WorldWideScience

Sample records for behavior crystal morphology

  1. Influences of chemical aging on the surface morphology and crystallization behavior of basaltic glass fibers

    DEFF Research Database (Denmark)

    Lund, Majbritt Deichgræber; Yue, Yuanzheng

    2008-01-01

    The impact of aging in high humidity and water on the surface morphology and crystallization behavior of basaltic glass fibers has been studied using scanning electron microscopy, transmission electron microscopy, calorimetry and X-ray diffraction. The results show that interaction between...... the fibers and the surrounding media (high humidity or water at 70 C) leads to chemical changes strongly affecting the surface morphology. The crystallization peak temperature of the basaltic glass fibers are increased without changing the onset temperature, this may be caused by a chemical depletion...

  2. Morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate)/poly(ethylene-co-methacrylic acid) blends

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J.-W. [Department of Styling and Cosmetology, Tainan University of Technology, 529 Chung Cheng Rd., Yung Kang City 710, Taiwan (China)], E-mail: jw.huang@msa.hinet.net; Wen, Y.-L. [Department of Nursing, Meiho Institute of Technology, 23 Ping Kuang Rd., Neipu Hsiang, Pingtung 912, Taiwan (China); Department of Resources Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China); Kang, C.-C. [R and D Center, Hi-End Polymer Film Co., Ltd. 15-1 Sin Jhong Rd., Sin Ying City 730, Taiwan (China); Yeh, M.-Y. [Department of Chemistry, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China); Sustainable Environment Research Centre, National Cheng Kung University, Taiwan (China); Wen, S.-B. [Department of Nursing, Meiho Institute of Technology, 23 Ping Kuang Rd., Neipu Hsiang, Pingtung 912, Taiwan (China); Department of Resources Engineering, National Cheng Kung University, No. 1, University Rd., Tainan City 701, Taiwan (China)

    2007-12-15

    The morphology, melting behavior, and non-isothermal crystallization of poly(butylene terephthalate) (PBT) and poly(ethylene-co-methacrylic acid) (PEMA) blends were studied with scanning electron microscopy, X-ray diffraction and differential scanning calorimetry (DSC). PEMA forms immiscible, yet compatible, blends with PBT. Subsequent DSC scans on melt-crystallized samples exhibited two melting endotherms (T{sub mI} and T{sub mII}). The presence of PEMA would facilitate the recrystallization during heating scan and retard PBT molecular chains to form a perfect crystal in cooling crystallization. The dispersion phases of molten PEMA acts as nucleating agents to enhance the crystallization rate of PBT. The solidified PBT could act as nucleating agents to enhance the crystallization of PEMA, but also retard the molecular mobility to reduce crystallization rate. The U* and K{sub g} of Hoffman-Lauritzen theory were also determined by Vyazovkin's methods to support the interpretation.

  3. Effects of Degree of Enzymatic Interesterification on the Physical Properties of Margarine Fats: Solid Fat Content, Crystallization Behavior, Crystal Morphology, and Crystal Network

    DEFF Research Database (Denmark)

    Zhang, Hong; Smith, Paul; Adler-Nissen, Jens

    2004-01-01

    was observed for both the blend and products. Isothermal crystallization kinetics was characterized by the Fisher- Turnbull model. The highest free energy was observed for the blend. A small deformation with oscillation tests shows a significant difference between the blend and interesterified products......In this study enzymatic-interesterified margarine fats with different conversion degrees were produced in a packed-bed reactor. The effects of conversion degree on the formation of free fatty acids and diacyglycerols, solid fat content, crystallization behavior, microstructure, and crystal network....... The differences of microstructure between the blend, different conversion degree, and chemical randomized product were observed....

  4. Poly(ethylene glycol-poly(tetrahydrofuran-poly(ethylene glycol triblock copolymer : Synthesis, crystallization behavior and novel morphology

    Directory of Open Access Journals (Sweden)

    X. Q. Liao

    2013-05-01

    Full Text Available Poly(ethylene glycol-poly(tetrahydrofuran-poly(ethylene glycol (PEG-PTHF-PEG triblock copolymer was synthesized by ring-opening polymerization of ethylene oxide using sodium alcoholate of PTHF as the macroinitiator. Its crystallization behavior and formation mechanisms of different crystal structures were studied. The study showed that the molecular weight of PEG-PTHF-PEG exhibited a significant effect on its crystallization: that is, with the increase of the copolymer’s molecular weight, the crystallizability of PTHF blocks decreased gradually, which led to the transition of copolymer from crystalline-crystalline to crystalline-amorphous. By adjusting the total molecular weight of triblock copolymer, the crystallization process can be effectively controlled, and as a result, different spherulite structures were obtained. Particularly, when PTHF blocks became amorphous, novel double concentric spherulites were observed. The morphological structures were studied by differential scanning calorimetry (DSC, Fourier transform infrared spectroscopy (FTIR, scanning electron microscope (SEM, polarized optical microscopy (POM, and its crystalline process was investigated.

  5. Role of organoclay in controlling the morphology and crystal-growth behavior of biodegradable polymer-blend thin films studied using atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-09-01

    Full Text Available This study reports the effect of organically modified nanoclay on the morphology and crystal growth behavior of biodegradable polylactide/poly[(butylene succinate)-co-adipate] (PLA/PBSA) blend thin films with the average thickness of 280 nm...

  6. Growth morphologies of crystal surfaces

    Science.gov (United States)

    Xiao, Rong-Fu; Alexander, J. Iwan D.; Rosenberger, Franz

    1991-03-01

    We have expanded our earlier Monte Carlo model [Phys. Rev. A 38, 2447 (1988); J. Crystal Growth 100, 313 (1990)] to three dimensions and included reevaporation after accommodation and growth on dislocation-induced steps. We found again that, for a given set of growth parameters, the critical size, beyond which a crystal cannot retain its macroscopically faceted shape, scales linearly with the mean free path in the vapor. However, the three-dimensional (3D) the systems show increased shape stability compared to corresponding 2D cases. Extrapolation of the model results to mean-free-path conditions used in morphological stability experiments leads to order-of-magnitude agreement of the predicted critical size with experimental findings. The stability region for macroscopically smooth (faceted) surfaces in the parameter space of temperature and supersaturation depends on both the surface and bulk diffusion. While surface diffusion is seen to smooth the growth morphology on the scale of the surface diffusion length, bulk diffusion is always destabilizing. The atomic surface roughness increases with increase in growth temperature and supersaturation. That is, the tendency of surface kinetics anisotropies to stabilize the growth shape is reduced through thermal and kinetic roughening. It is also found that the solid-on-solid assumption, which can be advantageously used at low temperatures and supersaturations, is insufficient to describe the growth dynamics of atomically rough interfaces where bulk diffusion governs the process. For surfaces with an emerging screw dislocation, we find that the spiral growth mechanism dominates at low temperatures and supersaturations. The polygonization of a growth spiral decreases with increasing temperature or supersaturation. When the mean free path in the nutrient is comparable to the lattice constant, the combined effect of bulk and surface diffusion reduces the terrace width of a growth spiral in its center region. At elevated

  7. Morphology, crystallization and dynamic mechanical properties of ...

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... This article addresses the effect of nano-SiO2 on the morphology, crystallization and dynamic mechanical properties of polyamide 66. The influence of nano-SiO2 on the tensile fracture morphology of the nanocomposites was studied by scanning electron microscopy (SEM), which suggested that the ...

  8. Morphology, crystallization and dynamic mechanical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    The tan ä peak signifying the glass-transition temperature of nanocomposites shifted to higher temperature. Keywords. Polyamide 66; nano-SiO2; morphology; crystallization; dynamic ..... the matrix molecular chain, as well as the friction bet- ween them increased. But the storage modulus and loss modulus of PNSC-3 ...

  9. Morphology, crystallization and dynamic mechanical properties of ...

    Indian Academy of Sciences (India)

    Unknown

    properties (DMA) indicated significant improvement in the storage modulus and loss modulus compared with neat polyamide 66. The tan ä peak signifying the glass-transition temperature of nanocomposites shifted to higher temperature. Keywords. Polyamide 66; nano-SiO2; morphology; crystallization; dynamic mechanical ...

  10. Theoretical morphology of adipic acid crystals

    Science.gov (United States)

    Pfefer, G.; Boistelle, R.

    2000-01-01

    The investigation of the crystal structure of adipic acid, C 4H 8(COOH) 2, led to the identification of the periodic bond chains and to their classification as a function of their energy. This study has made it possible to deduce the theoretical morphology of the crystals and the surface morphologies of their different faces. The theoretical morphology consists of the {0 1 1}, {1 0 0}, {0 0 1}, { 1¯ 0 2} , {1 1 1¯} forms. The experimental growth morphology consists of the {0 1 1}, {1 0 0} and {0 0 1} forms, this latter form being replaced by { 1¯ 0 2} as soon as the supersaturation exceeds about 2%. The {1 1 1¯} form which has a very low F character according to the PBC theory was never observed. In addition, the experimental {1 0 0} form is more developed than expected from the PBC analysis, showing the strong influence of the solvent adsorption on the carboxylic groups which emerge on the faces of {1 0 0}.

  11. Controlling the Morphology of Organic Crystals with Filamentous Bacteriophages.

    Science.gov (United States)

    Cho, Whirang; Liu, Xiaomeng; Forrest, James; Fowler, Jeffrey D; Furst, Eric M

    2015-07-29

    The preparation of thiamethoxam (TMX) organic crystals with high morphological uniformity was achieved by controlled aggregation-driven crystallization of primitive TMX crystals and phage using the filamentous M13 bacteriophage. The development of a regular, micrometer-sized, tetragonal-bipyramidal crystal structure was dependent on the amount of phage present. The phage appears to affect the supersaturation driving force for crystallization. The phage adsorption isotherm to TMX was well-fitted by the Satake-Yang model, which suggests a cooperative binding between neighboring phages as well as a binding of phage with the TMX crystal surface. This study shows the potential of phage additives to control the morphology and morphological uniformity of organic crystals.

  12. Morphology of ɛ-caprolactam crystals dependent on the crystallization conditions

    Science.gov (United States)

    Jansens, P. J.; Langen, Y. H. M.; van den Berg, E. P. G.; Geertman, R. M.

    1995-10-01

    The morphology of caprolactam crystals is an important property because it can affect their filterability. This study shows that the morphology of caprolactam crystals depends on the water content of the mother liquor and on the applied growth kinetics. Needle-like crystals were formed during single crystal experiments under two sets of conditions: (1) at high growth rates in a water rich mother liquor and (2) at low growth rates in the absence of water. Experiments were also performed in a lab-scale batch crystallizer and in a pilot-scale continuous crystallizer but did not yield exclusively needle-like crystals.

  13. Crystal growth and morphology of calcium oxalates and carbonates

    NARCIS (Netherlands)

    Heijnen, W.M.M.

    1986-01-01

    The main purpose of the research described in this thesis is to establish a relationship between the crystal structure and morphology of calcium oxalate and calcium carbonate crystals grown from aqueous solutions. Starting point is the PBC (Periodic Bond Chain) theory formulated by Hartman and

  14. Growth morphology of zinc tris (thiourea) sulphate crystals

    Indian Academy of Sciences (India)

    The growth morphology of crystals of zinc tris(thiourea) sulphate (ZTS) is investigated experimentally, and computed using the Hartman–Perdok approach. Attachment energies of the observed habit faces are calculated for determining their relative morphological importance. A computer code is developed for carrying out ...

  15. Growth morphology of zinc tris(thiourea) sulphate crystals

    Indian Academy of Sciences (India)

    Abstract. The growth morphology of crystals of zinc tris(thiourea) sulphate (ZTS) is investigated experimentally, and computed using the Hartman–Perdok approach. Attachment energies of the observed habit faces are calculated for determining their relative morphological importance. A com- puter code is developed for ...

  16. Crystal morphology of sunflower wax in soybean oil organogel

    Science.gov (United States)

    While sunflower wax has been recognized as an excellent organogelator for edible oil, the detailed morphology of sunflower wax crystals formed in an edible oil organogel has not been fully understood. In this study, polarized light microscopy, phase contrast microscopy, scanning electron microscopy ...

  17. Morphology and networks of sunflower wax crystals in organogel

    Science.gov (United States)

    Plant waxes are considered as promising alternatives to unhealthy solid fats such as trans fats and saturated fats in structured food products including margarines and spreads. Sunflower wax is of a great interest due to its strong gelling ability. Morphology of sunflower wax crystals formed in soyb...

  18. The crystal morphology and mechanical properties based on poly(l-lactic acid)/silica nanocomposites

    Science.gov (United States)

    Cai, Y. H.

    2017-06-01

    Nano silica (SiO2) was introduced into Poly(L-lactic acid) (PLLA) matrix to prepare PLLA/SiO2 nanocomposites, and the crystal morphology, crystallization behavior and mechanical performance were investigated. The XRD experimental data indicated that nano SiO2 could improve the crystallization of PLLA, and PLLA/SiO2 nanocomposites exhibited sharp diffraction peak after isothermal crystallization. In addition, through the POM analysis, PLLA/SiO2 sample had the typical spherulite structure, and the size of the spherulite became larger with the increase of crystallization temperature. The tensile testing showed that a small amount of SiO2 could improve and retain the mechanical performance of PLLA

  19. Morphology control of hexagonal strontium ferrite micro/nano-crystals

    Directory of Open Access Journals (Sweden)

    Deyang Chen

    2017-05-01

    Full Text Available In this study, controllable morphology evolution of hexagonal strontium ferrite (SrFe12O19 micro/nano-crystals has been demonstrated. Single phase strontium ferrite platelets with hexagonal morphology were successfully prepared by conventional ceramic process. In the hexagonal crystals, it is revealed that the anisotropic growth rate is changed, with the increasing of ball milling time, from relatively high rate along the direction (c-axis to direction, leading to the morphology evolution. Moreover, the optimal saturation magnetization (MS is 69.5 emu/g, which is intensely close to the theoretical value (72 emu/g. This study provides the direct evidence of the enhanced reaction activity induced by high energy ball milling in strontium hexaferrite platelets and the obtained SrFe12O19 particles are promising for the hard magnet application and the magnetoelectric electronics.

  20. Sequential crystallization and morphology of triple crystalline biodegradable PEO-b-PCL-b-PLLA triblock terpolymers

    KAUST Repository

    Palacios, Jordana

    2016-01-05

    The sequential crystallization of poly(ethylene oxide)-b-poly(e-caprolactone)-b-poly(L-lactide) (PEO-b-PCL-b-PLLA) triblock terpolymers, in which the three blocks are able to crystallize separately and sequentially from the melt, is presented. Two terpolymers with identical PEO and PCL block lengths and two different PLLA block lengths were prepared, thus the effect of increasing PLLA content on the crystallization behavior and morphology was evaluated. Wide angle X-Ray scattering (WAXS) experiments performed on cooling from the melt confirmed the triple crystalline nature of these terpolymers and revealed that they crystallize in sequence: the PLLA block crystallizes first, then the PCL block, and finally the PEO block. Differential scanning calorimetry (DSC) analysis further demonstrated that the three blocks can crystallize from the melt when a low cooling rate is employed. The crystallization process takes place from a homogenous melt as indicated by small angle X-Ray scattering (SAXS) experiments. The crystallization and melting enthalpies and temperatures of both PEO and PCL blocks decrease as PLLA content in the terpolymer increases. Polarized light optical microscopy (PLOM) demonstrated that the PLLA block templates the morphology of the terpolymer, as it forms spherulites upon cooling from the melt. The subsequent crystallization of PCL and PEO blocks occurs inside the interlamellar regions of the previously formed PLLA block spherulites. In this way, unique triple crystalline mixed spherulitic superstructures have been observed for the first time. As the PLLA content in the terpolymer is reduced the superstructural morphology changes from spherulites to a more axialitic-like structure.

  1. Modeling of crystal morphology : growth simulation on facets in arbitrary orientations

    NARCIS (Netherlands)

    Boerrigter, Stephan Xander Mattheus

    2003-01-01

    Many aspects of crystal morphology modeling are studied in this thesis. Most important of all, is the dependence of crystal growth on supersaturation--the driving force for crystallization--which not only influences the crystal morphology, but also polymorphism and nucleation. It is shown that an

  2. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals.

    Science.gov (United States)

    Armas-Pérez, Julio C; Li, Xiao; Martínez-González, José A; Smith, Coleman; Hernández-Ortiz, J P; Nealey, Paul F; de Pablo, Juan J

    2017-10-31

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal. To do so, we adopt a tensorial description of the free energy of the hybrid liquid-crystal-surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.

  3. Crystal morphology variation in inkjet-printed organic materials

    Science.gov (United States)

    Ihnen, Andrew C.; Petrock, Anne M.; Chou, Tsengming; Samuels, Phillip J.; Fuchs, Brian E.; Lee, Woo Y.

    2011-11-01

    The recent commercialization of piezoelectric-based drop-on-demand inkjet printers provides an additive processing platform for producing and micropatterning organic crystal structures. We report an inkjet printing approach where macro- and nano-scale energetic composites composed of cyclotrimethylenetrinitramine (RDX) crystals dispersed in a cellulose acetate butyrate (CAB) matrix are produced by direct phase transformation from organic solvent-based all-liquid inks. The characterization of printed composites illustrates distinct morphological changes dependent on ink deposition parameters. When 10 pL ink droplets rapidly formed a liquid pool, a coffee ring structure containing dendritic RDX crystals was produced. By increasing the substrate temperature, and consequently the evaporation rate of the pooled ink, the coffee ring structure was mitigated and shorter dendrites from up to ∼1 to 0.2 mm with closer arm spacing from ∼15 to 1 μm were produced. When the nucleation and growth of RDX and CAB were confined within the evaporating droplets, a granular structure containing nanoscale RDX crystals was produced. The results suggest that evaporation rate and microfluidic droplet confinement can effectively be used to tailor the morphology of inkjet-printed energetic composites.

  4. Morphological diversity of nitroguanidine crystals with enhanced mechanical performance and thermodynamic stability

    Science.gov (United States)

    Luo, Zhilong; Cui, Yingdan; Dong, Weibing; Xu, Qipeng; Zou, Gaoxing; Kang, Chao; Hou, Baohong; Chen, Song; Gong, Junbo

    2017-12-01

    Nitroguanidine (NQ) is a commonly used explosive, which has been widely used for both civilian and military explosive applications. However, the weak flowability and mechanical performance limit its application. In this work, mechanical performance and thermodynamic stability of NQ crystals were improved by controlling crystal morphologies in the crystallization process. Typical NQ crystals with multiple morphologies and single crystal form were obtained in the presence of additives during the cooling crystallization. The morphology controlled NQ crystals showed higher density, unimodal crystal size distribution and enhanced flowability. The additives showed the inhibitory effect on the nucleation of NQ crystals by in-situ FBRM and PVM determination, and the mechanism was analyzed by means of morphological prediction and molecular simulation. Furthermore, the morphology controlled NQ crystals suggested higher thermodynamic stability according to the calculation of entropy, enthalpy, Gibbs free energy and apparent activation energy on the basis of DSC results.

  5. Sharp Morphological Transitions from Nanoscale Mixed-Anchoring Patterns in Confined Nematic Liquid Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Armas-Pérez, Julio C. [Institute; División; Li, Xiao [Institute; Martínez-González, José A. [Institute; Smith, Coleman [Institute; Hernández-Ortiz, J. P. [Departamento; Nealey, Paul F. [Institute; Materials; de Pablo, Juan J. [Institute; Materials

    2017-08-17

    Liquid crystals are known to be particularly sensitive to orientational cues provided at surfaces or interfaces. In this work, we explore theoretically, computationally, and experimentally the behavior of liquid crystals on isolated nanoscale patterns with controlled anchoring characteristics at small length scales. The orientation of the liquid crystal is controlled through the use of chemically patterned polymer brushes that are tethered to a surface. This system can be engineered with remarkable precision, and the central question addressed here is whether a characteristic length scale exists at which information encoded on a surface is no longer registered by a liquid crystal. To do so, we adopt a tensorial description of the free energy of the hybrid liquidcrystal surface system, and we investigate its morphology in a systematic manner. For long and narrow surface stripes, it is found that the liquid crystal follows the instructions provided by the pattern down to 100 nm widths. This is accomplished through the creation of line defects that travel along the sides of the stripes. We show that a "sharp" morphological transition occurs from a uniform undistorted alignment to a dual uniform/splay-bend morphology. The theoretical and numerical predictions advanced here are confirmed by experimental observations. Our combined analysis suggests that nanoscale patterns can be used to manipulate the orientation of liquid crystals at a fraction of the energetic cost that is involved in traditional liquid crystal-based devices. The insights presented in this work have the potential to provide a new fabrication platform to assemble low power bistable devices, which could be reconfigured upon application of small external fields.

  6. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ahlam, M.A., E-mail: omaymn771@yahoo.com [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Ravishankar, M.N. [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India); Vijayan, N. [Materials Characterization Division, National Physical Laboratory, New Delhi 110 012 (India); Govindaraj, G. [Department of Physics, Pondicherry University, Pondicherry 605 014 (India); Siddaramaiah [Department of Polymer and Technology, Sri Jayachamarajendra College of Engineering, Mysore 570 006 (India); Gnana Prakash, A.P., E-mail: gnanaprakash@physics.uni-mysore.ac.in [Department of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, Karnataka (India)

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number H{sub V} and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  7. Preliminary observations of the effect of solutal convection on crystal morphology

    Science.gov (United States)

    Broom, M. Beth H.; Witherow, William K.; Snyder, Robert S.; Carter, Daniel C.

    1988-01-01

    Studies to examine the effect of solutal convection on crystal morphology using sucrose as a model system were initiated. Aspect ratios, defined as the width of the 100-plane-oriented face over the width of the 001-plane-oriented face, were determined for oriented crystals which were grown with either the 001-oriented or the 100-oriented face perpendicular to the convective flow. The dependence of the crystal morphology on orientation is much greater for crystals grown with one face occluded than for crystals grown suspended in solution. Many factors appear to interact in a complex fashion to influence crystal morphology.

  8. Crystal engineering of ibuprofen compounds: From molecule to crystal structure to morphology prediction by computational simulation and experimental study

    Science.gov (United States)

    Zhang, Min; Liang, Zuozhong; Wu, Fei; Chen, Jian-Feng; Xue, Chunyu; Zhao, Hong

    2017-06-01

    We selected the crystal structures of ibuprofen with seven common space groups (Cc, P21/c, P212121, P21, Pbca, Pna21, and Pbcn), which was generated from ibuprofen molecule by molecular simulation. The predicted crystal structures of ibuprofen with space group P21/c has the lowest total energy and the largest density, which is nearly indistinguishable with experimental result. In addition, the XRD patterns for predicted crystal structure are highly consistent with recrystallization from solvent of ibuprofen. That indicates that the simulation can accurately predict the crystal structure of ibuprofen from the molecule. Furthermore, based on this crystal structure, we predicted the crystal habit in vacuum using the attachment energy (AE) method and considered solvent effects in a systematic way using the modified attachment energy (MAE) model. The simulation can accurately construct a complete process from molecule to crystal structure to morphology prediction. Experimentally, we observed crystal morphologies in four different polarity solvents compounds (ethanol, acetonitrile, ethyl acetate, and toluene). We found that the aspect ratio decreases of crystal habits in this ibuprofen system were found to vary with increasing solvent relative polarity. Besides, the modified crystal morphologies are in good agreement with the observed experimental morphologies. Finally, this work may guide computer-aided design of the desirable crystal morphology.

  9. Self-assembly morphology effects on the crystallization of semicrystalline block copolymer thin film

    Science.gov (United States)

    Wei, Yuhan; Pan, Caiyuan; Li, Binyao; Han, Yanchun

    2007-03-01

    Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.

  10. Effect of process parameters on crystal size and morphology of lactose in ultrasound-assisted crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Patel, S.R.; Murthy, Z.V.P. [Chemical Engineering Department, S.V. National Institute of Technology, Surat - 395 007, Gujarat (India)

    2011-03-15

    {alpha}-lactose monohydrate is widely used as a pharmaceutical excipient. Drug delivery system requires the excipient to be of narrow particle size distribution with regular particle shape. Application of ultrasound is known to increase or decrease the growth rate of certain crystal faces and controls the crystal size distribution. In the present paper, effect of process parameters such as sonication time, anti-solvent concentration, initial lactose concentration and initial pH of sample on lactose crystal size, shape and thermal transition temperature was studied. The parameters were set according to the L{sub 9}-orthogonal array method at three levels and recovered lactose from whey by sonocrystallization. The recovered lactose was analyzed by particle size analyzer, scanning electron microscopy and differential scanning calorimeter. It was found that the morphology of lactose crystal was rod/needle like shape. Crystal size distribution of lactose was observed to be influenced by different process parameters. From the results of analysis of variance, the sonication time interval was found to be the most significant parameter affecting the volume median diameter of lactose with the highest percentage contribution (74.28%) among other parameters. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Influence of impurities on the surface morphology of the TIBr crystal semiconductor

    International Nuclear Information System (INIS)

    Santos, Robinson A. dos; Silva, Julio B. Rodrigues da; Martins, Joao F.T.; Ferraz, Caue de M.; Costa, Fabio E. da; Mesquita, Carlos H. de; Hamada, Margarida M.; Gennari, Roseli F.

    2013-01-01

    The impurity effect in the surface morphology quality of TlBr crystals was evaluated, aiming a future application of these crystals as room temperature radiation semiconductor detectors. The crystals were purified and grown by the Repeated Bridgman technique. Systematic measurements were carried out for determining the stoichiometry, structure orientation, surface morphology and impurity of the crystal. A significant difference in the crystals impurity concentration was observed for almost all impurities, compared to those found in the raw material. The crystals wafer grown twice showed a surface roughness and grains which may be due to the presence of impurities on the surface, while those obtained with crystals grown three times presented a more uniform surface: even though, a smaller roughness was still observed. It was demonstrated that the impurities affect strongly the surface morphology quality of crystals. (author)

  12. Crystal morphology of simonkolleite (Zn5(OH)8Cl2.H2O): a SEM study

    International Nuclear Information System (INIS)

    Kirov, Georgi; Dencheva, Stefka

    2016-01-01

    In this paper the morphology of natural and synthetic simonkolleite crystals is investigated. We use an approach of determining the Miller indices of the faces of crystals with electron-microscopic dimensions by comparing their SEM photographs with model images generated by the computer program VESTA. The morphological importance of the crystallographic forms of simonkolleite was estimated on the basis of Bravais–Friedel–Donnay–Harker law and the theory of PBC-vectors. Model images of the crystals were obtained by the introduction of lattice parameters, space groups and the indices of the morphologically important forms. The program VESTA allows for the obtention of projections of the model image in stochastic orientations and for a very precise comparison with the image of the real crystal. It was found that the studied simonkolleite crystals are formed from basal pinacoid {001} and rhombohedrons {101} and {012}. Key words: simonkolleite, crystal morphology, Miller indices

  13. A molecular dynamics simulation of solvent effects on the crystal morphology of HMX.

    Science.gov (United States)

    Duan, Xiaohui; Wei, Chunxue; Liu, Yonggang; Pei, Chonghua

    2010-02-15

    The solvent has a large effect on the crystal morphology of the organic explosive compound octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, C(4)H(8)N(8)O(8)). The attachment energy calculations predict a growth morphology in vacuum dominated by (020), (011), (102 ), (111 ) and (100) crystal forms. Molecular dynamics simulations are performed for these crystal faces of HMX in contact with acetone solvent. A corrected attachment energy model, accounting for the surface chemistry and the associated topography (step structure) of the habit crystal plane, is applied to predict the morphological importance of a crystal surface in solvent. From the solvent-effected attachment energy calculations it follows that the (100) face becomes morphologically more important compared with that in vacuum, while the (020) and (102 ) are not visible at all. This agrees well with the observed experimental HMX morphology grown from the acetone solution.

  14. An Experimental Verification of morphology of ibuprofen crystals from CAMD designed solvent

    DEFF Research Database (Denmark)

    Karunanithi, Arunprakash T.; Acquah, Charles; Achenie, Luke E.K.

    2007-01-01

    of crystals formed from solvents, necessitates additional experimental verification steps. In this work we report the experimental verification of crystal morphology for the case study, solvent design for ibuprofen crystallization, presented in Karunanithi et al. [2006. A computer-aided molecular design...

  15. Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals

    KAUST Repository

    McGlashon, Andrew J.

    2012-09-01

    3′-methyl-(5,5′′-bis[3-ethyl-3-(6-phenyl-hexyloxymethyl) -oxetane])-2,2′:5′,2′′-terthiophene (5T(Me)Ox) is a solution processable small molecule semiconductor displaying smectic-C and nematic liquid crystal phases. The pendant oxetane group can be polymerized in situ in the presence of a suitable photoacid at concentrations ≥1% by weight. Spin-coated films of pure 5T(Me)Ox and 5T(Me)Ox doped with the soluble photoacid were characterized by absorption and photoluminescent spectroscopy. Thick pristine films showed absorption and emission from a crystalline phase. Thin monolayer (<5 nm) films, as well as thicker photoacid doped films, instead showed absorption from an H-aggregate phase and emission from an excimer. Optical microscopy showed a significant change in film structure upon addition of the photoacid; large and well-orientated crystals being replaced by much smaller domains which appear to vary in thickness. Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS) was used to characterize the packing and orientation of molecules in the crystalline and doped samples. The results are consistent with the photoacid doped samples forming layers of H-aggregate phase monolayer sheets parallel to the substrate where the photoacid inhibits the transition into the three-dimensionally ordered crystalline phase. Field-effect transistors and light emitting diodes were constructed incorporating 5T(Me)Ox as the active layer. Pure 5T(Me)Ox field-effect transistors showed good, p-type device characteristics, but the morphological changes upon doping result in a loss of transistor action. In the diodes, curing through melting and exposure to UV light followed by photoacid removal resulted in an increase in current density but a decrease in light emission. These results indicate that the presence of the photoacid (≥1% by weight) can have a dramatic effect on the structure, morphology and device performance of ordered, photopatternable materials for organic

  16. EFFECT OF SODIUM DODECYLBENZENESULFONIC ACID (SDBS ON THE GROWTH RATE AND MORPHOLOGY OF BORAX CRYSTAL

    Directory of Open Access Journals (Sweden)

    Suharso Suharso

    2010-06-01

    Full Text Available An investigation of the effect of sodium dodecylbenzenesulfonic acid (SDBS on both growth rate and morphology of borax crystal has been carried out.  This experiment was carried out at temperature of 25 °C and relative supersaturation of 0.21 and 0.74 under in situ cell optical microscopy method.  The result shows that SDBS inhibits the growth rate and changes the morphology of borax crystal.   Keywords: Borax; growth rate; crystallization, SDBS

  17. Influence of magnetic field on the morphology of the andrographolide crystal from supercritical carbon dioxide extraction crystallization

    Science.gov (United States)

    Chen, Kexun; Zhang, Xingyuan; Pan, Jian; Zhang, Wencheng; Yong, Ji; Yin, Wenhong

    2003-10-01

    In this paper, a supercritical fluid extraction-crystallization of andrographolide, a kind of Chinese traditional medicine, was investigated. We have studied the extraction-crystallization process with or without magnet in the extractor, respectively. It was found that the presence of magnetic field is an important factor influencing the quality of the products. SEM images showed that the crystal was slice-like in shape, and many slices reunited together in the absence of magnet. Further research showed that pressure had a certain effect on the morphology of the crystal.

