity

    CERN Document Server

    Sakai, A

    2003-01-01

    We consider the critical survival probability for oriented percolation and the contact process, and the point-to-surface connectivity for critical percolation. By similarity, let \\rho denote the critical expoents for both quantities. We prove in a unified fashion that, if \\rho exists and if both two-point function and its certain restricted version exhibit the same mean-field behavior, then \\rho=2 for percolation with d>7 and \\rho=1 for the time-oriented models with d>4.

  17. The effect of surface treatment and position of the dental restoration on amalgam corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Mortazavi, V. [Isfahan Univ. of Medical Sciences, Faculty of Dentistry, Isfahan (Iran, Islamic Republic of); Fathi, M.H. [Isfahan Univ. of Technology, Materials Engineering Dept., Isfahan (Iran, Islamic Republic of)

    2003-07-01

    The aim of this research was to evaluate the effect of surface treatment, clinical operations and the condition and position of the dental restoration on amalgam corrosion behavior. Commercial amalgam alloy namely Oralloy was selected. Twenty-one amalgam samples were prepared. After triturating and condensation, the samples were divided into three groups and each group was finished by using one of three surface clinical procedures; carving, carving-burnishing, carving-burnishing-polishing. A special cylindrical mold was used in order to simulation of the interproximal areas and proximal surfaces of the dental restorations. Stainless steel matrix band was laid on the internal mold surfaces and amalgam paste was compacted in the mold. Electrochemical potentiodynamic tests were performed at a temperature of 37{+-}1 {sup o}C in physiological solution in order to determine and compare the corrosion behavior of dental amalgam samples, as an indication of biocompatibility. The results showed statistically significant differences between the mean corrosion current density values of three different groups of dental amalgam (P<0.05). The polished group possesses the lowest and the carved group shows the highest corrosion current density. The carved group shows more corrosion resistance in compare with the sample near the matrix band as an index of the proximal surfaces of restorations. It was concluded that even a simple clinical operation could effect on dental amalgam corrosion resistance. The proximal surfaces of the class II restorations are not only susceptible to concentration cell corrosion but also possess less corrosion resistance because dentist could perform no clinical surface treatment. (author)

  18. Superhydrophilicity and antibacterial property of a Cu-dotted oxide coating surface

    Directory of Open Access Journals (Sweden)

    Nie Yining

    2010-09-01

    Full Text Available Abstract Background Aluminum-made settings are widely used in healthcare, schools, public facilities and transit systems. Frequently-touched surfaces of those settings are likely to harbour bacteria and be a potential source of infection. One method to utilize the effectiveness of copper (Cu in eliminating pathogens for these surfaces would be to coat the aluminum (Al items with a Cu coating. However, such a combination of Cu and Al metals is susceptible to galvanic corrosion because of their different electrochemical potentials. Methods In this work, a new approach was proposed in which electrolytic plasma oxidation (EPO of Al was used to form an oxide surface layer followed by electroplating of Cu metal on the top of the oxide layer. The oxide was designed to function as a corrosion protective and biocompatible layer, and the Cu in the form of dots was utilized as an antibacterial material. The antibacterial property enhanced by superhydrophilicity of the Cu-dotted oxide coating was evaluated. Results A superhydrophilic surface was successfully prepared using electrolytic plasma oxidation of aluminum (Al followed by electroplating of copper (Cu in a Cu-dotted form. Both Cu plate and Cu-dotted oxide surfaces had excellent antimicrobial activities against E. coli ATCC 25922, methicillin-resistant Staphylococcus aureus (MRSA ATCC 43300 and vancomycin-resistant Enterococcus faecium (VRE ATCC 51299. However, its Cu-dotted surface morphology allowed the Cu-dotted oxide surface to be more antibacterial than the smooth Cu plate surface. The enhanced antibacterial property was attributed to the superhydrophilic behaviour of the Cu-dotted oxide surface that allowed the bacteria to have a more effective killing contact with Cu due to spreading of the bacterial suspension media. Conclusion The superhydrophilic Cu-dotted oxide coating surface provided an effective method of controlling bacterial growth and survival on contact surfaces and thus reduces the

