WorldWideScience

Sample records for behavior crystal morphology

  1. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between the fi...

  2. Study on the crystal morphology and melting behavior of isothermally crystallized composites of short carbon fiber and poly(trimethylene terephthalate)

    Institute of Scientific and Technical Information of China (English)

    Mingtao RUN; Hongzan SONG; Yanping HAO

    2009-01-01

    The spherulites of the short carbon fibcr(SCF)/ poly (trimethylcne terephthalate) (PTT) composites forrned in limited space at designed temperatures, and their melting behaviors were studied by the polarized optical microscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. The results suggest that SCF content, isothermal crystallization temperatures, and the film thicknesses influence the crystal morphology of the composites. The dimension of the spherulites is decreased with increasing SCF content, but whether banded or nonbandcd spherulites will form in the composites is not depondcnt on SCF content However, the crystal morphology of the composites depends strongly on the temperature. When the isothermal crystallization temperatures increase from 180℃ to 230℃, the crystal morphology of SCF/PTT composites continuously changes in the following order: nonbanded → banded → nonbanded spherulites. Disconti-nuous circle lines form in the film when the film thickness increases from 30 to 60 μm. Basing on the SEM observation, it is found that these circle lines are cracks formed due to the constriction difference of the different parts of the sphemlites. These cracks are formed when the film is cooled from the isothermal crystallization temperature to the room tempera-ture at a slow cooling rate; while they will disappear gradually at different temperatures in the heating process. The crack will appear/disappear first around the center of the spherulite when the film was cooled/heated. The nontwisted or slightly twisted lamellas will reorganize to form highly twisted lamellas inducing apparent banded texture of the sphemlites.

  3. Effects of Degree of Enzymatic Interesterification on the Physical Properties of Margarine Fats: Solid Fat Content, Crystallization Behavior, Crystal Morphology, and Crystal Network

    DEFF Research Database (Denmark)

    Zhang, Hong; Smith, Paul; Adler-Nissen, Jens

    2004-01-01

    In this study enzymatic-interesterified margarine fats with different conversion degrees were produced in a packed-bed reactor. The effects of conversion degree on the formation of free fatty acids and diacyglycerols, solid fat content, crystallization behavior, microstructure, and crystal network...... was observed for both the blend and products. Isothermal crystallization kinetics was characterized by the Fisher- Turnbull model. The highest free energy was observed for the blend. A small deformation with oscillation tests shows a significant difference between the blend and interesterified products...

  4. Morphology-dependent crystallization and luminescence behavior of (Y, Eu){sub 2}O{sub 3} red phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Qi [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Li Jiguang, E-mail: LI.Jiguang@nims.go.jp [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)] [Nano Ceramics Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Li Xiaodong; Sun Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China)

    2009-12-15

    (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} red phosphor particles with three distinctive morphologies of submicron spheres (up to 180 nm), microflowers (up to 10 {mu}m) and microplates (up to 50 x 10 {mu}m) have been converted from their respective precursors autoclaved (100-180 deg. C, 12 h) from mixed solutions of the component nitrates and hexamethylenetetramine [(CH{sub 2}){sub 6}N{sub 4}]. The three types of precursors were found to have the approximate compositions M(OH)CO{sub 3}.H{sub 2}O for the sphere (M = Y and Eu), M{sub 4}O(OH){sub 9}NO{sub 3} for the flower and M{sub 2}(CO{sub 3}){sub 3}.3H{sub 2}O for the plate, and their formation domains were defined. Both X-ray diffraction and photoluminescence analysis indicated that a calcination temperature of {>=}800 deg. C is needed to attain a homogeneous (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} solid solution and thus improved luminescence. Morphology-confined crystal growth of (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} was observed from the microplates, yielding a significantly higher exposure of the (4 0 0) facets at elevated temperature. The three types of phosphors exhibited a substantial morphology-dependent photoluminescence (PL)/photoluminescence excitation (PLE) behavior, but did not differ much in the positions of the PLE/PL bands or in the asymmetry factor [I({sup 5}D{sub 0} {yields} {sup 7}F{sub 2})/I({sup 5}D{sub 0} {yields} {sup 7}F{sub 1})] of the luminescence. Upon UV excitation into the charge transfer band at {approx}240 nm the microplates showed the strongest red emission at {approx}613 nm (the {sup 5}D{sub 0} {yields} {sup 7}F{sub 2} transition of Eu{sup 3+}) at a calcination temperature of 1000 deg. C, whose intensity was {approx}2.49 and 1.57 times those of the flowers and spheres, respectively. Fluorescence decay analysis yielded similar lifetimes of {approx}1.5 {+-} 0.1 ms for the 613 nm emission of the three morphologies, suggesting that the differing luminescence was largely morphology

  5. Morphology Changing at Incipient Crystallization Condition

    Science.gov (United States)

    Toshima, Takeshi; Hamai, Ryo; Fujita, Saya; Takemura, Yuka; Takamatsu, Saori; Tafu, Masamoto

    2015-04-01

    Brushite (Dicalcium phosphate dihydrate, (DCPD), CaHPO4·2H2O) is one of key components in calcium phosphate system due to wide attractive material not only as bioceramics but also environmental materials. Morphology of DCPD crystals is important factor when one uses its functionality with chemical reaction; because its surface crystal face, shape and size rule the chemical reactivity, responsiveness. Moreover, physical properties are also changed the morphology; such as cohesion, dispersiveness, permeability and so on. If one uses DCPD crystals as environmental renovation materials to catch the fluoride ions, their shape require 020 crystal surfaces; which usually restricts their shape as plate-like structure. After the chemical reaction, the shape of sludge is not good for handling due to their agglutinate property. Therefore searching an effective parameter and developing the method to control the morphology of DCPD crystals is required. In past, we reported that initial concentration and pH value of starting solution, prepared by dissolving calcium nitrate, Ca(NO3)2 and ammonium dihydrogen phosphate, NH4H2PO4, changes the morphology of DCPD crystals and phase diagram of morphology of DCPD crystal depend on those parameter. The DCPD crystallization shows unique behaviour; products obtained higher initial concentration form single crystal-like structure and under lower condition, they form agglomerate crystal-like structure. These results contradict usual crystallization. Here we report that the effect of mixing process of two solutions. The morphology of DCPD crystals is changed from plate structure to petal structure by the arrangement. Our result suggests that morphology of DCPD crystals strongly depends at incipient crystallization condition and growth form is controllable by setting initial crystallization condition.

  6. Crystallization-induced properties from morphology-controlled organic crystals.

    Science.gov (United States)

    Park, Chibeom; Park, Ji Eun; Choi, Hee Cheul

    2014-08-19

    During the past two decades, many materials chemists have focused on the development of organic molecules that can serve as the basis of cost-effective and flexible electronic, optical, and energy conversion devices. Among the potential candidate molecules, metal-free or metal-containing conjugated organic molecules offer high-order electronic conjugation levels that can directly support fast charge carrier transport, rapid optoelectric responses, and reliable exciton manipulation. Early studies of these molecules focused on the design and synthesis of organic unit molecules that exhibit active electrical and optical properties when produced in the form of thin film devices. Since then, researchers have worked to enhance the properties upon crystallization of the unit molecules as single crystals provide higher carrier mobilities and exciton recombination yields. Most recently, researchers have conducted in-depth studies to understand how crystallization induces property changes, especially those that depend on specific crystal surfaces. The different properties that depend on the crystal facets have been of particular interest. Most unit molecules have anisotropic structures, and therefore produce crystals with several unique crystal facets with dissimilar molecular arrangements. These structural differences would also lead to diverse electrical conductance, optical absorption/emission, and even chemical interaction properties depending on the crystal facet investigated. To study the effects of crystallization and crystal facet-dependent property changes, researchers must grow or synthesize crystals of highly conjugated molecules that have both a variety of morphologies and high crystallinity. Morphologically well-defined organic crystals, that form structures such as wires, rods, disks, and cubes, provide objects that researchers can use to evaluate these material properties. Such structures typically occur as single crystals with well-developed facets with

  7. Crystallization Behavior of Waxes

    OpenAIRE

    Jana, Sarbojeet

    2016-01-01

    Partially hydrogenated oil (PHO) has no longer GRAS status. However, PHO is one of the important ingredients in bakery and confectionary industry and therefore the food industry is seeking for an alternative fat to replace PHO. Waxes have shown promise to fulfill that demand because of its easy availability and cheap in price. Waxes with high melting points (> 40 °C) help in the crystallization process when mixed with low melting point oils. A crystalline network is formed in this wax/oil cry...

  8. Studies on confined crystallization behavior of polycaprolactone thin films

    Institute of Scientific and Technical Information of China (English)

    QIAO Congde; JIANG Shichun; JI Xiangling; AN Lijia; JIANG Bingzheng

    2007-01-01

    The confined crystallization behavior ofpolycap-rolactone (PCL) in thin and ultrathin films was studied by AFM (atomic force microscopy). It was found that the crys-talline morphology of PCL depended on the film's thickness.When the thickness is d>2Rg (radius of gyration), the polymer can crystallize into spherulites; when Rg < d< 2 Rg,a dense-branch morphology and dendrites could be found;when dcrystallization temperature and the substrate and the molecular weigbt on the crystalline mor-phology were discussed. It was shown that the crystallization of PCL in thin films is a diffusion-controlled process, and it can be explained by diffusion-limited aggregation.

  9. Growth morphology and structural characteristic of C70single crystals

    Institute of Scientific and Technical Information of China (English)

    周维亚; 解思深; 吴源; 常保和; 王刚; 钱露茜

    1999-01-01

    Large size C70 single crystals with the dimension of more than 5 mm are grown from the vapor phase by controlling nucleation. X-ray diffraction and electron diffraction confirm that in the C70 single crystal a phase of the hexagonal close-packed (hcp) structure coexists with a minor face-center-cubic (fcc) phase at room temperature. The morphologies and their formation mechanism of the C70 single crystals are investigated by means of scanning electron microscopy and optical microscopy. The influence of growth conditions on the morphologies of C70 single crystals is discussed.

  10. Theoretical and experimental morphologies of 4-aminobenzophenone (ABP) crystals

    Science.gov (United States)

    Wang, Qingwu; Sheen, D. B.; Shepherd, E. E. A.; Sherwood, J. N.; Simpson, G. S.; Hammond, R. B.

    1997-11-01

    The lattice energy (Elatt), slice energies (Eslice) and attachment energies (Eatt) of the different habit faces of ABP crystals have been calculated using the computer program HABIT. On the basis of the attachment energies of different crystal faces, the morphology was defined as {1 0 0}, {0 0 1}, {1 1 0}, {11bar0} and {1 01bar}. To confirm this theoretical prediction, we have grown ABP films and ABP crystals from the vapour phase. In both cases, the morphologically most important face was defined as {1 0 0} face using X-ray diffraction techniques. The remaining faces of the vapour-grown crystals were defined using a projection method, while the crystallites in the films were morphologically analysed by means of atomic force microscopy (AFM). The experimental morphologies are basically in agreement with the computation. Deviations from the equilibrium morphology can be ascribed to departure from equilibrium conditions during growth. For completeness, the results are compared with those for crystals grown from solutions for which deviations in morphology from the theoretical predictions can be ascribed to interaction between the crystal faces and solvent molecules.

  11. Crystal growth and morphology of calcium oxalates and carbonates

    NARCIS (Netherlands)

    Heijnen, W.M.M.

    1986-01-01

    The main purpose of the research described in this thesis is to establish a relationship between the crystal structure and morphology of calcium oxalate and calcium carbonate crystals grown from aqueous solutions. Starting point is the PBC (Periodic Bond Chain) theory formulated by Hartman and Perdo

  12. Morphological and optical properties of doped potassium hydrogen phthalate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Enculescu, M., E-mail: mdatcu@infim.r [National Institute of Materials Physics, Multifunctional Materials and Structures Laboratory, PO Box MG-7, 077125 Magurele-Bucharest (Romania)

    2010-09-01

    Potassium hydrogen phthalate (KAP) crystals doped with rhodamine 6G (Rh 6G) and polyvinylpyrrolidone (PVP) were grown by solution evaporation technique. Nucleation occurred without the use of seeds and optically transparent crystals were obtained. The grown crystals were characterized by XRD measurements performed on crystals and their powders, optical transmission and photoluminescence measurements. The influence of the dopants on the structural, morphological and optical properties of the KAP crystals was analysed. Dopants do not change the structure of the single crystals while the addition of PVP changes the morphology of crystals from pseudo-hexagonal to rhomb. Three new XRD reflections are observed in all single-crystal and powder XRD spectra and are probably (0 3 0), (0 4 0) and (0 5 0) lines. The UV cut-off and transparency of the crystals are not changed by doping. Dye-doped KAP crystals exhibit a strong emission band centred at 550 nm excited with 480 nm wavelength. For the dye-doped crystals the up-conversion was investigated and its second harmonic origins are proved using photoluminescence measurements.

  13. Dendrite crystal morphology evolution mechanism of β-BaB2O4 crystal

    Institute of Scientific and Technical Information of China (English)

    HE ChongJun; ZHONG WeiZhuo; LIU YouWen

    2009-01-01

    Existence of [B3-O6]3- hexagonal ring growth unit in melt solution of β-BaB2O4 crystal was proved by the results of high temperature Raman measurements. A morphology evolution process of β-BaB2O4 crys-tal was observed by a high temperature in-situ observation device. The crystal morphology varied with the supersaturation of growth melt solution. The mechanism of β-BaB2O4 crystal morphology evolution was analyzed through the growth unit model.

  14. Dendrite crystal morphology evolution mechanism of β-BaB2O4 crystal

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Existence of [B3-O6]3- hexagonal ring growth unit in melt solution of β-BaB2O4 crystal was proved by the results of high temperature Raman measurements.A morphology evolution process of β-BaB2O4 crys-tal was observed by a high temperature in-situ observation device.The crystal morphology varied with the supersaturation of growth melt solution.The mechanism of β-BaB2O4 crystal morphology evolution was analyzed through the growth unit model.

  15. NONISOTHERMAL CRYSTALLIZATION AND MORPHOLOGY OF POLY(BUTYLENE SUCCINATE)/LAYERED DOUBLE HYDROXIDE NANOCOMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Mei-qiu Zhan; Guang-yi Chen; Zhi-yong Wei; Yu-mei Shi; Wan-xi Zhang

    2013-01-01

    Biodegradable poly(butylene succinate) (PBS) and layered double hydroxide (LDH) nanocomposites were prepared via melt blending in a twin-screw extruder.The morphology and dispersion of LDH nanoparticles within PBS matrix were characterized by transmission electron microscopy (TEM),which showed that LDH nanoparticles were found to be well distributed at the nanometer level.The nonisothermal crystallization behavior of nanocomposites was extensively studied using differential scanning calorimetry (DSC) technique at various cooling rates.The crystallization rate of PBS was accelerated by the addition of LDH due to its heterogeneous nucleation effect; however,the crystallization mechanism and crystal structure of PBS remained almost unchanged.In kinetics analysis of nonisothermal crystallization,the Ozawa approach failed to describe the crystallization behavior of PBS/LDH nanocomposites,whereas both the modified Avrami model and the Mo method well represented the crystallization behavior of nanocomposites.The effective activation energy was estimated as a function of the relative degree of crystallinity using the isoconversional analysis.The subsequent melting behavior of PBS and PBS/LDH nanocomposites was observed to be dependent on the cooling rate.The POM showed that the small and less perfect crystals were formed in nanocomposites.

  16. CRYSTALLIZATION AND MORPHOLOGY OF STAR-SHAPED POLYETHYLENOXYDE-b-POLYCAPROLACTONE UNDER HIGH PRESSURE CARBON DIOXIDE

    Institute of Scientific and Technical Information of China (English)

    Ya Li; Jian Zhou; Jun Li; Qu-ting Gou; Qun Gu; Zong-bao Wang

    2012-01-01

    Atomic force microscopy (AFM),wide-angle X-ray diffraction (WAXD) and differential scanning calorimetry are used to analyze the crystallization morphology and melting behavior of 4-arm PEO-b-PCL under high-pressure CO2.It is demonstrated that CO2 has certain effect on the melting and crystallization behavior of the samples.After crystallization under CO2 at 4 MPa,spherulites with concentric ring-banded structure are formed which are composed of crystals with periodic thickness variation,and the band distance decreases with increasing treatment pressure.Due to the plasticization effect of CO2,depression of the melting temperature is observed with sorption of CO2 in polymers.

  17. Morphology and networks of sunflower wax crystals in organogel

    Science.gov (United States)

    Plant waxes are considered as promising alternatives to unhealthy solid fats such as trans fats and saturated fats in structured food products including margarines and spreads. Sunflower wax is of a great interest due to its strong gelling ability. Morphology of sunflower wax crystals formed in soyb...

  18. Crystal morphology of sunflower wax in soybean oil organogel

    Science.gov (United States)

    While sunflower wax has been recognized as an excellent organogelator for edible oil, the detailed morphology of sunflower wax crystals formed in an edible oil organogel has not been fully understood. In this study, polarized light microscopy, phase contrast microscopy, scanning electron microscopy ...

  19. Crystal Growth, Structure and Morphology of Rifapentine Methanol Solvate

    Institute of Scientific and Technical Information of China (English)

    周堃; 李军; 罗建洪; 金央

    2012-01-01

    Rifapentine, an important antibiotic, was crystallized from methanol solvent in the form of its methanol solvate. The crystal structure of rifapentine methanol solvate belongs to monoclinic, space group P21, with the unit cell parameters of a = 1.2278(3) nm, b = 1.9768(4) rim, c = 1.2473(3) nm, Z= 2, and β = 112.35(3). The parallelepiped.morphology was also predicted by Materials Studio simulation program.. The influence of intermolecular in-teraction was taken into account in the attachment energy model. The crystal shape fits the calculated morphology well, which was performed on the potential energy minimized model using a generic DREIDING 2.21 force fieldand developed minimization protocol with derived'partial charges.

  20. Growth morphology of zinc tris(thiourea) sulphate crystals

    Indian Academy of Sciences (India)

    Sunil Verma; M K Singh; V K Wadhawan; C H Suresh

    2000-06-01

    The growth morphology of crystals of zinc tris(thiourea) sulphate (ZTS) is investigated experimentally, and computed using the Hartman–Perdok approach. Attachment energies of the observed habit faces are calculated for determining their relative morphological importance. A computer code is developed for carrying out these calculations. A special procedure is adopted for computing the cohesive energy of a slice of the structure parallel to any rational crystallographic plane. For estimating the cohesive energies, formal charges on the experimentally determined atomic positions in the molecules of ZTS are calculated by ab initio molecular-orbital computations, with wave functions obtained by the Hartree–Fock procedure. Fairly good agreement with the observed crystal morphology is obtained for a model of growth mechanism in which ZTS is assumed to exist in solution as zinc tris(thiourea) ions and sulphate ions.

  1. Incorporation of tin affects crystallization, morphology, and crystal composition of Sn-Beta

    DEFF Research Database (Denmark)

    Tolborg, Søren; Katerinopoulou, A.; Falcone, D. D.;

    2014-01-01

    The crystallization of Sn-Beta in fl uoride medium is greatly in fl uenced by the amount and type of tin source present in the synthesis gel. By varying the amount of tin in the form of tin( IV ) chloride pentahydrate, the time required for crystallization was studied. It was found that tin...... not only drastically a ff ects the time required for crystallization, but also that the presence of tin changes the morphology of the formed Sn-Beta crystals. For low amounts of tin (Si/Sn ¼ 400) crystallization occurs within four days and the Sn-Beta crystals are capped bipyramidal in shape, whereas...... to the minimum time required for obtaining full crystallinity. At excessive crystallization times, the catalytic activity decreased, presumably due to Ostwald ripening...

  2. SOLUTION CRYSTALLIZATION OF METALLOCENE SHORT CHAIN BRANCHED POLYETHYLENE: MORPHOLOGY AND MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Qiang Fu; Rong-ni Du; Fang-Chyou Chiu

    2000-01-01

    Solution crystallization of metallocene short chain branched polyethylene (SCBPE) was carried out and very nice single crystals were obtained. Compared with single crystals grown from linear polyethylene, SCBPE single crystals are dirty due to intermolecular heterogeneity The crystal morphology changes with crystallization temperatures. Lozenge, truncated lozenge, hexagonal, rounded and elongated crystal morphologies have been found at much lower crystallization temperature than in linear polyethylene. The electron diffraction shows there is a possibility that the single crystals may have hexagonal packing in a crystallization temperature range. The lateral habits of single crystal are discussed based on roughening theories.

  3. Sequential crystallization and morphology of triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers

    KAUST Repository

    Palacios, Jordana

    2016-01-05

    The sequential crystallization of poly(ethylene oxide)-b-poly(e-caprolactone)-b-poly(L-lactide) (PEO-b-PCL-b-PLLA) triblock terpolymers, in which the three blocks are able to crystallize separately and sequentially from the melt, is presented. Two terpolymers with identical PEO and PCL block lengths and two different PLLA block lengths were prepared, thus the effect of increasing PLLA content on the crystallization behavior and morphology was evaluated. Wide angle X-Ray scattering (WAXS) experiments performed on cooling from the melt confirmed the triple crystalline nature of these terpolymers and revealed that they crystallize in sequence: the PLLA block crystallizes first, then the PCL block, and finally the PEO block. Differential scanning calorimetry (DSC) analysis further demonstrated that the three blocks can crystallize from the melt when a low cooling rate is employed. The crystallization process takes place from a homogenous melt as indicated by small angle X-Ray scattering (SAXS) experiments. The crystallization and melting enthalpies and temperatures of both PEO and PCL blocks decrease as PLLA content in the terpolymer increases. Polarized light optical microscopy (PLOM) demonstrated that the PLLA block templates the morphology of the terpolymer, as it forms spherulites upon cooling from the melt. The subsequent crystallization of PCL and PEO blocks occurs inside the interlamellar regions of the previously formed PLLA block spherulites. In this way, unique triple crystalline mixed spherulitic superstructures have been observed for the first time. As the PLLA content in the terpolymer is reduced the superstructural morphology changes from spherulites to a more axialitic-like structure.

  4. Large deformation behavior of fat crystal networks

    NARCIS (Netherlands)

    Kloek, W.; Vliet, van T.; Walstra, P.

    2005-01-01

    Compression and wire-cutting experiments on dispersions of fully hydrogenated palm oil in sunflower oil with varying fraction solid fat were carried out to establish which parameters are important for the large deformation behavior of fat crystal networks. Compression experiments showed that the app

  5. MORPHOLOGICAL STUDIES OF PET FILMS WITH DIFFERENT CRYSTALLIZATION RATE IN DRAWING PROCESSES

    Institute of Scientific and Technical Information of China (English)

    XU Mao; ZHU Lilan; GUAN Jiayu

    1984-01-01

    Morphological changes during stretching of two PET samples (S and T) with different crystallization rate have been studied by means of SALS, solvent etching and polarizing microscope techniques. Results show that under the same drawing conditions larger and more perfect rod-like and spherulitic superstructures were formed more easily in the sample with higher crystallization rate (sample S). The amount of less compact regions which may be easily attacked by the vapor of allyl amine decreases more rapidly in sample S than in sample T during stretching, and these regions are more randomly distributed in sample T especially at low elongations. The difference of the two samples in morphological changes is coincident with their difference in tensile behavior.

  6. Morphology, crystal structure and hydration of calcined and modified anhydrite

    Institute of Scientific and Technical Information of China (English)

    Xiao-qing Niu; Ji-chun Chen

    2014-01-01

    The effects of calcination and modification on the morphology (shapes and textures) and crystal structure of anhydrite powders were studied. The results show that, calcination at 100°C causes anhydrite to disintegrate into smaller crystals, accompanied by a slight in-crease in d-spacing. Without calcination and modification, the solidification time and curing time of anhydrite are 15 and 77 h, respectively. After the treatment, however, the solidification time and curing time are shortened significantly to 9.5 and 14 min, respectively. The com-pressive and flexural strengths of hydration products made from the treated anhydrite reach 10.2 and 2.0 MPa, respectively. The much shorter solidification and curing time make it possible to use anhydrite as a building and construction material.

  7. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahlam, M.A., E-mail: omaymn771@yahoo.com [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Ravishankar, M.N. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Vijayan, N. [Materials Characterization Division, National Physical Laboratory, New Delhi 110 012 (India); Govindaraj, G. [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Siddaramaiah [Department of Polymer and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570 006 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India)

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number H{sub V} and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  8. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    Science.gov (United States)

    Ahlam, M. A.; Ravishankar, M. N.; Vijayan, N.; Govindaraj, G.; Siddaramaiah; Gnana Prakash, A. P.

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number HV and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  9. The influence of a solvent on the crystal morphology of RDX

    NARCIS (Netherlands)

    Horst, J.H. ter; Geertman, R.M.; Heijden, A.E.D.M. van der; Rosmalen, G.M. van

    1999-01-01

    A solvent can have a large influence on the crystal morphology. A molecular modeling technique based on the adsorption of solvent molecules on a crystal surface has been used to predict the influence of a solvent on the morphology of RDX. The predicted morphology has been compared with the experimen

  10. Morphological control and polarization switching in polymer dispersed liquid crystal materials and devices

    Indian Academy of Sciences (India)

    K K Raina; Pankaj Kumar; Praveen Malik

    2006-11-01

    Liquid crystals dispersed in polymer systems constitute novel class of optical materials. The precise control of the liquid crystal droplet morphology in the polymer matrix is essentially required to meet the prerequisites of display device. Experiments have been carried out to investigate and identify the material properties and processing conditions required for the precise control of the droplet morphology of the dispersed liquid crystal systems. Polarization switching has been studied. Aligned liquid crystal dispersed systems showed higher polarization over unaligned ones.

  11. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals

    KAUST Repository

    McGlashon, Andrew J.

    2012-09-01

    3′-methyl-(5,5′′-bis[3-ethyl-3-(6-phenyl-hexyloxymethyl) -oxetane])-2,2′:5′,2′′-terthiophene (5T(Me)Ox) is a solution processable small molecule semiconductor displaying smectic-C and nematic liquid crystal phases. The pendant oxetane group can be polymerized in situ in the presence of a suitable photoacid at concentrations ≥1% by weight. Spin-coated films of pure 5T(Me)Ox and 5T(Me)Ox doped with the soluble photoacid were characterized by absorption and photoluminescent spectroscopy. Thick pristine films showed absorption and emission from a crystalline phase. Thin monolayer (<5 nm) films, as well as thicker photoacid doped films, instead showed absorption from an H-aggregate phase and emission from an excimer. Optical microscopy showed a significant change in film structure upon addition of the photoacid; large and well-orientated crystals being replaced by much smaller domains which appear to vary in thickness. Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS) was used to characterize the packing and orientation of molecules in the crystalline and doped samples. The results are consistent with the photoacid doped samples forming layers of H-aggregate phase monolayer sheets parallel to the substrate where the photoacid inhibits the transition into the three-dimensionally ordered crystalline phase. Field-effect transistors and light emitting diodes were constructed incorporating 5T(Me)Ox as the active layer. Pure 5T(Me)Ox field-effect transistors showed good, p-type device characteristics, but the morphological changes upon doping result in a loss of transistor action. In the diodes, curing through melting and exposure to UV light followed by photoacid removal resulted in an increase in current density but a decrease in light emission. These results indicate that the presence of the photoacid (≥1% by weight) can have a dramatic effect on the structure, morphology and device performance of ordered, photopatternable materials for organic

  13. STEREOREGULAR POLY(CYCLOHEXENE CARBONATE)S: UNIQUE CRYSTALLIZATION BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    Guang-peng Wu; Shi-dong Jiang; Xiao-bing Lu; Wei-min Ren; Shou-ke Yan

    2012-01-01

    An example of crystalline CO2-based polymer from the asymmetric alternating copolymerization of CO2 and cyclohexene oxide is reported.Isotacticity of poly(cyclohexene carbonate) (PCHC) has the critical influence on the crystallinity,and only copolymers with a isotacticity of more than 90% are crystallizable.The stereoregular PCHC is a typical semi-crystalline thermoplastic,and possesses a high melting point (Tm) of 215-230℃ and a decomposition temperature of ca.310℃.The spherulitic morphology of (R)-PCHC grows in a clockwise spiral from a center,and that of (S)-PCHC is a counterclockwise spiral,while the stereocomplex of (S)-PCHC/(R)-PCHC (1/1 mass ratio) presents lath-like dendritic crystal.The novel crystalline CO2-based polycarbonate represents a rare example of optically active polymers with unique crystallization behavior.Our findings reflect the critical influence of stereoregularity on the crystallization for this kind of polymeric materials,and may lead to developments of thermal-resistance CO2 copolymers for application in engineering thermoplastics.

  14. Evolution of Morphology and Structure During Crystallization and Melting in Syndiotactic Polypropylene

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Structure and morphology development during isothermal crystallization andsubsequent melting of syndiotactic polypropylene (Spp) was studied by time-resolvedsimultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD)methods with synchrotron radiation and differential scanning calorimetry(DSC). The timeand temperature dependent parameters such as long period, L, crystal lamellar thickness, lc,amorphous layer thickness, la, scattering invariant, 6, crystallinity, Xc, lateral crystalsizes, L200 and L020, and unit cell parameters a and b were extracted from SAXS and WAXDprofiles. Decreasing long period and crystal thickness indicate that thinner secondary crystallamellae are formed. The decreases in unit cell parameters a and b during isothermalcrystallization process suggest that crystal perfection takes place. The changes in themorphological parameters (the invariant, Q, crystallinity, Xc, long period, L, and thecrystal thickness, lc) during subsequent melting were found to follow a two-stage meltingprocess, corresponding to the dual endotherm behavior in the DSC scan. We conclude that the dual melting peaks are due to the melting of secondary and primary lamellae(first peak)and the subsequent recrystallization-melting process (second peak). Additional minorendothermic peak located at the lowest temperature was also detected and might be related tomelting of secondary, thinner and defective lamellae. WAXD showed that during melting,thermal expansion was greater along the b axis than that along the a axis.

  15. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS) ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    OpenAIRE

    Suharso, Suharso

    2010-01-01

    An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS) on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  16. Control of Crystal Morphology for Mold Flux During High-Aluminum AHSS Continuous Casting Process

    Science.gov (United States)

    GUO, Jing; SEO, Myung-Duk; SHI, Cheng-Bin; CHO, Jung-Wook; KIM, Seon-Hyo

    2016-08-01

    In the present manuscript, the efforts to control the crystal morphology are carried out aiming at improving the lubrication of lime-alumina-based mold flux for casting advanced high-strength steel with high aluminum. Jackson α factors for crystals of melt crystallization in multi-component mold fluxes are established and reasonably evaluated by applying thermodynamic databases to understand the crystal morphology control both in lime-alumina-based and lime-silica-based mold fluxes. The results show that Jackson α factor and supercooling are the most critical factors to determine the crystal morphology in a mold flux. Crystals precipitating in mold fluxes appear with different morphologies due to their different Jackson α factors and are likely to be more faceted with higher Jackson α factor. In addition, there is a critical supercooling degree for crystal morphology dendritic transition. When the supercooling over the critical value, the crystals transform from faceted shape to dendritic ones in morphology as the kinetic roughening occurs. Typically, the critical supercooling degrees for cuspidine dendritic transition in the lime-silica-based mold fluxes are evaluated to be between 0.05 and 0.06. Finally, addition of a small amount of Li2O in the mold flux can increase the Jackson α factor and decrease the supercooling for cuspidine precipitation; thus, it is favorable to enhance a faceted cuspidine crystal.

  17. Effects of synthesis factors on the morphology, crystallinity and crystal size of hydroxyapatite precipitation

    Institute of Scientific and Technical Information of China (English)

    GUO Lian-feng; WANG Wei-hua; ZHANG Wen-guang; WANG Cheng-tao

    2005-01-01

    The growing necessity of biomaterials has increased the interest in hydroxyapatite. Small differences in particle sizes, stoichiometry, morphology, crystallinity could lead to different clinical behaviors. In the present work, stoichiometry and nanocrystal hydroxyapatite were prepared by wet chemical precipitation method.The effects of concentration of reagents, reaction temperatures and reaction time were studied. Transmission Electron Microscopy, Electron Diffraction, X - ray Diffraction, Fourier Transform Infrared Spectroscopy, and Inductively Coupled Plasma Spectroscopy were used to characterize the precipitated hydroxyapatite powders. X -ray Diffraction and TEM micrographs results showed that crystallinity, morphology and particle sizes were largely dependent on reaction temperature. Chemical analysis showed that the purity of the precipitated hydroxyapatite depends on reaction time and reaction temperature. Degree of supersaturation and stirring could affect the crystallization process. Particles showed acicular morphology, and had a size of 20 -30 nm in length at 20 ℃and 37 ℃ and 150 - 160 nm in length at 75 ℃. Particles were monocrystalline at 20 ℃ and 37 ℃, and were polycrystalline at 55 ℃ and 75 ℃. The results showed that hydroxyapatite powders with different particle size and morphology could be obtained with carefully controlled reaction conditions.

  18. The Effects of Crystal Phase and Particle Morphology of Calcium Phosphates on Proliferation and Differentiation of Human Mesenchymal Stromal Cells.

    Science.gov (United States)

    Danoux, Charlène; Pereira, Daniel; Döbelin, Nicola; Stähli, Christoph; Barralet, Jake; van Blitterswijk, Clemens; Habibovic, Pamela

    2016-07-01

    Calcium phosphate (CaP) ceramics are extensively used for bone regeneration; however, their clinical performance is still considered inferior to that of patient's own bone. To improve the performance of CaP bone graft substitutes, it is important to understand the effects of their individual properties on a biological response. The aim of this study is to investigate the effects of the crystal phase and particle morphology on the behavior of human mesenchymal stromal cells (hMSCs). To study the effect of the crystal phase, brushite, monetite, and octacalcium phosphate (OCP) are produced by controlling the precipitation conditions. Brushite and monetite are produced as plate-shaped and as needle-shaped particles, to further investigate the effect of particle morphology. Proliferation of hMSCs is inhibited on OCP as compared to brushite and monetite in either morphology. Brushite needles consistently show the lowest expression of most osteogenic markers, whereas the expression on OCP is in general high. There is a trend toward a higher expression of the osteogenic markers on plate-shaped than on needle-shaped particles for both brushite and monetite. Within the limits of CaP precipitation, these data indicate the effect of both crystal phase and particle morphology of CaPs on the behavior of hMSCs.

  19. MULTIPLE MELTING AND CRYSTALLIZATION BEHAVIOR OF NYLON 1212

    Institute of Scientific and Technical Information of China (English)

    Jian-bin Song; Qing-yong Chen; Min-qiao Ren; Xiao-hong Sun; Hui-liang Zhang; Hong-fang Zhang; Shu-yun Wang; Zhi-shen Mo

    2006-01-01

    The wide-angle X-ray diffraction (WAXD) patterns of isothermally crystallized Nylon 1212 show that γ-form crystals form below 90℃ and the α-form crystals can exist above 140℃. In the temperature range of 90-140℃, the α-form and γ-form crystals coexist. Variable-temperature WAXD exhibits that the nylon 1212 γ-form does not show crystal transition on heating, while α-form isothermally crystallized at 160℃ exhibits Brill transition at a little higher than 180℃ on heating. The multiple melting behaviors of Nylon 1212 isothermally crystallized from melt come from a complex mechanism of different crystal structures, dual lamellar population and melting-recrystallization. In polarized optical microscope (POM) observations, Nylon 1212 isothermally crystallized at 175℃ shows the ringed banded spherulites. However, at temperatures below 160℃ the ringed banded image disappears, and cross-extinct spherulites are formed.

  20. Effect of milling on morphology of molten salt synthesized Sr3Ti2O7 crystals

    Directory of Open Access Journals (Sweden)

    Kijamnajsuk, S.

    2007-07-01

    Full Text Available Effect of milling liquid (acetone and ethanol, and milling times on morphology of Sr3Ti2O7 (ST7 crystals grow in molten potassium chloride salt at 1250oC for 4 h was investigated. Two kinds of crystals with different morphologies were found: ST7 crystals having a tabular shape of less than 20 μm diameter and small secondary-phase crystals having high symmetry. Milling starting materials in ethanol yielded ST7 crystals that were up to 3 times thinner than those milled with acetone, increasing the (00l Lotgering factor almost twice that when prepared with acetone. Large crystals become a bit smaller and the number of small crystals increased when the milling time increased.

  1. Morphological control of zinc tricarbohydrazide perchlorate crystals:Theoretical and experimental study

    Institute of Scientific and Technical Information of China (English)

    LIU Rui; QI ShuYuan; ZHANG TongLai; ZHOU ZunNing; YANG Li; ZHANG JianGuo

    2013-01-01

    The theoretical crystal-morphology of zinc tricarbohydrazide perchlorate (ZnCP) was studied using the morphology simulation software.The growth trends and surface characteristics were calculated using the Bravais-Friedel-Donnay-Harker (BFDH),Growth Morphology,and Equilibrium Morphology methods; these provide theoretical guidance for the choice of crystal-control reagents.On the basis of the simulations,experiments were carried out to study the effects of five different crystal-control reagents,including carboxymethylcellulose (A),polyacrylamide (B),dextrin (C),Tween 40 (D),and Tween 60 (E),in the control of the crystal-morphology of ZnCP.Mixtures of two reagents and higher temperatures were used to further optimize the ZnCP crystals.The results show that ZnCP crystals are well dispersed,and have a large apparent density and regular crystal-morphology under the control of a mixture of reagents A and E in a mass ratio of 1 ∶ 4 at 80℃.

  2. Crystallization Behavior of Copolymer Poly (ethylene terephthalate/isophthalate) (IPET)

    Institute of Scientific and Technical Information of China (English)

    顾书英; 肖茹; 顾利霞

    2001-01-01

    The non-isothermal crystallization kinetics, isothermal crystallization and the morphology of crystals of the copolymer poly (ethylene terephthalate/ isophthalate )(IPET) were studied by DSC and polarized-light microscopy in this paper. DSC results indicate that the glass transition temperature Tg of IPET is slightly lower than that of poly(ethylene terephthalate) (PET), but the melting temperature Tm and the crystallization temperature Tc of PET and IPET have much difference.The difference of Tc between PET and IPET2 is about 7℃, and the difference of Tm between PET and IPET2 is about 16℃. From the kinetics analysis of the crystallization, the crystallization mechanism of all samples is of three-dimension spherulitic growth from instantaneous nuclei and the incorporation of isophthalate (IPA) decreases the crystallization rate of IPET greatly. The isothermal results indicate that the morphologies of PET and IPET crystals are all spherulite, which is in conformity to the results of nonisothermal dynamic crystallization. At the same time,the spherulite of IPET grows slower and has longer incubation time than the spherulite of PET under the same crystallization condition.

  3. From wave function to crystal morphology: application to urea and alpha-glycine

    NARCIS (Netherlands)

    Boek, E.S.; Feil, D.; Briels, W.J.; Bennema, P.

    1991-01-01

    In this paper the relation between the molecular electron density distribution and the crystal growth morphology is investigated. Accurate charge densities derived from ab initio quantum chemical calculations were partitioned into multipole moments, to calculate the electrostatic contribution to the

  4. A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2

    Directory of Open Access Journals (Sweden)

    Chul B. Park

    2009-12-01

    Full Text Available The crystallization and melting behaviors of linear polylactic acid (PLA treated by compressed CO2 was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO2 exposure significantly increased PLA’s crystallization rate; a high crystallinity of 16.5% was achieved after CO2 treatment for only 1 min at 100 °C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA’s crystallization equilibrium.

  5. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants

    KAUST Repository

    Pan, Yichang

    2011-01-01

    Herein we report a facile synthesis method using surfactant cetyltrimethylammonium bromide (CTAB) as a capping agent for controlling the crystal size and morphology of zeolitic imidazolate framework-8 (ZIF-8) crystals in aqueous systems. The particle sizes can be precisely adjusted from ca. 100 nm to 4 μm, and the morphology can be changed from truncated cubic to rhombic dodecahedron. This journal is © The Royal Society of Chemistry.

  6. Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)?

    Science.gov (United States)

    Brown, Sharon L; Warwick, Nigel W M; Prychid, Christina J

    2013-12-01

    Calcium oxalate (CaOx) crystals are a common natural feature of many plant families, including the Leguminosae. The functional role of crystals and the mechanisms that underlie their deposition remain largely unresolved. In several species, the seasonal deposition of crystals has been observed. To gain insight into the effects of rainfall on crystal formation, the morphology, distribution and accumulation of calcium oxalate crystals in phyllodes of the leguminous Acacia sect. Juliflorae (Benth.) C. Moore & Betche from four climate zones along an aridity gradient, was investigated. The shapes of crystals, which include rare Rosanoffian morphologies, were constant between species from different climate zones, implying that morphology was not affected by rainfall. The distribution and accumulation of CaOx crystals, however, did appear to be climate-related. Distribution was primarily governed by vein density, an architectural trait which has evolved in higher plants in response to increasing aridity. Furthermore, crystals were more abundant in acacias from low rainfall areas, and in phyllodes containing high concentrations of calcium, suggesting that both aridity and soil calcium levels play important roles in the precipitation of CaOx. As crystal formation appears to be calcium-induced, we propose that CaOx crystals in Acacia most likely function in bulk calcium regulation.

  7. Crystal morphology prediction of 1,3,3-trinitroazetidine in ethanol solvent by molecular dynamics simulation.

    Science.gov (United States)

    Shi, Wenyan; Chu, Yuting; Xia, Mingzhu; Lei, Wu; Wang, Fengyun

    2016-03-01

    In order to understand the mechanism of the effect of solvent on the crystal morphology of explosives, and be convenient for the choice of crystallization solvent, the attachment energy (AE) model was performed to predict the growth morphology and the main crystal faces of 1,3,3-trinitroazetidine (TNAZ) in vacuum. The molecular dynamics simulation was applied to investigate the interactions of TNAZ crystal faces and ethanol solvent, and the growth habit of TNAZ in ethanol solvent was predicted using the modified AE model. The results indicate that the morphology of TNAZ crystal in vacuum is dominated by the six faces of [021], [112], [002], [102], [111] and [020], and the crystal shape is similar to polyhedron. In ethanol solvent, The binding strength of ethanol with TNAZ faces changes in the order of [021]>[112]>[002]>[102]>[111]>[020], which causes that [111] and [020] faces disappear and the crystal morphology becomes more regular. The radial distribution function analysis shows that the interactions between solvent and crystal faces mainly consist of coulomb interaction, van der Waals force and hydrogen bonds.

  8. The role of impurities on the morphology of NaCl crystals : an atomic scale view

    NARCIS (Netherlands)

    Radenovic, N.

    2005-01-01

    It is well known that crystal growth and morphology are largely influenced by the presence of impurities in the growth solution. However, little is known about the actual process of impurity interaction with the growing crystal surface. In this thesis we study this influence in detail using the NaCl

  9. Crystallization Thermodynamic and Kinetic Behaviors of Vitamin C in Batch Crystallizer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The bench-scale cooling crystallization for ternary solution of L-ascorbic acid (Vitamin C) was studied. The solid-liquid phase diagram of Vitamin C-water-ethanol system was obtained on the basis of differential scanning calorimeter (DSC) curves. The heat of crystallization of Vitamin C was calculated with the aid of quantitative analysis. According to the population balance equation under unsteady state, the rates of nucleation and growth were determined. The parameters of crystallization kinetics equations were estimated by regression of experimental data. Crystal morphology and size were determined with x-ray diffraction and TA Ⅱ Coulter Counter.

  10. Growth Mechanism of Different Morphologies of ZnO Crystals Prepared by Hydrothermal Method

    Institute of Scientific and Technical Information of China (English)

    Hu Wang; Juan Xie; Kangping Yan; Ming Duan

    2011-01-01

    Different morphologies of zinc oxide (ZnO), including microrods, hexagonal pyramid-like rods and flower-like rod aggregates, had been synthesized, respectively, on glass substrates by controlling the reaction conditions (such as precursor concentration, reaction time and pH value) of hydrothermal method. The morphologies of the as-obtained ZnO were observed with scanning electron microscopy and transmission electron microscopy. Also, the crystalline natures of different ZnO crystals were analyzed with X-ray diffraction. The possible growth mechanism of ZnO crystals with different morphologies was discussed.

  11. Morphological changes of calcite single crystals induced by graphene-biomolecule adducts

    Science.gov (United States)

    Calvaresi, Matteo; Di Giosia, Matteo; Ianiro, Alessandro; Valle, Francesco; Fermani, Simona; Polishchuk, Iryna; Pokroy, Boaz; Falini, Giuseppe

    2017-01-01

    Calcite has the capability to interact with a wide variety of molecules. This usually induces changes in shape and morphology of crystals. Here, this process was investigated using sheets of graphene-biomolecule adducts. They were prepared and made dispersible in water through the exfoliation of graphite by tip sonication in the presence tryptophan or N-acetyl-D-glucosamine. The crystallization of calcium carbonate in the presence of these additives was obtained by the vapor diffusion method and only calcite formed. The analysis of the microscopic observations showed that the graphene-biomolecule adducts affected shape and morphology of rhombohedral {10.4} faced calcite crystals, due to their stabilization of additional {hk.0} faces. The only presence of the biomolecule affected minimally shape and morphology of calcite crystals, highlighting the key role of the graphene sheets as 2D support for the adsorption of the biomolecules.

  12. The influence of crystal morphology on the kinetics of growth of calcium oxalate monohydrate

    Science.gov (United States)

    Millan, A.; Sohnel, O.; Grases, F.

    1997-08-01

    The growth of several calcium oxalate monohydrate seeds in the presence and absence of additives (phytate, EDTA and citrate) has been followed by potentiometry measurements. Growth rates have been calculated from precipitate curves by a cubic spline method and represented in logarithmic plots versus supersaturation. Crystal growth kinetics were found to be dependent on crystal morphology, crystal perfection and degree of aggregation. Some seeds were dissolving in supersaturated solutions. Other seeds showed an initial growth phase of high-order kinetics. The effect of the additives was also different on each seed. Three alternative mechanisms for calcium oxalate crystal growth are proposed.

  13. Frustration and single crystal morphology of isotactic poly(2-vinylpyridine)

    NARCIS (Netherlands)

    Okihara, T; Cartier, L; van Ekenstein, GORA; Lotz, B

    1999-01-01

    The crystal structure of isotactic poly(2-vinylpyridine) (iP2VP) established in 1977 by Puterman et al. is shown to conform to a recently proposed frustrated packing scheme which involves three isochiral three-fold helices packed in a trigonal unit-cell, and observed in a number of polymers and biop

  14. MELTING CRYSTALLIZATION BEHAVIOR OF NYLON 66

    Institute of Scientific and Technical Information of China (English)

    Qing-xin Zhang; Zhi-shen Mo

    2001-01-01

    Analysis of isothermal and nonisothermal crystallization kinetics of nylon 66 was carried out using differential scanning calorimetry (DSC). The commonly used Avrami equation and that modified by Jeziorny were used, respectively, to fit the primary stage of isothermal and nonisothermal crystallizations of nylon 66. In the isothermal crystallization process, mechanisms of spherulitic nucleation and growth were discussed. The lateral and folding surface free energies determined from the Lauritzen-Hoffman treatment are σ= 9.77 erg/cm2 and σe = 155.48 erg/cm2, respectively; and the work of chain folding is q = 33.14 kJ/mol. The nonisothermal crystallization kinetics of nylon 66 was analyzed by using the Mo method combined with the Avrami and Ozawa equations. The average Avrami exponent n was determined to be 3.45. The activation energies (ΔE) were determined to be -485.45 kJ/mol and -331.27 kJ/mol, respectively, for the isothermal and nonisothermal crystallization processes by the Arrhenius and the Kissinger methods.

  15. Ant Genetics: Reproductive Physiology, Worker Morphology, and Behavior.

    Science.gov (United States)

    Friedman, D A; Gordon, D M

    2016-07-01

    Many exciting studies have begun to elucidate the genetics of the morphological and physiological diversity of ants, but as yet few studies have investigated the genetics of ant behavior directly. Ant genomes are marked by extreme rates of gene turnover, especially in gene families related to olfactory communication, such as the synthesis of cuticular hydrocarbons and the perception of environmental semiochemicals. Transcriptomic and epigenetic differences are apparent between reproductive and sterile females, males and females, and workers that differ in body size. Quantitative genetic approaches suggest heritability of task performance, and population genetic studies indicate a genetic association with reproductive status in some species. Gene expression is associated with behavior including foraging, response to queens attempting to join a colony, circadian patterns of task performance, and age-related changes of task. Ant behavioral genetics needs further investigation of the feedback between individual-level physiological changes and socially mediated responses to environmental conditions.

  16. IMPACT OF VARIOUS ADDITIVES ONTO MORPHOLOGY OF GYPSUM CRYSTALS

    OpenAIRE

    Ustinova Yuliya Valer'evna; Sivkov Sergey Pavlovich; Barinova Ol'ga Pavlovna; Sanzharovskiy Aleksandr Yur'evich

    2012-01-01

    Nowadays, functional additives represented by multiple classes of substances and compounds, including polymers of different origin, are available for introduction into dry mixtures based on gypsum binders. However, their impact onto the growth and formation of calcium sulfate dihydrate (CaSO∙2HO) crystals generated in the course of hardening of gypsum binders is not quite clear. Therefore, the objective of the research was to analyze the processes of growth and formation of calcium sulfate di...

  17. Effect of high-intensity ultrasound and cooling rate on the crystallization behavior of beeswax in edible oils.

    Science.gov (United States)

    Jana, Sarbojeet; Martini, Silvana

    2014-10-15

    The objective of this study was to evaluate the effect of wax concentration (0.5 and 1%), cooling rate (0.1, 1, and 10 °C/min), and high-intensity ultrasound (HIU) on the crystallization behavior of beeswax (BW) in six different edible oils. Samples were crystallized at 25 °C with and without HIU. Crystal sizes and morphologies and melting profiles were measured by microscopy and differential scanning calorimetry, respectively, after 7 days of incubation. Higher wax concentrations resulted in faster crystallization and more turbidity. Phase separation was observed due to crystals' sedimentation when samples were crystallized at slow cooling rates. Results showed that HIU induced the crystallization of 0.5% BW samples and delayed phase separation in sunflower, olive, soybean, and corn oils. Similar effects were observed in 1% samples where HIU delayed phase separation in canola, soybean, olive, and safflower oils.

  18. THE EFFECT OF CLAY DISPERSION ON THE CRYSTALLIZATION AND MORPHOLOGY OF POLYPROPYLENE/CLAY COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    Qin Zhang; Xiao-lin Gao; Ke Wang; Qiang Fu

    2004-01-01

    PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and panicle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and panicle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.

  19. Crystal Growth Behaviors of Silicon during Melt Growth Processes

    Directory of Open Access Journals (Sweden)

    Kozo Fujiwara

    2012-01-01

    Full Text Available It is imperative to improve the crystal quality of Si multicrystal ingots grown by casting because they are widely used for solar cells in the present and will probably expand their use in the future. Fine control of macro- and microstructures, grain size, grain orientation, grain boundaries, dislocation/subgrain boundaries, and impurities, in a Si multicrystal ingot, is therefore necessary. Understanding crystal growth mechanisms in melt growth processes is thus crucial for developing a good technology for producing high-quality Si multicrystal ingots for solar cells. In this review, crystal growth mechanisms involving the morphological transformation of the crystal-melt interface, grain boundary formation, parallel-twin formation, and faceted dendrite growth are discussed on the basis of the experimental results of in situ observations.

  20. Comparative Analysis of Thermal Behavior, Isothermal Crystallization Kinetics and Polymorphism of Palm Oil Fractions

    Directory of Open Access Journals (Sweden)

    Bing Li

    2013-01-01

    Full Text Available Thermal behavior of palm stearin (PS and palm olein (PO was explored by monitoring peak temperature transitions by differential scanning calorimetry (DSC. The fatty acid composition (FAC, isothermal crystallization kinetics studied by pulsed Nuclear Magnetic Resonance (pNMR and isothermal microstructure were also compared. The results indicated that the fatty acid composition had an important influence on the crystallization process. PS and PO both exhibited more multiple endotherms than exotherms which showed irregular peak shapes. An increasing in cooling rate, generally, was associated with an increase in peak size. Application of the Avaimi equation to isothermal crystallization of PS and PO revealed different nucleation and growth mechanisms based on the Avrami exponents. PS quickly reached the end of crystallization because of more saturated triacylglycerol (TAG. The Avrami index of PS were the same as PO under the same isothermal condition at lower temperatrue, indicating that the crystallization mechanism of the two samples based on super-cooling state were the same. According to the polarized light microscope (PLM images, crystal morphology of PS and PO was different. With the temperature increased, the structure of crystal network of both PS and PO gradually loosened.

  1. Crystal morphology modification by the addition of tailor-made stereocontrolled poly(N-isopropyl acrylamide)

    DEFF Research Database (Denmark)

    Munk, Tommy; Baldursdottir, Stefania; Hietala, Sami

    2012-01-01

    . One such additive is the thermosensitive polymer poly(N-isopropyl acrylamide) (PNIPAM). The use of PNIPAM as a crystallization additive provides a possibility to affect viscosity at separation temperatures and nucleation and growth rates at higher temperatures. In this study, novel PNIPAM derivatives...... composition. Optical light microscopy and Raman and FTIR spectroscopy were used to investigate the structure of the NF crystals and possible interaction with PNIPAM. A drastic change in the growth mechanism of nitrofurantoin crystals as monohydrate form II (NFMH-II) was observed in the presence of PNIPAM......; the morphology of crystals changed from needle to dendritic shape. Additionally, the amphiphilic nature of PNIPAM increased the solubility of nitrofurantoin in water. PNIPAMs with varying molecular weights and stereoregularities resulted in similar changes in the crystal habit of the drug regardless of whether...

  2. Crystallization Behavior of M97 Series Silicone Cushions

    Energy Technology Data Exchange (ETDEWEB)

    Chien, A.; DeTeresa, S.; Cohenour, R.; Schnieder, J.; LeMay, J.; Balazs, B.

    2000-09-07

    M97 series siloxanes are poly(dimethyl-diphenyl) siloxanes that are reinforced through a mixture of precipitated and fumed silica fillers which are blended in through the addition of a short chain polydimethylsiloxane processing aid. M97 silicones exhibit crystallization at -80.25 C by thermal (modulated differential scanning calorimetry) and mechanical (dynamic mechanical analysis) techniques. Isothermal dynamic mechanical analysis experiments illustrated that crystallization occurred over a 1.8 hour period in silica-filled systems and 2.8 hours in unfilled systems. The onset of crystallization typically occurred after a 30 minute incubation/nucleation period. {gamma}-radiation caused the crystallization rate to decrease proportionally with dosage, but did not decrease the amount of crystallization that ultimately occurred. Irradiation in vacuum resulted in slower overall crystallization rates compared to air irradiation due to increased crosslinking of the polymer matrix under vacuum. Modulated differential scanning calorimetry contrasted the crystallization and melting behavior of pure PDMS versus the M97 base polymer and helped determine which component of the composite was the origin of the crystallization phenomena.

  3. Preparation of Ultrafine TATB and the Technology for Crystal Morphology Control%Preparation of Ultrafine TATB and the Technology for Crystal Morphology Control

    Institute of Scientific and Technical Information of China (English)

    Yang, Li; Ren, Xiaoting; Li, Tiecheng; Wang, Shiwei; Zhang, Tonglai

    2012-01-01

    The ultrafine 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) has been prepared by using solvent and non-solvent method, and the influencing factors in close relationship with the grain size and crystal morphology control such as categories and dosage of surfactants, volume ratio of solvent to non-solvent have also been considered in this paper. It showed that these factors had remarkable effect on the crystal morphology, particle size and agglomeration during the crystallization process. By using 0.095% (mass percentage) ionic surfactant (S) as the additive and using spray-drops feeding device as the dropping equipment, 1.06 g TATB raw materials have been refined into free-running ellipsoid and spherical TATB grains with the grain size from 30 to 50 nm. By using 0.014% (mass percentage) non-ionic surfactant (P) as the additive, spherical TATB grains with the particle diameter of 50 nm and with narrow particle-size distribution have also been obtained. It was shown by the characterizations that the ultrafine particle of TATB had better heat resisting evenness and its 5 seconds ignition point is advanced by 7.5 K.

  4. Morphology, crystallization and dynamic mechanical properties of PA66/nano-SiO2 composites

    Indian Academy of Sciences (India)

    Huimin Lu; Xiangmin Xu; Xiaohong Li; Zhijun Zhang

    2006-10-01

    This article addresses the effect of nano-SiO2 on the morphology, crystallization and dynamic mechanical properties of polyamide 66. The influence of nano-SiO2 on the tensile fracture morphology of the nanocomposites was studied by scanning electron microscopy (SEM), which suggested that the nanocomposites revealed an extensive plastic stretch of the matrix polymer. The crystallization behaviour of polyamide 66 and its nanocomposites were studied by differential scanning calorimetry (DSC). DSC nonisothermal curves showed an increase in the crystallization temperature along with increasing degree of crystallinity. Dynamic mechanical properties (DMA) indicated significant improvement in the storage modulus and loss modulus compared with neat polyamide 66. The tan ä peak signifying the glass-transition temperature of nanocomposites shifted to higher temperature.

  5. A software tool to evaluate crystal types and morphological developments of accessory zircon

    Science.gov (United States)

    Sturm, Robert

    2014-08-01

    Computer programs for an appropriate visualization of crystal types and morphological developments of accessory zircon are not available hitherto. Usually, typological computations are conducted by using simple calculation tools or spread-sheet programs. In practice, however, high numbers of data sets including information of numerous zircon populations have to be processed and stored. The paper describes the software ZIRCTYP, which is a macro-driven program within the Microsoft Access database management system. It allows the computation of zircon morphologies occurring in specific rock samples and their presentation in typology diagrams. In addition, morphological developments within a given zircon population are presented (1) statistically and (2) graphically as crystal sequences showing initial, intermediate, and final growth stages.

  6. Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams

    Science.gov (United States)

    Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro

    2015-05-01

    In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.

  7. Morphological and mechanical characterization of composite calcite/SWCNT-COOH single crystals.

    Science.gov (United States)

    Calvaresi, Matteo; Falini, Giuseppe; Pasquini, Luca; Reggi, Michela; Fermani, Simona; Gazzadi, Gian Carlo; Frabboni, Stefano; Zerbetto, Francesco

    2013-08-01

    A growing number of classes of organic (macro)molecular materials have been trapped into inorganic crystalline hosts, such as calcite single crystals, without significantly disrupting their crystalline lattices. Inclusion of an organic phase plays a key role in enhancing the mechanical properties of the crystals, which are believed to share structural features with biogenic minerals. Here we report the synthesis and mechanical characterization of composite calcite/SWCNT-COOH single crystals. Once entrapped into the crystals SWCNT-COOH appeared both as aggregates of entangled bundles and nanoropes. Their observation was possible only after crystal etching, fracture or FIB (focused ion beam) cross-sectioning. SWCNT-COOHs occupied a small volume fraction and were randomly distributed into the host crystal. They did not strongly affect the crystal morphology. However, although the Young's modulus of composite calcite/SWCNT-COOH single crystals was similar to that of pure calcite their hardness increased by about 20%. Thus, SWCNT-COOHs provide an obstacle against the dislocation-mediated propagation of plastic deformation in the crystalline slip systems, in analogy with the well-known hardness increase in fiber-reinforced composites.

  8. Outline of Classical and Current Approaches to the Research of Morphology of Selected Mineral Crystals in China (CD-ROM)

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The research on morphology of mineral crystals in China includes classical goniometry of 100 minerals such as hsianghualite, orthobrannerite, jamesonite and bertrandite and surface microtopography of 20 minerals such as wolframite and diamond, among which 5 new minerals and 34 uranium minerals were discovered and measured by Chinese mineralogists. These have enriched mineralogy and crystal morphology and strengthened the study of information of morphological genesis.

  9. Polymer stabilized liquid crystals: Topology-mediated electro-optical behavior and applications

    Science.gov (United States)

    Weng, Libo

    There has been a wide range of liquid crystal polymer composites that vary in polymer concentration from as little as 3 wt.% (polymer stabilized liquid crystal) to as high as 60 wt.% (polymer dispersed liquid crystals). In this dissertation, an approach of surface polymerization based on a low reactive monomer concentration about 1 wt.% is studied in various liquid crystal operation modes. The first part of dissertation describes the development of a vertical alignment (VA) mode with surface polymer stabilization, and the effects of structure-performance relationship of reactive monomers (RMs) and polymerization conditions on the electro-optical behaviors of the liquid crystal device has been explored. The polymer topography plays an important role in modifying and enhancing the electro-optical performance of stabilized liquid crystal alignment. The enabling surface-pinned polymer stabilized vertical alignment (PSVA) approach has led to the development of high-performance and fast-switching displays with controllable pretilt angle, increase in surface anchoring energy, high optical contrast and fast response time. The second part of the dissertation explores a PSVA mode with in-plane switching (IPS) and its application for high-efficiency and fast-switching phase gratings. The diffraction patterns and the electro-optical behaviors including diffraction efficiency and response time are characterized. The diffraction grating mechanism and performance have been validated by computer simulation. Finally, the advantages of surface polymerization approach such as good optical contrast and fast response time have been applied to the fringe-field switching (FFS) system. The concentration of reactive monomer on the electro-optical behavior of the FFS cells is optimized. The outstanding electro-optical results and mechanism of increase in surface anchoring strength are corroborated by the director field simulation. The density and topology of nanoscale polymer protrusions

  10. In situ ultrasonic diagnostic of zeolite X crystallization with novel (hierarchical) morphology from coal fly ash.

    Science.gov (United States)

    Musyoka, Nicholas M; Petrik, Leslie F; Hums, Eric; Baser, Hasan; Schwieger, Wilhelm

    2014-02-01

    In this paper the applicability of an in situ ultrasonic diagnostic technique in understanding the formation process of zeolite X with a novel morphology was demonstrated. The complexity of the starting fly ash feedstock demands independent studies of the formation process for each type of zeolite since it is not known whether the crystallization mechanism will always follow the expected reaction pathway. The hierarchical zeolite X was noted to follow a solution phase-mediated crystallization mechanism which differs from earlier studies of the zeolite A formation process from unaged, clear solution extracted from fused fly ash. The use of the in situ ultrasonic monitoring system provided sufficient data points which enabled closer estimation of the time of transition from the nucleation to the crystal growth step. In order to evaluate the effect of temperature on the resulting in situ attenuation signal, synthesis at three higher temperatures (80, 90 and 94 °C) was investigated. It was shown, by the shift of the US-attenuation signal, that faster crystallization occurred when higher temperatures were applied. The novel hierarchical zeolite X was comprised of intergrown disc-like platelets. It was further observed that there was preferential growth of the disc-shaped platelets of zeolite X crystals in one dimension as the synthesis temperature was increased, allowing tailoring of the hierarchical morphology.

  11. Morphological stability criterion for a spherical crystallization front in a multicomponent system with chemical reactions

    Science.gov (United States)

    Kukushkin, S. A.; Osipov, A. V.; Redkov, A. V.

    2014-12-01

    The morphological stability of a spherical crystal growing from a multicomponent medium due to the chemical reaction has been investigated. The approach used in this study is applicable to the case where the chemical compound forming the crystal does not exist in a gaseous (dissolved) form (for example, GaN). The investigation has been performed according to the classical scheme by the expansion of an infinitesimal deviation of the crystallization front from the initial shape into a series with the subsequent calculation of the time dependence of the coefficients of the expansion. It has been found that there is a similarity of the stability criteria for single-component and multicomponent crystals. In a multicomponent system, the single-component supersaturation analog determining the stability of a particle is the affinity of the chemical reaction. It has been shown that the morphological stability can also depend on the formation of other phases on the surface of the initial crystal, which is excluded in a single-component medium.

  12. Domain morphology controlled crystal habits in PbTiO{sub 3} nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Dudhe, C.M., E-mail: chandraguptadudhe@gmail.com; Khambadkar, S.J.

    2015-11-05

    Various crystal habits and associated domain structures in PbTiO{sub 3} nanocrystals synthesized by a modified sol–gel method have been studied. Structural and morphological characterizations of synthesized nanoparticles have been done by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It was found from the -z coordinates of O{sub 1} and O{sub 2} that the Ti–O{sub 6} octahedra were distorted slightly, favorable for the ferroelectric nature. TEM images show butterfly like, plate like, irregular sphere like and oval-shaped habits of the nanocrystals. 90° and 180° domain structures in these crystal habits were explored from their morphologies and appearance in the field of views. The mutual association between the crystal habit and the direction spontaneous polarization P{sub s} due to domain structures was explored. Domain wall energies of 90° and 180° domains were also estimated from the kinetic process of domain nucleation. - Highlights: • Various crystal habits of PbTiO{sub 3} nanoparticles were examined by TEM. • 90° and 180° domains were explored in the nanocrystal. • Crystal habits and domain structures were correlated. • Domain wall energies were estimated.

  13. Development of simultaneous control of polymorphism and morphology in indomethacin crystallization

    Science.gov (United States)

    Wada, Shuichi; Kudo, Shoji; Takiyama, Hiroshi

    2016-02-01

    In order to improve the bioavailability, it is desired to obtain the polymorph which has the higher solubility of indomethacin (IMC α-form). However, when α-form crystals were obtained by conventional anti-solvent crystallization, the stirring operation could not be continued because cotton agglomerates were formed in the solution. In order to simultaneously satisfy the bioavailability of IMC and the operability of IMC production, the modification of the morphology (external shape) of α-form agglomerates is important. So, the purpose of this present study is the development of the crystallization method. In order to modify the cotton agglomerates, the anti-solvent crystallization was carried out by using electrolyte aqueous solution (NaCl aq. solution) as the anti-solvent. By using the electrolyte aqueous solution, the liquid-liquid phase separation (LLPS) was observed depending on the solution composition. From the experimental results, under the condition both of high electrolyte concentration and of high stirring speed, dispersion of droplets was obtained, and spherical agglomerates of α-form were formed in the slurry. The stirring operation could be continued in the slurry because the modification of α-form cotton agglomerates was achieved. So, the simultaneous control method of the polymorphism and the morphology in IMC crystallization was realized.