  18. Effect of milling on morphology of molten salt synthesized Sr3Ti2O7 crystals

    Directory of Open Access Journals (Sweden)

    Kijamnajsuk, S.

    2007-07-01

    Full Text Available Effect of milling liquid (acetone and ethanol, and milling times on morphology of Sr3Ti2O7 (ST7 crystals grow in molten potassium chloride salt at 1250oC for 4 h was investigated. Two kinds of crystals with different morphologies were found: ST7 crystals having a tabular shape of less than 20 μm diameter and small secondary-phase crystals having high symmetry. Milling starting materials in ethanol yielded ST7 crystals that were up to 3 times thinner than those milled with acetone, increasing the (00l Lotgering factor almost twice that when prepared with acetone. Large crystals become a bit smaller and the number of small crystals increased when the milling time increased.

  19. Growth of NBT-BT single crystals by flux method and their structural, morphological and electrical characterizations

    Science.gov (United States)

    Kanuru, Sreenadha Rao; Baskar, K.; Dhanasekaran, R.; Kumar, Binay

    2016-05-01

    In this paper, one of the important, eco-friendly polycrystalline material, (1-x)(Na0.5Bi0.5)TiO3 (NBT) - xBaTiO3 (BT) of different compositions (x=0.07, 0.06 and 0.05 wt%) around the morphotropic phase boundary (MPB) were synthesized by solid state reaction technique. And the single crystals with 13×7×7 mm3, 12×12×7 mm3 and 10×7×4 mm3 dimensions were grown by self flux method. The morphology, crystal structure and unit-cell parameters have been studied and the monoclinic phase has been identified for 0.07 wt% of BT. Higher BT concentration changes the crystal habit and the mechanism has been studied clearly. Raman spectroscopy at room-temperature confirms the presence of functional groups. The quality of the as grown single crystals was examined by high resolution x-ray diffraction analysis. The dielectric properties of the as grown crystals were investigated in the frequency range of 20 Hz-2 MHz from room temperature to 450 °C. The broad dielectric peak and frequency dispersion demonstrates the relaxor behavior of grown crystals. The dielectric constant (εr), transition temperature (Tm), and depolarization temperature (Td) of the grown crystals are found to be comparatively good. The diffusive factor (γ) from Curie-Weiss law confirms the as grown NBT-BT single crystals are relaxor in nature.

  20. Morphological and structural modulation of PbWO{sub 4} crystals directed by dextrans

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jinhu; Lu Conghua; Su Hong; Ma Jiming; Cheng Humin; Qi Limin [Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Stable and Unstable Species, College of Chemistry, Peking University, Beijing 100871 (China)

    2008-01-23

    A facile, dextran-directed solution route for the morphology- and structure-controlled synthesis of PbWO{sub 4} crystals, such as monoclinic raspite PbWO{sub 4} nanobelts and tetragonal stolzite PbWO{sub 4} crystals with penniform and wheat-ear-like morphologies, has been demonstrated. Three differently charged dextrans were employed for the PbWO{sub 4} crystallization and they turned out to be very effective in the morphological and structural modulation of PbWO{sub 4} crystals, as evidenced by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD) and Raman spectroscopy characterizations. In particular, novel monoclinic raspite PbWO{sub 4} nanobelts were produced under the direction of anionic dextran with a suitable concentration, probably due to the specific interactions between SO{sub 4}{sup 2-} groups from anionic dextran molecules and Pb{sup 2+} ions from PbWO{sub 4} crystals. To the best of our knowledge, this is the first synthesis of monoclinic raspite PbWO{sub 4} in the laboratory, which usually exists as a natural crystal. In addition, the photoluminescence properties of the obtained PbWO{sub 4} crystals with different morphologies and crystal structures have been characterized and discussed, which provides useful information for the fundamental investigation and potential application of PbWO{sub 4} crystals.

  1. Does aridity influence the morphology, distribution and accumulation of calcium oxalate crystals in Acacia (Leguminosae: Mimosoideae)?

    Science.gov (United States)

    Brown, Sharon L; Warwick, Nigel W M; Prychid, Christina J

    2013-12-01

    Calcium oxalate (CaOx) crystals are a common natural feature of many plant families, including the Leguminosae. The functional role of crystals and the mechanisms that underlie their deposition remain largely unresolved. In several species, the seasonal deposition of crystals has been observed. To gain insight into the effects of rainfall on crystal formation, the morphology, distribution and accumulation of calcium oxalate crystals in phyllodes of the leguminous Acacia sect. Juliflorae (Benth.) C. Moore & Betche from four climate zones along an aridity gradient, was investigated. The shapes of crystals, which include rare Rosanoffian morphologies, were constant between species from different climate zones, implying that morphology was not affected by rainfall. The distribution and accumulation of CaOx crystals, however, did appear to be climate-related. Distribution was primarily governed by vein density, an architectural trait which has evolved in higher plants in response to increasing aridity. Furthermore, crystals were more abundant in acacias from low rainfall areas, and in phyllodes containing high concentrations of calcium, suggesting that both aridity and soil calcium levels play important roles in the precipitation of CaOx. As crystal formation appears to be calcium-induced, we propose that CaOx crystals in Acacia most likely function in bulk calcium regulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  2. Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants

    KAUST Repository

    Pan, Yichang

    2011-01-01

    Herein we report a facile synthesis method using surfactant cetyltrimethylammonium bromide (CTAB) as a capping agent for controlling the crystal size and morphology of zeolitic imidazolate framework-8 (ZIF-8) crystals in aqueous systems. The particle sizes can be precisely adjusted from ca. 100 nm to 4 μm, and the morphology can be changed from truncated cubic to rhombic dodecahedron. This journal is © The Royal Society of Chemistry.

  3. Manipulating poly(lactic acid) surface morphology by solvent-induced crystallization

    Science.gov (United States)

    Gao, Jian; Duan, Lingyan; Yang, Guanghui; Zhang, Qin; Yang, Mingbo; Fu, Qiang

    2012-11-01

    Here, we report some unique crystalline morphologies of poly(lactic acid) (PLA) via organic solvent-induced crystallization. It was revealed that the surface morphology of PLA can be fine tuned by simply varying the volume ratio of a mixed solvent (acetone/ethanol). By increasing the ethanol content in the mixed solvent, we observed a morphological evolution of PLA surface from spherulite to shish-kebab and bamboo-cage-like structure. It was also interesting to find that the initial surface structure of PLA plays an important role to determine the final solvent-induced crystalline morphology. This work provides a new method for manipulating PLA crystal morphology through a simple solvent-induced crystallization.

  4. Effects of polymer concentration on the morphology of calcium phosphate crystals formed in polyacrylamide hydrogels

    Science.gov (United States)

    Yokoi, Taishi; Kawashita, Masakazu; Ohtsuki, Chikara

    2013-11-01

    Growing crystals in hydrogels is an attractive method to form inorganic solids with designed morphology under ambient conditions. Precipitation of the inorganic solids in a hydrogel matrix can be regarded as mimicking the process of biomineralization. In the construction of biominerals, an organic template composed of insoluble macromolecules is used to control the crystal growth of the inorganic compounds. The morphological control in biomineralization can be applied to artificial reaction systems. In this study, the morphology of calcium phosphate crystals formed in polymeric hydrogels of various polymer concentrations was investigated. Spherical octacalcium phosphate (OCP) precipitated in the polyacrylamide (PAAm) hydrogels. Fibrous crystals gradually covered the surface of the spherical crystals as the polymer concentration of the gel increased. The morphology of the OCP crystals changed from sea urchin shapes to wool-ball shapes with increasing PAAm concentration. The morphological change is generated by the template effect of the polymer wall, which is made up of stacked PAAm sheets, surrounding the spherical OCP crystals.

  5. Morphologies and elemental compositions of calcium crystals in phyllodes and branchlets of Acacia robeorum (Leguminosae: Mimosoideae)

    Science.gov (United States)

    He, Honghua; Bleby, Timothy M.; Veneklaas, Erik J.; Lambers, Hans; Kuo, John

    2012-01-01

    Background and Aims Formation of calcium oxalate crystals is common in the plant kingdom, but biogenic formation of calcium sulfate crystals in plants is rare. We investigated the morphologies and elemental compositions of crystals found in phyllodes and branchlets of Acacia robeorum, a desert shrub of north-western Australia. Methods Morphologies of crystals in phyllodes and branchlets of A. robeorum were studied using scanning electron microscopy (SEM), and elemental compositions of the crystals were identified by energy-dispersive X-ray spectroscopy. Distributional patterns of the crystals were studied using optical microscopy together with SEM. Key Results According to the elemental compositions, the crystals were classified into three groups: (1) calcium oxalate; (2) calcium sulfate, which is a possible mixture of calcium sulfate and calcium oxalate with calcium sulfate being the major component; and (3) calcium sulfate · magnesium oxalate, presumably mixtures of calcium sulfate, calcium oxalate, magnesium oxalate and silica. The crystals were of various morphologies, including prisms, raphides, styloids, druses, crystal sand, spheres and clusters. Both calcium oxalate and calcium sulfate crystals were observed in almost all tissues, including mesophyll, parenchyma, sclerenchyma (fibre cells), pith, pith ray and cortex; calcium sulfate · magnesium oxalate crystals were only found in mesophyll and parenchyma cells in phyllodes. Conclusions The formation of most crystals was biologically induced, as confirmed by studying the crystals formed in the phyllodes from seedlings grown in a glasshouse. The crystals may have functions in removing excess calcium, magnesium and sulfur, protecting the plants against herbivory, and detoxifying aluminium and heavy metals. PMID:22294477

  6. Crystal structure and morphology of β-HMX in acetone: A molecular ...

    Indian Academy of Sciences (India)

    Single crystals of β-Cyclotetramethylene tetranitramine (HMX) were prepared by the solvent evaporation method. The structure was then determined using infrared spectroscopy and single crystal X-ray diffraction. The modified attachment energy (AE) model was used to predict the morphologies of β-HMXin vacuum and in ...

  7. Pu(VI) nitrate crystallization behavior confirmation experiment

    International Nuclear Information System (INIS)

    Yano, Hajime; Nishimura, Kenji; Chikazawa, Takahiro; Teramae, Naoki

    2001-03-01

    Crystallization procedure is considered to have an advantage in recovering rather pure uranium from contaminated uranium solution and to be applicable for a new reprocessing process. It is considered necessary to collect data for Pu crystallization for design of the process with crystallization procedure. Last year the test for Pu(IV) nitrate crystallization was performed and it was confirmed that Pu crystallization is not observed under supposed crystallization condition if Pu valence is adjusted to 4. In this study, two type beaker tests were performed, 1. Pu(VI) nitrate crystallization test to confirm a behavior of Pu(VI) nitrate under crystallization condition. 2. U-Pu(VI) nitrate crystallization test to confirm a U-Pu(VI) co-crystallization phenomena. These tests were performed in AEA Technology Harwell Laboratory and the results were examined by Mitsubishi Materials Corporation. Test results were as follows. (1) Pu(VI) crystallization test. 1. Pu(VI) nitrate solution of 200,100 and 50 gPu/L with HNO 3 6M were cooled down up to -60degC to confirm Pu(VI) nitrate crystallization or freezing of the solution. 2. Crystal of H 2 O and HNO 3 · 3 H 2 O were observed but Pu(VI) nitrate crystallization was not observed. 3. We can estimate that Pu(VI) nitrate crystallization will not occurred in the reprocessing process with crystallization procedure. (2) U-Pu(VI) nitrate crystallization test. 1. U-Pu(VI) mixed nitrate solution is cooled to 10degC and 0degC. 2. U-Pu(VI) co-crystallization was confirmed by orange colored crystal in both cooling temperatures. 3. It is considered that Pu(VI) nitrate crystal is co-crystallized with uranyl nitrate crystal by the following reasons. chemical formula of both crystal are similar. crystal form is same and lattice parameters are very near. 4. U+Pu(VI) crystallization data is very near with uranyl nitrate crystallization data if Pu(VI) nitrate is considered to be crystallized in a same manner as uranyl nitrate. (author)

  8. A Study of the Crystallization, Melting, and Foaming Behaviors of Polylactic Acid in Compressed CO2

    Directory of Open Access Journals (Sweden)

    Chul B. Park

    2009-12-01

    Full Text Available The crystallization and melting behaviors of linear polylactic acid (PLA treated by compressed CO2 was investigated. The isothermal crystallization test indicated that while PLA exhibited very low crystallization kinetics under atmospheric pressure, CO2 exposure significantly increased PLA’s crystallization rate; a high crystallinity of 16.5% was achieved after CO2 treatment for only 1 min at 100 °C and 6.89 MPa. One melting peak could be found in the DSC curve, and this exhibited a slight dependency on treatment times, temperatures, and pressures. PLA samples tended to foam during the gas release process, and a foaming window as a function of time and temperature was established. Based on the foaming window, crystallinity, and cell morphology, it was found that foaming clearly reduced the needed time for PLA’s crystallization equilibrium.

  9. Mold Flux Crystallization and Mold Thermal Behavior

    Science.gov (United States)

    Peterson, Elizabeth Irene

    Mold flux plays a small but critical role in the continuous casting of steel. The carbon-coated powder is added at the top of the water-cooled copper mold, over time it melts and infiltrates the gap between the copper mold and the solidifying steel strand. Mold powders serve five primary functions: (1) chemical insulation, (2) thermal insulation, (3) lubrication between the steel strand and mold, (4) absorption of inclusions, and (5) promotion of even heat flux. All five functions are critical to slab casting, but surface defect prevention is primarily controlled through even heat flux. Glassy fluxes have high heat transfer and result in a thicker steel shell. Steels with large volumetric shrinkage on cooling must have a crystalline flux to reduce the radiative heat transfer and avoid the formation of cracks in the shell. Crystallinity plays a critical role in steel shell formation, therefore it is important to study the thermal conditions that promote each phase and its morphology. Laboratory tests were performed to generate continuous cooling transformation (CCT) and time-temperature-transformation (TTT) diagrams. Continuous cooling transformation tests were performed in an instrumented eight cell step chill mold. Results showed that cuspidine was the only phase formed in conventional fluxes and all observed structures were dendritic. An isothermal tin bath quench method was also developed to isothermally age glassy samples. Isothermal tests yielded different microstructures and different phases than those observed by continuous cooling. Comparison of aged tests with industrial flux films indicates similar faceted structures along the mold wall, suggesting that mold flux first solidifies as a glass along the mold wall, but the elevated temperature devitrifies the glassy structure forming crystals that cannot form by continuous cooling.

  10. Interfacial morphologies and growth modes of F.C.C. metallic crystals from liquid alloys

    International Nuclear Information System (INIS)

    Camel, Denis

    1980-01-01

    Equilibrium and growth morphologies of f.c.c. metallic crystals in contact with liquid alloys have been observed in-situ using transmission electron microscopy. These morphologies have been discussed in terms of atomic interfacial structure and growth mechanisms with the help of a statistical thermodynamic model which takes into account the effects of chemical interactions and interfacial adsorption. (author) [fr

  11. Solvent selection for explaining the morphology of nitroguanidine crystal by molecular dynamics simulation

    Science.gov (United States)

    Song, Liang; Chen, Lizhen; Cao, Duanlin; Wang, Jianlong

    2018-02-01

    In this article, a method was performed to predict the morphology of needle-shaped crystals by analyzing the growth mechanisms for the various crystal faces. As an example, the crystal morphology of a nitroguanidine (NQ) was investigated via molecular dynamics simulations. The modified attachment energy (MEA) model was constructed by introducing surface chemistry terms and the relevant morphology of the habit crystal faces. The results indicate that the growth morphology of NQ in vacuum is dominated by {2 2 0}, {0 4 0}, {1 1 1}, {1 3 1} and {3 1 1} faces. The {2 2 0} and {0 4 0} faces are parallel to the elongation direction of the crystal, while the other faces are at the needle tips direction. The atoms or atomic groups exposed in crystal surface were used to analyze the relationship between structure and morphology. Compared to the surrounding faces, the needle tip faces have a large number of polar atoms or atomic groups. The needle tip faces have a high electronegativity on N, O atoms via molecular electrostatic potential (ESP) analysis. Furthermore, the protic solvent was used to reduce the attachment energy of the tip surfaces for achieving the purpose of inhibiting the growth of needle tips. Gamma-butyrolactone as the selected solvent inhibited effectively the growth of the needle tip faces. The predicted result is serviceable for the formation design.

  12. Morphology and parameters of crystallization the blend PE/Epoxy/PE-co-PEG

    International Nuclear Information System (INIS)

    Becker, Daniela; Coelho, Luiz Antonio Ferreira; Nack, Fernanda; Silva, Bruna Louise

    2014-01-01

    This study aims to evaluate the morphology and crystallization parameters of high density polyethylene (HDPE) with different concentrations of epoxy (DGEBA / OTBG), and the compatibility of this system was used and the copolymer polyethylene-block-poly (ethylene glycol) (PEG-co-PE). The blends were obtained by mechanical mixing on a torque rheometer (Haake). Determined the crystallization parameters of the test matrix differential scanning calorimetry (DSC) and by X-ray diffraction (XRD). The morphology of the system was analyzed by transmission electron microscopy (TEM). It was observed by XRD analysis that the addition of compatibilizer and epoxy resins do not interfere with the crystal structure of HDPE, indicating that the increase in crystallinity associated with the crystallization kinetics. It was observed that the compatibilizing helped the adhesion, reducing the size of the dispersed phase becomes a more stable morphology and obtaining a distribution of the dispersed epoxy phase. (author)

  13. Morphological changes of calcite single crystals induced by graphene-biomolecule adducts

    Science.gov (United States)

    Calvaresi, Matteo; Di Giosia, Matteo; Ianiro, Alessandro; Valle, Francesco; Fermani, Simona; Polishchuk, Iryna; Pokroy, Boaz; Falini, Giuseppe

    2017-01-01

    Calcite has the capability to interact with a wide variety of molecules. This usually induces changes in shape and morphology of crystals. Here, this process was investigated using sheets of graphene-biomolecule adducts. They were prepared and made dispersible in water through the exfoliation of graphite by tip sonication in the presence tryptophan or N-acetyl-D-glucosamine. The crystallization of calcium carbonate in the presence of these additives was obtained by the vapor diffusion method and only calcite formed. The analysis of the microscopic observations showed that the graphene-biomolecule adducts affected shape and morphology of rhombohedral {10.4} faced calcite crystals, due to their stabilization of additional {hk.0} faces. The only presence of the biomolecule affected minimally shape and morphology of calcite crystals, highlighting the key role of the graphene sheets as 2D support for the adsorption of the biomolecules.

  14. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    International Nuclear Information System (INIS)

    Leaw, W.L.; Mamat, C.R.; Triwahyono, S.; Jalil, A.A.; Bidin, N.

    2016-01-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  15. Effect of temperature on the morphology and electro-optical properties of liquid crystal physical gel

    Energy Technology Data Exchange (ETDEWEB)

    Leaw, W.L. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Mamat, C.R., E-mail: che@kimia.fs.utm.my [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Triwahyono, S. [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Jalil, A.A. [Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Centre of Hydrogen Energy, Institute of Future Energy, Univerisiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia); Bidin, N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor (Malaysia)

    2016-12-01

    Liquid crystal physical gels were (thermally) prepared with cholesteryl stearate as a gelator in nematic liquid crystal, 4-cyano-4′-pentylbiphenyl. The electro-optical performance of liquid crystal physical gels is almost entirely dependent on the gels' inherent morphology. This study involved an empirical investigation of the relationships among all of the gelation temperature, morphology, and electro-optical properties. Besides continuous cooling at room temperature, isothermal cooling was also performed at both 18 and 0 °C, corresponding to near-solid and solid phases of 4-cyano-4′-pentylbiphenyl respectively. Nevertheless, the liquid crystal physical gel was also isothermally rapidly cooled using liquid nitrogen. Polarizing optical microscopy showed that the gel structure became thinner when isothermal cooling was carried out. These thinner gel aggregates then interconnected to form larger liquid crystal domains. Moreover, it was also revealed that the gel networks were randomized. Electron spin resonance results showed that the liquid crystal director orientation was severely randomized in the presence of gel networks. Conversely, isothermal cooling using liquid nitrogen generated a higher liquid crystal director orientation order. The 6.0 wt% cholesteryl stearate/4-cyano-4′-pentylbiphenyl physical gel that was isothermally cooled using liquid nitrogen showed the lowest response time in a twisted nematic mode optical cell. - Graphical abstract: Liquid crystal physical gel was prepared using nematic liquid crystal, 4-cyano-4′-pentylbiphenyl and cholesteryl stearate as gelator. Isothermal cooling at lower temperature produced thinner gel network and larger liquid crystal domain. - Highlights: • 5CB nematic liquid crystal was successfully gelled by cholesteryl stearate gelator. • The morphology of gel network was controlled by different cooling conditions. • Thinner gel network was formed by the rapid cooling using liquid nitrogen.

  16. Morphology Dependent Flow Stress in Nickel-Based Superalloys in the Multi-Scale Crystal Plasticity Framework

    Directory of Open Access Journals (Sweden)

    Shahriyar Keshavarz

    2017-11-01

    Full Text Available This paper develops a framework to obtain the flow stress of nickel-based superalloys as a function of γ-γ’ morphology. The yield strength is a major factor in the design of these alloys. This work provides additional effects of γ’ morphology in the design scope that has been adopted for the model developed by authors. In general, the two-phase γ-γ’ morphology in nickel-based superalloys can be divided into three variables including γ’ shape, γ’ volume fraction and γ’ size in the sub-grain microstructure. In order to obtain the flow stress, non-Schmid crystal plasticity constitutive models at two length scales are employed and bridged through a homogenized multi-scale framework. The multi-scale framework includes two sub-grain and homogenized grain scales. For the sub-grain scale, a size-dependent, dislocation-density-based finite element model (FEM of the representative volume element (RVE with explicit depiction of the γ-γ’ morphology is developed as a building block for the homogenization. For the next scale, an activation-energy-based crystal plasticity model is developed for the homogenized single crystal of Ni-based superalloys. The constitutive models address the thermo-mechanical behavior of nickel-based superalloys for a large temperature range and include orientation dependencies and tension-compression asymmetry. This homogenized model is used to obtain the morphology dependence on the flow stress in nickel-based superalloys and can significantly expedite crystal plasticity FE simulations in polycrystalline microstructures, as well as higher scale FE models in order to cast and design superalloys.

  17. Effect of silk sericin on morphology and structure of calcium carbonate crystal

    Science.gov (United States)

    Zhao, Rui-Bo; Han, Hua-Feng; Ding, Shao; Li, Ze-Hao; Kong, Xiang-Dong

    2013-06-01

    In this paper, silk sericin was employed to regulate the mineralization of calcium carbonate (CaCO3). CaCO3 composite particles were prepared by the precipitation reaction of sodium carbonate with calcium chloride solution in the presence of silk sericin. The as-prepared samples were collected at different reaction time to study the crystallization process of CaCO3 by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). The results showed that silk sericin significantly affected the morphology and crystallographic polymorph of CaCO3. With increasing the reaction time, the crystal phase of CaCO3 transferred from calcite dominated to vaterite dominated mixtures, while the morphology of CaCO3 changed from disk-like calcite crystal to spherical vaterite crystal. These studies showed the potential of silk sericin used as a template molecule to control the growth of inorganic crystal.

  18. Growth, morphology, spectral and thermal studies of gel grown diclofenac acid crystals

    Science.gov (United States)

    Ramachandran, E.; Ramukutty, S.

    2014-03-01

    The crystal growth of diclofenac acid in silica gel is the first to be reported in literature. The growth parameters were varied to optimize the suitable growth condition. Single crystal X-ray diffraction method was used for the conformation of the crystal structure. Morphology studies showed that the growth is prominent along the b-axis and the prominent face is {002}. Fourier transform infrared spectral study was performed to identify the functional groups present in the crystal. Thermal stability and decomposition of the material were analyzed using thermo calorimetry in the temperature range 30-500 °C.

  19. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes.

    Science.gov (United States)

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-11-21

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites.

  20. Frustration and single crystal morphology of isotactic poly(2-vinylpyridine)

    NARCIS (Netherlands)

    Okihara, T; Cartier, L; van Ekenstein, GORA; Lotz, B

    The crystal structure of isotactic poly(2-vinylpyridine) (iP2VP) established in 1977 by Puterman et al. is shown to conform to a recently proposed frustrated packing scheme which involves three isochiral three-fold helices packed in a trigonal unit-cell, and observed in a number of polymers and

  1. Growth morphology of zinc tris(thiourea) sulphate crystals

    Indian Academy of Sciences (India)

    The crystal structure of ZTS involves extensive hydrogen bonding. In keeping with the current trend, the contribution of this bonding to the cohesive energy was computed by us through the Coulomb interaction term. The total expression for the interaction potential between two atoms A(r ) and A(r ), with formal charges q and ...

  2. Solvent effects on the crystal growth structure and morphology of the pharmaceutical dirithromycin

    Science.gov (United States)

    Wang, Yuan; Liang, Zuozhong

    2017-12-01

    Solvent effects on the crystal structure and morphology of pharmaceutical dirithromycin molecules were systematically investigated using both experimental crystallization and theoretical simulation. Dirithromycin is one of the new generation of macrolide antibiotics with two polymorphic forms (Form I and Form II) and many solvate forms. Herein, six solvates of the dirithromycin, including acetonitrile, acetonitrile/water, acetone, 1-propanol, N,N-dimethylformamide (DMF) and cyclohexane, were studied. Experimentally, we crystallized the dirithromycin molecules in different solvents by the solvent evaporating method and measured the crystal structures with the X-ray diffraction (XRD). We compared these crystal structures of dirithromycin solvates and analyzed the solvent property-determined structure evolution. The solvents have a strong interaction with the dirithromycin molecule due to the formation of inter-molecular interactions (such as the hydrogen bonding and close contacts (sum of vdW radii)). Theoretically, we calculated the ideal crystal habit based on the solvated structures with the attachment growth (AE) model. The predicted morphologies and aspect ratios of dirithromycin solvates agree well with the experimental results. This work could be helpful to better understand the structure and morphology evolution of solvates controlled by solvents and guide the crystallization of active pharmaceutical ingredients in the pharmaceutical industry.

  3. Incorporation of tin affects crystallization, morphology, and crystal composition of Sn-Beta

    DEFF Research Database (Denmark)

    Tolborg, Søren; Katerinopoulou, A.; Falcone, D. D.

    2014-01-01

    The crystallization of Sn-Beta in fl uoride medium is greatly in fl uenced by the amount and type of tin source present in the synthesis gel. By varying the amount of tin in the form of tin( IV ) chloride pentahydrate, the time required for crystallization was studied. It was found that tin not o...... to the minimum time required for obtaining full crystallinity. At excessive crystallization times, the catalytic activity decreased, presumably due to Ostwald ripening...

  4. In Vitro Calcite Crystal Morphology Is Modulated by Otoconial Proteins Otolin-1 and Otoconin-90

    Science.gov (United States)

    Moreland, K. Trent; Hong, Mina; Lu, Wenfu; Rowley, Christopher W.; Ornitz, David M.; De Yoreo, James J.; Thalmann, Ruediger

    2014-01-01

    Otoconia are formed embryonically and are instrumental in detecting linear acceleration and gravity. Degeneration and fragmentation of otoconia in elderly patients leads to imbalance resulting in higher frequency of falls that are positively correlated with the incidence of bone fractures and death. In this work we investigate the roles otoconial proteins Otolin-1 and Otoconin 90 (OC90) perform in the formation of otoconia. We demonstrate by rotary shadowing and atomic force microscopy (AFM) experiments that Otolin-1 forms homomeric protein complexes and self-assembled networks supporting the hypothesis that Otolin-1 serves as a scaffold protein of otoconia. Our calcium carbonate crystal growth data demonstrate that Otolin-1 and OC90 modulate in vitro calcite crystal morphology but neither protein is sufficient to produce the shape of otoconia. Coadministration of these proteins produces synergistic effects on crystal morphology that contribute to morphology resembling otoconia. PMID:24748133

  5. Effect of Blumea balsamifera extract on the phase and morphology of calcium oxalate crystals.

    Science.gov (United States)

    Montealegre, Charlimagne M; De Leon, Rizalinda L

    2017-10-01

    Calcium oxalate crystals are found in majority of kidney stones with calcium oxalate monohydrate (COM) as one of the primary types of kidney stones. Various methods of treatment exist, including herbal treatment in the Philippines that uses the medicinal herb Blumea balsamifera ( B. balsamifera ). The effect of B. balsamifera extract on the morphology of calcium oxalate crystals was studied by light microscopy, image analysis, powder X-ray diffraction and scanning electron microscopy. The extract decreased the crystal size by 5.22%-82.62% depending on the degree of supersaturation. Through analysis of the projected area of the crystals, the extract was found to shift the phase of the crystals from COM to calcium oxalate dihydrate (COD). This shift in phase is significant with a COM to COD shift of 88.26% at 0.5 mg/mL of extract and 91.53% at 1.0 mg/mL of extract. Scanning election microscopic (SEM) images revealed aggregation of crystals at 0 mg/mL of extract. At 1.0 mg/mL of extract, the scanning electron micrographs showed discernible crystal unit boundaries. B. balsamifera extract was observed to have decreased crystal size, shifted crystal phase from COM to COD and prevented the aggregation of calcium oxalate crystals.