  19. Psychometric Properties of a Korean Translation of the "Scales of Independent Behavior--Revised"

    Science.gov (United States)

    Cho, Su-Je; Paik, Eunhee; Lee, Byoung-In; Yi, Joonsuk

    2010-01-01

    This study explores the psychometric properties of data drawn from the Korean translation of the full "Scales of Independent Behavior--Revised" (SIB-R). In addition, semantic, content, conceptual, and technical equivalence are examined. The participants include 2,763 typically developing children and 406 children with intellectual…

  20. Contrasting Roles of Dopamine and Noradrenaline in the Motivational Properties of Social Play Behavior in Rats

    NARCIS (Netherlands)

    Achterberg, E.J.M.; van Kerkhof, L.W.M.; Servadio, Michela; van Swieten, Maaike; Houwing, Danielle J; Aalderink, Mandy; Driel, Nina V; Trezza, Viviana; Vanderschuren, L.J.M.J.

    2016-01-01

    Social play behavior, abundant in the young of many mammalian species, is generally assumed to be important for social and cognitive development. Social play is highly rewarding, and as such, the expression of social play depends on its pleasurable and motivational properties. Since the motivational

  1. Surface-defect induced modifications in the optical properties of α-MnO2 nanorods

    International Nuclear Information System (INIS)

    John, Reenu Elizabeth; Chandran, Anoop; Thomas, Marykutty; Jose, Joshy; George, K.C.

    2016-01-01

    Graphical abstract: - Highlights: • Alpha-MnO 2 nanorods are prepared by chemical method. • Difference in surface defect density is achieved. • Characterized using XRD, Rietveld, XPS, EDS, HR-TEM, BET, UV–vis absorption spectroscopy and PL spectroscopy. • Explains the bandstructure modification due to Jahn–Teller distortions using crystal field theory. • Modification in the intensity of optical emissions related to defect levels validates the concept of surface defect induced tuning of optical properties. - Abstract: The science of defect engineering via surface tuning opens a new route to modify the inherent properties of nanomaterials for advanced functional and practical applications. In this work, two independent synthesis methods (hydrothermal and co-precipitation) are adopted to fabricate α-MnO 2 nanorods with different defect structures so as to understand the effect of surface modifications on their optical properties. The crystal structure and morphology of samples are investigated with the aid of X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Atomic composition calculated from energy dispersive spectroscopy (EDS) confirms non-stoichiometry of the samples. The surface properties and chemical environment are thoroughly studied using X-ray photoelectron spectroscopy (XPS) and Brunauer–Emmett–Teller (BET) analysis. Bond angle variance and bond valence sum are determined to validate distortions in the basic MnO 6 octahedron. The surface studies indicate that the concentration of Jahn–Teller manganese (III) (Mn 3+ ) ion in the samples differ from each other which results in their distinct properties. Band structure modifications due to Jahn–Teller distortion are examined with the aid of ultraviolet–visible (UV) reflectance and photoluminescence (PL) studies. The dual peaks obtained in derivative spectrum conflict the current concept on the bandgap energy of MnO 2 . These studies suggest that

  2. Understanding the Hydromechanical Behavior of a Fault Zone From Transient Surface Tilt and Fluid Pressure Observations at Hourly Time Scales

    Science.gov (United States)

    Schuite, Jonathan; Longuevergne, Laurent; Bour, Olivier; Burbey, Thomas J.; Boudin, Frédérick; Lavenant, Nicolas; Davy, Philippe

    2017-12-01

    Flow through reservoirs such as fractured media is powered by head gradients which also generate measurable poroelastic deformation of the rock body. The combined analysis of surface deformation and subsurface pressure provides valuable insights of a reservoir's structure and hydromechanical properties, which are of interest for deep-seated CO2 or nuclear waste storage for instance. Among all surveying tools, surface tiltmeters offer the possibility to grasp hydraulically induced deformations over a broad range of time scales with a remarkable precision. Here we investigate the information content of transient surface tilt generated by the pressurization a kilometer scale subvertical fault zone. Our approach involves the combination of field data and results of a fully coupled poromechanical model. Th