  14. Effect of nucleation layer morphology on crystal quality, surface morphology and electrical properties of AlGaN/GaN heterostructures

    Institute of Scientific and Technical Information of China (English)

    Duan Huantao; Hao Yue; Zhang Jincheng

    2009-01-01

    Nucleation layer formation is a key factor for high quality gallium nitride (GaN) growth on a sapphire substrate. We found that the growth rate substantially affected the nucleation layer morphology, thereby having a great impact on the crystal quality, surface morphology and electrical properties of AIGaN/GaN heterostructures on sapphire substrates. A nucleation layer with a low growth rate of 2.5 nm/min is larger and has better coalescence than one grown at a high growth rate of 5 nm/min. AIGaN/GaN heterostructures on a nucleation layer with low growth rate have better crystal quality, surface morphology and electrical properties.

  15. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.

  16. Gas phase acetic acid and its qualitative effects on snow crystal morphology and the quasi-liquid layer

    Directory of Open Access Journals (Sweden)

    T. N. Knepp

    2009-10-01

    Full Text Available A chamber was constructed within which snow crystals were grown on a string at various temperatures, relative humidities, and acetic acid gas phase mole fractions. The temperature, relative humidity, and acid mole fraction were measured for the first time at the point of crystal growth. Snow crystal morphological transition temperature shifts were recorded as a function of acid mole fraction, and interpreted according to the calculated acid concentration in the crystal's quasi-liquid layer, which is believed to have increased in thickness as a function of acid mole fraction, thereby affecting the crystal's morphology consistent with the hypothesis of Kuroda and Lacmann. Deficiencies in the understanding of the quasi-liquid layer and its role in determining snow crystal morphology are briefly discussed.

  17. Crystal morphology of sucrose influenced by rotation axes parallel to growth planes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Three different types of growth forms of sucrose (P21) were found by calculating with the Fourier transform method of crystal morphology. The observed central distances of the (100) and (001) faces are smaller than those calculated. It will be shown that the two-fold screw axis, which runs parallel to these faces, influences the rate of growth. The effectiveness of these symmetry elements is relative to the rotation angle around the face normal.

  18. Hydrothermal Synthesis of Zeolitic Imidazolate Frameworks-8 (ZIF-8) Crystals with Controllable Size and Morphology

    KAUST Repository

    Lestari, Gabriella

    2012-05-01

    Zeolitic imidazolate frameworks (ZIFs) is a new class of metal-organic frameworks (MOFs) with zeolite-like properties such as permanent porosity, uniform pore size, and exceptional thermal and chemical stability. Until recently, ZIF materials have been mostly synthesized by solvothermal method. In this thesis, further analysis to tune the size and morphology of ZIF-8 is done upon our group’s recent success in preparing ZIF-8 crystals in pure aqueous solutions. Compositional parameters (molar ratio of 2-methylimidazole/Zn2+, type of zinc salt reagents, reagent concentrations, addition of surfactants) as well as process parameters (temperature and time) were systematically investigated. Upon characterizations of as-synthesized samples by X-ray powder diffraction, thermal gravimetric analysis, N2 adsorption, and field-emission scanning electron microscope, the results show that the particle size and morphology of ZIF-8 crystals are extremely sensitive to the compotional parameters of reagent concentration and addition of surfactants. The particle size and morphology of hydrothermally synthesized ZIF-8 crystals can be finely tuned; with the size ranging from 90 nm to 4 μm and the shape from truncated cubic to rhombic dodecahedron.

  19. The influence of polyaspartate additive on the growth and morphology of calcium carbonate crystals

    Science.gov (United States)

    Gower, Laurie Anne

    The addition of low levels of polyaspartate to a supersaturated calcium carbonate (CaCOsb3) solution leads to unusual morphologies in the inorganic phase. Spherulitic vaterite aggregates with helical protrusions, and distorted calcite crystals that contain spiral pits, have been produced. The helical particles are coated with an inorganic membrane that appears to be responsible for the helical twist. The polymer also causes deposition of thin CaCOsb3 tablets and films on the glass substrate. Two distinct types of films are deposited; the first is a mosaic of calcite crystals, and the second is spherulitic vaterite. In situ observations of the crystallization reaction have determined that the thin-film morphology is a result of the phase separation of a hydrated CaCOsb3/polymer liquid-precursor, whereby accumulation of isotropic droplets creates a coating on the substrate, and subsequent dehydration and crystallization yields birefringent CaCOsb3 films. During the amorphous to crystalline transition, incremental growth steps lead to "transition bars" and sectored calcite tablets. This in vitro system was originally modeled after certain aspects of CaCOsb3 biomineralization, in which the soluble proteins extracted from biominerals tend to have high levels of aspartic acid residues. Based on the similarities between features exhibited by the products of this system and those in biominerals, an argument has been presented to suggest that this polymer-induced liquid-precursor (PILP) process is involved in the morphogenesis of CaCOsb3 biominerals. These features include the following: thin CaCOsb3 tablets that grow laterally; tablets that express unstable crystallographic faces; non-faceted single crystals with curved surfaces; spatially-delineated single crystals; sectored calcite tablets; hollow-shell spheres; calcium carbonate cements; and magnesium-bearing calcites. This work has demonstrated that a means of morphological control can be accomplished through non

  20. Crystal morphology and carbon/carbon composition of solid oxalate in cacti.

    Science.gov (United States)

    Rivera, E R; Smith, B N

    1979-12-01

    Morphology, crystal structure, and carbon isotopic composition of calcium oxalate from representative species from the family Cactaceae were determined using scanning electron microscopy, x-ray diffraction, and isotope ratio mass spectrometry. Crystals from one species in the Opuntieae tribe of the Cactaceae were druses with acute points composed of the monohydrate form of calcium oxalate (whewellite). Crystals from three species in the Cereeae tribe were the dihydrate form of calcium oxalate (weddellite) forming druses made up of tetragonal and isodiametric crystallites. The oxalate was relatively enriched in (13)C isotope (-7.3 to - 8.7 per thousand) compared with woody fibers (-13.3 to 14.1 per thousand) from the same plants.

  1. Crystal Morphology and 13Carbon/12Carbon Composition of Solid Oxalate in Cacti 1

    Science.gov (United States)

    Rivera, E. R.; Smith, B. N.

    1979-01-01

    Morphology, crystal structure, and carbon isotopic composition of calcium oxalate from representative species from the family Cactaceae were determined using scanning electron microscopy, x-ray diffraction, and isotope ratio mass spectrometry. Crystals from one species in the Opuntieae tribe of the Cactaceae were druses with acute points composed of the monohydrate form of calcium oxalate (whewellite). Crystals from three species in the Cereeae tribe were the dihydrate form of calcium oxalate (weddellite) forming druses made up of tetragonal and isodiametric crystallites. The oxalate was relatively enriched in 13C isotope (-7.3 to - 8.7 ‰) compared with woody fibers (-13.3 to 14.1 ‰) from the same plants. Images PMID:16661115

  2. Surface morphology study on CdZnTe crystals by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, M.; George, M.A.; Burger, A.; Collins, W.E.; Silberman, E. [Fisk Univ., Nashville, TN (United States)

    1993-03-01

    The study of the crystal surface morphology of CdZnTe is important for the understanding of the fundamentals of crystal growth in order to improve the crystal quality which is essential in applications such as substrates for epitaxy or performance of devices, i.e., room temperature nuclear spectrometers. We present a first atomic force microscopy study on CdZnTe. Cleaved (110) surfaces were imaged in the ambient and an atomic layer step structure was revealed. The effects of thermal annealing on the atomic steps together with Te precipitation along these steps are discussed in terms of deformation due to stress relief and the diffusion of tellurium precipitates. 12 refs., 3 figs.

  3. Study of crystallization behavior of poly(phenylene sulfide

    Directory of Open Access Journals (Sweden)

    Liliana B. Nohara

    2006-06-01

    Full Text Available Poly(phenylene sulfide (PPS is an engineering thermoplastic polymer that presents high temperature resistance (glass transition temperature around 85 ºC and melting point at 285 ºC. These properties combined with its mechanical properties and its high chemical resistance allows its use in technological applications such as molding resins and as matrix for structural thermoplastic composites. During the manufacture of thermoplastic composites, the polymer is exposed to repeated melting, quenching and crystallization processes. The properties of semicrystalline polymers, such as PPS, depend on its crystallization behavior. This work deals with the PPS crystallization kinetics under different thermal cycles. This study was performed under isothermal conditions in a differential scanning calorimetry (DSC, coupled to Perkin Elmer crystallization software referred to as Pyris Kinetics - Crystallization. The results were correlated with microscopic analyses carried out in a polarized light microscope, equipped with a controlled heating and cooling accessory. In this case, the experimental conditions were the same adopted for the DSC analyses. From the results, parameters could be established to be used in the composite manufacture.

  4. Isotactic polypropylene carbon nanotube composites -- crystallization and ordering behavior

    Science.gov (United States)

    Georgiev, Georgi; Judith, Robert; Gombos, Erin; McIntyre, Michael; Schoen, Scott; Cebe, Peggy; Mattera, Michael

    2010-03-01

    The field of Polymer Nanocomposites (PNCs) is growing steadily in recent years. We use carbon nanotubes (CNTs) to affect the crystallization behavior of the polymers. Isotactic Polypropylene (iPP) is very widely used and is a good model system to understand the physics of other similar polymers. iPP/CNT PNCs form α, β, and γ crystallographic phases under a variety of crystallization conditions: non-isothermal and isothermal melt crystallization, shear, stress, fiber extrusion, etc. The crystal growth is altered from spherulitic to α-fibrillar upon the nucleation effect of CNTs. We are studying the effect of different temperature treatment schemes and different isothermal crystallization conditions. We found also that the smectic ordering in iPP is improved by the introduction of CNTs. We use Differential Scanning Calorimetry, Wide Angle X-ray scattering, Microscopic Transmission Ellipsometry and Avrami analysis. Research supported by: Assumption College Faculty Development Grant, funding for students' stipends, instrumentation and supplies, the NSF Polymers Program of the DMR, grant (DMR-0602473) and NASA grant (NAG8-1167).

  5. Preparation of Zirconia Nanoparticles with Different Morphology Using Lyotropic Liquid Crystal Template

    Directory of Open Access Journals (Sweden)

    HE Wei-yan

    2016-06-01

    Full Text Available Zirconia nanoparticles were prepared using ZrOCl2·8H2O and NH3·H2O as raw materials in the lyotropic hexagonal phase consisting of SDS/TritonX-100/H2O. Effects of pH on the phase structure stability of the template were determined. Effect of ZrOCl2 concentration on the size and morphology of zirconia were discussed. Polarizing optical microscopy was applied to investigate the stability of the hexagonal phase. The size and morphology of the nanoparticles were characterized by SEM, TEM and particle size analyzer. The crystalline structure and purity of the sample were characterized by XRD. In addition, the synthetic mechanism of zirconia nanoparticles in the lyotropic hexagonal phase were proposed by FT-IR. The results show that the hexagonal phase is stable in the condition of alkalinity and the hexagonal phase texture disappear in the conditions of acid; the size and morphology of the nanoparticles obtained are greatly affected by concentration of ZrOCl2. Morphology of samples changes from spherical-like particle to cotton-like particle with the increase of the concentration of ZrOCl2; the mechanism analysisresults show that complexation reaction between the precursor of the sample and the template does not occur, and crystal growth and nucleation of the zirconia nanoparticles are limited by a direct template route in the hexagonal phase lyotropic liquid crystal.

  6. Facile Precipitation Method for Morphological Tuning of Cu{sub 2}O Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young Sik; Huh, Young Duk [Dankook University, Seoul (Korea, Republic of)

    2014-09-15

    We have developed a simple method for tuning the morphologies of Cu{sub 2}O microcrystals. Cu{sub 2}O microcrystals were prepared by precipitation at room temperature from a mixture of Cu(CH{sub 3}COO){sub 2}·H{sub 2}O, N,N,N',N'- tetramethyl ethylenediamine (TMEDA), ascorbic acid, and polyethylene glycol (PEG). TMEDA was used to promote the formation of copper-TMEDA complexes. A variety of Cu{sub 2}O microcrystal morphologies were obtained simply by varying the concentrations of TMEDA and ascorbic acid. Aggregated Cu{sub 2}O microspheres are formed at higher concentrations of ascorbic acid in the absence of TMEDA. Aggregated Cu{sub 2}O microcubes are formed at lower concentrations of ascorbic acid and higher concentrations of TMEDA. The crystal growth mechanism of these Cu{sub 2}O morphologies is explained.

  7. Crystallization kinetics and morphology of melt spun poly(ethylene terephthalate nanocomposite fibers

    Directory of Open Access Journals (Sweden)

    R. R. Hegde

    2013-10-01

    Full Text Available Natural nanoclay closite Na+ incorporated melt spun poly(ethylene terephthalate (PET fibers were investigated for crystallization kinetics and morphology. Nature of clay dispersion and nanocomposite morphology were assessed using wide angle X-ray diffraction (WAXD and transmission electron microscopy (TEM. Fiber mechanical properties were measured using single fiber tensile test. Combination of scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS was used to investigate the fiber failure mode. Among nanocomposite PET fibers, sample with 1% clay performed better. WAXD and TEM micrographs of the fibers revealed intercalated and delaminated morphology. Size of agglomerate increased with percentage of add-on. SEM surface images showed significant variation in fiber diameter, voids and imperfections. Cross-sections of fractured surfaces revealed the presence of clay agglomerates at failure spots. Nanoclay reinforcement did not incur mechanical property benefits due to increase in voids and agglomerates in fiber section, especially at loading levels higher than one percent.

  8. Additives effects on crystallization and morphology in a novel caustic aluminate solution decomposition process

    Institute of Scientific and Technical Information of China (English)

    Ying ZHANG; Sbili ZHENG; Yifei ZHANG; Hongbin XU; Yi ZHANG

    2009-01-01

    A novel process of caustic aluminate solution decomposition by alcohol medium was developed by the Institute of Process Engineering, Chinese Academy of Sciences in order to solve the problem of low decomposi-tion ratio in the traditional Bayer seeded hydrolysis process. In this research, effects of additives on the crystallization ratio, secondary particle size and morphol-ogy of aluminum hydroxide in the new process were studied to obtain high-quality products. On the basis of primary selection of additives, an orthogonal design L9(34)was used as a chemometric method to investigate the effects of additives. The studied parameters include the reaction style, quantity of additives, caustic soda concen-tration, as well as the combination manner. The crystal-lization ratios of sodium aluminate solution and crystal size of aluminum hydroxide, determined by ICP-OES, SEM and MLPSA (Malvern Laser Particle Size Analyzer), were used to evaluate the effects of the additives. The results showed that different combination manners could promote agglomeration or dispersion. An additive composed by Tween 80 and PEG 200 could promote agglomeration,while a spot of PEG species had a relatively strong dispersion effect. However, the additives had little effects on the crystallization ratios. According to the Raman spectra result, the added alcohol medium might serve as a kind of solvent.

  9. Crystallization Behavior of Phosphate Glasses with Hydrophobic Coating Materials

    Directory of Open Access Journals (Sweden)

    Jaeyeop Chung

    2015-01-01

    Full Text Available We analyzed the effect of the addition of Li2O3, TiO2, and Fe2O3 on the crystallization behavior of P2O5–CaO–SiO2–K2O glasses and the effect of the crystallization behavior on the roughness and hydrophobicity of the coated surface. Exothermic behavior, including a strong exothermic peak in the 833–972 K temperature range when Fe2O3, TiO2, or Li2O3 was added, was confirmed by differential thermal analysis. The modified glass samples (PFTL1–3 showed diffraction peaks when heated at 1073 and 1123 K for 5 min; the crystallized phase corresponds to Fe3(PO42, that is, graftonite. We confirmed that the intensity of the diffraction peaks increases at high temperatures and with increasing Li2O3 content. In the case of the PFTL3 glass, a Li3Fe2(PO42 phase, that is, trilithium diiron(III tris[phosphate(V], was observed. Through scanning electron microscopy and the contact angles of the surfaces with water, we confirmed that the increase in surface roughness, correlated to the crystallization of the glass frit, increases hydrophobicity of the surface. The calculated values of the local activation energies for the growth of Fe3(PO42 on the PTFL1, PTFL2, and PFTL3 glass were 237–292 kJ mol−1, 182–258 kJ mol−1, and 180–235 kJ mol−1.

  10. INFLUENCE OF SHEARING ON IMPACT POLYPROPYLENE COPOLYMER:PHASE MORPHOLOGY, THERMAL AND RHEOLOGICAL BEHAVIOR

    Institute of Scientific and Technical Information of China (English)

    YiWu; Xian-yuan Liang; Rui-fen Chen; Yong-gang Shangguan; Qiang Zheng

    2012-01-01

    The influences of shearing conducted by a Brabender rheometer on phase morphology,thermal and rheological behavior of a commercial impact polypropylene copolymer (IPC) were studied.The crystallization and melting traces show that short-time annealing at 210℃ is unable to completely erase the influence of shearing on the samples.When the samples which were treated at a rotation speed of 80 r/min crystallize at a cooling rate of 10 K/min,their Tcs and corresponding Tms obviously rise with the increase of shearing time.Furthermore,the POM results reveal that the shearing can lead to the formation of shish-kebab and the shish-kebab amount is proportional to shearing time.The rheological measurement results show that the treated samples exhibit different G'~ω dependences.The ‘second plateau’ appears when the sample is treated at a rotation speed of 60 r/min or 80 r/min for 10 min,and linear G'~ω dependence is observed at other rotation speeds.In addition,it is found that the appearance of the ‘second plateau’ depends on the sheafing time when the rotation speed is fixed.According to SEM observations,it is proposed that the ‘second plateau’ of IPC samples should be ascribed to the aggregation of dispersion particles.

  11. Micromechanical Behavior of Single-Crystal Superalloy with Different Crystal Orientations by Microindentation

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2015-01-01

    Full Text Available In order to investigate the anisotropic micromechanical properties of single-crystal nickel-based superalloy DD99 of four crystallographic orientations, (001, (215, (405, and (605, microindentation test (MIT was conducted with different loads and loading velocities by a sharp Berkovich indenter. Some material parameters reflecting the micromechanical behavior of DD99, such as microhardness H, Young’s modulus E, yield stress σy, strain hardening component n, and tensile strength σb, can be obtained from load-displacement relations. H and E of four different crystal planes evidently decrease with the increase of h. The reduction of H is due to dislocation hardening while E is related to interplanar spacing and crystal variable. σy of (215 is the largest among four crystal planes, followed by (605, and (001 has the lowest value. n of (215 is the lowest, followed by (605, and that of (001 is the largest. Subsequently, a simplified elastic-plastic material model was employed for 3D microindentation simulation of DD99 with various crystal orientations. The simulation results agreed well with experimental, which confirmed the accuracy of the simplified material model.

  12. Microstructure, morphology, adhesion and tribological behavior of sputtered niobium carbide and bismuth films on tool steel

    Directory of Open Access Journals (Sweden)

    Laura Angélica Ardila Rodríguez

    2014-11-01

    Full Text Available Normal 0 21 false false false ES-CO X-NONE AR-SA Normal 0 21 false false false ES-CO X-NONE AR-SA NbC, Bi and Bi/NbC coatings were deposited on AISI M2 steel substrates using unbalanced magnetron sputtering at room temperature with zero bias voltage. Were studied the phase structure, the morphology, the adhesion and the tribological behavior of the three coatings. The niobium carbide film crystallized in the NbC cubic structure, and the bismuth layers had a rhombohedral phase with random orientation. The NbC coating had a smooth surface with low roughness, while the Bi layers on steel and on NbC coating had higher roughness and a morphology composed of large particles. By using a ductile Nb interlayer good adhesion between the NbC coating and the steel substrate was achieved. The Bi coating had better adhesion with the NbC layer than with the steel substrate. The tribological performance of the Bi coating on steel was not satisfactory, but according to the preliminary results, the produced NbC and Bi/NbC coatings have the potential to improve the tribological performance of the steel.

  13. Prediction of crystal morphology of cyclotrimethylene trinitramine in the solvent medium by computer simulation: a case of cyclohexanone solvent.

    Science.gov (United States)

    Chen, Gang; Xia, Mingzhu; Lei, Wu; Wang, Fengyun; Gong, Xuedong

    2014-12-11

    The crystal morphology of the energetic material cyclotrimethylene trinitramine (also known as RDX) influenced by the solvent effect was investigated via molecular dynamics simulation. The modified attachment energy (MAE) model was established by incorporating the growth parameter-solvent term. The adsorption interface models were used to study the adsorption interactions between solvent and RDX surfaces. The RDX crystal morphology grown from the cyclohexanone (CYC) solvent as a case investigation was calculated by the MAE model. The calculation results indicated that, due to the effect of CYC solvent, (210) and (111) faces had the greatest morphological importance on the final RDX crystal, while the morphological importance of (020), (002), and (200) faces were reduced. The predicted RDX morphology was in reasonable agreement with the observed experiment result.

  14. Non-Porod behavior in systems with rough morphologies.

    Science.gov (United States)

    Shrivastav, Gaurav P; Banerjee, Varsha; Puri, Sanjay

    2014-10-01

    Many experiments yield multi-scale morphologies which are smooth on some length scales and fractal on others. Accurate statements about morphological properties, e.g., roughness exponent, fractal dimension, domain size, interfacial width, etc. are obtained from the correlation function and structure factor. In this paper, we present structure factor data for two systems: (a) droplet-in-droplet morphologies of double-phase-separating mixtures; and (b) ground-state morphologies in dilute anti-ferromagnets. An important characteristic of the scattering data is a non-Porod tail, which is associated with scattering off rough domains and interfaces.

  15. The relationship between the morphology of brushite crystals grown rapidly in silica gel and its structure

    Science.gov (United States)

    Ohta, M.; Tsutsumi, M.

    1982-02-01

    The morphology of brushite, CaHPO 4 · 2 H 2O, provides some basic information on biological mineralization. The growth, morphology and surface structures of brushite crystals grown at fairly high growth rates in silica gel at 37°C in the initial pH range of 4 to 6 (the final pH range of about 3.2 to 4.7) have been investigated. Their preferred growth direction is [101]: there is a marked tendency for calcium and phosphate ions in the gel to attach to (111) or (101) surfaces; inclusions derived from silica gel are also incorporated, mainly along the [101] direction in the initial stage of crystal growth and at higher pH values. The following order of "edge strength", which refers to a sort of resistance of crystal edge against getting out of its shape, was obtained experimentally for the edges parallel to the (010) face of brushite: [101] ⪆ [201] > [001] ⪆ [100]. The relationship between the above order and the structure of corrugated sheets with composition [CaHPO 4] is also discussed.

  16. Morphology, Growth Process and Symmetry of {0001} Face on Yb:YAl3(BO3)4 Crystal

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The {0001} face develops on the habit of self-frequency doubling laser crystal Yb: YAl3(BO3)4 (YbYAB) only under high growth rate condition, and its morphology is rough. To study the growth mechanism of {0001} face, we have observed the growth morphology on {0001} polishing section by atomic force microscopy (AFM). A series of AFM images captured in different growth durations on the {0001} polishing section reflect the crystal growth process. It is shown that the growth morphology on the {0001} polishing section was rough with many hillocks at the first growth stage, and it can become smooth finally, although the growth morphology on the {0001} face developed naturally on YbYAB crystal habit is always rough. On the smooth {0001} surface formed at the last growth stage, there are some triangular pits. This fact is different from that of hillocks in most crystal growth morphologies. AFM can easily distinguish the pits or hillocks on the surface, but differential interfere contrast microscopy (DIC) can not do. The orientation of the triangular pits is just the opposite to the triangular {0001} faces. The chemical etching pattern is also composed of this kind of triangular pits. These growth morphology and etching pattern of the {0001} faces show 3m symmetry, but the point group of YbYAB crystal is 32. The symmetric contradiction between morphology and point group does not exist for quartz, although which has the same point group as YbYAB. From quartz {0001} surface morphology we can distinguish the right form or left form of the crystal, but from YbYAB {0001} surface morphology we can not do. The reason for the symmetric contradiction between YbYAB {0001} surface morphology and its point group is not known yet.

  17. Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions.

    Science.gov (United States)

    Zychowski, Lisa M; Logan, Amy; Augustin, Mary Ann; Kelly, Alan L; Zabara, Alexandru; O'Mahony, James A; Conn, Charlotte E; Auty, Mark A E

    2016-08-31

    Milk has been used commercially as a carrier for phytosterols, but there is limited knowledge on the effect of added plant sterols on the properties of the system. In this study, phytosterols dispersed in milk fat at a level of 0.3 or 0.6% were homogenized with an aqueous dispersion of whey protein isolate (WPI). The particle size, morphology, ζ-potential, and stability of the emulsions were investigated. Emulsion crystallization properties were examined through the use of differential scanning calorimetry (DSC) and Synchrotron X-ray scattering at both small and wide angles. Phytosterol enrichment influenced the particle size and physical appearance of the emulsion droplets, but did not affect the stability or charge of the dispersed particles. DSC data demonstrated that, at the higher level of phytosterol addition, crystallization of milk fat was delayed, whereas, at the lower level, phytosterol enrichment induced nucleation and emulsion crystallization. These differences were attributed to the formation of separate phytosterol crystals within the emulsions at the high phytosterol concentration, as characterized by Synchrotron X-ray measurements. X-ray scattering patterns demonstrated the ability of the phytosterol to integrate within the milk fat triacylglycerol matrix, with a concomitant increase in longitudinal packing and system disorder. Understanding the consequences of adding phytosterols, on the physical and crystalline behavior of emulsions may enable the functional food industry to design more physically and chemically stable products.

  18. The relationship between morphological and behavioral mimicry in hover flies (Diptera: Syrphidae).

    Science.gov (United States)

    Penney, Heather D; Hassall, Christopher; Skevington, Jeffrey H; Lamborn, Brent; Sherratt, Thomas N

    2014-02-01

    Palatable (Batesian) mimics of unprofitable models could use behavioral mimicry to compensate for the ease with which they can be visually discriminated or to augment an already close morphological resemblance. We evaluated these contrasting predictions by assaying the behavior of 57 field-caught species of mimetic hover flies (Diptera: Syrphidae) and quantifying their morphological similarity to a range of potential hymenopteran models. A purpose-built phylogeny for the hover flies was used to control for potential lack of independence due to shared evolutionary history. Those hover fly species that engage in behavioral mimicry (mock stinging, leg waving, wing wagging) were all large wasp mimics within the genera Spilomyia and Temnostoma. While the behavioral mimics assayed were good morphological mimics, not all good mimics were behavioral mimics. Therefore, while the behaviors may have evolved to augment good morphological mimicry, they do not advantage all good mimics.

  19. Optical and morphological characteristics of zinc selenide-zinc sulfide solid solution crystals

    Science.gov (United States)

    Singh, N. B.; Su, Ching-Hua; Arnold, Bradley; Choa, Fow-Sen

    2016-10-01

    Experiments were performed to study the effect of point defects on the optical and morphological characteristics of zinc selenide-zinc sulfide ZnSe-ZnS (ZnSexS(1-x)) solid solution crystals grown under terrestrial (1-g) condition. We used the composition ZnSe0.91S0.09 and ZnSe0.73S0.27 for the detailed studies. Crystals of 8 mm and 12 mm diameter were grown using physical vapor transport methods. These crystals did not exhibit gross defects such as voids, bubbles or precipitates. The photoluminescence spectra indicated strong red emission for the 610-630-nm wavelength region in both crystals. This emission could be explained on the basis of high energy irradiation of Zn selenide. For the ZnSe0.73S0.27 crystal, absorption starts at a lower wavelength range (300 nm) when compared to the ZnSe0.91S0.09 crystal presumably due to the much higher bandgap of ZnS than that of ZnSe. Sharp peaks at 451 and 455 nm were observed for both samples corresponding to the band edge transitions, followed by a strong peak at 632 nm. These results were consistent with the observations based on Raman spectroscopy studies. Under 532-nm laser illumination both transverse optical (TO) and longitudinal optical (LO) phonon peaks appeared at Raman shifts of 220 and 280 Δcm-1, respectively. These peaks are similar to those observed for pure ZnSe Raman spectra for which TO and LO occur at 200 and 250 Δcm-1 for the x-axis (first order) polarization.

  20. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching.

    Science.gov (United States)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-12

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  1. Polymer Alignment Behavior with Molecular Switching of Ferroelectric Liquid Crystal

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2007-01-01

    This paper describes the molecular alignment behavior of polymer networks with switching of a ferroelectric liquid crystal (FLC) in a molecularly aligned FLC/polymer composite film. The polymer alignment in the composite film, which was slowly formed by photopolymerization-induced phase separation of a heated nematic-phase solution of FLC and monomers, was observed by polarization Raman spectral microscopy. Raman peak intensities originating from the polymers were changed with those from the FLC, when the applied voltage polarity was changed. The trace patterns of the Raman peak intensity with in-plane rotation of the composite film indicated that the formed flexible polymers can follow FLC molecular switching.

  2. Effects of Solvent and Impurities on Crystal Morphology of Zinc Lactate Trihydrate

    Institute of Scientific and Technical Information of China (English)

    杨芗钰; 钱刚; 张相洋; 段学志; 周兴贵

    2014-01-01

    The crystal morphology of zinc lactate trihydrate in the absence or presence of impurities (viz. succinic acid, L-malic acid and D-malic acid) is investigated by molecular simulation based on surface docking model and COMPASS force field. Combing simulation results with our previous experimental results, it is found that the solvent mainly has an inhibition effect on the (0 0 2) surface, and succinic acid impurity will inhibit the growth of (0 0 2) and (0 1 1) surfaces while two enantiomers of malic acid impurity will inhibit the (0 0 2) and (1 0 0) surfaces, which are in good agreement with the experimental results.

  3. Polymorphic behavior of isonicotinamide in cooling crystallization from various solvents

    Science.gov (United States)

    Hansen, Thomas B.; Taris, Alessandra; Rong, Ben-Guang; Grosso, Massimiliano; Qu, Haiyan

    2016-09-01

    In this work the nucleation of different polymorphs of isonicotinamide (INA) from different solvents has been studied. The metastable zone width of INA in cooling crystallization from five different solvents has been investigated and attempts have been made to reveal the link between the INA molecular self-association to the polymorphism of the nucleated crystals using ATR FT-IR (Attenuated Total Reflectance Fourier Transform Infrared) and Raman spectroscopy. Raman and IR spectra of INA dissolved in different solvents have demonstrated that the INA molecules might associate in different configurations, whereas, the link between the structure of the molecular self-association and the structure of the nucleated polymorph is complicated by the influence of INA concentration. This is consistent with our previous study with piroxicam. The cooling crystallization of INA from five different solvents resulted in two different polymorphs depending on the initial concentration of the solution. The results obtained in the present work showed that information about self-association of an API (Active Pharmaceutical Ingredient) in a given solvent is not sufficient to predict the polymorphic behavior in all scenarios.

  4. Single crystal plasticity by modeling dislocation density rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Benjamin L [Los Alamos National Laboratory; Bronkhorst, Curt [Los Alamos National Laboratory; Beyerlein, Irene [Los Alamos National Laboratory; Cerreta, E. K. [Los Alamos National Laboratory; Dennis-Koller, Darcie [Los Alamos National Laboratory

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  5. Crystallization behavior during melt-processing of ceramic waste forms

    Science.gov (United States)

    Tumurugoti, Priyatham; Sundaram, S. K.; Misture, Scott T.; Marra, James C.; Amoroso, Jake

    2016-05-01

    Multiphase ceramic waste forms based on natural mineral analogs are of great interest for their high chemical durability, radiation resistance, and thermodynamic stability. Melt-processed ceramic waste forms that leverage existing melter technologies will broaden the available disposal options for high-level nuclear waste. This work reports on the crystallization behavior in selected melt-processed ceramics for waste immobilization. The phase assemblage and evolution of hollandite, zirconolite, pyrochlore, and perovskite type structures during melt processing were studied using thermal analysis, x-ray diffraction, and electron microscopy. Samples prepared by melting followed by annealing and quenching were analyzed to determine and measure the progression of the phase assemblage. Samples were melted at 1500 °C and heat-treated at crystallization temperatures of 1285 °C and 1325 °C corresponding to exothermic events identified from differential scanning calorimetry measurements. Results indicate that the selected multiphase composition partially melts at 1500 °C with hollandite coexisting as crystalline phase. Perovskite and zirconolite phases crystallized from the residual melt at temperatures below 1350 °C. Depending on their respective thermal histories, different quenched samples were found to have different phase assemblages including phases such as perovskite, zirconolite and TiO2.

  6. SYNTHESIS AND CRYSTALLIZATION BEHAVIOR OF POLY(ETHER ETHER KETONE ETHER KETONE) (PEEKEK)

    Institute of Scientific and Technical Information of China (English)

    Zhao-bin Qiu; Zhi-shen Mo; Ying-ning Yu; Hong-fang Zhang; Xian-hong Wang

    2000-01-01

    In this paper, the synthesis and crystallization behavior of poly(ether ether ketone ether ketone) (PEEKEK) are reported. PEEKEK was prepared from 4,4'-bis(p-fluorobenzoyl) diphenyl ether (4,4'-FBDE) and hydroquinone along the nucleophilic substitution route. The thermal properties were investigated by using DSC and TGA. The crystallization behavior of PEEKEK under several conditions, i.e., crystallization from the molten state (melt crystallization), crystallization from a quenched sample (cold crystallization) and crystallization induced by exposing glassy sample to methylene chloride (solvent-induced crystallization) has also been investigated. The results show that crystallization of PEEKEK could be induced by the above methods, and no polymorphism was found. The differences in the crystallization of PEEKEK induced by the above methods are seen in their degree of crystallinity.

  7. Physiochemical Characterization of Iodine (V Oxide Part II: Morphology and Crystal Structure of Particulate Films

    Directory of Open Access Journals (Sweden)

    Brian K. Little

    2015-11-01

    Full Text Available In this study, the production of particulate films of iodine (V oxides is investigated. The influence that sonication and solvation of suspended particles in various alcohol/ketone/ester solvents have on the physical structure of spin or drop cast films is examined in detail with electron microscopy, powder x-ray diffraction, and UV-visible absorption spectroscopy. Results indicate that sonicating iodine oxides in alcohol mixtures containing trace amounts of water decreases deposited particle sizes and produces a more uniform film morphology. UV-visible spectra of the pre-cast suspensions reveal that for some solvents, the iodine oxide oxidizes the solvent, producing I2 and lowering the pH of the suspension. Characterizing the crystals within the cast films reveal their composition to be primarily HI3O8, their orientations to exhibit a preferential orientation, and their growth to be primarily along the ac-plane of the crystal, enhanced at higher spin rates. Spin-coating at lower spin rates produces laminate-like particulate films versus higher density, one-piece films of stacked particles produced by drop casting. The particle morphology in these films consists of a combination of rods, plates, cubes, and rhombohedra structure.

  8. Choose your weapon: defensive behavior is associated with morphology and performance in scorpions.

    Science.gov (United States)

    van der Meijden, Arie; Lobo Coelho, Pedro; Sousa, Pedro; Herrel, Anthony

    2013-01-01

    Morphology can be adaptive through its effect on performance of an organism. The effect of performance may, however, be modulated by behavior; an organism may choose a behavioral option that does not fully utilize its maximum performance. Behavior may therefore be decoupled from morphology and performance. To gain insight into the relationships between these levels of organization, we combined morphological data on defensive structures with measures of defensive performance, and their utilization in defensive behavior. Scorpion species show significant variation in the morphology and performance of their main defensive structures; their chelae (pincers) and the metasoma ("tail") carrying the stinger. Our data show that size-corrected pinch force varies to almost two orders of magnitude among species, and is correlated with chela morphology. Chela and metasoma morphology are also correlated to the LD50 of the venom, corroborating the anecdotal rule that dangerously venomous scorpions can be recognized by their chelae and metasoma. Analyses of phylogenetic independent contrasts show that correlations between several aspects of chela and metasoma morphology, performance and behavior are present. These correlations suggest co-evolution of behavior with morphology and performance. Path analysis found a performance variable (pinch force) to partially mediate the relationship between morphology (chela aspect ratio) and behavior (defensive stinger usage). We also found a correlation between two aspects of morphology: pincer finger length correlates with the relative "thickness" (aspect ratio) of the metasoma. This suggests scorpions show a trade-off between their two main weapon complexes: the metasoma carrying the stinger, and the pedipalps carrying the chelae.

  9. Preparation and catalytic behavior of CeO2 nanoparticles on Al2O3 crystal

    Science.gov (United States)

    Hattori, Takashi; Kobayashi, Katsutoshi; Ozawa, Masakuni

    2017-01-01

    In this work, we examined the preparation, morphology, and catalytic behavior of CeO2 nanoparticles (NPs) on Al2O3(0001) crystal substrates. A CeO2 NP layer was prepared by the dipping method using a CeO2 nanocrystal colloid solution. Even after heat treatment at 1000 °C, the CeO2 NP layer maintained the granular morphology of CeO2 with a grain diameter of less than 40 nm. CeO2 NPs on an Al2O3 crystal showed higher oxidation activity for gaseous hydrogen at moderate temperatures and enhanced oxygen release properties of CeO2, compared with CeO2 powder. This was due to the highly dispersed CeO2 NPs and the interaction between CeO2 NPs and Al2O3; this clarified the importance of the Al2O3 support for the CeO2 catalyst.

  10. Crystal growth of calcium carbonate with various morphologies in different amino acid systems

    Science.gov (United States)

    Xie, An-Jian; Shen, Yu-Hua; Zhang, Chun-Yan; Yuan, Zong-Wei; Zhu, Xue-Mei; Yang, Yong-Mei

    2005-12-01

    In our experiments, four kinds of amino acids, such as L-Cystine ( L-Cys), L-Tyrosine ( L-Tyr), DL-Aspartic Acid ( DL-Asp), L-Lysine ( L-Lys) and the mixed systems of L-Tyr (or L-Lys)/Mg 2+, were used as effective modifiers to mediate the crystallization of CaCO 3. The obtained crystals were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). As the results have shown, calcite was formed in L-Cys system while both calcite and spherical vaterite with various morphologies were produced in the presence of L-Tyr, DL-Asp, and L-Lys whose ability to induce the formation of vaterite was enhanced in turn. It indicated that amino acids played an important role in the process of crystal growth of CaCO 3, the addition of Mg 2+ was helpful for the formation of aragonite. The possible formation mechanism of CaCO 3 produced in different amino acid aqueous solutions was discussed in the end.

  11. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Stipanovic, Arthur J [SUNY College of Environmental Science and Forestry

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  12. EM study of latent track morphology in TiO2 single crystals

    Science.gov (United States)

    O'Connell, J. H.; Skuratov, V. A.; Akilbekov, A.; Zhumazhanova, A.; Janse van Vuuren, A.

    2016-07-01

    A TEM investigation was conducted into the morphology of 167 MeV Xe (2 × 1010 cm-2 to 1014 cm-2) and 1 GeV Bi ion (2 × 1010 cm-2) induced latent tracks in single crystal TiO2 (rutile). At fluences up to 1011 cm-2 latent tracks are visible as discontinuous lines of strained crystal along the ion trajectory. From the implanted surface down to about 60-70 nm below the surface the tracks appear as continuous conical structures with a base of diameter 5-6 nm (Xe) and 8-9 nm (Bi) in contact with the surface with a mushroom shaped hillock extending outward from the surface. At fluences between 6 × 1012 cm-2 and 1013 cm-2 the crystal is amorphized but rod-like crystalline regions remain which are oriented along the ion trajectories. Amorphization extends from the surface down to 8.3 μm below suggesting an upper limit for the threshold electronic stopping power for amorphization of 7.3 keV nm-1. At 1014 cm-2 Xe the entire 8.3 μm subsurface region is rendered amorphous although some evidence of short range ordering remains.

  13. EM study of latent track morphology in TiO{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    O’Connell, J.H., E-mail: joconnell@nmmu.ac.za [CHRTEM, NMMU, University Way, Summerstrand, Port Elizabeth (South Africa); Skuratov, V.A. [FLNR, JINR, Joliot-Curie 6, 141980 Dubna (Russian Federation); Akilbekov, A.; Zhumazhanova, A. [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Janse van Vuuren, A. [CHRTEM, NMMU, University Way, Summerstrand, Port Elizabeth (South Africa)

    2016-07-15

    A TEM investigation was conducted into the morphology of 167 MeV Xe (2 × 10{sup 10} cm{sup −2} to 10{sup 14} cm{sup −2}) and 1 GeV Bi ion (2 × 10{sup 10} cm{sup −2}) induced latent tracks in single crystal TiO{sub 2} (rutile). At fluences up to 10{sup 11} cm{sup −2} latent tracks are visible as discontinuous lines of strained crystal along the ion trajectory. From the implanted surface down to about 60–70 nm below the surface the tracks appear as continuous conical structures with a base of diameter 5–6 nm (Xe) and 8–9 nm (Bi) in contact with the surface with a mushroom shaped hillock extending outward from the surface. At fluences between 6 × 10{sup 12} cm{sup −2} and 10{sup 13} cm{sup −2} the crystal is amorphized but rod-like crystalline regions remain which are oriented along the ion trajectories. Amorphization extends from the surface down to 8.3 μm below suggesting an upper limit for the threshold electronic stopping power for amorphization of 7.3 keV nm{sup −1}. At 10{sup 14} cm{sup −2} Xe the entire 8.3 μm subsurface region is rendered amorphous although some evidence of short range ordering remains.

  14. Influence of melt structure on the crystallization behavior and polymorphic composition of polypropylene random copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bin [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris 75005 (France); Chen, Zhengfang [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Kang, Jian, E-mail: jiankang@scu.edu.cn [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China); Yang, Feng; Chen, Jinyao; Cao, Ya; Xiang, Ming [State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065 (China)

    2015-03-20

    Highlights: • We prepared β-PPR and studied its crystallization behavior with different melt structures. • We observed surprising synergetic effect between β-NA and the ordered structures. • We explored the nature of ordered structures by calculating the equilibrium temperature. - Abstract: Polypropylene random copolymer (PPR) is one of important polypropylene types for the application fields. However, due to the random copolymer chain configuration, it is difficult to obtain high proportion of β-phase even under the influence of β-nucleating agent (β-NA). In this study, the melt structure (namely, the content of ordered structures in the melt) of β-nucleated ethylene-copolymerized PPR (β-PPR) was controlled by tuning the fusion temperature (T{sub f}), and its impact on the crystallization and polymorphic behavior of β-PPR was investigated by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), polarized optical microscopy (PLM) and scanning electronic microscopy (SEM). The result revealed that compared with the β-nucleated iPP homo-polymer, it is more difficult for β-PPR to form β-crystals; interestingly, when T{sub f} is in the temperature range of 162–173 °C, the ordered structures survived in melt exhibit high β-nucleation efficiency under the influence of β-NA, resulting in significant increase of β-phase proportion and evident variation of crystalline morphology, which is called the Ordered Structure Effect (OSE). Moreover, through investigating the self-nucleation behavior and equilibrium melting temperature of pure PPR (non-nucleated PPR), the physical nature of the lower and upper limiting T{sub f} temperatures for the occurrence of OSE in β-PPR was explored; the role of ethylene co-monomer in the occurrence of OSE was discussed.

  15. Oxygen Barrier Properties and Melt Crystallization Behavior of Poly(ethylene terephthalate/Graphene Oxide Nanocomposites

    Directory of Open Access Journals (Sweden)

    Anna Szymczyk

    2015-01-01

    Full Text Available Poly(ethylene terephthalate nanocomposites with low loading (0.1–0.5 wt% of graphene oxide (GO have been prepared by using in situ polymerization method. TEM study of nanocomposites morphology has shown uniform distribution of highly exfoliated graphene oxide nanoplatelets in PET matrix. Investigations of oxygen permeability of amorphous films of nanocomposites showed that the nanocomposites had better oxygen barrier properties than the neat PET. The improvement of oxygen permeability for PET nanocomposite films over the neat PET is approximately factors of 2–3.3. DSC study on the nonisothermal crystallization behaviors proves that GO acts as a nucleating agent to accelerate the crystallization of PET matrix. The evolution of the lamellar nanostructure of nanocomposite and neat PET was monitored by SAXS during nonisothermal crystallization from the melt. It was found that unfilled PET and nanocomposite with the highest concentration of GO (0.5 wt% showed almost similar values of the long period (L=11.4 nm for neat PET and L=11.5 nm for PET/0.5GO.

  16. Surface morphology determined by (0 0 1) single-crystal SrTiO 3 termination

    Science.gov (United States)

    Koster, Gertjan; Rijnders, Guus; Blank, Dave H. A.; Rogalla, Horst

    2000-11-01

    The terminating layer of a perovskite (0 0 1) ABO 3 crystal, with A as an alkaline earth metal and B as a transition metal, influences the characteristics of the surface. The morphology during thermal treatment of the surface and epitaxial growth are determined by the composition of the surface, i.e., whether it is BO 2, AO, or a mixed-terminated surface. Since the morphology of a thin film is the result of the evolution of the surface during deposition, control from the very first layer is essential for smooth films. In the case of perovskite materials, this means control of the terminating layer. Here, we study the SrTiO 3 surface as a model system and the effects of the composition of the terminating layer, determined by the treatment and/or deposition of SrO and TiO 2, on homo-epitaxial and hetero-epitaxial growth of SrCuO 2 and YBa 2Cu 3O 7. A single-terminated surface turns out to be optimal with respect to a smooth morphology and perfect epitaxy of high- Tc superconducting materials.

  17. Crystal Morphologies of Organolead Trihalide in Mesoscopic/Planar Perovskite Solar Cells.

    Science.gov (United States)

    Zhou, Yuanyuan; Vasiliev, Alexander L; Wu, Wenwen; Yang, Mengjin; Pang, Shuping; Zhu, Kai; Padture, Nitin P

    2015-06-18

    The crystal morphology of organolead trihalide perovskite (OTP) light absorbers can have profound influence on the perovskite solar cells (PSCs) performance. Here we have used a combination of conventional transmission electron microscopy (TEM) and high-resolution TEM (HRTEM), in cross-section and plan-view, to characterize the morphologies of a solution-processed OTP (CH3NH3PbI3 or MAPbI3) within mesoporous TiO2 scaffolds and within capping and planar layers. Studies of TEM specimens prepared with and without the use of focused ion beam (FIB) show that FIBing is a viable method for preparing TEM specimens. HRTEM studies, in conjunction with quantitative X-ray diffraction, show that MAPbI3 perovskite within mesoporous TiO2 scaffold has equiaxed grains of size 10-20 nm and relatively low crystallinity. In contrast, the grain size of MAPbI3 perovskite in the capping and the planar layers can be larger than 100 nm in our PSCs, and the grains can be elongated and textured, with relatively high crystallinity. The observed differences in the performance of planar and mesoscopic-planar hybrid PSCs can be attributed in part to the striking differences in their perovskite-grain morphologies.

  18. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Science.gov (United States)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  19. Molecular simulation of water behaviors on crystal faces of hydroxyapatite

    Institute of Scientific and Technical Information of China (English)

    PAN Haihua; TAO Jinhui; WU Tao; TANG Ruikang

    2007-01-01

    The water behavior on (001) and (100) crystal faces of hydroxyapatite (HAP) were studied using molecular dynamics (MD) simulations.The study showed that the water molecules between the HAP faces were under conditions of strong electrical field and high pressure,and hence formed 2-3 well-organized water layers on the crystal surfaces.These structured water layers had ice-like features.Compared with the crystallographic [100] direction of HAP,the polarity along the [001] direction was stronger,which resulted in more structured water layers on the surface.The interaction of water molecules with the calcium and phosphate sites at the HAP-water interface was also studied.The results indicated the multiple pathways of water adsorption onto the HAP surfaces.This study revealed the formation and the detailed structure of water layers on HAP surfaces and suggested that the interracial water played an important role in stabilizing the HAP particles in aqueous solutions.

  20. Heat Flux Through Slag Film and Its Crystallization Behavior

    Institute of Scientific and Technical Information of China (English)

    TANG Ping; XU Chu-shao; WEN Guang-hua; ZHAO Yan-hong; QI Xin

    2008-01-01

    An experimental apparatus for simulating copper mold is used to quantify the heat flux through the slag film and to obtain a solid slag for further determining its crystallization behavior.The result indicates that both the chemical composition of the mold powder and the cooling rate have an important influence on the heat flux through the slag film.With increasing the binary hasicity,the heat flux of slag film decreases at first,reaches the minimum at the basicity of 1.4,and then increases,indicating that the maximum binary basicity is about 1.4 for selecting"mild cooling"mold powder.The heat transfer through the slag film can be specified in terms of the crystalline ratio and the thickness of the slag film.Reerystallization of the solid slag occurs and must be considered as an important factor that may influence the heat transfer through the solid slag layer.

  1. Shock Hugoniot behavior of single crystal titanium using atomistic simulations

    Science.gov (United States)

    Mackenchery, Karoon; Dongare, Avinash

    2017-01-01

    Atomistic shock simulations are performed for single crystal titanium using four different interatomic potentials at impact velocities ranging from 0.5 km/s to 2.0 km/s. These potentials comprise of three parameterizations in the formulation of the embedded atom method and one formulation of the modified embedded atom method. The capability of the potentials to model the shock deformation and failure behavior is investigated by computing the shock hugoniot response of titanium and comparing to existing experimental data. In addition, the capability to reproduce the shock induced alpha (α) to omega (ω) phase transformation seen in Ti is investigated. The shock wave structure is discussed and the velocities for the elastic, plastic and the α-ω phase transformation waves are calculated for all the interatomic potentials considered.

  2. Morphology, Crystallization, and Melting of Single Crystals and Thin Films of Star-branched Polyesters with Poly(ε-caprolactone) Arms as Revealed by Atomic Force Microscopy

    NARCIS (Netherlands)

    Nunez, E.; Vancso, G.J.; Gedde, U.W.

    2008-01-01

    The morphology and thermal stability of different sectors in solution- and melt-grown crystals of star-branched polyesters with poly(ε-caprolactone) (PCL) arms, and of a reference linear PCL, have been studied by tapping-mode atomic-force microscopy (AFM). Real-time monitoring of melt-crystallizati

  3. Crystal Growth and Dissolution of Methylammonium Lead Iodide Perovskite in Sequential Deposition: Correlation between Morphology Evolution and Photovoltaic Performance.

    Science.gov (United States)

    Hsieh, Tsung-Yu; Huang, Chi-Kai; Su, Tzu-Sen; Hong, Cheng-You; Wei, Tzu-Chien

    2017-03-01

    Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

  4. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  5. On the morphology of SrCO3 crystals grown at the interface between two immiscible liquids

    Indian Academy of Sciences (India)

    Satyanarayana Reddy; Debabrata Rautaray; S R Sainkar; Murali Sastry

    2003-04-01

    In this paper we report on the growth of strontianite crystals at the interface between an aqueous solution of Sr2+ ions and organic solutions of chloroform and hexane containing fatty acid/fatty amine molecules by reaction with sodium carbonate. When fatty acid was used as an additive at the interface, the crystals grown were self-assembled needle shaped strontianite crystallites branching out from the seed crystal via secondary nucleation. Under identical conditions of supersaturation, the presence of fatty amine molecules at the liquid–liquid interface resulted in needle shaped strontianite crystals with spherical crystallites arranged around central needles. This clearly indicates that the functionality of the head group of the amphiphiles at the liquid–liquid interface affects the morphology of the strontium carbonate crystals formed. The use of interfacial effects such as dielectric discontinuity, polarity and finite solubility of the two solvents etc opens up exciting possibilities for tailoring the morphology of crystals at the liquid–liquid interface and is currently not possible in the more popular crystal growth with similar amphiphiles at the air–water interface.

  6. Soot Aerosol Particles as Cloud Condensation Nuclei: from Ice Nucleation Activity to Ice Crystal Morphology

    Science.gov (United States)

    Pirim, Claire; Ikhenazene, Raouf; Ortega, Isamel Kenneth; Carpentier, Yvain; Focsa, Cristian; Chazallon, Bertrand; Ouf, François-Xavier

    2016-04-01

    Emissions of solid-state particles (soot) from engine exhausts due to incomplete fuel combustion is considered to influence ice and liquid water cloud droplet activation [1]. The activity of these aerosols would originate from their ability to be important centers of ice-particle nucleation, as they would promote ice formation above water homogeneous freezing point. Soot particles are reported to be generally worse ice nuclei than mineral dust because they activate nucleation at higher ice-supersaturations for deposition nucleation and at lower temperatures for immersion freezing than ratios usually expected for homogeneous nucleation [2]. In fact, there are still numerous opened questions as to whether and how soot's physico-chemical properties (structure, morphology and chemical composition) can influence their nucleation ability. Therefore, systematic investigations of soot aerosol nucleation activity via one specific nucleation mode, here deposition nucleation, combined with thorough structural and compositional analyzes are needed in order to establish any association between the particles' activity and their physico-chemical properties. In addition, since the morphology of the ice crystals can influence their radiative properties [3], we investigated their morphology as they grow over both soot and pristine substrates at different temperatures and humidity ratios. In the present work, Combustion Aerosol STandart soot samples were produced from propane using various experimental conditions. Their nucleation activity was studied in deposition mode (from water vapor), and monitored using a temperature-controlled reactor in which the sample's relative humidity is precisely measured with a cryo-hygrometer. Formation of water/ice onto the particles is followed both optically and spectroscopically, using a microscope coupled to a Raman spectrometer. Vibrational signatures of hydroxyls (O-H) emerge when the particle becomes hydrated and are used to characterize ice

  7. Polypropylene/Layered Double Hydroxide (LDH) Nanocomposites: Influence of LDH Particle Size on the Crystallization Behavior of Polypropylene.

    Science.gov (United States)

    Nagendra, Baku; Mohan, Kiran; Gowd, E Bhoje

    2015-06-17

    Highly dispersed isotactic polypropylene (iPP) nanocomposites were prepared by incorporating two different sized Mg-Al LDH nanoparticles with different loadings from 1 to 10 wt % using a modified solvent mixing method. Larger sized LDH nanoparticles (∼3-4 μm) were prepared from the gel form of Mg-Al LDH, and the smaller sized nanoparticles (∼50-200 nm) were prepared by sonication of as-synthesized LDH particles. Such obtained LDH nanoparticles were carefully characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy, and scanning electron microscopy. WAXD and atomic force microscopy results indicate that the LDH nanoparticles were highly dispersed in the iPP matrix. The influence of LDH nanoparticles size and concentration on the thermal stability, spherulitic morphology, melting behavior, isothermal crystallization kinetics, and lamellar structure of iPP were investigated. Incorporation of low loadings of sonicated LDH particles (e.g., 1-2.5 wt %) show substantial effect on thermal stability, spherulite size, crystallinity, and crystallization half-time and lamellar morphology of iPP compared to the pure iPP and that of nanocomposites with larger LDH particles with same loadings. The better nucleation ability of iPP in the presence of sonicated LDH can be attributed to the high surface area of LDH nanoparticles along with its better dispersibility within the polymer matrix. The incorporation of LDH nanoparticles does not change the crystallization growth mechanism and crystal structure of iPP.

  8. Crystallization Behavior and Growing Process of Rutile Crystals in Ti-Bearing Blast Furnace Slag

    Science.gov (United States)

    Zhang, Wu; Zhang, Li; Li, Yuhai; Li, Xin

    2016-09-01

    The aim of the present work is to elucidate crystallization and growing process of rutile crystals in Ti-bearing blast furnace slag. The samples were taken from the liquid slag and quenched at once at elevated temperatures in order to analyze phase transaction of titanium and grain size of rutile crystals. Crystallization and growing kinetics of rutile crystals under elevated temperature conditions were calculated, and the crystallization process of rutile crystals under isothermal conditions was expressed by Avrami equation. The effects of experimental parameters, such as experimental temperatures, SiO2 addition, cooling rate, crystal seed addition and oxygen flow, were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), the optimal conditions for rutile crystals to grow up were obtained. Distribution and movement state of rutile crystals in the slag were analyzed.

  9. Effects of reactor type and mass transfer on the morphology of CuS and ZnS crystals

    NARCIS (Netherlands)

    Al-Tarazi, Mousa; Heesink, A. Bert M.; Versteeg, Geert F.

    2005-01-01

    For the precipitation of CuS and ZnS, the effects of the reactor/precipitator type, mass transfer and process conditions on crystal morphology were studied. Either H2S gas or a S2- solution were applied. Three different types of reactors have been tested, namely a laminar jet, a bubble column and an

  10. Crystal growth, structural, thermal and mechanical behavior of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals

    Science.gov (United States)

    Mahadevan, M.; Ramachandran, K.; Anandan, P.; Arivanandhan, M.; Bhagavannarayana, G.; Hayakawa, Y.

    2014-12-01

    Single crystals of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of L-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method.

  11. Effect of melt composition and crystal content on flow morphology along the Alarcón Rise, Mexico

    Science.gov (United States)

    Martin, J. F.; Lieberg-Clark, P.; Clague, D. A.; Caress, D. W.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2012-12-01

    Differences in submarine lava flow morphology have been related to differences in eruption rate; low eruption rates form pillow-flow morphologies whereas high eruption rates form sheet-flow morphologies. Eruption rate is likely controlled by dike intrusion width, exsolved bubble content of the magma, viscosity of the magma, or some combination these three properties. Samples and observations from a 2012 expedition to the Alarcón Rise, Mexico, are used to evaluate the potential control of viscosity due to melt composition and crystal content on observed flow morphologies and associated eruption rates. A 1-m resolution multibeam survey, covering the entire 50 km length of the neovolcanic zone, was completed using the MBARI Mapping AUV. Based on the high-resolution bathymetry, two basic flow morphologies could be distinguished: pillow flows, comprising ~ 40 % of the rise, and sheet flows, comprising the remaining ~ 60 %. A series of dives using the ROVs Doc Ricketts in 2012 and Tiburon in 2003 visually confirmed pillow flows, lobate flows, sheet flows, and jumbled sheet flows at the sampled sites. Over 150 lava samples collected during the dives, spanning the entire length of the rise were analyzed for major-element chemistry, crystal content, and corresponding flow morphology. Lavas selected for this analysis ranged from basalt to basaltic-andesite (100 pa s, only pillow lavas are generated. The majority (> 80 %) of sampled pillow lavas are plagioclase-phyric to ultraphyric whereas the majority of lobate and sheet flow lavas are aphyric. Crystal fractions in the pillow lavas are as high as 30-40%, resulting in magma viscosities ~ 5-15 times the melt viscosities. The majority of pillow lavas (~77%) have magma viscosities > 100 pa s. Only ~ 25 % of lobate and sheet flow lavas have magma viscosities > 100 pa s. Many of the phyric lobate and sheet flow samples show evidence of strong flow segregation of crystals to the outer surface of the flow, resulting in samples

  12. Surface Morphology and Microstructural Characterization of KCl Crystals Grown in Halite-Sylvite Brine Solutions by Electron Backscattered Diffraction Techniques

    Science.gov (United States)

    Podder, Jiban; Basu, Ritwik; Evitts, Richard William; Besant, Robert William

    2015-11-01

    In this paper, a study on the ternary NaCl-KCl-H2O system was carried out by an extractive metallurgy technique from mixed brine solutions of different compositions at room temperature (23°C). The surface morphology and microstructure were examined using a scanning electron microscope (SEM), electron backscattered diffraction (EBSD) and an energy dispersive X-ray (EDX) spectroscopy. The presence of Na{ }+ was found to reduce the stability of the solutions and increase the crystallization induction period, interfacial energy, energy of formation of the nucleus and greatly reduce the nucleation rate of KCl crystal. The surface morphology of KCl crystals is significantly changed due to presence of 5 to 10% (w/w) of NaCl as impurities in the binary solutions and shows the formation of co-crystals of different crystallographic orientation of NaCl on the KCl surface. In addition X-ray diffraction studies performed on KCl crystals grown in halite-sylvite binary solutions reveals that these crystals are cubic in nature and its lattice constant is 6.2952 Å when the NaCl concentration is small.

  13. The role of hydrogen bonding propensity in tuning the morphology of crystals obtained from imidazolium based ionic liquids

    Science.gov (United States)

    Karthika, S.; Radhakrishnan, T. K.; Kalaichelvi, P.

    2017-04-01

    The pharmaceutical crystallization is quite challenging in terms of the target properties like desired habit or morphology, size and the size distribution of the resultant crystals. Controlling the dimensions along the crystallographic axes, especially for the crystals with needle shape, is desired for operational flexibility. There has been a great interest in using Ionic Liquids (ILs) as a novel crystallization media, but inter molecular interaction between ILs and pharmaceutical solids are quite complex. Interactions in ionic media can be tuned to achieve target physical properties. In this study, ibuprofen is crystallized using imidazolium based IL with PF6 anion, which produces needle shaped crystals with high aspect ratio. It is found that aspect ratio is significantly altered when a small quantity of organic solvents is added to the crystallizing media. These organic solvents prefer to interact with certain domain of IL and this interaction can be utilized in achieving the objective of reduction in aspect ratio. Use of methanol and 2-ethoxy ethyl acetate is found to provide a significant reduction in aspect ratio. The role of hydrogen bonding ability of C2 hydrogen of imidazolium ionic liquid in steering the crystal shape is discussed.

  14. SPHERULITIC STRUCTURE AND MORPHOLOGY OF POLY(ETHYLENE SUCCINATE)/POLY(ETHYLENE OXIDE) (PES/PEO) BLENDS WITH ONE-STEP CRYSTALLIZATION

    Institute of Scientific and Technical Information of China (English)

    Jie-ping Liu; Shuan-gai He; Xiao-ping Qiao

    2008-01-01

    The spherlitic structure and morphology development of poly(ethylene succinate)/poly(ethylene oxide) (PES/PEO) blends with one-step crystallization behavior were observed by means of polarizing optical microscope.It was found that the pure PES spherulite in which the adequate quantity of PEO melt existed in the interlamellar regions,and the blending spherulite formed by both PES and PEO lamellae could form simultaneously.When the two types of spherulites contacted with each other the front of the blending spherulite could penetrate into the pure PES spherulite to grow continually.This penetration growth behavior was also observed when the mini-crystal particles of the PES component were formed at lower crystallization temperatures.The kinetics analysis showed that the penetration growth rate was faster than that in the original melt.It was evidenced that the increasing of growth rate and the formation of new growth site should be the typical characteristics of interpenetrated growth in binary crystalline polymer blends.

  15. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection

    DEFF Research Database (Denmark)

    Hughes, David P; Andersen, Sandra B; Hywel-Jones, Nigel L;

    2011-01-01

    Parasites that manipulate host behavior can provide prominent examples of extended phenotypes: parasite genomes controlling host behavior. Here we focus on one of the most dramatic examples of behavioral manipulation, the death grip of ants infected by Ophiocordyceps fungi. We studied...... leaves ca. 25 cm above the soil surface where conditions for parasite development are optimal. Here we address whether the sequence of ant behaviors leading to the final death grip can also be interpreted as parasite adaptations and describe some of the morphological changes inside the heads of infected...

  16. EFFECTS OF BLENDING CHITOSAN WITH PEG ON SURFACE MORPHOLOGY,CRYSTALLIZATION AND THERMAL PROPERTIES

    Institute of Scientific and Technical Information of China (English)

    Ling-hao He; Rui Xue; De-bin Yang; Ying Liu; Rui Song

    2009-01-01

    Biodegradable blend films composed of chitosan and PEG with various composition ratios were prepared. The chemical structure of the blend films was characterized with FTIR and X-ray, which showed no chemical bond formations but certain interactions probably coming from the hydrogen bonds. Morphologies of these blend films were viewed using AFM and SEM, suggesting that pure chitosan film had a smooth surface structure and the blend films surface showed a plenty of holes with varying size. Through the DMA measurement, it was found that there existed differences in the peak area and position of the blend films, and the peak at the glass transition temperature became significantly weaker and was markedly wider with the increasing content of PEG. The obtained results showed that the crystallinity of chitosan was suppressed and partially destroyed; and this should have an influence on the thermal behaviors and dynamic mechanical properties of the blend films.

  17. Effect of pimelic acid on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites

    Energy Technology Data Exchange (ETDEWEB)

    Meng Mingrui [Department of Polymer Science, College of Materials Science and Engineering, Nangjing University of Technology, Nanjing, Jiangsu Province 210009 (China)], E-mail: mmrstrom@gmail.com; Dou Qiang [Department of Polymer Science, College of Materials Science and Engineering, Nangjing University of Technology, Nanjing, Jiangsu Province 210009 (China)], E-mail: douqiang.njut@163.com

    2008-09-25

    The pimelic acid (PA) was used as a new surface modifier for wollastonite. The effects of PA treatment on the crystallization, morphology and mechanical properties of polypropylene/wollastonite composites were investigated. The Fourier transform infrared spectroscopy analysis revealed that the PA bonded to the wollastonite's surface and formed the calcium pimelate after reacting with the wollastonite. The results of wide angle X-ray diffraction, differential scanning calorimetry and polarized light microscopy proved that the PA treated wollastonite induced more {beta}-crystalline form and decreased the spherulites sizes of polypropylene. The results of scanning electron microscopy showed that the PA treatment enhanced the interfacial adhesion between the filler and the matrix, indicating the improvement of the compatibility between polypropylene and wollastonite. The toughness of the composites was improved by the more ductile {beta}-form spherulites. When 2.5 wt% of PA treated wollastonite was added, the Izod notched impact strength reached its maximum, a value of 17.33 kJ/m{sup 2}, which was 3.19 times greater than that of the blank polypropylene.