  6. Controlled synthesis of SrCrO4 crystals with different morphologies

    International Nuclear Information System (INIS)

    Yang, Xiao-Hong; Wu, Qing-Sheng; Liu, Jin-Ku

    2007-01-01

    Rod-shape, branch-shape, bouquet-shape and claw-shape SrCrO 4 crystals were synthesized through biomembrane/organic-addition supramolecular templates. The shapes are mainly changed with variance of the organic reagents and organic membranes. Most of the morphologies haven't been reported in the literature. This method may meet with the requirements to synthesize materials of various morphologies and size by using different supramolecular templates. This paper discusses how to control crystals' growth by supramolecular templates. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Crystallization Behavior of Isotactic Propylene-1-Hexene Random Copolymer Investigated by Time-Resolved SAXS/WAXD Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Y.; Zuo, F; Keum, J; Hsiao, B; Thurman, D; Tsou, A

    2010-01-01

    The crystallization behavior of isotactic propylene-1-hexene (PH) random copolymer having 5.7% mole fraction of hexene content was investigated using simultaneous time-resolved small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) techniques. For this copolymer, the hexene component cannot be incorporated into the unit cell structure of isotactic polypropylene (iPP). Only {alpha}-phase crystal form of iPP was observed when samples were melt crystallized at temperatures of 40 C, 60 C, 80 C, and 100 C. Comprehensive analysis of SAXS and WAXD profiles indicated that the crystalline morphology is correlated with crystallization temperature. At high temperatures (e.g., 100 C) the dominant morphology is the lamellar structure; while at low temperatures (e.g., 40 C) only highly disordered small crystal blocks can be formed. These morphologies are kinetically controlled. Under a small degree of supercooling (the corresponding iPP crystallization rate is slow), a segmental segregation between iPP and hexene components probably takes place, leading to the formation of iPP lamellar crystals with a higher degree of order. In contrast, under a large degree of supercooling (the corresponding iPP crystallization rate is fast), defective small crystal blocks are favored due to the large thermodynamic driving force and low chain mobility.

  8. Unusual Crystallization Behavior Close to the Glass Transition

    Science.gov (United States)

    Desgranges, Caroline; Delhommelle, Jerome

    2018-03-01

    Using molecular simulations, we shed light on the mechanism underlying crystal nucleation in metal alloys and unravel the interplay between crystal nucleation and glass transition, as the conditions of crystallization lie close to this transition. While decreasing the temperature of crystallization usually results in a lower free energy barrier, we find an unexpected reversal of behavior for glass-forming alloys as the temperature of crystallization approaches the glass transition. For this purpose, we simulate the crystallization process in two glass-forming Copper alloys, Ag6 Cu4 , which has a positive heat of mixing, and CuZr, characterized by a large negative heat of mixing. Our results allow us to identify this unusual behavior as directly correlated with a nonmonotonic temperature dependence for the formation energy of connected icosahedral structures, which are incompatible with crystalline order and impede the development of the crystal nucleus, leading to an unexpectedly larger free energy barrier at low temperature. This, in turn, promotes the formation of a predominantly closed-packed critical nucleus, with fewer defects, thereby suggesting a new way to control the structure of the crystal nucleus, which is of key importance in catalysis.

  9. Crystal structure, thermal behavior, vibrational spectroscopy and ...

    Indian Academy of Sciences (India)

    64

    SHELXL-97 programs included in WINGX package [6, 7, and 8]. ... Elmer software. 2.6. Absorption and photoluminescence measurements. A PerkinElmer LS 55 spectrometer and exciting with 350 nm radiation were used to record ..... [8] Farrugia LJ, 1999, WinGX suite for small-molecule single-crystal crystallography. J.of.

  10. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    OpenAIRE

    Xu, Guobin; Tang, Yang; Lian, Jijian; Yan, Yue; Fu, Dengfeng

    2017-01-01

    Microbial-induced calcite precipitation (MICP) is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentratio...

  11. Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide

    Directory of Open Access Journals (Sweden)

    Yayuk Astuti

    2017-10-01

    How to Cite: Astuti, Y., Arnelli, Pardoyo, Fauziyah, A., Nurhayati, S., Wulansari, A.D., Andianingrum, R., Widiyandari, H., Bhaduri, G.A. (2017. Studying Impact of Different Precipitating Agents on Crystal Structure, Morphology and Photocatalytic Activity of Bismuth Oxide. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 478-484 (doi:10.9767/bcrec.12.3.1144.478-484

  12. Mineralization Process of Biocemented Sand and Impact of Bacteria and Calcium Ions Concentrations on Crystal Morphology

    Directory of Open Access Journals (Sweden)

    Guobin Xu

    2017-01-01

    Full Text Available Microbial-induced calcite precipitation (MICP is a sustainable technique used to improve sandy soil. Analysis of the mineralization process, as well as different bacterial suspensions and calcium concentrations on the crystal morphology, revealed that the mineralization process included four stages: self-organised hydrolysis of microorganisms, molecular recognition and interface interaction, growth modulation, and epitaxial growth. By increasing bacterial suspensions and calcium concentrations, the crystal morphology changed from hexahedron to oblique polyhedron to ellipsoid; the best crystal structure occurs at OD600 = 1.0 and [Ca2+] = 0.75 mol/l. It should be noted that interfacial hydrogen bonding is the main force that binds the loose sand particles. These results will help in understanding the mechanism of MICP.

  13. Morphological and mechanical characterization of composite calcite/SWCNT-COOH single crystals.

    Science.gov (United States)

    Calvaresi, Matteo; Falini, Giuseppe; Pasquini, Luca; Reggi, Michela; Fermani, Simona; Gazzadi, Gian Carlo; Frabboni, Stefano; Zerbetto, Francesco

    2013-08-07

    A growing number of classes of organic (macro)molecular materials have been trapped into inorganic crystalline hosts, such as calcite single crystals, without significantly disrupting their crystalline lattices. Inclusion of an organic phase plays a key role in enhancing the mechanical properties of the crystals, which are believed to share structural features with biogenic minerals. Here we report the synthesis and mechanical characterization of composite calcite/SWCNT-COOH single crystals. Once entrapped into the crystals SWCNT-COOH appeared both as aggregates of entangled bundles and nanoropes. Their observation was possible only after crystal etching, fracture or FIB (focused ion beam) cross-sectioning. SWCNT-COOHs occupied a small volume fraction and were randomly distributed into the host crystal. They did not strongly affect the crystal morphology. However, although the Young's modulus of composite calcite/SWCNT-COOH single crystals was similar to that of pure calcite their hardness increased by about 20%. Thus, SWCNT-COOHs provide an obstacle against the dislocation-mediated propagation of plastic deformation in the crystalline slip systems, in analogy with the well-known hardness increase in fiber-reinforced composites.

  14. Effect of crystals and fibrous network polymer additives on cellular morphology of microcellular foams

    Science.gov (United States)

    Miyamoto, Ryoma; Utano, Tatsumi; Yasuhara, Shunya; Ishihara, Shota; Ohshima, Masahiro

    2015-05-01

    In this study, the core-back foam injection molding was used for preparing microcelluar polypropylene (PP) foam with either a 1,3:2,4 bis-O-(4-methylbenzylidene)-D-sorbitol gelling agent (Gel-all MD) or a fibros network polymer additive (Metablen 3000). Both agent and addiive could effectively control the celluar morphology in foams but somehow different ways. In course of cooling the polymer with Gel-all MD in the mold caity, the agent enhanced the crystal nucleation and resulted in the large number of small crystals. The crystals acted as effective bubble nucleation agent in foaming process. Thus, the agent reduced the cell size and increased the cell density, drastically. Furthermore, the small crystals provided an inhomogenuity to the expanding cell wall and produced the high open cell content with nano-scale fibril structure. Gell-all as well as Metablene 3000 formed a gel-like fibrous network in melt. The network increased the elongational viscosity and tended to prevent the cell wall from breaking up. The foaming temperature window was widened by the presence of the network. Especially, the temperature window where the macro-fibrous structure was formed was expanded to the higher temperature. The effects of crystal nucleating agent and PTFE on crystals' size and number, viscoelsticity, rheological propreties of PP and cellular morphology were compared and thorougly investigated.

  15. UHMW Ziegler–Natta polyethylene: Synthesis, crystallization, and melt behavior

    KAUST Repository

    Atiqullah, Muhammad

    2017-04-26

    The fabrication of normal and UHMW PE end-products involves melting and crystallization of the polymer. Therefore, the melt behavior and crystallization of as-synthesized UHMW PE, and NMW PE and E-1-hexene copolymer have been studied using a new nonisothermal crystallization model, Flory\\'s equilibrium theory and ethylene sequence length distribution concept (SLD), Gibbs–Thompson equation, and DSC experiments. By using this approach, the effects of MW, 1-hexene incorporation, ethylene SLD, the level of undercooling θ, and crystal surface free energy D on crystallite stability, relative crystallinity α, instantaneous crystallinity χ, the crystallization kinetic triplet, crystallization entropy, and lamellar thickness distribution (LTD) have been evaluated. Consequently, this study reports insightful new results, interpretations, and explanations regarding the melting and crystallization of the aforementioned polymers. The UHMW PE results significantly differ from the NMW PE and E-1-hexene copolymer ones. Ethylene sequences shorter than the so called minimum crystallizable ethylene sequence length, irrespective of E-1-hexene copolymer MW, can also crystallize. Additionally, the polymer preparation shows that the catalyst coordination environment and symmetry, as well as achiral ethylene versus prochiral α-olefin steric encumbrance and competitive diffusion affect the synthesis of UHMW PE, particularly the corresponding UHMW copolymers.

  16. Rapid crystallization and morphological adjustment of zeolite ZSM-5 in nonionic emulsions

    Science.gov (United States)

    Zhang, Ying; Jin, Chao

    2011-01-01

    Zeolite ZSM-5 was synthesized for the first time in a nonionic emulsion composed of polyoxyethylated alkylphenol, butanol, cyclohexane and tetraethylammonium hydroxide (TEAOH)-containing zeolite synthesis mixture. The crystallization kinetics in the emulsion was investigated and the ZSM-5 product was characterized in detail by XRD, SEM, FT-IR, TG, N 2 adsorption and CHN analysis techniques. Compared with the conventionally hydrothermal synthesis with the same structure directing agent TEAOH, the emulsion system allows rapid crystallization of ZSM-5. The ZSM-5 product exhibits unusual agglomerated structure and possesses larger specific surface area. The FT-IR, TG results plus CHN analysis show the encapsulation of a trace of emulsion components in the emulsion ZSM-5. Control experiments show the emulsion system exerts the crystallization induction and morphological adjustment effects mainly during the aging period. The effects are tentatively attributed to the confined space domains, surfactant-water interaction as well as surfactant-growing crystals interaction existing in the emulsion.

  17. Tribological behaviors of UHMWPE composites with different counter surface morphologies

    Science.gov (United States)

    Wang, Yanzhen; Yin, Zhongwei; Li, Hulin; Gao, Gengyuan

    2017-12-01

    The influence of counter surface morphologies on hybrid glass fiber (GF) and carbon fiber (CF) filled ultrahigh molecular weight polyethylene (UHMWPE) were studied under various contact pressure and sliding speed against GCr15 steel in dry condition. The goals were to investigate the tribological behavior of GF/CF/UHMWPE composite as a kind of water lubricated journal bearing material. The friction and wear behavior of composites were examined using a pin-on-disc tribometer. The morphologies of the worn surface were examined by scanning electron microscopy (SEM) and laser 3D micro-imaging and profile measurement. Generally, the wear rate and friction coefficient of composites increase as the increment of counter surface roughness. The friction coefficient increases firstly and then decrease with an increase in sliding speed and contact pressure for counterface with Ra=0.2 and 3.5 μm, while the friction coefficient decreased for counterface with Ra=0.6 μm.

  18. Effect of solvent on crystallization behavior of xylitol

    Science.gov (United States)

    Hao, Hongxun; Hou, Baohong; Wang, Jing-Kang; Lin, Guangyu

    2006-04-01

    Effect of organic solvents content on crystallization behavior of xylitol was studied. Solubility and crystallization kinetics of xylitol in methanol-water system were experimentally determined. It was found that the solubility of xylitol at various methanol content all increases with increase of temperature. But it decreases when increasing methanol content at constant temperature. Based on the theory of population balance, the nucleation and growth rates of xylitol in methanol-water mixed solvents were calculated by moments method. From a series of experimental population density data of xylitol gotten from a batch-operated crystallizer, parameters of crystal nucleation and growth rate equations at different methanol content were got by the method of nonlinear least-squares. By analyzing, it was found that the content of methanol had an apparent effect on nucleation and growth rate of xylitol. At constant temperature, the nucleation and growth rate of xylitol all decrease with increase of methanol content.

  19. In situ ultrasonic diagnostic of zeolite X crystallization with novel (hierarchical) morphology from coal fly ash.

    Science.gov (United States)

    Musyoka, Nicholas M; Petrik, Leslie F; Hums, Eric; Baser, Hasan; Schwieger, Wilhelm

    2014-02-01

    In this paper the applicability of an in situ ultrasonic diagnostic technique in understanding the formation process of zeolite X with a novel morphology was demonstrated. The complexity of the starting fly ash feedstock demands independent studies of the formation process for each type of zeolite since it is not known whether the crystallization mechanism will always follow the expected reaction pathway. The hierarchical zeolite X was noted to follow a solution phase-mediated crystallization mechanism which differs from earlier studies of the zeolite A formation process from unaged, clear solution extracted from fused fly ash. The use of the in situ ultrasonic monitoring system provided sufficient data points which enabled closer estimation of the time of transition from the nucleation to the crystal growth step. In order to evaluate the effect of temperature on the resulting in situ attenuation signal, synthesis at three higher temperatures (80, 90 and 94 °C) was investigated. It was shown, by the shift of the US-attenuation signal, that faster crystallization occurred when higher temperatures were applied. The novel hierarchical zeolite X was comprised of intergrown disc-like platelets. It was further observed that there was preferential growth of the disc-shaped platelets of zeolite X crystals in one dimension as the synthesis temperature was increased, allowing tailoring of the hierarchical morphology. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. EVOLUTIONARY CONCEPTION OF SNOW METAMORPHISM BASED ON CRYSTAL-MORPHOLOGY AND THEORY OF SYMMETRY

    Directory of Open Access Journals (Sweden)

    E. G. Kolomyts

    2012-01-01

    Full Text Available The paper presents a novel approach to the study of development of microstructures in snowpack based on the crystal-morphology and on the fundamental laws of natural symmetry. An empirical deterministic model describing the sublimation-metamorphic cycle in seasonal snow cover and the polymorphic variants of this cycle is suggested. Staging in the formation of crystal shapes and self-development of snow microstructure in snow layers is revealed. The crystal shapes are the result of successive process of superposition of ice crystal-chemical symmetry and dissymmetry of the soil – snow cover – atmosphere system, according to the known P. Curie principle. Morphological classification of snow crystals in seasonal snow cover is developed on the base of evolutionary model. Evolution of snow microstructure is conditioned by a marked degree by probabilistic conformity to natural laws, manifesting itself in the processes of auto-regulation of metamorphism. These processes include two types of regulation: the self-regulation of snow layers, on the one hand, and the regulation related to external conditions – under the influence of atmospheric perturbations, on the other hand. The accounting the processes of auto-regulation of snow metamorphism for allows development of new methods in short- and long-term avalanche forecast.

  1. Experimental and theoretical study to explain the morphology of CaMoO4 crystals

    Science.gov (United States)

    Oliveira, F. K. F.; Oliveira, M. C.; Gracia, L.; Tranquilin, R. L.; Paskocimas, C. A.; Motta, F. V.; Longo, E.; Andrés, J.; Bomio, M. R. D.

    2018-03-01

    CaMoO4 crystals were prepared by a controlled co-precipitation method and processed in a domestic microwave-assisted hydrothermal system with two different surfactants (ethyl 4-dimethylaminobenzoate and 1,2,4,5-benzenetetracarboxylic dianhydride). The corresponding structures were characterized by X-ray diffraction and Rietveld refinement techniques, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and photoluminescence measurements. Field emission scanning electron microscopy was used to investigate the morphology of the as-synthesized aggregates. The structure, the surface stability of the (001), (112), (100), (110), (101), and (111) surfaces of CaMoO4, and their morphological transformations were investigated through systematic first-principles calculations within the density functional theory method at the B3LYP level. Analysis of the surface structures showed that the electronic properties were associated with the presence of undercoordinated [CaOx] (x = 5 and 6) and [MoOy] (y = 4 and 3) clusters. The relative surfaces energies were tuned to predict a complete map of the morphologies available through a Wulff construction approach. The results reveal that the experimental and theoretical morphologies obtained coincide when the surface energies of the (001) and (101) surfaces increase, while the surface energy of the (100) facet decreases simultaneously. The results provide a comprehensive catalog of the morphologies most likely to be present under realistic conditions, and will serve as a starting point for future studies on the surface chemistry of CaMoO4 crystals.

  2. Investigation of the operating conditions to morphology evolution of β-L-glutamic acid during seeded cooling crystallization

    Science.gov (United States)

    Zhang, Fangkun; Liu, Tao; Huo, Yan; Guan, Runduo; Wang, Xue Z.

    2017-07-01

    In this paper the effects of operating conditions including cooling rate, initial supersaturation, and seeding temperature were investigated on the morphology evolution of β-L-glutamic acid (β-LGA) during seeded cooling crystallization. Based on the results of in-situ image acquisition of the crystal morphology evolution during the crystallization process, it was found that the crystal products tend to be plate-like or short rod-like under a slow cooling rate, low initial supersaturation, and low seeding temperature. In the opposite, the operating conditions of a faster cooling rate, higher initial supersaturation, and higher seeding temperature tend to produce long rod-like or needle-like crystals, and meanwhile, the length and width of crystal products will be increased together with a wider crystal size distribution (CSD). The aspect ratio of crystals, defined by the crystal length over width measured from in-situ or sample images, was taken as a shape index to analyze the crystal morphologies. Based on comparative analysis of the experimental results, guidelines on these operating conditions were given for obtaining the desired crystal shapes, along with the strategies for obtaining a narrower CSD for better product quality. Experimental verifications were performed to illustrate the proposed guidelines on the operating conditions for seeded cooling crystallization of LGA solution.

  3. Gas phase acetic acid and its qualitative effects on snow crystal morphology and the quasi-liquid layer

    Directory of Open Access Journals (Sweden)

    T. N. Knepp

    2009-10-01

    Full Text Available A chamber was constructed within which snow crystals were grown on a string at various temperatures, relative humidities, and acetic acid gas phase mole fractions. The temperature, relative humidity, and acid mole fraction were measured for the first time at the point of crystal growth. Snow crystal morphological transition temperature shifts were recorded as a function of acid mole fraction, and interpreted according to the calculated acid concentration in the crystal's quasi-liquid layer, which is believed to have increased in thickness as a function of acid mole fraction, thereby affecting the crystal's morphology consistent with the hypothesis of Kuroda and Lacmann. Deficiencies in the understanding of the quasi-liquid layer and its role in determining snow crystal morphology are briefly discussed.

  4. Amelogenin Affects Brushite Crystal Morphology and Promotes Its Phase Transformation to Monetite

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Dongni; Ruan, Qichao; Tao, Jinhui; Lo, Jonathan; Nutt, Steven; Moradian-Oldak, Janet

    2016-09-07

    Amelogenin protein is involved in organized apatite crystallization during enamel formation. Brushite (CaHPO4·2H2O), which is one of the precursors for hydroxyapatite in in vitro mineralization, has been used for fabrication of biomaterials for hard tissue repair. In order to explore its potential application in biomimetic material synthesis, we studied the influence of amelogenin on brushite morphology and phase transformation to monetite. Our results show that amelogenin can adsorb onto surface of brushite, leading to the formation of layered structures on the (010) face. Amelogenin promoted the phase transformation of brushite into monetite (CaHPO4) in the dry state, presumably by interacting with crystalline water layers in brushite unit cell. Changes to the crystal morphology by amelogenin continued even after the phase transformation to monetite forming an organized nanotextured structure of nano-sticks resembling the bundle structure in enamel.

  5. Tailoring Zeolite ZSM-5 Crystal Morphology/Porosity through Flexible Utilization of Silicalite-1 Seeds as Templates: Unusual Crystallization Pathways in a Heterogeneous System.

    Science.gov (United States)

    Zhang, Hongbin; Zhao, Yang; Zhang, Hongxia; Wang, Peicheng; Shi, Zhangping; Mao, Jianjiang; Zhang, Yahong; Tang, Yi

    2016-05-17

    Diffusion limitation in micropores of zeolites leads to a demand for optimization of zeolite morphology and/or porosity. However, tailoring crystallization processes to realize targeted morphology/porosity is a major challenge in zeolite synthesis. On the basis of previous work on the salt-aided, seed-induced route, the template effect of seeds on the formation of micropores, mesopores and even macropores was further explored to selectively achieve desired hierarchical architectures. By carefully investigating the crystallization processes of two typical samples with distinct crystal morphologies, namely, 1) nanocrystallite-oriented self-assembled ZSM-5 zeolite and 2) enriched intracrystal mesoporous ZSM-5 zeolite, a detailed mechanism is proposed to clarify the role of silicalite-1 seeds in the formation of diverse morphologies in a salt-rich heterogeneous system, combined with the transformation of seed-embedded aluminosilicate gel. On the basis of these conclusions, the morphologies/porosities of products were precisely tailored by deliberately adjusting the synthesis parameters (KF/Si, tetrapropylammonium bromide/Si and H2 O/Si ratios and type of organic template) to regulate the kinetics of seed dissolution and seed-induced recrystallization. This work may not only provide a practical route to control zeolite crystallization for tailoring crystal morphology, but also expands the knowledge of crystal growth mechanisms in a heterogeneous system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior

    International Nuclear Information System (INIS)

    Braga, C.R.C.; Melo, F.M.A. de; Vitorino, I.F.; Fook, M.V.L.; Silva, S.M.L.

    2010-01-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  7. Morphology of silver bromide crystals produced at presence of N,N -dimethylformamide

    Energy Technology Data Exchange (ETDEWEB)

    Dyonizy, A.; Nowak, P. [Institute of Physical and Theoretical Chemistry, Wroclaw University of Technology (Poland)

    2010-08-15

    The study deals with examination of conditions that are necessary to obtain flat crystals of silver bromide that grow in a water and gelatine crystallization environment where N,N -dimethylformamide is used as the agent that is conducive to complexing of sparingly soluble silver bromide. The examination focused on the issue how changes in volumetric concentration of N,N -dimethylformamide as well as concentration of excessive ions of silver bromide in the dispersive solution affect morphology and size of newly created of silver bromide. The completed experiments enabled to determine boundary limits of both N,N -dimethylformamide and bromide ions concentration where suspensions of silver bromide crystals exhibit predominant content of triangular, transient and hexagonal flat forms with very high aspect ratio. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Surface morphology study on CdZnTe crystals by atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, M.; George, M.A.; Burger, A.; Collins, W.E.; Silberman, E. [Fisk Univ., Nashville, TN (United States)

    1993-03-01

    The study of the crystal surface morphology of CdZnTe is important for the understanding of the fundamentals of crystal growth in order to improve the crystal quality which is essential in applications such as substrates for epitaxy or performance of devices, i.e., room temperature nuclear spectrometers. We present a first atomic force microscopy study on CdZnTe. Cleaved (110) surfaces were imaged in the ambient and an atomic layer step structure was revealed. The effects of thermal annealing on the atomic steps together with Te precipitation along these steps are discussed in terms of deformation due to stress relief and the diffusion of tellurium precipitates. 12 refs., 3 figs.

  9. Hydrothermal Synthesis of Zeolitic Imidazolate Frameworks-8 (ZIF-8) Crystals with Controllable Size and Morphology

    KAUST Repository

    Lestari, Gabriella

    2012-05-01

    Zeolitic imidazolate frameworks (ZIFs) is a new class of metal-organic frameworks (MOFs) with zeolite-like properties such as permanent porosity, uniform pore size, and exceptional thermal and chemical stability. Until recently, ZIF materials have been mostly synthesized by solvothermal method. In this thesis, further analysis to tune the size and morphology of ZIF-8 is done upon our group’s recent success in preparing ZIF-8 crystals in pure aqueous solutions. Compositional parameters (molar ratio of 2-methylimidazole/Zn2+, type of zinc salt reagents, reagent concentrations, addition of surfactants) as well as process parameters (temperature and time) were systematically investigated. Upon characterizations of as-synthesized samples by X-ray powder diffraction, thermal gravimetric analysis, N2 adsorption, and field-emission scanning electron microscope, the results show that the particle size and morphology of ZIF-8 crystals are extremely sensitive to the compotional parameters of reagent concentration and addition of surfactants. The particle size and morphology of hydrothermally synthesized ZIF-8 crystals can be finely tuned; with the size ranging from 90 nm to 4 μm and the shape from truncated cubic to rhombic dodecahedron.

  10. A Phase Field Technique for Modeling and Predicting Flow Induced Crystallization Morphology of Semi-Crystalline Polymers

    Directory of Open Access Journals (Sweden)

    Xiaodong Wang

    2016-06-01

    Full Text Available Flow induced crystallization of semi-crystalline polymers is an important issue in polymer science and engineering because the changes in morphology strongly affect the properties of polymer materials. In this study, a phase field technique considering polymer characteristics was established for modeling and predicting the resulting morphologies. The considered crystallization process can be divided into two stages, which are nucleation upon the flow induced structures and subsequent crystal growth after the cessation of flow. Accordingly, the proposed technique consists of two parts which are a flow induced nucleation model based on the calculated information of molecular orientation and stretch, and a phase field crystal growth model upon the oriented nuclei. Two-dimensional simulations are carried out to predict the crystallization morphology of isotactic polystyrene under an injection molding process. The results of these simulations demonstrate that flow affects crystallization morphology mainly by producing oriented nuclei. Specifically, the typical skin-core structures along the thickness direction can be successfully predicted. More importantly, the results reveal that flow plays a dominant part in generating oriented crystal morphologies compared to other parameters, such as anisotropy strength, crystallization temperature, and physical noise.

  11. Crystal and morphological phase transformation of Pb(II) to Pb(IV) in chlorinated water

    International Nuclear Information System (INIS)

    Lytle, Darren A.; White, Colin; Nadagouda, Mallikarjuna N.; Worrall, Adam

    2009-01-01

    Herein, we show an important transformation of Pb(II) to Pb(IV) in chlorinated water under laboratory conditions. The study results will give an insight toward understanding how corrosion by-products on lead materials found in drinking water distribution systems develop and breakdown with time. The experiments were conducted to elucidate the morphology of lead (IV) oxide mineral transformation from hydrocerussite and its relationship to color change over a period of time. Scanning electron microscopy and transmission electron microscopy were used to describe the surface morphology, shape and size of lead solids. X-ray diffraction (XRD) analysis was performed to determine the mineral structure of lead solids. Solids analysis results were compared over a 14-day period of time to define changes in the crystal structure and morphology of lead solids. XRD analysis results of freshly synthesized lead solids showed that hydrocerussite, [Pb 3 (CO 3 ) 2 (OH) 2 ], was the only lead mineral present. After 14 days, a mixture of cerussite (PbCO 3 ) and α-PbO 2 and β-PbO 2 was present. Lead precipitates, i.e. hydrocerussite changed color from white to reddish brown confirming a transformation of the lead phase with time. This was correlated to a change in morphology from flower shaped crystals to hexagonal bars and submicron particles.

  12. The impact of nanoclay on the crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) composite

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2012-07-01

    Full Text Available The impact of nanoclay on the isothermal crystal growth kinetics and morphology of biodegradable poly(ethylene succinate) (PES) is reported. A PES composite (PESNC) containing 5 wt% organically modified montmorillonite, was prepared via solvent...

  13. Cell behavior on microparticles with different surface morphology

    Energy Technology Data Exchange (ETDEWEB)

    Huang Sha [Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853 (China); Fu Xiaobing, E-mail: fuxiaobing@vip.sina.co [Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing 100853 (China); Burns Institute, The First Affiliated Hospital, General Hospital of PLA, Trauma Center of Postgraduate Medical College, Beijing 100037 (China)

    2010-03-18

    Microparticles can serve as substrates for cell amplification and deliver the cell aggregation to the site of the defect for tissue regeneration. To develop favorable microparticles for cell delivery application, we fabricated and evaluated three types of microparticles that differ in surface properties. The microparticles with varied surface morphology (smooth, pitted and multicavity) were created from chemically crosslinked gelatin particles that underwent various drying treatments. Three types of microparticles were characterized and assessed in terms of the cell behavior of human keratinocytes and fibroblasts seeded on them. The cells could attach, spread and proliferate on all types of microparticles but spread and populated more slowly on the microparticles with smooth surfaces than on those with pitted or multicavity surfaces. Microparticles with a multicavity surface demonstrated the highest cell attachment and growth rate. Furthermore, cells tested on microparticles with a multicavity surface exhibited better morphology and induced the earlier formation of extracellular-based cell-microparticle aggregation than those on microparticles with other surface morphology (smooth and pitted). Thus, microparticles with a multicavity surface show promise for attachment and proliferation of cells in tissue engineering.

  14. Micromechanical Behavior of Single-Crystal Superalloy with Different Crystal Orientations by Microindentation

    Directory of Open Access Journals (Sweden)

    Jinghui Li

    2015-01-01

    Full Text Available In order to investigate the anisotropic micromechanical properties of single-crystal nickel-based superalloy DD99 of four crystallographic orientations, (001, (215, (405, and (605, microindentation test (MIT was conducted with different loads and loading velocities by a sharp Berkovich indenter. Some material parameters reflecting the micromechanical behavior of DD99, such as microhardness H, Young’s modulus E, yield stress σy, strain hardening component n, and tensile strength σb, can be obtained from load-displacement relations. H and E of four different crystal planes evidently decrease with the increase of h. The reduction of H is due to dislocation hardening while E is related to interplanar spacing and crystal variable. σy of (215 is the largest among four crystal planes, followed by (605, and (001 has the lowest value. n of (215 is the lowest, followed by (605, and that of (001 is the largest. Subsequently, a simplified elastic-plastic material model was employed for 3D microindentation simulation of DD99 with various crystal orientations. The simulation results agreed well with experimental, which confirmed the accuracy of the simplified material model.

  15. Crystal growth, morphology, thermal and spectral studies of an organosulfur nonlinear optical bis(guanidinium) 5-sulfosalicylate (BG5SS) single crystals

    Science.gov (United States)

    Dhavamurthy, M.; Peramaiyan, G.; Babu, K. Syed Suresh; Mohan, R.

    2015-04-01

    Organosulfur nonlinear optical single crystals of orthorhombic bis(guanidinium) 5-sulfosalicylate (2CH6N3 +·C7H4O6S2-·H2O) with dimension 14 mm × 4 mm × 5 mm have been grown from methanol and water solvents in 1:1 ratio by the slow evaporation growth technique. The crystal structure and morphology of the crystals have been studied by single-crystal X-ray diffraction. FTIR spectroscopic studies were carried out to identify the functional groups and vibrational modes present in the grown crystals. The UV-Vis spectrum was studied to analyze the linear optical properties of the grown crystals. The thermal gravimetric analysis was conducted on the grown crystals, and the result revealed that the grown crystal is thermally stable up to 65 °C. The dielectric tensor components ɛ 11, ɛ 22 and ɛ 33 of BG5SS crystal were evaluated as a function of frequency at 40 °C. The surface laser damage threshold for the grown crystal was measured using Nd:YAG laser. Further, Vickers micro-hardness study was carried out to analyze the mechanical strength of the grown crystals for various loads.