  18. Optimizing time and resource allocation trade-offs for investment into morphological and behavioral defense

    DEFF Research Database (Denmark)

    Steiner, Uli; Pfeiffer, Thomas

    2007-01-01

    Prey organisms are confronted with time and resource allocation trade-offs. Time allocation trade-offs partition time, for example, between foraging effort to acquire resources and behavioral defense. Resource allocation trade-offs partition the acquired resources between multiple traits, such as...... for and augment each other depending on predator densities and the effectiveness of the defense mechanisms. In the presence of time constraints, the model shows peak investment into morphological and behavioral defense at intermediate resource levels....

  19. Surfactant Effects on the Morphology and Pseudocapacitive Behavior of V2 O5 ⋅H2 O.

    Science.gov (United States)

    Qian, Aniu; Zhuo, Kai; Shin, Myung Sik; Chun, Woo Won; Choi, Bit Na; Chung, Chan-Hwa

    2015-07-20

    To overcome the drawback of low electrical conductivity within supercapacitor applications, several surfactants are used for nanoscale V2 O5 to enhance the specific surface area. Polyethylene glycol 6000 (PEG-6000), sodium dodecylbenzene sulfonate (SDBS), and Pluronic P-123 (P123) controllers, if used as soft templates, easily form large specific surface area crystals. However, the specific mechanism through which this occurs and the influence of these surfactants is not clear for V2 O5 ⋅H2 O. In the present study, we aimed to investigate the mechanism of crystal growth through hydrothermal processes and the pseudocapacitive behavior of these crystals formed by using diverse surfactants, including PEG-6000, SDBS, and P123. Our results show that different surfactants can dramatically influence the morphology and capacitive behavior of V2 O5 ⋅H2 O powders. Linear nanowires, flower-like flakes, and curly bundled nanowires can be obtained because of electrostatic interactions in the presence of PEG-6000, SDBS, and P123, respectively. Furthermore, the electrochemical performance of these powders shows that the nanowires, which are electrodes mediated by PEG-6000, exhibit the highest capacitance of 349 F g(-1) at a scan rate of 5 mV s(-1) of all the surfactants studied. However, a symmetric P123 electrode comprising curly bundled nanowires with numerous nanopores showed an excellent and stable specific capacitance of 127 F g(-1) after 200 cycles. This work is beneficial to understanding the fundamental role of the surfactant in the assisted growth of V2 O5 ⋅H2 O and the resulting electrochemical properties of the pseudocapacitors, which could be useful for the future design of appropriate materials.

  20. THE MORPHOLOGICAL BASIS FOR OLFACTORY PERCEPTION OF STEROIDS DUING AGONISTIC BEHAVIOR IN LOBSTER: PRELIMINARY EXPERIMENTS

    Science.gov (United States)

    The morphological basis for olfactory perception of steroids during agonistic behavior in lobsters: preliminary experiments. Borsay Horowitz, DJ1, Kass-Simon, G2, Coglianese, D2, Martin, L2, Boseman, M2, Cromarty, S3, Randall, K3, Fini, A.3 1US EPA, NHEERL, ORD, Atlantic Ecology...

  1. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  2. Oxygen precipitation behavior in heavily arsenic doped silicon crystals

    Science.gov (United States)

    Haringer, Stephan; Gambaro, Daniela; Porrini, Maria

    2017-01-01

    Silicon crystals containing different levels of arsenic concentration and oxygen content were grown, and samples were taken at various positions along the crystal, to study the influence of three main factors, i.e. the initial oxygen content, the dopant concentration and the thermal history, on the nucleation of oxygen precipitates during crystal growth and cooling in the puller. The crystal thermal history was reconstructed by means of computer modeling, simulating the temperature distribution in the crystal at several growth stages. The oxygen precipitation was characterized after a thermal cycle of 4 h at 800 °C for nuclei stabilization +16 h at 1000 °C for nuclei growth. Oxygen precipitates were counted under microscope on the cleaved sample surface after preferential etching. Lightly doped silicon samples were also included, as reference. Our results show that even in heavily arsenic doped silicon the oxygen precipitation is a strong function of the initial oxygen concentration, similar to what has been observed for lightly doped silicon. In addition, a precipitation retardation effect is observed in the arsenic doped samples when the dopant concentration is higher than 1.7×1019 cm-3 compared to lightly doped samples with the same initial oxygen content and crystal thermal history. Finally, a long permanence time of the crystal in the temperature range between 450 °C and 750 °C enhances the oxygen precipitation, showing that this is an effective temperature range for oxygen precipitation nucleation in heavily arsenic doped silicon.

  3. Phase separation of monomer in liquid crystal mixtures and surface morphology in polymer-stabilized vertical alignment liquid crystal displays

    Energy Technology Data Exchange (ETDEWEB)

    Lyu, Jae Jin; Lee, Jun Hyup; Kim, Kyeong Hyeon [Development Center, LCD Business, SAMSUNG Electronics Co. LTD., Tangjeong-Myeon, Asan, Chungnam 336-741 (Korea, Republic of); Kikuchi, Hirotsuku; Higuchi, Hiroki [Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580 (Japan); Kim, Dae Hyun; Lee, Seung Hee, E-mail: jsquare.lyu@samsung.com, E-mail: lsh1@chonbuk.ac.kr [Department of BIN Fusion Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2011-08-17

    The polymer-stabilized vertically aligned (PS-VA) liquid crystal display (LCD) driving mode has high potential for manufacturing low power consuming displays due to the higher transmittance and fast response as compared with the existing patterned vertically aligned and multi-domain vertically aligned modes. In this paper we have investigated the reaction mechanisms of monomer-liquid crystal blends to form a surface pre-tilt angle of liquid crystal in vertical alignment LCD associated with a fishbone electrode structure. The observed sizes of polymer bumps formed on the substrates were found to be dependent on the exposed UV wavelength and were almost equal in both top and bottom substrates. When a large UV wavelength was used, the phase separation mechanism of monomer in PS-VA mode was found nearly isotropic rather than anisotropic in contrast to the previous studies.

  4. Vapor diffusion method: Dependence of polymorphs and morphologies of calcium carbonate crystals on the depth of an aqueous solution

    Science.gov (United States)

    Liu, Qing; Wang, Hai-Shui; Zeng, Qiang

    2016-09-01

    The polymorph control of calcium carbonate by the vapor diffusion method is still a challenging issue because the resultant crystal polymorphs and morphologies highly depend on the experimental setup. In this communication, we demonstrated that the concentration gradients accompanied by the vapor diffusion method (ammonia concentration, pH and the ratio of CO32- to Ca2+ are changed with the solution depth and with time) are probably the main reasons to significantly affect the formation of crystal polymorphs. Raman, SEM and XRD data showed that calcite and vaterite crystals were preferred to nucleate and grow in the upper or the lower areas of aqueous solution respectively. The above results can be explained by the gradient effect.

  5. Crystallization behaviors of carbon fiber reinforced BN-Si{sub 3}N{sub 4} matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bin; Zhang, Chang-Rui; Wang, Si-Qing; Cao, Feng [State Key Laboratory of Advanced Ceramic Fibers and Composites, College of Aerospace and Materials Engineering, National University of Defense Technology, Changsha 410073 (China)

    2007-07-15

    The crystallization behaviors of a new carbon fiber reinforced composite with a hybrid matrix comprising BN and Si{sub 3}N{sub 4} prepared by precursor infiltration and pyrolysis were investigated by Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that the as-received composite is almost amorphous, and its main composition is BN and Si{sub 3}N{sub 4}. When heat treated at 1600 C, the composite is crystallized and shows a much better crystal form. When heat treated at 2100 C, Si{sub 3}N{sub 4} in the matrix is decomposed, and BN exhibits a relatively complete crystallization. The existence of B{sub 4}C and SiC is detected, which indicates the interfacial chemical reactions between nitride matrices and carbon fibers. The surface morphology of carbon fibers in the composite changed significantly when heated from 1600 to 2100 C, which also proved the occurrence of interfacial chemical reactions. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. STUDIES ON THE MECHANICAL PROPERTIES AND CRYSTALLIZATION BEHAVIOR OF POLYETHYLENE COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    ZHU Jin; OU Yuchun; FENG Yupeng

    1995-01-01

    The effects of interfacial modifier on the mechanical, dynamic mechanical properties and crystallization behavior of the polyethylene composites were investigated in the present paper.It was found that the interfacial modifer significantly improved the mechanical properties,influenced the dynamic mechanical spectra and slightly changed the crystallization behavior.The results showed that the interfacial modifier changed the dispersion state of dispersed phase of the composites, resulting in different phase structure, which was the major reason leading to different mechanical and crystallization properties.

  7. The Influence of Disorder on Thermotropic Nematic Liquid Crystals Phase Behavior

    Directory of Open Access Journals (Sweden)

    Samo Kralj

    2009-09-01

    Full Text Available We review the theoretical research on the influence of disorder on structure and phase behavior of condensed matter system exhibiting continuous symmetry breaking focusing on liquid crystal phase transitions. We discuss the main properties of liquid crystals as adequate systems in which several open questions with respect to the impact of disorder on universal phase and structural behavior could be explored. Main advantages of liquid crystalline materials and different experimental realizations of random field-type disorder imposed on liquid crystal phases are described.

  8. Isothermal Crystallization Behavior of Biodegradable Poly (butylene succinate-co-terephthalate)(PBST) Copolyesters at High Undercoolings

    Institute of Scientific and Technical Information of China (English)

    XU Xin-jian; LI Fa-xue; LUO Sheng-li; YU Jian-yong

    2008-01-01

    Poly(butylene succinate-co-terephthalate)(PBST)copolyesters were prepared by polycondensation.The isothermal crystallization behavior of the as-prepared copolyesters was investigated by depolarized light intensity(DLI)at high undercoolings.According to Avrami equation,the exponent n,independent of the crystallization temperature,is at a range of 2.5 to 3.4,which probably corresponds to the heterogeneous nucleation and a 3-dimensional spherulitic growth.The maximum crystallization rate,very useful to polymer processing,was foundat about 90℃ based on the half-crystallization time t1/2 analysis.

  9. Crystallization behavior of tetragonal ZrO{sub 2} prepared in a silica bath

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Huang, Hung-Jui [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-09-10

    Highlights: ► The activation energy of t-ZrO{sub 2} crystallization calculated by the JMA equation is 643.0 ± 13.9 kJ·mol{sup −1}. ► The growth morphology parameter (n) and crystallization mechanism index (m) are approximated as 3.0. ► Bulk nucleation is dominant in the t-ZrO{sub 2} crystallization process, and has a spherical-like morphology. ► The TEM microstructure reveals that the t-ZrO{sub 2} crystallites have a spherical-like morphology. - Abstract: The synthesis of zirconia (ZrO{sub 2}) precursor powders by a co-precipitation process is studied in this work, using a silica bath prepared at 348 K and pH = 7, with 10 min mixing using zirconium (IV) nitrate and tetraethylorthosilicate (TEOS, Si(OC{sub 2}H{sub 5}){sub 4}) as the starting materials. The XRD result show that only a single phase of tetragonal ZrO{sub 2} (t-ZrO{sub 2}) appears when the freeze dried precursor powders are calcined between 1173 and 1473 K for 120 min. The activation energy of t-ZrO{sub 2} crystallization, as calculated by the Johnson–Mehl–Avrami (JMA) equation, is 643.0 ± 13.9 kJ/mol. The growth morphology parameter (n) and crystallization mechanism index (m) are approximated as 3.0, which indicates that bulk nucleation is dominant in the t-ZrO{sub 2} crystallization process, and that the material has a plate-like morphology.

  10. Crystallization behavior of anhydrous milk fat-sunflower oil wax blends.

    Science.gov (United States)

    Kerr, Rebekah M; Tombokan, Xenia; Ghosh, Supriyo; Martini, Silvana

    2011-03-23

    This research evaluates the effect of sunflower oil wax (SFOw) addition on the crystallization behavior and functional properties of anhydrous milk fat (AMF). Induction times of nucleation, melting behavior, microstructure of crystals, and hardness were evaluated for samples of pure AMF and AMF with 0.1 and 0.25% SFOw. Results from this research show that the addition of waxes induced the onset of crystallization of AMF by inducing its nucleation, as evidenced by decreased induction times of nucleation and the formation of smaller crystals. Crystal growth after tempering was also promoted by waxes, and significantly harder lipid networks were obtained. Results presented in this paper suggest that SFOw can be used as an additive to alter the physiochemical properties of low trans-fatty acid lipids.

  11. Quartic coupling and its effect on wetting behaviors in nematic liquid crystals

    Institute of Scientific and Technical Information of China (English)

    曾明颖; Holger Merlitz; 吴晨旭

    2015-01-01

    Based on the fact that patterns of rubbed groove also affect anchoring of liquid crystals at substrates, a quartic coupling is included in constructing the surface energy for a liquid crystal cell. The phase diagram and the wetting behaviors of liquid crystal cell, bounded by surfactant-laden interfaces in a magnetic field perpendicular to the substrate are discussed by taking the quartic coupling into account. The nematic order increases at the surface while decreases in the bulk as a result of the introduction of quartic substrate–liquid crystal coupling, indicating that the groove anchoring makes the liquid crystal molecules align more orderly near the substrate than away from it. This causes a different wetting behavior: complete wetting.

  12. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    Science.gov (United States)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  13. Crystal structure and electrochemical behaviors of Pt/mischmetal film electrodes

    Institute of Scientific and Technical Information of China (English)

    张文魁; 杨晓光; 马淳安; 王云刚; 余厉阳

    2003-01-01

    The Ml(La-rich mischmetal) films with a thin Pt layer on the substrate of chemically coarsen ITO glassor silicon slices were prepared by magnetic sputtering technique. The crystal structure and surface morphology ofthe films were investigated by X-ray diffraction(XRD) analysis and atomic force microscopy(AFM), respectively.The electrochemical hydridation/dehydridation behaviors of the films in KOH solution were studied by using cyclicvoltammagraph and electrochemical impedance spectrum(EIS) as well. The AFM results show that the Pt cover lay-er on the M1 films is of island structure with a grain of 150 - 200 nm in size. The presence of a thin Pt layer can pro-vide sufficient high electrocatalytic activity for the electrochemical charge-transfer reaction. The electrochemical re-duction and oxidation reaction occur on the Pt layer, and the diffusion of H into the Ml film is the rate-controlledstep. The Pt coatings also act as protective layers, preventing oxidation and/or poisoning of the underlying Ml filmsin air.

  14. Crystallization behavior and glass formation of selected lunar compositions.

    Science.gov (United States)

    Scherer, G.; Hopper, R. W.; Uhlmann, D. R.

    1972-01-01

    The kinetics of crystal growth have been determined over a wide range of temperature, from 800 to 1219 C, for lunar compositions 14259 and 14310. At all temperatures for both compositions the extent of crystal growth is found to be a linear function of time. For both materials, the growth rate versus temperature relations exhibit the form generally found with glass-forming materials. At all temperatures measured, the crystal growth rate of composition 14259 is smaller than that of composition 14310. The maximum growth rate for both compositions occurs at a temperature of about 1120 C. The growth rate data are combined with viscosity data obtained on the same compositions to construct the reduced growth rate versus undercooling relations.

  15. Evolution of bower building in Lake Malawi cichlid fish: Phylogeny, morphology, and behavior

    Directory of Open Access Journals (Sweden)

    Ryan eYork

    2015-03-01

    Full Text Available Despite considerable research, we still know little about the proximate and ultimate causes behind behavioral evolution. This is partly because understanding the forces acting on behavioral phenotypes requires the study of species-rich clades with extensive variation in behavioral traits, of which we have few current examples. In this paper, we introduce the bower-building cichlids of the Lake Malawi adaptive radiation, a lineage with over 100 species, each possessing a distinct male extended phenotype used to signal reproductive fitness. Extended phenotypes are useful units of analysis for the study of behavior since they are static structures that can be precisely measured within populations. To this end we recognize two core types of bowers - mounds (castles and depressions (pits. We employ an established framework for the study of adaptive radiations to ask how traits related to other stages of radiations, macrohabitat and feeding morphology, are associated with the evolution of pit and castle phenotypes. We demonstrate that pits and castles are evolutionarily labile traits and have been derived numerous times in multiple Malawi genera. Using public ecological and phenotypic data sets we find significant and correlated differences in macrohabitat (depth, sensory ability (opsin expression, and feeding style (jaw morphology and biomechanics between pit-digging and castle-building species. Phylogeny-corrected comparisons also show significant differences in several measures of jaw morphology while indicating non-significant differences in depth. Finally, using laboratory observations we assay courtship behaviors in a pit-digging (Copadichromis virginalis and a castle-building species (Mchenga conophoros. Together, these results show that traits at multiple biological levels act to regulate the evolution of a courtship behavior within natural populations.

  16. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    Science.gov (United States)

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  17. Precise prediction of optical responses of liquid-crystal display products using a behavioral model of liquid crystal

    Science.gov (United States)

    Park, Chansoo; Cho, Youngmin; Kim, Jong-Man; Kim, Jongbin; Lee, Seung-Woo

    2012-01-01

    We propose a precise circuit model to estimate transient optical responses of an active-matrix liquid crystal display (AMLCD). Liquid crystal (LC) molecules in the pixel is behaviorally modeled by using the first-order system that is described by Verilog-A. Capacitance-voltage (C-V) characteristics of a pixel determine the accuracy of the dynamic responses. Measuring C-V characteristics is impossible because pixels are driven by switching transistors in the AMLCD. We propose a method to obtain the C-V data from natural optical responses. Estimated optical responses based on the C-V data extracted by our proposal show more accurate results than those based on C-V data obtained by using transmittance-voltage data. It is demonstrated that our behavioral model enables us to predict very accurate transient responses, which makes it possible to design LCD products with lower costs.

  18. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity.

    Science.gov (United States)

    Gancarz, Amy M; Wang, Zi-Jun; Schroeder, Gabrielle L; Damez-Werno, Diane; Braunscheidel, Kevin M; Mueller, Lauren E; Humby, Monica S; Caccamise, Aaron; Martin, Jennifer A; Dietz, Karen C; Neve, Rachael L; Dietz, David M

    2015-07-01

    Activin receptor signaling, including the transcription factor Smad3, was upregulated in the rat nucleus accumbens (NAc) shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally altered cocaine seeking while governing morphological plasticity in NAc neurons. Thus, Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration.

  19. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae)

    OpenAIRE

    Lauren A. Cirino; Christine W Miller

    2017-01-01

    Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae) spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata. This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, inclu...

  20. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Aina, Valentina [Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino (Italy); Centre of Excellence NIS (Nanostructured Interfaces and Surface) Università degli Studi di Torino (Italy); INSTM (Italian National Consortium for Materials Science and Technology), UdR Università di Torino (Italy); Bergandi, Loredana, E-mail: loredana.bergandi@unito.it [Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino (Italy); Lusvardi, Gigliola; Malavasi, Gianluca [Department of Chemical and Geological Sciences, Università di Modena and Reggio Emilia, Via Campi 183, 41125 Modena (Italy); Imrie, Flora E.; Gibson, Iain R. [School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD (United Kingdom); Cerrato, Giuseppina [Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino (Italy); Centre of Excellence NIS (Nanostructured Interfaces and Surface) Università degli Studi di Torino (Italy); INSTM (Italian National Consortium for Materials Science and Technology), UdR Università di Torino (Italy); Ghigo, Dario [Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino (Italy)

    2013-04-01

    A series of Sr-substituted hydroxyapatites (HA), of general formula Ca{sub (10−x)}Sr{sub x}(PO{sub 4}){sub 6}(OH){sub 2}, where x = 2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl{sub 2,} in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in

  1. Effect of the Degree of Soft and Hard Segment Ordering on the Morphology and Mechanical Behavior of Semicrystalline Segmented Polyurethanes

    Energy Technology Data Exchange (ETDEWEB)

    Korley,L.; Pate, B.; Thomas, E.; Hammond, P.

    2006-01-01

    The hierarchical microstructure responsible for the unique energy-absorbing properties of natural materials, like native spider silk and wood, motivated the development of segmented polyurethanes with soft segments containing multiple levels of order. As a first step in correlating the effects of crystallinity in the soft segment phase to the hard segment phase, we chose to examine the morphology and mechanical behavior of polyurethanes containing polyether soft blocks with varying tendencies to crystallize and phase segregate and the evolution of the microstructure with deformation. A series of high molecular weight polyurethanes containing poly(ethylene oxide) (PEO) (1000 and 4600 g/mol) and poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) (1900 g/mol) soft segments with varying hard segment content were synthesized using a two-step solution polymerization method. The presence of soft segment crystallinity (PEO 1000 g/mol) was shown to improve the storage modulus of the segmented polyurethanes below the T{sub m} of the soft block and to enhance toughness compared to the PEO-PPO-PEO soft segment polyurethanes. We postulate that this enhancement in mechanical behavior is the result of crystalline soft regions that serve as an additional load-bearing component during deformation. Morphological characterization also revealed that the microstructure of the segmented polyurethanes shifts from soft segment continuous to interconnected and/or hard domain continuous with increasing hard segment size, resulting in diminished ultimate elongation, but enhanced initial moduli and tensile strengths. Tuning the soft segment phase crystallinity may ultimately lead to tougher polyurethane fibers.

  2. Preparation, morphologies and thermal behavior of high nitrogen compound 2-amino-4,6-diazido-s-triazine and its derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qi-Long, E-mail: terry.well@163.com [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Musil, Tomáš [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Zeman, Svatopluk, E-mail: svatopluk.zeman@upce.cz [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Matyáš, Robert [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Shi, Xiao-Bing [Xi‘an Modern Chemistry Research Institute, 710065 Xi’an (China); Vlček, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 12006 Prague (Czech Republic); Pelikán, Vojtěch [Institute of Energetic Materials, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic)

    2015-03-20

    Graphical abstract: High nitrogen compound 2-amino-4,6-diazido-s-triazine (DAAT) can be substituted by different function groups, forming many other new energetic materials. Such materials that have very close molecular structure may be very different in terms of crystal structure, thermal behavior, as well as performances (e.g., TAAT vs. TAHT). Generally, the increase of the molecular weight results in better thermal stability. - Highlights: • The crystal morphologies of azido-triazine derivatives are examined using SEM. • The thermal stability and decomposition processes are compared by TGA and DSC. • The effect of function group on the thermal behavior of title compounds is clarified. - Abstract: The crystal morphologies, thermal behavior, sensitivity and performance of 2-amino-4,6,-diazido-s-triazine and its derivatives have been investigated using SEM, DSC, TG techniques and related theories. It has been shown that the DANT crystal is in 1–5 μm thickness layered regular hexagon structure with severe agglomeration. DAAT crystal is very hydrophobic and can be dispersed in water, which has layered rectangle structure with thickness less than 0.5 μm. The TAHT materials exist in a form of amorphous irregular particles with diameters of more than 200 μm while its analogue TAAT can be crystallized in needle shape with a length of 30 μm. TNADAzT crystal has a shape of regular polyhedron with average size of about 120 μm. The thermal analysis indicates that there is only one complex step for decomposition of DAAT, while at least three steps are included for the other materials. DAAT started to decompose at around 148.4 °C with a peak temperature of 197.0 °C, while TAHT started to decompose at 167.2 °C with shoulder-peak of 193.4–206.7 °C at the heating rate of 2.0 °C min{sup −1}. DANT decomposes with a heat release of 2420–2721 J g{sup −1}, which is much higher than that of DAAT indicating that the heat and its release rate are greatly

  3. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection

    Directory of Open Access Journals (Sweden)

    Himaman Winanda

    2011-05-01

    Full Text Available Abstract Background Parasites that manipulate host behavior can provide prominent examples of extended phenotypes: parasite genomes controlling host behavior. Here we focus on one of the most dramatic examples of behavioral manipulation, the death grip of ants infected by Ophiocordyceps fungi. We studied the interaction between O. unilateralis s.l. and its host ant Camponotus leonardi in a Thai rainforest, where infected ants descend from their canopy nests down to understory vegetation to bite into abaxial leaf veins before dying. Host mortality is concentrated in patches (graveyards where ants die on sapling leaves ca. 25 cm above the soil surface where conditions for parasite development are optimal. Here we address whether the sequence of ant behaviors leading to the final death grip can also be interpreted as parasite adaptations and describe some of the morphological changes inside the heads of infected workers that mediate the expression of the death grip phenotype. Results We found that infected ants behave as zombies and display predictable stereotypical behaviors of random rather than directional walking, and of repeated convulsions that make them fall down and thus precludes returning to the canopy. Transitions from erratic wandering to death grips on a leaf vein were abrupt and synchronized around solar noon. We show that the mandibles of ants penetrate deeply into vein tissue and that this is accompanied by extensive atrophy of the mandibular muscles. This lock-jaw means the ant will remain attached to the leaf after death. We further present histological data to show that a high density of single celled stages of the parasite within the head capsule of dying ants are likely to be responsible for this muscular atrophy. Conclusions Extended phenotypes in ants induced by fungal infections are a complex example of behavioral manipulation requiring coordinated changes of host behavior and morphology. Future work should address the

  4. Influence of Molecular Interaction on Crystallization Behavior of Glycine from Mother Liquor

    Institute of Scientific and Technical Information of China (English)

    TAO Chang-yuan; LI Ming-song; FAN Xing; LIU Zuo-hua; DU Jun

    2011-01-01

    The mother liquor for preparing industrial HCN was investigated,to analyze the side-products' structure and influence of molecular interactions of side-products with glycine and solvent on the glycine's crystallization process.The side-products(SPs)were super-branched oligmers with plenty of hydrophilic groups,which could affect the crystallization process by interactions such as hydrogen bond.Alcohol-water mixed solvent with different polyols could be used to weaken the SPs-glycine interaction and strengthen the SPs-water interaction,which help to improve the crystallization efficiency and purity.After optimization,SPs' mass fraction in glycine could be reduced by 80%and the morphology of crystal particles could also be improved.

  5. Comparative Analysis of Thermal Behavior, Isothermal Crystallization Kinetics and Polymorphism of Palm Oil Fractions

    OpenAIRE

    Zhang, Xia; Lin LI; Xie, He; Liang, Zhili; Su, Jianyu; Liu, Guoqin; LI, Bing

    2013-01-01

    Thermal behavior of palm stearin (PS) and palm olein (PO) was explored by monitoring peak temperature transitions by differential scanning calorimetry (DSC). The fatty acid composition (FAC), isothermal crystallization kinetics studied by pulsed Nuclear Magnetic Resonance (pNMR) and isothermal microstructure were also compared. The results indicated that the fatty acid composition had an important influence on the crystallization process. PS and PO both exhibited more multiple endotherms than...

  6. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    Science.gov (United States)

    Zaim, N.; Zaim, A.; Kerouad, M.

    2017-02-01

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction Js on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined.

  7. The Influence of NaCl Crystallization on the Long-Term Mechanical Behavior of Sandstone

    Science.gov (United States)

    Zheng, Hong; Feng, Xia-Ting; Jiang, Quan

    2015-01-01

    Salt precipitation can occur in saline aquifers when the pore-fluid concentration exceeds saturation during carbon dioxide sequestration, especially in the dry-out region closest to the wellbore. Results from uniaxial and triaxial compression tests, creep tests, and poromechanical tests indicate that NaCl crystallization in pores enhances the compressive strength and bulk modulus under the given confining pressure, and reduces creep. In addition, it makes the pore liquid pressure in the sandstone less sensitive to changes in the hydrostatic stress under undrained conditions. A poro-viscoelastic model with crystals in the pores is proposed to quantitatively estimate the influence of in-pore NaCl crystallization on the long-term mechanical behavior of sandstone. By considering the thermodynamics of crystallization, a geometrical model of a crystal in a pore space is applied to the quasi-static equilibrium state of the crystallization. The solid-liquid interfacial energy is introduced to provide a convenient approach to couple the mechanical properties of sandstone (as a porous material) and the thermochemistry of the in-pore NaCl crystallization. By adding the solid-liquid interfacial energy, the Clausius-Duhem inequality for the skeleton is established for the viscoelasticity based on the proposed geometrical model of a crystal in the pore space. The constitutive equations are deduced from the free energy balance relationship to evaluate the influence of crystallization on the effective stress in terms of the solid-liquid interfacial energies and the pore-size distribution. By comparing the model's output with the test results, it is found that the poro-viscoelastic model describes the influence of in-pore NaCl crystallization on the long-term mechanical behavior of the sandstone reasonably well.

  8. Effects of Saponification Rate on Electrooptical Properties and Morphology of Poly(vinyl alcohol)/Liquid Crystal Composite Films

    Science.gov (United States)

    Ono, Hiroshi; Kawatsuki, Nobuhiro

    1995-03-01

    The relationship between the saponification rate of poly(vinyl alcohol) (PVA), and the electrooptical properties and morphology of the PVA/liquid crystal (LC) composite films was investigated. Light transmission clazing and the LC droplet size were varied by changing the saponification rate or the blend ratio of two kinds of PVA with different saponification rates because the refractive index and surface tension could be controlled by the saponification rate of PVA. The threshold voltage decreased with increasing saponification rate though the extrapolation length was decreased. It was suggested that the electrooptical properties were strongly dependent on the droplet size.

  9. Influences of Silver-Doping on the Crystal Structure, Morphology and Photocatalytic Activity of TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Barakat, Nasser A. M.; Kanjwal, Muzafar Ahmed; Al-Deyab, Salem S.

    2011-01-01

    Doping of titanium dioxide nanofibers by silver nanoparticles revealed distinct improvement in the photocatalytic activ-ity; however other influences have not been investigated. In this work, effect of sliver-doping on the crystal structure, the nanofibrous morphology as well as the photocatalytic...... activity of titanium oxide nanofibers has been studied. Sil-ver-doped TiO2 nanofibers having different silver contents were prepared by calcination of electrospun nanofiber mats consisting of silver nitrate, titanium isopropoxide and poly(vinyl acetate) at 600°C. The results affirmed formation of silver...

  10. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior; Bionanocompositos quitosana/bentonita: morfologia e comportamento mecanico

    Energy Technology Data Exchange (ETDEWEB)

    Braga, C.R.C.; Melo, F.M.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Vitorino, I.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Ciencia e Engenharia de Materiais; Fook, M.V.L.; Silva, S.M.L., E-mail: suedina@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2010-07-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  11. Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand

    Energy Technology Data Exchange (ETDEWEB)

    Alshibli, Khalid A.; Jarrar, Maha F.; Druckrey, Andrew M.; Al-Raoush, Riyadh I.

    2017-02-01

    The constitutive behavior of sheared sand is highly influenced by particle morphology, gradation, mineralogy, specimen density, loading condition, stress path, and boundary conditions. The current literature lacks a three-dimensional (3D) systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand. In this paper, surface texture, roundness, and sphericity of three uniform sands and glass beads with similar grain size were quantified by using 3D images of particles. In situ nondestructive 3D synchrotron microcomputed tomography (SMT) was used to monitor the deformation of medium-dense and very dense dry sand specimens that were tested under axisymmetric triaxial loading condition at 15 and 400 kPa confining pressures. The particles were identified and tracked in 3D as shearing progressed within the specimens, and maps of incremental particle translation and rotation were developed and used to uncover the relationship between particle morphology, specimen density, and confining pressure on the deformation and failure mode of sheared sand. This paper discusses the relationship between the failure mode and particle morphology, specimen density, and confining pressure.

  12. Growth kinetics and morphology of mercuric iodide crystals grown by physical vapor transport

    Energy Technology Data Exchange (ETDEWEB)

    Nason, D. [TN Technologies, Round Rock, TX (United States); Mihalik, G. [Siemens Solar Inc., Vancouver, Washington (United States); Monchamp, R. [ROMOCO, Santa Barbara, California (United States)

    1997-06-02

    The growth kinetics of mercuric iodide single crystals grown by physical vapor transport from synthesized material were measured using an instrumented growth ampoule, and in situ crystal size resolution to {+-}0.2{mu}m was achieved. The kinetic coefficients are 2x10{sup -4}mm/s and 1.3x10{sup -4}mm/s for (001) and (110), respectively, as found from extrapolating the measured (apparent) kinetic coefficients to zero crystal size. The kinetic coefficients are nearly independent of growth rate in the practical range, {approx}1-5mm/day, indicating linear growth kinetics, and have substantial temperature coefficients of 0.3x10{sup -6}mm/(sC) and 0.4x10{sup -6}mm/(sC), respectively. The results indicate that the growth process is kinetically controlled at small crystal sizes and undergoes a transition to transport control at {approx}30-40mm crystal size, depending on the particular face. The results are consistent with a layer spreading process of growth in which adsorbed molecules surface-diffuse with activation energies congruent with 4kcal/mol and congruent with 8kcal/mol for (001) and (110), respectively

  13. Morphological and functional behaviors of rat hepatocytes cultured on single-walled carbon nanotubes.

    Science.gov (United States)

    Koga, Haruka; Fujigaya, Tsuyohiko; Nakashima, Naotoshi; Nakazawa, Kohji

    2011-09-01

    This study describes the morphological and functional behaviors of rat hepatocytes on single-walled carbon nanotube (CNT)-coated surfaces. Although the hydrophobic characteristics of CNT-coated surfaces increased with increasing CNT density, hepatocyte adhesion decreased, indicating that the interaction between hepatocytes and CNTs is weak. We found that hepatocytes on a CNT-coated surface gradually gather together and form spheroids (spherical multicellular aggregates). These spheroids exhibit compact spherical morphology with a smooth surface and express connexin-32, an intracellular communication molecule. In contrast, collagen treatment in conjunction with the CNT-coated surface improved hepatocyte adhesion, and the cells maintained a monolayer configuration throughout the culture period. The albumin secretion and ammonia removal activities of hepatocyte spheroids were maintained at elevated levels for at least 15 days of culturing as compared with hepatocyte monolayers. These results indicate that CNTs can be used for the formation and long-term culture of hepatocyte spheroids.

  14. Effects of polyethylene glycol and gelatin on the crystal size, morphology, and Sn{sup 2+}-sensing ability of bismuth deposits

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yi-Da; Lien, Chein-Hung [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013, Taiwan (China); Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.t [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013, Taiwan (China)

    2011-09-01

    The influences of citric acid (CA), ethylenediaminetetraacetic acid (EDTA), polyethylene glycol (PEG), and gelatin on the deposition behavior of Bi were systematically investigated through the linear sweep voltammetric (LSV) analysis. Based on the LSV results, deposits plated from a typical solution containing 0.05 M Bi(NO{sub 3}){sub 3}.5H{sub 2}O and various combinations of complex agents and additives with pH = 3.5 at 1 and 30 mA cm{sup -2} were characterized by scanning electron microscopic (SEM) and X-ray diffraction (XRD) analyses. The adhesion of deposits and the formation of dendrites were respectively improved and inhibited by the adsorption of PEG onto Bi deposits. With adding the above four compounds, a synergistic effect was shown to reach a nano-sized, sphere-like, porous morphology of a Bi deposit at 30 mA cm{sup -2}. The crystal size and morphology of Bi deposits were found to affect the sensing ability of Sn{sup 2+} through the square-wave anodic stripping voltammetric (SWASV) analysis.

  15. The effect of medium chemistry on the solubility and morphology of brushite crystals

    Science.gov (United States)

    Kuz'mina, M. A.; Zhuravlev, S. V.; Frank-Kamenetskaya, O. V.

    2013-12-01

    An experimental study of the particulars of the solubility and crystallization of brushite Ca(HPO4) · 2H2O from aqueous solution in conditions of a variable pH (6.0-3.0) and the contents of impurity ions (K+, Na+, NH{4/+}, Mg2+, SO{4/2-}, CO{3/2-}) has been conducted. It is established that brushite solubility markedly rises with a decrease in pH from 6 to 3 and slightly rises with an increase in Mg2+ and SO{4/2-} concentrations. The enrichment in K+, Na+, and NH{4/+} does not affect brushite solubility. The changeable chemistry of the medium results in variation of the synthetic crystal habit, from rhombic tabular to thickened prismatic crystals.

  16. Trade-off between morphological convergence and opportunistic diet behavior in fish hybrid zone

    Directory of Open Access Journals (Sweden)

    Grey Jonathan

    2009-10-01

    Full Text Available Abstract Background The invasive Chondrostoma nasus nasus has colonized part of the distribution area of the protected endemic species Chondrostoma toxostoma toxostoma. This hybrid zone is a complex system where multiple effects such as inter-species competition, bi-directional introgression, strong environmental pressure and so on are combined. Why do sympatric Chondrostoma fish present a unidirectional change in body shape? Is this the result of inter-species interactions and/or a response to environmental effects or the result of trade-offs? Studies focusing on the understanding of a trade-off between multiple parameters are still rare. Although this has previously been done for Cichlid species flock and for Darwin finches, where mouth or beak morphology were coupled to diet and genetic identification, no similar studies have been done for a fish hybrid zone in a river. We tested the correlation between morphology (body and mouth morphology, diet (stable carbon and nitrogen isotopes and genomic combinations in different allopatric and sympatric populations for a global data set of 1330 specimens. To separate the species interaction effect from the environmental effect in sympatry, we distinguished two data sets: the first one was obtained from a highly regulated part of the river and the second was obtained from specimens coming from the less regulated part. Results The distribution of the hybrid combinations was different in the two part of the sympatric zone, whereas all the specimens presented similar overall changes in body shape and in mouth morphology. Sympatric specimens were also characterized by a larger diet behavior variance than reference populations, characteristic of an opportunistic diet. No correlation was established between the body shape (or mouth deformation and the stable isotope signature. Conclusion The Durance River is an untamed Mediterranean river despite the presence of numerous dams that split the river from

  17. Bioleaching of incineration fly ash by Aspergillus niger – precipitation of metallic salt crystals and morphological alteration of the fungus

    Directory of Open Access Journals (Sweden)

    Tong-Jiang Xu

    2014-09-01

    Full Text Available This study examines the bioleaching of municipal solid waste incineration fly ash by Aspergillus niger, and its effect on the fungal morphology, the fate of the ash particles, and the precipitation of metallic salt crystals during bioleaching. The fungal morphology was significantly affected during one-step and two-step bioleaching; scanning electron microscopy revealed that bioleaching caused distortion of the fungal hyphae (with up to 10 μm hyphae diameter and a swollen pellet structure. In the absence of the fly ash, the fungi showed a linear structure (with 2–4 μm hyphae diameter. Energy-dispersive X-ray spectroscopy and X-ray diffraction confirmed the precipitation of calcium oxalate hydrate crystals at the surface of hyphae in both one-step and two-step bioleaching. Calcium oxalate precipitation affects bioleaching via the weakening of the fly ash, thus facilitating the release of other tightly bound metals in the matrix.

  18. Nucleation and crystallization behavior of RE - doped tellurite glasses

    Science.gov (United States)

    Goncharuk, V.; Mamaev, A.; Silant'ev, V.; Starodubtsev, P.; Maslennikova, I.

    2016-01-01

    The microstructure and crystallization of the glasses with composition (100-x-y)TeO2-xPbO·P2O5-yPbF2:zMF3 (M= Er, Eu, Nd; x=42.5-30, y=5-30, z=0.5-3.0) were investigated by transmission electron microscopy (TEM) and luminescence methods. It was found that the doping with the rare-earth (III) fluorides promoted nucleation in the bulk glasses. The sizes of generated particles are about 2-5 nanometers and their shapes are close to spherical. The growth rate of crystallites depended on the lead fluoride content and glass forming rate. The heat treatment of the samples promotes the glass ceramic formation, where the crystalline phase is Pb2P2O7.

  19. Simulated structural and magnetic behavior of Mn-Ti intercalated dichalcogenide crystals

    Science.gov (United States)

    Roth, M. W.; Wandling, B.; Kidd, T. E.; Shand, P. M.; Stollenwerk, A.

    2016-05-01

    We present the results of extensive Monte Carlo simulations of intercalated manganese-titanium (Mn-Ti) layered TiS2 crystals. The computational model involves mixtures of Mn and Ti in various percentages placed on a triangular lattice with fixed lattice sites and up to five layers. The range of concentrations of intercalated Mn studied was 5%  ⩽  X Mn  ⩽  33% and for Ti, 0%  ⩽  X Ti  ⩽  15%, where X A denotes the percentage of the total number of lattice sites occupied by species A. The species are allowed to interact spatially through a screened Coulomb potential and magnetically with external and RKKY field terms. Structurally, the pure Mn systems present as disordered at very low densities and evolve through a 2  ×  2 structure (perfect at X Mn  =  25%) up to a \\sqrt{3}   ×  \\sqrt{3} lattice (perfect at X Mn  =  33%), with variations of the two ‘perfect’ lattice structures depending on density. Changes in density for pure Mn systems as well as those intercalated with both Mn and Ti dramatically affects the system’s structural and magnetic properties, and the magnetic behavior of various morphological features present in the system are discussed. The RKKY interaction is adjusted based on the intercalant compositions and is very sensitive to structural variations in the intercalant layers. The composition ranges studied here encompass and exceed those that are experimentally accessible, which helps place experimentally relevant densities in perspective.

  20. Non-Equilibrium Magnetohydrodynamic Behavior of Plasmas having Complex, Evolving Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Bellan, Paul M. [Caltech

    2014-03-13

    Our main activity has been doing lab experiments where plasmas having morphology and behavior similar to solar and astrophysical plasmas are produced and studied. The solar experiment is mounted on one end of a large vacuum chamber while the astrophysical jet experiment is mounted on the other end. Diagnostics are shared between the two experiments. The solar experiment produces arched plasma loops that behave very much like solar corona loops. The astrophysical jet experiment produces plasma jets that are very much like astrophysical jets. We have also done work on plasma waves, including general wave dispersions, and specific properties of kinetic Alfven waves and of whistler waves.

  1. Effect of high pressure microfluidization on the crystallization behavior of palm stearin - palm olein blends.

    Science.gov (United States)

    Han, Lijuan; Li, Lin; Li, Bing; Zhao, Lei; Liu, Guoqin; Liu, Xinqi; Wang, Xuede

    2014-04-24

    Moderate and high microfluidization pressures (60 and 120 MPa) and different treatment times (once and twice) were used to investigate the effect of high-pressure microfluidization (HPM) treatment on the crystallization behavior and physical properties of binary mixtures of palm stearin (PS) and palm olein (PO). The polarized light microscopy (PLM), texture analyzer, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were applied to analyze the changes in crystal network structure, hardness, polymorphism and thermal property of the control and treated blends. PLM results showed that HPM caused significant reductions in maximum crystal diameter in all treated blends, and thus led to changes in the crystal network structure, and finally caused higher hardness in than the control blends. The XRD study demonstrated that HPM altered crystalline polymorphism. The HPM-treated blends showed a predominance of the more stable β' form, which is of more interest for food applications, while the control blend had more α- and β-form. This result was further confirmed by DSC observations. These changes in crystallization behavior indicated that HPM treatment was more likely to modify the crystallization processes and nucleation mechanisms.

  2. Effect of High Pressure Microfluidization on the Crystallization Behavior of Palm Stearin — Palm Olein Blends

    Directory of Open Access Journals (Sweden)

    Lijuan Han

    2014-04-01

    Full Text Available Moderate and high microfluidization pressures (60 and 120 MPa and different treatment times (once and twice were used to investigate the effect of high-pressure microfluidization (HPM treatment on the crystallization behavior and physical properties of binary mixtures of palm stearin (PS and palm olein (PO. The polarized light microscopy (PLM, texture analyzer, X-ray diffraction (XRD and differential scanning calorimetry (DSC techniques were applied to analyze the changes in crystal network structure, hardness, polymorphism and thermal property of the control and treated blends. PLM results showed that HPM caused significant reductions in maximum crystal diameter in all treated blends, and thus led to changes in the crystal network structure, and finally caused higher hardness in than the control blends. The XRD study demonstrated that HPM altered crystalline polymorphism. The HPM-treated blends showed a predominance of the more stable β' form, which is of more interest for food applications, while the control blend had more α- and β-form. This result was further confirmed by DSC observations. These changes in crystallization behavior indicated that HPM treatment was more likely to modify the crystallization processes and nucleation mechanisms.

  3. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    Science.gov (United States)

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature.

  4. EFFECTS OF COUPLING AGENTS ON THE CRYSTALLIZATION BEHAVIOR OF PP/T-ZnOw COMPOSITES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objectives of this paper are to understand the crystallization behavior of polypropylene (PP) composites with surface modified tetra-needle-shaped zinc oxide whisker (T-ZnOw). T-ZnOw was surface modified with different coupling agents, such as silane coupling agents (KH-550, KH-560) and titanate coupling agent (NDZ-105), in order to improve the compatibility between PP and T-ZnOw. DSC and POM were used to characterize the melt and crystallization behavior and the crystalline structures of the composites, respectively. The results show that the surface modified T-ZnOw acts as a nucleating agent of PP crystallization, depending on the coupling agent used for modification. KH-550 and KH-560 have more apparent role in improving the interfacial interaction than NDZ-105 and induce PP crystallization at higher temperature and with smaller spherulites size. The results also suggest that the crystallization behavior depends on not only the content of coupling agent, but also the content of the surface modified T-ZnOw used in the composites.

  5. Influence of annealing temperature on the morphology and the supercapacitance behavior of iron oxide nanotube (Fe-NT)

    Science.gov (United States)

    Sarma, Biplab; Jurovitzki, Abraham L.; Smith, York R.; Ray, Rupashree S.; Misra, Mano

    2014-12-01

    The article demonstrates the influence of annealing temperature on the supercapacitance behavior of iron oxide nanotube synthesized on pure iron substrate by electrochemical anodization process. Anodization was performed in an ethylene glycol solution containing 3% H2O and 0.5 wt. % NH4F. The as-anodized nanotubes were annealed in an ambient atmosphere at various temperatures ranging from 200 to 700 °C for a fixed duration of time (2 h). The morphology and crystal phases developed after anodization and subsequent annealing processes were examined using field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD) and X-ray photospectroscopy (XPS). Cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) experiments were performed in 1 M Li2SO4 to evaluate the electrochemical capacitance properties of the oxide nanotube electrodes. It was found that the electrode annealed at 300 °C exhibited superior electrochemical capacitance compared to the electrodes annealed at other temperatures. The highest specific capacitance achieved after annealing at 300 °C was about 314 mF cm-2. The electrodes annealed at 200, 500, 600 and 700 °C displayed much lower specific capacitance compared to those annealed at 300 and 400 °C. Galvanostatic charge-discharge experiments conducted on some of the annealed electrodes demonstrated excellent cycle stability with more than 80% capacitance retention after 1000 charge-discharge cycles.

  6. Fundamental Energetic Materials Initiative: Combat Safe Energetic Ingredients Based on Molecular Design and Crystal Morphology

    Science.gov (United States)

    2011-11-30

    loading conditions at the molecular and crystal levels. Replace one of the six bulk commodity chemicals currently used in all military propellant and...tetrazocine (HMX), nitroglycerin (NG), nitrocellulose (NC)) is the only way to achieve IM compliance. B. M. Rice and J. J. Hare, “A Quantum Mechanical

  7. Remarkable crystallization morphologies of poly(4-vinylpyridine on single-walled carbon nanotubes in CO2-expanded liquids

    Directory of Open Access Journals (Sweden)

    Y. N. Wei

    2011-12-01

    Full Text Available Poly(4-vinylpyridine (P4VP is a widely studied polymer for applications in catalysis, humidity sensitive and antimicrobial materials due to its pyridine group exhibiting coordinative reactivity with transition metals. In this work, the non-covalent functionalization of single-walled carbon nanotubes (SWCNTs with P4VP in CO2-expanded liquids (CXLs is reported. It is found that P4VP stabilized SWCNTs show good dispersion in both organic solvent and aqueous solution (pH = 2. The ability to manipulate the dispersion state of CNTs in water with P4VP will likely benefit many biological applications, such as drug delivery and optical sensors. Furthermore, the structure and morphology of P4VP/SWCNTs composite are examined, with the focus on molecular weight of P4VP (MW-P4VP, the pressure of CXLs and the concentration of P4VP. It is amazing that the P4VP15470 wrapping patterns undergo a notable morphological evolution from dotlike crystals to bottle brush-like, then to compact kebab-like, and then to widely-spaced dotted kebab patterns by facile pressure tuning in the higher polymer concentration series. In other words, the CXLs method enables superior control of the P4VP crystallization patterns on SWCNTs. Meanwhile, the CXL-assisted P4VP crystal growth mechanism on SWCNT is investigated, and the dominating growth mechanism is attributed to ‘size dependent soft epitaxy’ in P4VP15470/SWCNTs composites. We believe these studies would r

  8. Fine control of perovskite-layered morphology and composition via sequential deposition crystallization process towards improved perovskite solar cells

    Science.gov (United States)

    Luo, Yi; Meng, Fanli; Zhao, Erfei; Zheng, Yan-Zhen; Zhou, Yali; Tao, Xia

    2016-04-01

    The ability to prepare high coverage and compact perovskite films via solution-based crystallization manipulation processes still represents a vital issue towards improving the ultimate photoelectric conversion efficiency of devices. In this work, we prepare the active perovskite layer by means of sequential deposition crystallization process i.e. dipping PbI2-infiltrated TiO2 film within CH3NH3I solution from 20s to 60s. The morphology and thickness of the as-prepared perovskite layer, and its overall performance superiority are investigated. X-ray diffraction (XRD) reveals that a maximum conversion of PbI2 to perovskite is completed upon applying a sequential deposition crystallization process of 40s. Field emission scanning electron microscope (FESEM) demonstrates that the coverage of the perovskite capping layer exhibits a trend from rise to decline in the whole dipping time from 20s to 60s. By fine control of the dipping time, a 620 nm-thickness compact perovskite active layer is obtained at the optimized dipping time of 40s and is verified to possess strong light absorption and high electron extraction efficiency, leading to a higher photocurrent. By further optimizing the mesoporous TiO2 film thickness, a high photocurrent of 23.98 mA cm-2 and an efficiency of 13.47% are achieved.

  9. Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

    Directory of Open Access Journals (Sweden)

    Omar F. Farhat

    2015-03-01

    Full Text Available We report a facile synthesis of zinc oxide (ZnO nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM and X-ray diffraction (XRD measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO nanorods and the growth rate along the (002 direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be realized by adjusting the synthesis conditions.

  10. Dielectric relaxation behavior of nematic liquid crystal cell using β-cyclodextrin as an alignment layer

    Directory of Open Access Journals (Sweden)

    Marwa Sahraoui

    2016-02-01

    Full Text Available In the present investigation, we report the dielectric properties of a symmetric Nematic Liquid Crystal (NLC cell using Beta Cyclodextrins (β-CD as alignment layers. These layers were deposited onto Indium Tin Oxide (ITO surface by thermal evaporation and then characterized using contact angle measurement. This revealed a hydrophilic character attributed to the presence of hydroxyl groups. Morphological study was carried out by Scanning Electronic Microscopy (SEM. The dynamic impedance study of the Liquid Crystal (LC cell in a wide frequency range from 1mHz to 13MHz was reported. It was found that the β-CD alignment layer had a blocking effect on the NLC cell at a high frequency range. We also report the relaxation mechanism of NLC cell which is modeled by an appropriate equivalent circuit in order to understand the electrical properties of the liquid crystal cell and to investigate the processes taking place at different interfaces. 

  11. Sorption Behavior and Morphology of Plutonium in the Presence of Goethite at 25 and 80C

    Energy Technology Data Exchange (ETDEWEB)

    Zavarin, M; Zhao, P; Dai, Z; Carroll, S A; Kersting, A B

    2012-06-11

    In this study, we examined the sorption behavior of Pu at elevated temperatures in the presence of one relevant mineral, goethite ({alpha}-FeOOH), over a range of concentrations that span solubility-controlled to adsorption-controlled concentrations. We focused on the sorptive behavior of two common forms of Pu: aqueous Pu(IV) and intrinsic Pu(IV) nano-colloids at 25 and 80 C in a dilute pH 8 NaCl/NaHCO{sub 3} solution. The morphology of Pu sorbed to goethite was characterized using transmission electron microscopy (TEM). We examined the relative stability of PuO{sub 2} precipitates, PuO{sub 2} nano-colloids, Pu{sub 4}O{sub 7} surface precipitates, and monomeric sorbed Pu as a function of temperature and over a time scale of months.

  12. Morphology of immature stages and mating behavior in Liogenys fusca (Blanchard (Coleoptera, Melolonthidae, Melolonthinae

    Directory of Open Access Journals (Sweden)

    Sérgio Roberto Rodrigues

    Full Text Available ABSTRACT Liogenys fusca is a rizophagous insect pest in various crops of economic importance in Brazil. Here we investigated the morphology of immature stages and mating behavior of this species. The redescription of the 3rd instar larvae of L. fusca in this work allows identification and registration of occurrence independently of adults, which occur sporadically in a certain period of the year. Male and female of L. fusca remained confined in the soil during the day and exited between 19:00 and 23:30 h. The copulations occurred between 19:30 and 21:00 h, and were characterized by a typical behavioral sequence. Copulation durations in L. fusca lasted on average 512.23 s. Adults were observed feeding before the copulations on leaves and inflorescences of plant species belonging to the family Anacardiaceae, Myracrodruon urundeuva, Schinus terebinthifolius, Astronium fraxinifolium and Anacardium occidentale.

  13. Morphology-dependent field emission properties and wetting behavior of ZnO nanowire arrays

    Directory of Open Access Journals (Sweden)

    Ma Li

    2011-01-01

    Full Text Available Abstract The fabrication of three kinds of ZnO nanowire arrays with different structural parameters over Au-coated silicon (100 by facile thermal evaporation of ZnS precursor is reported, and the growth mechanism are proposed based on structural analysis. Field emission (FE properties and wetting behavior were revealed to be strongly morphology dependent. The nanowire arrays in small diameter and high aspect ratio exhibited the best FE performance showing a low turn-on field (4.1 V/μm and a high field-enhancement factor (1745.8. The result also confirmed that keeping large air within the films was an effective way to obtain super water-repellent properties. This study indicates that the preparation of ZnO nanowire arrays in an optimum structural model is crucial to FE efficiency and wetting behavior.

  14. Predator-driven trait diversification in a dragonfly genus: covariation in behavioral and morphological antipredator defense.

    Science.gov (United States)

    Mikolajewski, Dirk J; De Block, Marjan; Rolff, Jens; Johansson, Frank; Beckerman, Andrew P; Stoks, Robby

    2010-11-01

    Proof for predation as an agent shaping evolutionary trait diversification is accumulating, however, our understanding how multiple antipredator traits covary due to phenotypic differentiation is still scarce. Species of the dragonfly genus Leucorrhinia underwent shifts from lakes with fish as top predators to fishless lakes with large dragonfly predators. This move to fishless lakes was accompanied by a partial loss and reduction of larval spines. Here, we show that Leucorrhinia also reduced burst swimming speed and its associated energy fuelling machinery, arginine kinase activity, when invading fishless lakes. This results in patterns of positive phylogenetic trait covariation between behavioral and morphological antipredator defense (trait cospecialization) and between behavioral antipredator defense and physiological machinery (trait codependence). Across species patterns of trait covariation between spine status, burst swimming speed and arginine kinase activity also matched findings within the phenotypically plastic L. dubia. Our results highlight the importance of predation as a factor affecting patterns of multiple trait covariation during phenotypic diversification.

  15. Influence of Carbon Nanofiber Addition on Mechanical Properties and Crystallization Behavior of Polypropylene

    Institute of Scientific and Technical Information of China (English)

    Xin TONG; Yong CHEN; Huiming CHENG

    2005-01-01

    Carbon nanofiber (CNF)-reinforced polypropylene (CNF/PP) composites with different CNF contents were prepared by melt mixing, and the mechanical properties and crystallization behavior of the CNF/PP composites obtained were investigated. It was found that the tensile modulus of the composites was increased with the addition of CNFs, but their elongation at break and fracture strain energy were decreased, while the tensile strength of the composites was firstly increased and then decreased due to the agglomeration of CNFs at higher loading. Nonisothermal crystallization analysis showed that the CNFs played a role as nucleating agent in PP matrix, which led to increment in the crystallization rate and the degree of crystallinity of PP. Moreover, X-ray diffraction studies showed that the CNFs incorporated in the PP matrix favored the growth of (040)-oriented PP crystals. With the increase in the CNF content, the nucleating and orientation roles of the CNFs were obviously enhanced.

  16. Crystallization Kinetics and Melting Behavior of PA1010/Ether-based TPU Blends

    Institute of Scientific and Technical Information of China (English)

    ZHANG Shu-ling; ZHAO Yan; SUN Xiao-bo; JIANG Zhen-hua; WU Zhong-wen; WANG Gui-Bin

    2007-01-01

    Polyamide 1010(PA1010)/thermoplastic poly(ether urethane) elastomer(ether-based TPU) blends were prepared via melt extrusion. The crystallization kinetics and melting behavior of PA1010/ether-based TPU blends were systematically investigated using differential scanning calorimetry. The crystallization kinetics results show that the addition of ether-based TPU hinders the crystallization of PA1010, and the hindrance effect increases with the increase of the concentration of ether-based TPU. Both pure PA1010 and PA1010/ether-based TPU blends exhibit double melting peaks in the process of nonisothermal crystallization. The double melting peaks change differently with the variation of cooling rate and blend composition. The cooling rate only influences the lower melting peak; however, the blend composition influences not only the lower melting peak but also the higher melting peak. The reason for the phenomenon must be the interaction between the two compositions.

  17. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  18. Effect of titanium dioxide (TiO{sub 2}) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shichao; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2014-12-25

    Highlights: • HDPE/TiO{sub 2} composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO{sub 2} composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO{sub 2}) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO{sub 2} particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO{sub 2} particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO{sub 2} particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO{sub 2} particles in HDPE matrix. It was found the rutile TiO{sub 2} could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result.

  19. Crystallization Behavior and Microstructural Analysis of Strontium Rich (PbSr−TiO Glass Ceramics in Presence of LaO

    Directory of Open Access Journals (Sweden)

    C. R. Gautam

    2011-01-01

    Full Text Available Crystallization and microstructural behavior of various strontium-rich glass ceramics in the system 65[(PbxSr1−xTiO3]-24[2SiO2⋅B2O3]-5[BaO]-5[K2O]-1[La2O3] (0.0≤≤0.4 with addition of 1% La2O3 have been investigated. The addition of La2O3 has been found to play an important role in crystallization of perovskite (Pb,SrTiO3 as a solid solution phase. Also, it causes a change in the surface morphology of the fined crystallites of the major phase. Differential thermal analysis (DTA shows only one exothermic crystallization peak, which shifts towards higher temperature with increasing amount of strontium oxide. Glasses were subjected to various heat treatment schedules for the crystallization. Very good crystallization of strontium-rich glass compositions is observed. X-ray diffraction studies confirm that cubic perovskite lead strontium titanate crystallizes as major phase. Lattice parameter decreases with increasing strontium content similar to lead strontium titanate ceramics. Uniform and interconnected crystallites are dispersed in glassy matrix.

  20. Effect of Processing Conditions on the Crystallization behavior and Destabilization Kinetics of Oil-in-Water Emulsions

    OpenAIRE

    Martini, Silvana; Tippetts, Megan

    2008-01-01

    The objective of this research was to systematically study the effect of processing conditions on the crystallization behavior and destabilization mechanisms of oil-in-water emulsions. The effect of crystallization temperature (T c) and homogenization conditions on both thermal behavior and destabilization mechanisms were analyzed. Results show that the crystallization of lipids present in the emulsions was inhibited when compared with bulk lipids as evidenced by a lower onset and peak temper...

  1. Controlling the morphology of TiO{sub 2} nano crystals with different capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, D. G.; Rodriguez, M.; Jardiel, T.

    2015-10-01

    This paper provides direct evidence to support the role of capping agents in controlling the evolution of TiO{sub 2} seeds into nano crystals with a specific shape. Starting with Ti(OBut){sub 4} and using oleid acid, oleylamine, dioleamide, 11-aminoundecanoic acid, arginine, trifluroacetic acid or HF as capping agents, mainly TiO{sub 2} truncated octahedrons enclosed by {1 0 1} and {0 0 1} facets were obtained. We could also selectively obtain square, rods and rounded rhombic-shaped nanoparticles by growing of {0 1 0} facets by adding oleic acid and oleylamine in ratio 6:4, respectively, while all other parameters were kept the same. This research not only offers new insights into the role played by a capping agent in shape-controlled synthesis but also provides, a versatile approach to controlling the shape of metal oxide nano crystals. (Author)

  2. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe

    Institute of Scientific and Technical Information of China (English)

    Guo-qing DI; Bing ZHOU; Zheng-guang; LI, Qi-li LIN

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms,in this study,we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d.For comparison,we also used unexposed control rats.Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (LwEcPN) of 75 and 80 dB for the two experimental groups.We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD).We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM).Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals.After 29 d of airport noise exposure,the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05).We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d.In conclusion,exposing rats to long-term aircraft noise affects their behaviors,plasma NE levels,and cell morphology of the temporal lobe.

  3. Aircraft noise exposure affects rat behavior, plasma norepinephrine levels, and cell morphology of the temporal lobe*

    Science.gov (United States)

    Di, Guo-qing; Zhou, Bing; Li, Zheng-guang; Lin, Qi-li

    2011-01-01

    In order to investigate the physiological effects of airport noise exposure on organisms, in this study, we exposed Sprague-Dawley rats in soundproof chambers to previously recorded aircraft-related noise for 65 d. For comparison, we also used unexposed control rats. Noise was arranged according to aircraft flight schedules and was adjusted to its weighted equivalent continuous perceived noise levels (L WECPN) of 75 and 80 dB for the two experimental groups. We examined rat behaviors through an open field test and measured the concentrations of plasma norepinephrine (NE) by high performance liquid chromatography-fluorimetric detection (HPLC-FLD). We also examined the morphologies of neurons and synapses in the temporal lobe by transmission electron microscopy (TEM). Our results showed that rats exposed to airport noise of 80 dB had significantly lower line crossing number (P<0.05) and significantly longer center area duration (P<0.05) than control animals. After 29 d of airport noise exposure, the concentration of plasma NE of exposed rats was significantly higher than that of the control group (P<0.05). We also determined that the neuron and synapsis of the temporal lobe of rats showed signs of damage after aircraft noise of 80 dB exposure for 65 d. In conclusion, exposing rats to long-term aircraft noise affects their behaviors, plasma NE levels, and cell morphology of the temporal lobe. PMID:22135145

  4. Pharmacological, morphological and behavioral analysis of motor impairment in experimentally vitamin C deficient guinea pigs

    Directory of Open Access Journals (Sweden)

    Oriá Reinaldo Barreto

    2003-01-01

    Full Text Available The scurvy shows an inflammatory disease and gingival bleeding. Nevertheless, in an animal model for guinea pigs, described by Den Hartog Jager in 1985, scurvy was associated with a motor neuron disease with demyelinization of the pyramidal tract, provoking neurogenic atrophy of muscles. Aiming at searching the protective role of vitamin C in nervous system, a pharmacological, morphological and behavioral study was conducted. Three experimental groups were used: A100, animals receiving 100 mg/ vitamin C/ day; A5.0, animals receiving 5.0 mg/vitamin C/ day; and A0, animals without vitamin C. We analyzed the weight gain, muscular diameter and behavioral tests. In all tests examined, we found significant differences between the supplemented groups in comparison with scorbutic group (p<0.05. Thereafter, the animals were killed for histopathology of gastrocnemius muscle, spinal cord and tooth tissues. In addition, a morphometric study of periodontal thickness and alpha-motor neuron cell body diameter were done. The vitamin C-diet free regimen seemed to induce a disruption in spinal cord morphology, involving the lower motor neuron, as confirmed by a significant reduction in neuron perycaria diameter and muscular atrophy, complicated by increased nutritional deficit.

  5. GROWTH OF CRYSTALS OF PRIMARY ALUMINIUM WITH ROSETTE MORPHOLOGY AT CASTING OF SILUMINS

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2011-01-01

    Full Text Available The work is devoted to actual theme of alloy solidifi – investigation of infl of overlapping of thermal and concentration fi of neighboring crystals to forming of non- dendrite structures. Experimental research of microstructure of Al-Si alloy for wide range of silicon concentration is conducted, and corresponding numerical simulation develop too. The conclusion about different schemes of forming of rosette structures is adopted.

  6. Effect of copper doping on the crystal structure and morphology of 1D nanostructured manganese oxides.

    Science.gov (United States)

    Lee, Sun Hee; Park, Dae Hoon; Hwang, Seong-Ju; Choy, Jin-Ho

    2007-11-01

    We have tried to control the aspect ratio and physicochemical properties of 1D nanostructured manganese oxides through copper doping. Copper-doped manganese oxide nanostructures have been synthesized by one-pot hydrothermal treatment for the mixed solution of permanganate anions and copper cations. According to powder X-ray diffraction and electron microscopic analyses, all the present materials commonly crystallize with alpha-MnO2-type structure but their aspect ratio decreases significantly with increasing the content of copper. Such a variation of crystallite dimension is attributable to the limitation of crystal growth by the incorporation of copper ions. X-ray absorption spectroscopic studies at Mn K- and Cu K-edges clearly demonstrate that the average oxidation state of manganese ions is increased by the substitution of divalent copper ions. Electrochemical measurements reveal the improvement of the electrode performance of nanostructured manganate upon copper doping, which can be interpreted as a result of the decrease of aspect ratio and the increase of Mn valence state. From the present experimental findings, it becomes certain that the present Cu doping method can provide an effective way of controlling the crystal dimension and electrochemical property of 1D nanostructured manganese oxide.

  7. Relationship of sow udder morphology with piglet suckling behavior and teat access.

    Science.gov (United States)

    Balzani, Agnese; Cordell, Heather J; Edwards, Sandra A

    2016-11-01

    The aim of this study was to investigate if there is a relationship between the latency to the first suckling and udder and teat morphology and to assess the extent to which piglet and sow characteristics influence teat pair position preference. Udder morphology trait measurements, piglet suckling behavior, and sow productive and behavioral traits were recorded from a population of 74 Large White X Landrace sows of different parities. The interteat distance within the same row was larger between the teats that were suckled at the first contact with the udder compared with the unsuckled teats (P = 0.04). There was a tendency for piglets to suckle first from teats placed closer to the abdominal midline. A high proportion of siblings (64%) suckled for the first time on a teat previously chosen by another piglet. Most neonates suckled first from a teat located in the posterior part of the udder (41%) or in the anterior part (33%), rather than the middle section. Latency from birth to suckling and the time from the first udder contact to locate a teat and suckle was shorter for piglets first suckling the anterior (28:03 and 9:48 minutes) and posterior teats (26:31; 8:38 minutes) than for those sucking the midsection teats (34:30 minutes, F7,256 = 1.99, P = 0.05; 10:30, F7,256 = 2.37, P = 0.05). To avoid possible confounds, other potential causes of delay in successful suckling were studied. The latency to suckle was not influenced by piglet vitality score at birth, weight, or provision of human assistance to place it at the udder. It was shorter when the piglets were born later in the litter (P piglets born dead (P = 0.001) and from a sow with an induced farrowing (P = 0.007). Moreover, there was a tendency for piglets born from a multiparous sow (P = 0.06) and in a large litter size (P = 0.07) to have a longer latency to find a teat and suckle once they had made the first contact with the udder. Although suckling itself is clearly an instinctive

  8. Tailoring of morphology and crystal structure of CdSe nanostructures by controlling the ratio of triethylenetetraamine and water in their mixed solution

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadi, M.R.; Zarghami, V. [Sharif University of Technology, Department of Materials Science and Engineering, Tehran (Iran, Islamic Republic of); Fray, D.J. [University of Cambridge, Department of Materials Science and Metallurgy, Cambridge (United Kingdom)

    2012-05-15

    The morphological manipulation, structural characterization, and optical properties of different CdSe nanocrystals were reported. Several different CdSe nanostructures, including nanowires, tetrapod crystals, and nanoparticles were grown by varying the volume ratio of triethylenetetraamine (TETA) and water (WA) in their mixed solution. By manipulating the growth driving force (i.e., the degree of supersaturation) and kinetics of the process (i.e., growth rate), the morphology and crystal structure of CdSe nanocrystals can be tailored. Growth driving force changed their morphology from nanowires to tetrapod structures and from the latter structure to nanoparticles. Moreover, kinetics of the process altered their crystal structure from wurtzite to zinc blende. The optical property of CdSe nanocrystals was investigated using UV-vis spectroscopy. The absorption edge of CdSe nanostructures showed a blue shift. CdSe nanocrystals prepared under optimized conditions showed good microstructural and optical properties for solar cell application. (orig.)

  9. Additives Effects on Crystal Morphology of Dihydroxylammonium 5,5ʹ-Bistetrazole-1,1ʹ-diolate by Molecular Dynamics Simulations

    Science.gov (United States)

    Xiong, Shu-Ling; Chen, Shu-Sen; Jin, Shao-Hua; Li, Li-Jie

    2016-10-01

    Dihydroxylammonium 5,5‧-bistetrazole-1,1‧-diolate (TKX-50) is a newly synthesized explosive with excellent comprehensive properties: high energy storage, low impact sensitivity, and low toxicity. To understand and improve the crystal morphology of TKX-50, we reported the polymer consistent force field to simulate the crystal morphology of TKX-50 by growth morphology (GM) method. We then used this force field in molecular dynamics (MD) simulations to predict the influences of additives on crystal facets of TKX-50. The calculated results indicate that ethanol, ethylene glycol, and acetic acid are more favorable to the spheroidization of TKX-50, which provides a theoretical support for the additive selection of crystalline system. Furthermore, we added the selected additives in the recrystallization system of TKX-50. The recrystallized samples possessed a small aspect ratio and were close to spherical in shape, which indicates that the experimental results are consistent with the simulated results.

  10. A test of the coupling of predator defense morphology and behavior variation in two threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Jennyfer LACASSE, Nadia AUBIN-HORTH

    2012-02-01

    Full Text Available Among-population differences in morphology and behaviors such as boldness have been shown to co-vary with ecological conditions, including predation regime. However, between- and within-population covariation of predator defense morphology with variation in behaviors relevant to ecology and evolution (boldness, exploration, activity, sociability and aggressiveness, often defined as personality traits when they are consistent across time and contexts have never been quantified together in a single study in juvenile fish from populations found in contrasting environments. We measured predator defense morphology differences between adults from two freshwater populations of threespine sticklebacks with different ecological conditions. We then quantified five behaviors in juveniles from both populations raised in a common environment. Wild-caught adults showed significant differences in predator defense morphology. One population had significantly lower lateral plate number, shorter dorsal spine, pelvic spine and pelvic girdle. Furthermore, 61% of individuals from that population showed an absence of pelvic spine and girdle. At the population level, we found that differences in defense morphology in adults between the two lakes were coupled with differences in behaviors in juveniles raised in a common environment. Levels of activity, aggressiveness and boldness were higher in juveniles from the population lacking predator defense structures. At the individual level, anti-predator morphology of adult females could not predict their offspring’s behavior, but juvenile coloration predicted individual boldness in a population-specific manner. Our results suggest that ecological conditions, as reflected in adult predator defense morphology, also affect juvenile behavior in threespine sticklebacks, resulting in trait co-specialization, and that there is a genetic or epigenetic component to these behavioral differences [Current Zoology 58 (1: 53–65, 2012].

  11. A test of the coupling of predator defense morphology and behavior variation in two threespine stickleback populations

    Institute of Scientific and Technical Information of China (English)

    Jennyfer LACASSE; Nadia AUBIN-HORTH

    2012-01-01

    Among-population differences in morphology and behaviors such as boldness have been shown to co-vary with ecological conditions,including predation regime.However,between- and within-population covariation of predator defense morphology with variation in behaviors relevant to ecology and evolution (boldness,exploration,activity,sociability and aggressivehess,often defined as personality traits when they are consistent across time and contexts) have never been quantified together in a single study in juvenile fish from populations found in contrasting environments.We measured predator defense morphology differences between adults from two freshwater populations of threespine sticklebacks with different ecological conditions.We then quantified five behaviors in juveniles from both populations raised in a common environment.Wild-caught adults showed significant differences in predator defense morphology.One population had significantly lower lateral plate number,shorter dorsal spine,pelvic spine and pelvic girdle.Furthermore,61% of individuals from that population showed an absence of pelvic spine and girdle.At the population level,we found that differences in defense morphology in adults between the two lakes were coupled with differences in behaviors in juveniles raised in a common environment.Levels of activity,aggressiveness and boldness were higher in juveniles from the population lacking predator defense structures.At the individual level,anti-predator morphology of adult females could not predict their offspring's behavior,but juvenile coloration predicted individual boldness in a population-specific manner.Our results suggest that ecological conditions,as reflected in adult predator defense morphology,also affect juvenile behavior in threespine sticklebacks,resulting in trait co-specialization,and that there is a genetic or epigenetic component to these behavioral differences [Current Zoology 58 ( 1 ):53--65,2012].

  12. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae).

    Science.gov (United States)

    Cirino, Lauren A; Miller, Christine W

    2017-01-17

    Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae) spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata. This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, including the degree of sexual dimorphism and mating behavior. Our goal with this study was to determine if similar phenotypic changes of N. femorata occurred over time in the wild, and the extent to which these changes were concordant with phenological changes in its host plant. Further, we investigate the length of the insect mouthparts (beak) over time. Ongoing work has suggested that beak length may change across cohorts of developing insects in response to feeding deep within cactus fruit where seed and pulp depth decrease as the fruit ripens. Our results revealed a drop in cactus fruit abundance between the months of July through October 2015 as cactus fruits turned red and ripened. Simultaneously, the average body size of both males and females of N. femorata declined at two sampled sites. Male hind femora (a sexually-selected weapon) decreased disproportionately in size over time so that males later in the year had relatively smaller hind femora for their body size. The sex-specific patterns of morphological change led to increased sexual-size dimorphism and decreased sexual dimorphism for hind femora later in the year. Further, we found that beak length decreased across cohorts of insects as cactus fruit ripened, suggesting phenotypic plasticity in mouthpart length. Behavioral studies revealed that female readiness to mate increased as the season progressed. In sum, we found pronounced changes in the phenotypes of these insects in the field. Although this study is far from

  13. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae)

    Science.gov (United States)

    Cirino, Lauren A.; Miller, Christine W.

    2017-01-01

    Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae) spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata. This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, including the degree of sexual dimorphism and mating behavior. Our goal with this study was to determine if similar phenotypic changes of N. femorata occurred over time in the wild, and the extent to which these changes were concordant with phenological changes in its host plant. Further, we investigate the length of the insect mouthparts (beak) over time. Ongoing work has suggested that beak length may change across cohorts of developing insects in response to feeding deep within cactus fruit where seed and pulp depth decrease as the fruit ripens. Our results revealed a drop in cactus fruit abundance between the months of July through October 2015 as cactus fruits turned red and ripened. Simultaneously, the average body size of both males and females of N. femorata declined at two sampled sites. Male hind femora (a sexually-selected weapon) decreased disproportionately in size over time so that males later in the year had relatively smaller hind femora for their body size. The sex-specific patterns of morphological change led to increased sexual-size dimorphism and decreased sexual dimorphism for hind femora later in the year. Further, we found that beak length decreased across cohorts of insects as cactus fruit ripened, suggesting phenotypic plasticity in mouthpart length. Behavioral studies revealed that female readiness to mate increased as the season progressed. In sum, we found pronounced changes in the phenotypes of these insects in the field. Although this study is far from

  14. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae

    Directory of Open Access Journals (Sweden)

    Lauren A. Cirino

    2017-01-01

    Full Text Available Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata. This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, including the degree of sexual dimorphism and mating behavior. Our goal with this study was to determine if similar phenotypic changes of N. femorata occurred over time in the wild, and the extent to which these changes were concordant with phenological changes in its host plant. Further, we investigate the length of the insect mouthparts (beak over time. Ongoing work has suggested that beak length may change across cohorts of developing insects in response to feeding deep within cactus fruit where seed and pulp depth decrease as the fruit ripens. Our results revealed a drop in cactus fruit abundance between the months of July through October 2015 as cactus fruits turned red and ripened. Simultaneously, the average body size of both males and females of N. femorata declined at two sampled sites. Male hind femora (a sexually-selected weapon decreased disproportionately in size over time so that males later in the year had relatively smaller hind femora for their body size. The sex-specific patterns of morphological change led to increased sexual-size dimorphism and decreased sexual dimorphism for hind femora later in the year. Further, we found that beak length decreased across cohorts of insects as cactus fruit ripened, suggesting phenotypic plasticity in mouthpart length. Behavioral studies revealed that female readiness to mate increased as the season progressed. In sum, we found pronounced changes in the phenotypes of these insects in the field. Although this

  15. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    George, M.A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E. [Fisk Univ., Nashville, TN (United States). Dept. of Physics; Nason, D. [EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations

    1993-05-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using Atomic Force Microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  16. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    Science.gov (United States)

    George, M. A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E.; Nason, D.

    1993-04-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using atomic force microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position, and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  17. Morphology and primary crystal structure of a silk-like protein polymer synthesized by genetically engineered Escherichia coli bacteria.

    Science.gov (United States)

    Anderson, J P; Cappello, J; Martin, D C

    1994-08-01

    The morphology and primary crystal structure of SLPF, a protein polymer produced by genetically engineered Escherichia coli bacteria, were characterized. SLPF is a segmented copolymer consisting of amino acid sequence blocks modeled on the crystalline segments of silk fibroin and the cell attachment domain of human fibronectin. Wide angle x-ray scattering (WAXS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and molecular simulations were used to analyze the primary crystal structure of SLPF. TEM experiments conducted on SLPF droplets cast from formic acid on amorphous carbon film demonstrated that these protein films have a microstructure formed of woven sheaves. The sheaves are composed of well-defined whisker crystallites. The width of the whiskers, 11.8 +/- 2.2 nm, may be correlated to the length of the silk-like segment in SLPF as predicted by molecular simulations. WAXS data, TEM images, SAED, patterns, molecular simulations, and theoretical diffraction patterns all were consistent with the crankshaft model proposed for Silk I by Lotz and Keith.

  18. Relationship between crystal morphology and photoluminescence in polynanocrystalline lead sulfide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaci, S., E-mail: k_samira05@yahoo.f [Silicon Technology Development Unit 2, Bd Frantz FANON, BP 140 Alger 7 Merveilles, Algiers (Algeria); Keffous, A. [Silicon Technology Development Unit 2, Bd Frantz FANON, BP 140 Alger 7 Merveilles, Algiers (Algeria); Trari, M. [Houari Boumediene Science and Technology University (USTHB), Chemical Faculty, Algiers (Algeria); Fellahi, O.; Menari, H.; Manseri, A. [Silicon Technology Development Unit 2, Bd Frantz FANON, BP 140 Alger 7 Merveilles, Algiers (Algeria); Guerbous, L. [Algiers Nuclear Research Center, Algiers (Algeria)

    2010-10-15

    Thin films of lead sulfide (PbS) nanoparticles were grown on corning glass and Si(1 0 0) substrates by polyethylene glycol-assisted chemical bath deposition (CBD) method. This paper compares the morphology and the luminescence properties (PL) of the deposited thin films in the presence (or absence) of PEG300 and investigates the effect of deposition temperatures. Surface morphology and photoluminescence properties of samples were analyzed. The PL data show a blue-shift from the normal emission at {approx}2900 nm in PbS bulk to {approx}360 nm in nanoparticles of PbS thin films. Furthermore, the PL emission of the films obtained without the addition of PEG300 (type 1) was slightly shifted from that of the films obtained in presence of PEG300 (type 2) from {approx}360 to {approx}470 nm. The blue-shifting of the emission wavelengths from 2900 to {approx}360 or 470 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the shift between the two types of PbS nanoparticles thin films is speculated to be due to an increase in the defect concentration. The blue-shift increased with increase of the deposition temperature, which suggests that there has been a relative depletion in particle sizes during the CBD of the films at higher temperatures. The PbS nanocrystalline thin films obtained in the presence of PEG300 at 60 {sup o}C exhibit a high blue luminescence.

  19. Structure, surface area and morphology of aluminas from thermal decomposition of Al(OH(CH3COO2 crystals

    Directory of Open Access Journals (Sweden)

    KIYOHARA PEDRO K.

    2000-01-01

    Full Text Available Crystalline aluminium hydroxiacetate was prepared by reaction between aluminium powder (ALCOA 123 and aqueous solution of acetic acid at 96ºC ±1ºC. The white powder of Al(OH(CH3COO2 is constituted by agglomerates of crystalline plates, having size about 10mum. The crystals were fired from 200ºC to 1550ºC, in oxidizing atmosphere and the products characterized by X-ray diffraction, scanning electron microscopy and surface area measurements by BET-nitrogen method. Transition aluminas are formed from heating at the following temperatures: gamma (300ºC; delta (750ºC; alpha (1050ºC. The aluminas maintain the original morphology of the Al(OHAc2 crystal agglomerates, up to 1050ºC, when sintering and coalescence of the alpha-alumina crystals start and proceed up to 1550ºC. High surface area aluminas are formed in the temperature range of 700ºC to 1100ºC; the maximum value of 198m²/g is obtained at 900ºC, with delta-alumina structure. The formation sequence of transition aluminas is similar to the sequence from well ordered boehmite, but with differences in the transition temperatures and in the development of high surface areas. It is suggested that the causes for these diversities between the two sequences from Al(OH Ac2 and boehmite are due to the different particle sizes, shapes and textures of the gamma-Al2O3 which acts as precursor for the sequence gamma- to alpha-Al2O3.

  20. Effect of pH on the morphology, mechanical and optical properties of L-arginine monohydrobromide monohydrate (LAHBr) single crystals

    Indian Academy of Sciences (India)

    K Sangeetha; R Ramesh Babu; K Ramamurthi

    2015-09-01

    L-arginine monohydrobromide monohydrate (LAHBr) single crystals were grown from two molar mixtures of L-arginine and HBr acid in 1 : 2 and 1 : 3 ratios. The solution pH of the above molar ratios was measured to be 7.2 and 1.8, respectively. This drastic change in pH has modified the morphology of LAHBr single crystal and influenced the mechanical stability, optical transparency, refractive index, birefringence and laser damage threshold. The decrease in pH from 7.2 to 1.8 has enhanced the optical transparency and laser damage threshold of LAHBr crystal.

  1. Antibacterial activity of TiO2 nanotubes: Influence of crystal phase, morphology and Ag deposition

    Science.gov (United States)

    Li, Huirong; Cui, Qiang; Feng, Bo; Wang, Jianxin; Lu, Xiong; Weng, Jie

    2013-11-01

    TiO2 nanotubes on Ti substrate were fabricated by electrochemical anodization. Ag nanoparticles were deposited on the TiO2 nanotubes by a silver mirror reaction. Antibacterial activity of the nanotubes with different structural features was evaluated by a culture test with Escherichia coli bacteria. The anatase nanotubes showed the highest antibacterial activity among three crystal phases including anatase, rutile and amorphous titania. The diameters of the nanotubes affected the antibacterial activity. The two nanotubes with 200 nm and 50 nm diameters had higher antibacterial rate than those with other diameters. The antibacterial activity of the nanotubes was independent on their lengths. Ag-deposited nanotubes exhibited excellent antibacterial activity and its antibacterial rate was up to approximately 100%. TiO2 nanotubes and Ag-deposited nanotubes on titanium should be potential for antibacterial applications in clinics and industry, especially regarding with their reusability.

  2. Artificial water sediment regulation scheme influences morphology, hydrodynamics and nutrient behavior in the Yellow River estuary

    Science.gov (United States)

    Xu, Bochao; Yang, Disong; Burnett, William C.; Ran, Xiangbin; Yu, Zhigang; Gao, Maosheng; Diao, Shaobo; Jiang, Xueyan

    2016-08-01

    Anthropogenic controls on water and sediment may play important roles in river system transformations and morphological evolution, which could further affect coastal hydrodynamics and nutrient behavior. We used geochemical tracers to evaluate the influence of an intentional large release of water and sediment during the so-called "Water Sediment Regulation Scheme" (WSRS) on estuarine morphology, hydrodynamics and nutrients in the Yellow River estuary, China. We discovered that there was a newly formed small delta in the river mouth after the 2013 WSRS. This new morphologic feature altered terrestrial material distribution patterns from a single plume to a two-plume pattern within the estuary. Our results show that the WSRS significantly influenced the study area in the following ways: (1) Radium and nutrient concentrations were significantly elevated (two to four times), especially along the two river outlets. (2) Estuarine mixing was about two times stronger during WSRS than before. Average aerial mixing rates before and during WSRS were 50 ± 26 km2 d-1 and 89 ± 51 km2 d-1, respectively. (3) Our data is consistent with P limitation and suggest that stoichiometrically based P limitation was even more severe during WSRS. (4) All river-derived nutrients were thoroughly consumed within one to two weeks after entry to near-shore waters. (5) The extent of the area influenced by terrestrial nutrients was two to three times greater during WSRS. Human influence, such as triggered by WSRS regulations, should thus be considered when studying biogeochemical processes and nutrient budgets in situations like the Yellow River estuary.

  3. Predicting out-of-Equilibrium Phase Behavior in the Dynamic Self-Assembly of Colloidal Crystals

    Science.gov (United States)

    Swan, James; Sherman, Zachary

    Crystals self-assembled from colloidal particles are useful in an array of well demonstrated applications. During fabrication however, gelation and glassification often leave these materials arrested in defective or disordered metastable states. We show how time-dependent, pulsed interparticle interactions can avoid kinetic barriers and yield well-ordered crystalline domains for a suspension of hard, spherical colloidal particles interacting through short-range attractions. This dynamic self-assembly process is analogous to the flashing Brownian rachet. Although this is an inherently unsteady, out-of-equilibrium process, we can predict its outcome using appropriate time averages of equilibrium equations of state. The predicted phase behavior is tested and validated by examining the fluid/crystal coexistence of such dynamically self-assembling dispersions in Brownian dynamics simulations of sedimentation equilibrium and homogeneous nucleation. We also show that our dynamic self-assembly scheme offers control and tunability over the crystal growth kinetics and can even stabilize nonequilibrium structures.

  4. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao;

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...... crystalline structures. With the melt pre-shear rate increasing, the lattice spaces of the crystallites decreased and the long period, L, and the amorphous layer thickness, La, along the equator direction increased slightly, but L and La along the meridian direction was not affected by melt pre-shear flow....... Though the orientated crystalline structures existed in the iP-1-B samples, no accelerating effect on crystal transition from II to I was found. Importantly, the final crystalline structures of iP-1-B in form I was found tunable under different melt pre-shear conditions, even though...

  5. Quantity effect of radial cracks on the cracking propagation behavior and the crack morphology.

    Directory of Open Access Journals (Sweden)

    Jingjing Chen

    Full Text Available In this letter, the quantity effect of radial cracks on the cracking propagation behavior as well as the circular crack generation on the impacted glass plate within the sandwiched glass sheets are experimentally investigated via high-speed photography system. Results show that the radial crack velocity on the backing glass layer decreases with the crack number under the same impact conditions during large quantities of repeated experiments. Thus, the "energy conversion factor" is suggested to elucidate the physical relation between the cracking number and the crack propagation speed. Besides, the number of radial crack also takes the determinative effect in the crack morphology of the impacted glass plate. This study may shed lights on understanding the cracking and propagation mechanism in laminated glass structures and provide useful tool to explore the impact information on the cracking debris.

  6. The Effects of Gravity on the Crystallization Behavior of Heavy Metal Fluoride Glasses

    Science.gov (United States)

    Tucker, Dennis S.; Smith, Guy A.

    2004-01-01

    undergoes a reduction in viscosity in the 10(exp 5) - 10(exp 7) poise range, allowing more rapid diffusion and thus crystallization. It is proposed that this mechanism is suppressed in reduced gravity. An experiment is presently being conducted to test this theory. With increased knowledge of ZBLAN behavior in reduced gravity, three low earth orbit tiber drawing facilities have been designed. One would be suitable for use on the International Space Station, another while aboard the Space Shuttle and the third system is a fully automated facility which would operate independently of the ISS or Shuttle in a free float mode. The primary benefits of free floating a facility in LEO includes a higher quality of microgravity and reduced safety concerns since it is not in a manned environment.

  7. Comparative analysis of lipid composition and thermal, polymorphic, and crystallization behaviors of granular crystals formed in beef tallow and palm oil.

    Science.gov (United States)

    Meng, Zong; Liu, Yuan-Fa; Jin, Qing-Zhe; Huang, Jian-Hua; Song, Zhi-Hua; Wang, Feng-Yan; Wang, Xing-Guo

    2011-02-23

    Six rectangular block all beef tallow (BT)-based and all palm oil (PO)-based model shortenings prepared on a laboratory scale, respectively denoted BTMS and POMS, were stored under temperature fluctuation cycles of 5-20 °C until granular crystals were observed. The lipid composition and thermal, polymorphic, and isothermal crystallization behaviors of the granular crystals and their surrounding materials separated from BTMS and POMS, respectively, were evaluated. The changes of nanostructure including the aggregation of high-melting triacylglycerols (TAGs) and polymorphic transformation from β' form of double chain length structures to complicated crystal structures, in which the β and β' form crystals of triple and double chain length structures simultaneously coexist, had occurred in granular crystals compared with surrounding materials, whether in BTMS or in POMS. Consequently, a slower crystallization rate appeared in granular crystal parts of both model shortenings noted above, which would yield larger and fewer crystals indicated by the Avrami model analysis that would further aggregate to form large granular crystals.

  8. Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina.

    Science.gov (United States)

    Venkateswara Rao, J; Kavitha, P; Jakka, N M; Sridhar, V; Usman, P K

    2007-08-01

    The acute toxicity and hatching success of four organophosphorus insecticides--acephate (ACEP), chlorpyrifos (CPP), monocrotophos (MCP), and profenofos (PF)--was studied in a short-term bioassay using brine shrimp, Artemia salina. Fifty percent hatchability inhibition concentration and median lethal concentration (LC(50)) values were calculated after probit transformation of the resulting data. Among the insecticides tested, CPP is found to be the most toxic and also to inhibit hatching success of A. salina cysts in a concentration-dependent manner. In addition, the effect of these pesticides on locomotor behavior (swimming speed) and morphologic differences were studied in LC(50)-exposed nauplii after 24 hours. The in vivo effect of these insecticides on acetylcholinesterase (Enzyme commission number (EC 3.1.1.7) activity was also determined in LC(50)-exposed nauplii after 24 hours. Maximum percent decrease in their swimming speed and significant morphologic alterations were noticed in CPP-exposed brine shrimps. The order of toxicity was CPP > PF > MCP > ACEP in all the parameters studied.

  9. Morphological and behavioral characterization of adult mice deficient for SrGAP3.

    Science.gov (United States)

    Bertram, Jonathan; Koschützke, Leif; Pfannmöller, Jörg P; Esche, Jennifer; van Diepen, Laura; Kuss, Andreas W; Hartmann, Bianca; Bartsch, Dusan; Lotze, Martin; von Bohlen Und Halbach, Oliver

    2016-10-01

    SrGAP3 belongs to the family of Rho GTPase proteins. These proteins are thought to play essential roles in development and in the plasticity of the nervous system. SrGAP3-deficient mice have recently been created and approximately 10 % of these mice developed a hydrocephalus and died shortly after birth. The others survived into adulthood, but displayed neuroanatomical alteration, including increased ventricular size. We now show that SrGAP3-deficient mice display increased brain weight together with increased hippocampal volume. This increase was accompanied by an increase of the thickness of the stratum oriens of area CA1 as well as of the thickness of the molecular layer of the dentate gyrus (DG). Concerning hippocampal adult neurogenesis, we observed no significant change in the number of proliferating cells. The density of doublecortin-positive cells also did not vary between SrGAP3-deficient mice and controls. By analyzing Golgi-impregnated material, we found that, in SrGAP3-deficient mice, the morphology and number of dendritic spines was not altered in the DG. Likewise, a Sholl-analysis revealed no significant changes concerning dendritic complexity as compared to controls. Despite the distinct morphological alterations in the hippocampus, SrGAP3-deficient mice were relatively inconspicuous in their behavior, not only in the open-field, nest building but also in the Morris water-maze. However, the SrGAP3-deficient mice showed little to no interest in burying marbles; a behavior that is seen in some animal models related to autism, supporting the view that SrGAP3 plays a role in neurodevelopmental disorders.

  10. Female genital morphology and mating behavior of Orchestina (Arachnida: Araneae: Oonopidae).

    Science.gov (United States)

    Burger, Matthias; Izquierdo, Matías; Carrera, Patricia

    2010-03-01

    The unusual reproductive biology of many spider species makes them compelling targets for evolutionary investigations. Mating behavior studies combined with genital morphological investigations help to understand complex spider reproductive systems and explain their function in the context of sexual selection. Oonopidae are a diverse spider family comprising a variety of species with complex internal female genitalia. Data on oonopid phylogeny are preliminary and especially studies on their mating behavior are very rare. The present investigation reports on the copulatory behavior of an Orchestina species for the first time. The female genitalia are described by means of serial semi-thin sections and scanning electron microscopy. Females of Orchestina sp. mate with multiple males. On average, copulations last between 15.4 and 23.54min. During copulation, the spiders are in a position taken by most theraphosids and certain members of the subfamily Oonopinae: the male pushes the female back and is situated under her facing the female's sternum. Males of Orchestina sp. possibly display post-copulatory mate-guarding behavior. The female genitalia are complex. The genital opening leads into the uterus externus from which a single receptaculum emerges. The dorsal wall of the receptaculum forms a sclerite serving as muscle attachment. A sclerotized plate with attached muscles lies in the posterior wall of the uterus externus. The plate might be used to lock the uterus during copulation. The present study gives no direct evidence for cryptic female choice in Orchestina sp. but suggests that sexual selection occurs in the form of sperm competition through sperm mixing.

  11. Evaluation of Front Morphological Development of Reactive Solute Transport Using Behavior Diagrams

    Directory of Open Access Journals (Sweden)

    Jui-Sheng Chen

    2009-01-01

    Full Text Available While flowing through porous medium, ground water flow dissolves minerals thereby in creasing medium porosity and ultimately permeability. Reactive fluid flows preferentially into highly permeable zones, which are therefore dissolved most rapidly, producing a further preferential permeability enhancement. Accordingly, slight non-uniformities present in porous medium can be amplified and lead to fingering reaction fronts. The objective of this study is to investigate dissolution-induced porosity changes on reaction front morphology in homogeneous porous medium with two non-uniformities. Four controlling parameters, including up stream pressure gradient, reaction rate constant, non-uniformities spacing and non-uniformity strength ratio are comprehensively considered. By using a modified version of the numerical code, NSPCRT, to conduct a series of numerical simulations, front behavior diagrams are constructed to illustrate the morphologies of reaction fronts under various combinations of these four factors. Simulation results indicate that the two non-uniformities are inhibited into a planar front under low up stream pressure gradient, merge into a single-fingering front under inter mediate up stream pressure gradient, or grow into a double-fingers front under high up stream pressure gradient. More over, the two non-uniformities tend to develop intoadouble-fingering front as the non-uniformity strength ratio in creases from 0.2 to 1.0, and merge into a single-fingering front while the non-uniformity strength ratio in creases from 1.0 to 1.8. When the reaction rate constant is small, the two non-uniformities merge into a single front. Reaction rate constant significantly affects front advancing velocity. The front advancing velocity decreases with the reaction rate constant. Based on these results, front behavior diagrams which de fine the morphologies of the reaction fronts for these four parameters are constructed. Moreover, non

  12. The Effect of Nanoscale Particles and Ionomer Architecture on the Crystallization Behavior of Sulfonated Syndiotactic Polystyrene

    OpenAIRE

    Benson, Sonya Denese

    2011-01-01

    Semicrystalline ionomers are an important class of polymers that are utilized in a wide range of applications. The particular end-use applications of these materials are determined by their chemical, physical, and thermomechanical properties which are directly related to their crystallization behavior. It is therefore critical to identify structure-property relationships for these materials. Sulfonated syndiotactic polystyrene (SsPS) is used as a model semicrystalline ionomer and two appro...

  13. Optical diode behavior of photonic crystal structure with asymmetric Kerr defect

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Optical diode behavior of asymmetric one-dimensional photonic crystal with Kerr defect is numerically investigated using nonlinear transfer matrix method. In the linear case, the intensity and the phase of transmitted field are the same for the forward and backward operations. In the nonlinear case, however, the transmitted intensities are much different for the two operations, which display diode characteristic. Physical origin of the anisotropic transmission lies in the different localizations in the defect layer of the two operations.

  14. Three-Dimensional Crystal Plasticity Finite Element Simulation of Hot Compressive Deformation Behaviors of 7075 Al Alloy

    Science.gov (United States)

    Li, Lei-Ting; Lin, Y. C.; Li, Ling; Shen, Lu-Ming; Wen, Dong-Xu

    2015-03-01

    Three-dimensional crystal plasticity finite element (CPFE) method is used to investigate the hot compressive deformation behaviors of 7075 aluminum alloy. Based on the grain morphology and crystallographic texture of 7075 aluminum alloy, the microstructure-based representative volume element (RVE) model was established by the pole figure inversion approach. In order to study the macroscopic stress-strain response and microstructural evolution, the CPFE simulations are performed on the established microstructure-based RVE model. It is found that the simulated stress-strain curves and deformation texture well agree with the measured results of 7075 aluminum alloy. With the increasing deformation degree, the remained initial weak Goss texture component tends to be strong and stable, which may result in the steady flow stress. The grain orientation and grain misorientation have significant effects on the deformation heterogeneity during hot compressive deformation. In the rolling-normal plane, the continuity of strain and misorientation can maintain across the low-angle grain boundaries, while the discontinuity of strain and misorientation is observed at the high-angle grain boundaries. The simulated results demonstrate that the developed CPFE model can well describe the hot compressive deformation behaviors of 7075 aluminum alloy under elevated temperatures.

  15. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil.

    Science.gov (United States)

    Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro

    2014-03-12

    Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat.

  16. Frequency Behavior of a Quartz Crystal Microbalance (Qcm in Contact with Selected Solutions

    Directory of Open Access Journals (Sweden)

    Z. A. Talib

    2006-01-01

    Full Text Available A device was constructed to monitor viscosity of solutions using fundamental frequency of 9 MHz and 10 MHz quartz crystal. Piezoelectric quartz crystals with gold electrodes were mounted by O-ring in between liquid flow cell. Only one side of the crystal was exposed to the solutions which were pumped through silicon tube by a peristaltic pump. The measured frequency shift was observed in order to investigate the interfacial behavior of some selected solution in contact with one surface of Quartz Crystal Microbalance (QCM. An analysis of the interaction between an AT-cut quartz crystal microbalance and various liquid system of analytical interest is presented. The analysis which includes piezoelectric effects and other influences; liquid properties, experimental conditions and the characteristic of the solution are reported. Oscillation in distilled water is taken as a reference. The frequency change caused by the density (ρ, gcm-3 and viscosity (η gcm-1s-1 were found to be proportional to the square root of the product, (ρ η. The result suggested that analysis of small frequency shifts during EQCM studies needs to account for changes in ρ and η of the solution. Generally, all the liquid tested showed an increment of the frequency shift with increasing content of solutes. For each solution, the frequency was recorded as the concentration increases from distilled water to a very concentrated solution. The frequency measurements carried out for saccharide solution produces the maximum changes of frequency shift compared with other solutions.

  17. Crystallization and melting behavior of nanoclay-containing polypropylene/poly(trimethylene terephthalate blends

    Directory of Open Access Journals (Sweden)

    S. H. Jafari

    2012-02-01

    Full Text Available This contribution concerns preparation and characterization of polypropylene (PP/poly(trimethylene terephthalate (PTT melt-mixed blends in the presence of organically-modified montmorillonite nanoclays and functional compatibilizers. Immiscibility and nanocomposite formation were confirmed via transmission electron microscopy. An intercalated structure was observed by wide angle X-ray diffraction technique. Crystallization, and melting characteristics were studied by differential scanning calorimetry in both isothermal and non-isothermal modes, supplemented by temperature modulated DSC (TMDSC. A concurrent crystallization was found for both polymeric components in the blends. Whereas blending favored PP crystallizability, it interrupted that of PTT. The addition compatibilizers interfered with rate, temperature, and degree of crystallization of PP and PTT. On the contrary, nanoclays incorporation increased crystallizability of each individual component. However, as for blend nanocomposite samples, the way the crystallization behavior changed was established to depend on the type of nanoclay. Based on kinetic analysis, isothermal crystallization nucleation followed athermal mechanism, while that of non-isothermal obeyed thermal mode. Addition of nanoclays shifted nucleation mechanism from athermal to thermal mode.

  18. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Fereshte Mohammad [Department of Polymer Engineering, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kaffashi, Babak, E-mail: kaffashi@ut.ac.ir [Department of Polymer Engineering, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Shokrollahi, Parvin, E-mail: p.shokrolahi@ippi.ac.ir [Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Akhlaghi, Shahin; Hedenqvist, Mikael S. [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-100 44 Stockholm (Sweden)

    2016-02-01

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox–Merz theory for this system shows that the polymer–nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends. - Highlights: • In PCL/chitosan/nHA nano-composites, nHA shows tendency to chitosan phase. • At low shear rates, nano-composites show higher viscosity than unfilled blends. • At high shear rates, nano-composites show shear-thinning behavior. • nHA increases the shear moduli and relaxation time of PCL/chitosan blends. • The polymer/nano-particle network is destructed by the flow.

  19. Magnetostrictive behaviors of Fe-Al(001 single-crystal films under rotating magnetic fields

    Directory of Open Access Journals (Sweden)

    Tetsuroh Kawai

    2016-05-01

    Full Text Available Magnetostrictive behaviors of Fe100−x − Alx(x = 0 − 30 at.%(001 single-crystal films under rotating magnetic fields are investigated along the two different crystallographic orientations, [100] and [110]. The behaviors of Fe and Fe90Al10 films show bath-tub like waveform along [100], easy magnetization axis, and triangular waveform along [110], hard magnetization axis, with respect to their four-fold magnetic anisotropy. On the other hand, the behaviors of Fe80Al20 film are different from those of Fe or Fe90Al10 film. The output of the film along [100] shows a strong magnetic field dependence. The Fe70Al30 film shows similar magnetostrictive behaviors along both [100] and [110] reflecting its magnetic properties, which are almost same for the both directions. The growth of ordered phase (B2 in Fe80Al20 and Fe70Al30 films is considered to have affected their magnetostrictive behaviors. The Al content dependence on λ100 and λ111 values shows similar tendency to that reported for the bulk samples but the values are slightly different. The Fe90Al10(001 single-crystal film shows a large magnetostriction along [100] under a very small magnetic field of 0.02 kOe, which is comparable to the saturated one, and changes the value abruptly in relation to the angle of applied magnetic field.

  20. Morphological appearances and photo-controllable coloration of dye-doped cholesteric liquid crystal/polymer coaxial microfibers fabricated by coaxial electrospinning technique.

    Science.gov (United States)

    Lin, Jia-De; Chen, Che-Pei; Chen, Lin-Jer; Chuang, Yu-Chou; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-02-08

    This study systematically investigates the morphological appearance of azo-chiral dye-doped cholesteric liquid crystal (DDCLC)/polymer coaxial microfibers obtained through the coaxial electrospinning technique and examines, for the first time, their photocontrollable reflection characteristics. Experimental results show that the quasi-continuous electrospun microfibers can be successfully fabricated at a high polymer concentration of 17.5 wt% and an optimum ratio of 2 for the feeding rates of sheath to core materials at 25 °C and a high humidity of 50% ± 2% in the spinning chamber. Furthermore, the optical controllability of the reflective features for the electrospun fibers is studied in detail by changing the concentration of the azo-chiral dopant in the core material, the UV irradiation intensity, and the core diameter of the fibers. Relevant mechanisms are addressed to explain the optical-control behaviors of the DDCLC coaxial fibers. Considering the results, optically controllable DDCLC coaxial microfibers present potential applications in UV microsensors and wearable smart textiles or swabs.

  1. Physico-mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals

    Science.gov (United States)

    Mansour, S. F.; El-dek, S. I.; Ahmed, M. K.

    2017-01-01

    Zirconia doped Hydroxyapatite (HAP) nanocrystals [Ca10(PO4)6−x(ZrO2)x(OH)2]; (0 ≤ x ≤ 1 step 0.2) were synthesized using simple low cost facile method. The crystalline phases were examined by X-ray diffraction (XRD). The crystallinity percentage decreased with increasing zirconia content for the as-synthesized samples. The existence of zirconia as secondary phase on the grain boundaries; as observed from scanning electron micrographs (FESEM); resulted in negative values of microstrain. The crystallite size was computed and the results showed that it increased with increasing annealing temperature. Thermo-gravimetric analysis (TGA) assured the thermal stability of the nano crystals over the temperature from room up to 1200 °C depending on the zirconia content. The corrosion rate was found to decrease around 25 times with increasing zirconia content from x = 0.0 to 1.0. Microhardness displayed both compositional and temperature dependence. For the sample (x = 0.6), annealed at 1200 °C, the former increased up to 1.2 times its original value (x = 0.0). PMID:28256557

  2. 牛乳清结晶条件的探索及其结晶体形貌%Exploration of Bovine Whey Crystallization Conditions and Morphology of Proteins Crystals

    Institute of Scientific and Technical Information of China (English)

    俞越钱

    2016-01-01

    以脱脂及去酪蛋白的牛乳清为原料,利用紫外分光光度法及SDS-PAGE电泳技术,在pH 4.7~8.0,NaCl浓度0.5~2.0 mol/L 条件下,对其结晶情况进行了研究。结果表明:牛乳清蛋白中的免疫球蛋白G(IgG)是一种理想的目标蛋白,而pH 7.0则是得到IgG的理想pH。最后还利用了工业相机及荧光倒置显微镜对牛乳清结晶体进行了拍摄,发现其中主要有长方晶、四角晶、菱方晶三种结晶体形貌。%With UV spectrophotometry and electrophoresis, degreased bovine whey after removal of ca-sein was studied in conditions of pH 4.7~8.0 and 0.5~2.0 mol/L NaCl. The results showed that immunoglob-ulin (IgG) was a kind of ideal target protein in bovine whey. Meanwhile, pH 7.0 was the ideal pH to obtain IgG. Finally, the crystallization behavior of whey was surveyed by an inverted fluorescence microscope and a high resolution digital camera. Furthermore, three kinds of morphology including orthorhombic, tetragonal and rhombus crystals were observed.

  3. Photochemically induced cystic lesion in the rat spinal cord. I. Behavioral and morphological analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cameron, T.; Prado, R.; Watson, B.D.; Gonzalez-Carvajal, M.; Holets, V.R. (Univ. of Miami, FL (USA))

    1990-08-01

    The present study describes the production of a spinal cord lesion which is initiated by vascular occlusion resulting from the interaction between the photosensitizing dye erythrosin B and an argon laser beam. The lesion has characteristics similar to those of the central cavity thought to lead to the production of post-traumatic syringomyelia (PTS) in humans. The present study examines the behavioral and morphological characteristics of this injury over a 28-day period. Histological analysis revealed a cavity extending from the dorsal horns to lamina VIII, with some lateral and ventral pathways being spared. The cavity volume reached a maximum 7 days after lesion induction. Behavioral changes were assessed using six different tests of motor and reflex function (motor function, climbing, waterbath, inclined plane, withdrawal to pain, and withdrawal to extension). Lesioned animals exhibited flaccid paralysis for 3-5 days, which resolved afterward. The photochemically induced cavity should provide a reproducible model for examining the effects of cystic spinal cord injury on locomotor and reflex function.

  4. The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films

    Science.gov (United States)

    Ren, Jianjun; Zuo, Yu

    2012-11-01

    The anodizing behavior of aluminum in malonic acid solution and morphology of the anodic films were studied. The voltage-time response for galvanostatic anodization of aluminum in malonic acid solution exhibits a conventional three-stage feature but the formation voltage is much higher. With the increase of electrolyte concentration, the electrolyte viscosity increases simultaneously and the high viscosity decreases the film growth rate. With the concentration increase of the malonic acid electrolyte, the critical current density that initiates local "burning" on the sample surface decreases. For malonic acid anodization, the field-assisted dissolution on the oxide surface is relatively weak and the nucleation of pores is more difficult, which results in greater barrier layer thickness and larger cell dimension. The embryo of the porous structure of anodic film has been created within the linear region of the first transient stage, and the definite porous structure has been established before the end of the first transient stage. The self-ordering behavior of the porous film is influenced by the electrolyte concentration, film thickness and the applied current density. Great current density not only improves the cell arrangement order but also brings about larger cell dimension.

  5. New morphology, symmetry, orientation and perfection of lysozyme crystals grown in a magnetic field when paramagnetic salts (NiCl 2, CoCl 2 and MnCl 2) are used as crystallizing agents

    Science.gov (United States)

    Yin, D. C.; Oda, Y.; Wakayama, N. I.; Ataka, M.

    2003-05-01

    Chlorides with different paramagnetic cations such as Ni 2+, Co 2+ and Mn 2+ were used as crystallizing agents instead of NaCl to crystallize hen egg-white lysozyme. NiCl 2 was found to give two types of crystals with different morphologies: one (roof-like) is a new type of orthorhombic P2 12 12 1 crystal with lattice constants a=79.0 Å, b=80.8 Å, and c=37.5 Å; the second is an ordinary tetragonal crystal of its characteristic shape with a= b=80 Å and c=38 Å. The appearance of the roof-like shape became dominant in the presence of a magnetic field. In the case of using CoCl 2 and MnCl 2, ordinary tetragonal crystals were formed. A striking fact was that the a-axis of the crystals oriented along the magnetic field when CoCl 2 was used, as opposed to the usual c-axis orientation. Large and optically perfect lysozyme crystals can be obtained in a magnetic field when NiCl 2 or MnCl 2 is used as a crystallizing agent. These profound effects of the paramagnetic cations may be caused by the coordination of Ni 2+ and Co 2+ ions to a lysozyme molecule, which was found by X-ray crystallography.

  6. Morphology Change of C60 Islands on Organic Crystals Observed by Atomic Force Microscopy.

    Science.gov (United States)

    Freund, Sara; Hinaut, Antoine; Pawlak, Rémy; Liu, Shi-Xia; Decurtins, Silvio; Meyer, Ernst; Glatzel, Thilo

    2016-06-28

    Organic-organic heterojunctions are nowadays highly regarded materials for light-emitting diodes, field-effect transistors, and photovoltaic cells with the prospect of designing low-cost, flexible, and efficient electronic devices.1-3 However, the key parameter of optimized heterojunctions relies on the choice of the molecular compounds as well as on the morphology of the organic-organic interface,4 which thus requires fundamental studies. In this work, we investigated the deposition of C60 molecules at room temperature on an organic layer compound, the salt bis(benzylammonium)bis(oxalato)cupurate(II), by means of noncontact atomic force microscopy. Three-dimensional molecular islands of C60 having either triangular or hexagonal shapes are formed on the substrate following a "Volmer-Weber" type of growth. We demonstrate the dynamical reshaping of those C60 nanostructures under the local action of the AFM tip at room temperature. The dissipated energy is about 75 meV and can be interpreted as the activation energy required for this migration process.

  7. Self-cleaning behavior in polyurethane/silica coatings via formation of a hierarchical packed morphology of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Mir Mohamad Sadeghi, Gity, E-mail: Gsadeghi@aut.ac.ir [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Seyfi, Javad [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Jafari, Seyed-Hassan [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Graphical abstract: - Highlights: • Self-cleaning behavior was imparted to the hydrophilic polyurethane. • A hierarchical packed morphology is responsible for the superhydrophobicity. • Prolonged pressing process cannot lead to superhydrophobicity due to migration of TPU. • Samples exhibited excellent stability against media with a wide range of pH values. - Abstract: In the current research, a hierarchical morphology comprising of packed assembly of nanoparticles was induced in thermoplastic polyurethane (TPU)/silica nanocomposite coatings in order to achieve self-cleaning behavior. Moderately hydrophilic behavior of TPU hinders its transforming to a superhydrophobic material. In the presented method, a very thin layer of silica nanoparticles is applied to the surface of TPU sheets under elevated temperature and pressure. As temperature and pressure of the process remain unchanged, processing time was considered as a main variable. Based on scanning electron microscopy and confocal microscopy results, it was found that at a certain processing time, nanoparticles can form an utterly packed morphology leading to a self-cleaning behavior. Once the process was prolonged, TPU macromolecules found the chance to migrate onto the coating's top layer due to the enhanced mobility of chains at high temperature. This observation was further proved by X-ray photoelectron spectroscopy analysis and cross-sectional morphology. The presented method has promising potentials in transforming intrinsically hydrophilic polymers into superhydrophobic materials with self-cleaning behavior.

  8. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Monica R P Elmore

    Full Text Available Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg or phosphate buffered saline (PBS was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR, as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function

  9. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation.

    Science.gov (United States)

    Elmore, Monica R P; Lee, Rafael J; West, Brian L; Green, Kim N

    2015-01-01

    Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the

  10. Molecular adsorption on ZnO(1010) single-crystal surfaces: morphology and charge transfer.

    Science.gov (United States)

    Chen, Jixin; Ruther, Rose E; Tan, Yizheng; Bishop, Lee M; Hamers, Robert J

    2012-07-17

    While ZnO has excellent electrical properties, it has not been widely used for dye-sensitized solar cells, in part because ZnO is chemically less stable than widely used TiO(2). The functional groups typically used for surface passivation and for attaching dye molecules either bind weakly or etch the ZnO surface. We have compared the formation of molecular layers from alkane molecules with terminal carboxylic acid, alcohol, amine, phosphonic acid, or thiol functional groups on single-crystal zinc oxide (1010) surfaces. Atomic force microscopy (AFM) images show that alkyl carboxylic acids etch the surface whereas alkyl amine and alkyl alcohols bind only weakly on the ZnO(1010) surface. Phosphonic acid-terminated molecules were found to bind to the surface in a heterogeneous manner, forming clusters of molecules. Alkanethiols were found to bind to the surface, forming highly uniform monolayers with some etching detected after long immersion times in an alkanethiol solution. Monolayers of hexadecylphosphonic acid and octadecanethiol were further analyzed by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements. AFM scratching shows that thiols were bound strongly to the ZnO surface, suggesting the formation of strong Zn-S covalent bonds. Surprisingly, the tridentate phosphonic acids adhered much more weakly than the monodentate thiol. The influence of organic grafting on the charge transfer to ZnO was studied by time-resolved surface photovoltage measurements and electrochemical impedance measurements. Our results show that the grafting of thiols to ZnO leads to robust surfaces and reduces the surface band bending due to midgap surface states.

  11. Morphologies of solid-liquid interface and surface steps during rapid growth of BaB2O4 single crystals

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The evolution of solid-liquid interface during BBO single crystal growth was stud- ied by the differential interference microscopy. And the step morphology on (0001) surface of the as-grown crystal was observed by the atomic force microscopy as well. It was found that the transition from a flat solid-liquid interface to a skeletal shape will occur in case of rapid growth. However, AFM images of surface steps revealed morphology differences correlated with crystallographic directions. The steps advancing along <1010 > direction form the step flow, whereas those steps propagating along <0110 > direction shape into step segments. Measurements of step heights by AFM indicated that it is the high anisotropy of the dimension of growth unit and step bunching due to the enlargement of concentration difference along the surface that results in the anisotropy of step morphologies.

  12. Morphologies of solid-liquid interface and surface steps during rapid growth of BaB2O4 single crystals

    Institute of Scientific and Technical Information of China (English)

    PAN XiuHong; AI Fei; JIN WeiQing; LIU Yan; ZHANG Ying

    2007-01-01

    The evolution of solid-liquid interface during BBO single crystal growth was studied by the differential interference microscopy. And the step morphology on (0001) surface of the as-grown crystal was observed by the atomic force microscopy as well. It was found that the transition from a flat solid-liquid interface to a skeletal shape will occur in case of rapid growth. However, AFM images of surface steps revealed morphology differences correlated with crystallographic directions. The steps advancing along direction form the step flow, whereas those steps propagating along direction shape into step segments. Measurements of step heights by AFM indicated that it is the high anisotropy of the dimension of growth unit and step bunching due to the enlargement of concentration difference along the surface that results in the anisotropy of step morphologies.

  13. INVESTIGATION ON THE GELATION BEHAVIOR OF BIODEGRADABLE POLY(BUTYLENE SUCCINATE) DURING ISOTHERMAL CRYSTALLIZATION PROCESS

    Institute of Scientific and Technical Information of China (English)

    Fa-liang Luo; Xiu-qin Zhang; Wei Ning; Du-jin Wang

    2011-01-01

    The early stage of polymer crystallization may be viewed as physical gelation process, ie., the phase transition of polymer from liquid to solid. Determination of the gel point is of significance in polymer processing. In this work, the gelation behavior ofpoly(bntylene succinate) (PBS) at different temperatures has been investigated by theological method. It was found that during the isothermal crystallization process of PBS, both the storage modulus (G′) and the loss modulus (G")increase with time, and the theological response of the system varies from viscous-dominated (G′ < G") to elastic-dominated (G′ > G"), meaning the phase transition from liquid to solid. The physical gel point was determined by the intersection point of loss tangent curves measured under different frequencies. The gel time (tc) for PBS was found to increase with increasing crystallization temperature. The relative crystallinity of PBS at the gel point is very low (2.5%-8.5%) and increases with increasing the crystallization temperature. The low crystallinity of PBS at the gel point suggests that only a few junctions are necessary to form a spanning network, indicating that the network is “loosely” connected, in another word, the critical gel is soft. Due to the elevated crystallinity at gel point under higher crystallization temperature, the gel strength Sg increases,while the relaxation exponent n decreases with increasing the crystallization temperature. These experimental results suggest that rheological method is an effective tool for verifying the gel point of biodegradable semi-crystalline polymers.

  14. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  15. Sexual conflict predicts morphology and behavior in two species of penduline tits

    Directory of Open Access Journals (Sweden)

    Komdeur Jan

    2010-04-01

    Full Text Available Abstract Background The evolutionary interests of males and females rarely coincide (sexual conflict, and these conflicting interests influence morphology, behavior and speciation in various organisms. We examined consequences of variation in sexual conflict in two closely-related passerine birds with contrasting breeding systems: the Eurasian penduline tit Remiz pendulinus (EPT exhibiting a highly polygamous breeding system with sexually antagonistic interests over parental care, and the socially monogamous Cape penduline tit Anthoscopus minutus (CPT. We derived four a priori predictions from sexual conflict theory and tested these using data collected in Central Europe (EPT and South Africa (CPT. Firstly, we predicted that EPTs exhibit more sexually dimorphic plumage than CPTs due to more intense sexual selection. Secondly, we expected brighter EPT males to provide less care than duller males. Thirdly, since song is a sexually selected trait in many birds, male EPTs were expected to exhibit more complex songs than CPT males. Finally, intense sexual conflict in EPT was expected to lead to low nest attendance as an indication of sexually antagonistic interests, whereas we expected more cooperation between parents in CPT consistent with their socially monogamous breeding system. Results Consistent with our predictions EPTs exhibited greater sexual dimorphism in plumage and more complex song than CPTs, and brighter EPT males provided less care than duller ones. EPT parents attended the nest less frequently and less simultaneously than CPT parents. Conclusions These results are consistent with sexual conflict theory: species in which sexual conflict is more manifested (EPT exhibited a stronger sexual dimorphism and more elaborated sexually selected traits than species with less intense sexual conflict (CPT. Our results are also consistent with the notion that EPTs attempt to force their partner to work harder as expected under sexual conflict: each

  16. Thermal and morphological behavior of chitosan/PEO blends containing gold nanoparticles. Experimental and theoretical studies.

    Science.gov (United States)

    Bonardd, Sebastián; Schmidt, Mathias; Saavedra-Torres, Mario; Leiva, Angel; Radic, Deodato; Saldías, César

    2016-06-25

    Using solution-casting method, binary blends of chitosan (CS) and poly (ethylene oxide) (PEO 100,000) containing Au nanoparticles (AuNPs) were prepared. Shifts in the melting temperature (Tm) and crystallization temperature (Tc) values for CS/PEO and CS/PEO/AuNPs blends were observed by calorimetric analysis. In general, CS/PEO/AuNPs blends tended to decompose at higher temperatures than neat polymers. From the FT-IR spectra, shifts in the main signals, such as -NH2, -OH and COC, were detected in the blends and were attributed to the polymer interactions and the incorporation of gold nanoparticles. In addition, the analysis of the blend topographies by atomic force microscopy (AFM) showed that at a higher CS content, more homogenous surfaces were observed. This behavior was attributed to the interactions present in the CS/PEO/AuNPs blends. Finally, theoretical analyses helped to confirm that the gold nanoparticles would be preferentially adsorbed onto the chitosan microdomains due to the interactions between acetyl and hydroxyl groups and Au atoms.

  17. A Study of Hardening Behavior Based on a Finite-Deformation Gradient Crystal-Plasticity Model

    CERN Document Server

    Pouriayevali, Habib

    2016-01-01

    A systematic study on the different roles of the governing components of a well-defined finite-deformation gradient crystal-plasticity model proposed by (Gurtin, 2008b) is carried out, in order to visualize the capability of the model in the prediction of a wide range of hardening behaviors as well as rate-dependent, scale-variation and Bauschinger-like responses in a single crystal. A function of accumulation rates of dislocations is employed and viewed as a measure of formation of short-range interactions which impede dislocation movements within a crystal. The model is first represented in the reference configuration for the purpose of numerical implementation, and then implemented in the FEM software ABAQUS via a user-defined subroutine (UEL). Our simulation results reveal that the dissipative gradient-strengthening is also identified as a source of isotropic-hardening behavior, which represents the effect of cold work introduced by (Gurtin and Ohno, 2011). Moreover, plastic flows in predefined slip syste...

  18. Isothermal Crystallization Kinetics and Melting Behavior of POE-g-MAH Compatibilized PAII/POE Blends

    Institute of Scientific and Technical Information of China (English)

    GUO Yunxia; HU Guosheng; WANG Zhiqiang; LI Yingchun; YANG Yunfeng

    2012-01-01

    A new Nylon 11 (PA11)/polyethylene-octene (POE) blends compatibilized by maleic anhydride grafted mixture polyethyleneocten (POE-g-MAH) was prepared through melt blending method.The isothermal crystallization kinetics and melting behaviors of PA11/POE blends were investigated in detail by differential scanning calorimetry (DSC) and polarized optical microscope.The n values of PA11 blending with POE or POE-g-MAH are almost similar with pure PA11,which indicates that the effect of POE and POE-gMAH on nucleation and growth of PA11 crystal is slight.The overall crystallization rate of PA11/POE blends are higher than ones of pure PA11 at the same crystallization temperatures,but they decrease significantly when POE-g-MAH is added into PA11/POE blends.DSC heating curves of both PA11 and its blends exhibit two melting peaks,but the two melting peak become weaker when POE-g-MAH is add into PA11/POE blend systems.And the spherulite size is reduced significantly by the addition of POE-g-MAH compared with pure PA11 and PA11/POE blends.

  19. Influence of stress, temperature and crystal morphology on isothermal densification and specific surface area decrease of new snow

    Directory of Open Access Journals (Sweden)

    S. Schleef

    2014-10-01

    Full Text Available Laboratory-based, experimental data for the microstructural evolution of new snow are scarce, though applications would benefit from a quantitative characterization of the main influences. To this end, we have analyzed the metamorphism and concurrent densification of new snow under isothermal conditions by means of X-ray microtomography and compiled a comprehensive data set of 45 time series. In contrast to previous measurements on isothermal metamorphism on time scales of weeks to months, we analyzed the initial 24–48 h of snow evolution at a high temporal resolution of 3 hours. The data set comprised natural and laboratory-grown snow, and experimental conditions included systematic variations of overburden stress, temperature and crystal habit to address the main influences on specific surface area (SSA decrease rate and densification rate in a snowpack. For all conditions, we found a linear relation between density and SSA, indicating that metamorphism has an immediate influence for the densification of new snow. The slope of the linear relation, however, depends on the other parameters which were analyzed individually to derive a best-fit parameterization for the SSA decrease rate and densification rate. In the investigated parameter range, we found that the initial value of the SSA constituted the main morphological influence on the SSA decrease rate. In turn, the SSA decrease rate constituted the main influence on the densification rate.

  20. Crystallization behavior of supercooled smectic cholesteryl myristate nanoparticles containing phospholipids as stabilizers

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel; Drechsler, M;

    2005-01-01

    Supercooled smectic nanoparticles based on physiological cholesterol esters are under investigation as a potential novel carrier system for lipophilic drugs. The present study investigates the very complex crystallization behavior of such nanoparticles stabilized with the aid of phospholipids....... Phospholipid and phospholipid/bile salt stabilized cholesteryl myristate dispersions were prepared by high-pressure melt homogenization and characterized by particle size measurements, differential scanning calorimetry, X-ray diffraction and electron microscopy. To obtain fractions with very small smectic...... nanoparticles, selected dispersions were ultracentrifuged. A mixture of cholesteryl myristate and the phospholipid used for the stabilization of the dispersions was also investigated by light microscopy. The nanoparticles usually display a bimodal crystallization event which depends on the thermal treatment...

  1. Crystallization behavior of three-dimensional silica fiber reinforced silicon nitride composite

    Science.gov (United States)

    Qi, Gongjin; Zhang, Changrui; Hu, Haifeng; Cao, Feng; Wang, Siqing; Jiang, Yonggang; Li, Bin

    2005-10-01

    The crystallization behavior of a new type of ceramic matrix composites, three-dimensional silica fiber reinforced silicon nitride matrix composite prepared by perhydropolysilazane infiltration and pyrolysis, was investigated by X-ray diffractometry and Fourier transform infrared spectroscopy. With the post-annealing treatment of the amorphous as-received composite at elevated tempertures of 1400 and 1600 °C in nitrogen atmosphere, there was remarkable suppression of the crystallization of polymer-derived silicon nitride ceramic matrix into α-Si 3N 4 and silica fibers into α-cristobalite, which was probably attributed to the phase of silicon oxynitrides originating from the strong fiber/matrix interfacial chemical reaction.

  2. Three-dimensional visualization and characterization of morphology and internal microstructural features of primary silicon crystals in a cast Al-Si base alloy

    Science.gov (United States)

    Singh, H.; Gokhale, A. M.; Mao, Y.; Tewari, A.; Sachdev, A. K.

    2009-09-01

    Primary Si crystals are usually present in the cast microstructures of near-eutectic, eutectic, and hyper-eutectic Al-Si base alloys. Three-dimensional digital images of individual primary Si crystals present in a permanent mold cast unmodified Al-12 wt% Si-1 wt% Ni base alloy are reconstructed using a combination of montage serial sectioning and three-dimensional digital image processing techniques. Octahedral, prismatic, and plate-like three-dimensional morphologies of the primary Si crystals are present in the microstructure. Some of the primary Si crystals contain interior regions/islands of Al-alloy that are completely enclosed in the corresponding Si crystals indicating certain variations in the crystal growth velocities during the evolution of these crystals. The boundaries of these interior regions/islands are non-faceted smooth and curved indicating re-melting of the Al-rich islands and re-dissolution of some Si near these internal boundaries in the Al-alloy as a result of the heat generated by liquid-to-solid transformation of Si away from the islands.

  3. Morphology and crystal structure of CeO{sub 2}-modified mesoporous ZrO{sub 2} powders prepared by sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L.Y., E-mail: zhuly@sdu.edu.cn [State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100 (China); Wang, X.Q. [State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100 (China); Ren, Q. [Department of Optics, Shandong University, Jinan 250100 (China); Zhang, G.H.; Xu, D. [State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100 (China)

    2012-03-15

    Graphical abstract: Mesoporous ZrO{sub 2}-CeO{sub 2} powders with high surface area were prepared by sol-gel combined with solvothermal method without any templates. The morphology, crystal structure, thermal stability and OSC performance were affected by the component and temperatures. Highlights: Black-Right-Pointing-Pointer This work is based on the viewpoint that increasing thermal stability and OSC performance of mesoporous ZrO{sub 2} powders. Black-Right-Pointing-Pointer Mesoporous ZrO{sub 2} powders with high surface area and novel morphology were prepared by sol-gel method under steam flows. Black-Right-Pointing-Pointer The morphology and crystal structure of ZrO{sub 2} powder were varied with the different CeO{sub 2} content. - Abstract: Mesoporous ZrO{sub 2} powder modified by CeO{sub 2} has been prepared by sol-gel method combined with novel heat-treatment without any templates. The morphology and crystal structure were characterized by Fourier transform infrared spectrophotometer (FT-IR), thermal gravimetry/differential thermal analysis (TG/DTA), X-ray diffraction (XRD), Raman spectroscope, N{sub 2} absorption-desorption, scanning electron microscope (SEM) and high-resolution transmission electron microscope (HRTEM). It was demonstrated that the morphologies and crystal structures were varied with the CeO{sub 2} content and calcination temperatures. Some circular grooves with diameter about 300-500 nm and thickness of 150-200 nm were observed for 30 mol% CeO{sub 2} modified samples. Tetragonal ZrO{sub 2} and cubic (Ce,Zr)O{sub 2} solid solution were in turn observed with CeO{sub 2} content increasing. The oxygen storage capacity (OSC) of the mesoporous powders was determined by thermalgravimetry (TG) under cyclic thermal treatments.

  4. Phase behavior of chromonic liquid crystal mixtures of Sunset Yellow and Disodium Cromoglycate

    Science.gov (United States)

    Yamaguchi, Akihiro; Smith, Gregory; Yi, Youngwoo; Xu, Charles; Biffi, Silvia; Serra, Francesca; Bellini, Tommaso; Clark, Noel

    2014-03-01

    Chromonic liquid crystals (CLCs) are formed when planar molecules dissolved in water stack into rod-like aggregates that can order as liquid crystals. Isotropic, nematic, and M-phases can be observed depending on the degree of molecular orientational and positional order by variation of the CLC concentration. We focused on mixtures of two well-known CLCs, Sunset Yellow, a food dye, and disodium cromoglycate (DSCG), an asthma medication. In order to study the phase behaviors of these mixtures, we observed their textures in glass cells and capillaries using polarized light microscopy. We report here a ternary phase diagram describing the complete phase behavior of the CLC mixtures. We observed a variety of phase behaviors depending on species ratio and concentration. In the isotropic phase, no clear phase separation of the two dyes was observed, while separation did occur in many nematic and M-phase combinations. We will also describe phase observations made using a light spectroscopy and bulk centrifugal partitioning. Grant support: NSF DMR 1207606 and NSF MRSEC DMR-0820579.

  5. Influence of lignin on morphology, structure and thermal behavior of polylactic acid-based biocomposites

    Science.gov (United States)

    Canetti, Maurizio; Cacciamani, Adriana; Bertini, Fabio

    2016-05-01

    Polylactic acid (PLA) is a thermoplastic biodegradable polymer that can be made from annually renewable resources. Lignin is a natural amorphous polyphenolic macromolecule inexpensive and easily available. In the present study PLA and acetylated lignin biocomposites were prepared by casting from chloroform solution. PLA can crystallize from the melt in the α and α' forms, depending on the adopted crystallization conditions. The presence of the lignin in the biocomposites can interfere with the crystal formation process. Isothermal crystallizations were performed at different temperatures, the presence of lignin causes an increase of the time of crystallization, while the overall crystallization rate and the spherulite radial growth rate decrease with enhancing the lignin content in the biocomposites.

  6. Dielectric behavior of antiferroelectric liquid crystals in presence of flexoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Das, Deblal; Mandal, Pravash; Majumder, Tapas Pal, E-mail: tpm@klyuniv.ac.in [Department of Physics, University of Kalyani, West Bengal (India)

    2015-06-15

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization. (author)

  7. Dielectric Behavior of Antiferroelectric Liquid Crystals in Presence of Flexoelectric Effect

    Science.gov (United States)

    Das, Deblal; Mandal, Pravash; Pal Majumder, Tapas

    2015-06-01

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization.