  16. Crystallization Behavior of Phosphate Glasses with Hydrophobic Coating Materials

    Directory of Open Access Journals (Sweden)

    Jaeyeop Chung

    2015-01-01

    Full Text Available We analyzed the effect of the addition of Li2O3, TiO2, and Fe2O3 on the crystallization behavior of P2O5–CaO–SiO2–K2O glasses and the effect of the crystallization behavior on the roughness and hydrophobicity of the coated surface. Exothermic behavior, including a strong exothermic peak in the 833–972 K temperature range when Fe2O3, TiO2, or Li2O3 was added, was confirmed by differential thermal analysis. The modified glass samples (PFTL1–3 showed diffraction peaks when heated at 1073 and 1123 K for 5 min; the crystallized phase corresponds to Fe3(PO42, that is, graftonite. We confirmed that the intensity of the diffraction peaks increases at high temperatures and with increasing Li2O3 content. In the case of the PFTL3 glass, a Li3Fe2(PO42 phase, that is, trilithium diiron(III tris[phosphate(V], was observed. Through scanning electron microscopy and the contact angles of the surfaces with water, we confirmed that the increase in surface roughness, correlated to the crystallization of the glass frit, increases hydrophobicity of the surface. The calculated values of the local activation energies for the growth of Fe3(PO42 on the PTFL1, PTFL2, and PFTL3 glass were 237–292 kJ mol−1, 182–258 kJ mol−1, and 180–235 kJ mol−1.

  17. Effect of Phytosterols on the Crystallization Behavior of Oil-in-Water Milk Fat Emulsions.

    Science.gov (United States)

    Zychowski, Lisa M; Logan, Amy; Augustin, Mary Ann; Kelly, Alan L; Zabara, Alexandru; O'Mahony, James A; Conn, Charlotte E; Auty, Mark A E

    2016-08-31

    Milk has been used commercially as a carrier for phytosterols, but there is limited knowledge on the effect of added plant sterols on the properties of the system. In this study, phytosterols dispersed in milk fat at a level of 0.3 or 0.6% were homogenized with an aqueous dispersion of whey protein isolate (WPI). The particle size, morphology, ζ-potential, and stability of the emulsions were investigated. Emulsion crystallization properties were examined through the use of differential scanning calorimetry (DSC) and Synchrotron X-ray scattering at both small and wide angles. Phytosterol enrichment influenced the particle size and physical appearance of the emulsion droplets, but did not affect the stability or charge of the dispersed particles. DSC data demonstrated that, at the higher level of phytosterol addition, crystallization of milk fat was delayed, whereas, at the lower level, phytosterol enrichment induced nucleation and emulsion crystallization. These differences were attributed to the formation of separate phytosterol crystals within the emulsions at the high phytosterol concentration, as characterized by Synchrotron X-ray measurements. X-ray scattering patterns demonstrated the ability of the phytosterol to integrate within the milk fat triacylglycerol matrix, with a concomitant increase in longitudinal packing and system disorder. Understanding the consequences of adding phytosterols, on the physical and crystalline behavior of emulsions may enable the functional food industry to design more physically and chemically stable products.

  18. Surfactant Effect on Formation of CaWO4:Eu3+ Crystals with Distinguished Morphologies in Hydrothermal Ambient.

    Science.gov (United States)

    Chen, Ye-Qing; Yang, Guo-Tao; Luo, Jian-Yi; Yang, Ying-Shu; Zeng, Qing-Guang; Jeong, Jung Hyun

    2016-04-01

    Metal tungstates, expressed by the general formula of MWO4, have important properties and applications in photoluminescence, microwave applications, optical fibers, scintillator materials, humidity sensors, magnetic properties, and catalysts. In this paper, we report a successful synthesis of CaWO4:Eul+ crystals with various morphologies in mild hydrothermal conditions with surfacntant including sodium citrate, CTAB, PEG and citrate acid (CA). The formation of the crystals are strongly dependent on the employment of surfactant. The surfactant concentration has been found significant influence in the resulting morphologies due to different properties of each one. Extensive characterization have been performed by using X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) in search of the formation mechanism of multi-morphological CaWO4:Eu3+ crystals. The growth mechanism of monodispersed CaWO4:EuS+ crystal are proposed. And the photoluminescence properties were investigated.

  19. Control of dislocation morphology and lattice distortion in Na-flux GaN crystals

    Science.gov (United States)

    Takeuchi, S.; Mizuta, Y.; Imanishi, M.; Imade, M.; Mori, Y.; Sumitani, K.; Imai, Y.; Kimura, S.; Sakai, A.

    2017-09-01

    The dislocation morphology and lattice distortion, including the tilting and twisting of lattice planes, at the Na-flux GaN/seed-GaN interface were investigated using transmission electron microscopy (TEM) and position-dependent nanobeam X-ray diffraction (nanoXRD). The results revealed that the dislocation morphology and lattice distortion in Na-flux GaN at the initial growth stage are strongly influenced by the seed-GaN surface morphology and the growth mode of Na-flux GaN. From the TEM results, one can observe that the formation of dislocation-related etch pits (DREPs) on the seed-GaN surface and the three-dimensional (3D) growth mode for Na-flux GaN give rise to the bending and lateral propagation of dislocations penetrating from the seed-GaN to the Na-flux GaN. This simultaneously results in homogenization of the GaN crystal domain structure as confirmed by nanoXRD. The mechanism responsible for the bending and lateral propagation of dislocations by the formation of DREPs and the 3D growth mode for the Na-flux GaN and the correlation between the dislocation morphology and the lattice distortion are discussed on the basis of TEM and nanoXRD results.

  20. Morphological changes of gamma prime precipitates in nickel-base superalloy single crystals

    International Nuclear Information System (INIS)

    Mackay, R.A.

    1984-07-01

    Changes in the morphology of the gamma prime precipitate were examined during tensile creep at temperatures between 927 and 1038 C in 001-oriented single crystals of a Ni-Al-Mo-Ta superalloy. In this alloy, which has a large negative misfit of -0.80%, the gamma prime particles link together during creep to form platelets, or rafts, which are aligned with their broad faces perpendicular to the applied tensile axis. The dimensions of the gamma and gamma prime phases were measured as directional coarsening developed in an attempt to trace the changing morphology under various stress levels. In addition, the effects of initial microstructure, as well as slight compositional variations, were related to raft development and creep properties. The results showed that directional coarsening of gamma prime began during primary creep, and under certain conditions, continued to develop after the onset of steady-state creep. The length of the rafts increased linearly with time up to a plateau region. The thickness of the rafts, however, remained equal to the initial gamma prime size at least up through the onset of tertiary creep this is a clear indication of the stability of the finely-spaced gamma-gamma prime lamellar structure. It was found that the single crystals with the finest gamma prime size exhibited the longest creep lives, because the resultant rafted structure had a larger number of gamma-gamma prime interfaces per unit volume of material

  1. Physiochemical Characterization of Iodine (V Oxide Part II: Morphology and Crystal Structure of Particulate Films

    Directory of Open Access Journals (Sweden)

    Brian K. Little

    2015-11-01

    Full Text Available In this study, the production of particulate films of iodine (V oxides is investigated. The influence that sonication and solvation of suspended particles in various alcohol/ketone/ester solvents have on the physical structure of spin or drop cast films is examined in detail with electron microscopy, powder x-ray diffraction, and UV-visible absorption spectroscopy. Results indicate that sonicating iodine oxides in alcohol mixtures containing trace amounts of water decreases deposited particle sizes and produces a more uniform film morphology. UV-visible spectra of the pre-cast suspensions reveal that for some solvents, the iodine oxide oxidizes the solvent, producing I2 and lowering the pH of the suspension. Characterizing the crystals within the cast films reveal their composition to be primarily HI3O8, their orientations to exhibit a preferential orientation, and their growth to be primarily along the ac-plane of the crystal, enhanced at higher spin rates. Spin-coating at lower spin rates produces laminate-like particulate films versus higher density, one-piece films of stacked particles produced by drop casting. The particle morphology in these films consists of a combination of rods, plates, cubes, and rhombohedra structure.

  2. Morphological and crystal chemical characteristic of panсreatic lithiasis.

    Science.gov (United States)

    Kravets, Oleksandr V; Danilenko, Ihor A; Smorodska, Olga M; Piddubnyi, Artem M; Zakorko, Inna-Margaryta S; Danilchenko, Sergei N; Moskalenko, Roman A; Kononenko, Mykola G; Romaniuk, Anatolii M

    2018-01-01

    Introduction: Information on chemical and phase composition of pancreoliths is limited and discrepant. There are reports, that pancreoliths are composed by calcium, phosphate, calcium carbonate or combination of calcium with fatty acids The aim of the work is studying of structural characteristics of pancreatoliths in 5 clinical cases. Materials and methods: Morphological and crystal-chemical study of five cases of pathological biomineralization in the pancreas were conducted in the work. Results: Two stones were located in the pancreatic duct, in other cases - in the ductal system of pancreas. Concretion sizes ranged from 0.5 to 1.5 cm in diameter. Pancreatic lithiasis' form depended on the location: in the duct of Wirsung single concretions were found (they were relatively large, oval stones with smooth, regular edges); multiple, small concretions with irregular edges, coral-like stones dominated in the ductal system of pancreas. Histological study of pancreas showed the signs of chronic pancreatitis, tissue fibrosis, atrophy and edema of glandular component, system distension of ducts, nidal mix-cell inflammatory infiltrates, vessels' plethora. Structural phase and chemical analysis of pathological biominerals responded calcite in all studied cases. Conclusion: The presence of pancreatic lithiasis was found to be accompanied by significant morphological changes of the pancreas. The pancreatolith crystal phase was established to be calcium carbonate in the form of calcite.

  3. Dynamic Behavior of Helical Structure in Ferroelectric Liquid Crystals

    Science.gov (United States)

    Katayama, Takashi; Uehara, Hiroyuki; Furue, Hirokazu; Hatano, Jun

    2004-09-01

    Ferroelectric liquid crystals (FLCs) take a helical structure which can be unwound by the application of an electric field. Although the static orientational process of FLC molecules is well known, the dynamic modification process of the helical structure is not clearly understood. We formulated equations for simulating the dynamic response in terms of the elastic free-energy density based on the continuum theory, and subsequently was solved the dynamic equations numerically. Furthermore, the conoscopic image was simulated by a 4× 4 matrix method. We investigated the effect of spontaneous polarization and dielectric anisotropy on the dynamic behavior of the helical structure in FLC.

  4. The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases

    Energy Technology Data Exchange (ETDEWEB)

    Stipanovic, Arthur J [SUNY College of Environmental Science and Forestry

    2014-11-17

    Consistent with the US-DOE and USDA “Roadmap” objective of producing ethanol and chemicals from cellulosic feedstocks more efficiently, a three year research project entitled “The Effect of Cellulose Crystal Structure and Solid-State Morphology on the Activity of Cellulases” was initiated in early 2003 under DOE sponsorship (Project Number DE-FG02-02ER15356). A three year continuation was awarded in June 2005 for the period September 15, 2005 through September 14, 2008. The original goal of this project was to determine the effect of cellulose crystal structure, including allomorphic crystalline form (Cellulose I, II, III, IV and sub-allomorphs), relative degree of crystallinity and crystallite size, on the activity of different types of genetically engineered cellulase enzymes to provide insight into the mechanism and kinetics of cellulose digestion by “pure” enzymes rather than complex mixtures. We expected that such information would ultimately help enhance the accessibility of cellulose to enzymatic conversion processes thereby creating a more cost-effective commercial process yielding sugars for fermentation into ethanol and other chemical products. Perhaps the most significant finding of the initial project phase was that conversion of native bacterial cellulose (Cellulose I; BC-I) to the Cellulose II (BC-II) crystal form by aqueous NaOH “pretreatment” provided an increase in cellulase conversion rate approaching 2-4 fold depending on enzyme concentration and temperature, even when initial % crystallinity values were similar for both allomorphs.

  5. EM study of latent track morphology in TiO{sub 2} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    O’Connell, J.H., E-mail: joconnell@nmmu.ac.za [CHRTEM, NMMU, University Way, Summerstrand, Port Elizabeth (South Africa); Skuratov, V.A. [FLNR, JINR, Joliot-Curie 6, 141980 Dubna (Russian Federation); Akilbekov, A.; Zhumazhanova, A. [L.N. Gumilyov Eurasian National University, Astana (Kazakhstan); Janse van Vuuren, A. [CHRTEM, NMMU, University Way, Summerstrand, Port Elizabeth (South Africa)

    2016-07-15

    A TEM investigation was conducted into the morphology of 167 MeV Xe (2 × 10{sup 10} cm{sup −2} to 10{sup 14} cm{sup −2}) and 1 GeV Bi ion (2 × 10{sup 10} cm{sup −2}) induced latent tracks in single crystal TiO{sub 2} (rutile). At fluences up to 10{sup 11} cm{sup −2} latent tracks are visible as discontinuous lines of strained crystal along the ion trajectory. From the implanted surface down to about 60–70 nm below the surface the tracks appear as continuous conical structures with a base of diameter 5–6 nm (Xe) and 8–9 nm (Bi) in contact with the surface with a mushroom shaped hillock extending outward from the surface. At fluences between 6 × 10{sup 12} cm{sup −2} and 10{sup 13} cm{sup −2} the crystal is amorphized but rod-like crystalline regions remain which are oriented along the ion trajectories. Amorphization extends from the surface down to 8.3 μm below suggesting an upper limit for the threshold electronic stopping power for amorphization of 7.3 keV nm{sup −1}. At 10{sup 14} cm{sup −2} Xe the entire 8.3 μm subsurface region is rendered amorphous although some evidence of short range ordering remains.

  6. Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology.

    Science.gov (United States)

    Marković, Smilja; Veselinović, Ljiljana; Lukić, Miodrag J; Karanović, Ljiljana; Bračko, Ines; Ignjatović, Nenad; Uskoković, Dragan

    2011-08-01

    Phase composition, crystal structure and morphology of biological hydroxyapatite (BHAp) extracted from human mandible bone, and carbonated hydroxyapatite (CHAp), synthesized by the chemical precipitation method, were studied by x-ray powder diffraction (XRD), Fourier transform infrared (FTIR) and Raman (R) spectroscopy techniques, combined with transmission electron microscopy (TEM). Structural and microstructural parameters were determined through Rietveld refinement of recorded XRD data, performed using the FullProf computing program, and TEM. Microstructural analysis shows anisotropic extension along the [00l] crystallographic direction (i.e. elongated crystallites shape) of both investigated samples. The average crystallite sizes of 10 and 8 nm were estimated for BHAp and CHAp, respectively. The FTIR and R spectroscopy studies show that carbonate ions substitute both phosphate and hydroxyl ions in the crystal structure of BHAp as well as in CHAp, indicating that both of them are mixed AB-type of CHAp. The thermal behaviour and carbonate content were analysed using thermogravimetric and differential thermal analysis. The carbonate content of about 1 wt.% and phase transition, at near 790 °C, from HAp to β-tricalcium phosphate were determined in both samples. The quality of synthesized CHAp powder, particularly, the particle size distribution and uniformity of morphology, was analysed by a particle size analyser based on laser diffraction and field emission scanning electron microscopy, respectively. These data were used to discuss similarity between natural and synthetic CHAp. Good correlation between the unit cell parameters, average crystallite size, morphology, carbonate content and crystallographic positions of carbonate ions in natural and synthetic HAp samples was found. © 2011 IOP Publishing Ltd

  7. Unusual crystallization behavior in Ga-Sb phase change alloys

    Directory of Open Access Journals (Sweden)

    Magali Putero

    2013-12-01

    Full Text Available Combined in situ X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by in situ X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.% and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.

  8. Single crystal plasticity by modeling dislocation density rate behavior

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Benjamin L [Los Alamos National Laboratory; Bronkhorst, Curt [Los Alamos National Laboratory; Beyerlein, Irene [Los Alamos National Laboratory; Cerreta, E. K. [Los Alamos National Laboratory; Dennis-Koller, Darcie [Los Alamos National Laboratory

    2010-12-23

    The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. The elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.

  9. Theoretical modeling of zircon's crystal morphology according to data of atomistic calculations

    Science.gov (United States)

    Gromalova, Natalia; Nikishaeva, Nadezhda; Eremin, Nikolay

    2017-04-01

    Zircon is an essential mineral that is used in the U-Pb dating. Moreover, zircon is highly resistant to radioactive exposure. It is of great interest in solving both fundamental and applied problems associated with the isolation of high-level radioactive waste. There is significant progress in forecasting of the most energetically favorable crystal structures at the present time. Unfortunately, the theoretical forecast of crystal morphology at high technological level is under-explored nowadays, though the estimation of crystal equilibrium habit is extremely important in studying the physical and chemical properties of new materials. For the first time, the thesis about relation of the equilibrium shape of a crystal with its crystal structure was put forward in the works by O.Brave. According to it, the idealized habit is determined in the simplest case by a correspondence with the reticular densities Rhkl of individual faces. This approach, along with all subsequent corrections, does not take into account the nature of atoms and the specific features of the chemical bond in crystals. The atomistic calculations of crystal surfaces are commonly performed using the energetic characteristics of faces, namely, the surface energy (Esurf), which is a measure of the thermodynamic stability of the crystal face. The stable crystal faces are characterized by small positive values of Esurf. As we know from our previous research (Gromalova et al.,2015) one of the constitutive factors affecting the value of the surface energy in calculations is a choice of potentials model. In this regard, we studied several sets of parameters of atomistic interatomic potentials optimized previously. As the first test model («Zircon 1») were used sets of interatomic potentials of interaction Zr-O, Si-O and O-O in the form of Buckingham potentials. To improve playback properties of zircon additionally used Morse potential for a couple of Zr-Si, as well as the three-particle angular harmonic

  10. Growth Temperature Dependence of Morphology of GaN Single Crystals in the Na-Li-Ca Flux Method

    Science.gov (United States)

    Wu, Xi; Hao, Hangfei; Li, Zhenrong; Fan, Shiji; Xu, Zhuo

    2018-02-01

    In this paper, the effect of growth temperature on the morphology and transparency of the GaN crystals obtained by the Li-Ca-added Na Flux method was studied. Addition of Li-Ca was attempted to control the growth habit and further improve transparency of GaN crystals. The samples with wurtzite structure of GaN were confirmed by the x-ray powder diffraction analysis. GaN single crystal with maximum size of about 6 mm was grown at 750°C. As the growth temperature was increased from 700°C to 850°C, the morphology of the crystals changed from pyramid to prism, and their surfaces became smooth. It was found that high growth temperature was beneficial to obtain a transparent crystal, but the evaporation of sodium would suppress its further growth. The E 2 (high) mode in the Raman spectra was at 568 cm-1, and the full-width at half-maximum values of this peak for the crystals obtained at 700°C, 750°C, 800°C, and 850°C were 7.5 cm-1, 10.3 cm-1, 4.4 cm-1, and 4.0 cm-1, respectively. It indicates that all the crystals are stress free and the transparent crystal grown at high temperature has high structural quality or low impurity concentrations.

  11. Effects of crystal refining on wear behaviors and mechanical properties of lithium disilicate glass-ceramics.

    Science.gov (United States)

    Zhang, Zhenzhen; Guo, Jiawen; Sun, Yali; Tian, Beimin; Zheng, Xiaojuan; Zhou, Ming; He, Lin; Zhang, Shaofeng

    2018-05-01

    The purpose of this study is to improve wear resistance and mechanical properties of lithium disilicate glass-ceramics by refining their crystal sizes. After lithium disilicate glass-ceramics (LD) were melted to form precursory glass blocks, bar (N = 40, n = 10) and plate (N = 32, n = 8) specimens were prepared. According to the differential scanning calorimetry (DSC) of precursory glass, specimens G1-G4 were designed to form lithium disilicate glass-ceramics with different crystal sizes using a two-step thermal treatment. In the meantime, heat-pressed lithium disilicate glass-ceramics (GC-P) and original ingots (GC-O) were used as control groups. Glass-ceramics were characterized using X-ray diffraction (XRD) and were tested using flexural strength test, nanoindentation test and toughness measurements. The plate specimens were dynamically loaded in a chewing simulator with 350 N up to 2.4 × 10 6 loading cycles. The wear analysis of glass-ceramics was performed using a 3D profilometer after every 300,000 wear cycles. Wear morphologies and microstructures were analyzed by scanning electron microscopy (SEM). One-way analysis of variance (ANOVA) was used to analyze the data. Multiple pairwise comparisons of means were performed by Tukey's post-hoc test. Materials with different crystal sizes (p properties. Specifically, G3 with medium-sized crystals presented the highest flexural strength, hardness, elastic modulus and fracture toughness. G1 and G2 with small-sized crystals showed lower flexural strength, whereas G4, GC-P, and GC-O with large-sized crystals exhibited lower hardness and elastic modulus. The wear behaviors of all six groups showed running-in wear stage and steady wear stage. G3 showed the best wear resistance while GC-P and GC-O exhibited the highest wear volume loss. After crystal refining, lithium disilicate glass-ceramic with medium-sized crystals showed the highest wear resistance and mechanical properties. Copyright © 2018

  12. Correlation of Bulk Dielectric and Piezoelectric Properties to the Local Scale Phase Transformations, Domain Morphology, and Crystal Structure Modified

    Energy Technology Data Exchange (ETDEWEB)

    Priya, Shashank [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Viehland, Dwight [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2014-12-14

    Three year program entitled “Correlation of bulk dielectric and piezoelectric properties to the local scale phase transformations, domain morphology, and crystal structure in modified lead-free grain-textured ceramics and single crystals” was supported by the Department of Energy. This was a joint research program between D. Viehland and S. Priya at Virginia Tech. Single crystal and textured ceramics have been synthesized and characterized. Our goals have been (i) to conduct investigations of lead-free piezoelectric systems to establish the local structural and domain morphologies that result in enhanced properties, and (ii) to synthesize polycrystalline and grain oriented ceramics for understanding the role of composition, microstructure, and anisotropy

  13. Controlled deposition of highly ordered soluble acene thin films: effect of morphology and crystal orientation on transistor performance.

    Science.gov (United States)

    Sele, Christoph W; Kjellander, B K Charlotte; Niesen, Bjoern; Thornton, Martin J; van der Putten, J Bas P H; Myny, Kris; Wondergem, Harry J; Moser, Armin; Resel, Roland; van Breemen, Albert J J M; van Aerle, Nick; Heremans, Paul; Anthony, John E; Gelinck, Gerwin H

    2009-12-28

    Controlling the morphology of soluble small molecule organic semiconductors is crucial for the application of such materials in electronic devices. Using a simple dip-coating process we systematically vary the film drying speed to produce a range of morphologies, including oriented needle-like crystals. Structural characterization as well as electrical transistor measurements show that intermediate drying velocities produce the most uniformly aligned films. Copyright © 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yu-Wei [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yang, Ko-Ho, E-mail: yangkoho@cc.kuas.edu.tw [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Dental Materials Research Center, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yeh, Sung-Wei [Metal Industries Research and Development Centre, 1001 Kaohsiung Highway, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100, Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)

    2011-06-16

    Highlights: > The thermal behavior of 3Y-TZP precursor powders had been investigated. > The crystallization behavior of 3Y-TZP nanopowders had been investigated. > The activation energy for crystallization of tetragonal ZrO{sub 2} was obtained. > The growth morphology parameter n is approximated as 2.0. > The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO{sub 2} crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 {+-} 21.9 kJ mol{sup -1}, was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO{sub 2} was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  15. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    International Nuclear Information System (INIS)

    Hsu, Yu-Wei; Yang, Ko-Ho; Chang, Kuo-Ming; Yeh, Sung-Wei; Wang, Moo-Chin

    2011-01-01

    Highlights: → The thermal behavior of 3Y-TZP precursor powders had been investigated. → The crystallization behavior of 3Y-TZP nanopowders had been investigated. → The activation energy for crystallization of tetragonal ZrO 2 was obtained. → The growth morphology parameter n is approximated as 2.0. → The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO 2 crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 ± 21.9 kJ mol -1 , was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO 2 was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  16. Crystal growth, structural, thermal and mechanical behavior of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals

    Science.gov (United States)

    Mahadevan, M.; Ramachandran, K.; Anandan, P.; Arivanandhan, M.; Bhagavannarayana, G.; Hayakawa, Y.

    2014-12-01

    Single crystals of L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) have been grown successfully from the solution of L-arginine and 4-nitrophenol. Slow evaporation of solvent technique was adopted to grow the bulk single crystals. Single crystal X-ray diffraction analysis confirms the grown crystal has monoclinic crystal system with space group of P21. Powder X-ray diffraction analysis shows the good crystalline nature. The crystalline perfection of the grown single crystals was analyzed by HRXRD by employing a multicrystal X-ray diffractometer. The functional groups were identified from proton NMR spectroscopic analysis. Linear and nonlinear optical properties were determined by UV-Vis spectrophotometer and Kurtz powder technique respectively. It is found that the grown crystal has no absorption in the green wavelength region and the SHG efficiency was found to be 2.66 times that of the standard KDP. The Thermal stability of the crystal was found by obtaining TG/DTA curve. The mechanical behavior of the grown crystal has been studied by Vicker's microhardness method.

  17. Crystal growth mechanisms and morphological control of the prototypical metal-organic framework MOF-5 revealed by atomic force microscopy.

    Science.gov (United States)

    Cubillas, Pablo; Anderson, Michael W; Attfield, Martin P

    2012-11-26

    Crystal growth of the metal-organic framework MOF-5 was studied by atomic force microscopy (AFM) for the first time. Growth under low supersaturation conditions was found to occur by a two-dimensional or spiral crystal growth mechanism. Observation of developing nuclei during the former reveals growth occurs through a process of nucleation and spreading of metastable and stable sub-layers revealing that MOFs may be considered as dense phase structures in terms of crystal growth, even though they contain sub-layers consisting of ordered framework and disordered non-framework components. These results also support the notion this may be a general mechanism of surface crystal growth at low supersaturation applicable to crystalline nanoporous materials. The crystal growth mechanism at the atomistic level was also seen to vary as a function of the growth solution Zn/H(2)bdc ratio producing square terraces with steps parallel to the direction or rhombus-shaped terraces with steps parallel to the direction when the Zn/H(2)bdc ratio was >1 or about 1, respectively. The change in relative growth rates can be explained in terms of changes in the solution species concentrations and their influence on growth at different terrace growth sites. These results were successfully applied to the growth of as-synthesized cube-shaped crystals to increase expression of the {111} faces and to grow octahedral crystals of suitable quality to image using AFM. This modulator-free route to control the crystal morphology of MOF-5 crystals should be applicable to a wide variety of MOFs to achieve the desired morphological control for performance enhancement in applications. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Controlled synthesis of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method

    Science.gov (United States)

    Wu, XiaoPing; Yuan, Lin; Zhou, ShaoMin; Lou, ShiYun; Wang, YongQiang; Gao, Tao; Liu, YuBiao; Shi, XiaoJing

    2012-08-01

    This paper reports on the controlled growth of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method for the first time. The morphological transformation from one-dimension (1D) nanostructures to 2D hierarchical flowerlike microarchitecture has been observed. The nanorods and nanowires with a well-defined crystallographical structure and the hierarchical flowers microarchitecture were obtained by changing the Lewis acids/bases. Lewis acids/bases were found to be crucial for the formation of the products by not only acting as the pH regulator but also as the shape controller, owing to their hydrolysis in the solvent to in situ form H+/OH- and hydrates. The results suggest that this should be an effective approach to the control the growth of t-Te crystals with interesting multiple morphologies, which are of interest for both theoretical investigations and practical applications.

  19. Controlled synthesis of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method

    International Nuclear Information System (INIS)

    Wu Xiaoping; Yuan Lin; Zhou Shaomin; Lou Shiyun; Wang Yongqiang; Gao Tao; Liu YuBiao; Shi Xiaojing

    2012-01-01

    This paper reports on the controlled growth of multi-morphology Te crystals by a convenient Lewis acid/base-assisted solvothermal method for the first time. The morphological transformation from one-dimension (1D) nanostructures to 2D hierarchical flowerlike microarchitecture has been observed. The nanorods and nanowires with a well-defined crystallographical structure and the hierarchical flowers microarchitecture were obtained by changing the Lewis acids/bases. Lewis acids/bases were found to be crucial for the formation of the products by not only acting as the pH regulator but also as the shape controller, owing to their hydrolysis in the solvent to in situ form H + /OH − and hydrates. The results suggest that this should be an effective approach to the control the growth of t-Te crystals with interesting multiple morphologies, which are of interest for both theoretical investigations and practical applications.

  20. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations

    International Nuclear Information System (INIS)

    Wang, Ruili; Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo

    2015-01-01

    Highlights: • The interdiffusion behavior between the NiAlHf coating and the superalloy substrate was influenced by the crystal orientation of the substrate alloy. • The structure of TCP phases formed in SRZ and IDZ was studied. • Studying the effect of orientation crystal of substrate on the formation of SRZ. - Abstract: NiAlHf coatings were deposited onto Ni-based single crystal (SC) superalloy with different crystal orientations by electron beam physical vapor deposition (EB-PVD). The effects of the crystal orientations of the superalloy substrate on inter-diffusion behavior between the substrate and the NiAlHf coating were investigated. Substrate diffusion zone (SDZ) containing needle-like μ phases and interdiffusion zone (IDZ) mainly consisting of the ellipsoidal and rod-like μ phases were formed in the SC alloy after heat-treatment 10 h at 1100 °C. The thickness of secondary reaction zone (SRZ) formed in the SC alloy with (0 1 1) crystal orientation is about 14 μm after 50 h heat-treatment at 1100 °C, which is relatively thicker than that in the SC alloy with (0 0 1) crystal orientation, whereas the IDZ revealed similar thickness

  1. Phosphate recovery through struvite-family crystals precipitated in the presence of citric acid: mineralogical phase and morphology evaluation.

    Science.gov (United States)

    Perwitasari, D S; Edahwati, L; Sutiyono, S; Muryanto, S; Jamari, J; Bayuseno, A P

    2017-11-01

    Precipitation strategy of struvite-family crystals is presented in this paper to recover phosphate and potassium from a synthetic wastewater in the presence of citric acid at elevated temperature. The crystal-forming solutions were prepared from crystals of MgCl 2 and NH 4 H 2 PO 4 with a molar ratio of 1:1:1 for Mg +2 , [Formula: see text], and [Formula: see text], and the citric acid (C 6 H 8 O 7 ) was prepared (1.00 and 20.00 ppm) from citric acid crystals. The Rietveld analysis of X-ray powder diffraction pattern confirmed a mixed product of struvite, struvite-(K), and newberyite crystallized at 30°C in the absence of citric acid. In the presence of citric acid at 30° and 40°C, an abundance of struvite and struvite-(K) were observed. A minute impurity of sylvite and potassium peroxide was unexpectedly found in certain precipitates. The crystal solids have irregular flake-shaped morphology, as shown by scanning electron microscopy micrograph. All parameters (citric acid, temperature, pH, Mg/P, and N/P) were deliberately arranged to control struvite-family crystals precipitation.