  8. Research on Mechanical Behaviors of Micro-crystal Muscovite/UHMWPE Composites to Impact Loading

    Directory of Open Access Journals (Sweden)

    Hu Huarong

    2016-01-01

    Full Text Available UHMWPE composites were prepared by hot pressing process with micro-crystal muscovite as reinforced particulates. The mechanical behaviors of composites to impact loading was evaluated by split Hopkinson bar. The results demonstrated that dynamic yield stress and failure stress of UHMWPE composites were gradually increased when the filling amount was less than 20%; when the filling content of muscovite was around 15%, the energy absorption efficiency of the composite reaches maximum value. It was also found that when strain rate within 3200/s, the dynamic yield stress, failure stress and energy absorption efficiency of UHMWPE composites increased with the increase of strain rate and display strain rate enhancement effect.

  9. Polarization Raman Microscopic Study of Molecular Alignment Behavior in Liquid Crystal/Polymer Composite Films

    Science.gov (United States)

    Murashige, Takeshi; Fujikake, Hideo; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2005-12-01

    We clarified that the molecular alignment of aggregated polymers is partially synchronized with liquid crystal (LC) director reorientation in an LC/polymer composite film. The molecular alignment behavior in composite films with LC- and polymer-rich regions formed by photopolymerization-induced phase separation was investigated using polarization Raman spectral microscopy. Raman scattering intensity induced by aligned side chains of polymers in the LC-rich region changed with LC director reorientation when voltage was applied to the composite film. It was confirmed for the first time that polymers capable of movement are formed in the LC-rich region.

  10. Morphology and orientation of β-BaB{sub 2}O{sub 4} crystals patterned by laser in the inside of samarium barium borate glass

    Energy Technology Data Exchange (ETDEWEB)

    Nishii, Akihito; Shinozaki, Kenji; Honma, Tsuyoshi; Komatsu, Takayuki, E-mail: komatsu@mst.nagaokaut.ac.jp

    2015-01-15

    Nonlinear optical β-BaB{sub 2}O{sub 4} crystal lines (β-BBO) were patterned in the inside of 8Sm{sub 2}O{sub 3}–42BaO–50B{sub 2}O{sub 3} glass by irradiations of continuous-wave Yb:YVO{sub 4} lasers with a wavelength of 1080 nm (power: P=0.8–1.0 W, scanning speed: S=0.2–2.5 μm/s), in which the laser focal position was moved gradually from the surface to the inside. The morphology, size, and orientation of β-BBO crystals were examined from polarization optical microscope and birefringence imaging observations. It was demonstrated that c-axis oriented β-BBO crystals with long lengths (e.g., 20 mm) were patterned in the inside of the glass. The morphology of β-BBO in the cross-section of lines was a rectangular shape with rounded corners, and the volume of β-BBO formed increased with increasing laser power and with decreasing laser scanning speed. The maximum depth in the inside from the surface for β-BBO patterning increased with increasing laser power, e.g., D{sub max}∼100 μm at P=0.8 W, D{sub max}∼170 μm at P=0.9 W, and D{sub max}∼200 μm at P=1 W. The present study proposes that the laser-induced crystallization opens a new door for applied engineering in glassy solids. - Graphical abstract: This figure shows the POM photographs for β-BaB{sub 2}O{sub 4} crystal lines patterned by cw Yb:YVO{sub 4} fiber laser irradiations with a laser power of P=0.8 W and a laser scanning speed S=2 μm/s in the glass. The laser focal point was moved gradually from the surface into the inside. The results shown in Fig. 1 demonstrate that it is possible to pattern highly oriented β-BaB{sub 2}O{sub 4} crystals even in the inside of glasses. - Highlights: • β-BaB{sub 2}O{sub 4} crystal lines were patterned in the inside of a glass by lasers. • Laser focal position was moved gradually from the surface to the inside. • Birefringence imaging was observed. • Morphology, size, and orientation of crystals were clarified. • Crystal lines with long lengths

  11. Synthesis, growth, morphology of the semiorganic nonlinear optical crystal L-glutamic acid hydrochloride and its structural, thermal and SHG characterizations

    Energy Technology Data Exchange (ETDEWEB)

    Dhanasekaran, P.; Srinivasan, K. [Crystal Growth Laboratory, Department of Physics, School of Physical Sciences, Bharathiar University, Coimbatore-641 046, Tamil Nadu (India)

    2012-12-15

    One of the halide derivatives of L-glutamic acid which was identified as a semiorganic nonlinear optical material, L-glutamic acid hydrochloride [HOOC(CH{sub 2}){sub 2}CH(NH{sub 2})COOH.HCl], was grown as bulk single crystal and its significant properties were characterized. The stoichiometric title compound was synthesized and the solubility of its recrystallized form in DD water was determined in the temperature range 30-80 C by gravimetric method. Structural confirmation was carried out by powder X-ray diffraction study through lattice parameter verification. Optical quality smaller dimension single crystals were grown from aqueous solution by self nucleation through slow evaporation of solvent method and a large dimension single crystal was grown by slow cooling method with reversible seed rotation technique. Morphological importances of different growth facets of the as grown crystals were studied through optical goniometry. Unit cell structure of the grown crystal was refined by single crystal X-ray diffraction analysis, functional groups present in the crystal responsible for various modes of vibrations were confirmed by FTIR spectroscopy analysis, thermal stability of the grown crystal was analysed by TG/DTA and DSC and second harmonic generation (SHG) of a fundamental Nd:YAG laser beam by Kurtz technique. Results indicate that the grown crystal is in stoichiometric composition and has significant improvement in its thermal and SHG properties when compared to pure L-glutamic acid polymorphs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Morphological and behavioral differences in the gastropod Trophon geversianus associated to distinct environmental conditions, as revealed by a multidisciplinary approach

    Science.gov (United States)

    Márquez, Federico; Nieto Vilela, Rocío Aimé; Lozada, Mariana; Bigatti, Gregorio

    2015-01-01

    The gastropod Trophon geversianus exhibits shell polymorphisms along its distribution in subtidal and intertidal habitats. Our hypothesis is that morphological and behavioral patterns of T. geversianus represent habitat-specific constrains; subsequently we expect an association between shell morphology, attachment behavior, and habitat. In order to test this hypothesis we compared individuals from intertidal and subtidal habitats, at three sites in Golfo Nuevo (Argentina). We analyzed shell morphology using classic morphometric variables, 3D geometric morphometrics and computing tomography scan. The results were complemented with field observations of attachment to substrate and turning time behavior, as well as of the number of shell scars produced by crab predation. Our results showed differences in shell size and shape between intertidal and subtidal-collected individuals. Centroid size, total weight and shell weight, as well as shell density and thickness were significantly lower in intertidal individuals than in subtidal ones. Gastropods from intertidal habitats presented a low-spired shell and an expanded aperture which might allow better attachment to the bottom substrate, while subtidal individuals presented a slender and narrower shell shape. The number of crab scars was significantly higher in shells from subtidal individuals. Observations of the behavior of gastropods placed at the intertidal splash zone showed 100% of attachment to the bottom in the intertidal individuals, while subtidal specimens only attached in average in 32% of the cases. These latter took 12 times longer to re-attach to the bottom when faced up. Phylogenetic analysis of COI gene fragments showed no consistent differences among individuals sampled in both habitats. All these results suggest that T. geversianus has developed two ecomorphs with distinct morphological and behavioral responses to physically stressful conditions registered in north Patagonian intertidals, as opposed to

  13. Morphological, behavioral and biological aspects of Azya luteipes Mulsant fed on Coccus viridis (Green

    Directory of Open Access Journals (Sweden)

    Juliana Nais

    2012-02-01

    Full Text Available One of the major pests of nursery seedlings of coffee (Coffea arabica L. is the green scale, Coccus viridis (Green (Hemiptera: Coccidae. The main predators of this species are beetles of the family Coccinellidae, especially Azya luteipes Mulsant. Morphological, behavioral and biological aspects of A. luteipes feeding on C. viridis on coffee plants were examined under laboratory conditions. Tests were conducted in room temperature at 28 ± 2 ºC. A. luteipes oviposits on the underside of the scale's body, laying two to four eggs per insect. The eggs have a subelliptical form and a white-clear color, and the incubation period is 8.3 ± 1.2 days. The number of eggs laid per female per day varies between eight and ten. A. luteipes undergoes four larval instars with durations of 2.0 ± 0, 3.2 ± 0.5, 3.6 ± 0.5 and 4.6 ± 0 days for the 1st, 2nd, 3rd and 4th instars, respectively. The average durations of the prepupal and pupal stages were 2.0 ± 0 and 10.9 ± 1.3 days, respectively. The viability of the larvae during each instar was 91.9, 89.3, 90.2 and 96.4 %, respectively, and the viabilities of prepupae and pupae were 99.1 and 98.2 %. The average duration of the egg-adult cycle was 34.3 ± 2.6 days, and the sex ratio was 0.52 %. Females presented a gray-colored head, while males presented a yellow head.

  14. Acetyl-L-carnitine improves behavior and dendritic morphology in a mouse model of Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Laura R Schaevitz

    Full Text Available Rett syndrome (RTT is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2. Girls with RTT suffer from severe motor, respiratory, cognitive and social abnormalities attributed to early deficits in synaptic connectivity which manifest in the adult as a myriad of physiological and anatomical abnormalities including, but not limited to, dimished dendritic complexity. Supplementation with acetyl-L-carnitine (ALC, an acetyl group donor, ameliorates motor and cognitive deficits in other disease models through a variety of mechanisms including altering patterns of histone acetylation resulting in changes in gene expression, and stimulating biosynthetic pathways such as acetylcholine. We hypothesized ALC treatment during critical periods in cortical development would promote normal synaptic maturation, and continuing treatment would improve behavioral deficits in the Mecp2(1lox mouse model of RTT. In this study, wildtype and Mecp2(1lox mutant mice received daily injections of ALC from birth until death (postnatal day 47. General health, motor, respiratory, and cognitive functions were assessed at several time points during symptom progression. ALC improved weight gain, grip strength, activity levels, prevented metabolic abnormalities and modestly improved cognitive function in Mecp2 null mice early in the course of treatment, but did not significantly improve motor or cognitive functions assessed later in life. ALC treatment from birth was associated with an almost complete rescue of hippocampal dendritic morphology abnormalities with no discernable side effects in the mutant mice. Therefore, ALC appears to be a promising therapeutic approach to treating early RTT symptoms and may be useful in combination with other therapies.

  15. THE VARIABLE ROLE OF CLAY ON THE CRYSTALLIZATION BEHAVIOR OF DMDBS-NUCLEATED POLYPROPYLENE

    Institute of Scientific and Technical Information of China (English)

    Juan-juan Su; Guang-hui Yang; Cheng-zhen Geng; Hua Deng; Ke Wang; Qiang Fu

    2011-01-01

    The effect of clay on the nucleating behavior of 1,3∶2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) in cryatallization of isotactic polypropylene (iPP) was investigated by means of differential scanning calorimetry (DSC),dynamic rheology and polarized light microscopy (PLM).It is interesting to note that the incorporation of layered clay nanoparticles into DMDBS-nucleated iPP may induce a synergetic nucleation effect while the DMDBS content is below 0.1 wt%,otherwise it restricts the crystallization rate prominently as the DMDBS content increases up to 0.3 wt%,which has exceeded the content threshold to yield a nucleating agent (NA) network.As shown by dynamic rheological investigations,the clay nanoparticles demonstrate an obstructive effect of disturbing the consistency of DMDBS fibrils network.Moreover,to further demonstrate the importance of NA network formation in the crystallization of iPP,we used another NA named HPN-20e,which can not form network structure at all over the concentration studied,for comparison.In this case,the nucleated-crystallization rate is independent on the addition of clay nanoparticles,as the nucleating mechanism is an individual nuclei manner without NA network forming.

  16. Crystallization behavior of a barium titanate tellurite glass doped with Eu3+ and Er3+

    Science.gov (United States)

    Ferreira, Elivelton Alves; Cassanjes, Fábia Castro; Poirier, Gael

    2013-04-01

    The main objective of this work has been to investigate the crystallization behavior of the glass composition 70TeO2-15BaO-15TiO2 doped with Eu3+ and Er3+ in order to check the possibility of obtaining transparent glass-ceramics containing rare earth-doped BaTiO3 nanocrystals. Glass samples with the ternary composition 70TeO2-15BaO-15TiO2 were synthesized by the melt-quenching method and doped with 0.1% of Eu3+ and Er3+. Thermal properties were investigated by DTA and heat-treatments were applied between Tg and Tx to induce the controlled crystallization of these glasses. One-step and two-step heat treatments were tested and the final glass-ceramics characterized by X-ray diffraction and UV-Vis absorption. It has been shown that transparent glass-ceramics can be obtained after heat-treatment but barium titanate BaTiO3 is hardly precipitated without coprecipitation of another crystalline phase identified as an isostructure of lanthanum tellurate. In addition, the crystalline volume fraction is relatively small in these transparent samples. Finally, Gold doping has been shown to be very effective to promote a volume nucleation and preferential crystallization of BaTiO3 over the other crystalline phases.

  17. Dynamic mechanical behavior of a Zr-based bulk metallic glass during glass transition and crystallization

    Institute of Scientific and Technical Information of China (English)

    CHAO Qi; WANG Qing; DONG Yuanda

    2009-01-01

    The dynamic mechanical behaviors of the Zr41Ti14Cu12.5Ni8Be22.5Fe2 bulk metallic glass (BMG) during continuous heating at a constant rate were investigated. The glass transition and crystallization of the Zr-based BMG were thus characterized by the measurements of storage modulus E and internal friction Q-1. It was found that the variations of these dynamic mechanical quantifies with temperature were interre-lated and were well in agreement with the DSC trace obtained at the same heating rate. The origin of the first peak in the internal friction curve was closely related to the dynamic glass transition and subsequent primary crystallization. Moreover, it can be well described by a physical model, which can characterize atomic mobility and mechanical response of disordered condense materials. In comparison with the DSC trace, the relative position of the first internal friction peak of the BMG was found to be dependent on its thermal stability against crys-tallization.

  18. Crystallization and unusual rheological behavior in poly(ethylene oxide)–clay nanocomposites

    KAUST Repository

    Kelarakis, Antonios

    2011-05-01

    We report a systematic study of the crystallization and rheological behavior of poly(ethylene oxide) (PEO)-clay nanocomposites. To that end a series of nanocomposites based on PEOs of different molecular weight (103 < MW < 105 g/mol) and clay surface modifier was synthesized and characterized. Incorporation of organoclays with polar (MMT-OH) or aromatic groups (MMT-Ar) suppresses the crystallization of polymer chains in low MW PEO, but does not significantly affect the crystallization of high MW matrices. In addition, the relative complex viscosity of the nanocomposites based on low MW PEO increases significantly, but the effect is less pronounced at higher MWs. The viscosity increases in the series MMT-Alk < MMT-OH < MMT-Ar. In contrast to the neat PEO which exhibits a monotonic decrease of viscosity with temperature, all nanocomposites show an increase after a certain temperature. This is the first report of such dramatic enhancements in the viscoelasticity of nanocomposites, which are reversible, are based on a simple polymer matrix and are true in a wide temperature range. © 2011 Elsevier Ltd. All rights reserved.

  19. Effects of Polymeric Additives on the Crystallization and Release Behavior of Amorphous Ibuprofen

    Directory of Open Access Journals (Sweden)

    Su Yang Lee

    2013-01-01

    Full Text Available Some polymeric additives were studied to understand their effects on the amorphous phase of ibuprofen (IBU, used as a poorly water soluble pharmaceutical model compound. The amorphous IBU in bulk, as well as in nanopores (diameter ~24 nm of anodic aluminum oxide, was examined with the addition of poly(acrylic acid, poly(N-vinyl pyrrolidone, or poly(4-vinylphenol. Results of bulk crystallization showed that they were effective in limiting the crystal growth, while the nucleation of the crystalline phase in contact with water was nearly instantaneous in all cases. Poly(N-vinyl pyrrolidone, the most effective additive, was in specific interaction with IBU, as revealed by IR spectroscopy. The addition of the polymers was combined with the nanoscopic confinement to further stabilize the amorphous phase. Still, the IBU with addition of polymeric additives showed sustained release behavior. The current study suggested that the inhibition of the crystal nucleation was probably the most important factor to stabilize the amorphous phase and fully harness its high solubility.

  20. Nanomechanical behaviors of (110) and (111) CdZnTe crystals investigated by nanoindentation

    Institute of Scientific and Technical Information of China (English)

    LI Yan; KANG Renke; GAO Hang; WANG Jinghe; LANG Yanju

    2009-01-01

    The nanomechanical behaviors of (110) and (111) CdZnTe crystals were investigated by nanoindentation. It was found that the indenter tip was adhered by the removed materials in scanning testing area although the scanning force on the tested surface was very small (1000 nN), which would affect the testing result of nanoindentation, so the indenter was clean before nanoindentation test. The experimemtal results showed that the hardness and Young's modulus decreased with the increase of indentation loads on the same plane. Because of the anisot-ropy of the CdZnTe crystal, the average hardness of (110) plane is 35% lower than that of (l 11 ) plane, and there are about 30% difference of the hardness along different crystallographic directions on the same plane. The hardness in 0° and 120° testing directions was the same due to the threefold symmetry of a Berkovich indenter. And the anisotropy affected the surface quality during machining of CdZnTe crystal.

  1. Partially transformed relaxor ferroelectric single crystals with distributed phase transformation behavior

    Science.gov (United States)

    Gallagher, John A.

    2015-11-01

    Relaxor ferroelectric single crystals such as PMN-PT and PIN-PMN-PT undergo field driven phase transformations when electrically or mechanically loaded in crystallographic directions that provide a positive driving force for the transformation. The observed behavior in certain compositions is a phase transformation distributed over a range of fields without a distinct forward or reverse coercive field. This work focuses on the material behavior that is observed when the crystals are loaded sufficiently to drive a partial transformation and then unloaded, as might occur when driving a transducer to achieve high power levels. Distributed transformations have been modeled using a normal distribution of transformation thresholds. A set of experiments was conducted to characterize the hysteresis loops that occur with the partial transformations. In this work the normal distribution model is extended to include the partial transformations that occur when the field is reversed before the transformation is complete. The resulting hysteresis loops produced by the model are in good agreement with the experimental results.

  2. Magnetic properties and crystallization behavior of nanocrystalline FeSiBPCuAl alloys

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Magnetic properties and crystallization behavior of nanocrystalline (Fe83.3Si4B8P4Cu0.7)100-xAlx (x=0-1.5 at%) alloys were investigated in this study.Experimental results show that coercive force decreases and saturation magnetization slightly decreases with the increase of Al content,but the glass forming ability has been improved at the same time.Crystallization behavior including the evolution of microstructure has also been studied.The growth of α-Fe precipitated from the matrix is quick when it is annealed by conventional method and the mean size of α-Fe grains increases from below 2-3 nm to 18-29 nm.Nanocrystalline (Fe83.3Si4B8P4Cu0.7)99Al1 alloy with coercive force of 8.9 A/m and saturation magnetization of 187 emu/g is probably a promising candidate in the field of soft magnetic materials.

  3. Lubricating and waxy esters, I. Synthesis, crystallization, and melt behavior of linear monoesters.

    Science.gov (United States)

    Bouzidi, Laziz; Li, Shaojun; Di Biase, Steve; Rizvi, Syed Q; Narine, Suresh S

    2012-01-01

    Four pure jojoba wax-like esters (JLEs), having carbon chain length of 36, 40 (two isomers) and 44, were prepared by Steglish esterification of fatty acids (or acid chlorides) with fatty alcohols at room temperature. Calorimetric and diffraction data was used to elucidate the phase behavior of the esters. The primary thermal parameters (crystallization and melting temperatures) obtained from the DSC of the symmetrical molecules correspond well with the carbon numbers of the JLEs. However, the data also suggests that carbon number is not the only factor since the symmetry of the molecule also plays a significant role in the phase behavior. Overall, the JLEs show very little polymorphic activity at the experimental conditions used, suggesting that they are likely to transform the same way during melting as well as crystallization, a characteristic which may be useful in designing new waxes and lubricants. The XRD data clearly show that the solid phase in all samples consists of a mixture of a β-phase and a β'-phase; fully distinguishable by their characteristic diffraction peaks. Subtle differences between the subcell patterns and phase development of the samples were observed. Different layering of the samples was also observed, understandably because of the chain length differences between the compounds. The long spacings were perfectly linearly proportional to the number of carbon atoms. The length of the ester layers with n carbon atoms can be calculated by a formula similar to that used for the layers in linear alkane molecules.

  4. Solvent effect on the crystal morphology of 2,6-diamino-3,5-dinitropyridine-1-oxide: a molecular dynamics simulation study.

    Science.gov (United States)

    Shi, Wenyan; Xia, Mingzhu; Lei, Wu; Wang, Fengyun

    2014-05-01

    The attachment energy (AE) calculations were performed to predict the growth morphology of 2,6-diamino-3,5-dinitropyridine-1-oxide (ANPyO) in vacuum. The molecular dynamics (MD) method was applied to simulate the interaction of trifluoroacetic acid solvent with the habit faces and the corrected AE model was adopted to predict the growth habit of ANPyO in the solvent. The results indicate that the growth morphology of ANPyO in vacuum is dominated by (110), (100), (10-1) and (11-2) faces. The corrected AE energies change in the order of (110)>(10-1)>(11-2)>(100), which causes the crystal morphology to become very close to a flake in trifluoroacetic acid solvent and accords well with the results obtained from experiments. The radial distribution function analysis shows that the solvent molecules adsorb on the ANPyO faces mainly via the solvent-crystal face interactions of hydrogen bonds, Coulomb and Van der Waals forces. In addition to the above results, the analysis of diffusion coefficient of trifluoroacetic acid molecules on the crystal growth faces shows that the growth habit is also affected by the diffusion capacity of trifluoroacetic acid molecules. These suggestions may be useful for the formulation design of ANPyO.

  5. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats.

    Science.gov (United States)

    Norazlimi, Nor Atiqah; Ramli, Rosli

    2015-01-01

    A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Whimbrel (Numenius phaeopus), and Little heron (Butorides striata)) and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder). The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R = 0.443, p birds (mm) and species (H = 15.96, p = 0.0012). Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  6. Crystallization Behavior and Relaxation Dynamics of Supercooled S‑Ketoprofen and the Racemic Mixture along an Isochrone

    DEFF Research Database (Denmark)

    Adrjanowicz, Karolina; Kaminski, Kamil; Paluch, Marian

    2015-01-01

    In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures and press......In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures...... of pure enantiomers and their 50–50 equimolar mixture in the metastable supercooled liquid state. Crystallization kinetic studies revealed that at the same isochronal conditions the behavior of the S-enantiomer and R,S-racemic mixture of ketoprofen is entirely different. This was examined in the context...

  7. Thermal profiles, crystallization behaviors and microstructure of diacylglycerol-enriched palm oil blends with diacylglycerol-enriched palm olein.

    Science.gov (United States)

    Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao

    2016-07-01

    To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing.

  8. A study on ice crystal formation behavior at intracellular freezing of plant cells using a high-speed camera.

    Science.gov (United States)

    Ninagawa, Takako; Eguchi, Akemi; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Intracellular ice crystal formation (IIF) causes several problems to cryopreservation, and it is the key to developing improved cryopreservation techniques that can ensure the long-term preservation of living tissues. Therefore, the ability to capture clear intracellular freezing images is important for understanding both the occurrence and the IIF behavior. The authors developed a new cryomicroscopic system that was equipped with a high-speed camera for this study and successfully used this to capture clearer images of the IIF process in the epidermal tissues of strawberry geranium (Saxifraga stolonifera Curtis) leaves. This system was then used to examine patterns in the location and formation of intracellular ice crystals and to evaluate the degree of cell deformation because of ice crystals inside the cell and the growing rate and grain size of intracellular ice crystals at various cooling rates. The results showed that an increase in cooling rate influenced the formation pattern of intracellular ice crystals but had less of an effect on their location. Moreover, it reduced the degree of supercooling at the onset of intracellular freezing and the degree of cell deformation; the characteristic grain size of intracellular ice crystals was also reduced, but the growing rate of intracellular ice crystals was increased. Thus, the high-speed camera images could expose these changes in IIF behaviors with an increase in the cooling rate, and these are believed to have been caused by an increase in the degree of supercooling.

  9. Shear Induced Morphology Evolution and Dynamic Viscoelastic Behavior of Binary and Ternary Elastomer Blends

    Science.gov (United States)

    Dong, Xia; Liu, Xianggui; Liu, Wei; Han, Charles C.; Wang, Dujin

    2015-03-01

    The morphology evolution and rheological response of a near-critical composition polybutadiene /polyisoprene blend and solution-polymerized styrene-butadiene rubber/polyisoprene/silica ternary composites after various shear flow were in situ studied with the rheological and rheo-optical techniques. The relationship between the morphology of the blend during the relaxation after the cessation of steady shear with different shear rates and their corresponding rheological properties was successfully established. It was found that the different shear-induced morphologies under steady shear would relax to the equilibrium states via varied mechanisms after the shear cessation. The storage modulus G' increased significantly in the breakup process of the string-like phase. In long time scale, silica slowed down the succeeding breakup of the string-phase domains and simultaneous coalescence of broken droplets, and then effectively reduced the droplets size and stabilized the morphology. The authors thank the financial support from National Natural Science Foundation of China (No. 51173195).

  10. 葡聚糖对煮糖及白砂糖晶体形态的影响%Effects of Dextran on Boiling and White Sugar Crystal Morphology

    Institute of Scientific and Technical Information of China (English)

    莫柳珍; 廖炳权; 焦博; 谢彩锋

    2015-01-01

    葡聚糖是高分子高粘度多糖,对制糖生产过程危害很大。通过使用小型试验型真空煮糖设备煮制含有不同葡聚糖的糖浆,分析糖膏粘度、煮糖时间、提糖率及观察蔗糖晶体形态,研究煮糖物料中含不同浓度的葡聚糖对煮糖操作及白砂糖晶形的影响。结果表明:葡聚糖浓度增大,会增大糖膏粘度,延长煮糖时间,降低提糖率,改变蔗糖晶体形态甚至出现针状晶体;高分子量葡聚糖比低分子量葡聚糖对煮糖影响更大。%Dextran is a kind of polysaccharide, a macromolecule and high viscosity material. It can do great harm in the sugar producing process. Using a small experimental vacuum equipment to cook syrup containing different dextran, this paper analyzed the massecuite, boiling time, sugar extraction rate, observed the sucrose crystal morphology, studied the influence of boiled sugar material containing different concentrations of dextran to the operation of boiling sugar and sugar crystal morphology. The results showed that dextran concentration increases will increase the viscosity of massecuite, prolong boiling time, reduce the sugar extraction rate, change sucrose crystal morphology even cause acicular crystals to appear. High molecular weight dextran has greater influence on boiling sugar than low molecular one has.

  11. Methylphenidate to adolescent rats drives enduring changes of accumbal Htr7 expression: implications for impulsive behavior and neuronal morphology.

    Science.gov (United States)

    Leo, D; Adriani, W; Cavaliere, C; Cirillo, G; Marco, E M; Romano, E; di Porzio, U; Papa, M; Perrone-Capano, C; Laviola, G

    2009-04-01

    Methylphenidate (MPH) administration to adolescent rodents produces persistent region-specific changes in brain reward circuits and alterations of reward-based behavior. We show that these modifications include a marked increment of serotonin (5-hydroxy-tryptamine) receptor type 7 (Htr7) expression and synaptic contacts, mainly in the nucleus accumbens, and a reduction of basal behavioral impulsivity. We show that neural and behavioral consequences are functionally related: administration of a selective Htr7 antagonist fully counteracts the MPH-reduced impulsive behavior and enhances impulsivity when administered alone in naive rats. Agonist-induced activation of endogenous Htr7 significantly increases neurite length in striatal neuron primary cultures, thus suggesting plastic remodeling of neuronal morphology. The mixed Htr (1a/7) agonist, 8-OH-DPAT, reduces impulsive behavior in adolescent rats and in naive adults, whose impulsivity is enhanced by the Htr7 antagonist. In summary, behavioral pharmacology experiments show that Htr7 mediates self-control behavior, and brain primary cultures experiments indicate that this receptor may be involved in the underlying neural plasticity, through changes in neuronal cytoarchitecture.

  12. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection

    DEFF Research Database (Denmark)

    Hughes, David P; Andersen, Sandra B; Hywel-Jones, Nigel L

    2011-01-01

    Parasites that manipulate host behavior can provide prominent examples of extended phenotypes: parasite genomes controlling host behavior. Here we focus on one of the most dramatic examples of behavioral manipulation, the death grip of ants infected by Ophiocordyceps fungi. We studied the interac...

  13. Robustness of the periodic and chaotic orientational behavior of tumbling nematic liquid crystals.

    Science.gov (United States)

    Heidenreich, Sebastian; Ilg, Patrick; Hess, Siegfried

    2006-06-01

    The dynamical behavior of molecular alignment strongly affects physical properties of nematic liquid crystals. A theoretical description can be made by a nonlinear relaxation equation of the order parameter and leads to the prediction that rather complex even chaotic orientational behavior occur. Here the influence of fluctuating shear rates on the orientational dynamics especially on chaotic solutions is discussed. With the help of phase portraits and time evolution diagrams, we investigated the influence of different fluctuation strengths on the flow aligned, isotropic, and periodic solutions. To explore the effect of fluctuations on the chaotic behavior, we calculated the largest Lyapunov exponent for different fluctuation strengths. We found in all cases that small fluctuations of the shear rate do not affect the basic features of the dynamics of tumbling nematics. Furthermore, we present an amended potential modeling the isotropic to nematic transition and discuss the equivalence and difference to the commonly used Landau-de Gennes potential. In contrast to the Landau-de Gennes potential, our potential has the advantage to restrict the order parameter to physically admissible values. In the case of extensional flow, we show that the amended potential leads for increasing extensional rate to a better agreement with experimental results.

  14. Novel Magnesium Salt Based on BTATz: Crystal Structure,Thermal Behavior and Thermal Safety

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-bo; REN Ying-hui; LI Wen; ZHAO Feng-qi; WANG Bo-zhou; SONG Ji-rong

    2013-01-01

    A new high-energy organic magnesium salt [Mg(H2O)6](BTATz)·2H2O[BTATz=3,6-bis(1H-1,2,3,4-tetrazol-5-yl-amino)-1,2,4,5-tetrazine] was synthesized and characterized by elemental analysis and Fourier transform infrared(FTIR) spectrometry.Its crystal structure was determined by X-ray single crystal diffraction.The crystal belongs to monoclinic system with space group C2/c and a=2.1329(7) nm,b=0.52275(16) nm,c=1.5909(5) nm,β=100.471(6)°,V=1.7443(9) nm3,Z=4,μ=0.361 mm-1,F(000)=900 and Dc=1.644 g/cm3.Meanwhile,the thermal behavior of [Mg(H2O)6](BTATz)·2H2O was studied under the non-isothermal conditions by differential scanning calorimetry(DSC) and thermalgravity-differential thermalgravity(TG-DTG) methods.The enthalpy,apparent activation energy and per-exponential factor of the main exothermic decomposition reaction are 898.88 J/g,139.2 kJ/mol and 1010.48 S-1,respectively.The values of the self-accelerating decomposition temperature(TsADT),the thermal ignition temperature(TTIT) and the critical temperature of thermal explosion(Tb) for [Mg(H2O)6](BTATz).2H2O are 515.13,532.08 and 565.99 K,respectively.

  15. Magnetic behavior of RMn2+xAl10-x (R=La,Gd) crystals

    Science.gov (United States)

    Sefat, Athena S.; Li, Bin; Bud'Ko, Sergey L.; Canfield, Paul C.

    2007-11-01

    The crystallographic and magnetic properties of the solution grown RMn2+xAl10-x ( R=Gd and La) crystals with tetragonal (P4/nmm) structure are investigated. For these, single-crystal x-ray diffraction results have shown the preferential occupation of excess manganese on the aluminum 8i crystallographic site. Due to excess Mn, there is evidence of local-moment magnetism in LaMn2+xAl10-x and their random distribution is thought to be responsible for the magnetic correlations below ˜50K and the spin-glass behavior below ˜3K . For GdMn2+xAl10-x , the extra manganese influences temperature below which the sample enters into a state with a net ferromagnetic component: TC≈16K for GdMn2.21(4)Al9.79(4) and 25.5K for GdMn2.39(2)Al9.61(2) . Assuming a linear dependence between TC and excess Mn concentration, the fully stoichiometric and ordered GdMn2Al10 should have TC≈5K .

  16. Observation of adsorption behavior of biomolecules on ferroelectric crystal surfaces with polarization domain patterns

    Science.gov (United States)

    Nakayama, Tomoaki; Isobe, Akiko; Ogino, Toshio

    2016-08-01

    Lithium tantalate (LiTaO3) is one of the ferroelectric crystals that exhibit spontaneous polarization domain patterns on its surface. We observed the polarization-dependent adsorption of avidin molecules, which are positively charged in a buffer solution at pH 7.0, on LiTaO3 surfaces caused by electrostatic interaction at an electrostatic double layer using atomic force microscopy (AFM). Avidin adsorption in the buffer solution was confirmed by scratching the substrate surfaces using the AFM cantilever, and the adsorption patterns were found to depend on the avidin concentration. When KCl was added to the buffer solution to weaken the electrostatic double layer interaction between avidin molecules and LiTaO3 surfaces, adsorption domain patterns disappeared. From the comparison between the adsorption and chemically etched domain patterns, it was found that avidin molecule adsorption is enhanced on negatively polarized domains, indicating that surface polarization should be taken into account in observing biomolecule behaviors on ferroelectric crystals.

  17. Hydrothermal Synthesis, Crystal Structure and Electrochemical Behavior of 2d Hybrid Coordination Polymer

    Science.gov (United States)

    Fan, Weiqiang; Zhu, Lin; Shi, Weidong; Chen, Fuxiao; Bai, Hongye; Song, Shuyan; Yan, Yongsheng

    2013-06-01

    A novel metal-organic coordination polymer [Cu(phen)(L)0.5(H2O)]n (H4L = (N,N‧-5,5‧-bis(isophthalic acid)-p-xylylenediamine, and phen = 1,10-phenanthroline) has been hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction. The crystallographic data show that the title compound crystallizes in monoclinic space group P21/n with a = 10.682(2), b = 15.682(3), c = 11.909(2) Å, β = 91.39(3)°, V = 1994.3(7) Å3, C24H17CuN3O5, Mr = 490.95, Dc = 1.635 g/cm3, F(000) = 1004, Z = 4, μ(MoKα) = 1.141 mm-1, the final R = 0.0418 and wR = 0.0983 for 3578 observed reflections (I > 2σ(I)). The structural analyses reveal that the title compound exhibits shows a 2D layer structure, which are further linked by hydrogen bonding interactions to form a three-dimensional supramolecular network. In addition, the thermal stability and electrochemical behavior of title compound has been studied. CCDC: 900413.

  18. Shape Memory Behavior of [111]-Oriented NiTi Single Crystals After Stress-Assisted Aging

    Institute of Scientific and Technical Information of China (English)

    Irfan Kaya; Hirobumi Tobe; Haluk Ersin Karaca; Emre Acar; Yuriy Chumlyakov

    2016-01-01

    The shape memory behavior of [111]-oriented NistTi49 (at.%) single crystals was investigated after stressassisted aging at 500 ℃ for 1.5 h under a compressive stress of-150 MPa.It was found that a single family of Ni4Ti3 precipitates with two crystallographically equivalent variants was formed after aging under compressive stress.Stressassisted aging resulted in tensile two-way shape memory effect strain of 1.56% under-5 MPa.Thermal cycling under -600 MPa resulted in a transformation strain of-2.15%,while the subsequent thermal cycling under-5 MPa resulted in a tensile two-way shape memory effect strain of 2.2%.

  19. Morphology Evolution and Dynamic Viscoelastic Behavior of Ternary Elastomer Blends under Shear

    Science.gov (United States)

    Dong, Xia; Liu, Xianggui; Han, Charles C.; Wang, Dujin

    The influence of nanoparticle geometry, such as size and shape, on the phase morphology of partially miscible binary polymer blends under and after shear has been examined by rheological and rheo-optical techniques. The phase morphologies of the solution-polymerized styrene-butadiene rubber and low vinyl content polyisoprene (SSBR/LPI) blend systems were affected by the dispersion status of fillers which were determined by filler shapes and shear strength. Under weak shear flow, the domain morphology of the OMMT filled blend was much thinner than that of the SiO2 filled blend. Under strong shear flow, the string-like phase interface of the OMMT filled blend was much blurred compared with that of the SiO2 filled blend. After shear cessation, the orientation status of OMMT sheets determined the orientation of newborn domains. Combined morphology observation and rheological analysis showed that the anisotropic structure and the unfavorable bending energy of OMMT sheets played important roles on phase morphology and its evolution process during or after shear. The authors thank the financial support from National Natural Science Foundation of China (No.51173195).

  20. Morphology-dependent interplay of reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals.

    Science.gov (United States)

    Gao, Yuxian; Li, Rongtan; Chen, Shilong; Luo, Liangfeng; Cao, Tian; Huang, Weixin

    2015-12-21

    Reduction behaviors, oxygen vacancies and hydroxyl groups play decisive roles in the surface chemistry and catalysis of oxides. Employing isothermal H2 reduction we simultaneously reduced CeO2 nanocrystals with different morphologies, created oxygen vacancies and produced hydroxyl groups. The morphology of CeO2 nanocrystals was observed to strongly affect the reduction process and the resultant oxygen vacancy structure. The resultant oxygen vacancies are mainly located on the surfaces of CeO2 cubes and rods but in the subsurface/bulk of CeO2 octahedra. The reactivity of isolated bridging hydroxyl groups on CeO2 nanocrystals was found to depend on the local oxygen vacancy concentration, in which they reacted to produce water at low local oxygen vacancy concentrations but to produce both water and hydrogen with increasing local oxygen vacancy concentration. These results reveal a morphology-dependent interplay among the reduction behaviors, oxygen vacancies and hydroxyl reactivity of CeO2 nanocrystals, which deepens the fundamental understanding of the surface chemistry and catalysis of CeO2.

  1. Evaluation of Morphological Change and Aggregation Process of Ice Crystals in Frozen Food by Using Fractal Analysis

    Science.gov (United States)

    Koshiro, Yoko; Watanabe, Manabu; Takai, Rikuo; Hagiwara, Tomoaki; Suzuki, Toru

    Size and shape of ice crystals in frozen food materials are very important because they affect not only quality of foods but also the viability of industrial processing such as freeze-drying of concentration. In this study, 30%wt sucrose solution is used as test samples. For examining the effect of stabilizerspectine and xantan gum is added to the sucrose solution. They are frozen on the cold stage of microscope to be observed their growing ice crystals under the circumstance of -10°C. Their size and shape are measured and quantitatively evaluated by applying fractal analysis. lce crystal of complicated shape has large fractal dimension, and vice versa. It successflly categorized the ice crystals into two groups; one is a group of large size and complicated shape, and the other is a group of small size and plain shape. The critical crystal size between the two groups is found to become larger with increasing holding time. It suggests a phenomenological model for metamorphoses process of ice crystals. Further, it is indicated that xantan gum is able to suppress the smoothing of ice crystals.

  2. Crystal growth behavior of LiFePO4 in microwave-assisted hydrothermal condition: from nanoparticle to nanosheet.

    Science.gov (United States)

    Yang, Gang; Ji, Hongmei; Miao, Xiaowei; Hong, Anqing; Yan, Yuan

    2011-06-01

    By using microwave-assisted hydrothermal crystallization approach, LiFePO4 nanoparticles have been synthesized in several minutes without the use of any organic reducing agent and argon protection. The crystal structure and lattice parameters have been analyzed by using the X-ray diffraction patterns (XRD) and Rietveld refined analysis, and the full width at half-maximum (FWHM) of the characteristic peaks. A preferential orientation of crystal growth occurs upon microwave hydrothermal field. The SEM and TEM images show that the LiFePO4 crystals present a change from nanoparticle to nanosheet with the increasing reaction time from 5 to 20 min. All the samples present a couple of redox peaks in their CV profiles. The peak pair corresponds to the charge/discharge reaction of the Fe3+/Fe2+ redox couple, and evidencing the absence of electroactive iron impurities. Because of the LiFePO4 samples prepared without any carbon, the initial charge/discharge capacities and cycleability of absolutely are affected by the crystal structure which is controlled by the microwave irradiation condition. The relation among the microwave reaction condition, crystal morphology, and the electrochemical properties are presented and discussed in the electrochemical test.

  3. Effects of PEO Content on the Morphological Behavior of PS-PI-PEO Triblock Copolymers

    Science.gov (United States)

    Bailey, Travis S.; Bates, Frank S.

    2000-03-01

    Many studies involving ABC triblock copolymers have focused on the unique morphologies that particular molecules or blends express. However, investigations of thermally induced morphological changes in these molecules have been limited. A series of poly(styrene-isoprene-ethyleneoxide) ABC-triblock copolymers were sythesized with increasing PEO content. Consistency among all triblocks was achieved through ethylene oxide addition to the same hydroxy-functionalized poly(styrene-isoprene) diblock (MW = 18000g/mol, vol. frac. PS =0.5). Final triblock PEO volume fractions ranged from 0.029 to 0.207. All triblocks in the series showed order-to-disorder transitions (ODTs), ranging from 84C to 215C. Interestingly, initial addition of PEO resulted in a marked depression of the ODT relative to the parent diblock (116C). Characterization of these triblocks, using a combination of techniques including reology, SAXS, and TEM, shows multiple changes in morphology over the range of compositions studied, as well as possible order-to-order transitions (OOTs) associated with triblocks of specific compositions. Progression of these morphological changes with increasing PEO content will be discussed.

  4. Thermal expansion behavior of A- and B-type amylose crystals in the low-temperature region.

    Science.gov (United States)

    Kobayashi, Kayoko; Kimura, Satoshi; Naito, Philip-Kunio; Togawa, Eiji; Wada, Masahisa

    2015-10-20

    The thermal expansion behaviors of A-type and B-type amylose crystals, which were prepared by recrystallization of short amylose chains synthesized by phosphorylase, were investigated using synchrotron X-ray powder diffraction between 100 and 300K. For both types of crystals, the room-temperature phase (RT phase), which is the usually observed phase, transitioned to a low-temperature phase (LT phase), on cooling. The phase transitions took place reversibly with rapid changes in the unit-cell parameters around 200-270K. The differences between the RT and LT phase were investigated using solid-state (13)C NMR spectroscopy, which revealed there were changes in molecular chain conformations. These results suggest that the phase transition of water molecules on the crystalline surfaces affects the thermal behavior and structure of polysaccharide crystals.

  5. Unusual crystals of poly(ε-caprolactone) by unusual crystallisation: The effects of rapid cooling and fast solvent loss on the morphology, crystal structure and melting

    NARCIS (Netherlands)

    Sanandaji, N.; Ovaskainen, L.; Klein Gunnewiek, M.; Vancso, G.J.; Hedenqvist, M.S.; Yu, S.; Eriksson, L.; Roth, S.V.; Gedde, U.W.

    2013-01-01

    The lateral habit, unit cell structure and melting behaviour of single crystals of poly(ε-caprolactone) (PCL) prepared by the rapid expansion of a supercritical solution technique was studied by AFM at ambient and higher temperatures and by grazing-incident X-ray scattering using a synchrotron sourc

  6. Mineralogy, morphology and crystal-chemistry of the monazite from Catalao 1 (Goias, Brazil); Mineralogia, morfologia e cristaloquimica da monazita de Catalao 1 (Goias, Brazil)

    Energy Technology Data Exchange (ETDEWEB)

    Toledo, Maria Cristina Motta de; Oliveira, Sonia Maria Barros de; Ferrari, Viviane Carillo [Sao Paulo Univ., SP (Brazil). Inst. de Geociencias]. E-mails: mcristol@usp.br; vferrari@usp.br; Fontan, Francois; Parseval, Philippe de [Universite Paul Sabatier, Toulouse (France). Lab. Mineralogie et Cristallographie]. E-mails: fontan@cict.fr; parseval@insatlse.fr

    2004-03-15

    The Catalao alkaline carbonatite complex hosts a number of mineral resources including monazite. This mineral is a common accessory phase in two lithological units: carbonatite and silexite. Textural evidence suggest that monazite replaced carbonates in the carbonatite and crystallized simultaneously with quartz in the silexite. Monazite was resistant to the strong laterization that affected the massif, except for the incipient transformation into gorceixite or cerianite. In both carbonatite and silexite, monazite occurs as a complex aggregate of sub-micrometric crystals, showing unusual morphological and chemical characteristics. It contains Ca, Sr, and Ba in the A-site, and shows a certain degree of hydration indicated by ATD and IV data. Structural formulae calculated on the basis of sum of cations=1 show a moderate ionic deficiency in the anionic site. Rietveld refinement indicated poor crystallinity. Notwithstanding these peculiar characteristics, cell dimensions are similar to those of standard monazite. (author)

  7. Migration of constituent atoms and interface morphology in a heterojunction between CdS and CuInSe{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Soo, Y.L.; Huang, S.; Kao, Y.H. [Department of Physics, State University of New York at Buffalo, Amherst, New York, 14260 (United States); Deb, S.K.; Ramanathan, K. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, Colorado 80401 (United States); Takizawa, T. [Nihon University (Japan)

    1999-12-01

    Angular dependence of x-ray fluorescence (ADXRF), x-ray absorption fine structure (XAFS), and grazing incidence x-ray scattering measurements were carried out using synchrotron radiation for a study of the interface morphology and migration of constituent atoms in a heterojunction formed between CdS and CuInSe{sub 2} single crystals. The advantage of using a single crystal for this study is to avoid the usually complicated problems arising from multiple phases of the Cu{endash}In{endash}Se compounds. By a comparison of the results obtained with a bare CuInSe{sub 2} single crystal, the changes of interface microstructures in the CdS/CuInSe{sub 2} heterojunction system with {ital well-defined stoichiometry} can therefore be investigated. Prominent features in the ADXRF data clearly demonstrate that both Cu and Se atoms have migrated into the CdS layer in the heterojunction while In atoms remain intact in the CuInSe{sub 2} single crystal. The local structures around Cu in the system also show a significant change after the deposition of CdS, as manifested by the appearance of new Cd near neighbors in the XAFS spectra. {copyright} {ital 1999 American Institute of Physics.}

  8. Miscibility, crystallization properties and morphology of PA 6/TLCPa%PA6/TLCPa的相容性、结晶性能及其形貌

    Institute of Scientific and Technical Information of China (English)

    郭鸿俊; 张卓; 蔡勇; 李瑞杰; 王磊; 梅立

    2011-01-01

    Polyamide(PA) 6/thermotropic liquid crystalline polyamide (TLCPa)/in situ composites were prepared by extrusion molding. The miscibility, crystallization properties and morphology of the blends were studied. The results show that TLCPa and PA 6 are well miscible and hydrogen bonds exist between the polymer molecules The involvement of TLCPa in the crystallization process of PA 6 lower the latter's crystallization degree. The size of PA 6 spherulite augments with the increase of TLCPa content. Υcrystal form appears when the TLCPa mass fraction reaches 30.0%. TLCPa forms reinforced fiber with the large slenderness ratio in the PA 6 matrix.%采用挤出成型制备了聚酰胺(PA)6/热致聚酰胺液晶(TLCPa)原位复合材料,研究了共混物的相容性、结晶性能和形貌.结果表明:TLCPa和PA 6具有较好的相容性,并存在分子间氢键作用;TLCPa掺人到PA 6的结晶过程中降低了PA 6的结晶度;PA 6的球晶大小随w(TLCPa)的而增大,当w(TLCPa)为30.0%时,出现γ晶型;TLCPa在PA 6基体中形成长径比较大的增强纤维.

  9. Annealing Behavior of New Micro-defects in p-type Large-diameter CZ-Si Crystal

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New types of defects in 15.24 cm diameter and 20.32 cm diameter Czochralski silicon crystals were found after SCI cleaning. Their annealing behavior was studied. It was suggested that these defects become larger during high temperature annealing and disappear by annealing at 1250℃.

  10. Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites

    DEFF Research Database (Denmark)

    Li, Jingqing; Xiao, Peitao; Li, Hongfei;

    2015-01-01

    Poly(L-lactide) (PLLA)/graphene nanosheet (GNS) composites and pure PLLA were prepared by the solution blending method. Crystalline structures and crystallization behaviors of PLLA in the composite were investigated by XRD, POM, SAXS, and DSC. It was found that α′ form PLLA formation seemed...

  11. CRYSTALLIZATION AND MULTI-MELTING BEHAVIOR OF POLY (ETHYLENE TEREPHTHALATE) MODIFIED BY SODIUM SALT OF 5-SULPHO-ISOPHTHALIC ACID

    Institute of Scientific and Technical Information of China (English)

    HU Hengliang; MU Xiangqi; WU Shizhen

    1987-01-01

    The crystallization kinetics of the copolyester, poly(ethylene terephthalate) (PET) modified by sodium salt of 5-sulpho-isophthalic acid(SIPM), was investigated by means of differential scanning calorimeter. The experimental results and polari-microscopy observation all showed that the introduction of SIPM did not affect the nucleation of crystallization. Within the temperature range between their glass transition temperature Tg and melting point T., the crystallization rate of the copolyester sample decreased with increasing content of SIPM. The relative crystallization rate constant Z of SIPM/DMT (dimethyl terephthalate) 4mol % sample was about 1% pure PET's Z value. For isothermal crystallized copolyester samples, DSC heating curves displayed multi-melting behavior. This was interpreted by molecular weight fractionation during crystallization and premelting-recrystallization mechanism. This interpretation showed why the second melting point Tm2 will change according to Hoffman-Weeks(H-W) equation[1] and the first melting point Tm1 will increase with increasing SIPM. The principal cause of these phenomena is the high temperature crystallization rate decreases rapidly with increasing SIPM.

  12. Analysis of Crystallization Behavior of Mold Fluxes Containing TiO2 Using Single Hot Thermocouple Technique

    Institute of Scientific and Technical Information of China (English)

    Yun LEI; Bing XIE; Wen-hui MA

    2016-01-01

    The crystallization behavior of mold fluxes containing 0-8 mass% TiO 2 was investigated using the single hot thermocouple technique (SHTT)and X-ray diffraction (XRD)to study the possible effects on the coordination of heat transfer control and strand lubrication for casting crack-sensitive peritectic steels.Time-temperature-transforma-tion (TTT)and continuous-cooling-transformation (CCT)curves were plotted using the data obtained from SHTT to characterize the crystallization of the mold fluxes.The results showed that crystallization of the mold fluxes during isothermal and non-isothermal processes was suppressed with TiO 2 addition.From the TTT curves,it could be seen that the incubation and growth time of crystallization increased significantly with TiO 2 addition.The CCT curves showed that the crystallization temperature initially decreased,and then suddenly increased with increasing the TiO 2 content.XRD analysis suggested the presence of cuspidine in the mold fluxes with lower TiO 2 content (< 4 mass%),while both perovskite and cuspidine were detected in the mold fluxes when the TiO 2 content was increased to 8 mass%.In addition,the growth mechanisms of the crystals changed during the isothermal crystallization process from interface-controlled growth to diffusion-controlled growth with increasing the TiO 2 content.

  13. Structure, morphology and optical behavior of Ni1-xCoxO thin films prepared by a modified sol-gel method

    Science.gov (United States)

    Alshahrie, Ahmed

    2016-08-01

    Nanocrystalline Ni1-xCoxO thin films (0 ≤ x ≤ 0.4) have been prepared on glass substrates using sol-gel/spin-coating technique. The effect of the concentration of cobalt ions on the structure, morphology and optical behavior of the doped NiO thin films are investigated by the X-ray diffractometer, scanning electron microscopy, Raman spectroscopy and spectrophotometer. All films showed a single phase face centered cubic structure, implying the complete solubility of the Co ions into the NiO cubic crystal up to 40 at.%, for the first time. The texture coefficient revealed that the Co ions tend to force the NiO grains to grow along (200) direction. The Raman spectroscopy showed one longitudinal optical phonon mode (LO) at 518 cm-1 and two longitudinal optical phonons mode (2LO) at 1070 cm-1. The decrease of the intensity and the shift of the peak position of the two modes, indicating the scattering contribution of the LO-mode outside the center of Brillouin zone and the creation of oxygen vacancies due to the incorporated Co ions into the NiO cubic crystals. The Ni1-xCoxO thin films have shown high optical transparency around 80%. A decrease of the band gap energy of the NiO films from 3.69 eV to 3.41 eV was observed when the concentration of Co ions increased to 10 at.%, followed by an increase to 3.58 eV as the Co ions concentration increased to 40 at.%. The high optical conductivity and low dissipation factor of the developed Ni1-xCoxO thin films will open a new avenue for future applications in the optoelectronic devices such as reflectance mirror and display light shutter.

  14. The effects of glass doping, temperature and time on the morphology, composition, and iron redox of spinel crystals

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kukkadapu, Ravi K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schreiber, Daniel K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kruger, Albert A. [Office of River Protection, Richland, WA (United States)

    2014-10-31

    Precipitation of large crystals/agglomerates of spinel and their accumulation in the pour spout riser of a Joule-heated ceramic melter during idling can plug the melter and prevent pouring of molten glass into canisters. Thus, there is a need to understand the effects of spinel-forming components, temperature, and time on the growth of crystals in connection with an accumulation rate. In our study, crystals of spinel [Fe, Ni, Mn, Zn, Sn][Fe, Cr]₂O₄ were precipitated from simulated high-level waste borosilicate glasses containing different concentrations of Ni, Fe, and Cr by heat treating at 850 and 900°C for different times. These crystals were extracted from the glasses and analyzed with scanning electron microscopy and image analysis for size and shape, with inductively coupled plasma-atomic emission spectroscopy and atom probe tomography for concentration of spinel-forming components, and with wet colorimetry and Mössbauer spectroscopy for Fe²⁺/Fetotal ratio. High concentrations of Ni, Fe, and Cr in glasses resulted in the precipitation of crystals larger than 100 µm in just two days. Crystals were a solid solution of NiFe₂O₄, NiCr₂O₄, and -Fe₂O₃ (identified only in the high-Ni-Fe glass) and also contained small concentrations of less than 1 at% of Li, Mg, Mn, and Al.

  15. Study on the Influence of Crystal Modifiers on the CL-20 Crystal Morphology%晶形控制剂对六硝基六氮杂异伍兹烷晶形的影响研究

    Institute of Scientific and Technical Information of China (English)

    王金英; 刘慧云

    2016-01-01

    Different species and different concentrations of PVP K90 and Span 80 were chosen as crystal modifi-ers, and the CL-20 was prepared by recrystalization with solvent-nonsolvent method. The influence mechanism of the crystal modifiers were analyzed, the particle size, morphology and agglomeration of CL-20 crystals were re-searched by polarizing microscope and laser particle size analyzer, at last the crystal type of the CL-20 was identied by XRD. The results show that the different crystal growth modifiers on the crystalline morphology has a great influ-ence, pvpK90 effect is best, when its mass concentration of 0. 015% for CL-20 refine crystal grain size between 1~10 microns, and the smooth surface of ε-CL-20 crystals.%选择不同种类、不同浓度的聚乙烯吡咯烷酮K90和司班80作为晶形控制剂,采用溶剂-非溶剂法制备CL-20。分析了晶形控制剂对六硝基六氮杂异伍兹烷(CL-20)晶体的影响机理,用偏光显微镜和粒度分析仪表征CL-20的粒度、形貌及团聚现象;最后用X射线衍射仪对其晶型进行了表征。结果表明:不同种类、不同浓度的晶形控制剂对晶体形貌的影响有很大差别,聚乙烯吡咯烷酮K90效果最好,在其质量浓度为0.015%时得到粒度在1~10μm之间、分布均匀、表面光滑的ε-CL-20晶体。

  16. 热处理对聚己二酸丁二醋多晶结构和降解行为的影响%Polymorphic Crystals from Different Thermal Treatments and Its Effect on Biodegradation Behavior of Poly( butylene adipate)

    Institute of Scientific and Technical Information of China (English)

    赵丽芬; 蒋妮; 甘志华

    2011-01-01

    On the basis of characteristic polymorphic crystals of poly ( butylene adipate) ( PBA), the PBA films with α crystal structure were prepared by melt crystallization and annealing treatment. The polymorphic crystal structure, crystal size and crystalline morphology of PBA α crystals with different thermal history were studied by wide angle X-ray diffraction ( WAXD), atomic force microscope ( AFM ) and differential scanning calorimeter(DSC). The biodegradation behavior of PBA α crystals from different thermal treatments was investigated by following the mass loss with time. The results indicate that the difference of PBA α crystals in spatial orientation of polymer chains in the same crystal lattice due to the different thermal history is the essential reason which results in the different biodegradation rates.%通过熔融结晶并结合退火处理方法得到多晶结构的聚己二酸丁二酯(PBA)及具有不同热历史的热力学稳定的a晶型,采用广角X射线衍射仪(WAXD)、原子力显微镜(AFM)和差示扫描量热仪(DSC)研究了PBA的多晶结构、晶体尺寸和结晶形貌,跟踪了退火处理PBA的生物降解行为.结果表明,分子链在相同晶格排列中围绕c轴空间取向的不同是决定多晶PBA降解速率差别的根本因素.

  17. Morphology and Crystallization of Thin Films of Asymmetric Organic-Organometallic Diblock Copolymers of Isoprene and Ferrocenyldimethylsilane

    NARCIS (Netherlands)

    Lammertink, Rob G.H.; Hempenius, Mark A.; Vancso, G. Julius

    2000-01-01

    The morphology of thin films of asymmetric block copolymers of poly(isoprene-block-ferrocenyldimethylsilane) was studied using atomic force microscopy, transmission electron microscopy, and optical microscopy. Block copolymers with the organometallic (ferrocenylsilane) phase between 20 and 28 vol %

  18. Electron microscopy observations of surface morphologies and particle arrangement behaviors of magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    沈辉; 徐雪青; 王伟

    2003-01-01

    The surface morphology of quasi-periodic stripe-shaped patterns of magnetite fluids was observed in applied perpendicular magnetic fields by means of scanning electron microscopy. The nanoparticles of the magnetite fluids are arranged in oriental quasilinear chains in applied perpendicular magnetic fields as observed using transmission electron microscopy. This arrangement results from particle-particle interactions and particle-carrier liquids interactions, which are eventually controlled by the magnetic fields distribution.

  19. PHASE STRUCTURES AND TRANSITION BEHAVIORS OF A TRIPHENYLENE DISCOTIC LIQUID CRYSTAL

    Institute of Scientific and Technical Information of China (English)

    Kwang-Un Jeong; Alexander J. Jing; Bart Mansdorf; Matthew J. Graham; Yingfeng Tu; Frank W. Harris; Stephen Z. D. Cheng

    2007-01-01

    The phase behaviors and structures of a triphenylene-derived discotic liquid crystal (LC) hexa-n-octoxyl-triphenylene (C8HET) were studied using the combined techniques of differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), selected area electron diffraction (SAED) and polarized light microscopy (PLM). Onedimensional (1D) powder WAXD results at different temperatures coupled with DSC and PLM observations revealed that the C8HET compound possessed an LC phase and three different crystalline (K3, K2 and K1) phases below the isotropic (Ⅰ)melt. The I (←→) LC phase transition was thermodynamically reversible and independent of the heating and cooling rates. The development and experimental observation of the three crystalline phases relied on different thermal histories. Among the three crystalline phases in C8HET, the K3 phase is the most stable phase, while the K2 and K1 phases are metastable. Note that the K1 phase only formed via a quenching process. On the basis of structure sensitive diffraction experiments such as 2D WAXD of oriented samples and SAED of single crystals, detailed structures and molecular packings of these four ordered phases were identified. The LC phase exhibited a hexagonal columnar phase with 2D lattice dimensions of a = b = 2.38 nm and γ= 120°. All the three crystalline phases possess monoclinic unit cells, yet the γ angle is not 90° in the cases of the K2 and the K3 phases, while in the case of the K1 phase the α angle is not 90°.

  20. Trade-offs between force and fit: extreme morphologies associated with feeding behavior in carabid beetles.

    Science.gov (United States)

    Konuma, Junji; Chiba, Satoshi

    2007-07-01

    We explored how functional trade-offs in resource handling strategies are associated with the divergent morphology of predators. The malacophagous carabid Damaster blaptoides shows two extreme morphologies in the forebody; there is an elongate small-headed type and a stout large-headed type. A feeding experiment showed that the small-headed type obtained a high feeding performance on snails with a thick shell and a large aperture by penetrating the shell with its head. In contrast, the large-headed type showed a high feeding performance on snails that had a thin shell and a small aperture, and they ate these prey by crushing the shell. The large-headed, strong-jawed beetles are efficient at shell crushing but are ineffective at shell entry; the large mandibles and musculature that allow for shell crushing make the beetle's head too wide to penetrate shell apertures. On the other hand, small-headed, weak-jawed beetles crush poorly but can reach into shells for direct predation on snail bodies. These findings are hypothesized to be functional trade-offs between force and fit due to morphological constraints. This trade-off would be a primary mechanism affecting both resource handling ability in animals and phenotypic diversity in predators and prey.

  1. A study on the effect of the polymeric additive HPMC on morphology and polymorphism of ortho-aminobenzoic acid crystals

    Science.gov (United States)

    Simone, E.; Cenzato, M. V.; Nagy, Z. K.

    2016-07-01

    In the present study, the effect of Hydroxy Propyl Methyl Cellulose (HPMC) on the crystallization of ortho-aminobenzoic acid (OABA) was investigated by seeded and unseeded cooling crystallization experiments. The influence of HPMC on the induction time, crystal shape of Forms I and II of OABA and the polymorphic transformation time was studied. Furthermore, the capability of HPMC to inhibit growth of Form I was evaluated quantitatively and modeled using population balance equations (PBE) solved with the method of moments. The additive was found to strongly inhibit nucleation and growth of Form I as well as to increase the time for the polymorphic transformation from Form II to I. Solvent was also found to influence the shape of Form I crystals at equal concentrations of HPMC. In situ process analytical technology (PAT) tools, including Raman spectroscopy, focused beam reflectance measurement (FBRM) and attenuated total reflectance (ATR) UV-vis spectroscopy were used in combination with off-line techniques, such as optical microscopy, scanning electron microscopy (SEM), Raman spectroscopy, Malvern Mastersizer and differential scanning calorimetry (DSC) to study the crystals produced. The results illustrate how shape, size and stability of the two polymorphs of OABA can be controlled and tailored using a polymeric additive.

  2. Atomic layer deposition of epitaxial layers of anatase on strontium titanate single crystals: Morphological and photoelectrochemical characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kraus, Theodore J.; Nepomnyashchii, Alexander B.; Parkinson, B. A., E-mail: bparkin1@uwyo.edu [Department of Chemistry, School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2015-01-15

    Atomic layer deposition was used to grow epitaxial layers of anatase (001) TiO{sub 2} on the surface of SrTiO{sub 3} (100) crystals with a 3% lattice mismatch. The epilayers grow as anatase (001) as confirmed by x-ray diffraction. Atomic force microscope images of deposited films showed epitaxial layer-by-layer growth up to about 10 nm, whereas thicker films, of up to 32 nm, revealed the formation of 2–5 nm anatase nanocrystallites oriented in the (001) direction. The anatase epilayers were used as substrates for dye sensitization. The as received strontium titanate crystal was not sensitized with a ruthenium-based dye (N3) or a thiacyanine dye (G15); however, photocurrent from excited state electron injection from these dyes was observed when adsorbed on the anatase epilayers. These results show that highly ordered anatase surfaces can be grown on an easily obtained substrate crystal.

  3. Room-Temperature Tensile Behavior of Oriented Tungsten Single Crystals with Rhenium in Dilute Solid Solution

    Science.gov (United States)

    1966-01-01

    SINGLE CRYSTALS WITH RHENIUM IN DILUTE SOLID SOLUTION Sby M. Garfinkle Lewis Research Center Cleveland, Ohio 20060516196 NATIONAL AERONAUTICS AND...WITH RHENIUM IN DILUTE SOLID SOLUTION By M. Garfinkle Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by...ORIENTED TUNGSTEN SINGLE CRYSTALS WITH RHENIUM IN DILUTE SOLID SOLUTION * by M. Garfinkle Lewis Research Center SUMMARY Tungsten single crystals

  4. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats

    Directory of Open Access Journals (Sweden)

    Nor Atiqah Norazlimi

    2015-01-01

    Full Text Available A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus, Common redshank (Tringa totanus, Whimbrel (Numenius phaeopus, and Little heron (Butorides striata and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder. The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R=0.443, p<0.05, bill size and prey size (R=-0.052, p<0.05, bill size and probing depth (R=0.42, p=0.003, and leg length and water/mud depth (R=0.706, p<0.005. A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm and species (H=15.96, p=0.0012. Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  5. Growth morphologies of wax in the presence of kinetic inhibitors

    Science.gov (United States)

    Tetervak, Alexander A.

    Driven by the need to prevent crystallization of normal alkanes from diesel fuels in cold climates, the petroleum industry has developed additives to slow the growth of these crystals and alter their morphologies. Although the utility of these kinetic inhibitors has been well demonstrated in the field, few studies have directly monitored their effect at microscopic morphology, and the mechanisms by which they act remain poorly understood. Here we present a study of the effects of such additives on the crystallization of long-chain n-alkanes from solution. The additives change the growth morphology from plate-like crystals to a microcrystalline mesh. When we impose a front velocity by moving the sample through a temperature gradient, the mesh growth may form a macroscopic banded pattern and also exhibit a burst-crystallization behavior. In this study, we characterize these crystallization phenomena and also two growth models: a continuum model that demonstrates the essential behavior of the banded crystallization, and a simple qualitative cellular automata model that captures basics of the burst-crystallization process. Keywords: solidification; mesh crystallization; kinetic inhibitor; burst growth.

  6. Accommodative Behavior of Non-porous Molecular crystal at Solid-Gas and Solid-Liquid Interface

    OpenAIRE

    Mande, Hemant M.; Ghalsasi, Prasanna S.

    2015-01-01

    Molecular crystals demonstrate drastically different behavior in solid and liquid state, mainly due to their difference in structural frameworks. Therefore, designing of unique structured molecular compound which can work at both these interfaces has been a challenge. Here, we present remarkable ‘molecular’ property by non-porous molecular solid crystal, dinuclear copper complex (C6H5CH(X)NH2)2CuCl2, to reversibly ‘adsorb’ HCl gas at solid-gas interface as well as ‘accommodate’ azide anion at...

  7. Effects of direct current on the wetting behavior and interfacial morphology between molten Sn and Cu substrate

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yan; Shen, Ping, E-mail: shenping@jlu.edu.cn; Yang, Nan-Nan; Cao, Kang-Zhan

    2014-02-15

    Highlights: • Applying DC has a noticeable effect on the wetting of oxidized Cu by molten Sn. • Current polarity does not have a strong effect on wettability but on microstructure. • The IMC layer greatly thickens with increasing current intensity. • An unusual morphology was formed at the interface under a larger current intensity. -- Abstract: The effect of applying a direct electric current on the wetting behavior of molten Sn on Cu substrates at a nominal temperature of 510 K was investigated using a sessile drop method. The final stable contact angles were 37 ± 5° without employing a direct current (DC) while they decreased from 29 ± 3° to 16 ± 2° when the current increased from 2.5 A to 7.5 A. The current polarity does not have a noticeable effect on the wetting behavior but on interfacial morphology. Cross-sectional microstructure observations revealed that applying a current promoted the dissolution of the Cu substrate in molten Sn and the effect was enhanced with increasing current intensity. An unusual morphology with Cu{sub 3}Sn being the principal phase and Cu{sub 6}Sn{sub 5} being the secondary phase was observed under a relatively large current intensity, particularly for the case of electrons flowing from the Cu substrate to the molten Sn side. Joule heat-induced Marangoni convection in the liquid droplet and electromigration are likely to play significant roles in determining the wettability and interfacial microstructure under the application of a direct electric current.

  8. Crystalline structure of poly(hexamethylene adipate). Study on the morphology and the enzymatic degradation of single crystals.

    Science.gov (United States)

    Gestí, Sebastià; Almontassir, Ahmed; Casas, María Teresa; Puiggalí, Jordi

    2006-03-01

    The crystalline structure of polyester 6 6 was studied by means of X-ray and electron diffraction and real-space electron microscopy. An orthorhombic unit cell containing eight chain segments with a quasi planar zigzag conformation was derived. The chain axis projection could be defined by a small rectangular cell containing only two molecular segments. Simulation of electron diffraction patterns indicates that molecular segments were arranged with azimuthal angles close to +/-46 degrees . X-ray diffraction patterns suggested that the large dimensions of the unit cell were a consequence of a slight shift between neighboring chains that improved the electrostatic interactions. Chain-folded lamellar crystals were obtained by isothermal crystallization of dilute n-hexanol or n-octanol solutions. The crystalline habit was studied, and the influence of temperature was evaluated. A regular folding surface was observed by using polyethylene decoration techniques. Lamellar crystals were easily degraded with different lipases. A preferential enzymatic attack was, in some cases, observed to occur in the crystal edges, giving rise to highly irregular borders with a fringed texture.

  9. Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag

    Institute of Scientific and Technical Information of China (English)

    Lu Liu; Mei-long Hu; Chen-guang Bai; Xue-weiLü; Yu-zhou Xu; Qing-yu Deng

    2014-01-01

    The effect of cooling rate on the crystallization of perovskite in high Ti-bearing blast furnace (BF) slag was studied using confocal scanning laser microscopy (CSLM). Results showed that perovskite was the primary phase formed during the cooling of slag. On the slag surface, the growth of perovskite proceeded via the successive production of quasi-particles along straight lines, which further extended in certain directions. The morphology and structure of perovskite was found to vary as a function of cooling rate. At cooling rates of 10 and 30 K/min, the dendritic arms of perovskite crossed obliquely, while they were orthogonal at a cooling rate of 20 K/min and hexagonal at cooling rates of 40 and 50 K/min. These three crystal morphologies thus obtained at different cooling rates respectively corresponded to the ortho-rhombic, cubic and hexagonal crystal structures of perovskite. The observed change in the structure of perovskite could probably be attrib-uted to the deficiency of O2-,when Ti2O3 was involved in the formation of perovskite.

  10. Brain morphology of childhood aggressive behavior: A multi-informant study in school-age children

    NARCIS (Netherlands)

    S. Thijssen (Sandra); A.P. Ringoot (Ank); A. Wildeboer (Andrea); M.J. Bakermans-Kranenburg (Marian); H. El Marroun (Hanan); A. Hofman (Albert); V.W.V. Jaddoe (Vincent); F.C. Verhulst (Frank); H.W. Tiemeier (Henning); M.H. van IJzendoorn (Marinus); T.J.H. White (Tonya)

    2015-01-01

    textabstractObjective: Few studies have focused on the neuroanatomy of aggressive behavior in children younger than 10 years. Here, we explored the neuroanatomical correlates of aggression in a population-based sample of 6- to 9-year-old children using a multiple-informant approach. Methods: Magneti

  11. Electrochemical Behavior, Microstructural Analysis, and Morphological Observations in Reinforced Mortar Subjected to Chloride Ingress

    NARCIS (Netherlands)

    Koleva, D.A.; Van breugel, K.; De Wit, J.H.W.; Van Westing, E.; Boshkov, N.; Fraaij, A.L.A.

    2007-01-01

    The behavior of steel reinforcement was studied using electrochemical impedance spectroscopy (EIS) and polarization resistance (PR) techniques in conditions of chloride-induced corrosion in ordinary Portland cement-mortar specimens immersed in 7% NaCl for a test period of 120 days and compared to sp

  12. A new zinc(II supramolecular square: Synthesis, crystal structure, thermal behavior and luminescence

    Directory of Open Access Journals (Sweden)

    Wang Xiu-Yan

    2015-01-01

    Full Text Available A new square-shaped Zn(II complex, namely, [Zn4(L4(phen4]•6H2O (1 (L = 2-hydroxynicotinate and phen = 1,10- phenanthroline, has been synthesized under hydrothermal condition. The crystal of 1 belongs to triclinic, space group P -1 with a = 10.773(2 Å, b = 12.641(3 Å, c = 13.573(3 Å, α = 107.44(3º, β = 102.66(3º, γ = 93.89(3°, C72H56N12O18Zn4, Mr = 1638.77, V = 1702.8(6 Å3 , Z = 1, Dc = 1.598 g/cm3 , S = 1.045, μ(MoKα = 1.475 mm-1 , F(000 = 836, R = 0.0472 and wR = 0.0919. In 1, four L ligands bridge four Zn(II atoms to form a square-shaped structure, where four phen ligands are respectively located on four corners of the square. The π-π stacking interactions extend the adjacent squares into a 1D supramolecular chain. The thermal behavior of 1 has been characterized. Moreover, its solid state luminescence property has been studied at room temperature.

  13. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    Energy Technology Data Exchange (ETDEWEB)

    Mazzanti,G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 {sup o}C under shear rates from 45 to 1440 s{sup -1} and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material.

  14. Influence of Crystal Allomorph and Crystallinity on the Products and Behavior of Cellulose during Fast Pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mukarakate, Calvin; Mittal, Ashutosh; Ciesielski, Peter N.; Budhi, Sridhar; Thompson, Logan; Iisa, Kristiina; Nimlos, Mark R.; Donohoe, Bryon S.

    2016-09-06

    Cellulose is the primary biopolymer responsible for maintaining the structural and mechanical integrity of cell walls and, during the fast pyrolysis of biomass, may be restricting cell wall expansion and inhibiting phase transitions that would otherwise facilitate efficient escape of pyrolysis products. Here, we test whether modifications in two physical properties of cellulose, its crystalline allomorph and degree of crystallinity, alter its performance during fast pyrolysis. We show that both crystal allomorph and relative crystallinity of cellulose impact the slate of primary products produced by fast pyrolysis. For both cellulose-I and cellulose-II, changes in crystallinity dramatically impact the fast pyrolysis product portfolio. In both cases, only the most highly crystalline samples produced vapors dominated by levoglucosan. Cellulose-III, on the other hand, produces largely the same slate of products regardless of its relative crystallinity and produced as much or more levoglucosan at all crystallinity levels compared to cellulose-I or II. In addition to changes in products, the different cellulose allomorphs affected the viscoelastic properties of cellulose during rapid heating. Real-time hot-stage pyrolysis was used to visualize the transition of the solid material through a molten phase and particle shrinkage. SEM analysis of the chars revealed additional differences in viscoelastic properties and molten phase behavior impacted by cellulose crystallinity and allomorph. Regardless of relative crystallinity, the cellulose-III samples displayed the most obvious evidence of having transitioned through a molten phase.

  15. Crystallization behavior of a melt-spun Fe-Ni based steel

    Science.gov (United States)

    Michal, G. M.; Laxmanan, V.; Glasgow, T. K.

    1987-01-01

    Whether Fe-Ni-based alloys solidify with a bcc or fcc structure has been observed by many investigators to be a stronger function of kinetics and undercooling than strictly free-energy minimization. Such behavior has been observed in an Fe(52.8)Ni(28.7)Al(3.4)Ti(6.1)B(9.0) alloy. The alloy was cast as ribbons about 45 microns thick using a dual free-jet variation of chillbock melt spinning against a Cu wheel. Optical, X-ray, and electron analyses of the as-cast and annealed ribbons were performed. A microstructure of at least four layers containing combinations of ecc, bcc, and amorphous phases in differing proportions was observed in the as-cast ribbon. The midthickness layer had the most unusual features, containing fcc grains about 75 nm in size encompassing spherulitic regions as large as 15 microns comprised of fcc grains about 25 nm in size. The crystallization sequence responsible for the as-cast microstructure is discussed in terms of the competition between the formation of bcc and fcc phases as influenced by undercooling, recalescence, and variations in cooling rate experienced by the as-cast ribbon.

  16. Synthesis, Crystal Structure, Theoretical Calculation and Thermal Behavior of DNAZ·NTO

    Institute of Scientific and Technical Information of China (English)

    LI, Zhaona; MA, Haixia; YAN, Biao; GUAN, Yulei; SONG, Jirong

    2009-01-01

    DNAZ·NTO was prepared by mixing 3,3-dinitroazetidine (DNAZ) and 3-nitro-1,2,4-triazol-5-one (NTO) in ethanol solution. Single crystals suitable for X-ray measurement were obtained, which belong to monoclinic, space group P2_1/n with unit cell parameters of a=1.4970(4) nm, b=0.6325(2) nm, c=2.2347(7) nm, β=96.55(1)°,V=2.1022(11) nm~3, D_c=1.752 g·cm~(-3), F(000)=1136 and Z=8. Based on the analysis of the molecule structure,the theoretical investigation of the title compound was carried out at B3LYP/6-311 + +G~(**) levels, and the natural atomic charge and natural bond orbital analysis were performed. The interaction between the cation and anion was also discussed. The thermal behavior of DNAZ·NTO was carried out by DSC and TG/DTG techniques. The apparent activation energy (E_a) and pre-exponential constant (A) of the main exothermic decomposition reaction were obtained.

  17. Surface morphology, composition and thermal behavior of tungsten-containing anodic spark coatings on aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lukiyanchuk, I.V.; Rudnev, V.S.; Kuryavyi, V.G.; Boguta, D.L.; Bulanova, S.B.; Gordienko, P.S

    2004-01-01

    Anodic spark coatings on aluminium alloy were prepared in aqueous electrolytes with sodium tungstate. The influence of boric acid addition in the electrolyte on the surface morphology, elemental and phase composition of the coatings was investigated. In both cases the coatings contained O, Al and W. The coatings obtained in electrolyte with boric acid and sodium tungstate contain also B at approximately 1 at.%. Scanning electron microscopy indicated that the coatings had three layers: the grey underlayer of anodic alumina, the second black layer of crystalline or amorphous aluminium tungstate agglomerated into fibers and the outer green layer of WO{sub 3}. It was proposed that isopoly- and heteropolyanions in the electrolyte used take part in the coating growth.

  18. Effects of surface morphology on fatigue behavior of reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)]. E-mail: kimsw@iae_kyoto-u.ac.jp; Tanigawa, H. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Hirose, T. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Shiba, K. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2007-08-01

    Depending on the pulse lengths, the operating conditions, and the thermal conductivity, oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-)fatigue in the structural first wall and blanket components of fusion systems. In order to perform an accurate fatigue lifetime assessment for the international thermonuclear experimental reactor-test blanket module (ITER-TBM) and advanced systems utilizing the existing data base, mechanical understanding of fatigue fracture is mandatory. In this work, the low cycle fatigue (LCF) properties of F82H IEA heat were examined for three kinds of surface morphology with miniaturized hourglass-type fatigue specimens (SF-1). The assumed fatigue lifetime of cooling channels for ITER-TBM was also compared and assessed by correlating the results of LCF tests performed with SF-1 type specimens. Fracture surfaces and crack initiation sites were investigated by scanning electron microscopy (SEM)

  19. Morphological and behavioral changes in the pathogenesis of a novel mouse model of communicating hydrocephalus.

    Directory of Open Access Journals (Sweden)

    Allison B McMullen

    Full Text Available The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate.

  20. Effect of wheel speed on the crystallization behavior of as-quenched Nd-Fe-B alloys

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2016-02-01

    Full Text Available A series of alloys composed of Nd9Fe85Nb0.5B5.5 were prepared through rapid quenching by different wheel speeds. Nanocomposite was usually obtained by subjecting the as-quenched alloys to a crystallization annealing. The crystallization behavior was investigated by differential scanning calorimetry (DSC as the primary method. The results showed that the DSC curve of sample prepared at 15 m/s had only one exothermic peak at about 690 °C. When the wheel speed increased to 18-27 m/s, one more peak at 590 °C appeared. Moreover, the intensity of this new peak enhances while the original one at 690 °C declined as the speed increases within this range. When the speed further grew up to 30, 35, or 40 m/s , only the peak at 590 °C remained while the other disappeared. This could be ascribed to the different initial phase structures of the alloys, which were found to vary with the wheel speeds. As can be seen, with increasing the wheel speed, the contents of amorphous and metastable phase increased while Nd2Fe14B phase decreased. This change resulted in a huge effect on the crystallization behavior. We could deduce the relative content of each phase from the integral areas of peaks in DSC curves in different samples and figure out the phase transition in the crystallization. The results showed that the crystallization of samples prepared by relatively high speeds, which are almost amorphous initially, manifest as only one step, while those prepared by relatively low speeds showed two. Subsequently, we analyzed the crystallization process and interpreted it from the theory of energy barrier.

  1. Modeling the influence of particle morphology on the fracture behavior of silica sand using a 3D discrete element method

    Science.gov (United States)

    Cil, Mehmet B.; Alshibli, Khalid A.

    2015-02-01

    The constitutive behavior and deformation characteristics of uncemented granular materials are to a large extent derived from the fabric or geometry of the particle structure and the interparticle friction resulting from normal forces acting on particles or groups of particles. Granular materials consist of discrete particles with a fabric (microstructure) that changes under loading. Synchrotron micro-computed tomography (SMT) has emerged as a powerful non-destructive 3D scanning technique to study geomaterials. In this paper, SMT was used to acquire in situ scans of the oedometry test of a column of three silica sand particles. The sand is known as ASTM 20-30 Ottawa sand, and has a grain size between US sieves #20 (0.841 mm) and #30 (0.595 mm). The characteristics and evolution of particle fracture in sand were examined using SMT images, and a 3D discrete element method (DEM) was used to model the fracture behavior of sand particles. It adopts the bonded particle model to generate a crushable agglomerate that consists of a large number of small spherical sub-particles. The agglomerate shape matches the 3D physical shape of the tested sand particles by mapping the particle morphology from the SMT images. The paper investigates and discusses the influence of agglomerate packing (i.e., the number and size distribution of spherical sub-particles that constitute the agglomerate) and agglomerate shape on the fracture behavior of crushable particles.

  2. Prenatal stress alters the behavior and dendritic morphology of the medial orbitofrontal cortex in mouse offspring during lactation.

    Science.gov (United States)

    Gutiérrez-Rojas, Cristian; Pascual, Rodrigo; Bustamante, Carlos

    2013-11-01

    Several preclinical and clinical studies have shown that prenatal stress alters neuronal dendritic development in the prefrontal cortex, together with behavioral disturbances (anxiety). Nevertheless, neither whether these alterations are present during the lactation period, nor whether such findings may reflect the onset of anxiety disorders observed in childhood and adulthood has been studied. The central aim of the present study was to determine the effects of prenatal stress on the neuronal development and behavior of mice offspring during lactation (postnatal days 14 and 21). We studied 24 CF-1 male mice, grouped as follows: (i) control P14 (n=6), (ii) stressed P14 (n=6), (iii) control P21 (n=6) and (iv) stressed P21 (n=6). On the corresponding days, animals were evaluated with the open field test and sacrificed. Their brains were then stained in Golgi-Cox solution for 30 days. The morphological analysis dealt with the study of 96 pyramidal neurons. The results showed, first, that prenatal stress resulted in a significant (i) decrease in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 14, (ii) increase in the apical dendritic length of pyramidal neurons in the orbitofrontal cortex at postnatal day 21, and (iii) reduction in exploratory behavior at postnatal day 14 and 21.

  3. Influence of surface morphology and surface area on release behavior of hydrogen isotopes in LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Deqiong, E-mail: zhudeqiong@snu.ac.kr [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Oda, Takuji [Department of Nuclear Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Tanaka, Satoru [Department of Nuclear Engineering and Management, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan (Japan)

    2014-11-15

    Surface processes have profound influence on tritium release behavior in ceramic breeder materials. In this paper, the release behavior of hydrogen isotopes in LiNbO{sub 3} is studied by thermal desorption spectroscopy (TDS) with focusing on the influence of the surface morphology and surface area. It is found that the amount of surface hydroxyl groups is proportional to the specific surface area and can be decreased by smoothing the surface roughness through heating pretreatment at high temperatures. The isotope exchange reaction between the surface hydroxyl groups and water molecules residue in the system is discussed and turns out to proceed fast. The release behavior of hydrogen isotopes in LiNbO{sub 3} is compared with that in Li{sub 2}TiO{sub 3} studied in our previous work. It reveals that LiNbO{sub 3} and Li{sub 2}TiO{sub 3} have similar surface environment and similar concentration of surface hydroxyl groups with the level of 10{sup 20} m{sup −2}. The formation mechanism of hydroxyl groups on the surface is discussed and a model to explain the experimental observations is proposed.

  4. A simulation study on the effects of dendritic morphology on layer V PFC pyramidal cell firing behavior

    Directory of Open Access Journals (Sweden)

    Maria Psarrou

    2014-03-01

    Full Text Available The majority of neuronal cells found in the cerebral cortex are pyramidal neurons. Their function has been associated with higher cognitive and emotional functions. Pyramidal neurons have a characteristic structure, consisting of a triangular shaped soma whereon descend two extended and complex dendritic trees, and a long bifurcated axon. All the morphological components of the pyramidal neurons exhibit significant variability across different brain areas and layers. Pyramidal cells receive numerous synaptic inputs along their structure, integration of which in space and in time generates local dendritic spikes that shape their firing pattern. In addition, synaptic integration is influenced by voltage-gated and ion channels, which are expressed in a large repertoire by pyramidal neurons. Electrophysiological categories of pyramidal cells can be established, based on the action potential frequency, generated from a fixed somatic stimulus: (1 cells that fire repetitive action potentials (Regular Spiking – RS, (2 cells that fire clusters of 2 – 5 action potentials with short ISIs (Intrinsic Bursting – IB, and (3 cells that fire in repetitive clusters of 2 – 5 action potentials with short ISIs (Repetitive Oscillatory Bursts – ROB. In vitro and in silico scientific studies, correlate the firing patterns of the pyramidal neurons to their morphological features. This study provides a quantitatively analysis via compartmental neuronal modelling of the effects of dendritic morphology and distribution and concentration of ionic mechanisms, along the basal and/or apical dendrites on the firing behavior of a 112-set of layer V rat PFC pyramidal cells. We focus on how particular morphological and passive features of the dendritic trees shape the neuronal firing patterns. Our results suggest that specific morphological parameters (such as total length, volume and branch number can discriminate the cells as RS or IB, regardless of what is the

  5. Crystallization behavior of Fe- and Co-based bulk metallic glasses and their glass-forming ability

    Energy Technology Data Exchange (ETDEWEB)

    Louzguine-Luzgin, D.V., E-mail: dml@wpi-aimr.tohoku.ac.jp [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Bazlov, A.I. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); National University of Science and Technology “MISiS”, Moscow 119049 (Russian Federation); Ketov, S.V. [WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Inoue, A. [International Institute of Green Materials, Josai International University, Togane 283-8555 (Japan); School of Materials Science and Engineering, Tianjin University, 300072 (China); Department of Physics, King Abdulaziz University, Jeddah 22254 (Saudi Arabia)

    2015-07-15

    In the present work we study and compare the crystallization behavior of Fe- and Co-based good bulk glass formers with an exceptionally high glass-forming ability leading to the critical thickness of cast samples reaching 1 cm. For Fe-based alloys we also investigate the effect of opposite C/B content ratio on the glass-forming ability and the crystallization behavior. The structure and phase composition of the glassy samples were examined by conventional X-ray diffractometry and transmission electron microscopy while thermal stability and phase transformations were studied by differential scanning calorimetry. The reasons for high glass-forming ability are discussed. The glass-forming ability of the studied alloys depends on both factors: the type of crystallization reaction and characteristic temperatures. - Highlights: • Crystallization of Fe-based and Co-based bulk glass-forming alloys. • The reasons for enhanced glass-forming ability of these alloys are discussed. • Low growth rate of χ-Fe{sub 36}Cr{sub 12}Mo{sub 10} phase. • Reduced liquidus temperature of Fe{sub 48}Cr{sub 15}Mo{sub 14}C{sub 6}B{sub 15}RE{sub 2} alloys.

  6. Studies on codoping behavior of Nd:Mg:LiNbO{sub 3} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kar, S. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India); Choubey, R.K. [Department of Applied Physics, SGSITS, Indore 452 003 (India); Sen, P. [Department of Applied Physics, SGSITS, Indore 452 003 (India); Bhagavannarayana, G. [Crystal Growth Section, National Physical Laboratory, New Delhi 110 012 (India); Bartwal, K.S. [Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology, Indore 452 013 (India)]. E-mail: bartwalks@yahoo.co.in

    2007-04-30

    Undoped, Mg doped and Mg, Nd codoped LiNbO{sub 3} single crystals were grown by Czochralski technique. Powder X-ray diffraction (XRD) analysis shows that doping does not change the basic structure of LiNbO{sub 3} crystal. Optical transmission study shows the blue shift in the cutoff frequency in Mg doped and Mg, Nd codoped LiNbO{sub 3} crystals. Five absorption peaks are observed in Nd:Mg:LiNbO{sub 3} crystals corresponding to transitions from {sup 4}I{sub 9/2} ground state of Nd{sup 3+} ions. Crystalline perfection of these crystals examined using high-resolution X-ray diffraction (HRXRD) technique. The Mg, Nd codoped crystals show better crystalline perfection.

  7. Effect of Emulsifiers on Crystallization Behavior of Cocoa Butter%乳化剂对可可脂结晶行为的影响

    Institute of Scientific and Technical Information of China (English)

    王风艳; 王兴国; 孙小玲; 徐春伟; 马素琴; 黄凯; 刘元法

    2012-01-01

    从结晶热力学、动力学及形态学3个方面考察了5种乳化剂对可可脂结晶行为的影响.结果表明:单甘脂的添加降低了可可脂在25~30℃温度范围内的固体脂肪含量,不利于巧克力的加工.山梨醇酐单硬脂酸酯(Span60)的添加使可可脂晶体的三维球晶生长方式向二维平面晶体生长方式转变,并显著加快可可脂的结晶速率.Span60和聚乙氧基硬脂酸山梨糖醇(Tween60)缩短了可可脂的半结晶时间,而单甘脂、卵磷脂及聚甘油多聚蓖麻酸酯(PGPR)使可可脂的半结晶时间延长.偏光显微镜结果表明乳化剂的添加使得可可脂球晶的直径增大.%The effect of emulsifiers on crystallization behavior of cocoa butter were evaluated from the aspects of thermodynamics,dynamics and morphology. Results indicated that;the addition of monoglyceride reduced the solid fat content of cocoa butter at 25~30 ℃, which was not conducive to the processing of chocolate. The three dimensional sphere -crystal growth was changed by the addition of Span60 to two - dimensional crystal growth. Meanwhile,the crystallization rate was significantly increased by the addition of Span60. The hypocrystalline time(t1/2) of cocoa butter was reduced by the addition of Span60 and Tween60,while prolonged by the addition of monoglyceride,lecithin,and PGPR. The polarized microscopy results indicated that addition of emulsifiers increased the diameter of cocoa butter sphere - crystals.

  8. O on the Crystallization Behavior of Lime-Alumina-Based Mold Flux for Casting High-Al Steels

    Science.gov (United States)

    Lu, Boxun; Chen, Kun; Wang, Wanlin; Jiang, Binbin

    2014-08-01

    With the development of advanced high strength steel (AHSS), a large amount of aluminum was added into steels. The reaction between aluminum in the molten steel and silica based mold flux in the continuous-casting process would tend to cause a series of problems and influence the quality of slabs. To solve the above problems caused by the slag-steel reaction, nonreactive lime-alumina-based mold flux system has been proposed. In this article, the effect of Li2O and Na2O on the crystallization behavior of the lime-alumina-silica-based mold flux has been studied by using the single hot thermocouple technology (SHTT) and double hot thermocouple technology (DHTT). The results indicated that Li2O and Na2O in the above mold flux system play different roles as they behaved in traditional lime-silica based mold flux, which would tend to inhibit general mold flux crystallization by lowering the initial crystallization temperature and increasing incubation time, especially in the high-temperature region. However, when their content exceeds a critical value, the crystallization process of mold fluxes in low temperature zone would be greatly accelerated by the new phase formation of LiAlO2 and Na x Al y Si z O4 crystals, respectively. The crystalline phases precipitated in all samples during the experiments are discussed in the article.

  9. Investigation on Viscosity and Nonisothermal Crystallization Behavior of P-Bearing Steelmaking Slags with Varying TiO2 Content

    Science.gov (United States)

    Wang, Zhanjun; Sun, Yongqi; Sridrar, Seetharaman; Zhang, Mei; Zhang, Zuotai

    2017-02-01

    The viscous flow and crystallization behavior of CaO-SiO2-MgO-Al2O3-FetO-P2O5-TiO2 steelmaking slags have been investigated over a wide range of temperatures under Ar (High purity, >99.999 pct) atmosphere, and the relationship between viscosity and structure was determined. The results indicated that the viscosity of the slags slightly decreased with increasing TiO2 content. The constructed nonisothermal continuous cooling transformation (CCT) diagrams revealed that the addition of TiO2 lowered the crystallization temperature. This can mainly be ascribed to that addition of TiO2 promotes the formation of [TiO6]-octahedra units and, consequently, the formation of MgFe2O4-Mg2TiO4 solid solution. Moreover, the decreasing viscosity has a significant effect on enhancing the diffusion of ion units, such as Ca2+ and [TiO4]-tetrahedra, from bulk melts to the crystal-melt interface. The crystallization of CaTiO3 and CaSiTiO5 was consequently accelerated, which can improve the phosphorus content in P-enriched phase ( n2CaO·SiO2-3CaO·P2O5). Finally, the nonisothermal crystallization kinetics was characterized and the activation energy for the primary crystal growth was derived such that the activation energy increases from -265.93 to -185.41 KJ·mol-1 with the addition of TiO2 content, suggesting that TiO2 lowered the tendency for the slags to crystallize.

  10. New insights into the thermal behaviour of organic ionic plastic crystals: magnetic resonance imaging of polycrystalline morphology alterations induced by solid-solid phase transitions.

    Science.gov (United States)

    Romanenko, Konstantin; Pringle, Jennifer M; O'Dell, Luke A; Forsyth, Maria

    2015-07-15

    Organic ionic plastic crystals (OIPCs) show strong potential as solid-state electrolytes for lithium battery applications, demonstrating promising electrochemical performance and eliminating the need for a volatile and flammable liquid electrolyte. The ionic conductivity (σ) in these systems has recently been shown to depend strongly on polycrystalline morphology, which is largely determined by the sample's thermal history. [K. Romanenko et al., J. Am. Chem. Soc., 2014, 136, 15638]. Tailoring this morphology could lead to conductivities sufficiently high for battery applications, so a more complete understanding of how phenomena such as solid-solid phase transitions can affect the sample morphology is of significant interest. Anisotropic relaxation of nuclear spin magnetisation provides a new MRI based approach for studies of polycrystalline materials at both a macroscopic and molecular level. In this contribution, morphology alterations induced by solid-solid phase transitions in triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI) and diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate (P1224PF6) are examined using magnetic resonance imaging (MRI), alongside nuclear magnetic resonance (NMR) spectroscopy, diffusion measurements and conductivity data. These observations are linked to molecular dynamics and structural behaviour crucial for the conductive properties of OIPCs. A distinct correlation is established between the conductivity at a given temperature, σ(T), and the intensity of the narrow NMR signal that is attributed to a mobile fraction, fm(T), of ions in the OIPC. To explain these findings we propose an analogy with the well-studied relationship between permeability (k) and void fraction (θ) in porous media, with k(θ) commonly quantified by a power-law dependence that can also be employed to describe σ(fm).

  11. Crystallization behavior and thermal stability of poly(butylene succinate)/poly(propylene carbonate) blends prepared by novel vane extruder

    Science.gov (United States)

    Chen, Rongyuan; Zou, Wei; Zhang, Haichen; Zhang, Guizhen; Qu, Jinping

    2016-03-01

    This work focused on the study of crystallization behavior and thermal stability of degradable poly(butylene succinate) (PBS) and poly(propylene carbonate) (PPC) blends prepared by vane extruder based on elongation force field, which is novel equipment for polymer processing. Dicumyl peroxide (DCP) was applied in this work as compatibilizer for PBS/PPC blend. Crystallization behavior and melting behavior of the blends were investigated by differential scanning calorimetry (DSC) testing. Thermal stability of the blends was studied by thermogravimetric (TG) testing. Furthermore, the melt flow indices (MFI) of the blends were examined by a MFI instrument. The results showed that the crystallization temperature of PBS decreased with the addition of PPC and DCP. The glass transition temperature of PPC increased and the melting temperature of the blend increased with the addition of PPC and DCP, which indicated that the entanglement between the molecular chains of PBS and PPC was enhanced. Thermogravimetric analysis showed that a two-step decomposition process of the blend occurred due to the different thermal resistance of PBS and PPC, and the addition of PBS reduced the decomposition rate of PPC. Moreover, the addition of PBS improved the melt flow property of PPC.

  12. Influence of MCM-41 particle on mechanical and morphological behavior of polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Wang Na [Education Department of LiaoNing Province, Key Laboratory of Applied Technology of Polymer Materials, Shenyang Institute of Chemical Technology, Shenyang 110142 (China); Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Nantong ST 145, Harbin 150001 (China)], E-mail: iamwangna@sina.com; Shao Yawei [Key Laboratory of Superlight Materials and Surface Technology, Harbin Engineering University, Ministry of Education, Nantong ST 145, Harbin 150001 (China); Shi Zhaoxin; Zhang Jing; Li Hongwei [Education Department of LiaoNing Province, Key Laboratory of Applied Technology of Polymer Materials, Shenyang Institute of Chemical Technology, Shenyang 110142 (China)

    2008-12-15

    This study investigates the effects of different types of nanoparticles and amount of nanoparticles on morphology and mechanical performance of polypropylene (PP) composites. Three different types of nanoparticles, namely mesoporous MCM-41 (without template), mesoporous MCM-41 (with template), and mesoporous MCM-41, whose pore channels were filled with different flexible polymer inside the pore channels with the aid of supercritical CO{sub 2} are considered. PP composites containing (0.5-5 wt.%) mesoporous MCM-41 were prepared by compounding. The tensile properties of the composites determined as a function of the filler loading and the different types of nanoparticles are found to vary with the different interface between different fillers and the matrix. The results of tensile tests showed that different flexible polymer filled mesoporous MCM-41 nanoparticles could simultaneously provide PP with strengthening and toughening effects at rather low filler content (0.5 wt.%). Scanning electron microscopy studies revealed a good dispersion of the MCM-41-S-PMMA and MCM-41-S-PS particles in the PP matrix and the enhancement of the interface between PP and MCM-41 are obtained.

  13. Complex Behavior of Aqueous α-Cyclodextrin Solutions. Interfacial Morphologies Resulting from Bulk Aggregation.

    Science.gov (United States)

    Hernandez-Pascacio, Jorge; Piñeiro, Ángel; Ruso, Juan M; Hassan, Natalia; Campbell, Richard A; Campos-Terán, José; Costas, Miguel

    2016-07-05

    The spontaneous aggregation of α-cyclodextrin (α-CD) molecules in the bulk aqueous solution and the interactions of the resulting aggregates at the liquid/air interface have been studied at 283 K using a battery of techniques: transmission electron microscopy, dynamic light scattering, dynamic surface tensiometry, Brewster angle microscopy, neutron reflectometry, and ellipsometry. We show that α-CD molecules spontaneously form aggregates in the bulk that grow in size with time. These aggregates adsorb to the liquid/air interface with their size in the bulk determining the adsorption rate. The material that reaches the interface coalesces laterally to form two-dimensional domains on the micrometer scale with a layer thickness on the nanometer scale. These processes are affected by the ages of both the bulk and the interface. The interfacial layer formed is not in fast dynamic equilibrium with the subphase as the resulting morphology is locked in a kinetically trapped state. These results reveal a surprising complexity of the parallel physical processes taking place in the bulk and at the interface of what might have seemed initially like a simple system.

  14. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish

    Directory of Open Access Journals (Sweden)

    Eric J. Mersereau

    2016-05-01

    Full Text Available A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.

  15. Longitudinal Effects of Embryonic Exposure to Cocaine on Morphology, Cardiovascular Physiology, and Behavior in Zebrafish.

    Science.gov (United States)

    Mersereau, Eric J; Boyle, Cody A; Poitra, Shelby; Espinoza, Ana; Seiler, Joclyn; Longie, Robert; Delvo, Lisa; Szarkowski, Megan; Maliske, Joshua; Chalmers, Sarah; Darland, Diane C; Darland, Tristan

    2016-05-31

    A sizeable portion of the societal drain from cocaine abuse results from the complications of in utero drug exposure. Because of challenges in using humans and mammalian model organisms as test subjects, much debate remains about the impact of in utero cocaine exposure. Zebrafish offer a number of advantages as a model in longitudinal toxicology studies and are quite sensitive physiologically and behaviorally to cocaine. In this study, we have used zebrafish to model the effects of embryonic pre-exposure to cocaine on development and on subsequent cardiovascular physiology and cocaine-induced conditioned place preference (CPP) in longitudinal adults. Larval fish showed a progressive decrease in telencephalic size with increased doses of cocaine. These treated larvae also showed a dose dependent response in heart rate that persisted 24 h after drug cessation. Embryonic cocaine exposure had little effect on overall health of longitudinal adults, but subtle changes in cardiovascular physiology were seen including decreased sensitivity to isoproterenol and increased sensitivity to cocaine. These longitudinal adult fish also showed an embryonic dose-dependent change in CPP behavior, suggesting an increased sensitivity. These studies clearly show that pre-exposure during embryonic development affects subsequent cocaine sensitivity in longitudinal adults.

  16. Impact of Argemone mexicana extracts on the cidal, morphological, and behavioral response of dengue vector, Aedes aegypti L. (Diptera: Culicidae).

    Science.gov (United States)

    Warikoo, Radhika; Kumar, Sarita

    2013-10-01

    The larvicidal, behavioral, and morphological response of dengue vector, Aedes aegypti treated with deleterious weed, Argemone mexicana, was explored. The 1,000 ppm extracts of A. mexicana leaf, stem, and roots prepared in five different solvents (petroleum ether, hexane, benzene, acetone, and ethanol) were screened for their larvicidal activity against dengue vector establishing the efficacy of petroleum ether and hexane extracts. Other extracts, unable to give 100% mortality, were considered ineffective and discarded from further study. Larvicidal bioassay conducted with selected extracts confirmed the higher efficacy of hexane extracts exhibiting 1.1- to 1.8-fold more potential than the petroleum ether extracts. The results further revealed 1.6- to 2.4-fold higher efficacy of root extracts than those prepared from the leaves and stem of A. mexicana. The hexane root extract of A. mexicana was found to be the most effective larvicide with LC50 value of 91.331 ppm after 24 h of exposure causing 1.8 and 2.4 fold more toxicity as compared to the hexane leaf and stem extracts, respectively. Prolonged exposure of the larvae to the extracts resulted in increased toxicity potential of the extracts. Observations of the treated larvae revealed excitation, violent vertical, and horizontal movements with aggressive anal biting behavior suggesting effect of extracts on their neuromuscular system. Morphological studies of the treated larvae revealed the demelanization of cuticle and shrinkage of internal cuticle of anal papillae indicating the anal papillae as the probable action sites of the A. mexicana extracts. The potential of A. mexicana as new larvicides against dengue vector are being explored.

  17. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends.

    Science.gov (United States)

    Ghorbani, Fereshte Mohammad; Kaffashi, Babak; Shokrollahi, Parvin; Akhlaghi, Shahin; Hedenqvist, Mikael S

    2016-02-01

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox-Merz theory for this system shows that the polymer-nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends.

  18. Morphology and Cure Behavior of Multi-walled Carbon Nanotubes-based Thermally Conductive Adhesive

    Institute of Scientific and Technical Information of China (English)

    WANG Junxia; YAN Shilin; HE Yunban; YAN Fei; XIE Beiping

    2014-01-01

    We evaluated the cure behavior of multi-walled carbon nanotubes (MWCNTs) based thermally conductive adhesive by comprehensively thermal analysis, which presented extremely complicated variability of conversion ratioαas a function of temperature with synergistic action of positive effect and negative volume-blocking effect of MWCNTs and cross-linked network of cured polymer molecules. Due to the decomposition of MWCNTs and degradation of polymer, the mass drop is dramatically obvious over the temperature range of 330-370℃. Binary resins filled with acid-treated MWCNTs present similar reaction interval as neat epoxy and matrix resins, which is distinct from the material filled with raw MWCNTs. The alteration of the crystalline temperature and cure temperature of resins is attributed to heterogeneous nucleation of MWCNTs in matrix resins. The-COOH group of acid-treated MWCNTs reacts with epoxy groups and thus generates cross-linking, accelerates the reaction rate and reduces the cure temperature.

  19. Preparation, Morphology Transformation and Magnetic Behavior of Co3O4 Nano-Leaves

    Institute of Scientific and Technical Information of China (English)

    MENG Ling-Rong; CHEN Wei-Meng; CHEN Chin-Ping; ZHOU He-Ping; PENG Qing

    2010-01-01

    @@ A series of cubic phase Co3O4 nano-leaves were prepared via a combined approach of solution reaction and calcination.According to x-ray diffraction and electron microscopy,we find that the Co3O4 grain size increases with calcination temperature.This can induce many gaps in the products.M-T and M-H magnetization measurements reveal the typical antiferromagnetic behavior of nano-leaves.The effective moments of the samples prepared at 300,400 and 500℃ are 5.6,5.8 and 5.7μB per formula unit(FU),respectively,larger than the bulk value of 4.14μB/FU.

  20. Seasonal changes in coastal dynamics and morphological behavior of the central and southern Changjiang River delta

    Institute of Scientific and Technical Information of China (English)

    杨世伦; 赵庆英; 陈沈良; 丁平兴

    2001-01-01

    Seasonal changes in sea level, tidal range, wind, riverine discharges, nearshore SSC (suspended sediment concentration) and bed-level of intertidal flat at 4 different sites were shown. In addition, the statistical relationships between the dynamics and the behavior of the sediment surface were examined. The average intertidal elevation seems negatively correlated to sea level while positively correlated to nearshore SSC. The effect of wind on seasonal cycle of average intertidal elevation is not evident although wind is an important factor governing short-term erosion/accretion events. The influence of riverine discharges on seasonal cycle of deltaic intertidal flats is masked by other factors. It is concluded that seasonality on mudflats is more complicated than on beaches.

  1. Study of aerosol behavior on the basis of morphological characteristics during festival events in India

    Science.gov (United States)

    Agrawal, Anubha; Upadhyay, Vinay K.; Sachdeva, Kamna

    2011-07-01

    Two important festival events were selected to assess their impacts on atmospheric chemistry by understanding settling velocity and emission time of aerosols. Using high volume sampler, aerosols were collected in a sequential manner to understand settling velocity and emission time of aerosols on a particular day. Composition and total suspended particulate load of the aerosols collected during the festivals were used as markers for strengthening the assessment. Terminal settling velocity of the aerosols were calculated using morphological and elemental compositional data, obtained from scanning electron microcopy (SEM) and energy dispersive X-ray (EDX) study. Aerosol load, black carbon, aromatic carbon and terminal velocity calculations were correlated to obtain conclusion that aerosols collected on the festival day might have been emitted prior to the festival. Settling time of aerosols collected on 17th and 19th October'09 during Diwali were found to be 36.5 (1.5 days) and 12.8 h, respectively. Carbon concentration estimated using EDX was found to be almost double in the sample collected after 2 days of the festival event. This strengthens our inference of time calculation where carbon with high concentration of load must have settled approximately after two days of the event. Settling time of aerosols collected on Holi morning and afternoon was found to be 1.7 and 24.8 h, respectively. Further, because of the small distance of 5.4 km between the meteorological station and sampling site, observed TSP values were compared with theoretical load values, calculated by using visibility values taken from the meteorological data. And it was found that both experimental and calculated values are close to each other about 50% of the times, which proves the assumption that experimental and meteorological data are comparable.

  2. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jingkun; Chen, D-R; Biswas, Pratim [Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, Campus Box 1180, St Louis, MO 63130 (United States)

    2007-07-18

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO{sub 2} nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO{sub 2} nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  3. Analysis of the variation in nanohardness of pearlitic steel: Influence of the interplay between ferrite crystal orientation and cementite morphology

    Energy Technology Data Exchange (ETDEWEB)

    Debehets, Jolien, E-mail: jolien.debehets@mtm.kuleuven.be [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium); Tacq, Jeroen [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium); Favache, Audrey; Jacques, Pascal [Institute of Mechanics, Materials and Civil Engineering, Université catholique de Louvain, Place Sainte Barbe 2 L5.02.02, 1348 Louvain-la-Neuve (Belgium); Seo, Jin Won; Verlinden, Bert; Seefeldt, Marc [Department of Materials Engineering, KU Leuven, University of Leuven, Kasteelpark Arenberg 44 bus 2450, B-3001 Leuven (Belgium)

    2014-10-20

    The influence of the relative orientation of the ferrite crystallite lattice and the cementite lamellae on the hardness of pearlitic steel has been investigated by a combination of nanoindentation and electron microscopy (electron back scatter diffraction (EBSD) and scanning electron microscopy (SEM)). Three pearlitic samples, each with a different interlamellar spacing, and one ferritic sample were nanoindented. Although the hardness of the ferritic sample is very similar at different spots on the sample, a large variation in hardness is obtained on each of the pearlitic samples. It has been found that this variation cannot be accounted for solely by the variation in interlamellar spacing and is related to differences in ferrite crystal orientation. As to explain the observed large variation in hardness, the ferrite crystal orientation was considered relative to the cementite lamellae orientation by calculation of the distance dislocations can glide between adjacent lamellae in the slip direction. However, no clear correlation was found for a scaling of this orientation factor with the hardness. Possible interpretations of this discrepancy are suggested.

  4. Morphological stability of the atomically clean surface of silicon (100) crystals after microwave plasma-chemical processing

    Energy Technology Data Exchange (ETDEWEB)

    Yafarov, R. K., E-mail: pirpc@yandex.ru; Shanygin, V. Ya. [Russian Academy of Sciences, Saratov Branch of the Kotel’nikov Institute of Radio Engineering and Electronics (Russian Federation)

    2016-01-15

    The morphological stability of atomically clean silicon (100) surface after low-energy microwave plasma-chemical etching in various plasma-forming media is studied. It is found that relaxation changes in the surface density and atomic bump heights after plasma processing in inert and chemically active media are multidirectional in character. After processing in a freon-14 medium, the free energy is minimized due to a decrease in the surface density of microbumps and an increase in their height. After argon-plasma processing, an insignificant increase in the bump density with a simultaneous decrease in bump heights is observed. The physicochemical processes causing these changes are considered.

  5. Preparation of three-layered porous PLA/PEG scaffold: relationship between morphology, mechanical behavior and cell permeability.

    Science.gov (United States)

    Scaffaro, R; Lopresti, F; Botta, L; Rigogliuso, S; Ghersi, G

    2016-02-01

    Interface tissue engineering (ITE) is used to repair or regenerate interface living tissue such as for instance bone and cartilage. This kind of tissues present natural different properties from a biological and mechanical point of view. With the aim to imitating the natural gradient occurring in the bone-cartilage tissue, several technologies and methods have been proposed over recent years in order to develop polymeric functionally graded scaffolds (FGS). In this study three-layered scaffolds with a pore size gradient were developed by melt mixing polylactic acid (PLA) and two water-soluble porogen agents: sodium chloride (NaCl) and polyethylene glycol (PEG). Pore dimensions were controlled by NaCl granulometry while PEG solvation created a micropores network within the devices. Scaffolds were characterized from a morphological and mechanical point of view in order to find a correlation between the preparation method, the pore architecture and compressive mechanical behavior. Biological tests were also performed in order to study the effect of pore size gradient on the permeation of different cell lines in co-culture. To imitate the physiological work condition, compressive tests were also performed in phosphate buffered saline (PBS) solution at 37°C. The presented preparation method permitted to prepare three-layered scaffolds with high control of porosity and pore size distribution. Furthermore mechanical behaviors were found to be strongly affected by pore architecture of tested devices as well as the permeation of osteoblast and fibroblast in-vitro.

  6. The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,GaSe2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors

    Directory of Open Access Journals (Sweden)

    Chia-Ho Huang

    2014-01-01

    Full Text Available CIGS films are prepared by single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor. The annealing processes were performed using various Ar pressures, heating rates, and soaking times. A higher Ar pressure is needed to fabricate highly crystalline CIGS films, as no extra Se-vapor source is supplied. As the heating rate increases, the surface morphologies of the CIGS films become looser and some cracks are observed. However, the influence of soaking time is insignificant and the selenization process only requires a short time when the precursors are selenized at a higher temperature with a lower heating rate and a higher Ar pressure. In this study, a dense chalcopyrite CIGS film with a thickness of about 1.5-1.6 μm, with large grains (~1.2 μm and no cracking or peeling is obtained after selenizing at a temperature of 550°C, an Ar pressure of 300 Torr, a heating rate of 60°C/min, and a soaking time of 20 min. By adequate design of the stacked precursor and controlling the annealing parameters, single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor is simplified for the fabrication of a fully crystallized chalcopyrite CIGS absorber layers with good crystallization and large grains.

  7. Dynamic Behavior of Hybrid APM (Advanced Pore Morphology Foam and Aluminum Foam Filled Structures

    Directory of Open Access Journals (Sweden)

    Joerg Weise

    2012-06-01

    Full Text Available The aim of this work is to evaluate the effect of different densities of hybrid aluminum polymer foam on the frequency behavior of a foam filled steel structure with different ratios between steel and foam masses. The foam filled structure is composed of three steel tubes with a welded flange at both ends bolted together to form a portal grounded by its free ends. Structure, internal and ground constraints have been designed and manufactured in order to minimize nonlinear effects and to guarantee optimal constraint conditions. Mode shapes and frequencies were verified with finite elements models (FEM to be in the range of experimental modal analysis, considering the frequency measurement range limits for instrumented hammer and accelerometer. Selected modes have been identified with suitable modal parameters extraction techniques. Each structure has been tested before and after filling, in order to compute the percentage variation of modal parameters. Two different densities of hybrid aluminum polymer foam have been tested and compared with structures filled with aluminum foams produced using the powder compact melting technique. All the foam fillings were able to suppress high frequency membrane modes which results in a reduction of environmental noise and an increase in performance of the components. Low frequency modes show an increase in damping ratio only when small thickness steel frames are filled with either Hybrid APM or Alulight foam.

  8. Effect of TiO2 Content on the Crystallization Behavior of Titanium-Bearing Blast Furnace Slag

    Science.gov (United States)

    Hu, Meilong; Wei, Ruirui; Yin, Fangqing; Liu, Lu; Deng, Qingyu

    2016-09-01

    The content of TiO2 has an important influence on both the basic structure and the crystallization behavior of titanium-bearing blast furnace (BF) slag. The results of thermodynamic calculations show that, when the mass content of TiO2 is smaller than 25%, CaTiO3 increases as the content of TiO2 increases. However, when the TiO2 content is more than 25%, the CaTiO3 content decreases and TiO2 gradually increases. The results of a confocal laser scanning microscopy (CLSM) experiment show that, when the TiO2 mass content is 10%, Ca2MgSi2O7 and Ca2Al2SiO7 are the main crystallized phases resulting from the molten slag. Furthermore, when the TiO2 mass content is 20%, CaMgSi2O6, Ca(Ti,Mg,Al)(Si,Al)2O7 and dendrite CaTiO3 are the crystallized phases, while when the TiO2 mass content increases to 30%, CaTiO3 is the sole phase. The discrepancy between the CLSM results and the thermodynamic calculations occurs mainly due to the high melting point of the titanium-bearing BF slag. During the cooling process for the molten slag, CaTiO3 is crystallized first, due to its high crystallization temperature. Furthermore, the molten slag is solidified in its entirety before the other phases crystallize.

  9. CCT and TTT Diagrams to Characterize Crystallization Behavior of Mold Fluxes

    Institute of Scientific and Technical Information of China (English)

    WEN Guang-hua; LIU Hui; TANG Ping

    2008-01-01

    The isothermal and non-isothermal experiments were performed to construct the continuous cooling trans formation (CCT) and temperature time transformation (TTT) diagrams of four industrial mold fluxes through visual observations in an experimental apparatus based on the single hot thermocouple technique (SHTT).The results of the CCT diagrams indicate that ① the crystallization temperature of mold fluxes lowers as the cooling rate increases,② the mold fluxes have larger critical cooling rate,higher crystallization temperature,and less onset time of crystallization when the basicity increases or the viscosity decreases,③ the influences of the melting points of the mold fluxes on their crystallization tendency are not significant.Isothermal tests show that the onset time of crystallization decreases at first,and then increases,and finally represents a"C"shape with increasing isothermal temperature.The TTT diagrams of four industrial mold fluxes were divided into two separate"C"shape regions.The crystal phase of C20A selected was analyzed by X-ray diffraction,which is cuspidine (Ca4Si2O7F2 ) over 1 100℃ and calcium silicon oxide fluoride (Ca2SiO2F2) below 1 100 ℃.When compared with the TTT diagram,the CCT diagram can provide a more realistic estimate of the critical cooling rate of the mold fluxes.Thus,both the CCT and TTT diagrams can unambiguously describe the crystallization phenomena of the mold fluxes.

  10. Thermodynamic stability and crystallization behavior of molecular complexes with TEP host

    Science.gov (United States)

    Fijiwara, Atsushi; Kitamura, Mitsutaka

    2013-06-01

    In the crystallization of molecular complex (co-crystal, clathrate complex), polymorphism in regard to the host structure frequently appears. Previously, we studied the release process of the biocide, CMI (5-chloro-2-methyl-4-isothiazolin-3-one) from the molecular complex with TEP (1,1,2,2-tetrakis(4-hydroxyphenyl)ethane) (TEP·2CMI) in methanol-water mixed solvents. It was clear that the release process of the biocide (CMI) is composed of the transformation from the TEP·2CMI crystal to a more stable molecular complex crystal with solvent. In this work, the crystallization was performed in the methanol solutions including TEP and CMI at constant temperature (298 K and 308 K). It appeared that two kinds of TEP molecular complexes (TEP·2CMI and TEP·2MeOH) crystallize competitively. The crystallization zone of each molecular complex was shown in the map using the coordinates of initial concentrations of TEP and CMI. In the boundary zone both molecular complexes appeared and the transformation from TEP·2CMI to TEP·2MeOH was observed, indicating that the stable form is TEP·2MeOH. Without the boundary zone the corresponding stable form crystallized in each zone. The value of the initial concentration ratio of CMI/TEP for the selective crystallization of TEP·2CMI was higher at 298 K (1.54) than that (1.36) at 308 K. The equilibrium concentrations of TEP and CMI in the presence of two molecular complexes were expressed using the dissociation constants of the molecular complexes and it was indicated that the dissociation of TEP·2CMI highly increases with temperature

  11. Surface morphology and chemical state of epitaxial Al sub 2 O sub 3 film on Cu-9%Al(111) single crystal

    CERN Document Server

    Yamauchi, Y; Song, W

    2003-01-01

    We investigated the surface morphology, natures of chemical bond and thickness of oxide film grew on the Cu-9%Al (111) single crystal by means of Auger electron spectroscopy (AES) and a scanning electron microscopy (SEM). By introducing 1300L oxygen at 725degC, aluminum was oxidized and copper was not, and the epitaxial alumina film grew on the Cu-9%Al surface. The alumina surface showed two morphologies in SEM image. One was a flat surface with a few small defects, and the other was a rough surface which had smooth and rough regions. The rough surface was remarkably seen in sputtered region to obtain clean surface. The alumina film whose thickness was about 3.5 nm uniformly grew on the flat surface, and the thickness was about 3.0-3.5 nm on rough surface. It is concluded that the surface roughness in alumina is related to the roughness of clean surface. Therefore, to grow the uniform alumina film over large area of Cu-9%Al surface, it is essential to obtain the flat clean surface prior to oxidation. (author)

  12. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming

    2014-10-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  13. Morphological adaptation of the skull for various behaviors in the tree shrews.

    Science.gov (United States)

    Endo, Hideki; Hikida, Tsutomu; Motokawa, Masaharu; Chou, Loke Ming; Fukuta, Katsuhiro; Stafford, Brian J

    2003-08-01

    Skull size and shape were examined among 14 species of the tree shrews (Tupaia montana, T. picta, T. splendidula, T. mulleri, T. longipes, T. glis, T. javanica, T. minor, T. gracilis, T. dorsalis, T. tana, Dendrogale melanura, D. murina, and Ptilocercus lowii). The bones of face were rostro-caudally longer in T. tana and T. dorsalis, contrasting with T. minor and T. gracilis, D. melanura, D. murina and P. lowii which have smaller facial length ratios. The arbo-terrestrial species (T. longipes and T. glis) were similar to terrestrial species in length ratios of bones of face unlike the other arbo-terrestrial species (T. montana, T. picta, T. splendidula, and T. mulleri). We propose that T. longipes and T. glis have adapted to foraging for termites and ants as have T. tana and T. dorsalis. Additionally small body size in T. javanica may be the result of being isolated in Java. We separated the species into 5 groups from the measurment values of skulls: 1) Terrestrial species; T. tana and T. dorsalis, 2) Arboreal species; T. minor and T. gracilis, 3) Arbo-terrestrial species group 1: T. montana, T. splendidula, T. picta and T. mulleri, and T. javanica, 4) Arbo-terrestrial species group 2: T. glis and T. longipes, 5) Arboreal species of Dendrogale and Ptilocercus. Principal component analysis separated species into 8 clusters as follows: 1) T. tana, 2) T. dorsalis, 3) T. montana, T. splendidula, T. picta and T. mulleri, 4) T. glis and T. longipes, 5) T. javanica, 6) T. minor and T. gracilis, 7) D. melanura and D. murina, and 8) P. lowii. We suggest that these clusters correspond to behavioral strategies and peculiarities observed in foraging, feeding and locomotion in each species.

  14. Lipid phase behavior studied with a quartz crystal microbalance: A technique for biophysical studies with applications in screening

    Science.gov (United States)

    Peschel, Astrid; Langhoff, Arne; Uhl, Eva; Dathathreyan, Aruna; Haindl, Susanne; Johannsmann, Diethelm; Reviakine, Ilya

    2016-11-01

    Quartz crystal microbalance (QCM) is emerging as a versatile tool for studying lipid phase behavior. The technique is attractive for fundamental biophysical studies as well applications because of its simplicity, flexibility, and ability to work with very small amounts of material crucial for biomedical studies. Further progress hinges on the understanding of the mechanism, by which a surface-acoustic technique such as QCM, senses lipid phase changes. Here, we use a custom-built instrument with improved sensitivity to investigate phase behavior in solid-supported lipid systems of different geometries (adsorbed liposomes and bilayers). We show that we can detect a model anesthetic (ethanol) through its effect on the lipid phase behavior. Further, through the analysis of the overtone dependence of the phase transition parameters, we show that hydrodynamic effects are important in the case of adsorbed liposomes, and viscoelasticity is significant in supported bilayers, while layer thickness changes make up the strongest contribution in both systems.

  15. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.

    Science.gov (United States)

    Kamal, Musa R; Khoshkava, Vahid

    2015-06-05

    In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix.

  16. The Crystal Structure and Behavior of Fenamic Acid-Acridine Complex Under High Pressure.

    Science.gov (United States)

    Jerzykiewicz, Lucjan; Sroka, Adam; Majerz, Irena

    2016-12-01

    The crystal structure of fenamic acid-acridine complex is determined by X-ray diffraction. The strong OHN hydrogen bond linking the complex components and other interactions responsible for packing of the molecules into a crystal are investigated within the Quantum Theory of Atom in Molecule theory. The crystal structure is compared with the structure optimized at B3LYP/6-311++G** level and with the theoretical structures optimized under systematically changed pressure. Analysis of the lattice constants, hydrogen bond lengths, and angles of the inter- and intramolecular hydrogen bond under compression is performed. The structural transformation observed at 5 GPa is connected with a change in the intermolecular OHN hydrogen bond. The proton shifts to acceptor and a new interaction in the crystal appears.

  17. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang;

    2016-01-01

    in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally......Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...

  18. The role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers

    Science.gov (United States)

    Yoshida, Masaki

    2014-05-01

    Previous numerical studies of mantle convection focusing on subduction dynamics have indicated that the viscosity contrast between the subducting plate and the surrounding mantle have a primary effect on the behavior of subducting plates. The seismically observed plate stagnation at the base of the mantle transition zone (MTZ) under the Western Pacific and Eastern Eurasia is considered to mainly result from a viscosity increase at the ringwoodite to perovskite + magnesiowüstite (Rw→Pv+Mw) phase decomposition boundary, i.e., the boundary between the upper and lower mantle. The harzburgite layer, which is sandwiched between basaltic crust and depleted peridotite (lherzolite) layers, is a key component of highly viscous, cold oceanic plates. However, the possible sensitivity of the effective viscosity of harzburgite layers in the morphology of subducting plates that are flattened in the MTZ and/or penetrated in the lower mantle has not been examined systematically in previous three-dimensional (3D) numerical modeling studies that consider the viscosity increase at the boundary between the upper and lower mantle. In this study, in order to investigate the role of harzburgite layers in the morphology of subducting plates and the behavior of oceanic crustal layers, I performed a series of numerical simulations of mantle convection with semi-dynamic plate subduction in 3D regional spherical-shell geometry. The results show that a buckled crustal layer is observed under the "heel" of the stagnant slab that begins to penetrate into the lower mantle, regardless of the magnitude of the viscosity contrast between the harzburgite layer and the underlying mantle, when the factor of viscosity increase at the boundary of the upper and lower mantle is larger than 60-100. As the viscosity contrast between the harzburgite layer and the underlying mantle increases, the curvature of buckling is larger. When the viscosity increase at the boundary of the upper and lower mantle and the

  19. Effect of Nb and Cu on the crystallization behavior of under-stoichiometric Nd-Fe-B alloys

    Science.gov (United States)

    Salazar, D.; Martín-Cid, A.; Madugundo, R.; Garitaonandia, J. S.; Barandiaran, J. M.; Hadjipanayis, G. C.

    2017-01-01

    In this work, we present a complete study of the influence of Nb and Cu addition on the crystallization behavior of Nd-lean Nd-Fe-B melt-spun alloys. Alloys with compositions Nd10-x-y Fe84B6Nb x Cu y (x  =  1, y  =  0 and x  =  0.5, y  =  0.5) were melt-spun at different wheel speeds (15-40 m s-1) to obtain samples in amorphous, highly disordered and nanocrystalline structures. The crystallization process, induced by different heat treatments, was studied by means of differential thermal analysis and x-ray powder thermodiffraction. Magnetic properties of as-made and heat-treated ribbons were measured by magnetometry. The as-made amorphous samples showed a crystallization to the 2:14:1 hard magnetic phase at T 1 ~ 350 °C. Doping with Nb results in an increase of T 1, and addition of Cu lowers T 1. This behavior is explained in terms of an inhibition of grain growth by Nb and a nucleation enhancement by Cu additions. During the crystallization process, a secondary phase (identified as a bcc-Fe-rich phase) is formed. The amount of such a phase increases with the annealing temperature. Coercivity increases upon annealing reaching maxima at 700-750 °C. This can be explained in terms of competition between the two phases formed: the 2:14:1 hard phase and the soft bcc-Fe-rich phase. The highest coercivity of the Nd-lean samples is observed when the microstructure is appropriate and both phases are exchange-coupled.

  20. Synchrotron-based crystal structure, associated morphology of snail and bivalve shells by X-ray diffraction

    Science.gov (United States)

    Rao, D. V.; Gigante, G. E.; Kumar, Y. Manoj; Cesareo, R.; Brunetti, A.; Schiavon, N.; Akatsuka, T.; Yuasa, T.; Takeda, T.

    2016-10-01

    Synchrotron-based high-resolution X-ray powder diffraction spectra from the body parts of a snail and bivalve (CaCO3), have been recorded with Pilatus area detector. Experiments were performed at Desy, Hamburg, Germany, utilizing the Resonant and Diffraction beamline (P9), with 15 keV X-rays (λ=0.82666 Å). The external shell of these living organisms, is composed of calcium carbonate, which carries strong biological signal. It consists of some light elements, such as, Ca, C and O, which constitute part of the soft tissue and other trace elements. The knowledge of these diffraction patterns and hence the understanding of structures at molecular level are enormous. The application of synchrotron radiation to powder diffraction is well suited for samples of biological nature via changes in their patterns and also to investigate crystallographic phase composition. With the use of Rietveld refinement procedure, to the high-resolution diffraction spectra, we were able to extract the lattice parameters of orthorhombic polymorph of CaCO3, the most abundant mineral produced by these living organisms. The small size of the crystallite is a very important factor related to the biological structure. The natural model presents a combination of organic and inorganic phases with nanometer size. For the present study, we also used the scanning electron microscopy (SEM) to explore the associated morphology of the snail and bivalve.

  1. Nucleation of protein crystals: critical nuclei, phase behavior, and control pathways

    Science.gov (United States)

    Galkin, Oleg; Vekilov, Peter G.

    2001-11-01

    We have studied the nucleation of crystals of the model protein lysozyme using a novel technique that allows direct determinations of homogeneous nucleation rates. At constant temperature of 12.6°C we varied the thermodynamic supersaturation by changing the concentrations of protein and precipitant. We found a broken dependence of the homogeneous nucleation rate on supersaturation that is beyond the predictions of the classical nucleation theory. The nucleation theorem allows us to relate this to discrete changes of the size of the crystal nuclei with increasing supersaturation as (10 or 11)→(4 or 5)→(1 or 2). Furthermore, we observe that the existence of a second liquid phase at high protein concentrations strongly affects crystal nucleation kinetics. We show that the rate of homogeneous nucleation of lysozyme crystals passes through a maximum in the vicinity of the liquid-liquid phase boundary hidden below the liquidus (solubility) line in the phase diagram of the protein solution. We found that glycerol and polyethylene glycol (PEG), which do not specifically bind to proteins, shift this phase boundary and significantly suppress or enhance the crystal nucleation rates, although no simple correlation exists between the action of PEG on the phase diagram and the nucleation kinetics. This provides for a control mechanism which does not require changes in the protein concentration, or the acidity and ionicity of the solution. The effects of the two additives on the phase diagram strongly depend on their concentration and this provides opportunities for further tuning of nucleation rates.

  2. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems.

  3. Adaptive Optics with a Liquid-Crystal-on-Silicon Spatial Light Modulator and Its Behavior in Retinal Imaging

    Science.gov (United States)

    Shirai, Tomohiro; Takeno, Kohei; Arimoto, Hidenobu; Furukawa, Hiromitsu

    2009-07-01

    An adaptive optics system with a brand-new device of a liquid-crystal-on-silicon (LCOS) spatial light modulator (SLM) and its behavior in in vivo imaging of the human retina are described. We confirmed by experiments that closed-loop correction of ocular aberrations of the subject's eye was successfully achieved at the rate of 16.7 Hz in our system to obtain a clear retinal image in real time. The result suggests that an LCOS SLM is one of the promising candidates for a wavefront corrector in a prospective commercial ophthalmic instrument with adaptive optics.