  2. Cellulose nanowhiskers from coconut husk fibers: effect of preparation conditions on their thermal and morphological behavior

    Science.gov (United States)

    Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker sus...

  3. Effect of Extreme Cold Treatment on Morphology and Behavior of Hydrogels and Microgels (Poster Session)

    Science.gov (United States)

    2017-08-20

    UNCLASSIFIED Effect of Extreme Cold Treatment on Morphology and Behavior of Hydrogels and Microgels BACKGROUND • Stimuli responsive hydrogel systems...determine water uptake post freezing Sweat EFFECTS ON WATER UPTAKE PRELIMINARY MICROGEL THERMAL STUDIES MORPHOLOGY POST FREEZING PAA PEG PNIPAAm BEFORE AFTER

  4. Study of the phenomena of crystallization of paraffin in the fluid-dynamic behavior of paraffinic crude - Phase 1

    International Nuclear Information System (INIS)

    Rodriguez, L; Castaneda, M

    2001-01-01

    The results obtained by relating the formation of wax crystals using traditional measurements such as cloud point, pour point and viscosity show the importance of analyzing the interactions among the chemical nature of crude oils, the physical-chemical variables and the fluid dynamics that cause different shapes and rates of crystallization. In addition, the specific value of viscosity should be measured at a certain temperature, as well as the rheological behavior of the crude oils during the process of formation and destruction of crystals due to shear rate. In order to carry out this study, a group of waxy crude oils was chosen. They were characterized considering the parameters mentioned above, and they were subjected to different cooling rates to microscopically observe the resulting morphologies, and to relate them to rheological behavior in a range of similar conditions that are obtained during hydrocarbon transport through pipelines. For this effect, laboratory tests were carried out, in addition to the scaling of results at the pilot plant level in a simulator to analyze the behavior of the fluids in dynamic or static conditions, in relation to prolonged pipeline downtime. This type of studies improves operational safety, offers considerable savings on additives, power, an increase in pumping capacity, and it also facilitates the selection of the most appropriate technology to control wax deposition

  5. The study of separation of crystal Fe and morphology for FeB nanoparticle: Molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Kien Pham Huu

    2017-04-01

    Full Text Available The separation of Fe crystal from amorphous nanoparticle (NP has been studied using molecular dynamics simulation. The simulation shows that the NP is crystallized through three stages. In the first stage NP undergoes the relaxation which results in forming nucleation regions where the atomic arrangement is similar to the distorted crystalline lattice. During the first stage the nuclei are unstable and dissolve for short times. In the second stage the stable crystal clusters have been created and new nuclei are formed mainly in the boundary region of crystal cluster. The stable crystal cluster grows in the direction to cover the core and then spreads out to the surface of NP. For the third stage the crystal cluster grows slightly with times. Further study concerns the different morphologies of NP. We found that the crystalline NP comprises a Fe crystalline grain with defects and separate clusters of Am-atom. Comparing to the amorphous NP, the structure organization of crystalline NP is more complicated and cannot be described by the simple shell/core model.

  6. Crystallization and melting behavior of poly(ethylene oxide) and its blend with styrene-based ionomer using time-resolved SAXS/WAXS experiments

    Energy Technology Data Exchange (ETDEWEB)

    Slusarczyk, CzesLaw, E-mail: cslusarczyk@ath.bielsko.pl [Institute of Textile Engineering and Polymer Materials, University of Bielsko-BiaLa, ul. Willowa 2, 43-309 Bielsko-BiaLa (Poland)

    2011-10-15

    Time-resolved synchrotron wide- and small-angle X-ray scattering experiments were used to investigate the crystallization behavior and microstructure development of neat poly(ethylene oxide) (PEO) and its 50/50 blend with ionomer containing 6.4 mol% of sodium acrylate. The apparent lateral crystal sizes D{sub (120)} and D{sub (112)/(004)} were derived from the WAXS profiles. It was found that D{sub (120)} and D{sub (112)/(004)} of PEO in the blend are almost independent of temperature and are smaller when compared to those of neat PEO sample. The evolution of morphological parameters extracted from time-resolved SAXS profiles such as the long period L, the lamellar crystal thickness l{sub C} and the amorphous layer thickness l{sub A}, shows that the crystallization process of neat PEO follows the nucleation theory. The lamellar crystal thickness l{sub C} shows a single linear dependence on inverse supercooling, over the whole temperature range investigated. In contrast, the crystallization process of PEO in the blend (i.e. in the presence of interactions with the ionomer) follows the nucleation theory only in the narrow supercooling range. It was found also that the morphology of the blend consists of a broad population of lamellar crystal thicknesses. During heating lamellae melt in the reversed sequence of their formation.

  7. Crystallization and melting behavior of multi-walled carbon nanotube-reinforced nylon-6 composites

    NARCIS (Netherlands)

    Phang, In Yee; Ma, Jianhua; Shen, Lu; Liu, Tianxi; Zhang, Wei-De

    2006-01-01

    The crystallization and melting behavior of neat nylon-6 (PA6) and multi-walled carbon nanotubes (MWNTs)/PA6 composites prepared by simple melt-compounding was comparatively studied. Differential scanning calorimetry (DSC) results show two crystallization exotherms (TCC, 1 and TCC, 2) for PA6/MWNTs

  8. Shear effects on crystallization behaviors and structure transitions of isotactic poly-1-butene

    DEFF Research Database (Denmark)

    Li, Jingqing; Guan, Peipei; Zhang, Yao

    2014-01-01

    Different melt pre-shear conditions were applied to isotactic poly-1-butene (iP-1-B) and the effect on the crystallization behaviors and the crystalline structure transitions of iP-1-B were investigated. The polarized optical microscope observations during isothermal crystallization process...

  9. Crystallization behavior of single isotactic poly(methyl methacrylate) chains visualized by atomic force microscopy.

    Science.gov (United States)

    Anzai, Takahiro; Kawauchi, Mariko; Kawauchi, Takehiro; Kumaki, Jiro

    2015-01-08

    We have, for the first time, successfully visualized the crystallization behavior of a single isolated polymer chain at the molecular level by atomic force microscopy (AFM). Previously, we found that isotactic poly(methyl methacrylate) (it-PMMA) formed two-dimensional folded chain crystals composed of double-stranded helices upon compression of its Langmuir monolayer on a water surface, and the molecular images of the crystals deposited on mica were clearly visualized by AFM (Kumaki, J.; et al. J. Am. Chem. Soc. 2005, 127, 5788). In the present study, a high-molecular-weight it-PMMA was diluted in a monolayer of an it-PMMA oligomer which cannot crystallize at the experimental temperature due to its low molecular weight. At a low surface pressure, isolated amorphous chains of the high-molecular-weight it-PMMA solubilized in the oligomer monolayer were observed. On compression, the isolated chains converted to crystals composed of a single chain, typically some small crystallites linked by an amorphous chain like a necklace. Detailed AFM observations of the crystals indicated that the crystalline nuclei preferentially formed at the ends of the chains, and the size of the nuclei was almost independent of the molecular weight of it-PMMA over a wide range. At an extremely slow compression, crystallization was promoted, resulting in crystallization of the whole chain. The crystallization behavior of a single isolated chain provides new insights in understanding the polymer crystallization process.

  10. The Odocoileus virginianus Femur: Mechanical Behavior and Morphology.

    Directory of Open Access Journals (Sweden)

    Mark J Hedgeland

    Full Text Available Biomechanical research relies heavily on laboratory evaluation and testing with osseous animal structures. While many femora models are currently in use, including those of the European red deer (Cervus elaphus, the Odocoileus virginianus femur remains undocumented, despite its regional abundance in North America. The objective of this study was to compare biomechanical and morphological properties of the Odocoileus virginianus femur with those of the human and commonly used animal models. Sixteen pairs of fresh-frozen cervine femora (10 male, 6 female, aged 2.1 ± 0.9 years were used for this study. Axial and torsional stiffnesses (whole bone were calculated following compression and torsion to failure tests (at rates of 0.1 mm/sec and 0.2°/sec. Lengths, angles, femoral head diameter and position, periosteal and endosteal diaphyseal dimensions, and condylar dimensions were measured. The results show that the cervine femur is closer in length, axial and torsional stiffness, torsional strength, and overall morphology to the human femur than many other commonly used animal femora models; additional morphological measurements are comparable to many other species' femora. The distal bicondylar width of 59.3mm suggests that cervine femora may be excellent models for use in total knee replacement simulations. Furthermore, the cervine femoral head is more ovoid than other commonly-used models for hip research, making it a more suitable model for studies of hip implants. Thus, with further, more application-specific investigations, the cervine femur could be a suitable model for biomechanical research, including the study of ballistic injuries and orthopaedic device development.

  11. Morphology of calcite crystals in clast coatings from four soils in the Mojave desert region

    Science.gov (United States)

    Chadwick, Oliver A.; Sowers, Janet M.; Amundson, Ronald G.

    1989-01-01

    Pedogenic calcite-crystal coatings on clasts were examined in four soils along an altitudinal gradient on Kyle Canyon alluvium in southern Nevada. Clast coatings were studied rather than matrix carbonate to avoid the effects of soil matrix on crystallization. Six crystal sizes and shapes were recognized and distinguished. Equant micrite was the dominant crystal form with similar abundance at all elevations. The distributions of five categories of spar and microspar appear to be influenced by altitudinally induced changes in effective moisture. In the drier, lower elevation soils, crystals were equant or parallel prismatic with irregular, interlocking boundaries while in the more moist, higher elevation soils they were randomly oriented, euhedral, prismatic, and fibrous. There was little support for the supposition that Mg(+2) substitution or increased (Mg + Ca)/HCO3 ratios in the precipitating solution produced crystal elongation.

  12. The Effect of Step Isothermal Crystallization on the Polymer Crystalline Morphology: The Case of Isotactic Polystyrene

    Directory of Open Access Journals (Sweden)

    D'Alkaine Carlos V.

    2001-01-01

    Full Text Available Simulations have shown that temperature changes during the growth of lamelae/ribbons of a polymer crystal induce alterations in the thickness of the lamelar crystal. Therefore, the lamelae/ribbons would melt at different temperatures. This is demonstrated experimentally here for spherulites of Isotactic Polystyrene (iPS. The results were obtained following the melting process of selected spherulite structures through temperature scanning. The samples, in which chosen spherulites were observed, were crystallized from the melting state at successive crystallization temperatures. Observations of these spherulite melting processes were made with an optical polarized microscope, using a hot stage to apply the temperature scan.

  13. Crystallization behavior of tetragonal ZrO{sub 2} prepared in a silica bath

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Huang, Hung-Jui [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2013-09-10

    Highlights: ► The activation energy of t-ZrO{sub 2} crystallization calculated by the JMA equation is 643.0 ± 13.9 kJ·mol{sup −1}. ► The growth morphology parameter (n) and crystallization mechanism index (m) are approximated as 3.0. ► Bulk nucleation is dominant in the t-ZrO{sub 2} crystallization process, and has a spherical-like morphology. ► The TEM microstructure reveals that the t-ZrO{sub 2} crystallites have a spherical-like morphology. - Abstract: The synthesis of zirconia (ZrO{sub 2}) precursor powders by a co-precipitation process is studied in this work, using a silica bath prepared at 348 K and pH = 7, with 10 min mixing using zirconium (IV) nitrate and tetraethylorthosilicate (TEOS, Si(OC{sub 2}H{sub 5}){sub 4}) as the starting materials. The XRD result show that only a single phase of tetragonal ZrO{sub 2} (t-ZrO{sub 2}) appears when the freeze dried precursor powders are calcined between 1173 and 1473 K for 120 min. The activation energy of t-ZrO{sub 2} crystallization, as calculated by the Johnson–Mehl–Avrami (JMA) equation, is 643.0 ± 13.9 kJ/mol. The growth morphology parameter (n) and crystallization mechanism index (m) are approximated as 3.0, which indicates that bulk nucleation is dominant in the t-ZrO{sub 2} crystallization process, and that the material has a plate-like morphology.

  14. Phase behavior of liquid crystals with CO2.

    Science.gov (United States)

    de Groen, Mariëtte; Vlugt, Thijs J H; de Loos, Theo W

    2012-08-02

    Liquid crystals are being considered as novel process solvents for CO(2) capture. The solubility of CO(2) is higher in the isotropic phase than in the structured (e.g., nematic) phase. CO(2) can be captured in the isotropic phase, and regeneration of the solvent is achieved by cooling down the mixture a few degrees until a phase transition to the structured phase occurs. This CO(2) capture process has the potential to consume less energy than the conventional amine-based processes. To address the potential of liquid crystals to efficiently capture CO(2), experimentally obtained P,T-phase diagrams of five liquid crystals with 5 mass % CO(2) are reported. The liquid crystals used in this study are 4'-(pentyloxy)-4-biphenylcarbonitrile, 4'-pentyl-4-biphenylcarbonitrile, 4-ethyl-4'-propyl-bicyclohexyl, 4-propyl-4'-butyl-bicyclohexyl, and 4'-(octyloxy)-4-biphenylcarbonitrile. It is found that a weakly polar liquid crystal had a higher CO(2) solubility than apolar and more polar liquid crystals.

  15. The influence of disorder on thermotropic nematic liquid crystals phase behavior.

    Science.gov (United States)

    Popa-Nita, Vlad; Gerliĉ, Ivan; Kralj, Samo

    2009-09-10

    We review the theoretical research on the influence of disorder on structure and phase behavior of condensed matter system exhibiting continuous symmetry breaking focusing on liquid crystal phase transitions. We discuss the main properties of liquid crystals as adequate systems in which several open questions with respect to the impact of disorder on universal phase and structural behavior could be explored. Main advantages of liquid crystalline materials and different experimental realizations of random field-type disorder imposed on liquid crystal phases are described.

  16. The Influence of Disorder on Thermotropic Nematic Liquid Crystals Phase Behavior

    Directory of Open Access Journals (Sweden)

    Samo Kralj

    2009-09-01

    Full Text Available We review the theoretical research on the influence of disorder on structure and phase behavior of condensed matter system exhibiting continuous symmetry breaking focusing on liquid crystal phase transitions. We discuss the main properties of liquid crystals as adequate systems in which several open questions with respect to the impact of disorder on universal phase and structural behavior could be explored. Main advantages of liquid crystalline materials and different experimental realizations of random field-type disorder imposed on liquid crystal phases are described.

  17. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission.

    Directory of Open Access Journals (Sweden)

    Aurora M Fontainhas

    Full Text Available PURPOSE: Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or "resting" conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates "resting" microglial morphology and behavior. METHODS: We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia. RESULTS: Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels

  18. Crystallization and Morphology of Nanocomposites Based on Poly(lactic acid/Graphene Nanoplatelets: Effect of Nanoparticle Functionalization

    Directory of Open Access Journals (Sweden)

    Pedram Manafi

    2014-12-01

    Full Text Available Crystallization behavior of nanocomposite based on semicrystalline polymers and graphene nanoplatelets (GNp has been considered due to its critical effect on the performance of the final product. In this study, nanocomposite based on poly(lactic acid/graphene nanoplatelets (PLA/GNp, 0.5 and 1 wt % was prepared via solution method using dimethylformamide as a solvent. PLA has the largest contribution in the current biopolymer research. To present time, it is well accepted that nanoparticles would be recognized as efficient heterogeneous nucleating agents for various semicrystalline polymers. To improve the dispersion of graphene in the matrix, functionalization using acid treatment and acylation reaction was accomplished. Characterization of functionalization reaction and grafting reaction between PLA and functionalized graphene (FGNp was tracked by Fourier transform infrared spectroscopy, elemental analysis, and thermogravimetry analysis. Scanning electron microscopy results demonstrated that a relatively fine dispersion of FGNp is achieved in the PLLA matrix. Non-isothermal and isothermal crystallization behavior was studied using differential scanning calorimetry. The isothermal tests were conducted at test temperatures 130°C, 125°C, 120°C and 115°C. The results indicated that crystallization percentage for the samples containing FGNp nanoparticles were higher than those of pristine-containing samples. With increase of temperature in isothermal test onset time for crystallization decreased due to higher mobility of polymeric chains in the samples. It seems that the presence of functionalized nanoparticles facilitated formation of β format of crystals.

  19. Direct image-based fractal characterization of morphologies and structures of wax crystals in waxy crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Gao Peng; Zhang Jinjun; Ma Guixia [MOE Key Laboratory of Petroleum Engineering - Beijing Key Laboratory of Urban Oil and Gas Distribution Technology, China University of Petroleum (Beijing), Beijing Changping 102249 (China)

    2006-12-20

    The morphology and structure of wax crystals are among the factors dominating rheological characteristics of a waxy crude oil at temperatures below the wax appearance temperature (WAT). In several reported researches fractal dimensions were employed in describing the waxy crude oil microstructures; however, they were all determined via the indirect approach, i.e. deduced from the rheological data. This paper presents a direct fractal characterization approach based on micrographs of wax crystals. The box-counting method is applied to the wax crystal images of three waxy crude oils beneficiated with and without pour-point-depressants (PPDs), and for the fractal measurements the t-distribution tests of hypothesis on linear regression are performed at the significance level of 0.01. It is demonstrated that the boundary fractal dimensions from micrographs of different visual fields of a specimen are almost identical, with the maximum and minimum relative ranges being 9.97% and 1.88% respectively, and with the standard deviation ranging from 0.0549 to 0.0107. Then the wax crystal structures are determined as fractal at the confidence level of 99%. All the listed absolute t-statistics with the minimum of 29.568 are much higher than the corresponding t-quantiles with the maximum of 3.4995. The results also show that the larger value of the boundary box dimension represents the higher complexity and irregularity of the wax crystal morphology. The box dimension increases with decreasing oil temperature for each waxy crude oil. After the oil is beneficiated with a PPD, the box dimension increases at each given temperature. Thus, it is feasible to use fractal dimensions to characterize the waxy crude oil microstructures. This helps to probe the rheology-microstructure relation.

  20. On the morphology of SrCO 3 crystals grown at the interface ...

    Indian Academy of Sciences (India)

    When fatty acid was used as an additive at the interface, the crystals grown were self-assembled needle shaped strontianite crystallites branching out from the seed crystal via secondary nucleation. Under identical conditions of supersaturation, the presence of fatty amine molecules at the liquid–liquid interface resulted in ...

  1. Cobalt epitaxial nanoparticles on CaF2/Si(111): Growth process, morphology, crystal structure, and magnetic properties

    Science.gov (United States)

    Sokolov, N. S.; Suturin, S. M.; Krichevtsov, B. B.; Dubrovskii, V. G.; Gastev, S. V.; Sibirev, N. V.; Baranov, D. A.; Fedorov, V. V.; Sitnikova, A. A.; Nashchekin, A. V.; Sakharov, V. I.; Serenkov, I. T.; Shimada, T.; Yanase, T.; Tabuchi, M.

    2013-03-01

    We study molecular beam epitaxy growth, morphology, crystal structure, and magnetic properties of Co nanoislands on CaF2/Si(111) surface. In order to have a full appreciation of complex growth kinetics at different stages, a comprehensive study of Co growth on CaF2 is carried out by atomic force, scanning electron, and transmission electron microscopies in the direct space, as well as by x-ray and electron diffraction in the reciprocal space. These experimental data are complemented by theoretical modeling. Magnetic properties are characterized by magneto-optical Kerr effect and superconducting quantum interference device magnetometries. Key effects influencing the Co growth on fluorite are addressed, including the sticking probability, the preferential nucleation sites, the size and shape time evolution, the dependence of Co morphology on temperature and Co exposure, and the coalescence mechanism. The two-stage deposition technique is developed, whereby the low-temperature seeding stage is used to facilitate Co nucleation, and the follow-up high-temperature deposition yields Co particles with high crystalline quality. Our results enable precise control over the resulting morphology, spatial ordering, and crystal structure affecting the magnetic properties. In particular, it is demonstrated that the transformation from dense to isolated Co nanoparticles leads to the change of the in-plane and out-of-plane magnetic anisotropy and also the sign of polar and longitudinal magneto-optical Kerr effects.

  2. Sr-containing hydroxyapatite: morphologies of HA crystals and bioactivity on osteoblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Aina, Valentina [Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino (Italy); Centre of Excellence NIS (Nanostructured Interfaces and Surface) Università degli Studi di Torino (Italy); INSTM (Italian National Consortium for Materials Science and Technology), UdR Università di Torino (Italy); Bergandi, Loredana, E-mail: loredana.bergandi@unito.it [Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino (Italy); Lusvardi, Gigliola; Malavasi, Gianluca [Department of Chemical and Geological Sciences, Università di Modena and Reggio Emilia, Via Campi 183, 41125 Modena (Italy); Imrie, Flora E.; Gibson, Iain R. [School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD (United Kingdom); Cerrato, Giuseppina [Department of Chemistry, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino (Italy); Centre of Excellence NIS (Nanostructured Interfaces and Surface) Università degli Studi di Torino (Italy); INSTM (Italian National Consortium for Materials Science and Technology), UdR Università di Torino (Italy); Ghigo, Dario [Department of Oncology, Università degli Studi di Torino, Via Santena 5/bis, 10126 Torino (Italy)

    2013-04-01

    A series of Sr-substituted hydroxyapatites (HA), of general formula Ca{sub (10−x)}Sr{sub x}(PO{sub 4}){sub 6}(OH){sub 2}, where x = 2 and 4, were synthesized by solid state methods and characterized extensively. The reactivity of these materials in cell culture medium was evaluated, and the behavior towards MG-63 osteoblast cells (in terms of cytotoxicity and proliferation assays) was studied. Future in vivo studies will give further insights into the behavior of the materials. A paper by Lagergren et al. (1975), concerning Sr-substituted HA prepared by a solid state method, reports that the presence of Sr in the apatite composition strongly influences the apatite diffraction patterns. Zeglinsky et al. (2012) investigated Sr-substituted HA by ab initio methods and Rietveld analyses and reported changes in the HA unit cell volume and shape due to the Sr addition. To further clarify the role played by the addition of Sr on the physico-chemical properties of these materials we prepared Sr-substituted HA compositions by a solid state method, using different reagents, thermal treatments and a multi-technique approach. Our results indicated that the introduction of Sr at the levels considered here does influence the structure of HA. There is also evidence of a decrease in the crystallinity degree of the materials upon Sr addition. The introduction of increasing amounts of Sr into the HA composition causes a decrease in the specific surface area and an enrichment of Sr-apatite phase at the surface of the samples. Bioactivity tests show that the presence of Sr causes changes in particle size and/or morphology during soaking in MEM solution; on the contrary the morphology of pure HA does not change after 14 days of reaction. The presence of Sr, as Sr-substituted HA and SrCl{sub 2,} in cultures of human MG-63 osteoblasts did not produce any cytotoxic effect. In fact, Sr-substituted HA increased the proliferation of osteoblast cells and enhanced cell differentiation: Sr in

  3. Crystal morphology modification by the addition of tailor-made stereocontrolled poly(N-isopropyl acrylamide)

    DEFF Research Database (Denmark)

    Munk, Tommy; Baldursdottir, Stefania; Hietala, Sami

    2012-01-01

    The use of additives in crystallization of pharmaceuticals is known to influence the particulate properties critically affecting downstream processing and the final product performance. Desired functionality can be build into these materials, e.g. via optimized synthesis of a polymeric additive....... One such additive is the thermosensitive polymer poly(N-isopropyl acrylamide) (PNIPAM). The use of PNIPAM as a crystallization additive provides a possibility to affect viscosity at separation temperatures and nucleation and growth rates at higher temperatures. In this study, novel PNIPAM derivatives...... composition. Optical light microscopy and Raman and FTIR spectroscopy were used to investigate the structure of the NF crystals and possible interaction with PNIPAM. A drastic change in the growth mechanism of nitrofurantoin crystals as monohydrate form II (NFMH-II) was observed in the presence of PNIPAM...

  4. Influences of Silver-Doping on the Crystal Structure, Morphology and Photocatalytic Activity of TiO2 Nanofibers

    DEFF Research Database (Denmark)

    Barakat, Nasser A. M.; Kanjwal, Muzafar Ahmed; Al-Deyab, Salem S.

    2011-01-01

    Doping of titanium dioxide nanofibers by silver nanoparticles revealed distinct improvement in the photocatalytic activ-ity; however other influences have not been investigated. In this work, effect of sliver-doping on the crystal structure, the nanofibrous morphology as well as the photocatalytic...... activity of titanium oxide nanofibers has been studied. Sil-ver-doped TiO2 nanofibers having different silver contents were prepared by calcination of electrospun nanofiber mats consisting of silver nitrate, titanium isopropoxide and poly(vinyl acetate) at 600°C. The results affirmed formation of silver...

  5. Growth morphology of {1 1 0} faces of manganese mercury thiocyanate crystals investigated by atomic force microscopy

    International Nuclear Information System (INIS)

    Geng, Y.L.; Xu, D.; Wang, X.Q.; Du, W.; Liu, H.Y.; Zhang, G.H.

    2006-01-01

    Atomic force microscopy is employed to investigate the surface morphology of the {1 1 0} faces of MMTC crystals grown at 40 deg. C at a supersaturation of σ = 0.5. Growth hillocks generated by dislocation sources often appear in groups, which leads to faster growth of the local area and forming layers with large height difference up to 30 nm. Growth centers operate nearly equally during the growth process. Serried and sparse monolayer steps dominate alternately on the surface, which is thought to be distinct phenomenon of the two-metal-centered complex compounds family

  6. Morphology and parameters of crystallization the blend PE/Epoxy/PE-co-PEG; Morfologia e parametros de cristalizacao da blenda PE/epoxi/PE-co-PEG

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Daniela; Coelho, Luiz Antonio Ferreira; Nack, Fernanda; Silva, Bruna Louise, E-mail: dep2db@joinville.udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil). Centro de Ciencias Tecnologicas

    2014-07-01

    This study aims to evaluate the morphology and crystallization parameters of high density polyethylene (HDPE) with different concentrations of epoxy (DGEBA / OTBG), and the compatibility of this system was used and the copolymer polyethylene-block-poly (ethylene glycol) (PEG-co-PE). The blends were obtained by mechanical mixing on a torque rheometer (Haake). Determined the crystallization parameters of the test matrix differential scanning calorimetry (DSC) and by X-ray diffraction (XRD). The morphology of the system was analyzed by transmission electron microscopy (TEM). It was observed by XRD analysis that the addition of compatibilizer and epoxy resins do not interfere with the crystal structure of HDPE, indicating that the increase in crystallinity associated with the crystallization kinetics. It was observed that the compatibilizing helped the adhesion, reducing the size of the dispersed phase becomes a more stable morphology and obtaining a distribution of the dispersed epoxy phase. (author)

  7. Morphology of Poly(3,4-ethylene dioxythiophene) (PEDOT) Thin Films, Crystals, Cubic Phases, Fibers and Tubes

    Science.gov (United States)

    Wu, Jinghang

    Poly(3,4-ethylene dioxythiophene) (PEDOT) is a chemically stable, conjugated polymer that is of considerable interest for a variety of organic electronic devices including microfabricated neural electrodes that interface with living cortical tissue. The properties of conducting polymers are strongly dependent on the morphology and structure of the material in the solid-state. The rigid pi-pi conjugated conformation of PEDOT facilitates charge transport and favors crystallization that reduces solubility and processability, making detailed studies of PEDOT morphology difficult. This has also made it hard to control the microstructure at a variety of length scales. In this dissertation the morphology of PEDOT has been studied and controlled at several different length scales from manometers to micrometers. On the nanoscale, the primary intermolecular (100) d-spacing in PEDOT crystals has been controlled from 1.15 nm to 1.52 nm by using different counter-ions as dopants. The surface morphology and crystallinity of electrochemically deposited PEDOT films have been controlled by changing deposition conditions. A highly ordered, crystalline PEDOT-Br phase was formed during electrochemical deposition in the presence of bromine counterions. On the tens of nanometers scale, isotropic PEDOT bicontinuous cubic structures with extremely large surface areas were developed using ternary non-ionic surfactant, water and oil systems. On the micrometer scale, aligned PEDOT fibers and tubes were prepared by electrospinning blends of poly(lactide-co-glycolide) (PLGA) or poly(caprolactone) (PCL) and EDOT monomer onto a rotating wheel or a dielectric gap in a metal substrate. These aligned fibers and tubes were shown to precisely direct neural regeneration in specific directions in vitro. These developments help understand the structure and properties of conjugated polymers for use in organic electronic devices.

  8. The impact of carbon on single crystal nickel-base superalloys: Carbide behavior and alloy performance

    Science.gov (United States)

    Wasson, Andrew Jay

    Advanced single crystal nickel-base superalloys are prone to the formation of casting grain defects, which hinders their practical implementation in large gas turbine components. Additions of carbon (C) have recently been identified as a means of reducing grain defects, but the full impact of C on single crystal superalloy behavior is not entirely understood. A study was conducted to determine the effects of C and other minor elemental additions on the behavior of CMSX-4, a commercially relevant 2nd generation single crystal superalloy. Baseline CMSX-4 and three alloy modifications (CMSX-4 + 0.05 wt. % C, CMSX-4 + 0.05 wt. % C and 68 ppm boron (B), and CMSX-4 + 0.05 wt. % C and 23 ppm nitrogen (N)) were heat treated before being tested in high temperature creep and high cycle fatigue (HCF). Select samples were subjected to long term thermal exposure (1000 °C/1000 hrs) to assess microstructural stability. The C modifications resulted in significant differences in microstructure and alloy performance as compared to the baseline. These variations were generally attributed to the behavior of carbide phases in the alloy modifications. The C modification and the C+B modification, which both exhibited script carbide networks, were 25% more effective than the C+N modification (small blocky carbides) and 10% more effective than the baseline at preventing grain defects in cast bars. All C-modified alloys exhibited reduced as-cast gamma/gamma' eutectic and increased casting porosity as compared to baseline CMSX-4. The higher levels of porosity (volume fractions 0.002 - 0.005 greater than the baseline) were attributed to carbides blocking molten fluid flow during the final stages of solidification. Although the minor additions resulted in reduced solidus temperature by up to 16 °C, all alloys were successfully heat treated without incipient melting by modifying commercial heat treatment schedules. In the B-containing alloy, heat treatment resulted in the transformation of

  9. Solid-Phase and Oscillating Solution Crystallization Behavior of (+)- and (-)-N-Methylephedrine.

    Science.gov (United States)

    Tulashie, Samuel Kofi; Polenske, Daniel; Seidel-Morgenstern, Andreas; Lorenz, Heike

    2016-11-01

    This work involves the study of the solid-phase and solution crystallization behavior of the N-methylephedrine enantiomers. A systematic investigation of the melt phase diagram of the enantiomeric N-methylephedrine system was performed considering polymorphism. Two monotropically related modifications of the enantiomer were found. Solubilities and the ternary solubility phase diagrams of N-methylephedrine enantiomers in 2 solvents [isopropanol:water, 1:3 (Vol) and (2R, 3R)-diethyl tartrate] were determined in the temperature ranges between 15°C and 25°C, and 25°C and 40°C, respectively. Preferential nucleation and crystallization experiments at higher supersaturation leading to an unusual oscillatory crystallization behavior as well as a successful preferential crystallization experiment at lower supersaturation are presented and discussed. Copyright © 2016. Published by Elsevier Inc.