  4. Wall Slip Effect on Shear-Induced Crystallization Behavior of Isotactic Polypropylene Containing beta-Nucleating Agent

    DEFF Research Database (Denmark)

    Luo, Baojing; Li, Hongfei; Zhang, Yao

    2014-01-01

    Shearing is unavoidable during the polymer process, and isotactic polypropylene (iPP) is one of the most used commercial polymers. iPP mixed with beta-nucleating agent TMB-5 was isothermally crystallized at 135 degrees C from melts under various shear conditions and investigated via synchrotron r......-iPP are in direct proportion to the orientation degree rather than shear rate especially at high shear rate, which proves that wall slip should not be neglected when taking shear effect or rheological behavior into consideration....

  5. Synthesis and Liquid Crystal Behaviors of 2,4-Dioxo-3-pentyl 4-decyloxy Cinnamate Rhodium (I) Complexes

    Institute of Scientific and Technical Information of China (English)

    韩杰; 张良辅; 万文

    2003-01-01

    The title complexes have been synthesized by the reaction of [RhCI(CO)2]2 or [RhCI(COD)]2 (COD = 1,5-cyclooctadiene)with the organic ligand 2,4-dioxo-3-pentyl 4-decyloxy cinnamate 2. The complex 3 based on dicarbonylrhodium(I) shows nematic phase, while the complex 4 containing rhodium(I) bound to a COD ligand is a nonmesogen. The relationship between molecular structures and liquid crystal behavior has also been discussed by means of computer-aided molecular modeling.

  6. Amphiphilic dendritic peptides: Synthesis and behavior as an organogelator and liquid crystal

    Directory of Open Access Journals (Sweden)

    Xinwu Ba

    2011-02-01

    Full Text Available New amphiphilic dendritic peptides on dendritic polyaspartic acid were designed and synthesized. The organogel and liquid crystal properties of these amphiphilic dendritic peptides were fully studied by field-emission SEM, temperature dependent FT-IR, differential scanning calorimetry, polarization optical microscopy and X-ray diffraction experiments. Amphiphilic dendritic peptides G3 show good organogel properties with a minimum gelation concentration as low as 1 wt %. Furthermore, amphiphilic dendritic peptides G3 can form a hexagonal columnar liquid crystal assembly over a wide temperature range.

  7. The Fractal Behavior of Crystal Distribution of la Gloria Pluton, Chile

    Science.gov (United States)

    Gutiérrez, F. J.; Payacán, I. J.; Pasten, D.; Aravena, A.; Gelman, S. E.; Bachmann, O.; Parada, M. A.

    2013-12-01

    We utilize fractal analysis to study the spatial distributions of crystals in a 10 Ma granitic intrusion (La Gloria pluton) located in the central Chilean Andes. Previous work determined the crystal size distribution (CSD) and anisotropy of magnetic susceptibility (AMS) tensors throughout this pluton. Using orthogonal thin sections oriented along the AMS tensor axes, we have applied fractal analysis in three magmatic crystal families: plagioclase, ferromagnesian minerals (biotite and amphibole), and Fe-Ti oxides (magnetite with minor ilmenite). We find that plagioclase and ferromagnesian minerals have a Semi-logarithmic CSD (S-CSD), given by: log(n/n0)= -L/C (1) where n [mm-4], n0 [mm-4], L [mm] and C [mm] are crystal density, intercept (nucleation density; L=0), size of crystals (three axes) and characteristic length, respectively. In contrast, Fe-Ti oxides have a Fractal CSD (F-CSD, power law size distribution), given by: log(n)= - Dn log(L) + n1 (2) where Dn and n1 [log(mm-4)] are a non-dimensional proportionality constant and the logarithm of the initial crystallization density (n1 = log(n(L=1 mm))), respectively. Finally, we calculate the fractal dimension (D0) by applying the box-counting method on each crystal thin section image, using: log(N) = -D0 log(ɛ) (3) where N and ɛ are the number of boxes occupied by minerals and the length of the square box, respectively. Results indicate that D0 values (eq. 3) are well defined for all minerals, and are higher for plagioclase than for ferromagnesian minerals and lowest for Fe-Ti oxides. D0 values are correlated with n0 and -1/C for S-CSD (eq. 1), and with n1 values for F-CSD (eq. 2). These correlations between fractal dimensions with CSD parameters suggest crystal growth follows a fractal behaviour in magmatic systems. Fractal behaviour of CSD means that the spatial distribution of crystals follows an all-scale pattern as part of a self-organized magmatic system. We interpret S-CSD of plagioclase and

  8. Morphological and behavioral development of the piracanjuba larvae Desenvolvimento morfológico e comportamental de larvas de piracanjuba

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Reis Raposo Maciel

    2010-05-01

    Full Text Available The objective of this work was to study the morphologic development and the swimming and feeding behaviors of piracanjuba larvae, Brycon orbignyanus Valenciennes (1849 (Characiformes, Characidae, Bryconinae, during the period from zero to 172 hours after hatching (standard length = 3.62 - 11.94 mm. The morphological analyses were accomplished by using a trinocular stereo microscope, while the behavioral analyses were performed through periodic observations. In 28 hours after hatching, the larvae (standard length = 6.25 ± 0.13 mm showed the following structural and behavioral characteristics that made them become active predators able to overcome a larval critical phase, the beginning of exogenous feeding: presence of pigmented eyes, terminal and wide mouth, developed oral dentition, developing digestive tube, yolk sac reduction, fins and swim bladder formation, horizontal swimming, cannibalism, and predation. Intense cannibalism among larvae was verified from 26 to 72 hours. At the end of the metamorphosis - 172 hours after hatching - the larvae measuring 11.94 + 0.80 mm in standard length presented a flexed notochord, caudal fin bifurcation, dorsal and anal fin formation, synchronized movements, and formation of shoals, characteristics that together allow enhanced perception and locomotio in exploration of the environment, determining the best moment for transfering to the fishponds. New studies can contribute to commercial fish farming by improving feeding management, performance, survival, and productivity of this species.Objetivou-se estudar o desenvolvimento morfológico e os comportamentos natatório e alimentar de larvas de piracanjuba, Brycon orbignyanus Valenciennes (1849 (Characiformes, Characidae, Bryconinae no período de 0 a 172 horas após a eclosão (comprimento-padrão = 3,62 - 11,94 mm. As análises morfológicas foram realizadas com auxílio de um microscópio estereoscópico trinocular e as comportamentais, por meio de

  9. Oriented crystallization and mechanical properties of polypropylene nucleated on fibrillated polytetrafluoroethylene scaffolds

    NARCIS (Netherlands)

    Meer, van der Douwe W.; Milazzo, Daniel; Sanguineti, Aldo; Vancso, G. Julius

    2005-01-01

    It is known that friction deposited polytetrafluoroethylene (PTFE) layers are able to nucleate crystallization of thin films of isotactic polypropylene (iPP). In order to investigate the influence of PTFE on the crystallization behavior and morphology of iPP in bulk, PTFE-particles of two different

  10. Shear and Rapeseed Oil Addition Affect the Crystal Polymorphic Behavior of Milk Fat

    DEFF Research Database (Denmark)

    Kaufmann, Niels; Kirkensgaard, Jacob Judas Kain; Andersen, Ulf;

    2013-01-01

    The effect of shear on the crystallization kinetics of anhydrous milk fat (AMF) and blends with 20 and 30 % w/w added rapeseed oil (RO) was studied. Pulse 1H NMR was used to follow the a to b0 polymorphic transition. The NMR method was confirmed and supported by SAXS/WAXS experiments. Samples wer...

  11. Thermodynamic equilibrium, metastable zone widths, and nucleation behavior in the cooling crystallization of gestodene-ethanol systems

    Science.gov (United States)

    Wang, Li-yu; Zhu, Liang; Yang, Li-bin; Wang, Yan-fei; Sha, Zuo-liang; Zhao, Xiao-yu

    2016-03-01

    A systematic investigation of nucleation behavior for the batch cooling crystallization of unseeded gestodene-ethanol solutions was carried out. The solubilities of the two polymorphs (forms I and II) of gestodene in ethanol were gravimetrically measured between 268.15 and 333.15 K under atmospheric pressure of 0.10 MPa. In addition, the metastable zone widths (MSZWs) of the gestodene-ethanol solutions were determined by the polythermal method combined with the focused beam reflectance measurement (FBRM®) technique. Moreover, polymorphic forms of the grown crystals were identified by X-ray powder diffraction (XRD) and optical microscope. Experimental results indicated that the measured MSZWs were dependent on numerous technological parameters, including cooling rate, saturation temperature, and agitation intensity. With variation of the nucleation temperature and cooling rate, forms I, II, and a mixture of the two forms were crystallized from ethanol solution. The nucleation kinetic parameters were estimated from MSZW data using the self-consistent Nývlt-like approach. Due to the high solubility of form I in ethanol at the corresponding temperature range, the stronger solute-solvent interactions confirmed that the nucleation of form I had a greater activation energy than that of form II.

  12. Novel approach to protein crystallizations: Control of the phase behavior of aqueous solutions using microfluidics

    Science.gov (United States)

    Shim, Jung Uk

    A microfluidic device denoted the Phase Chip has been developed to exploit the permeation of water through poly(dimethylsiloxane) (PDMS) in order to vary the concentration of aqueous nanoliter volume microdrops stored in wells. The permeation of water in the Phase Chip is modeled using the diffusion equation and good agreement between experiment and theory is obtained. The phase diagram of a polymer/salt mixture is measured employing the Phase Chip and agrees well with the phase diagram obtained off-chip. The Phase Chip first creates drops of the polymer/salt mixture whose composition varies sequentially. Subsequently the drops are docked in storage wells and the concentration of each stored drop is controlled by varying the water activity of a reservoir that is separated from the drops by a thin layer of PDMS through which water, but not the solutes, permeates. The Phase Chip, incorporating a dialysis membrane on-chip, presents several advantages for protein crystallizations. First, protein crystallization is a non-equilibrium process so it makes sense to have dynamic control over the key thermodynamic variable; concentration. The Phase Chip, with its ability to reversibly control protein and precipitant concentrations, renders varying concentration as convenient as varying temperature. Second, by varying the water content of each drop we can explore many different crystallization conditions in the same drop. Finally, we have demonstrated that we can first formulate stable protein solutions, next induce nucleation and then grow large protein crystals. For these reasons, the Phase Chip promises to be a faster, better, and cheaper method for protein crystallization.

  13. Physicochemical properties of Brazilian cocoa butter and industrial blends. Part II Microstructure, polymorphic behavior and crystallization characteristics

    Directory of Open Access Journals (Sweden)

    Ribeiro, A. P. B.

    2012-03-01

    Full Text Available The microstructural behavior of industrial standardized cocoa butter samples and cocoa butter samples from three different Brazilian states is compared. The cocoa butters were characterized by their microstructural patterns, crystallization kinetics and polymorphic habits. The evaluation of these parameters aided in establishing relationships between the chemical compositions and crystallization behavior of the samples, as well as differentiating them in terms of technological and industrial potential for use in tropical regions.

    En este trabajo se presenta el comportamiento de la microestructura y la cristalización de mantecas de cacao representativas de las mezclas industriales, y de la manteca de cacao original de tres regiones geográficas diferentes de Brasil. Las muestras se evaluaron de acuerdo a la microestructura, la cinética de cristalización y el comportamiento polimórfico. La evaluación de estos parámetros nos permite establecer relaciones entre la composición química y el comportamiento de la cristalización de las muestras, así como las diferencias sobre la adecuación del potencial tecnológico e industrial para su aplicación en las regiones tropicales.

  14. Bryophyte-Feeders in a Basal Brachyceran Lineage (Diptera: Rhagionidae: Spaniinae): Adult Oviposition Behavior and Changes in the Larval Mouthpart Morphology Accompanied with the Diet Shifts

    Science.gov (United States)

    Kato, Makoto

    2016-01-01

    Dipteran larval morphology exhibits overwhelming variety, affected by their diverse feeding habits and habitat use. In particular, larval mouthpart morphology is associated with feeding behavior, providing key taxonomic traits. Despite most larval Brachycera being carnivorous, a basal brachyceran family, Rhagionidae, contains bryophyte-feeding taxa with multiple feeding habits. To elucidate the life history, biology, and morphological evolution of the bryophyte-feeding rhagionids, the larval feeding behavior and morphology, and the adult oviposition behavior of four species belonging to three genera of Spaniinae (Spania Meigen, Litoleptis Chillcott and Ptiolina Zetterstedt) are described. Moreover, changes of the larval morphology associated with the evolution of bryophyte-feeding are traced by molecular phylogenetic analyses. Spania and Litoleptis (thallus-miners of thallose liverworts) share a toothed form of apical mandibular sclerite with an orifice on its dorsal surface, which contrasts to those of the other members of Rhagionidae possessing a blade-like mandibular hook with an adoral groove; whereas, Ptiolina (stem borer of mosses) exhibits a weak groove on the adoral surface of mandible and highly sclerotized maxilla with toothed projections. Based on the larval feeding behavior of the thallus-miners, it is inferred that the toothed mandibles with the dorsal orifice facilitate scraping plant tissue and then imbibing it with a great deal of the sap. A phylogeny indicated that the bryophyte-feeding genera formed a clade with Spaniopsis and was sister to Symphoromyia, which presumably are detritivores. This study indicates that the loss or reduction of adoral mandibular groove and mandibular brush is coincident with the evolution of bryophyte-feeding, and it is subsequently followed by the occurrence of dorsal mandibular orifice and the loss of creeping welts accompanying the evolution of thallus-mining. PMID:27812169

  15. DENDRITE REFINING AND EUTECTIC TRANSFORMATION BEHAVIOR OF NICKEL-BASE SINGLE CRYSTAL (NBSC) SUPERALLOY

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    Because of the low temperature gradient and growth rate, the microstructure of the conventional single crystal superalloy made by HRS processing is coarse dendrite with well developed sidebranches and has serious segregation. With the help of the high temperature gradient directional solidification equipment (HGDS), the solidification cooling rate is greatly increased. Study on microstructure of the Ni-base single crystal superalloy solidified at much higher cooling rate shows that the dendrite arm spacing is highly refined, of which the primary dendrite arm spacing can be made to be 38μm, just as 1/10 as that by conventional HRS processing. With the increase of the cooling rate, the amount of the eutectic increases and then decreases. In the superfine columnar dendrite, the amount of γ/γ′eutectic is much fewer and its size is very small. This is useful to homogenize the microsegregation and improve the property of the material.

  16. Magnetodielectric and Metalomagnetic 1D Photonic Crystals Homogenization: ε-μ Local Behavior

    Directory of Open Access Journals (Sweden)

    J. I. Rodríguez Mora

    2016-01-01

    Full Text Available A theory for calculating the effective optic response of photonic crystals with metallic and magnetic inclusions is reported, for the case when the wavelength of the electromagnetic fields is much larger than the lattice constant. The theory is valid for any type of Bravais lattice and arbitrary form of inclusions in the unitary cell. An equations system is obtained for macroscopic magnetic field and magnetic induction components expanding microscopic electromagnetic fields in Bloch waves. Permittivity and permeability effective tensors are obtained comparing the equations system with an anisotropic nonlocal homogenous medium. In comparison with other homogenization theories, this work uses only two tensors: nonlocal permeability and permittivity. The proposal showed here is based on the use of permeability equations, which are exact and very simple. We present the explicit form of these tensors in the case of binary 1D photonic crystals.

  17. Conducting behavior of chalcopyrite-type CuGaS₂ crystals under visible light.

    Science.gov (United States)

    Cholula-Díaz, Jorge L; Barzola-Quiquia, José; Kranert, Christian; Michalsky, Tom; Esquinazi, Pablo; Grundmann, Marius; Krautscheid, Harald

    2014-10-21

    Millimeter size high quality crystals of CuGaS2 were grown by chemical vapor transport. The highly ordered chalcopyrite structure is confirmed by X-ray diffraction and Raman spectroscopy. According to energy dispersive X-ray spectroscopy the composition of the crystals is very close to the formula CuGaS2. Room temperature photoluminescence measurements indicate the presence of an emission peak at about 2.36 eV that can be related to a donor-acceptor pair transition. The electrical resistance as a function of temperature is very well described by the Mott variable range hopping mechanism. Room temperature complex impedance spectroscopy measurements were performed in the alternating current frequency range from 40 to 10(7) Hz in the dark and under normal light. According to the impedance spectroscopy data the experimental results can be well described by two circuits in series, corresponding to bulk and grain boundary contributions. An unusual positive photoresistance effect is observed in the frequency range between 3 and 30 kHz, which we suggest to be due to intrinsic defects present in the CuGaS2 crystal.

  18. Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xuetao Shi

    2015-01-01

    Full Text Available The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid (PDLA acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization.

  19. Flow-induced crystallization in isotactic polypropylene

    Science.gov (United States)

    Hamad, Fawzi Ghassan

    Brief intervals of strong flow stretch chains in a semicrystalline polymer melt, which results in an increase in the nuclei number density and a transformation of the crystal structure. This flow-induced crystallization (FIC) phenomenon is explored in this study using highly isotactic polypropylene (iPP) samples. Using one synthesized and five commercial linear isotactic polypropylene samples, we investigate the FIC behavior by imposing shear onto these samples in a rotational rheometer. Equipped with a good temperature control and flexible shear protocol, we apply different temperature and flow conditions. The magnitude of the FIC effect varies with basic processing parameters (shear rate, specific work, crystallization temperature, and shearing temperature) and material properties (totalistic, molecular weight distribution, and particle concentration in the polymer). The scope of this study is to systematically investigate the influences of these parameters on FIC. The FIC effects that are investigated in this dissertation are: crystallization kinetics, persistence time of flow-induced nuclei, and crystal morphology. The crystallization time was measured in the rheometer by monitoring the onset of crystallization after quenching samples sheared above Tm. These samples were subsequently used to study their flow-induced nuclei persistence time and crystal morphology. The lifetime of flow-induced nuclei was determined by measuring the time required to return from FIC back to quiescent crystallization using a differential scanning calorimeter. The crystal morphology was imaged using polarized optical microscopy and atomic force microscopy. We investigated the influence of specific work on the three FIC characteristics, and found three regimes that are separated by the critical work ( Wc) and the saturation work (Wsat) thresholds. Below the critical work threshold, the morphology is composed of mostly spherulite crystals, which keep a constant volume, and a small

  20. Visualization of the Crystallization in Foam Extrusion Process

    Science.gov (United States)

    Tabatabaei Naeini, Alireza

    In this study, crystal formation of polypropylene (PP) and poly lactic acid (PLA) in the presence of CO2 in foam extrusion process was investigated using a visualization chamber and a CCD camera. The role of pre-existing crystals on the foaming behavior of PP and PLA were studied by characterizing the foam morphology. Visualization results showed that crystals formed within the die before foaming and these crystals affect the cell nucleation behavior and expansion ratio of PP and PLA significantly. Due to the fast crystallization kinetics of PP, crystallinity should be optimum to achieve uniform cell structure with high cell density and high expansion ratio. In PLA, enhancement of crystallinity is crucial for getting foam with a high expansion ratio. It was also visualized that CO2 significantly suppresses the crystallization temperature in PP through the plasticization effect as well as its influence on flow induced crystallinity.

  1. FABRICATION AND PLASTIC BEHAVIOR OF SINGLE CRYSTAL MgO-NiO AND MgO-MnO SOLID SOLUTION ALLOYS,

    Science.gov (United States)

    A method of producing solid solution MgO-NiO and MgO-MnO single-crystals is presented. The com presive yield strength of MgO is shown to in crease...nearly four-fold when small amounts of either NiO or MnO is in solid solution in MgO. The cleavage and slip behavior of these alloy crystals are found to be identical to that of MgO. (Author)

  2. A generalized energy model for the behavior of single-crystal magneto-electric composites

    Science.gov (United States)

    Atulasimha, Jayasimha; Akhras, George; Flatau, Alison B.

    2007-04-01

    This paper explores a unified energy-based approach to model the non-linear behavior of both magnetostrictive and piezoelectric materials. While the energy-approach developed by Armstrong has been shown to capture the magnetostrictive behavior of materials such as Terfenol-D1 and Iron-Gallium2 along different crystallographic directions, extending this approach to piezoelectric materials presents a considerable challenge. Some piezo-electric materials such as PMN-PT and BaTiO 3 may undergo phase changes under applied electric fields and stress in addition to polarization switching. A modeling approach is developed in this paper to capture these effects. Finally, it is shown that the constitutive behavior for the piezo-electric/magnetostrictive layers, coupled by a simple blocked-force approach, is likely to model the behavior of magneto-electric composites.

  3. Interface charge behaviors of BaTiO3 film heterostructures with various crystal orientations

    Science.gov (United States)

    Zhang, Wei; Ouyang, Jun; Cheng, Hongbo; Yang, Qian; Kang, Limin; Zhang, Hua; Hu, Fangren

    2017-02-01

    Heteroepitaxial BaTiO3 ferroelectric films with (001), (110), and (111) orientations were grown on SrRuO3-buffered SrTiO3 substrates by magnetron sputtering. The leakage current and interface charge behaviors were systematically investigated. Without a discernible orientation-dependence behavior, the leakage current behaviors were all well described by a modified Schottky-contact model. On the basis of this theory, the interface charge state parameters, including dynamic dielectric constant, potential barriers, depletion layer width, effective space-charge density and hole concentration, and their evolution behaviors were analyzed in detail. They all exhibited anisotropic characteristics and were proved to be essentially attributed to the macrophysical properties of BaTiO3 film heterostructures.

  4. Dynamic behavior of oscillatory plastic flow in a smectic liquid crystal

    Science.gov (United States)

    Herke, Richard A.; Clark, 1., Noel A.; Handschy, Mark A.

    1997-09-01

    Dynamic surface force measurements are used to study the response of a smectic-A liquid crystal under layer-normal stress. The smectic A is confined in a spherical wedge between crossed cylindrical surfaces having a minimum gap spacing of 0.5-4 μm. The force transmitted between the surfaces by the liquid crystal is measured vs surface spacing using a capacitance micrometer-based surface force apparatus. Above a threshold stress plastic flow results, consisting of individual layers being excluded or included. Each layer flow event has an intriguing dynamical structure, beginning with an enhanced drift rate, which can last for many minutes, accelerating to a rapid separation change of ~1 or 2 s duration wherein the bulk of the relaxation occurs, and tapering off to a background drift rate over a period of a 100 s or more. The single-layer nature of the observed jumps in liquid crystal thickness indicates that they are topological in origin, i.e., slippage events in the phase of the smectic-A order parameter that must necessarily involve edge or screw dislocations. A model based on the Glaberson-Clem-Oswald-Kléman helical instability in screw dislocations is the only one found to explain the data, the layering events arising from a cascade of these helical instabilities sweeping radially outward through the smectic-A sample. The slow precursor acceleration is due to the nucleation of a few helices in the thin central portion of the sample. As time goes on, the force relieved is transferred to the rest of the sample, pushing larger and larger amounts of the area into the unstable regime, and a type of chain reaction occurs whereby the bulk of a layer is removed. In the end only the material at the edge of the droplet, where the thickness is largest, is left to slowly continue to nucleate, producing a long-term tail.

  5. Restudy of the unusual phase behavior of the mesogen-jacketed liquid crystal polymers

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Yongfeng; FAN; Xinghe; CHEN; Xiaofang; WAN; Xinhua

    2006-01-01

    A series of poly{2,5-bis[(4-butoxyphenyl)-oxycarbonyl]styrenes} (PBPCS) with low molecular weight distribution was synthesized by atom transfer radical polymerization (ATRP). The mesomorphic properties were investigated by differential scanning calorimetry (DSC), polarizing optical microscopy (POM) and rheometer. PBPCS showed the phase transition from isotropic into liquid crystal (LC) phase, and the LC phase formed at high temperature and disappeared in the subsequent cooling procedure. Using the WAXD fiber pattern, the phase structure of the PBPCS at higher temperature showed hexagonal columnar nematic phase. Experimental results demonstrated that the driving force of the entropy is an important factor during the unusual LC phase formation of PBPCS.

  6. Morphology and behavior of the early stages of the skipper, Urbanus esmeraldus, on Urera baccifera, an ant-visited host plant

    OpenAIRE

    Moraes, Alice R.; Greeney, Harold F.; Oliveira, Paulo S; Barbosa, Eduardo P.; André V L Freitas

    2012-01-01

    The Neotropical genus Urbanus (Hbner) (Lepidoptera: Hesperiidae) contains around 34 described species, and is widely distributed from the extreme southern United States to Argentina. Here, we describe the larval morphology and behavior of Urbanus esmeraldus (Hbner)(Hesperiidae) in Urera baccifera (Urticaceae), a plant producing food rewards and fleshy fruits that attract ants (including predacious species) in a Brazilian forest. Larvae pass through five instars and construct two kinds of leaf...

  7. The growth of a single crystal of Sr3CuIrO6 and its magnetic behavior compared to polycrystals

    Indian Academy of Sciences (India)

    Asad Niazi; P L Paulose; E V Sampathkumaran; Ute Ch Rodewald; W Jeitschko

    2002-05-01

    We have grown single crystals of the psuedo-one-dimensional compound Sr3CuIrO6, a K4CdCl6-derived monoclinic structure with Cu–Ir chains along the [101] direction. We present the ac and dc magnetization behavior of the single crystals in comparison with that of the polycrystalline form reported earlier. There is a distinct evidence for at least two magnetic transitions, at 5 K (1) and 19 K (2), with different relative magnitudes in the single and polycrystals. The low temperature magnetic relaxation behavior of both the forms is found to be widely different, exhibiting unexpected time dependence.

  8. Effect of super heat treatment on crystallization behavior and magnetic properties of Nd_(4.5)Fe_(77)B_(18.5) nanocomposites

    Institute of Scientific and Technical Information of China (English)

    盛洪超; 曾燮榕; 邹继兆; 谢盛辉

    2010-01-01

    Melt-spun Nd4.5Fe77B18.5 ribbons were prepared under various superheat temperatures.The microstructure characteristics,crystallization behavior,and subsequent magnetic properties of Fe3B/Nd2Fe14B nanocomposite magnets were investigated using X-ray diffraction,differential thermal analysis,and vibrating sample magnetometry.It was shown that melt spinning at different quenching temperatures caused the as-quenched ribbons to have distinctive crystallization behavior.Depending on superheat temperature,phase tra...

  9. Comparative analysis of surface wax in mature fruits between Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) from the perspective of crystal morphology, chemical composition and key gene expression.

    Science.gov (United States)

    Wang, Jinqiu; Hao, Haohao; Liu, Runsheng; Ma, Qiaoli; Xu, Juan; Chen, Feng; Cheng, Yunjiang; Deng, Xiuxin

    2014-06-15

    Surface wax of mature Satsuma mandarin (Citrus unshiu) and 'Newhall' navel orange (Citrus sinensis) was analysed by crystal morphology, chemical composition, and gene expression levels. The epicuticular and total waxes of both citrus cultivars were mostly composed of aldehydes, alkanes, fatty acids and primary alcohols. The epicuticular wax accounted for 80% of the total wax in the Newhall fruits and was higher than that in the Satsuma fruits. Scanning electron microscopy showed that larger and more wax platelets were deposited on the surface of Newhall fruits than on the Satsuma fruits. Moreover, the expression levels of genes involved in the wax formation were consistent with the biochemical and crystal morphological analyses. These diversities of fruit wax between the two cultivars may contribute to the differences of fruit postharvest storage properties, which can provide important information for the production of synthetic wax for citrus fruits.

  10. Macroscopic inhomogeneous deformation behavior arising in single crystal Ni-Mn-Ga foils under tensile loading

    Science.gov (United States)

    Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred

    2016-12-01

    This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.

  11. Crystal Structure and Hydrogen Storage Behaviors of Mg/MoS2 Composites from Ball Milling

    Institute of Scientific and Technical Information of China (English)

    HAN Zongying; ZHOU Shixue; WANG Naifei; ZHANG Qianqian; ZHANG Tonghuan; RAN Weixian

    2016-01-01

    The Mg/MoS2 composites were prepared by ball milling under argon atmosphere, and the effect of MoS2 on the crystal structure and hydrogen storage properties of Mg was investigated. It is found that 10 wt% of MoS2 is sufifcient to prevent particle aggregation and cold welding during the milling process. The crystallite size of Mg will remain constant at slightly less than 38.8 nm with the milling process due to the size conifnement effect of MoS2. The dehydrogenation temperature of MgH2 is reduced to 390.4-429.4℃ due to the crystallite size reduction. Through iftting by Johnson-Mehl-Avrami model, it is found that Mg crystal grows by three dimension controlled by interface transformation during the process of MgH2 decomposition. MoS2 has a weak catalyst effect on the decomposition of MgH2 and activation energy of 148.9 kJ/mol is needed for the dehydrogenation process calculated by the Arrhenius equation.

  12. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: a supramolecular structure.

    Science.gov (United States)

    Montazerozohori, M; Musavi, S A; Masoudiasl, A; Naghiha, A; Dusek, M; Kucerakova, M

    2015-02-25

    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N'-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, (1)H and (13)C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2)Å while the Cd-Nisothiocyanate bond distances are 2.287(2)Å and 2.310(2)Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  13. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure

    Science.gov (United States)

    Montazerozohori, M.; Musavi, S. A.; Masoudiasl, A.; Naghiha, A.; Dusek, M.; Kucerakova, M.

    2015-02-01

    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N‧-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, 1H and 13C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2) Å while the Cd-Nisothiocyanate bond distances are 2.287(2) Å and 2.310(2) Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  14. Synthesis, Crystal Structure and Catalytic Behavior of 1-Ethyl-3-benyl-imidazolyl Tetranuclear N-Heterocyclic Carbene Silver Bromide

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-Guo; SU Zhi-Xian; BIAN Qing-Quan; LIU Si-Man; LIU Ting

    2012-01-01

    The title complex [Ag(carbene)2]2[Ag2Br4] has been synthesized by the reaction of Ag2O with 1-ethyl-3-benyl-imidazolium bromide in DMSO at room temperature, and characterized by elemental analysis, 1H NMR and single-crystal X-ray diffraction analysis. It crystallizes in triclinic, space group P with a = 10.1597(10), b =11.0646(11), c = 13.0245(14) , α = 102.230(2), β = 90.606, γ = 113.9250(10)o, V = 1300.3(2) 3, Mr = 748.06, Z = 2, Dc = 1.911 g/cm3, μ(MoKα) = 4.60 mm-1 and F(000) = 728. The structure was refined to R = 0.0316 and wR = 0.0835 for 3744 observed reflections with I 〉 2σ(I). The title compound crystallizes as a centrosymmetric tetranuclear compound. One half of the molecule comprises the asymmetric unit of the structure. The Ag(1) atom is nearly linear or T-shaped when the Ag(1)-Ag(2) interaction is taken into consideration, which is bi-coordinated by two carbene carbon atoms. The Ag(2) atom adopts tetrahedral geometry. The catalytic behavior of the title complex has been investigated, and the results indicate it has a highly catalytic activation for L-lactide polymerization.

  15. Deformation behavior of Cu-12wt%AI alloy wires with continuous columnar crystals in dieless drawing process

    Institute of Scientific and Technical Information of China (English)

    LIU XueFeng; WU YuHui; XIE JianXin

    2009-01-01

    The microstructure and mechanical properties of Cu-12wt%AI alloy wires which are composed of continuous columnar crystals after dieless drawing forming at drawing speed of 1.0-1.4 mm/s and deformation temperature of 600-900℃ were analyzed,and deformation behavior of the alloy during dieless drawing forming was experimentally investigated.The results showed that in the above-mentioned conditions,recrystallization phenomenon was not found during dieless drawing forming.When a drawing speed of 1.0 mm/s was used,the grain boundaries were out of straight gradually with increasing deformation temperature from 600℃ to 900℃,and tensile strength of the dieless drawn Cu-12wt%AI alloy wires increased while elongations decreased with increasing deformation temperature.At drawing speed of 1.1-1.2 mm/s and deformation temperature of 600℃,the effect of dieless drawing forming process on the microstructure of the alloy was inconspicuous,and when drawing speed was up to 1.3-1.4 mm/s,the grain boundaries of continuous columnar crystals became zigzag while there was little effect of drawing speed of 1.1-1.4 mm/s on the elongation and tensile strength of the alloy wires.

  16. Deformation behavior of Cu-12wt%Al alloy wires with continuous columnar crystals in dieless drawing process

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The microstructure and mechanical properties of Cu-12wt%Al alloy wires which are composed of continuous columnar crystals after dieless drawing forming at drawing speed of 1.0―1.4 mm/s and deformation temperature of 600―900℃ were analyzed, and deformation behavior of the alloy during dieless drawing forming was experimentally investigated. The results showed that in the abovemen-tioned conditions, recrystallization phenomenon was not found during dieless drawing forming. When a drawing speed of 1.0 mm/s was used, the grain boundaries were out of straight gradually with increasing deformation temperature from 600℃ to 900℃, and tensile strength of the dieless drawn Cu-12wt%Al alloy wires increased while elongations decreased with increasing deformation temperature. At drawing speed of 1.1―1.2 mm/s and deformation temperature of 600℃, the effect of dieless drawing forming process on the microstructure of the alloy was inconspicuous, and when drawing speed was up to 1.3―1.4 mm/s, the grain boundaries of continuous columnar crystals became zigzag while there was little effect of drawing speed of 1.1―1.4 mm/s on the elongation and tensile strength of the alloy wires.

  17. Density-functional theory and Monte Carlo simulations of the phase behavior of a simple model liquid crystal

    Science.gov (United States)

    Giura, Stefano; Schoen, Martin

    2014-08-01

    We consider the phase behavior of a simple model of a liquid crystal by means of modified mean-field density-functional theory (MMF DFT) and Monte Carlo simulations in the grand canonical ensemble (GCEMC). The pairwise additive interactions between liquid-crystal molecules are modeled via a Lennard-Jones potential in which the attractive contribution depends on the orientation of the molecules. We derive the form of this orientation dependence through an expansion in terms of rotational invariants. Our MMF DFT predicts two topologically different phase diagrams. At weak to intermediate coupling of the orientation dependent attraction, there is a discontinuous isotropic-nematic liquid-liquid phase transition in addition to the gas-isotropic liquid one. In the limit of strong coupling, the gas-isotropic liquid critical point is suppressed in favor of a fluid- (gas- or isotropic-) nematic phase transition which is always discontinuous. By considering three representative isotherms in parallel GCEMC simulations, we confirm the general topology of the phase diagram predicted by MMF DFT at intermediate coupling strength. From the combined MMF DFT-GCEMC approach, we conclude that the isotropic-nematic phase transition is very weakly first order, thus confirming earlier computer simulation results for the same model [see M. Greschek and M. Schoen, Phys. Rev. E 83, 011704 (2011), 10.1103/PhysRevE.83.011704].

  18. Stress-induced deformation at Ap~Mp and thermal cycling behavior of Cu-Al-Ni single crystals

    Institute of Scientific and Technical Information of China (English)

    陈庆福; 蔡伟; 赵连城

    2001-01-01

    Stress-induced deformation in Ap~Mp and concomitant shape recovery behavior of Cu-13.4Al-4.0Ni single crystals were studied. Abnormal high stress-induced deformation exists in Ap~Mp under the conditions of either heating with load or cooling with load. The recovered deformation is successively composed of four parts, the recoveries from superelasticity, normal reverse transformation, thermally activated reverse transformation of partially stabilized martensite and reverse transformation of stabilized martensite by over-heating. With increasing cycling number, the recovery part from normal reverse transformation decreases, while that from reverse transformation of stabilized martensite by over-heating increases, which shows a typical stabilization of martensite.

  19. Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations

    Science.gov (United States)

    Han, Fengbo; Tang, Bin; Yan, Xu; Peng, Yifei; Kou, Hongchao; Li, Jinshan; Deng, Ying; Feng, Yong

    2017-01-01

    This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.

  20. Indentation Pileup Behavior of Ti-6Al-4V Alloy: Experiments and Nonlocal Crystal Plasticity Finite Element Simulations

    Science.gov (United States)

    Han, Fengbo; Tang, Bin; Yan, Xu; Peng, Yifei; Kou, Hongchao; Li, Jinshan; Deng, Ying; Feng, Yong

    2017-04-01

    This study reports on the indentation pileup behavior of Ti-6Al-4V alloy. Berkovich nanoindentation was performed on a specimen with equiaxed microstructure. The indented area was characterized by electron backscattered diffraction (EBSD) to obtain the indented grain orientations. Surface topographies of several indents were measured by atomic force microscopy (AFM). The pileup patterns on the indented surfaces show significant orientation dependence. Corresponding nonlocal crystal plasticity finite element (CPFE) simulations were carried out to predict the pileup patterns. Analysis of the cumulative shear strain distributions and evolutions for different slip systems around the indents found that the pileups are mainly caused by prismatic slip. The pileup patterns evolve with the loading and unloading process, and the change in pileup height due to the elastic recovery at unloading stage is significant. The density distributions of geometrically necessary dislocations (GNDs) around the indent were predicted. Simulation of nanoindentation on a tricrystal model was performed.

  1. Transient flickering behavior in fringe-field switching liquid crystal mode analyzed by positional asymmetric flexoelectric dynamics.

    Science.gov (United States)

    Lee, Dong-Jin; Shim, Gyu-Yeop; Choi, Jun-Chan; Park, Ji-Sub; Lee, Joun-Ho; Baek, Ji-Ho; Choi, Hyun Chul; Ha, Yong Min; Ranjkesh, Amid; Kim, Hak-Rin

    2015-12-28

    We analyzed a transient blinking phenomenon in a fringe-field switching liquid crystal (LC) mode that occurred at the moment of frame change even in the optimized DC offset condition for minimum image flicker. Based on the positional dynamic behaviors of LCs by using a high-speed camera, we found that the transient blink is highly related to the asymmetric responses of the splay-bend transitions caused by the flexoelectric (FE) effect. To remove the transient blink, the elastic property adjustment of LCs was an effective solution because the FE switching dynamics between the splay-enhanced and bend-enhanced deformations are highly dependent on the elastic constants of LCs, which is the cause of momentary brightness drop.

  2. Low-temperature dielectric behavior of disordered and ordered langasite family single crystals LGS, LGT, SNGS and STGS

    Science.gov (United States)

    Smirnova, E.; Sotnikov, A.; Schmidt, H.; Weihnacht, M.; Sakharov, S.

    2015-10-01

    Dielectric measurements of disordered La3Ga5SiO14 (LGS), La3Ga5,5Ta0,5O14 (LGT) and ordered Sr3NbGa3Si2O14 (SNGS), Sr3TaGa3Si2O14 (STGS) single crystals of the langasite family performed at frequencies from 10 Hz to 1 MHz at temperatures between 4.2 and 300 K are reported. Temperature dependences of dielectric permittivity ε33 and ε11 are obtained. It is shown that ε33 in LGS and LGT exhibits incipient ferroelectric-like behavior. SNGS and STGS demonstrate ordinary dielectric temperature dependences as dielectric permittivity decreases down to helium temperatures.

  3. NUMERICAL STUDY OF THE NOTCH EFFECT ON THE CREEP BEHAVIOR AND LIFE OF NICKEL-BASE SINGLE CRYSTAL SUPERALLOYS

    Institute of Scientific and Technical Information of China (English)

    Q.M. Yu; Z.F. Yue

    2004-01-01

    Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For a small notch radius, von Mises stress has an especial distribution. The damage distribution is greatly influenced by the notch depth, notch radius as well as notch type. The creep crack initiation place is different for each notched specimen. The characteristics of notch strengthening and notch weakening depend on the notch radius and notch type. For the same notch type,the creep rupture lives decrease with the decreasing of notch radius. A creep life model has been presented for the multiaxial stress states based on the crystallographic slip system theory.

  4. Voltage threshold behaviors of ZnO nanorod doped liquid crystal cell

    Institute of Scientific and Technical Information of China (English)

    Guo Yubing; Chen Yonghai; Xiang Ying; and Qu Shengchun

    2011-01-01

    With ZnO nanorods doped in only one poly (vinyl alcohol) (PVA) layer,we observed different threshold voltages with reverse DC voltages for a liquid crystal cell.The length and diameter of the ZnO nanorod used in our experiment were about 180 nm and 20 nm,respectively.When the PVA layer on the anodic side was doped,the threshold voltage was larger than that of the pure cell; conversely,when the PVA layer on the cathodic side was doped,the threshold voltage was smaller than that of the pure cell.These results can be explained by the internal electric field model.We also observed a resonance phenomenon with a low frequency AC voltage.

  5. Friction and wear behavior of single-crystal silicon carbide in sliding contact with various metals

    Science.gov (United States)

    Miyoshi, K.; Buckley, D. H.

    1978-01-01

    Sliding friction experiments were conducted with single-crystal silicon carbide in contact with various metals. Results indicate the coefficient of friction is related to the relative chemical activity of the metals. The more active the metal, the higher the coefficient of friction. All the metals examined transferred to silicon carbide. The chemical activity of the metal and its shear modulus may play important roles in metal-transfer, the form of the wear debris and the surface roughness of the metal wear scar. The more active the metal, and the less resistance to shear, the greater the transfer to silicon carbide and the rougher the wear scar on the surface of the metal. Hexagon-shaped cracking and fracturing formed by cleavage of both prismatic and basal planes is observed on the silicon carbide surface.

  6. Crystallization Behavior of Anatase Films in Applied Electric Field Heating Process

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this research the TiO2 thin films were prepared by sol-gel dip coating. The crystallization of the films in the applied electric field heating process was thoroughly studied by many technique, differential thermal analysis (DTA), Raman spectroscopy and atomic force microscope (AFM). Furthermore the phase formation, microstructure and photo-catalytic activity of TiO2 film were studied under the condition of an electric field heating-treatment. It is found that the existence of applied electric field promotes the phase transformation from anatase to rutile. Studies on photo-catalytic degradation show that the photo-catalytic activity of TiO2 thin films in an applied electric field is higher.

  7. Investigation of crystallization behavior of CIG-Se bi-layer thin films.

    Science.gov (United States)

    Park, Mi Sun; Sung, Shi-Joon; Kim, Dae-Hwan; Kang, Jin-Kyu

    2012-04-01

    Copper indium gallium diselenide (CIGSe) thin film was fabricated via a thermal treatment of GIG-Se bi-layer thin films. A CIG layer was prepared first, by a chemical solution deposition (CSD) process. The Se layer was deposited separately on the CIG layer by evaporation. The GIG-Se bi-layer then underwent a thermal treatment to cause a reaction between the two layers. In order to investigate the mechanism of CIG-Se bi-layer crystallization, the thermal treatment temperature was varied. The properties of the prepared CIGSe2 thin films were analyzed using X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectrometry (EDS), and UV-visible spectrophotometry.

  8. Phase Behavior and Crystal Structure of Perovskite-Type Rare Earth Complex Oxides

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Several compounds of rare earth complex oxides containing manganese and titanium were synthesized in Ar, and their crystal structures were analyzed by powder X-ray diffraction data and Rietveld method. Structures of A0.67Ln0.33Mn0.33Ti0.67O3 (A=Ca or Sr and Ln=rare earth) were found to have orthorhombic symmetry with the space group Pnma, and their interatomic distances and bond angles were obtained. This space group was also derived from electron microscopic study. Electrical conductivity of Ca0.67Ln0.33Mn0.33Ti0.67O3 for several rare earth elements showed a semiconducting property with the activation energy of 0.4 eV. Some of these compounds of the strontium system show the antiferromagnetic properties below 10 K.

  9. 聚丙烯共混体系结晶行为及发泡性能研究%Study on Crystallization Behavior and Foaming Property of Polypropylene Blend System

    Institute of Scientific and Technical Information of China (English)

    陈明杰; 马卫华

    2014-01-01

    Foaming of polypropylene homo polymer(PP-H),polypropylene block copolymer(PP-B) and PP-H/PP-B blend system by using supercritical CO2 as foaming agent at a typical condition were studied. The crystallization behavior,crystal structure and morphology were characterized using differential scanning calorimetry and polarized optical microscope. The melt strength was characterized indirectly using meltflow rate tester. The morphology of the foams was observed by scanning electron microscope . The foaming behaviors of them were compared. Results show that PP-B is not only used as crystallization nucleating agent to make the spherocrystalfine and increase the density of crystallization,but also used as physical cross-link point to enhance the melt strength in the PP-H/PP-B blend system at the rate of 70∶30. The changes of the two aspects improve the foaming property of the blend system effectively,resulting in much smaller cell size,higher cell density and unbroken cells.%以均聚聚丙烯(PP-H),嵌段共聚聚丙烯(PP-B)及其共混体系为研究对象,以超临界CO2为发泡剂,选择典型工艺条件进行发泡实验,采用差示扫描量热仪和偏光显微镜研究共混前后样品的结晶行为和球晶形貌,通过熔体流动速率测试仪间接表征其熔体强度,然后采用扫描电子显微镜观察发泡样品的泡孔形态,比较其发泡行为。研究结果表明:在共混比例为70∶30的PP-H/PP-B共混体系中,由于结晶温度较高,PP-B不仅可以作为结晶成核剂,细化球晶并提高结晶密度,而且还可以作为物理交联点,提高体系的熔体强度。这两方面的改变有效地改善了共混体系的发泡性能,使其泡孔尺寸显著减小,泡孔密度有所提高并且没有明显的泡孔塌陷。

  10. 高真空强静电场下聚合物薄膜微晶生长形态转变研究%STUDIES ON THE MORPHOLOGY TRANSITION OF MICRO-CRYSTAL GROWTH IN POLYMER FILMS IN HIGH VACUUM AND STRONG ELECTROSTATIC FIELD

    Institute of Scientific and Technical Information of China (English)

    肖学山; 徐晖; 董远达; 乔秀颖; 莫志深; 王献红; 王庆

    2001-01-01

    The morphology of films of isotactic polypropylene poly(3-dodecylthiophene) and iPP/P3DDT blend formed in electrostatic fields has been investigated by using scanning electron microscope. The experiment results show that the micro-crystal morphology of polymer films was strongly dependent on electrostatic fields. It was found that the effect of the electrostatic field led to the formation of dendrite crystals aligned in the field direction,and some branches of P3DDT ruptured. However,the micro-crystals in these films grew into spherulites without electrostatic field,and have no crystal orientation.

  11. Mesomorphic behavior of new benzothiazole liquid crystals having Schiff base linker and terminal methyl group

    Institute of Scientific and Technical Information of China (English)

    Sie Tiong Ha; Kok Leei Foo; Hong Cheu Lin; Masato M.Ito; Kazuma Abe; Kenji Kunbo; S.Sreehari Sastry

    2012-01-01

    A homologous series of heterocycles,6-methyl-2-(4-alkoxybenzylidenamino)benzothiazoles,were synthesized and characterized using FT-IR,1H and 13C NMR and mass spectrometric analysis.Enantiotropic nematic phase was observed for shorter members.Smectic A phase only emerged from octyloxy derivative onwards.The terminal methyl group at the benzothiazole fragment and the Schiff base linkage influenced the mesomorphic behavior of the present series.

  12. Electrochemical quartz crystal microbalance study on the two-electrode-system cyclic voltammetric behavior of Prussian blue films

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A two-channel electrochemical quartz crystal microbalance (EQCM) was used to investigate the cyclic voltammetric behavior of two Prussian blue (PB) film-modified Au electrodes in a two-electrode con-figuration in aqueous solution. The redox peaks observed in the two-electrode cyclic voltammogram (CV) are assigned to the intrinsic redox transitions among the Everitt’s salt, PB, and Prussian yellow for the film itself, the redox process of the Au substrate and the redox process of small-quantity ferri-/ferrocyanide impurities entrapped in the PB film, as also supported by ultraviolet-visible (UV-Vis) spectroelectrochemical data. The profile of the two-electrode solid-state CV for the PB powder sand-wiched between two gold-coated indium-tin oxide (ITO) electrodes is similar to that for two PB-modified Au electrodes in aqueous solution, implying similar origins for the corresponding redox peaks. The two-channel EQCM method is expected to become a highly effective technique for the studies of the two-electrode electrochemical behaviors of many other species/materials.

  13. Can an Invasive Prey Species Induce Morphological and Behavioral Changes in an Endemic Predator? Evidence from a South Korean Snake (Oocatochus rufodorsatus)

    Institute of Scientific and Technical Information of China (English)

    Jun-Haeng HEO; Heon-Joo LEE; Il-Hun KIM; Jonathan J FONG; Ja-Kyeong KIM; Sumin JEONG; Daesik PARK

    2014-01-01

    Introduction of an invasive prey species into an ecosystem may affect an endemic predator’s fitness by altering the prey-predator system. Successful adaptation may allow the endemic predator to eat and control the invasive species, while unsuccessful adaptation may result in extinction of the predator. We examine the possible effects of the invasive North American bullfrog (Rana [Lithobates] catesbeiana) on the endemic Red-backed rat snake (Oocatochus rufodorsatus) in South Korea. We do so by comparing the morphology and behavior of adult and hatchling snakes from bullfrog-exposed (Taean) and bullfrog-unexposed (Hongcheon) populations. Among the seven morphological characteristics investigated, relative tail length (tail length/snout-vent length) of both adults and hatchlings from Taean was significantly greater than that of adults and hatchlings from Hongcheon. Also, adult snakes from Taean had a signiifcantly shorter latency of ifrst tongue lfick in response to prey compared to adults from Hongcheon. This difference was not observed in hatchlings. In other snake species, a longer relative tail length and shorter latency of ifrst tongue lfick are known to improve foraging efifciency, and these characters may be adaptations ofO. rufodorsatus to prey on bullfrogs. This study provides preliminary evidence that the presence of an invasive prey species may cause morphological and behavioral changes in an endemic predator.

  14. Dispersion behavior of core-shell silica-polymer nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Core-shell silica nanoparticles are superior in modifying surface wetting behavior, enhancing nucleation and growth in crystallization, improving dispersion of naked nanoparticles, and thus upgrading the overall properties of organic polymers. The dispersion behavior and morphology of monodisperse core-shell silica particles in several polymers including polyesters are reviewed and their potential applications are discussed.

  15. Influence of Processing Parameters on the Solidification Behavior of Single-Crystal CMSX-4 Superalloy

    Science.gov (United States)

    Wang, Fu; Ma, Dexin; Bogner, Samuel; Bührig-Polaczek, Andreas

    2016-07-01

    The microstructural evolution of a superalloy, single-crystal CMSX-4 solidified at different withdrawal rates was investigated using a directional solidification quenching method. Analyses of the cross-sections within mushy zones generated the evolution of the solid volume fractions ( f s) during the reduction in the temperature and the solidification sequences. At the withdrawal rate of 0.3 mm min-1, f s increases by about 81 pct within the first 23 pct of the solidification interval, whereas it increases by about 64 pct at the withdrawal rate of 0.7 mm min-1. The Bower-Brody-Flemings model can characterize the evolution tendency of f s curve at the lower withdrawal rate, while it can not only describe the changing tendency of f s, but also precisely predict the f s values at higher withdrawal rate. With increasing withdrawal rate, the solidification intervals of the γ dendrite and γ/ γ' eutectics are increased. In addition to this, the forming site of the γ/ γ' eutectic at the lower withdrawal rate lags behind that at the higher withdrawal rate. At both the withdrawal rates the solidification of the γ/ γ' eutectic islands commences with the γ/ γ' core formed on the surface of the γ dendrites, then progressed spatially and developed the coarse γ/ γ' structure.

  16. Fundamentals of poly(lactic acid) microstructure, crystallization behavior, and properties

    Science.gov (United States)

    Kang, Shuhui

    Poly(lactic acid) is an environmentally-benign biodegradable and sustainable thermoplastic material, which has found broad applications as food packaging films and as non-woven fibers. The crystallization and deformation mechanisms of the polymer are largely determined by the distribution of conformation and configuration. Knowledge of these mechanisms is needed to understand the mechanical and thermal properties on which processing conditions mainly depend. In conjunction with laser light scattering, Raman spectroscopy and normal coordinate analysis are used in this thesis to elucidate these properties. Vibrational spectroscopic theory, Flory's rotational isomeric state (RIS) theory, Gaussian chain statistics and statistical mechanics are used to relate experimental data to molecular chain structure. A refined RIS model is proposed, chain rigidity recalculated and chain statistics discussed. A Raman spectroscopic characterization method for crystalline and amorphous phase orientation has been developed. A shrinkage model is also proposed to interpret the dimensional stability for fibers and uni- or biaxially stretched films. A study of stereocomplexation formed by poly(l-lactic acid) and poly(d-lactic acid) is also presented.

  17. Structural and crystallization behavior of (Ba,Sr)TiO3 borosilicate glasses

    Science.gov (United States)

    Yadav, Avadhesh Kumar; Gautam, C. R.; Gautam, Arvind; Mishra, Vijay Kumar

    2013-10-01

    Various glass samples were prepared by melt quench technique in the glass system [(Ba1- x Sr x ) TiO3]-[2SiO2-B2O3]-[K2O] doped with 1 mole% of La2O3. Infrared spectra show the number of absorption peaks with different spliting in the wave number range from 450 to 4000 cm-1. Absorption peaks occurs due to asymetric vibrational streching of borate by relaxation of the bond B-O of trigonal BO3. Raman spectra show the Raman bands due to ring-type metaborate anions, symmetric breathing vibrations BO3 triangles replaced by BO4 tetrahedra, and symmetric breathing vibrations of six-member rings. The differential thermal analysis of a glass sample corresponding to composition x = 0.0 shows crystallization temperature at 847°C and glass transition temperature at 688°C. X-ray diffraction (XRD) pattern of glass ceramic samples shows the major crystalline phase of BaTiO3 whereas pyrochlore phases of barium titanium silicate. Scanning electron micrographs confirm the results of XRD as barium titanate is major crystalline phase along with pyrochlore phase of barium titanium silicate.

  18. Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yumei; Wang, Tianjiao; Chen, Zhimin; Li, Jing; Tian, Qiuge; Yang, Hongxia; Xu, Qun, E-mail: qunxu@zzu.edu.cn

    2016-11-01

    Highlights: • In this study conductive chiral MWCNTs@NCC nanopapers were prepared. • The introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. • The multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. • The resulting nanopaper has an increased conductivity. - Abstract: The conductive chiral MWCNTs@NCC nanopapers obtained by the assembly of nanocrystalline cellulose liquid crystals (NCC LCs) host matrix along with one-dimensional (1-D) multi-walled carbon nanotubes (MWCNTs) have been studied in this work. Circular dichroism (CD) studies show strong signals stemming from the chiral nematic structure. Notably, the introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. Our experimental results indicate the multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. Moreover it also confirms the resulting nanopaper has an increased conductivity of 4.2 S/m at 1.96 wt% MWCNTs. So the co-assembly of the nanocomposite herein opens a gateway for preparing functional materials combining the photonic properties of the NCC LCs matrix with other building blocks that can supply other advantageous functions.

  19. 3β-Acetoxy-6-nitrocholest-5-ene: Crystal structure, thermal, optical and dielectrical behavior

    Science.gov (United States)

    Shamsuzzaman; Mashrai, Ashraf; Khanam, Hena; Mabkhot, Yahia Nasser; Frey, Wolfgang

    2014-04-01

    3β-Acetoxy-6-nitrocholest-5-ene (2) has been synthesized from 3β-acetoxycholest-5-ene (1). We provided an analysis of the compound by means of FT-IR, FT-Raman, NMR and X-ray crystallography. In addition microstructural, thermal, optical and dielectrical properties were also investigated. The compound 2 crystallizes in the monoclinic space group P21 with cell dimensions, a = 15.7729 (13) Å, b = 9.8933 (8) Å, c = 17.8070(14) Å, α = 90.00, β = 96.176(4), γ = 90.00. The powder X-ray diffraction (PXRD) of the compound was recorded to ascertain phase homogeneity. The SEM micrograph showed the presence of brick shaped, elongated nitrocholestane particles with 177.12 × 25.53 × 5.69 μm dimensions. Thermogravimetric analysis showed stability of the compound up to 200 °C. The dielectrical studies showed that with increase in frequency, the dielectric constant decreases and becomes almost constant at high frequencies.

  20. Nematic Liquid Crystal Alignment Behaviors between Crossed Stretched Miropolymer Filaments with Anchoring Effects

    Science.gov (United States)

    Fujikake, Hideo; Murashige, Takeshi; Sato, Hiroto; Kikuchi, Hiroshi; Kurita, Taiichiro; Sato, Fumio

    2006-04-01

    We observed the molecular alignment of a liquid crystal (LC) induced by crossing two stretched micropolymer filaments between glass substrates and confirmed its light modulation property. The two microfilaments, which were extracted from a cellulose cloth by stretching it in advance, had surface molecular alignment and stabilized nematic LC alignment between the microfilaments crossed with a small angle. In the fabricated LC cell, a spatially-uniform LC planar alignment is achieved in the area of a filament interval of less than 60 μm. By polarizing microscopy observation of the isotropic-to-nematic wetting transition of the LC material between the polymer filaments, it was confirmed that the stable LC alignment area is formed by the surface anchoring of the filaments. When external voltages were applied to the obtained uniformed alignment LC area, a characteristic periodic electrooptic property was confirmed on the basis of electrically-controlled birefringence under the alignment control of the in-plane anchoring of the filaments.

  1. Growth of single-crystal CrN on MgO(001): Effects of low-energy ion-irradiation on surface morphological evolution and physical properties

    Science.gov (United States)

    Gall, D.; Shin, C.-S.; Spila, T.; Odén, M.; Senna, M. J. H.; Greene, J. E.; Petrov, I.

    2002-03-01

    CrN layers, 0.5 μm thick, were grown on MgO(001) at Ts=570-775 °C by ultrahigh vacuum magnetically unbalanced magnetron sputter deposition in pure N2 discharges at 20 mTorr. Layers grown at Ts⩽700 °C are stoichiometric single crystals exhibiting cube-on-cube epitaxy: (001)CrN||(001)MgO with [100]CrN||[100]MgO. At higher temperatures, N2 desorption during deposition results in understoichiometric polycrystalline films with N fractions decreasing to 0.35, 0.28, and 0.07 with Ts=730, 760, and 775 °C, respectively. The surface morphologies of epitaxial CrN(001) layers were found to depend strongly on the incident ion-to-metal flux ratio JN2+/JCr which was varied between 1.7 and 14 with the ion energy maintained constant at 12 eV. The surfaces of layers grown with JN2+/JCr=1.7 consist of self-organized square-shaped mounds, due to kinetic roughening, with edges aligned along orthogonal directions. The mounds have an average peak-to-valley height =5.1 nm and an in-plane correlation length of =0.21 μm. The combination of atomic shadowing by the mounds with low adatom mobility results in the formation of nanopipes extending along the growth direction. Increasing JN2+/JCr to 14 leads, due to increased adatom mobilities, to much smoother surfaces with =2.5 nm and =0.52 μm. Correspondingly, the nanopipe density decreases from 870 to 270 μm-2 to JCr is increased from 1.7 to 6 to 10. The hardness of dense CrN(001) is 28.5±1 GPa, but decreases to 22.5±1 GPa for layers containing significant nanopipe densities. The CrN(001) elastic modulus, 405±15 GPa, room-temperature resistivity, 7.7×10-2 Ω cm, and relaxed lattice constant, 0.4162±0.0008 nm, are independent of JN2+/JCr.

  2. On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Liana, E-mail: liana.annunziatta@univ-rennes1.fr [Organométalliques et Catalyse, UMR 6226 Sciences Chimiques CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); Monasse, Bernard, E-mail: bernard.monasse@mines-paristech.fr [Mines-ParisTech, CEMEF, Centre de Mise en Forme des Matériaux, UMR CNRS 7635, Sophia Antipolis (France); Rizzo, Paola; Guerra, Gaetano [Dipartimento di Chimica e Biologia, Università degli studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Duc, Michel [Total Petrochemicals Research Feluy, Zone Industrielle Feluy C, B-7181 Seneffe (Belgium); Carpentier, Jean-François, E-mail: jean-francois.carpentier@univ-rennes1.fr [Organométalliques et Catalyse, UMR 6226 Sciences Chimiques CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)

    2013-09-16

    Crystallization and morphological features of syndiotactic-b-atactic polystyrene stereodiblock copolymers (sPS-b-aPS), atactic/syndiotactic polystyrene blends (aPS/sPS), and aPS/sPS blends modified with sPS-b-aPS, with different compositions in aPS and sPS, have been investigated using differential scanning calorimetry (DSC), polarized light optical microscopy (POM) and wide angle X-ray diffraction (WAXRD) techniques. For comparative purposes, the properties of parent pristine sPS samples were also studied. WAXRD analyses revealed for all the samples, independently from their composition (aPS/sPS ratio) and structure (blends, block copolymers, blends modified with block copolymers), the same polymorphic β form of sPS. The molecular weight of aPS and sPS showed opposite effects on the crystallization of 50:50 aPS/sPS blends: the lower the molecular weight of aPS, the slower the crystallization while the lower the molecular weight of sPS, the faster the crystallization. DSC studies performed under both isothermal and non-isothermal conditions, independently confirmed by POM studies, led to a clear trend for the crystallization rate at a given sPS/aPS ratio (ca. 50:50 and 20:80): sPS homopolymers > sPS-b-aPS block copolymers ∼sPS/aPS blends modified with sPS-b-aPS copolymers > sPS/aPS blends. Interestingly, sPS-b-aPS block copolymers not only crystallized faster than blends, but also affected positively the crystallization behavior of blends. At 50:50 sPS/aPS ratio, blends (Blend-2), block copolymers (Cop-1) and blends modified with block copolymers (Blend-2-mod) crystallized via spherulitic crystalline growth controlled by an interfacial process. In all cases, an instantaneous nucleation was observed. The density of nuclei in block copolymers (160,000−190,000 nuclei mm{sup −3}) was always higher than that in blends and modified blends (30,000−60,000 nuclei mm{sup −3}), even for quite different sPS/aPS ratio. At 20:80 sPS/aPS ratio, the block copolymers

  3. Isotropic and Anisotropic Growth of Metal-Organic Framework (MOF) on MOF: Logical Inference on MOF Structure Based on Growth Behavior and Morphological Feature.

    Science.gov (United States)

    Choi, Sora; Kim, Taeho; Ji, Hoyeon; Lee, Hee Jung; Oh, Moonhyun

    2016-11-02

    The growth of one metal-organic framework (MOF) on another MOF for constructing a heterocompositional hybrid MOF is an interesting research topic because of the curiosity regarding the occurrence of this phenomenon and the value of hybrid MOFs as multifunctional materials or routes for fine-tuning MOF properties. In particular, the anisotropic growth of MOF on MOF is fascinating for the development of MOFs possessing atypical shapes and heterostructures or abnormal properties. Herein, we clarify the understanding of growth behavior of a secondary MOF on an initial MOF template, such as isotropic or anisotropic ways associated with their cell parameters. The isotropic growth of MIL-68-Br on the MIL-68 template results in the formation of core-shell-type MIL-68@MIL-68-Br. However, the unique anisotropic growth of a secondary MOF (MOF-NDC) on the MIL-68 template results in semitubular particles, and structural features of this unknown secondary MOF are successfully speculated for the first time on the basis of its unique growth behavior and morphological characteristics. Finally, the validation of this structural speculation is verified by the powder X-ray diffraction and the selected area electron diffraction studies. The results suggests that the growth behavior and morphological features of MOFs should be considered to be important factors for understanding the MOFs' structures.

  4. Behavior of H(sub2)O and OH in lawsonite : a single crystal neutron diffraction and Raman spectroscopic investigation.

    Energy Technology Data Exchange (ETDEWEB)

    Kolesov, B. A.; Lager, G. A.; Schultz, A. J.; Russian Academy of Science; Univ. of Louisville

    2008-01-01

    Neutron diffraction and polarized single-crystal Raman spectroscopic measurements were made on the high-pressure silicate lawsonite, CaAl{sub 2}(Si{sub 2}O{sub 7})(OH){sub 2} {center_dot} H{sub 2}O, from Tiburon Peninsula, California. For the diffraction measurements, intensity reflection data were collected at temperatures of 295, 110 and 20 K using time-of-flight neutron diffraction methods to further examine two reversible, order-disorder type phase transitions occurring at 273 and 155 K [Cmcm (> 273 K) {yields} Pmcn (< 273 K) {yields} P2{sub 1}cn (< 155 K)]. These data are also used to model the H atom displacements in lawsonite as a function of temperature and to provide better insight into the nature of H bonding. The Raman spectroscopic measurements (2500 to 4000 cm{sup -1} at 4 {ge} T {ge} 300 K) were carried out on the same crystal used for the neutron diffraction study. Four OH-related bands are observed between 2700 and 3600 cm{sup -1}. The OH groups and H{sub 2}O molecules, which are linked by hydrogen bonding, build quasi one-dimensional chains in lawsonite, that run parallel to [001] and thus a model consisting of isolated oscillators cannot be used to interpret the spectra at ambient temperature. A notable feature of spectral behavior at 240-260 K in the vicinity of the Cmcm {leftrightarrow} Pmcn phase transition is the change-over of strong hydrogen bonding from the OH group to the H{sub 2}O molecule. The lowest-wavenumber OH(H{sub 2}O) band at 2780 cm{sup -1} at 4 K is broad and asymmetric, which is related to strong hydrogen bonding, and is characterized by strong anharmonicity. This band was deconvoluted into a number of combination modes consisting of an internal-H{sub 2}O and various external-H{sub 2}O vibrations.

  5. Poly(butylene terephthalate)/montmorillonite nanocomposites: Effect of montmorillonite on the morphology, crystalline structure, isothermal crystallization kinetics and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Kalkar, Arun K., E-mail: drarunkalkar@gmail.com; Deshpande, Vineeta D.; Vatsaraj, Bhakti S.