  10. Nanoparticle Surface Specific Adsorption of Zein and Its Self-assembled Behavior of Nanocubes Formation in Relation to On-Off SERS: Understanding Morphology Control of Protein Aggregates.

    Science.gov (United States)

    Navdeep; Banipal, Tarlok Singh; Kaur, Gurinder; Bakshi, Mandeep Singh

    2016-01-27

    Zein, an industrially important protein, is characterized in terms of its food and pharmaceutical coating applications by using surface enhanced Raman spectroscopy (SERS) on Au, Ag, and PbS nanoparticles (NPs). Its specific surface adsorption behavior on Ag NPs produced self-assembled zein nanocubes which demonstrated on and off SERS activity. Both SERS characterization as well as nanocube formation of zein helped us to understand the complex protein aggregation behavior in shape controlled morphologies, a process with significant ramifications in protein crystallization to achieve ordered morphologies. Interestingly, nanocube formation was promoted in the presence of Ag rather than Au or PbS NPs under in situ synthesis and discussed in terms of specific adsorption. Zein fingerprinting was much more clear and enhanced on Au surface in comparison to Ag while PbS did not demonstrate SERS due to its semiconducting nature.

  11. Effect of the Basicity on the Crystallization Behavior of Titanium Bearing Blast Furnace Slag

    Science.gov (United States)

    Meilong, Hu; Ruirui, Wei; Leizhang, Gao; Lu, Liu; Chenguang, Bai

    2018-03-01

    Basicity of titanium bearing blast furnace (BF) slag is critical for its crystallization behavior. Thermodynamics calculation indicates that rutile is the main phase after crystallization (or at room temperature). It precipitates during the cooling when the basicity of the slag is lower than 0.7. With increasing basicity, perovskite appears and becomes the main phase instead which contains titanium. Crystallization temperature of perovskite is higher than that of rutile and the other phases. Namely, perovskite crystallizes firstly from the molten slag during decreasing temperature. XRD analysis shows that CaTi21O38 is the main phase with a basicity of 0.6. CaMg0.39Al0.87Ti0.48Si1.26O6, CaTiSiO5 and CaMgSi2O6 are the main crystallization phases with a basicity of 0.8. The difference between experimental and thermodynamics calculation is due to the complicate crystallization behavior of the multiple slag under super cooling rate. When the slag basicity increases to 1.1, the main precipitatied phase is perovskite, which agrees well with theory calculation. In addition, the crystal structure of the synthesized titanium bearing slag is basically similar regardless of the basicity.

  12. THE MORPHOLOGICAL BASIS FOR OLFACTORY PERCEPTION OF STEROIDS DUING AGONISTIC BEHAVIOR IN LOBSTER: PRELIMINARY EXPERIMENTS

    Science.gov (United States)

    The morphological basis for olfactory perception of steroids during agonistic behavior in lobsters: preliminary experiments. Borsay Horowitz, DJ1, Kass-Simon, G2, Coglianese, D2, Martin, L2, Boseman, M2, Cromarty, S3, Randall, K3, Fini, A.3 1US EPA, NHEERL, ORD, Atlantic Ecology...

  13. Facing different predators: adaptiveness of behavioral and morphological traits under predation.

    Science.gov (United States)

    Heynen, Martina; Bunnefeld, Nils; Borcherding, Jost

    2017-06-01

    Predation is thought to be one of the main structuring forces in animal communities. However, selective predation is often measured on isolated traits in response to a single predatory species, but only rarely are selective forces on several traits quantified or even compared between different predators naturally occurring in the same system. In the present study, we therefore measured behavioral and morphological traits in young-of-the-year Eurasian perch Perca fluviatilis and compared their selective values in response to the 2 most common predators, adult perch and pike Esox lucius . Using mixed effects models and model averaging to analyze our data, we quantified and compared the selectivity of the 2 predators on the different morphological and behavioral traits. We found that selection on the behavioral traits was higher than on morphological traits and perch predators preyed overall more selectively than pike predators. Pike tended to positively select shallow bodied and nonvigilant individuals (i.e. individuals not performing predator inspection). In contrast, perch predators selected mainly for bolder juvenile perch (i.e. individuals spending more time in the open, more active), which was most important. Our results are to the best of our knowledge the first that analyzed behavioral and morphological adaptations of juvenile perch facing 2 different predation strategies. We found that relative specific predation intensity for the divergent traits differed between the predators, providing some additional ideas why juvenile perch display such a high degree of phenotypic plasticity.

  14. Liquid crystal phase behavior of sterically-stabilized goethite

    NARCIS (Netherlands)

    van den Pol, Esther; Petukhov, Andrei V.; Thies-Weesie, Dominique M.E.; Byelov, Dmytro V.; Vroege, Gert J.

    2010-01-01

    The liquid crystalline phase behavior of sterically-stabilized goethite particles in toluene was studied using small-angle X-ray scattering. The results were compared with those from charged particles in water, with and without magnetic field: similarly rich phase behavior was found. Furthermore,

  15. Tricritical behavior in the diluted transverse spin-1 Ising model with a longitudinal crystal field

    International Nuclear Information System (INIS)

    Htoutou, K.; Oubelkacem, A.; Ainane, A.; Saber, M.

    2005-01-01

    The transverse spin-1 Ising model with a longitudinal crystal field exhibits a tricritical behavior. Within the effective field theory with a probability distribution technique that accounts for the self-spin correlations, we have studied the influence of site dilution on this behavior and have calculated the temperature-transverse field-longitudinal crystal field-concentration phase diagrams and determined, in particular, the influence of the concentration of magnetic atoms c on the tricritical behavior. We have found that the tricritical point appears for large values of the concentration c of magnetic atoms and disappears with the increase in dilution (small values of c). Results for square lattice are calculated numerically and some interesting results are obtained. In certain ranges of values of the strength of the longitudinal crystal field D/J when it becomes sufficiently negative, we found re-entrant phenomenon, which disappears with increase in the value of the strength of the transverse field

  16. Roles of Low Molecular Weight Amide on Crystallization Behavior of Poly (L-lactic acid)

    Science.gov (United States)

    Dong, Xia; Xing, Qian; Zhang, Xiuqin; Wang, Dujin

    2012-02-01

    Organic nucleating agents play an important role in enhancing the crystallization rate of polymers. The aim of this study is to investigate the effect of low molecular weight aliphatic amides on the crystallization behavior and mechanism of poly (L-lactic acid) (PLLA). The crystallization rate of PLLA during non-isothermal crystallization and isothermal crystallization has been significantly improved with the addition of N, N'-ethylenebis (12-hydroxystearamide) (EBH) and/or N, N'-ethylenebisstearamide (EBSA), and EBH exhibits stronger nucleating ability. Time-resolved FTIR spectra illustrate the chain conformational changes and the crystallization kinetics during isothermal crystallization of PLLA mixtures and pure PLLA, especially in the early stages. The formation of interchain conformational-ordered structure and intrachain 103 helix structure for amide-doped PLLA precedes that of pure PLLA, suggesting a stimulatory nucleating effect of EBH and EBSA. In the case of PLLA/EBH, the interchain interactions of -(COC+CH3) and -CH3 groups are faster than the -(CH3+CC) intrachain interactions, while the interchain interactions and the intrachain 103 helix formation are nearly synchronous for PLLA/EBSA, indicating that EBH has an improved effect on the nucleating ability and crystallization kinetics of PLLA, compared to EBSA. The possible mechanism has been discussed, which may be attributed to the hydrogen bond interaction between hydroxyl groups in EBH and the carbonyl groups in PLLA.

  17. Effects of polyethylene glycol and gelatin on the crystal size, morphology, and Sn{sup 2+}-sensing ability of bismuth deposits

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Yi-Da; Lien, Chein-Hung [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013, Taiwan (China); Hu, Chi-Chang, E-mail: cchu@che.nthu.edu.t [Department of Chemical Engineering, National Tsing Hua University, Hsin-Chu 30013, Taiwan (China)

    2011-09-01

    The influences of citric acid (CA), ethylenediaminetetraacetic acid (EDTA), polyethylene glycol (PEG), and gelatin on the deposition behavior of Bi were systematically investigated through the linear sweep voltammetric (LSV) analysis. Based on the LSV results, deposits plated from a typical solution containing 0.05 M Bi(NO{sub 3}){sub 3}.5H{sub 2}O and various combinations of complex agents and additives with pH = 3.5 at 1 and 30 mA cm{sup -2} were characterized by scanning electron microscopic (SEM) and X-ray diffraction (XRD) analyses. The adhesion of deposits and the formation of dendrites were respectively improved and inhibited by the adsorption of PEG onto Bi deposits. With adding the above four compounds, a synergistic effect was shown to reach a nano-sized, sphere-like, porous morphology of a Bi deposit at 30 mA cm{sup -2}. The crystal size and morphology of Bi deposits were found to affect the sensing ability of Sn{sup 2+} through the square-wave anodic stripping voltammetric (SWASV) analysis.

  18. Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

    Directory of Open Access Journals (Sweden)

    Omar F. Farhat

    2015-03-01

    Full Text Available We report a facile synthesis of zinc oxide (ZnO nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM and X-ray diffraction (XRD measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO nanorods and the growth rate along the (002 direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be realized by adjusting the synthesis conditions.

  19. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films

    Directory of Open Access Journals (Sweden)

    Karupanan Periyanan Ganesan

    Full Text Available Cuprous oxide (Cu2O thin films with different crystal orientations were electrochemically deposited in the presence of various molar concentrations of cetyl trimethyl ammonium bromide (CTAB on fluorine doped tin oxide (FTO glass substrate using standard three electrodes system. X-ray diffraction (XRD studies reveal cubic structure of Cu2O with (111 plane orientation, after addition of CTAB in deposition solution, the orientation of crystal changes from (111 into (200 plane. Scanning electron microscope (SEM images explored significant variation on morphology of Cu2O thin films deposited with addition of CTAB compared to without addition of CTAB. Photoluminescence (PL spectra illustrate that the emission peak around at 650 nm is attributed to near band edge emission, and the film prepared at the 3 mM of CTAB exhibits much higher intensity than that of the all other films. UV–Visible spectra show optical absorption in the range of 480–610 nm and the highest transparency of Cu2O film prepared at the concentration of 3 mM CTAB. The optical band gap is increased in the range between 2.16 and 2.45 eV with increasing the CTAB concentrations. Keywords: Cuprous oxide, Crystal orientation, Electrodeposition and cubic structure

  20. Morphology of β-BaB2O4 (BBO) in relation to its crystal structure and growth conditions

    International Nuclear Information System (INIS)

    Bolt, R.J.; Bennema, P.

    1993-01-01

    A periodic-bond-chain (PBC) analysis has been made of the structure of β-BaB 2 O 4 (BBO) and related to crystal growth conditions, in order to explain the sometimes tangerine-shaped, sometimes needle-shaped crystals that are observed when BBO is grown experimentally. The periodic bond chains generate eight-connected nets in BBO. The order of morphological importance (MI) of these F faces is determined by comparing the nearest-neighbour interaction ionic bond energies. The results are compared with experimental data. Six faces, sometimes observed parallel to the c axis of BBO, were identified as the hexagonal prism {11 anti 20}. Two other forms are either the trigonal pyramids {01 anti 12} and {01 anti 1 anti 2} or the trigonal pyramids {10 anti 12} and {01 anti 1 anti 2}. {0001} is an important cleavage plane. The tangerine habit is a result of the strong temperature gradient, which is often used when growing BBO. The isotherms of the furnace impose their habit on the growing crystal. (orig.)

  1. Nucleation of polypropylene crystallization with gold nanoparticles. Part 2: relation between particle morphology and nucleation activity

    Czech Academy of Sciences Publication Activity Database

    Šlouf, Miroslav; Vacková, Taťana; Zhigunov, Alexander; Sikora, Antonín; Piorkowska, E.

    2016-01-01

    Roč. 55, č. 4 (2016), s. 393-410 ISSN 0022-2348 R&D Projects: GA ČR GAP205/10/0348; GA ČR(CZ) GA14-17921S Institutional support: RVO:61389013 Keywords : crystallization * gold nanoparticles * isotactic polyproplylene Subject RIV: JJ - Other Materials Impact factor: 0.828, year: 2016

  2. Crystallization kinetics and morphology in phase separating and sedimenting mixtures of colloidal spheres and rods

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Oversteegen, S.M.; Wijnhoven, J.E.G.J.; Vonk, C.

    2004-01-01

    The crystallization of sedimentating silica spheres in the presence of silica-coated boehmite rods in low-salt dimethylformamide is studied by means of confocal scanning laser microscopy. As expected, addition of rods gives rise to a net attraction due to the depletion effect. Upon increasing rod

  3. Remarkable crystallization morphologies of poly(4-vinylpyridine on single-walled carbon nanotubes in CO2-expanded liquids

    Directory of Open Access Journals (Sweden)

    Y. N. Wei

    2011-12-01

    Full Text Available Poly(4-vinylpyridine (P4VP is a widely studied polymer for applications in catalysis, humidity sensitive and antimicrobial materials due to its pyridine group exhibiting coordinative reactivity with transition metals. In this work, the non-covalent functionalization of single-walled carbon nanotubes (SWCNTs with P4VP in CO2-expanded liquids (CXLs is reported. It is found that P4VP stabilized SWCNTs show good dispersion in both organic solvent and aqueous solution (pH = 2. The ability to manipulate the dispersion state of CNTs in water with P4VP will likely benefit many biological applications, such as drug delivery and optical sensors. Furthermore, the structure and morphology of P4VP/SWCNTs composite are examined, with the focus on molecular weight of P4VP (MW-P4VP, the pressure of CXLs and the concentration of P4VP. It is amazing that the P4VP15470 wrapping patterns undergo a notable morphological evolution from dotlike crystals to bottle brush-like, then to compact kebab-like, and then to widely-spaced dotted kebab patterns by facile pressure tuning in the higher polymer concentration series. In other words, the CXLs method enables superior control of the P4VP crystallization patterns on SWCNTs. Meanwhile, the CXL-assisted P4VP crystal growth mechanism on SWCNT is investigated, and the dominating growth mechanism is attributed to ‘size dependent soft epitaxy’ in P4VP15470/SWCNTs composites. We believe these studies would r

  4. Dielectric behavior of MgO:Li+ crystals

    International Nuclear Information System (INIS)

    Puma, M.; Lorincz, A.; Andrews, J.F.; Crawford, J.H Jr.

    1980-01-01

    Measurements of the dielectric constant in crystals of MgO doped with Li + ions have been carried out after quenching from anneals at 1300 0 C in static air. Prior to heat treatment the crystals showed no discernible dielectric loss but afterwards the loss tangent exceeded 0.4. For 10 min anneals the dielectric relaxation is very close to a Debye process and the temperature dependence of the maximum of the loss peak corresponds to an activation energy of 0.72 eV. When plotted in the form of a Cole-Cole arc the data indicate that deviation from a Debye relaxation amounts to a distribution of relaxation time no greater than that which can be accounted for with a distribution of activation energies only 0.007 eV. For longer heating times overlapping relaxation processes appear. The lack of broadening of the loss peak and the magnitude of the relaxation time yield clues as to possible loss mechanisms

  5. Hydroxyapatite crystal deposition disease: imaging aspects and biological behavior

    International Nuclear Information System (INIS)

    D'Aquino, Danilo Olavarria; Pinto, Alexandre de Lavra; Costa, Mauro Jose Brandao da; Fanelli, Vania A.; Abud, Lucas Giansante

    2005-01-01

    Objective: to demonstrate, using imaging methods (x-ray, computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US), the phases of hydroxyapatite crystal deposition disease in joints, particularly in the shoulder, from the silent phase to the intra-osseous migration of calcifications and radiologic follow-up examinations showing complete remission after physical therapy. Material and method: we evaluated 27 joints (25 shoulders, one hip and one elbow) of patients followed-up with radiographs. Patients extremely symptomatic and refractory to treatment were referred to MRI or US. Results: total remission of calcifications was observed in 15 joints after treatment - 14 shoulders and one elbow. In two joint, migration of the calcification to bone was observed: one to the bursa subdeltoidea, one to biceps tendon, one to subcoracoid recess and one to the interior of the infra spinal muscle. In two cases MRI and CT scans showed a high inflammatory process triggered by the disease. Conclusion: hydroxyapatite crystal deposition disease affects multiple joints and can vary from asymptomatic to extremely symptomatic. Imaging methods show all phases of the disease, including the migratory phase. In general, the use of x-ray is enough for the diagnosis and follow-up. MRI and CT provide a more accurate diagnosis in the active phase of the disease. In this paper, remission was seen with physiotherapy (iontophoresis) in 55% of the cases. (author)

  6. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    Science.gov (United States)

    López-Fernández, Hernán; Arbour, Jessica; Willis, Stuart; Watkins, Crystal; Honeycutt, Rodney L; Winemiller, Kirk O

    2014-01-01

    Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  7. Interfacial tension, morphology and linear viscoelasticity behavior of PP/PS blends

    Directory of Open Access Journals (Sweden)

    Paulo H. P. Macaúbas

    1999-12-01

    Full Text Available Blends of polypropylene and polystyrene compatibilized with styrene-butadiene-styrene (SBS or styrene-ethylene/butylene-styrene (SEBS copolymers were studied. The morphology of these blends was studied by Scanning Electron Microscopy. Emulsion curves relating the average radius of the dispersed phase to the concentration of compatibilizer added to the blend were obtained. The rheological behavior of the blends was studied by small amplitude oscillatory shear, and correlated to the morphological observations. The interfacial tension between the components of the blends was evaluated from the rheological data. In addition, the applicability of time-temperature superposition (TTS method for PP/PS blend was studied.

  8. Molecular relaxation behavior and isothermal crystallization above glass transition temperature of amorphous hesperetin.

    Science.gov (United States)

    Shete, Ganesh; Khomane, Kailas S; Bansal, Arvind Kumar

    2014-01-01

    The purpose of this paper was to investigate the relaxation behavior of amorphous hesperetin (HRN), using dielectric spectroscopy, and assessment of its crystallization kinetics above glass transition temperature (Tg ). Amorphous HRN exhibited both local (β-) and global (α-) relaxations. β-Relaxation was observed below Tg , whereas α-relaxation prominently emerged above Tg . β-Relaxation was found to be of Johari-Goldstein type and was correlated with α-process by coupling model. Secondly, isothermal crystallization experiments were performed at 363 K (Tg + 16.5 K), 373 K (Tg + 26.5 K), and 383 K (Tg + 36.5 K). The kinetics of crystallization, obtained from the normalized dielectric strength, was modeled using the Avrami model. Havriliak-Negami (HN) shape parameters, αHN and αHN .βHN , were analyzed during the course of crystallization to understand the dynamics of amorphous phase during the emergence of crystallites. HN shape parameters indicated that long range (α-like) were motions affected to a greater extent than short range (β-like) motions during isothermal crystallization studies at all temperature conditions. The variable behavior of α-like motions at different isothermal crystallization temperatures was attributed to evolving crystallites with time and increase in electrical conductivity with temperature. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.

  9. Controlling the morphology of TiO{sub 2} nano crystals with different capping agents

    Energy Technology Data Exchange (ETDEWEB)

    Calatayud, D. G.; Rodriguez, M.; Jardiel, T.

    2015-10-01

    This paper provides direct evidence to support the role of capping agents in controlling the evolution of TiO{sub 2} seeds into nano crystals with a specific shape. Starting with Ti(OBut){sub 4} and using oleid acid, oleylamine, dioleamide, 11-aminoundecanoic acid, arginine, trifluroacetic acid or HF as capping agents, mainly TiO{sub 2} truncated octahedrons enclosed by {1 0 1} and {0 0 1} facets were obtained. We could also selectively obtain square, rods and rounded rhombic-shaped nanoparticles by growing of {0 1 0} facets by adding oleic acid and oleylamine in ratio 6:4, respectively, while all other parameters were kept the same. This research not only offers new insights into the role played by a capping agent in shape-controlled synthesis but also provides, a versatile approach to controlling the shape of metal oxide nano crystals. (Author)

  10. Morphological Analysis of White Cement Clinker Minerals: Discussion on the Crystallization-Related Defects

    Directory of Open Access Journals (Sweden)

    Mohamed Benmohamed

    2016-01-01

    Full Text Available The paper deals with a formation of artificial rock (clinker. Temperature plays the capital role in the manufacturing process. So, it is useful to analyze a poor clinker to identify the different phases and defects associated with their crystallization. X-ray fluorescence spectroscopy was used to determine the clinker’s chemical composition. The amounts of the mineralogical phases are measured by quantitative XRD analysis (Rietveld. Scanning electron microscopy (SEM was used to characterize the main phases of white Portland cement clinker and the defects associated with the formation of clinker mineral elements. The results of a study which focused on the identification of white clinker minerals and defects detected in these noncomplying clinkers such as fluctuation of the amount of the main phases (alite (C3S and belite (C2S, excess of the free lime, occurrence of C3S polymorphs, and occurrence of moderately-crystallized structures are presented in this paper.

  11. Secondary extinction and diffraction behaviors in cylindrical crystals.

    Science.gov (United States)

    Hu, Hua-Chen

    2003-07-01

    The X-ray and neutron diffraction properties in absorbing cylindrical crystals are systematically explored within the framework of transfer equations and the kinematic diffraction approximation. The calculated power ratio distribution, the integrated reflection power ratio and the secondary-extinction factor y( micro ) are expressed as functions of the Bragg angle theta(B), the reduced radius sigma(0)rho = tau(0) and the ratio of absorption coefficient to diffraction cross section micro /sigma(0) = xi(0). Numerical solutions were obtained for all theta(B) (0-90 degrees ) and samples with tau(0) from 0 to 30, and xi(0) from 0 to 25. The relationship between the power ratio distribution curves, the integrated reflection power ratio and the diffraction geometry of cylindrical crystals is obtained for the first time and analyzed in detail. A dip was found in the curve of the extinction factor y( micro ) against tau(0) for given theta(B) and xi(0), and the position of this minimum shifts toward smaller tau(0) with increasing xi(0) or theta(B). A large decrease of y( micro ) with decreasing theta(B) at low angle appears when micro rho > 3.5 and 25 > xi(0) > 0.2. The rate of change of y( micro ) in this region increases with tau(0). All of this will be important for the refinement of diffraction data. The influence of different kinds of mosaic distributions on the integrated reflection power ratio and the extinction factor was also studied. The transmission coefficients A(*) were calculated using two different methods, and an inaccuracy of these numbers in Vol. II of International Tables for X-ray Crystallography (1972) in the range theta(B) or = 15 was found by comparison.

  12. GROWTH OF CRYSTALS OF PRIMARY ALUMINIUM WITH ROSETTE MORPHOLOGY AT CASTING OF SILUMINS

    Directory of Open Access Journals (Sweden)

    E. I. Marukovich

    2011-01-01

    Full Text Available The work is devoted to actual theme of alloy solidifi – investigation of infl of overlapping of thermal and concentration fi of neighboring crystals to forming of non- dendrite structures. Experimental research of microstructure of Al-Si alloy for wide range of silicon concentration is conducted, and corresponding numerical simulation develop too. The conclusion about different schemes of forming of rosette structures is adopted.

  13. Crystallization behavior of Ge-doped eutectic Sb70Te30 films in optical disks

    Science.gov (United States)

    Khulbe, Pramod K.; Hurst, Terril; Horie, Michikazu; Mansuripur, Masud

    2002-10-01

    We report laser-induced crystallization behavior of binary Sb-Te and ternary Ge-doped eutectic Sb70Te30 thin film samples in a typical quadrilayer stack as used in phase-change optical disk data storage. Several experiments have been conducted on a two-laser static tester in which one laser operating in pulse mode writes crystalline marks on amorphous film or amorphous marks on crystalline film, while the second laser operating at low-power cw mode simultaneously monitors the progress of the crystalline or amorphous mark formation in real time in terms of the reflectivity variation. The results of this study show that the crystallization kinetics of this class of film is strongly growth dominant, which is significantly different from the crystallization kinetics of stochiometric Ge-Sb-Te compositions. In Sb-Te and Ge-doped eutectic Sb70Te30 thin-film samples, the crystallization behavior of the two forms of amorphous states, namely, as-deposited amorphous state and melt-quenched amorphous state, remains approximately same. We have also presented experiments showing the effect of the variation of the Sb/Te ratio and Ge doping on the crystallization behavior of these films.

  14. Mechanical properties and crystallization behavior of hydroxyapatite/poly(butylenes succinate) composites.

    Science.gov (United States)

    Guo, Wenmin; Zhang, Yihe; Zhang, Wei

    2013-09-01

    Biodegradable synthetic polymers have attracted much attention nowadays, and more and more researches have been done on biodegradable polymers due to their excellent mechanical properties, biocompatibility, and biodegradability. In this work, hydroxyapatite (HA) particles were melt-mixing with poly (butylenes succinate) (PBS) to prepare the material, which could be used in the biomedical industry. To develop high-performance PBS for cryogenic engineering applications, it is necessary to investigate the cryogenic mechanical properties and crystallization behavior of HA/PBS composites. Cryogenic mechanical behaviors of the composites were studied in terms of tensile and impact strength at the glass transition temperature (-30°C) and compared to their corresponding behaviors at room temperature. With the increase of HA content, the crystallization of HA/PBS composites decreased and crystallization onset temperature shifted to a lower temperature. The diameter of spherulites increased at first and decreased with a further HA content. At the same time, the crystallization rate became slow when the HA content was no more than 15wt% and increased when HA content reached 20wt%. In all, the results we obtained demonstrate that HA/PBS composites reveal a better tensile strength at -30°C in contrast to the strength at room temperature. HA particles with different amount affect the crystallization of PBS in different ways. Copyright © 2013 Wiley Periodicals, Inc.

  15. Adsorption behavior of acetone solvent at the HMX crystal faces: A molecular dynamics study.

    Science.gov (United States)

    Liu, Yingzhe; Yu, Tao; Lai, Weipeng; Ma, Yiding; Kang, Ying; Ge, Zhongxue

    2017-06-01

    Molecular dynamics simulations have been performed to understand the adsorption behavior of acetone (AC) solvent at the three surfaces of 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctan (HMX) crystal, i.e. (011), (110), and (020) faces. The simulation results show that the structural features and electrostatic potentials of crystal faces are determined by the HMX molecular packing, inducing distinct mass density distribution, dipole orientation, and diffusion of solvent molecules in the interfacial regions. The solvent adsorption is mainly governed by the van der Waals forces, and the crystal-solvent interaction energies among three systems are ranked as (020)≈(110)>(011). The adsorption sites for solvent incorporation at the crystal surface were found and visualized with the aid of occupancy analysis. A uniform arrangement of adsorption sites is observed at the rough (020) surface as a result of ordered adsorption motif. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  17. Shape effect related to crystallographic orientation of deformation behavior in copper crystals

    International Nuclear Information System (INIS)

    Kim, K.H.; Chang, C.H.; Koo, Y.M.; MacDowell, A.A.

    1999-01-01

    The deformation behavior of pure copper single crystals has been investigated by scanning electron microscopy and synchrotron radiation using the in situ reflection Laue method. Two types of samples with the same orientation of tensile axes, but with different crystallographic orientations in the directions of the width and thickness of the samples, have been studied. They showed different characteristics of deformation behavior, such as the activated slip systems, the movement of the tensile axis, and the mode of fracture

  18. High temperature oxidation and crystallization behavior of phosphate glass compositions

    International Nuclear Information System (INIS)

    Russo, Diego; Rodriguez, Diego; Grumbaum, N.; Gonzalez Oliver, Carlos

    2003-01-01

    We analyzed the thermal transformation of three iron phosphate glasses having the following nominal compositions: M4 [70% P 2 O 5 , 30% Fe 2 O 3 ], M5 [85% M4, 15% UO 2 ] y M7 [69.7% P 2 O 5 , 28.6% Fe 2 O 3 , 1,7% Al 2 O 3 ]. Thermogravimetric analysis, DTA (differential thermal analysis) and SAXS (Small Angle X-ray Scattering) were performed.It was observed that it is easily possible to produce glasses in these systems having very low crystallinity.We could determine the final stable crystalline phases [Fe 4 (P 2 O 7 ) 3 , Fe(PO 3 ) 3 and Fe 3 (P 2 O 7 ) 2 ].The presence of uranium ions affects not only the redox effects but also the crystallization of the system.SAXS data obtained during the heating in vacuum up to ∼600degC, gave some variation of scattering intensities vs. scattering vector suggesting the development of an extra phase or some kind inhomogeneities that seems to disappear on heating

  19. Morphological and behavioral evidence of Batesian mimicry in nestlings of a lowland Amazonian bird.

    Science.gov (United States)

    Londoño, Gustavo A; García, Duván A; Sánchez Martínez, Manuel A

    2015-01-01

    Because predation is the main cause of avian nest failure, selection should favor strategies that reduce the probability of nest predation. We describe apparent Batesian mimicry in the morphology and behavior of a Laniocera hypopyrra nestling. On hatching, the nestling had a distinctive bright orange color and modified feathers all over its body, and 6 days after hatching, it started to move its head very slowly from side to side (in a "caterpillar" movement) when disturbed. These traits gave it a resemblance to a hairy, aposematic caterpillar. This species has a long nestling period for its size (20 days), perhaps due to slow provisioning rates (about one feeding per hour). We argue that the slow growth rate, combined with high nest predation, favors the evolution of antipredation mechanisms such as the unique morphological and behavioral characteristics of L. hypopyrra nestlings.