    2013-09-20

    Graphical abstract: - Highlights: • Effect of amount of clay content, its dispersion on crystalline structure of PBT. • Regime break temperature shifts to lower temperature for PCN4 up to 197 °C. • Tensile modulus enhanced up to 95% for PCN3 compared to PBT. - Abstract: Nanocomposites (PCNs), based on poly(butylene terephthalte) (PBT) and organoclay (Cloisite-15A) MMT were prepared by melt intercalation compounding process. The nanoscale dispersion and the microcrystal structure studied qualitatively using; X-ray diffraction (XRD) and electron microscopy (SEM, TEM and AFM). The XRD results indicated that the crystal size is highly dependent on the crystallization temperature. The isothermal crystallization kinetics of PBT in PCNs analysis indicated that the overall crystallization of PBT involved heterogeneous nucleated three-dimensional spherical primary crystallization growth process. The crystallization rate, however, is dependent on the PCN-composition, crystallization temperature and the dispersion state of clay in PCNs. Further analysis, based on Hoffman-Lauritzen theory revealed that the neat PBT and PBT in PCNs crystallization follow regime-II kinetics for temperature 195 °C–205 °C and enters the regime-III kinetics in lower T{sub c} range, 185 °C–195 °C. The improvement in mechanical properties is highly dependent on the level of clay exfoliation in PBT matrix.

  6. Goethite surface reactivity: III. Unifying arsenate adsorption behavior through a variable crystal face - Site density model

    Science.gov (United States)

    Salazar-Camacho, Carlos; Villalobos, Mario

    2010-04-01

    We developed a model that describes quantitatively the arsenate adsorption behavior for any goethite preparation as a function of pH and ionic strength, by using one basic surface arsenate stoichiometry, with two affinity constants. The model combines a face distribution-crystallographic site density model for goethite with tenets of the Triple Layer and CD-MUSIC surface complexation models, and is self-consistent with its adsorption behavior towards protons, electrolytes, and other ions investigated previously. Five different systems of published arsenate adsorption data were used to calibrate the model spanning a wide range of chemical conditions, which included adsorption isotherms at different pH values, and adsorption pH-edges at different As(V) loadings, both at different ionic strengths and background electrolytes. Four additional goethite-arsenate systems reported with limited characterization and adsorption data were accurately described by the model developed. The adsorption reaction proposed is: lbond2 FeOH +lbond2 SOH +AsO43-+H→lbond2 FeOAsO3[2-]…SOH+HO where lbond2 SOH is an adjacent surface site to lbond2 FeOH; with log K = 21.6 ± 0.7 when lbond2 SOH is another lbond2 FeOH, and log K = 18.75 ± 0.9, when lbond2 SOH is lbond2 Fe 2OH. An additional small contribution of a protonated complex was required to describe data at low pH and very high arsenate loadings. The model considered goethites above 80 m 2/g as ideally composed of 70% face (1 0 1) and 30% face (0 0 1), resulting in a site density for lbond2 FeOH and for lbond2 Fe 3OH of 3.125/nm 2 each. Below 80 m 2/g surface capacity increases progressively with decreasing area, which was modeled by considering a progressively increasing proportion of faces (0 1 0)/(1 0 1), because face (0 1 0) shows a much higher site density of lbond2 FeOH groups. Computation of the specific proportion of faces, and thus of the site densities for the three types of crystallographic surface groups present in

  7. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    Science.gov (United States)

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-02-21

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  8. High-pressure behavior of bromine confined in the one-dimensional channels of zeolite AlPO4-5 single crystals

    Science.gov (United States)

    Liu, Zhaodong; Yao, Zhen; Yao, Mingguang; Lv, Jiayin; Chen, Shuanglong; Li, Quanjun; Lv, Hang; Wang, Tianyi; Lu, Shuangchen; Liu, Ran; Liu, Bo; Liu, Jing; Chen, Zhiqiang; Zou, Bo; Cui, Tian; Liu, Bingbing

    2016-09-01

    We present a joint experimental and theoretical study on the high-pressure behavior of bromine confined in the one-dimensional (1D) nanochannels of zeolite AlPO4-5 (AFI) single crystals. Raman scattering experiments indicate that loading bromine into AFI single crystals can lead to the formation of bromine molecular chains inside the nanochannels of the crystals. High-pressure Raman and X-ray diffraction studies demonstrate that high pressure can increase the length of the confined bromine molecular chains and modify the inter- and intramolecular interactions of the molecules. The confined bromine shows a considerably different high-pressure behavior to that of bulk bromine. The pressure-elongated bromine molecular chains can be preserved when the pressure is reduced to ambient pressure. Theoretical simulations explain the experimental results obtained from the Raman spectroscopy and X-ray diffraction studies. Furthermore, we find that the intermolecular distance between confined bromine molecules gradually becomes comparable to the intramolecular bond length in bromine molecules upon compression. This may result in the dissociation of the bromine molecules and the formation of 1D bromine atomic chains at pressures above 24 GPa. Our study suggests that the unique nanoconfinement has a considerable effect on the high-pressure behavior of bromine, and the confined bromine species concomitantly enhance the structural stability of the host AFI single crystals.

  9. Growth and characterization of DAST crystal with large-thickness

    Science.gov (United States)

    Cao, Lifeng; Teng, Bing; Zhong, Degao; Hao, Lun; Sun, Qing

    2016-10-01

    Highly nonlinear optical 4-N, N-dimethylamino-4-N-methyl stilbazolium tosylate (DAST) crystals with large surface and thickness was grown by the slope nucleation technology with slow-cooling in a high concentration solution. The structure and composition of the crystal were confirmed by X-ray diffraction (XRD). The surface morphology of the crystal was characterized by optical microscope. Growth layers were observed on the (001) surface and several isolated "island layers" were also found. The mechanism of crystal growth was analyzed. Etching behavior of the (001) and (00 1 bar) faces of the crystal was studied with methanol, respectively. Optical properties of the crystal were also characterized by UV-vis-NIR spectrometer. The dielectric constants and the dielectric loss were tested by impedance analyzer.

  10. Egg morphology, laying behavior and record of the host plants of Ricania speculum (Walker, 1851), a new alien species for Europe (Hemiptera: Ricaniidae).

    Science.gov (United States)

    Rossi, Elisabetta; Stroiński, Adam; Lucchi, Andrea

    2015-11-17

    The exotic planthopper, Ricania speculum (Ricaniidae) was recently detected in Liguria, in northern Italy, and recorded as a first alert for Europe. The first morphological description of eggs and laying behavior are given. Eggs are inserted into the woody tissue of a wide range of different host plants in such a unique manner among native and alien planthoppers of Italy that it can be used to describe the prevalence and diffusion of the species in new environments, though in the absence of juveniles and/or adults. In addition, the paper lists the host plants utilized for egg laying and describes the eggs.

  11. The behavior of single crystals of NaCl: Ca{sup 2+}, Mn{sup 2+} exposed to gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.04510, Mexico DF (Mexico); Ramos-Bernal, S. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.04510, Mexico DF (Mexico); Martinez, T. [Facultad de Quimica, UNAM, Ciudad Universitaria, Mexico DF 04510 (Mexico); Cruz, E. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.04510, Mexico DF (Mexico); Mosqueira-P.S., G.F. [Direccion General de Divulgacion de la Ciencia de la UNAM, A.P. 70-487, Mexico D F (Mexico); Sanchez-Mejorada, G. [Departamento de Anatomia. Facultad de Medicina UNAM C.U., Mexico DF (Mexico); Negron-Mendoza, A. [Instituto de Ciencias Nucleares, UNAM, A.P. 70-543 C.P.04510, Mexico DF (Mexico)]. E-mail: negron@nuclecu.unam.mx

    2005-12-01

    The behavior of single crystals of NaCl: Ca{sup 2+}, Mn{sup 2+} exposed to gamma rays was explored for its potential usage as a dosimeter. The study was focused to the effect of dose and dose rate. The crystals were analyzed using thermoluminescence (TL). The productions of irradiation defects in the solid were correlated with the glow curve. F-centers were measured as function of the dose. The bleaching of the F-centers produced a decrease of the peak of the glow curve. The results showed that the response is linear in an interval up to 60 Gy.

  12. Crystallization in Emulsions: A Thermo-Optical Method to Determine Single Crystallization Events in Droplet Clusters

    Directory of Open Access Journals (Sweden)

    Serghei Abramov

    2016-08-01

    Full Text Available Delivery systems with a solid dispersed phase can be produced in a melt emulsification process. For this, dispersed particles are melted, disrupted, and crystallized in a liquid continuous phase (melt emulsification. Different to bulk crystallization, droplets in oil-in-water emulsions show individual crystallization behavior, which differs from droplet to droplet. Therefore, emulsion droplets may form liquid, amorphous, and crystalline structures during the crystallization process. The resulting particle size, shape, and physical state influence the application properties of these colloidal systems and have to be known in formulation research. To characterize crystallization behavior of single droplets in micro emulsions (range 1 µm to several hundred µm, a direct thermo-optical method was developed. It allows simultaneous determination of size, size distribution, and morphology of single droplets within droplet clusters. As it is also possible to differentiate between liquid, amorphous, and crystalline structures, we introduce a crystallization index, CIi, in dispersions with a crystalline dispersed phase. Application of the thermo-optical approach on hexadecane-in-water model emulsion showed the ability of the method to detect single crystallization events of droplets within emulsion clusters, providing detailed information about crystallization processes in dispersions.

  13. Crystallization phenomena of isotactic polystyrene

    NARCIS (Netherlands)

    Lemstra, Peter Jan

    1975-01-01

    In this thesis the crystallization behavior of isotactic polystyrene has been described. The kinetics of the crystallization process and the crystalline structure were studied both for crystallization in the bulk and from dilute solutions. ... Zie Summary

  14. MORPHOLOGY EVOLUTION IN PTFE AS A FUNCTION OF MELT TIME AND TEMPERATURE Ⅰ. HIGH MOLECULAR WEIGHT SINGLE- AND MULTI-MOLECULE FOLDED CHAIN SINGLE CRYSTALS AND BAND STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    J.Yang; K.L.Petersen; R.A.Williams; P.H.Geil; T.C.Long; P.Xu

    2005-01-01

    The effect of sintering dispersed dispersion and nano-emulsion particles of high molecular weight polytetrafluoroethylene (PTFE) on a substrate as a function of "melt" time and temperature is described. Folded chain single crystals parallel to the substrate and as ribbons on-edge (with double striations), as well as bands, are produced for longer sintering times; particle merger and diffusion of individual molecules, crystallizing as folded chain, single (or few) molecule,single crystals when "trapped" on the substrate by cooling occur for shorter sintering times. It is suggested the observed structures develop with sintering time, in a mesomorphic melt. The structure of the nascent particles is also discussed.

  15. Discovery of room-temperature spin-glass behaviors in two-dimensional oriented attached single crystals

    Science.gov (United States)

    Ma, Ji; Chen, Kezheng

    2016-05-01

    In this study, room-temperature spin-glass behaviors were observed in flake-like oriented attached hematite (α-Fe2O3) and iron phosphate hydroxide hydrate (Fe5(PO4)4(OH)3·2H2O) single crystals. Remarkably, their coercivity (HC) values were found to be almost invariable at various given temperatures from 5 to 300 K. The spin topographic map in these flakes was assumed as superparamagnetic (SPM) "islands" isolated by spin glass (SG)-like "bridges". A spin-glass model was then proposed to demonstrate the spin frustration within these "bridges", which were formed by the staggered atomic planes in the uneven surfaces belonging to different attached nanoparticles. Under the spatial limitation and coupling shield of these "bridges", the SPM "islands" were found to be collectively frozen to form a superspin glass (SSG) state below 80 K in weak applied magnetic fields; whereas, when strong magnetic fields were applied, the magnetic coupling of these "islands" would become superferromagnetic (SFM) through tunneling superexchange, so that, these SFM spins could antiferromagnetically couple with the SG-like "bridges" to yield pronounced exchange bias (EB) effect.

  16. Effect of the precise branching of polyethylene at each 21st CH2 group on its phase transitions, crystal structure, and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Qui, Wulin [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL); Sworen, John [University of Florida, Jackson Laboratory; Pyda, Marek {nmn} [ORNL; Nowak-Pyda, Elisabieta [University of Tennessee, Knoxville (UTK); Habenschuss, Anton {Tony} [ORNL; Wagener, Kenneth [University of Florida; Wunderlich, Bernhard {nmn} [ORNL

    2006-01-01

    Three linear polyethylenes with branches at every 21st backbone atom have been analyzed by differential scanning calorimetry (DSC) and quasi-isothermal, temperature-modulated DSC. The branches were methyl (PE1M), dimethyl (PE2M), and ethyl groups (PE1E). Linear polyethylene (HDPE) and atactic poly(octadecyl acrylate) (PODA) were also analyzed. All were compared to a random poly(ethylene-co-octene-1) of similar branch concentration (LLDPE) and poly(4,4'-phthaloimidobenzoyldoeicosyleneoxycarbonyl) (PEIM-22). The HDPE has the highest melting temperature and crystallinity with relatively large contributions of reversing melting when grown as folded-chain crystals. The precisely branched polyethylenes and copolymers have lower melting temperatures and heats of fusion. Of the branched samples, PE1M crystallizes more readily, followed by PE1E and PE2M, with PE2M showing cold crystallization. In contrast to paraffins of equal length which melt fully reversibly, the precisely designed, branched polymers melt largely irreversibly with small amounts of reversing melting, which is least for the best-grown crystals. The PE1M forms monoclinic, PE1E, pseudohexagonal, or triclinic crystals, and PE2M has a multitude of crystal structures.

  17. Morphologies of A_2B Simple Graft Copolymer Blends: Copolymer/Copolymer and Copolymer/Homopolymer Systems to Further Elucidate the Stability of Simple Graft Phase Behavior

    Science.gov (United States)

    Lee, Chin; Pochan, Darrin; Gido, Samuel P.; Pispas, Stergios; Mays, Jimmy; Tan, Nora Beck; Trevino, Samuel

    1997-03-01

    The morphological behavior of two series of binary blends of A_2B simple graft block copolymers (A is polyisoprene and B is polystyrene) was characterized via transmission electron microscopy (TEM) and small-angle neutron scattering (SANS). Binary blends of A_2B samples with other A_2B samples of similar relative volume fractions were composed to map out the volume fraction window of stability of the randomly oriented worm phase, or ROW. This novel equilibrium phase behavior was found to occur in a neat A_2B sample with a B volume fraction of 0.81. At this unique composition the single B graft chain first becomes large enough to force the two A chains to the concave side of the AB interface in the microphase separated state. Another set of binary blends of A_2B samples was composed with the respective homopolymers in order to more rigorously determine the phase boundaries relative to volume fraction of the respective microphase separated morphologies in the A_2B systems.

  18. Influence of La2O3 on crystallization behavior of free-fluoride mould flux and heat transfer of slag films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fang; CHEN Yuan; WANG Yici; DONG Fang; WU Meiqiang

    2011-01-01

    In order to research the influence of La2O3 on crystallization behavior of free-fluoride mould flux and the heat transfer of slag film,flee-fluoride mould flux with various La2O3 content were investigated by using self-made mould simulator, comprehensive thermal analyzer and SEM-EDS. With the increase of La2O3 content from 0% to 20%, the crystallization ratios of mould flux films were improved from 2% to 90% and the thicknesses of films were also enhanced over two times. Moreover, crystallization temperature was greatly raised and its increasing extent reached 100 ℃. It could also decrease the melting temperature of casting powder about 50 ℃. However, the undissolved La2O3 particles appeared in slag film if the ratio of La2O3 in flee-fluoride mould flux was much too high.

  19. Crystal Structure and Catalytic Behavior in Olefin Epoxidation of a One-Dimensional Tungsten Oxide/Bipyridine Hybrid.

    Science.gov (United States)

    Amarante, Tatiana R; Antunes, Margarida M; Valente, Anabela A; Paz, Filipe A Almeida; Pillinger, Martyn; Gonçalves, Isabel S

    2015-10-19

    The tungsten oxide/2,2'-bipyridine hybrid material [WO3(2,2'-bpy)]·nH2O (n = 1-2) (1) has been prepared in near quantitative yield by the reaction of H2WO4, 2,2'-bpy, and H2O in the mole ratio of ca. 1:2:700 at 160 °C for 98 h in a rotating Teflon-lined digestion bomb. The solid-state structure of 1 was solved and refined through Rietveld analysis of high-resolution synchrotron X-ray diffraction data collected for the microcrystalline powder. The material, crystallizing in the orthorhombic space group Iba2, is composed of a one-dimensional organic-inorganic hybrid polymer, ∞(1)[WO3(2,2'-bpy)], topologically identical to that found in the previously reported anhydrous phases [MO3(2,2'-bpy)] (M = Mo, W). While in the latter the N,N'-chelated 2,2'-bpy ligands of adjacent corner-shared {MO4N2} octahedra are positioned on the same side of the 1D chain, in 1 the 2,2'-bpy ligands alternate above and below the chain. The catalytic behavior of compound 1 for the epoxidation of cis-cyclooctene was compared with that for several other tungsten- or molybdenum-based (pre)catalysts, including the hybrid polymer [MoO3(2,2'-bpy)]. While the latter exhibits superior performance when tert-butyl hydroperoxide (TBHP) is used as the oxidant, compound 1 is superior when aqueous hydrogen peroxide is used, allowing near-quantitative conversion of the olefin to the epoxide. With H2O2, compounds 1 and [MoO3(2,2'-bpy)] act as sources of soluble active species, namely, the oxodiperoxo complex [MO(O2)2(2,2'-bpy)], which is formed in situ. Compounds 1 and [WO(O2)2(2,2'-bpy)] (2) were further tested in the epoxidation of cyclododecene, trans-2-octene, 1-octene, (R)-limonene, and styrene. The structure of 2 was determined by single-crystal X-ray diffraction and found to be isotypical with the molybdenum analogue.

  20. Transport Processes in Dendritic Crystallization

    Science.gov (United States)

    Glicksman, M. E.

    1984-01-01

    Free dentritic growth refers to the unconstrained development of crystals within a supercooled melt, which is the classical dendrite problem. The development of theoretical understanding of dendritic growth and its experimental status is sketched showing that transport theory and interfacial thermodynamics (capillarity theory) are insufficient ingredients to develop a truly predictive model of dendrite formation. The convenient, but incorrect, notion of maximum velocity was used for many years to estimate the behavior of dendritic transformations until supplanted by modern dynamic stability theory. The proper combinations of transport theory and morphological stability seem to be able to predict the salient aspects of dendritic growth, especially in the neighborhood of the tip.

  1. Morphology and In Vitro Behavior of Electrospun Fibrous Poly(D,L-lactic acid for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Toshihiro Inami

    2013-01-01

    Full Text Available This work describes the fabrication, optimization, and characterization of electrospun fibrous poly(D,L-lactic acid (PDLLA for biomedical applications. The influences of the polymer concentration of the electrospinning solution (5, 10, or 15 wt% and the solution flow rate (0.1, 0.5, 1.0, or 2.0 mL/h on the morphology of the obtained fibrous PDLLA were evaluated. The in vitro biocompatibility of two types of PDLLA, ester terminated PDLLA (PDLLA-R and carboxyl terminated PDLLA (PDLLA-COOH, was evaluated by monitoring apatite formation on samples immersed in Hanks’ balanced salt (HBS solution. 15 wt% polymer solution was the most beneficial for preparing a fibrous PDLLA structure. Meanwhile, no differences in morphology were observed for PDLLA prepared at various flow rates. Apatite precipitate is formed on both types of PDLLA only 1 day after immersion in HBS solution. After 7 days of immersion, PDLLA-COOH showed greater apatite formation ability compared with that of PDLLA-R, as measured by thin-film X-ray diffraction. The results indicated that the carboxyl group is effective for apatite precipitation in the body environment.

  2. Crystal micromorphologies and forming voltage effect on resistance switching behaviors in Ti/Pr(Sr{sub 0.1}Ca{sub 0.9}){sub 2}Mn{sub 2}O{sub 7}/Pt devices

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuchen; Song, Liwei; Hua, Lifang; Cai, Wenhui; Chen, Wei [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China); Zhao, Xu, E-mail: xzhao@hebtu.edu.cn [College of Physics Science & Information Engineering, Hebei Normal University, Shijiazhuang 050024 (China); Key Laboratory of Advanced Films of Hebei Province, Shijiazhuang 050024 (China)

    2015-10-15

    Two Pr(Sr{sub 0.1}Ca{sub 0.9}){sub 2}Mn{sub 2}O{sub 7} (PSCMO)-based devices (Ti/PSCMO-1/Pt and Ti/PSCMO-2/Pt) have been prepared by pulsed laser deposition, and the micromorphology of the films can be controlled through the different deposition condition. PSCMO-1 film with a smaller grain size grows with a near-random arrangement, whereas columnar grains with a larger grain size appear in the Ti/PSCMO-2/Pt device. The I–V curves in Ti/PSCMO-2/Pt device show the higher resistance ratio and larger hysteresis than that in the Ti/PSCMO-1/Pt device without forming process. The electron transport property in the PSCMO-2 film shows the higher resistance and metal behavior in room temperature. By fitting the I–V curves, we found that the conduction process in Ti/PSCMO-1/Pt device is dominated by Schottky barrier mechanism, but the conduction behavior in Ti/PSCMO-2/Pt device are dominated by trap-charged space-charge-limited current (SCLC) mechanism. Interesting, after a forming process, the Ti/PSCMO-1/Pt device also displays the higher resistance ratio and larger hysteresis, which can be explained by SCLC mechanism. Our results suggest that the crystal micromorphology and grain size may play a critical role in oxygen vacancy movement, and result in the transformation of resistance switching along with a higher resistance ratio and larger hysteresis in the Ti/PSCMO-2/Pt device. - Highlights: • Two different Pr(Sr{sub 0.1}Ca{sub 0.9}){sub 2}Mn{sub 2}O{sub 7}-based devices have been prepared. • The device with larger grain and columnar arrangement shows higher resistance ratio. • Crystal morphologies and grain size play critical role in oxygen vacancy movement.

  3. The effects of initial welding temperature and welding parameters on the crystallization behaviors of laser spot welded Zr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huei-Sen, E-mail: huei@mail.isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung County 84001, Taiwan (China); Chiou, Mau-Sheng; Chen, Hou-Guang [Department of Materials Science and Engineering, I-Shou University, Kaohsiung County 84001, Taiwan (China); Jang, Jason Shian-Ching [Department of Mechanical Engineering, National Central University, Taoyuan County 32001, Taiwan (China)

    2011-09-15

    This study investigated the effects of the initial welding temperature (IWT) and welding parameters on the crystallization behaviors of laser spot welded (Zr{sub 53}Cu{sub 30}Ni{sub 9}Al{sub 8})Si{sub 0.5} bulk metallic glass (BMG). After the welding process, the microstructure evolution, glass-forming ability (GFA) and mechanical properties of the welded samples were determined by a combination of scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and the Vicker's micro-hardness test. The results showed that the heat-affected zone (HAZ) crystallization seemed avoidable under the room temperature welding process. However, with a combination of a lower energy input (welding Condition C) and a lower IWT (at 0 deg. C), a crystallization-free HAZ was finally obtained. Using the above welding condition into the refined heat flow equation, a critical retention time of 79 ms for the crystallization temperature interval was estimated. Moreover, as the laser welded samples came to crystallization in the HAZ, it was observed that a higher content of spherical-type crystalline precipitates tended to result in a higher value of glass transition temperature, T{sub g}. Therefore, the GFA indices, {Delta}T{sub x}, {gamma} and {gamma}{sub m}, were reduced. Furthermore, it was found that the micro-hardness value in the HAZ crystallization area was decreased due to the massive cracks formed in most parts of the crystalline precipitates. For a crystallization-free HAZ, the hardness seemed unaffected.

  4. Voltage behavior along the irregular dendritic structure of morphologically and physiologically characterized vagal motoneurons in the guinea pig.

    Science.gov (United States)

    Nitzan, R; Segev, I; Yarom, Y

    1990-02-01

    1. Intracellular recordings from neurons in the dorsal motor nucleus of the vagus (vagal motoneurons, VMs) obtained in the guinea pig brain stem slice preparation were used for both horseradish peroxidase (HRP) labeling of the neurons and for measurements of their input resistance (RN) and time constant (tau 0). Based on the physiological data and on the morphological reconstruction of the labeled cells, detailed steady-state and compartmental models of VM were built and utilized to estimate the range of membrane resistivity, membrane capacitance, and cytoplasm resistivity values (Rm, Cm, and Ri, respectively) and to explore the integrative properties of these cells. 2. VMs are relatively small cells with a simple dendritic structure. Each cell has an average of 5.3 smooth (nonspiny), short (251 microns) dendrites with a low order (2) of branching. The average soma-dendritic surface area of VMs is 9,876 microns 2. 3. Electrically, VMs show remarkably linear membrane properties in the hyperpolarizing direction; they have an average RN of 67 +/- 23 (SD) M omega and a tau 0 of 9.4 +/- 4.1 ms. Several unfavorable experimental conditions precluded the possibility of faithfully recovering ("peeling") the first equalizing time constant (tau 1) and, thereby, of estimating the electrotonic length (Lpeel) of VMs. 4. Reconciling VM morphology with the measured RN and tau 0 through the models, assuming an Ri of 70 omega.cm and a spatially uniform Rm, yielded an Rm estimate of 5,250 omega.cm2 and a Cm of 1.8 microF/cm2. Peeling theoretical transients produced by these models result in an Lpeel of 1.35. Because of marked differences in the length of dendrites within a single cell, this value is larger than the maximal cable length of the dendrites and is twice as long as their average cable length. 5. The morphological and physiological data could be matched indistinguishably well if a possible soma shunt (i.e., Rm, soma less than Rm, dend) was included in the model. Although

  5. Evolution and diversity in avian vocal system: an Evo-Devo model from the morphological and behavioral perspectives.

    Science.gov (United States)

    Matsunaga, Eiji; Okanoya, Kazuo

    2009-04-01

    Birds use various vocalizations to mark their territory and attract mates. Three groups of birds (songbirds, parrots, and hummingbirds) learn their vocalizations through imitation. In the brain of such vocal learners, there is a neural network called the song system specialized for vocal learning and production. In contrast, birds such as chickens and pigeons do not have such a neural network and can only produce innate sounds. Since each avian species shows distinct, genetically inherited vocal learning abilities that are related to its morphology, the avian vocal system is a good model for studying the evolution of functional neural circuits. Nevertheless, studies on avian vocalization from an evolutionary developmental-biological (Evo-Devo) perspective are scant. In the present review, we summarize the results of songbird studies and our recent work that used the Evo-Devo approach to understand the evolution of the avian vocal system.

  6. Chronic administration of the neurotrophic agent cerebrolysin ameliorates the behavioral and morphological changes induced by neonatal ventral hippocampus lesion in a rat model of schizophrenia.

    Science.gov (United States)

    Vázquez-Roque, Rubén Antonio; Ramos, Brenda; Tecuatl, Carolina; Juárez, Ismael; Adame, Anthony; de la Cruz, Fidel; Zamudio, Sergio; Mena, Raúl; Rockenstein, Edward; Masliah, Eliezer; Flores, Gonzalo

    2012-01-01

    Neonatal ventral hippocampal lesion (nVHL) in rats has been widely used as a neurodevelopmental model to mimic schizophrenia-like behaviors. Recently, we reported that nVHLs result in dendritic retraction and spine loss in prefrontal cortex (PFC) pyramidal neurons and medium spiny neurons of the nucleus accumbens (NAcc). Cerebrolysin (Cbl), a neurotrophic peptide mixture, has been reported to ameliorate the synaptic and dendritic pathology in models of aging and neurodevelopmental disorder such as Rett syndrome. This study sought to determine whether Cbl was capable of reducing behavioral and neuronal alterations in nVHL rats. The behavioral analysis included locomotor activity induced by novel environment and amphetamine, social interaction, and sensoriomotor gating. The morphological evaluation included dendritic analysis by using the Golgi-Cox procedure and stereology to quantify the total cell number in PFC and NAcc. Behavioral data show a reduction in the hyperresponsiveness to novel environment- and amphetamine-induced locomotion, with an increase in the total time spent in social interactions and in prepulse inhibition in Cbl-treated nVHL rats. In addition, neuropathological analysis of the limbic regions also showed amelioration of dendritic retraction and spine loss in Cbl-treated nVHL rats. Cbl treatment also ameliorated dendritic pathology and neuronal loss in the PFC and NAcc in nVHL rats. This study demonstrates that Cbl promotes behavioral improvements and recovery of dendritic neuronal damage in postpubertal nVHL rats and suggests that Cbl may have neurotrophic effects in this neurodevelopmental model of schizophrenia. These findings support the possibility that Cbl has beneficial effects in the management of schizophrenia symptoms.

  7. Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO 4, 2H 2O) and its transformation to octacalcium phosphate and apatite

    Science.gov (United States)

    Lundager Madsen, Hans E.

    2008-05-01

    Brushite, forming tabular crystals, has been precipitated at 25 °C in the presence of each of 14 different di- and trivalent metal ions. The influence of these ions at micromolar concentrations on the solvent-mediated phase transformation of brushite to more basic calcium phosphates has been studied as well. The effect of additives on brushite crystallization was pH-dependent, which could be related to the presence or absence of amorphous precipitate. In the latter case the course of the crystallization process could be followed by recording pH as function of time. For half of the additives kinetic analysis was possible and showed that the crystal growth mechanism is surface nucleation. Edge free energy is lowered in the presence of an additive. Zn favoured aggregates, and the transition metals with the exceptions of Mn(II), Co(II) and Cu(II) favoured irregular growth. Zn inhibited lateral growth, as did Cd and Cr(III) at low and Cu(II) at high pH. Most of the ions have a marked effect on the transformation to octacalcium phosphate (OCP) and hydroxyapatite (HAP) as well. In both cases Cu(II) and Zn are strong inhibitors, whereas Pb(II) is a moderate promotor. Fe in both oxidation states, Co(II), Mn(II) and Sr are intermediate in effect on phase transformation. Inhibition may be caused by adsorbed foreign ions impeding growth of nuclei or by poisoning of the substrate for heterogeneous nucleation, i.e. brushite crystals. Promotion is explained by the formation of nuclei with suitable crystal structure, e.g. apatite/pyromorphite (Ca,Pb) 5OH(PO 4) 3 in the case of Pb.

  8. SIMULATED THREE DIMENSIONAL MORPHOLOGICAL LANDSCAPE OF POLYMER SINGLE CRYSTALS BY PHASE-FIELD MODEL%聚合物单晶生长的三维相场模拟研究

    Institute of Scientific and Technical Information of China (English)

    王冬; 苗宗成; 王向轲; 曹晖

    2013-01-01

    The polymer crystallization process and mechanism were studied by computer simulation method. It is benefit to understand the crystallization kinetics by comparing the simulated results with the experimental results. Based on a nonconserved spatiotemporal Ginzburg-Landau equation TDGL model, a novel three dimensional phase field model was established by combining the cellular automaton method with the general phase field model. For simulating the real three dimensional polymer crystallization process, the cellular automaton method was modified by the different steric structures and discretization methods. The different steric structures or discretization methods are related to the lattice parameters of syndiotactic polypropylene single crystals and the crystal growth faces of polymer single crystals. It was suggested that the novel method is a way of building bridges between the diffusion equation and polymer characterization. Moreover, the diffusion equations are discretized according to the diffusion coefficient of every lattice site in various crystal growth faces,and the shape of lattice is selected based on the real proportion of the unit cell dimensions. Especially, the other physics parameters of syndiotactic polypropylene also were introduced into the phase field model. The spatio-temporal growth of syndiotactic polypropylene single crystals during isothermal crystallization was simulated by the novel three dimensional phase field model. Three dimensional numerical calculations are performed to elucidate the faceted single crystal growth including square, rectangular, lozenge-shaped, and hexagonal single crystals. The corresponding three dimensional results were illustrated by the MatLab. Our simulated patterns are in good agreement with the experimental morphologies, and the physical origin of polymer single crystal growth is discussed.%利用元胞自动机方法与相场模型的结合建立新型三维模拟相场模型.同时,为模拟真实的、三

  9. Isothermal Crystallization Behavior of Cocoa Butter at 17 and 20 °C with and without Limonene.

    Science.gov (United States)

    Rigolle, Annelien; Goderis, Bart; Van Den Abeele, Koen; Foubert, Imogen

    2016-05-04

    Differential scanning calorimetry and real-time X-ray diffraction using synchrotron radiation were used to elucidate isothermal cocoa butter crystallization at 17 and 20 °C in the absence and presence of different limonene concentrations. At 17 °C, a three-step crystallization process was visible for pure cocoa butter, whereby first an unknown structure with long spacings between a 2L and 3L structure was formed that rapidly transformed into the more stable α structure, which in turn was converted into more stable β' crystals. At 20 °C, an α-mediated β' crystallization was observed. The addition of limonene resulted in a reduction of the amount of unstable crystals and an acceleration of polymorphic transitions. At 17 °C, the crystallization process was accelerated due to the acceleration of the formation of more stable polymorphic forms, whereas there were insufficient α crystals for an α-mediated β' nucleation at 20 °C, resulting in a slower crystallization process.

  10. Cu或Sn与Fe共掺杂对ZnO晶体形貌和磁性的影响%Effects of Cu or Sn and Fe Co-Doping on the Morphology and Magnetism of ZnO Crystals

    Institute of Scientific and Technical Information of China (English)

    刘超; 刘继文; 贾利云; 张礼刚; 韦志仁

    2012-01-01

    Through adding a certain amount of analytical pure FeSO4·7H2O and CuCl2·2H2O or SnCl2·2H2O in the precursors Zn (OH)2 , the ZnO crystals were synthesized by hydrother-mal method with 3 mol/L KOH as a mineralizer, the degree of filling of 35% , reaction temperature of 430 ℃ and reaction time of 24 h. The measuring results show that the Fe doped ZnO crystals have no magnetic saturation phenomenon and hysteresis loop at room temperature, and thus have no room temperature ferromagnetism. For Cu-Fe co-doped ZnO crystals, the drop of the magnetic moment decreases with the rise of temperature, the measuring results show that the Cu-Fe co-doped ZnO crystals have magnetic saturation phenomenon and hysteresis loop at room temperature. The morphology of Fe-Sn co-doped ZnO crystals is the best. The magnetic moment of Fe-Sn co-doped ZnO crystals is bigger, and does not fall with the rise of temperature. Fe-Sn co-doped ZnO crystals have room temperature ferromagnetism and paramagnetic. By adding Cu or Sn, the magnetism and crystal morphology of Fe doped ZnO crystals are improved.%采用水热法,在前驱物Zn (OH)2中添加一定量的分析纯FeSO4·7H2O和CuCl2·2H2O或SnCl2·2H2O,以3 mol/L KOH溶液作为矿化剂,填充度为35%,反应温度430℃,经24 h反应合成ZnO晶体.掺杂Fe的ZnO晶体室温下测量无磁饱和现象和磁滞回线,不具备室温铁磁性.Cu与Fe共掺杂合成ZnO晶体,随温度的升高其比磁化强度下降的幅度减小,室温下测量具有磁饱和现象和磁滞回线.Sn与Fe共掺杂的晶体形貌最好,且比磁化强度较大,没有随温度升高而下降,存在室温铁磁性和顺磁性.Cu或Sn元素的加入增加了掺杂Fe的ZnO晶体的磁性,改善了晶体形貌.

  11. Well-defined crystallites autoclaved from the nitrate/NH{sub 4}OH reaction system as the precursor for (Y,Eu){sub 2}O{sub 3} red phosphor: Crystallization mechanism, phase and morphology control, and luminescent property

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Qi [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Li Jiguang, E-mail: LI.Jiguang@nims.go.jp [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan); Ma, Renzhi; Sasaki, Takayoshi [World Premier International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044 (Japan); Yang, Xiaojing [College of Chemistry, Beijing Normal University, Beijing 100875 (China); Li Xiaodong; Sun Xudong [Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110004 (China); Sakka, Yoshio [Advanced Materials Processing Unit, National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki 305-0047 (Japan)

    2012-08-15

    Autoclaving the rare-earth nitrate/NH{sub 4}OH reaction system under the mild conditions of 120-200 Degree-Sign C and pH 6-13 have yielded four types of well-crystallized compounds with their distinctive crystal shapes, including Ln{sub 2}(OH){sub 5}NO{sub 3}{center_dot}nH{sub 2}O (Ln=Y and Eu) layered rare-earth hydroxide (hexagonal platelets), Ln{sub 4}O(OH){sub 9}NO{sub 3} oxy-hydroxyl nitrate (hexagonal prisms and microwires), Ln(OH){sub 2.94}(NO{sub 3}){sub 0.06}{center_dot}nH{sub 2}O hydroxyl nitrate (square nanoplates), and Ln(OH){sub 3} hydroxide (spindle-shaped microrods). The occurrence domains of the compounds are defined. Ammonium nitrate (NH{sub 4}NO{sub 3}) as a mineralizer effectively widens the formation domains of the NO{sub 3}{sup -} containing compounds while leads to larger crystals at the same time (up to 0.3 mm). Crystallization mechanisms of the compounds and the effects of NH{sub 4}NO{sub 3} were discussed. Optical properties (PLE/PL) of the four phases were characterized in detail and were interpreted from the different site symmetries of Eu{sup 3+}. The compounds convert to cubic-structured (Y{sub 0.95}Eu{sub 0.05}){sub 2}O{sub 3} by annealing at 600 Degree-Sign C while retaining their original crystal morphologies. The resultant phosphor oxides of diverse particle shapes exhibit differing optical properties, in terms of luminescent intensity, asymmetry factor of luminescence and fluorescence lifetime, and the underlying mechanism was discussed. - Graphical abstract: Well-defined crystallites of the various phases have been autoclaved from the nitrate/NH{sub 4}OH reaction system. Crystallization mechanisms of the compounds and the effects of NH{sub 4}NO{sub 3} were discussed. Highlights: Black-Right-Pointing-Pointer Well-defined crystallites of four phases have been hydrothermally synthesized. Black-Right-Pointing-Pointer The occurrence domains of the compounds are defined. Black-Right-Pointing-Pointer Crystallization mechanisms and the

  12. [Spherical crystallization in pharmaceutical technology].

    Science.gov (United States)

    Szabóné, R P; Pintyéné, H K; Kása, P; Erös, I; Hasznosné, N M; Farkas, B

    1998-03-01

    Physical properties of crystals, such as size, crystal size distribution and morphology, may predetermine the usefulness of crystalline materials in many pharmaceutical application. The above properties can be regulated with the crystallization process. The spherical crystals are suitable for direct tablet-making because of their better flowability and compressibility properties. These crystals can be used in the filling of the capsule. In this work, the spherical crystals such as "single crystal", "poly-crystals" and agglomerates with other excipients are collected from the literature and the experimental results of the authors. A close cooperation between chemists and the pharmaceutical technologists can help for doing steps in this field.

  13. Deltamethrin-mediated survival, behavior, and oenocyte morphology of insecticide-susceptible and resistant yellow fever mosquitos (Aedes aegypti).

    Science.gov (United States)

    Marriel, Nadja Biondine; Tomé, Hudson Vaner Ventura; Guedes, Raul Carvalho Narciso; Martins, Gustavo Ferreira

    2016-06-01

    Insecticide use is the prevailing control tactic for the mosquito Aedes aegypti, a vector of several human viruses, which leads to ever-increasing problems of insecticide resistance in populations of this insect pest species. The underlying mechanisms of insecticide resistance may be linked to the metabolism of insecticides by various cells, including oenocytes. Oenocytes are ectodermal cells responsible for lipid metabolism and detoxification. The goal of this study was to evaluate the sublethal effects of deltamethrin on survival, behavior, and oenocyte structure in the immature mosquitoes of insecticide-susceptible and resistant strains of A. aegypti. Fourth instar larvae (L4) of both strains were exposed to different concentrations of deltamethrin (i.e., 0.001, 0.003, 0.005, and 0.007 ppm). After exposure, L4 were subjected to behavioral bioassays. Insecticide effects on cell integrity after deltamethrin exposure (at 0.003 or 0.005 ppm) were assessed by processing pupal oenocytes for transmission electron microscopy or TUNEL reaction. The insecticide resistant L4 survived all the tested concentrations, whereas the 0.007-ppm deltamethrin concentration had lethal effects on susceptible L4. Susceptible L4 were lethargic and exhibited less swimming activity than unexposed larvae, whereas the resistant L4 were hyperexcited following exposure to 0.005 ppm deltamethrin. No sublethal effects and no significant cell death were observed in the oenocytes of either susceptible or resistant insects exposed to deltamethrin. The present study illustrated the different responses of susceptible and resistant strains of A. aegypti following exposure to sublethal concentration of deltamethrin, and demonstrated how the behavior of the immature stage of the two strains varied, as well as oenocyte structure following insecticide exposure.

  14. Research on the Influence of Pyrolysis Reaction Rate on Light Magnesium Carbonate Crystal Morphology%热解反应速率对轻质碳酸镁晶体形貌影响研究

    Institute of Scientific and Technical Information of China (English)

    万建军; 于博; 刘安双

    2013-01-01

    针对重镁水热解反应特点,采用抽真空降低系统中CO2气体分压的方式,加速重镁水热解反应正向反应速率.通过观察、对比一定热解温度,不同真空度下反应生成的轻质碳酸镁晶体型貌,得出结论:降低CO2气体分压,提高热解反应速率,会减缓轻质碳酸镁晶体型貌由棒状→片状→球状这一转变过程.当热解温度为50℃,提高反应速率,会促进轻质碳酸镁晶体团聚,反应速率越快,团聚现象越明显.%According to the characteristics of the heavy magnesium water pyrolysis and using vacuum to reduce the partial pressure of C02 gas in the system, the positive reaction rate of the pyrolysis reaction of heavy magnesium water is accelerated. By observation and comparison of light magnesium carbonate crystal morphology generated with certain pyrolysis temperature and different degree of vacuum, it can be concluded that the transition process of the light magnesium carbonate crystal morphology will slow down when reducing the partial pressure of C02 gas and increasing the rate of pyrolysis reaction. When the temperature of pyrolysis reaches 50 ℃ , the reunion of light magnesium carbonate crystal will be accelerated by improving the reaction rate. The faster the reaction rate is, the more obvious the reunion phenomenon is.

  15. 多晶形γ-CuI晶体的制备与导电性能表征%Preparation and Conductivity Characterization of γ-CuI Crystal with Different Morphologies

    Institute of Scientific and Technical Information of China (English)

    刘飞; 祝博; 王晓丹; 曹建新

    2012-01-01

    The γ-CuI crystals with different morphologies were prepared using crude iodine and CuSO4 as raw material, N2H4 ·H2O as reducing agent by liquid phase method and micro-emulsion technique respectively. The effect of liquid phase method and micro-emulsion technique conditions on the microstructure of γ-CuI crystals were studied by XRD and SEM techniques, and the influence of different morphologies on the conductivity of γ-CuI crystal was also analyzed. The results indicated that γ-CuI crystals with nano spherical and triangular pyramidal shapes were prepared respectively by using the liquid phase method, at 500 r/min for 30 min, PEG-6000 and citric acid as surfactants respectively. The γ-Cul crystal with hexagon shape was synthesized from the CuSO4 and NH4I solution prepared by controlling the CTAB: n-pentanol: cyclohexane: water (volume ratio) of 3:3:7:10 respectively, at 500 r/min for 2 h. Different morphologies and crystal sizes had great impact on the conductivity of γ-CuI, and the γ-CuI crystal with nano spherical shape has the lowest conductivity of 4. 9 Ω·cm.%以粗碘和硫酸铜为原料,水合肼为还原剂,利用液相法和微乳液法合成了不同晶形γ-CuI晶体.采用XRD和SEM研究了液相法和微乳液工艺技术条件对合成γ-CuI微观结构的影响,分析了具有不同微观结构γ-CuI对其导电性能的影响.结果表明,分别以聚乙二醇(PEG-6000)和柠檬酸为表面活性剂,采用液相法常温下500 r/min反应30 min可制备出纳米球形和三角锥形γ-CuI.按CTAB-正戊醇-环己烷-水配比3∶3∶7∶10分别配制硫酸铜和碘化铵微乳液,常温下500 r/min反应2h可制备出六边形薄片状γ-CuI.不同微观形貌和粒径分布对γ-CuI产品电导率具有较大的影响.纳米球形γ-CuI电导率最小,为4.9 Ω·cm.

  16. Comparing Various Type of Natural Fibers as Filler in TPU: Mechanical Properties, Morphological and Oil Absorption Behavior

    Directory of Open Access Journals (Sweden)

    Ahad Nor Azwin

    2017-01-01

    Full Text Available The idea of using natural fibers as filler in various polymers has been extensively studied. Various types of natural fibers and polymers have been identified and it can be varied according to the particular application and the two main composite materials will have advantages and disadvantages of each. However, natural fibers are usually selected as filler because it is readily available and environmentally friendly, inexpensive, non-toxic, biodegradable and still have good characteristics for a variety of uses. In this study, four types of natural fiber have been used which; coconut shell, coconut fiber, corn cob, and pineapple skin, as fillers in thermoplastic polyurethane (TPU. The mixing process conducted through melt mixing techniques. The percentage of TPU and natural fibers are 100/0, 95/5, 90/10 and 85/15. Different type of fiber will affect the mechanical properties of the composites and have been studied through tensile testing. It showed that the result for pineapple fiber at 5% was the highest and can also be related to the characterizations of this composite that have been studied via the SEM morphology. Swelling testing is also having been done to prove the absorbency ability by natural fiber composites in cooking oil and engine oil. Then it concluded that the pineapple fiber absorbed large amount of both oil compared to others.

  17. Toxicological evaluation of nano-sized colloidal silver in experiments on mice. behavioral reactions, morphology of internals

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2015-06-01

    Full Text Available The results of toxicity studies of nano-sized colloidal silver (NCC, the most widely used in medicine, food and life, are given. When evaluating safe doses of silver NP (using commercially available NCC solution stabilized with polyvinylpyrrolidone (PVP, with the size of silver NP at the range of 5-80 nm when orally administered to male mice, BALB/c mice at doses of 0.1; 1.0 and 10 mg/kg of body weight per silver different effects from the motor and orienting-exploratory activity were revealed, for the part of them the dependence on the dose of the NCC was typical. The following peculiarities were found: reduction in motor activity to reduce the frequency of activities requiring physical effort, reduction of the execution time of these actions; increasing anxiety in terms of frequency and duration of attacks of orienting-investigative activity and animals washing. Morphological examination revealed a series of tissue changes of internal organs (especially liver and spleen, to a lesser extent – kidney, heart and colon with increase of the spectrum and severity of structural changes with increasing doses of the NCC. From the combination of the data the conclusion was made that maximal ineffective dose (NOAEL of this nanomaterial at subacute oral administration is no more than 0.1 mg/kg body weight.

  18. FRACTIONATED CRYSTALLIZATION OF HDPE IN PS/POE/HDPE/SBS BLENDS

    Institute of Scientific and Technical Information of China (English)

    Ming-ming Ding; Xiao-ting Fu; Jing Cao; Qin Zhang; Chang-yue Yang; Qiang Fu

    2008-01-01

    The fractionated crystallization behavior of the minor dispersed HDPE phase in PS/POE/HDPE/SBS quaternaryblends was investigated by differential scanning calorimetry (DSC).Interestingly,we found that the fractionated crystallization behavior of HDPE was molecular weight dependent.At a fixed composition,HDPE with lower molecular weight showed more obvious fractionated crystallization behavior than HDPE with higher molecular weight.This was ascribed to a finer dispersion of HDPE with lower molecular weight,as evidenced by SEM observations.The fractionated crystallization behavior of HDPE in the blends became less obvious with increasing of its content,due to a change of phase morphology from droplet to co-continuous structure.Correspondingly,a change of tensile toughness of the blends from brittle to ductile mode was observed.

  19. THE CRYSTALLIZATION OF POTASSIUM GERMANATE GLASS WITH HIGH CONTENT OF NIOBIUM OXIDE

    Directory of Open Access Journals (Sweden)

    SRĐAN D.MATIJAŠEVIĆ

    2012-03-01

    Full Text Available Potassium germanate glass with molar ratio [GeO2]/[K2O] = 1.2 and Nb2O5 content of 34 mol% have been synthesized by a melt-quenching method. The crystallization behavior under non-isothermal and isothermal crystallization conditions was investigated. The results showed that this glass exposed complex primary crystallization. In the temperature range 800 °C. K10Nb22Ge4O68 and metastable KNbO3 and K4Nb6O17 were formed as secondary phases. The crystallization commenced at T > 640 °C with high homogeneous nucleation rate and spherulite crystal growth morphology. DTA curves recorded for powder samples particle size 0.1 mm showed two exothermic peaks and two endothermic peaks within temperature range of T = 640-1020 °C. The analysis of the dominant crystallization mechanism of powder glass sample and kinetics of crystallization is presented.

  20. Magnetic and magnetostrictive behavior of Dy 3+ doped CoFe 2O 4 single crystals grown by flux method

    Science.gov (United States)

    Kambale, Rahul C.; Song, K. M.; Won, C. J.; Lee, K. D.; Hur, N.

    2012-02-01

    We studied the effect of Dy 3+ content on the magnetic properties of cobalt ferrite single crystal. The single crystals of CoFe 1.9Dy 0.1O 4 were grown by the flux method using Na 2B 4O 7.10 H 2O (Borax) as a solvent (flux). The black and shiny single crystals were obtained as a product. The X-ray diffraction analysis at room temperature confirmed the spinel cubic structure with lattice constant a=8.42 Å of the single crystals. The compositional analysis endorses the presence of constituents Co, Fe and Dy elements after sintering at 1300 °C within the final structure. The magnetic hysteresis measurements at various temperatures viz. 10 K, 100 K, 200 K and 300 K reveal the soft ferrimagnetic nature of the single crystal than that of for pure CoFe 2O 4. The observed saturation magnetization ( Ms) and coercivity ( Hc) are found to be lower than that of pure CoFe 2O 4 single crystal. The magnetostriction ( λ) measurement was carried out along the [001] direction. The magnetic measurements lead to conclude that the present single crystals can be used for magneto-optic recording media.

  1. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    Science.gov (United States)

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied apes and monkeys. Compared with extant apes, modern humans exhibit a reduction in masseter PCSA relative to condyle-M1 length but retain relatively long fibers, suggesting humans may have sacrificed relative masseter muscle force during chewing without appreciably altering muscle excursion/contraction velocity. Lastly, craniometric estimates of PCSAs underestimate hominoid masseter and temporalis PCSAs by more than 50% in gorillas, and overestimate masseter PCSA by as much as 30% in humans. These findings underscore the difficulty of accurately estimating jaw-muscle fiber architecture from craniometric measures and suggest models of fossil hominin and hominoid bite forces will be improved by incorporating architectural data in estimating jaw-muscle forces.

  2. MORPHOLOGY EVOLUTION IN PTFE AS A FUNCTION OF MELT TIME AND TEMPERATURE Ⅱ. LOW MOLECULAR WEIGHT FOLDED CHAIN SINGLE CRYSTALS AND BAND STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    J. Yang; P.H. Geil; T. C. Long; P. Xu

    2005-01-01

    The effect of sintering dispersed and bulk, low molecular weight (Mn = 50,000 Da), nano-emulsion polytetrafluoroethylene (PTFE) particles near their melting point is described. With the nascent particles consisting of ca.75 nm diameter, hexagonal, single crystals, sintering at, e.g., 350℃, results, initially, in merger of neighboring particles,followed by individual molecular motion on the substrate and the formation of folded chain, lamellar single crystals and spherulites, and on-edge ribbons. It is suggested these structures develop, with time, in the mesomorphic "melt". Sintering of the bulk resin yields extended chain, band structures, as well as folded chain lamellae; end-surface to end-surface merger,possibly by end-to-end polymerization, occurs with increasing time.

  3. Effects of micro electric current load during cooling of plant tissues on intracellular ice crystal formation behavior and pH.

    Science.gov (United States)

    Ninagawa, Takako; Kawamura, Yukio; Konishi, Tadashi; Narumi, Akira

    2016-08-01

    Cryopreservation techniques are expected to evolve further to preserve biomaterials and foods in a fresh state for extended periods of time. Long-term cryopreservation of living materials such as food and biological tissue is generally achieved by freezing; thus, intracellular freezing occurs. Intracellular freezing injures the cells and leads to cell death. Therefore, a dream cryopreservation technique would preserve the living materials without internal ice crystal formation at a temperature low enough to prevent bacterial activity. This study was performed to investigate the effect of micro electrical current loading during cooling as a new cryopreservation technique. The behavior of intracellular ice crystal formation in plant tissues with or without an electric current load was evaluated using the degree of supercooling, degree of cell deformation, and grain size and growing rate of intracellular ice crystal. Moreover, the transition of intracellular pH during plant tissue cooling with or without electric current loading was also examined using the fluorescence intensity ratio to comprehend cell activity at lower temperatures. The results indicated that micro electric current load did not only decrease the degree of cell deformation and grain size of intracellular ice crystal but also reduced the decline in intracellular pH due to temperature lowering, compared with tissues subjected to the same cooling rate without an electric current load. Thus, the effect of electric current load on cryopreservation and the potential of a new cryopreservation technique using electric current load were discussed based on these results.

  4. Influence of alloying and testing conditions on mechanical properties and deformation behavior of 〈100〉 tungsten-based single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Skotnicova, Katerina, E-mail: Katerina.Skotnicova@vsb.cz [VSB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, Department of Regional Materials Science and Technology Centre, Avenue 17 Listopadu 15, 70833 Ostrava-Poruba (Czech Republic); Kirillova, Valentina M.; Ermishkin, Vjacheslav A. [Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninski Prospect 49, 119991 Moscow (Russian Federation); Cegan, Tomas; Jurica, Jan; Kraus, Martin [VSB – Technical University of Ostrava, Faculty of Metallurgy and Materials Engineering, Department of Regional Materials Science and Technology Centre, Avenue 17 Listopadu 15, 70833 Ostrava-Poruba (Czech Republic); Burkhanov, Gennadij S. [Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Leninski Prospect 49, 119991 Moscow (Russian Federation)

    2015-06-11

    The results of the pressure testing of mechanical properties of single crystals of pure tungsten and low-alloyed alloys W–2Re and W–1Re–1Mo (wt%) with a crystallographic orientation 〈100〉 which were prepared by plasma-arc melting are summarized. The effect of alloying and the deformation rate on these properties have also been investigated and the fracture surfaces of the individual single crystals have been evaluated with the aid of the photometric method. The differences in the deformation behavior of pure tungsten and W–Re and W–1Mo–Re alloys were observed, which relate to the particularities of rhenium and molybdenum action in the tungsten solid solution. It can be seen from the observed results that tungsten alloying with low rhenium and molybdenum contents decreased all mechanical properties when applying the deformation rate of 0.2 mm/min. The biggest decrease was observed for the offset yield strength value. When testing with the deformation rate of 2 mm/min, the strength limit of the W–2Re alloy increased to 2013 MPa, while R{sub pt0.2} decreased by 33% in comparison with the pure tungsten single crystal. However, the ε{sub r} value remained at the same level ∼30%. In the W–1Re–1Mo single crystal, the R{sub pt0.2} and R{sub mt} values decreased, while ε{sub r} increased slightly.

  5. Crystallization behavior of Ti61.67Zr17.15Ni14.80Cu6.38 glass-forming alloy

    Institute of Scientific and Technical Information of China (English)

    范金铎; 高逸群; 黎仕增

    2004-01-01

    Ti61.67 Zr17.15 Ni14.80 Cu6.38 (atom fraction,%) metallic glass has applications in brazing. Using the hammer-and-anvil technique, Ti61.67 Zr17.15 Ni14.80 Cu6.38 metallic glass was prepared. The crystallization behavior for this metallic glass was investigated by differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and transmission electron microscopy(TEM). Th ere are three stages in DSC curves of crystallization. The reduced glass temperature Trg is 0.42. The kinetic parameters of crystallization were calculated by a set of equations of the maximum crystallization rate. The crystalline phase formed in the MSI(Metastable stage Ⅰ) is Zr2Cu, in the MSⅡ is α-Ti and in the MSⅢ is Ti2 Ni. This kind of alloy has lower glass forming ability, and the Ti61.67 Zr17. 15 Ni14. 80 Cu6.38 metallic glass has lower thermal stability.

  6. Material characterization and finite element modelling of cyclic plasticity behavior for 304 stainless steel using a crystal plasticity model

    OpenAIRE

    Lu, Jiawa; Sun, Wei; Becker, Adib A.

    2016-01-01

    Low cycle fatigue tests were carried out for a 304 stainless steel at room temperature. A series of experimental characterisations, including SEM, TEM, and XRD were conducted for the 304 stainless steel to facilitate the understanding of the mechanical responses and microstructural behaviour of the material under cyclic loading including nanostructure, crystal structure and the fractured surface. The crystal plasticity finite element method (CPFEM) is a powerful tool for studying the microstr...

  7. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Zou, Huawei, E-mail: hwzou@163.com; Liang, Mei, E-mail: liangmeiww@163.com; Cao, Ya

    2014-06-01

    Highlights: • HDPE/EVA blends undergo phase separation, making it an interesting topic to investigate the relationships between miscibility and crystallization. • Influences from blending on the crystallization kinetics were successfully evaluated by Friedman's and Khanna's method. • X-ray diffraction studies revealed that blending with EVA the unit length of the unit cell of the HDPE increases. • Thermal fractionation method was successfully used to characterize the co-crystallization in HDPE/EVA blends. - Abstract: Crystallization studies on HDPE/EVA blends and the individual components were performed with differential scanning calorimetry (DSC) technique and wide angle X-ray scattering (WAXS). Influences of blending on the crystallization kinetics of each component in HDPE/EVA mixture were evaluated by Friedman's activation energy and Khanna's crystallization rate coefficient (CRC). The addition of more HDPE into the EVA matrix causes more heterogeneous nucleation while the addition of EVA would hinder the nucleation of HDPE at the beginning of cooling process. Inter-molecular interaction in the melt facilitated the crystallization of both EVA and HDPE components. X-ray diffraction studies revealed that HDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of HDPE. In addition, a little shift of (1 1 0), (2 0 0) and (0 2 0) crystalline peaks toward lower 2θ values of samples indicating a little increase of unit cell parameters of the orthorhombic unit cell of polyethylene. Thermal fractionation results showed that co-crystallization took place in the HDPE/EVA blend. All those results indicated that the polymer pair we choose was partially miscible.

  8. Morphology and behavior of the early stages of the skipper, Urbanus esmeraldus, on Urera baccifera, an ant-visited host plant.

    Science.gov (United States)

    Moraes, Alice R; Greeney, Harold F; Oliveira, Paulo S; Barbosa, Eduardo P; Freitas, André V L

    2012-01-01

    The Neotropical genus Urbanus (Hübner) (Lepidoptera: Hesperiidae) contains around 34 described species, and is widely distributed from the extreme southern United States to Argentina. Here, we describe the larval morphology and behavior of Urbanus esmeraldus (Hübner)(Hesperiidae) in Urera baccifera (Urticaceae), a plant producing food rewards and fleshy fruits that attract ants (including predacious species) in a Brazilian forest. Larvae pass through five instars and construct two kinds of leaf shelters. Experiments with ejected fecal pellets showed that these can serve as cues to ground-dwelling ants that climb onto host plants and potentially attack the larvae. Manipulation with pellets placed at different distances suggests that ejection behavior decreases larval vulnerability to ant predation. Larval preference for mature leaves may be related with increased predation risk at ant-visited young leaves. The study shows that a combination of natural history and experimental data can help understand the life history of a butterfly using a plant with high predation risk.

  9. Morphology and Behavior of the Early Stages of the Skipper, Urbanus esmeraldus, on Urera baccifera, an Ant—Visited Host Plant

    Science.gov (United States)

    Moraes, Alice R.; Greeney, Harold F.; Oliveira, Paulo S.; Barbosa, Eduardo P.; Freitas, André V.L.

    2012-01-01

    The Neotropical genus Urbanus (Hübner) (Lepidoptera: Hesperiidae) contains around 34 described species, and is widely distributed from the extreme southern United States to Argentina. Here, we describe the larval morphology and behavior of Urbanus esmeraldus (Hübner)(Hesperiidae) in Urera baccifera (Urticaceae), a plant producing food rewards and fleshy fruits that attract ants (including predacious species) in a Brazilian forest. Larvae pass through five instars and construct two kinds of leaf shelters. Experiments with ejected fecal pellets showed that these can serve as cues to ground—dwelling ants that climb onto host plants and potentially attack the larvae. Manipulation with pellets placed at different distances suggests that ejection behavior decreases larval vulnerability to ant predation. Larval preference for mature leaves may be related with increased predation risk at ant—visited young leaves. The study shows that a combination of natural history and experimental data can help understand the life history of a butterfly using a plant with high predation risk. PMID:22953699

  10. The effect of butenolide on behavioral and morphological changes in two marine fouling species, the barnacle Balanus amphitrite and the bryozoan Bugula neritina

    KAUST Repository

    Zhang, Yi Fan

    2011-05-23

    Butenolide [5-octylfuran-2(5H)-one] is a very promising antifouling compound. Here, the effects of butenolide on larval behavior and histology are compared in two major fouling organisms, viz. cypris larvae of Balanus amphitrite and swimming larvae of Bugula neritina. Butenolide diminished the positive phototactic behavior of B. amphitrite (EC50=0.82 μg ml(-1)) and B. neritina (EC50=3 μg ml(-1)). Its effect on the attachment of cyprids of B. amphitrite was influenced by temperature, and butenolide increased attachment of larvae of B. neritina to the bottom of the experimental wells. At concentrations of 4 μg ml(-1) and 10 μg ml(-1), butenolide decreased attachment of B. amphitrite and B. neritina, respectively, but the effects were reversible within a certain treatment time. Morphologically, butenolide inhibited the swelling of secretory granules and altered the rough endoplasmic reticulum (RER) in the cement gland of B. amphitrite cyprids. In B. neritina swimming larvae, butenolide reduced the number of secretory granules in the pyriform-glandular complex.

  11. Effect of surface tension anisotropy on the interface morphological stability of deep cellular crystal%各向异性表面张力对深胞晶界面形态稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    蒋晗; 陈明文; 史国栋; 王涛; 王自东

    2016-01-01

    In this paper, we study the effect of anisotropic surface tension on the interface morphological stability of deep cel-lular crystal during directional solidification. We assume that the process of solidification is viewed as a two-dimensional problem, the anisotropic surface tension is a four-fold symmetry function, the solute diffusion in the solid phase is neg-ligible, the thermodynamic properties are the same for both solid and liquid phases, and there is no convection in the system. On the basis of the basic state solution for the deep cellular crystal in directional solidification, by the matched asymptotic expansion method and the multiple variable expansion method, we obtain the asymptotic solution, and then the quantization condition of interfacial morphology for deep cellular crystal is obtained. The results show that by comparison with the directional solidification system of surface tension isotropy, the in-terface morphological stability of surface tension anisotropy also possesses two types of global instability mechanisms:the global oscillatory instability (GTW-mode), whose neutral modes yield strong oscillatory dendritic structures, and the low-frequency instability (IF-mode), whose neutral modes yield weakly oscillatory cellular structures. Both of the two global instability mechanisms have the symmetrical mode (S-mode) and the anti-symmetrical mode (A-mode), and the growth rate of the S-mode with the same index n is greater than that of the A-mode. In this sense we say that the S-mode is more dangerous than the A-mode. All the neutral curves of the GTW-S-modes and LF-S-modes divide the parameter plane into two subdomains: the stable domain and the unstable domain. In the paper we show the neural curves of the GTW-S-modes and LS-S-modes for various n, respectively. It is seen that among all the GTW-S-modes (n = 0, 1, 2), the GTW-S-mode with n = 0 is the most dangerous oscillatory mode, while among all the LF-S-modes (n=0, 1, 2), the LF-S-mode with

  12. Effects of Initial Powder Compact Thickness, Lubrication, and Particle Morphology on the Cold Compaction Behavior of Ti Powder

    Science.gov (United States)

    Lou, Jia; Gabbitas, Brian; Zhang, Deliang; Yang, Fei

    2015-08-01

    This work investigates the compaction behavior of hydride-dehydride CP-Ti powder from green density/compaction pressure curves. These were obtained through a modification of selected processing conditions, such as variation in compact thickness, the use of internal lubrication, and additions of plasma rotating electrode process powder. A modified Cooper-Eaton equation, which treats the compaction process to be a combination of particle rearrangement (PR) and plastic deformation (PD) mechanisms, was used to simulate the curves. A comparison with aluminum and iron compaction is also carried out in this study. The research indicated that the cold compaction of titanium powder can be separated into two stages: a PR stage (stage I), which occurs at a compacting pressure in the range of 0 to 200 MPa, followed by a further PR stage initiated by PD, when the compaction pressure is in the range of 200 to 1000 MPa. The existence of stage II is due to the low plastic deformability of titanium and low density achieved at the end of stage I.

  13. Creep behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982 ∘C

    Directory of Open Access Journals (Sweden)

    Xue Fei

    2014-01-01

    Full Text Available The tensile creep behavior of a Co-Al-W-base single crystal alloy containing Ta and Ti was investigated at 982 ∘C and 248 MPa. The lattice misfit of experimental alloy was measured to be positive by synchrotron X-ray diffraction at high temperature, and long term heat treatment at 1000 ∘C for 1000 h revealed a γ′ volume fraction of 75% without secondary phases. The creep test indicated that the creep properties of experimental alloy exceeded commercial 1st generation Ni-base single crystal superalloy CMSX-3 with respect to the rupture life. The initial cuboidal γ′ precipitates directionally coarsened parallel to the applied stress axis during the creep process. The stacking faults in {111} planes within γ′ rafts were the primary creep deformation mode by TEM investigation.

  14. Curculio Curculis lupus: biology, behavior and morphology of immatures of the cannibal weevil Anchylorhynchus eriospathae G. G. Bondar, 1943

    Science.gov (United States)

    Bená, Daniela de Cássia; Vanin, Sergio Antonio

    2014-01-01

    Weevils are one of the largest groups of living organisms, with more than 60,000 species feeding mostly on plants. With only one exception, their described larvae are typical plant-feeders, with mouthparts adapted to chewing plant material. Here we describe the second case of a