  20. Evolution of bower building in Lake Malawi cichlid fish: Phylogeny, morphology, and behavior

    Directory of Open Access Journals (Sweden)

    Ryan eYork

    2015-03-01

    Full Text Available Despite considerable research, we still know little about the proximate and ultimate causes behind behavioral evolution. This is partly because understanding the forces acting on behavioral phenotypes requires the study of species-rich clades with extensive variation in behavioral traits, of which we have few current examples. In this paper, we introduce the bower-building cichlids of the Lake Malawi adaptive radiation, a lineage with over 100 species, each possessing a distinct male extended phenotype used to signal reproductive fitness. Extended phenotypes are useful units of analysis for the study of behavior since they are static structures that can be precisely measured within populations. To this end we recognize two core types of bowers - mounds (castles and depressions (pits. We employ an established framework for the study of adaptive radiations to ask how traits related to other stages of radiations, macrohabitat and feeding morphology, are associated with the evolution of pit and castle phenotypes. We demonstrate that pits and castles are evolutionarily labile traits and have been derived numerous times in multiple Malawi genera. Using public ecological and phenotypic data sets we find significant and correlated differences in macrohabitat (depth, sensory ability (opsin expression, and feeding style (jaw morphology and biomechanics between pit-digging and castle-building species. Phylogeny-corrected comparisons also show significant differences in several measures of jaw morphology while indicating non-significant differences in depth. Finally, using laboratory observations we assay courtship behaviors in a pit-digging (Copadichromis virginalis and a castle-building species (Mchenga conophoros. Together, these results show that traits at multiple biological levels act to regulate the evolution of a courtship behavior within natural populations.

  1. Insights from analog gelatin experiments on the effect of bedding dip on sill morphology and crystal load

    Science.gov (United States)

    Currier, R. M.; Marsh, B. D.; Mittal, T.

    2010-12-01

    The profusion of sills the world over offers a wide spectrum of geologic conditions under which to study emplacement mechanisms and the establishment of the initial conditions governing the subsequent magmatic evolution. Many diabase/dolerite sills are featureless bodies whose only record of solidification is contained in the variation of crystal size. But other sills formed of magma containing crystals entrained from earlier crystallization episodes often show a rich history of interaction between settling crystals and solidification fronts such that the physical history of differentiation can be readily observed. This work explores this aspect of sills using visco-elastic gelatin as country rock, molten wax as magma and tiny particles as phenocrysts. Magmatic sills form mechanically, when an ascending dike encounters a more rigid layer, is diverted laterally, and systematically inflates as guided along by the interface. In this manner, sills grow about the injection site, and can do so symmetrically or asymmetrically. The degree of asymmetry is affected by the dip angle of the interface. An angled interface implies a directional pressure gradient, and magma flows preferentially in the direction of decreasing pressure, in this case, up tilt. So, the greater the tilt, the greater the asymmetry. By experimentally producing sills in layered, tilted, media, we have investigated the influence of bed dip on sill morphology. Experiments were performed by injecting wax and particles into gelatin where the layers were poured at set angles to mimic tilted bedding. In addition to its visco-elastic properties, gelatin also has the added benefit of transparency, allowing for direct observation during the experiment and can be washed away later to reveal the exact details of the remaining solid. To emulate magma as a multi-phase slurry, a magmatic analog was used consisting of a mixture of molten wax near its liquidus and ultrafine glitter. Wax solidifies in response to thermal

  2. Morphological and behavioral evidence of Batesian mimicry in nestlings of a lowland Amazonian bird.

    OpenAIRE

    Londoño, Gustavo Adolfo

    2015-01-01

    Because predation is the main cause of avian nest failure, selection should favor strategies that reduce the probability of nest predation. We describe apparent Batesian mimicry in the morphology and behavior of a Laniocera hypopyrra nestling. On hatching, the nestling had a distinctive bright orange color and modified feathers all over its body, and 6 days after hatching, it started to move its head very slowly from side to side (in a "caterpillar" movement) when disturbed. These traits gave...

  3. Activin receptor signaling regulates cocaine-primed behavioral and morphological plasticity.

    Science.gov (United States)

    Gancarz, Amy M; Wang, Zi-Jun; Schroeder, Gabrielle L; Damez-Werno, Diane; Braunscheidel, Kevin M; Mueller, Lauren E; Humby, Monica S; Caccamise, Aaron; Martin, Jennifer A; Dietz, Karen C; Neve, Rachael L; Dietz, David M

    2015-07-01

    Activin receptor signaling, including the transcription factor Smad3, was upregulated in the rat nucleus accumbens (NAc) shell following withdrawal from cocaine. Direct genetic and pharmacological manipulations of this pathway bidirectionally altered cocaine seeking while governing morphological plasticity in NAc neurons. Thus, Activin/Smad3 signaling is induced following withdrawal from cocaine, and such regulation may be a key molecular mechanism underlying behavioral and cellular plasticity in the brain following cocaine self-administration.

  4. Gender identification of Grasshopper Sparrows comparing behavioral, morphological, and molecular techniques

    Science.gov (United States)

    Ammer, F.K.; Wood, P.B.; McPherson, R.J.

    2008-01-01

    Correct gender identification in monomorphic species is often difficult especially if males and females do not display obvious behavioral and breeding differences. We compared gender specific morphology and behavior with recently developed DNA techniques for gender identification in the monomorphic Grasshopper Sparrow (Ammodramus savannarum). Gender was ascertained with DNA in 213 individuals using the 2550F/2718R primer set and 3% agarose gel electrophoresis. Field observations using behavior and breeding characteristics to identify gender matched DNA analyses with 100% accuracy for adult males and females. Gender was identified with DNA for all captured juveniles that did not display gender specific traits or behaviors in the field. The molecular techniques used offered a high level of accuracy and may be useful in studies of dispersal mechanisms and winter assemblage composition in monomorphic species.

  5. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  6. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    Energy Technology Data Exchange (ETDEWEB)

    Rahmawati, F., E-mail: fitria@mipa.uns.ac.id; Apriyani, K.; Heraldy, E. [Research Group of Solid State Chemistry & Catalysis, Department of Chemistry, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan Surakarta (Indonesia); Soepriyanto, S. [Department of Metallurgical Engineering, Faculty of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132 (Indonesia)

    2016-03-29

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO{sub 2} that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% mol Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.

  7. The crystal structure and morphology of NiO-YSZ composite that prepared from local zircon concentrate of Bangka Island

    Science.gov (United States)

    Rahmawati, F.; Apriyani, K.; Heraldy, E.; Soepriyanto, S.

    2016-03-01

    In order to increase the economic value of local zircon concentrate from Bangka Island, NiO-YSZ was synthesized from Zirconia, ZrO2 that was prepared from local zircon concentrate. The NiO-YSZ composite was synthesized by solid state reaction method. XRD analysis equipped with Le Bail refinement was carried out to analyze the crystal structure and cell parameters of the prepared materials. The result showed that zirconia was crystallized in tetragonal structure with a space group of P42/NMC. Yttria-Stabilized-Zirconia (YSZ) was prepared by doping 8% mol yttrium oxide into zirconia and then sintered at 1250°C for 3 hours. Doping of 8% mol Yttria allowed phase transformation of zirconia from tetragonal into the cubic structure. Meanwhile, the composite of NiO-YSZ consists of two crystalline phases, i.e. the NiO with cubic structure and the YSZ with cubic structure. SEM analysis of the prepared materials shows that the addition of NiO into YSZ allows the morphology to become more roughness with larger grain size.

  8. Crystallization and degradation behaviors of poly(butylene succinate)/poly(Z-L-lysine) composites

    International Nuclear Information System (INIS)

    Tan, Licheng; Hu, Jun; Ye, Suwen; Wei, Junchao; Chen, Yiwang

    2014-01-01

    Highlights: • A new biodegradable poly(butylene succinate) (PBS)/poly(Z-L-lysine) (PZlys) composites were successfully prepared through physical blend. • PZlys may greatly affected the crystallization behaviors of PBS without changing its crystalline structure. • The degradation speed of PBS may be greatly accelerated by introduction of PZlys in PBS matrix. - Abstract: A new type of biodegradable poly(butylene succinate) (PBS)/poly(Z-L-lysine) (PZlys) composites were prepared. The crystallization behaviors were investigated by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarizing optical microscopy (POM) and the results showed that PZlys can restrict the crystallization of PBS, the crystallization speed of PBS/PZlys were slower than that of PBS, and the crystallization degree of the composites were smaller than that of PBS. However, the WAXD results showed that the incorporation of PZlys did not change the crystalline structure of PBS. The in vitro degradation experiments demonstrated that the degradation speed of the composites were faster than that of PBS. Moreover, the mechanical properties of the composites showed that the composites with a proper composition (for example, 80/20) can keep the mechanical properties of PBS without evident difference, which implied that the composites might be potentially useful as biodegradable materials

  9. Hydrothermal growth of beryl single crystals and morphology of their singular faces

    International Nuclear Information System (INIS)

    Dem'yanets, L.N.; Ivanov-Shits, A.K.; Gajnutdinov, R.V.

    2006-01-01

    The surface morphology of the best developed faces of emerald and red beryl monocrystals grown from high-temperature hydrothermal solutions has been studied by atomic force microscopy. The results attest to dislocation-mediated layer-by-layer growth of the faces. Using experimentally determined growth front profiles, the fractal dimensions D Fp and D Fa of the faces are evaluated to be 1.1-1.4. These values indicate that the surfaces studied have a fractal character and can be investigated using elements of fractal theory [ru

  10. Optical properties and surface morphology studies of palladium contacts on mercuric iodide single crystals

    Energy Technology Data Exchange (ETDEWEB)

    George, M.A.; Azoulay, M.; Burger, A.; Biao, Y.; Silberman, E. [Fisk Univ., Nashville, TN (United States). Dept. of Physics; Nason, D. [EG and G Energy Measurements, Inc., Goleta, CA (United States). Santa Barbara Operations

    1993-05-01

    Palladium is chemically suitable for electric contacts on mercuric iodide detectors for photon and nuclear radiation detection, so the understanding of palladium contacts is important for fundamental and practical scientific purposes. A study has been conducted on the surface morphology of evaporated contacts using Atomic Force Microscopy (AFM) and optical transmission and reflection. Evaporated palladium coatings are typically nonuniform and may deposit selectively on mercuric iodide surface defects. Reflection measurements show that coating thickness and surface treatment affect intensity, position and shape of a reflected peak characteristic of the mercuric iodide structure. Results indicate that the band gap energy in the surface of the mercuric iodide is lowered by palladium contacts.

  11. Crystallization and melting behavior of poly (ethylene succinate) in presence of graphene nanoplatelets

    Energy Technology Data Exchange (ETDEWEB)

    Asadinezhad, Ahmad [Department of Chemical Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Khonakdar, Hossein Ali, E-mail: hakhonakdar@gmail.com [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of); Leibniz-Institut für Polymerforschung Dresden e.V., D-01069 Dresden (Germany); Häußler, Liane; Wagenknecht, Udo [Leibniz-Institut für Polymerforschung Dresden e.V., D-01069 Dresden (Germany); Heinrich, Gert [Leibniz-Institut für Polymerforschung Dresden e.V., D-01069 Dresden (Germany); Technische Universität Dresden, Institut für Werkstoffwissenschaft, D-01069 Dresden (Germany)

    2014-06-01

    Highlights: • Poly (ethylene succinate)/graphene nanocomposites were characterized in this work. • Dynamic and isothermal crystallization rates were enhanced upon graphene addition. • Overall crystallinity and melting remained almost unchanged in presence of graphene. • Graphene changed crystal perfection and its effect was found concentration-dependent. - Abstract: In this study, poly (ethylene succinate)/graphene nanoplatelets composites were prepared via solution casting method in different compositions and analyzed via differential scanning calorimetry. Crystallization and melting characteristics in both dynamic (non-isothermal) and isothermal modes were investigated at various cooling rates and isothermal temperatures. It was confirmed that graphene, while being incompatible with the matrix polymer, could act as nucleating agent so that hot (melt) crystallization rates, intensities, and positions were increased in the dynamic mode. However, the overall crystallinity remained almost unchanged. Cold crystallization was also decreased to lower temperatures on graphene addition; however its enthalpy was also reduced. Similar findings were observed for the isothermal mode, but to a lesser extent. The presence of graphene changed the perfection of crystals as their thermodynamic stability against heating and recrystallization behavior varied.

  12. Crystallization and melting behavior of isotactic polypropylene composites filled by zeolite supported {beta}-nucleator

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Juan [Materials Science Institute, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Key Laboratory of Designed Synthesis and Application of Polymer Material of Guangdong Province, Guangzhou 510275 (China); Li, Gu, E-mail: ceslg@mail.sysu.edu.cn [Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Key Laboratory of Designed Synthesis and Application of Polymer Material of Guangdong Province, Guangzhou 510275 (China); Tan, Nanshu [Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Key Laboratory of Designed Synthesis and Application of Polymer Material of Guangdong Province, Guangzhou 510275 (China); Ding, Qian [Materials Science Institute, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Key Laboratory of Designed Synthesis and Application of Polymer Material of Guangdong Province, Guangzhou 510275 (China); Mai, Kancheng, E-mail: cesmkc@mail.sysu.edu.cn [Materials Science Institute, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Key Laboratory of Polymeric Composites and Functional Materials, the Ministry of Education, Key Laboratory of Designed Synthesis and Application of Polymer Material of Guangdong Province, Guangzhou 510275 (China)

    2012-10-20

    Highlights: Black-Right-Pointing-Pointer The supported calcium pimelate {beta}-zeolite was prepared. Black-Right-Pointing-Pointer The {beta}-nucleation of zeolite was enhanced dramatically through reaction. Black-Right-Pointing-Pointer High {beta}-phase content iPP composites were obtained by introducing the {beta}-zeolite into iPP. - Abstract: In order to prepare the zeolite filled {beta}-iPP composites, the calcium pimelate as {beta}-nucleator supported on the surface of zeolite ({beta}-zeolite) was prepared by the interaction between calcified zeolite and pimelic acid. The {beta}-nucleation, crystallization behavior and melting characteristic of zeolite, calcified zeolite and {beta}-zeolite filled iPP composites were investigated by differential scanning calorimetry and wide-angle X-ray diffractometer. The results indicated that addition of the zeolite and calcified zeolite as well as {beta}-zeolite increased the crystallization temperature of iPP. The zeolite and calcified zeolite filled iPP composites mainly crystallized in the {alpha}-crystal form and the strong {beta}-heterogeneous nucleation of {beta}-zeolite results in the formation of only {beta}-crystal in {beta}-zeolite filled iPP composites. The zeolite filled {beta}-iPP composites with high {beta}-crystal contents (above 0.90) can be easily obtained by adding {beta}-zeolite into iPP matrix.

  13. Random crystal field effect on the magnetic and hysteresis behaviors of a spin-1 cylindrical nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Zaim, N.; Zaim, A., E-mail: ah_zaim@yahoo.fr; Kerouad, M., E-mail: kerouad@fs-umi.ac.ma

    2017-02-15

    In this work, the magnetic behavior of the cylindrical nanowire, consisting of a ferromagnetic core of spin-1 atoms surrounded by a ferromagnetic shell of spin-1 atoms is studied in the presence of a random crystal field interaction. Based on Metropolis algorithm, the Monte Carlo simulation has been used to investigate the effects of the concentration of the random crystal field p, the crystal field D and the shell exchange interaction J{sub s} on the phase diagrams and the hysteresis behavior of the system. Some characteristic behaviors have been found, such as the first and second-order phase transitions joined by tricritical point for appropriate values of the system parameters, triple and isolated critical points can be also found. Depending on the Hamiltonian parameters, single, double and para hysteresis regions are explicitly determined. - Highlights: • Phase diagrams of a ferromagnetic nanowire are examined by the Monte Carlo simulation. • Different types of the phase diagrams are obtained. • The effect of the random crystal field on the hysteresis loops is studied. • Single, double and para hysteresis regions are explicitly determined.

  14. Relationship between crystal morphology and photoluminescence in polynanocrystalline lead sulfide thin films

    International Nuclear Information System (INIS)

    Kaci, S.; Keffous, A.; Trari, M.; Fellahi, O.; Menari, H.; Manseri, A.; Guerbous, L.

    2010-01-01

    Thin films of lead sulfide (PbS) nanoparticles were grown on corning glass and Si(1 0 0) substrates by polyethylene glycol-assisted chemical bath deposition (CBD) method. This paper compares the morphology and the luminescence properties (PL) of the deposited thin films in the presence (or absence) of PEG300 and investigates the effect of deposition temperatures. Surface morphology and photoluminescence properties of samples were analyzed. The PL data show a blue-shift from the normal emission at ∼2900 nm in PbS bulk to ∼360 nm in nanoparticles of PbS thin films. Furthermore, the PL emission of the films obtained without the addition of PEG300 (type 1) was slightly shifted from that of the films obtained in presence of PEG300 (type 2) from ∼360 to ∼470 nm. The blue-shifting of the emission wavelengths from 2900 to ∼360 or 470 nm is attributed to quantum confinement of charge carriers in the restricted volume of nanoparticles, while the shift between the two types of PbS nanoparticles thin films is speculated to be due to an increase in the defect concentration. The blue-shift increased with increase of the deposition temperature, which suggests that there has been a relative depletion in particle sizes during the CBD of the films at higher temperatures. The PbS nanocrystalline thin films obtained in the presence of PEG300 at 60 o C exhibit a high blue luminescence.

  15. Morphology and efficiency of a specialized foraging behavior, sediment sifting, in neotropical cichlid fishes.

    Directory of Open Access Journals (Sweden)

    Hernán López-Fernández

    Full Text Available Understanding of relationships between morphology and ecological performance can help to reveal how natural selection drives biological diversification. We investigate relationships between feeding behavior, foraging performance and morphology within a diverse group of teleost fishes, and examine the extent to which associations can be explained by evolutionary relatedness. Morphological adaptation associated with sediment sifting was examined using a phylogenetic linear discriminant analysis on a set of ecomorphological traits from 27 species of Neotropical cichlids. For most sifting taxa, feeding behavior could be effectively predicted by a linear discriminant function of ecomorphology across multiple clades of sediment sifters, and this pattern could not be explained by shared evolutionary history alone. Additionally, we tested foraging efficiency in seven Neotropical cichlid species, five of which are specialized benthic feeders with differing head morphology. Efficiency was evaluated based on the degree to which invertebrate prey could be retrieved at different depths of sediment. Feeding performance was compared both with respect to feeding mode and species using a phylogenetic ANCOVA, with substrate depth as a covariate. Benthic foraging performance was constant across sediment depths in non-sifters but declined with depth in sifters. The non-sifting Hypsophrys used sweeping motions of the body and fins to excavate large pits to uncover prey; this tactic was more efficient for consuming deeply buried invertebrates than observed among sediment sifters. Findings indicate that similar feeding performance among sediment-sifting cichlids extracting invertebrate prey from shallow sediment layers reflects constraints associated with functional morphology and, to a lesser extent, phylogeny.

  16. Morphological correlates of corticosteroid-induced changes in prefrontal cortex-dependent behaviors.

    Science.gov (United States)

    Cerqueira, João J; Pêgo, José M; Taipa, Ricardo; Bessa, João M; Almeida, Osborne F X; Sousa, Nuno

    2005-08-24

    Imbalances in the corticosteroid milieu have been implicated in several neuropsychiatric disorders, including depression and schizophrenia. Prefrontal cortex (PFC) dysfunction is also a hallmark of these conditions, causing impairments in executive functions such as behavioral flexibility and working memory. Recent studies have suggested that the PFC might be influenced by corticosteroids released during stress. To test this possibility, we assessed spatial working memory and behavioral flexibility in rats submitted to chronic adrenalectomy or treatment with corticosterone (25 mg/kg) or the synthetic glucocorticoid dexamethasone (300 microg/kg); the behavioral analysis was complemented by stereological evaluation of the PFC (prelimbic, infralimbic, and anterior cingulate regions), the adjacent retrosplenial and motor cortices, and the hippocampal formation. Dexamethasone treatment resulted in a pronounced impairment in working memory and behavioral flexibility, effects that correlated with neuronal loss and atrophy of layer II of the infralimbic, prelimbic, and cingulate cortices. Exposure to corticosterone produced milder impairments in behavioral flexibility, but not in working memory, and reduced the volume of layer II of all prefrontal areas. Interestingly, adrenalectomy-induced deleterious effects only became apparent on the reverse learning task and were not associated with structural alterations in the PFC. None of the experimental procedures influenced the morphology of retrosplenial or motor cortices, but stereological measurements confirmed previously observed effects of corticosteroids on hippocampal structure. Our results describe, for the first time, that imbalances in the corticosteroid environment can induce degeneration of specific layers of the PFC; these changes appear to be the morphological correlate of corticosteroid-induced impairment of PFC-dependent behavior(s).

  17. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection

    Directory of Open Access Journals (Sweden)

    Himaman Winanda

    2011-05-01

    Full Text Available Abstract Background Parasites that manipulate host behavior can provide prominent examples of extended phenotypes: parasite genomes controlling host behavior. Here we focus on one of the most dramatic examples of behavioral manipulation, the death grip of ants infected by Ophiocordyceps fungi. We studied the interaction between O. unilateralis s.l. and its host ant Camponotus leonardi in a Thai rainforest, where infected ants descend from their canopy nests down to understory vegetation to bite into abaxial leaf veins before dying. Host mortality is concentrated in patches (graveyards where ants die on sapling leaves ca. 25 cm above the soil surface where conditions for parasite development are optimal. Here we address whether the sequence of ant behaviors leading to the final death grip can also be interpreted as parasite adaptations and describe some of the morphological changes inside the heads of infected workers that mediate the expression of the death grip phenotype. Results We found that infected ants behave as zombies and display predictable stereotypical behaviors of random rather than directional walking, and of repeated convulsions that make them fall down and thus precludes returning to the canopy. Transitions from erratic wandering to death grips on a leaf vein were abrupt and synchronized around solar noon. We show that the mandibles of ants penetrate deeply into vein tissue and that this is accompanied by extensive atrophy of the mandibular muscles. This lock-jaw means the ant will remain attached to the leaf after death. We further present histological data to show that a high density of single celled stages of the parasite within the head capsule of dying ants are likely to be responsible for this muscular atrophy. Conclusions Extended phenotypes in ants induced by fungal infections are a complex example of behavioral manipulation requiring coordinated changes of host behavior and morphology. Future work should address the

  18. Behavioral mechanisms and morphological symptoms of zombie ants dying from fungal infection.

    Science.gov (United States)

    Hughes, David P; Andersen, Sandra B; Hywel-Jones, Nigel L; Himaman, Winanda; Billen, Johan; Boomsma, Jacobus J

    2011-05-09

    Parasites that manipulate host behavior can provide prominent examples of extended phenotypes: parasite genomes controlling host behavior. Here we focus on one of the most dramatic examples of behavioral manipulation, the death grip of ants infected by Ophiocordyceps fungi. We studied the interaction between O. unilateralis s.l. and its host ant Camponotus leonardi in a Thai rainforest, where infected ants descend from their canopy nests down to understory vegetation to bite into abaxial leaf veins before dying. Host mortality is concentrated in patches (graveyards) where ants die on sapling leaves ca. 25 cm above the soil surface where conditions for parasite development are optimal. Here we address whether the sequence of ant behaviors leading to the final death grip can also be interpreted as parasite adaptations and describe some of the morphological changes inside the heads of infected workers that mediate the expression of the death grip phenotype. We found that infected ants behave as zombies and display predictable stereotypical behaviors of random rather than directional walking, and of repeated convulsions that make them fall down and thus precludes returning to the canopy. Transitions from erratic wandering to death grips on a leaf vein were abrupt and synchronized around solar noon. We show that the mandibles of ants penetrate deeply into vein tissue and that this is accompanied by extensive atrophy of the mandibular muscles. This lock-jaw means the ant will remain attached to the leaf after death. We further present histological data to show that a high density of single celled stages of the parasite within the head capsule of dying ants are likely to be responsible for this muscular atrophy. Extended phenotypes in ants induced by fungal infections are a complex example of behavioral manipulation requiring coordinated changes of host behavior and morphology. Future work should address the genetic basis of such extended phenotypes.

  19. Coordination of stomatal physiological behavior and morphology with carbon dioxide determines stomatal control.

    Science.gov (United States)

    Haworth, Matthew; Killi, Dilek; Materassi, Alessandro; Raschi, Antonio

    2015-05-01

    Stomatal control is determined by the ability to alter stomatal aperture and/or the number of stomata on the surface of new leaves in response to growth conditions. The development of stomatal control mechanisms to the concentration of CO₂within the atmosphere ([CO₂]) is fundamental to our understanding of plant evolutionary history and the prediction of gas exchange responses to future [CO₂]. In a controlled environment, fern and angiosperm species were grown in atmospheres of ambient (400 ppm) and elevated (2000 ppm) [CO₂]. Physiological stomatal behavior was compared with the stomatal morphological response to [CO₂]. An increase in [CO₂] or darkness induced physiological stomatal responses ranging from reductions (active) to no change (passive) in stomatal conductance. Those species with passive stomatal behavior exhibited pronounced reductions of stomatal density in new foliage when grown in elevated [CO₂], whereas species with active stomata showed little morphological response to [CO₂]. Analysis of the physiological and morphological stomatal responses of a wider range of species suggests that patterns of stomatal control to [CO₂] do not follow a phylogenetic pattern associated with plant evolution. Selective pressures may have driven the development of divergent stomatal control strategies to increased [CO₂]. Those species that are able to actively regulate guard cell turgor are more likely to respond to [CO₂] through a change in stomatal aperture than stomatal number. We propose a model of stomatal control strategies in response to [CO₂] characterized by a trade-off between short-term physiological behavior and longer-term morphological response. © 2015 Botanical Society of America, Inc.

  20. In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Gao, Shuang; Liu, Zhi-Quan; Li, Cai-Fu; Zhou, Yizhou; Jin, Tao

    2016-01-01

    The precipitation behavior of μ phase in Ni-base single crystal superalloys was investigated by in situ transmission electron microscopy (TEM). A layer-by-layer growth process with a ledge propagation mechanism was first observed during in situ precipitation. Three types of μ phase with different morphologies were found, which grow along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects. High-resolution TEM image and established atomic models reveal a basic growth mechanism of μ phase by stacking on (001) μ plane and randomly forming coherent planar defects, while the nucleation of incoherent (1–12) μ planar defects at the early stage of precipitation plays an important role in affecting the basic growth mechanism. The frequent faults during the stacking process of the sub-unit layers within μ lattice should be responsible for the defect formation. -- Graphical abstract: In situ transmission electron microscopy (TEM) investigations reveal the layer-by-layer growth mechanism of μ phase precipitated in Ni-base single crystal superalloys. Three types of μ phase with different morphologies were formed at 1050 °C, which grows along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects respectively. Formation of (001) μ micro-twin and stacking fault is the essential feature for precipitated μ phase, while nucleation of incoherent (1–12) μ planar defects plays an important role in changing growth method. Display Omitted

  1. CuInS[sub 2] with lamellar morphology; 2: Photoelectrochemical behavior of heterogeneous material

    Energy Technology Data Exchange (ETDEWEB)

    Cattarin, S. (Inst. di Polarografia ed Elettrochimica Preparativa del C.N.R., Padova (Italy)); Guerriero, P. (Inst. di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati del C.N.R., Padova (Italy)); Razzini, G. (Applicata del Politecnico di Milano (Italy). Dipt. di Chimica Fisica); Lewerenz, H.J. (Hahn-Meitner-Inst., Berlin (Germany))

    1994-05-01

    Lamellar CuInS[sub 2] material grown in a steep temperature gradient shows heterogeneous composition and complex photoeffects. Besides predominant n-type behavior, the electrode surface has areas with intrinsic or p-type conductivity, the latter usually corresponding to indium-rich regions. An inverted (cathodic) photocurrent is observed at n-type electrodes polarized under accumulation conditions. Both spectral dependence, with a pronounced peak for energies around the bandgap, and quantum yields > 1 suggest that these photoeffects originate from photoconductivity phenomena in the crystal bulk. Variability in electronic properties limits the average performance of the material in solar cells.

  2. Chitosan/bentonite bionanocomposites: morphology and mechanical behavior; Bionanocompositos quitosana/bentonita: morfologia e comportamento mecanico

    Energy Technology Data Exchange (ETDEWEB)

    Braga, C.R.C.; Melo, F.M.A. de [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Programa de Pos-graduacao em Ciencia e Engenharia de Materiais; Vitorino, I.F. [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Dept. de Ciencia e Engenharia de Materiais; Fook, M.V.L.; Silva, S.M.L., E-mail: suedina@dema.ufcg.edu.b [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2010-07-01

    This study chitosan/bentonite bionanocomposite films were prepared by solution intercalation process, seeking to investigate the effect of the chitosan/bentonite ratio (5/1 e 10/1) on the morphology and mechanical behavior of the bionanocomposites. It was used as nanophase, Argel sodium bentonite (AN), was provided by Bentonit Uniao Nordeste-BUN (Campina Grande, Brazil) and as biopolymer matrix the chitosan of low molecular weight and degree of deacetylation of 86,7% was supplied by Polymar (Fortaleza, Brazil). The bionanocomposites was investigated by X-ray diffraction and tensile properties. According to the results, the morphology and the mechanical behavior of the bionanocomposite was affected by the ratio of chitosan/bentonite. The chitosan/bentonite ratio (5/1 and 10/1) indicated the formation of an intercalated nanostructure and of the predominantly exfoliated nanostructure, respectively. And the considerable increases in the resistance to the traction were observed mainly for the bionanocomposite with predominantly exfoliated morphology. (author)

  3. Influence of Particle Morphology on 3D Kinematic Behavior and Strain Localization of Sheared Sand

    Energy Technology Data Exchange (ETDEWEB)

    Alshibli, Khalid A.; Jarrar, Maha F.; Druckrey, Andrew M.; Al-Raoush, Riyadh I.

    2017-02-01

    The constitutive behavior of sheared sand is highly influenced by particle morphology, gradation, mineralogy, specimen density, loading condition, stress path, and boundary conditions. The current literature lacks a three-dimensional (3D) systematic experimental study that investigates the influence of particle morphology, confining pressure, and specimen density on the failure mode of sheared sand. In this paper, surface texture, roundness, and sphericity of three uniform sands and glass beads with similar grain size were quantified by using 3D images of particles. In situ nondestructive 3D synchrotron microcomputed tomography (SMT) was used to monitor the deformation of medium-dense and very dense dry sand specimens that were tested under axisymmetric triaxial loading condition at 15 and 400 kPa confining pressures. The particles were identified and tracked in 3D as shearing progressed within the specimens, and maps of incremental particle translation and rotation were developed and used to uncover the relationship between particle morphology, specimen density, and confining pressure on the deformation and failure mode of sheared sand. This paper discusses the relationship between the failure mode and particle morphology, specimen density, and confining pressure.

  4. Copper co-crystallization and divalent metal salts cross-influence effect: A new optimization tool improving crystal morphology and diffraction quality

    Czech Academy of Sciences Publication Activity Database

    Kutá-Smatanová, Ivana

    2007-01-01

    Roč. 306, č. 2 (2007), s. 383-389 ISSN 0022-0248 Institutional research plan: CEZ:AV0Z60870520 Keywords : crystal * crystallization Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.950, year: 2007

  5. Glyphosate and Roundup® alter morphology and behavior in zebrafish.

    Science.gov (United States)

    Bridi, Daiane; Altenhofen, Stefani; Gonzalez, Jonas Brum; Reolon, Gustavo Kellermann; Bonan, Carla Denise

    2017-12-01

    Glyphosate has become the most widely used herbicide in the world, due to the wide scale adoption of transgenic glyphosate resistant crops after its introduction in 1996. Glyphosate may be used alone, but it is commonly applied as an active ingredient of the herbicide Roundup ® . This pesticide contains several adjuvants, which may promote an unknown toxicity. The indiscriminate application poses numerous problems, both for the health of the applicators and consumers, and for the environment, contaminating the soil, water and leading to the death of plants and animals. Zebrafish (Danio rerio) is quickly gaining popularity in behavioral research, because of physiological similarity to mammals, sensitivity to pharmacological factors, robust performance, low cost, short spawning intervals, external fertilization, transparency of embryos through larval stages, and rapid development. The aim of this study was evaluate the effects of glyphosate and Roundup ® on behavioral and morphological parameters in zebrafish larvae and adults. Zebrafish larvae at 3days post-fertilization and adults were exposed to glyphosate (0.01, 0.065, and 0.5mg/L) or Roundup ® (0.01, 0.065, and 0.5mg/L) for 96h. Immediately after the exposure, we performed the analysis of locomotor activity, aversive behavior, and morphology for the larvae and exploratory behavior, aggression and inhibitory avoidance memory for adult zebrafish. In zebrafish larvae, there were significant differences in the locomotor activity and aversive behavior after glyphosate or Roundup ® exposure when compared to the control group. Our findings demonstrated that exposure to glyphosate at the concentration of 0.5mg/L, Roundup ® at 0.065 or 0.5mg/L reduced the distance traveled, the mean speed and the line crossings in adult zebrafish. A decreased ocular distance was observed for larvae exposed at 0.5mg/L of glyphosate. We verified that at 0.5mg/L of Roundup ® -treated adult zebrafish demonstrated a significant

  6. Crystallization characteristic and scaling behavior of germanium antimony thin films for phase change memory.

    Science.gov (United States)

    Wu, Weihua; Zhao, Zihan; Shen, Bo; Zhai, Jiwei; Song, Sannian; Song, Zhitang

    2018-04-19

    Amorphous Ge8Sb92 thin films with various thicknesses were deposited by magnetron sputtering. The crystallization kinetics and optical properties of the Ge8Sb92 thin films and related scaling effects were investigated by an in situ thermally induced method and an optical technique. With a decrease in film thickness, the crystallization temperature, crystallization activation energy and data retention ability increased significantly. The changed crystallization behavior may be ascribed to the smaller grain size and larger surface-to-volume ratio as the film thickness decreased. Regardless of whether the state was amorphous or crystalline, the film resistance increased remarkably as the film thickness decreased to 3 nm. The optical band gap calculated from the reflection spectra increases distinctly with a reduction in film thickness. X-ray diffraction patterns confirm that the scaling of the Ge8Sb92 thin film can inhibit the crystallization process and reduce the grain size. The values of exponent indices that were obtained indicate that the crystallization mechanism experiences a series of changes with scaling of the film thickness. The crystallization time was estimated to determine the scaling effect on the phase change speed. The scaling effect on the electrical switching performance of a phase change memory cell was also determined. The current-voltage and resistance-voltage characteristics indicate that phase change memory cells based on a thinner Ge8Sb92 film will exhibit a higher threshold voltage, lower RESET operational voltage and greater pulse width, which implies higher thermal stability, lower power consumption and relatively lower switching velocity.

  7. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effects of emulsifier addition on the crystallization and melting behavior of palm olein and coconut oil.

    Science.gov (United States)

    Maruyama, Jessica Mayumi; Soares, Fabiana Andreia Schafer De Martini; D'Agostinho, Natalia Roque; Gonçalves, Maria Inês Almeida; Gioielli, Luiz Antonio; da Silva, Roberta Claro

    2014-03-12

    Two commercial emulsifiers (EM1 and EM2), containing predominantly monoacylglycerols (MAGs), were added in proportiond of 1.0 and 3.0% (w/w) to coconut oil and palm olein. EM1 consisted of approximately 90% MAGs, whereas EM2 consisted of approximately 50% MAGs. The crystallization behavior of these systems was evaluated by differential scanning calorimetry (DSC) and microscopy under polarized light. On the basis of DSC results, it was clear that the addition of EM2 accelerated the crystallization of coconut oil and delayed the crystallization of palm olein. In both oils EM2 addition led to the formation of smaller spherulites, and these effects improved the possibilities for using these fats as ingredients. In coconut oil the spherulites were maintained even at higher temperatures (20 °C). The addition of EM1 to coconut oil changed the crystallization pattern. In palm olein, the addition of 3.0% (w/w) of this emulsifier altered the pattern of crystallization of this fat.

  9. Crystal growth and magneto-transport behavior of PdS1-δ

    Science.gov (United States)

    Cao, Lin; Lv, Yang-Yang; Chen, Si-Si; Li, Xiao; Zhou, Jian; Yao, Shu-Hua; Chen, Y. B.; Lu, Minghui; Chen, Yan-Feng

    2018-04-01

    PdS is theoretically proposed to novel topological material with eight-band fermions. Here, PdS1-δ crystals were successfully grown from KI as solvent by modified flux method. The single crystalline quality and compositional homogeneity of grown PdS1-δ are characterized by X-ray diffraction and energy dispersion spectroscopy. Temperature dependent electrical transport property of PdS1-δ demonstrates a semiconductor-like behavior. Analysis of temperature-dependent resistance indicates that there is variable-range-hopping behavior at low temperature. The clear negative MR of PdS1-δ single crystals is measured at the low temperature (<30 K), which may be ascribed to the interaction between conducting carriers and localized moments. however, the magneto-transport results have not shown the clues of topological feature of PdS.

  10. Dielectric and conducting behavior of gadolinium–terbium fumarate heptahydrate crystals

    Directory of Open Access Journals (Sweden)

    M. D. Shah

    2015-09-01

    Full Text Available Gadolinium–terbium fumarate heptahydrate crystals were grown in silica gel by using single gel diffusion technique. The crystals were characterized by different physico-chemical techniques of characterization. Powder X-ray diffraction results showed that the grown material is purely crystalline in nature. Elemental analyses suggested the chemical formula of the compound to be Gd Tb (C4H2O43⋅7H2O. Energy dispersive X-ray analysis confirmed the presence of Gd and Tb in the title compound. The dielectric and conductivity studies of the grown compound were carried as function of frequency of applied field and the temperature. The grown material showed a dielectric anomaly which was correlated with its thermal behavior. The ac conductivity of the material showed Jonscher's power law behavior: σ(ω=σo+Aωs, with a temperature-dependent power exponent s(<1. The conductivity was found to be a function of temperature and frequency.

  11. On the long-time behavior of some mathematical models for nematic liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Petzeltová, Hana; Rocca, E.; Schimperna, G.

    2013-01-01

    Roč. 46, 3-4 (2013), s. 623-639 ISSN 0944-2669 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : nematic liquid crystals * long-time behavior * flows Subject RIV: BA - General Mathematics Impact factor: 1.526, year: 2013 http://www.springerlink.com/content/d61u566014515884/

  12. Trade-off between morphological convergence and opportunistic diet behavior in fish hybrid zone

    Directory of Open Access Journals (Sweden)

    Grey Jonathan

    2009-10-01

    Full Text Available Abstract Background The invasive Chondrostoma nasus nasus has colonized part of the distribution area of the protected endemic species Chondrostoma toxostoma toxostoma. This hybrid zone is a complex system where multiple effects such as inter-species competition, bi-directional introgression, strong environmental pressure and so on are combined. Why do sympatric Chondrostoma fish present a unidirectional change in body shape? Is this the result of inter-species interactions and/or a response to environmental effects or the result of trade-offs? Studies focusing on the understanding of a trade-off between multiple parameters are still rare. Although this has previously been done for Cichlid species flock and for Darwin finches, where mouth or beak morphology were coupled to diet and genetic identification, no similar studies have been done for a fish hybrid zone in a river. We tested the correlation between morphology (body and mouth morphology, diet (stable carbon and nitrogen isotopes and genomic combinations in different allopatric and sympatric populations for a global data set of 1330 specimens. To separate the species interaction effect from the environmental effect in sympatry, we distinguished two data sets: the first one was obtained from a highly regulated part of the river and the second was obtained from specimens coming from the less regulated part. Results The distribution of the hybrid combinations was different in the two part of the sympatric zone, whereas all the specimens presented similar overall changes in body shape and in mouth morphology. Sympatric specimens were also characterized by a larger diet behavior variance than reference populations, characteristic of an opportunistic diet. No correlation was established between the body shape (or mouth deformation and the stable isotope signature. Conclusion The Durance River is an untamed Mediterranean river despite the presence of numerous dams that split the river from

  13. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties.

    Science.gov (United States)

    Lewandowska, Żaneta; Piszczek, Piotr; Radtke, Aleksandra; Jędrzejewski, Tomasz; Kozak, Wiesław; Sadowska, Beata

    2015-04-01

    The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties. Cellular functionality were investigated for up to 3 days in culture using a cell viability assay and scanning electron microscopy. In general, results of our studies revealed that fibroblasts adhesion, proliferation, and differentiation on the titania nanotube coatings is clearly higher than on the surface of the pure titanium foil. The formation of crystallic islands in the nanotubes structure induced a significant acceleration in the growth rate of fibroblasts cells by as much as ~200 %. Additionally, some types of TiO2 layers revealed the ability to the reduce of the staphylococcal aggregates/biofilm formation. The nanotube coatings formed during the anodization process using the voltage 4 V proved to be the stronger S. aureus aggregates/biofilm inhibitor in comparison to the uncovered titanium substrate. That accelerated eukaryotic cell growth and anti-biofilm activity is believed to be advantageous for faster cure of dental and orthopaedic patients, and also for a variety of biomedical diagnostic and therapeutic applications. The highly ordered titanium dioxide nanotube coatings were produced under various electrochemical conditions on the surface of titanium foil. The anodization voltage changes proved to be a main factor which directly affects the nanotube morphology, structure, and wettability. Moreover we have noticed a significant dependence between the size and crystallinity of TiO2 layers and the adhesion/proliferation of fibroblasts and antimicrobial properties.

  14. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.

    Science.gov (United States)

    Tang, Aiwei; Hu, Zunlan; Yin, Zhe; Ye, Haihang; Yang, Chunhe; Teng, Feng

    2015-05-21

    A simple one-pot colloidal method has been described to engineer ternary CuInS2 nanocrystals with different crystal phases and morphologies, in which dodecanethiol is chosen as the sulfur source and the capping ligands. By a careful choice of the anions in the metal precursors and manipulation of the reaction conditions including the reactant molar ratios and the reaction temperature, CuInS2 nanocrystals with chalcopyrite, zincblende and wurtzite phases have been successfully synthesized. The type of anion in the metal precursors has been found to be essential for determining the crystal phase and morphology of the as-obtained CuInS2 nanocrystals. In particular, the presence of Cl(-) ions plays an important role in the formation of CuInS2 nanoplates with a wurtzite-zincblende polytypism structure. In addition, the molar ratios of Cu to In precursors have a significant effect on the crystal phase and morphology, and the intermediate Cu2S-CuInS2 heteronanostructures are formed which are critical for the anisotropic growth of CuInS2 nanocrystals. Furthermore, the optical absorption results of the as-obtained CuInS2 nanocrystals exhibit a strong dependence on the crystal phase and size.

  15. Characterization of physicochemical and thermal properties and crystallization behavior of krabok (Irvingia Malayana ) and rambutan seed fats.

    Science.gov (United States)

    Sonwai, Sopark; Ponprachanuvut, Punnee

    2012-01-01

    Fatty acid composition, physicochemical and thermal properties and crystallization behavior of fats extracted from the seeds of krabok (Irvingia Malayana) and rambutan (Nephelium lappaceum L.) trees grown in Thailand were studied and compared with cocoa butter (CB). The krabok seed fat, KSF, consisted of 46.9% lauric and 40.3% myristic acids. It exhibited the highest saponification value and slip melting point but the lowest iodine values. The three fats displayed different crystallization behavior at 25°C. KSF crystallized into a mixture of β' and pseudo-β' structures with a one-step crystallization curve and high solid fat content (SFC). The fat showed simple DSC crystallization and melting thermograms with one distinct peak. The rambutan seed fat, RSF, consisted of 42.5% arachidic and 33.1% oleic acids. Its crystallization behavior was more similar to CB than KSF, displaying a two-step crystallization curve with SFC lower than that of KSF. RSF solidified into a mixture of β' and pseudo-β' before transforming to β after 24 h. The large spherulitic microstructures were observed in both KSF and RSF. According to these results, the Thai KSF and RSF exhibited physicochemical, thermal characteristics and crystallization behavior that could be suitable for specific applications in several areas of the food, cosmetic and pharmaceutical industries.

  16. Thin Film Behavior of Poly(methyl methacrylates). 9. Crystallization of Isotactic Poly(methyl methacrylate) in Mixed Monolayers

    NARCIS (Netherlands)

    Brinkhuis, R.H.G.; Schouten, A.J.

    1992-01-01

    The crystallization behavior of isotactic poly(methyl methacrylate) (i-PMMA) in monolayers of mixtures with a noncrystallizable component was investigated. The monolayer crystallization process in mixtures with high molecular weight condensed type polymers such as syndiotactic poly(methyl

  17. Crystallization behavior and texture of trans-containing and trans-free palm oil based confectionery fats.

    Science.gov (United States)

    De Graef, Veerle; Foubert, Imogen; Smith, Kevin W; Cain, Fred W; Dewettinck, Koen

    2007-12-12

    The objective of this study was to gain insight into the role of trans fatty acids in determining the crystallization behavior and texture of palm-based confectionery fats. Therefore, the isothermal crystallization behavior of two series, each of three fats, one trans-containing and one trans-free, was examined by pNMR, DSC, and rheology. Furthermore, the hardness of these samples was examined at three different storage times at 10 degrees C. All of the trans free samples showed a two-step crystallization at 10 degrees C which is hypothesized to be an alpha-mediated beta' crystallization for two of the samples and a fractionated crystallization in the beta' polymorph for the third, while the trans-containing fats crystallized in a single step, probably a direct beta' crystallization. The trans-containing fat series clearly crystallized faster than the trans-free fat series and also yielded higher hardness values at all storage times investigated. The presence of trans fatty acids seems to reduce the effect of compositional variations on the crystallization process. For the trans free fats, chemical composition was much more critical in determining the crystallization rate, the SFC, and the final hardness value.

  18. Theory and simulation studies of effective interactions, phase behavior and morphology in polymer nanocomposites.

    Science.gov (United States)

    Ganesan, Venkat; Jayaraman, Arthi

    2014-01-07

    Polymer nanocomposites are a class of materials that consist of a polymer matrix filled with inorganic/organic nanoscale additives that enhance the inherent macroscopic (mechanical, optical and electronic) properties of the polymer matrix. Over the past few decades such materials have received tremendous attention from experimentalists, theoreticians, and computational scientists. These studies have revealed that the macroscopic properties of polymer nanocomposites depend strongly on the (microscopic) morphology of the constituent nanoscale additives in the polymer matrix. As a consequence, intense research efforts have been directed to understand the relationships between interactions, morphology, and the phase behavior of polymer nanocomposites. Theory and simulations have proven to be useful tools in this regard due to their ability to link molecular level features of the polymer and nanoparticle additives to the resulting morphology within the composite. In this article we review recent theory and simulation studies, presenting briefly the methodological developments underlying PRISM theories, density functional theory, self-consistent field theory approaches, and atomistic and coarse-grained molecular simulations. We first discuss the studies on polymer nanocomposites with bare or un-functionalized nanoparticles as additives, followed by a review of recent work on composites containing polymer grafted or functionalized nanoparticles as additives. We conclude each section with a brief outlook on some potential future directions.

  19. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  20. Optimizing time and resource allocation trade-offs for investment into morphological and behavioral defense

    DEFF Research Database (Denmark)

    Steiner, Uli; Pfeiffer, Thomas

    2007-01-01

    Prey organisms are confronted with time and resource allocation trade-offs. Time allocation trade-offs partition time, for example, between foraging effort to acquire resources and behavioral defense. Resource allocation trade-offs partition the acquired resources between multiple traits, such as...... for and augment each other depending on predator densities and the effectiveness of the defense mechanisms. In the presence of time constraints, the model shows peak investment into morphological and behavioral defense at intermediate resource levels......., such as growth or morphological defense. We develop a mathematical model for prey organisms that comprise time and resource allocation trade-offs for multiple defense traits. Fitness is determined by growth and survival during ontogeny. We determine optimal defense strategies for environments that differ...... in their resource abundance, predation risk, and defense effectiveness. We compare the results with results of simplified models where single defense traits are optimized. Our results indicate that selection acts in favor of integrated traits. The selective advantage of expressing multiple defense traits is most...

  1. Behavior of thin disk crystalline morphology in the presence of corrections to ideal magnetohydrodynamics

    Science.gov (United States)

    Montani, Giovanni; Rizzo, Mariachiara; Carlevaro, Nakia

    2018-02-01

    We analyze an axisymmetric magnetohydrodynamics configuration, describing the morphology of a purely differentially rotating thin plasma disk, in which linear and nonlinear perturbations are triggered associated with microscopic magnetic structures. We study the evolution of the nonstationary correction in the limit in which the corotation condition (i.e., the dependence of the disk angular velocity on the magnetic flux function) is preserved and the poloidal velocity components are neglected. The main feature we address here is the influence of ideal (finite electron inertia) and collisional (resistivity, viscosity, and thermal conductivity) effects on the behavior of the flux function perturbation and of the associated small-scale modifications in the disk. We analyze two different regimes in which resistivity or viscosity dominates and study the corresponding linear and nonlinear behaviors of the perturbation evolution, i.e., when the backreaction magnetic field is negligible or comparable to the background one, respectively. We demonstrate that when resistivity dominates, a radial oscillating morphology (crystalline structure) emerges and it turns out to be damped in time, in both the linear and nonlinear regimes, but in such a way that the resulting transient can be implemented in the description of relevant astrophysical processes, for instance, associated with jet formation or cataclysmic variables. When the viscosity effect dominates the dynamics, only the nonlinear regime is available and a very fast instability is triggered.

  2. Effect of H + ion implantation on structural, morphological, optical and dielectric properties of L-arginine monohydrochloride monohydrate single crystals

    Science.gov (United States)

    Sangeetha, K.; Babu, R. Ramesh; Kumar, P.; Bhagvannarayana, G.; Ramamurthi, K.

    2011-06-01

    L-arginine monohydrochloride monohydrate (LAHCl) single crystals have been implanted with 100 keV H + ions at different ion fluence ranging from 10 12 to 10 15 ions/cm 2. Implanted LAHCl single crystals have been investigated for property changes. Crystal surface and crystalline perfection of the pristine and implanted crystals were analyzed by atomic force microscope and high-resolution X-ray diffraction studies, respectively. Optical absorption bands induced by colour centers, refractive index and birefringence, mechanical stability and dielectric constant of implanted crystals were studied at different ion fluence and compared with that of pristine LAHCl single crystal.

  3. Influence of iron on crystallization behavior and thermal stability of the insulating materials - porous calcium silicates

    DEFF Research Database (Denmark)

    Haastrup, Sonja; Yu, Donghong; Yue, Yuanzheng

    2017-01-01

    The properties of porous calcium silicate for high temperature insulation are strongly influenced by impurities. In this work we determine the influence of Fe3+ on the crystallization behavior and thermal stability of hydrothermally derived calcium silicate. We synthesize porous calcium silicate...... by XRD analysis. The thermal stability and compressive strength of the calcium silicates are seriously influenced by the changes of their crystal structure. Linear shrinkage of the reference sample is 1.3% at 1050°C, whereas the sample with Fe/Si =1.0% does by 30.4%. In conclusion, the presence of Fe3...... measurements reveal a pronounced decrease in the number of Q3 sites in the calcium silicate with an increase of Fe3+, and thereby lower the crystal fraction of xonotlite (Ca6Si6O17(OH)2) phase, and increase the crystal fractions of tobermorite(Ca5Si6O16(OH)2·4H2O) and calcite (CaCO3) phases, as confirmed...

  4. Angiostrongylus cantonensis: morphological and behavioral investigation within the freshwater snail Pomacea canaliculata.

    Science.gov (United States)

    Lv, Shan; Zhang, Yi; Liu, He-Xiang; Zhang, Chao-Wei; Steinmann, Peter; Zhou, Xiao-Nong; Utzinger, Jürg

    2009-06-01

    An infection with Angiostrongylus cantonensis, the main causative agent for human eosinophilic encephalitis, can be acquired through the consumption of the freshwater snail Pomacea canaliculata. This snail also provides a suitable model to study the developmental morphology and behavior of A. cantonensis larvae, facilitated by the snail's distinct lung structure. We used microanatomy for studying the natural appearance and behavior of A. cantonensis larvae while developing within P. canaliculata. The distribution of refractile granules in the larval body and characteristic head structures changed during the developmental cycle. Two well-developed, rod-like structures with expanded knob-like tips at the anterior part were observed under the buccal cavity as early as the late second developmental stage. A "T"-shaped structure at the anterior end and its tenacity distinguished the outer sheath from that shed during the second molting. Early first-stage larvae obtained from fresh rat feces are free moving and characterized by a coiled tail, whereas a mellifluous "Q"-movement was the behavioral trait of third-stage A. cantonensis larvae outside the host tissue. In combination, the distribution of refractive granules, distinct head features, variations in sheaths, and behavioral characteristics can be utilized for differentiation of larval stages, and for distinguishing A. cantonensis larvae from those of other free-living nematodes.

  5. Effect of tensile mean stress on fatigue behavior of single-crystal and directionally solidified superalloys

    Science.gov (United States)

    Kalluri, Sreeramesh; Mcgaw, Michael A.

    1990-01-01

    Two nickel base superalloys, single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf, were studied in view of the potential usage of the former and usage of the latter as blade materials for the turbomachinery of the space shuttle main engine. The baseline zero mean stress (ZMS) fatigue life (FL) behavior of these superalloys was established, and then the effect of tensile mean stress (TMS) on their FL behavior was characterized. At room temperature these superalloys have lower ductilities and higher strengths than most polycrystalline engineering alloys. The cycle stress-strain response was thus nominally elastic in most of the fatigue tests. Therefore, a stress range based FL prediction approach was used to characterize both the ZMS and TMS fatigue data. In the past, several researchers have developed methods to account for the detrimental effect of tensile mean stress on the FL for polycrystalline engineering alloys. However, the applicability of these methods to single crystal and directionally solidified superalloys has not been established. In this study, these methods were applied to characterize the TMS fatigue data of single crystal PWA 1480 and directionally solidified MAR-M 246 + Hf and were found to be unsatisfactory. Therefore, a method of accounting for the TMS effect on FL, that is based on a technique proposed by Heidmann and Manson was developed to characterize the TMS fatigue data of these superalloys. Details of this method and its relationship to the conventionally used mean stress methods in FL prediction are discussed.

  6. Crystallization behavior and controlling mechanism of iron-containing Si-C-N ceramics.

    Science.gov (United States)

    Francis, Adel; Ionescu, Emanuel; Fasel, Claudia; Riedel, Ralf

    2009-11-02

    The crystallization behavior and controlling mechanism of the Si-Fe-C-N system based on polymer-derived SiCN ceramic filled with iron metal powder has been studied. The composite preparation conditions allow the formation of a random distribution of metallic particles in the polymer matrix volume for the Si-C-N system. Pyrolysis of the composite material at 1100 degrees C indicates the presence of one crystalline phase Fe(3)Si. While the sample pyrolyzed at 1200 degrees C reveals the formation of both Fe(3)Si and Fe(5)Si(3) phases, a crystallization of beta-SiC is additionally observed by increasing the temperature up to 1300 degrees C. The propensity for the formation of SiC is due to the presence of Fe(5)Si(3), where a solid-liquid-solid (SLS) growth mechanism was suggested to occur. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential thermal analysis (DTA), and thermal gravimetric analysis with mass spectroscopic detection (TGA-MS) were employed to investigate the crystallization behavior of the Si-Fe-C-N system.

  7. A test of the coupling of predator defense morphology and behavior variation in two threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Jennyfer LACASSE, Nadia AUBIN-HORTH

    2012-02-01

    Full Text Available Among-population differences in morphology and behaviors such as boldness have been shown to co-vary with ecological conditions, including predation regime. However, between- and within-population covariation of predator defense morphology with variation in behaviors relevant to ecology and evolution (boldness, exploration, activity, sociability and aggressiveness, often defined as personality traits when they are consistent across time and contexts have never been quantified together in a single study in juvenile fish from populations found in contrasting environments. We measured predator defense morphology differences between adults from two freshwater populations of threespine sticklebacks with different ecological conditions. We then quantified five behaviors in juveniles from both populations raised in a common environment. Wild-caught adults showed significant differences in predator defense morphology. One population had significantly lower lateral plate number, shorter dorsal spine, pelvic spine and pelvic girdle. Furthermore, 61% of individuals from that population showed an absence of pelvic spine and girdle. At the population level, we found that differences in defense morphology in adults between the two lakes were coupled with differences in behaviors in juveniles raised in a common environment. Levels of activity, aggressiveness and boldness were higher in juveniles from the population lacking predator defense structures. At the individual level, anti-predator morphology of adult females could not predict their offspring’s behavior, but juvenile coloration predicted individual boldness in a population-specific manner. Our results suggest that ecological conditions, as reflected in adult predator defense morphology, also affect juvenile behavior in threespine sticklebacks, resulting in trait co-specialization, and that there is a genetic or epigenetic component to these behavioral differences [Current Zoology 58 (1: 53–65, 2012].

  8. Seasonal Effects on the Population, Morphology and Reproductive Behavior of Narnia femorata (Hemiptera: Coreidae

    Directory of Open Access Journals (Sweden)

    Lauren A. Cirino

    2017-01-01

    Full Text Available Many insects are influenced by the phenology of their host plants. In North Central Florida, Narnia femorata (Hemiptera: Coreidae spends its entire life cycle living and feeding on Opuntia mesacantha ssp. lata. This cactus begins producing flower buds in April that lead to unripe green fruit in June that ripen into red fruit through December. Many morphological and behavioral characteristics of N. femorata are known to be affected by cactus phenology in a controlled laboratory setting, including the degree of sexual dimorphism and mating behavior. Our goal with this study was to determine if similar phenotypic changes of N. femorata occurred over time in the wild, and the extent to which these changes were concordant with phenological changes in its host plant. Further, we investigate the length of the insect mouthparts (beak over time. Ongoing work has suggested that beak length may change across cohorts of developing insects in response to feeding deep within cactus fruit where seed and pulp depth decrease as the fruit ripens. Our results revealed a drop in cactus fruit abundance between the months of July through October 2015 as cactus fruits turned red and ripened. Simultaneously, the average body size of both males and females of N. femorata declined at two sampled sites. Male hind femora (a sexually-selected weapon decreased disproportionately in size over time so that males later in the year had relatively smaller hind femora for their body size. The sex-specific patterns of morphological change led to increased sexual-size dimorphism and decreased sexual dimorphism for hind femora later in the year. Further, we found that beak length decreased across cohorts of insects as cactus fruit ripened, suggesting phenotypic plasticity in mouthpart length. Behavioral studies revealed that female readiness to mate increased as the season progressed. In sum, we found pronounced changes in the phenotypes of these insects in the field. Although this

  9. Growth Rate and Morphology of a Single Calcium Carbonate Crystal on Polysulfone Film Measured with Time Lapse Raman Micro Spectroscopy

    NARCIS (Netherlands)

    Liszka, B.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2016-01-01

    The growth of single, self- nucleated calcium carbonate crystals on a polysulfone (PSU) film was investigated with high resolution, time lapse Raman imaging. The Raman images were acquired on the interface of the polymer with the crystal. The growth of crystals could thus be followed in time. PSU is

  10. Glass transition behavior and crystallization kinetics of Cu0.3(SSe20)0.7 chalcogenide glass

    International Nuclear Information System (INIS)

    Soliman, A.A.

    2005-01-01

    The glass transition behavior and crystallization kinetics of Cu 0.3 (SSe 20 ) 0.7 chalcogenide glass were investigated using differential scanning calorimetry (DSC), X-ray diffraction (XRD). Two crystalline phases (SSe 20 and Cu 2 Se) were identified after annealing the glass at 773 K for 24 h. The activation energy of the glass transition (E g ), the activation energy of crystallization (E c ), the Avrami exponent (n) and the dimensionality of growth (m) were determined. Results indicate that this glass crystallizes by a two-stage bulk crystallization process upon heating. The first transformation, in which SSe 20 precipitates from the amorphous matrix with a three-dimensional crystal growth. The second transformation, in which the residual amorphous phase transforms into Cu 2 Se compound with a two-dimensional crystal growth

  11. Sulfur isotopic zoning in apatite crystals: A new record of dynamic sulfur behavior in magmas

    Science.gov (United States)

    Economos, Rita; Boehnke, Patrick; Burgisser, Alain

    2017-10-01

    The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-phase (solid, immiscible liquid, gaseous, dissolved ions) and multi-valent (from S2- to S6+) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often enigmatic to extract from rock records, particularly for intrusive systems. We apply a novel method of measuring S isotopic ratios in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We interrogate the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe. Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We discuss a range of possible natural scenarios and favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO+1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. Our conclusions have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  12. Crystallization and melting behavior of polypropylene (PP) in (vulcanized nanoscale polybutadiene rubber powder/PP) polymer-nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Rezaei Abadchi, Majid; Jalali-Arani, Azam, E-mail: ajalali@aut.ac.ir

    2015-10-10

    Highlights: • Vulcanized polybutadiene rubber powder (PBRP) and PBRP/PP composites were prepared. • Microscopic tests confirmed good dispersion of PBRP nanoparticles in the PP matrix. • PBRP acted as a nucleating agent; however it had no effect on α-form of PP crystals. • PBRP increased T{sub m}, T{sub c}, and crystallization rate of PP in polymer-nanocomposites. • Avrami exponent indicated a three-dimensional crystal growth of PP in nanocomposites. - Abstract: Radiation vulcanized polybutadiene rubber powder (PBRP) was prepared and blended with polypropylene (PP). Melting behavior and isothermal crystallization kinetics of PP and prepared polymer-nanocomposites were investigated by differential scanning calorimetry (DSC) and wide angle X-ray scattering (WAXS). It was found that the addition of PBRP increased the melting (T{sub m}) and crystallization (T{sub c}) temperatures, as well as the crystallization rate of PP. By study on isothermal crystallization kinetics of PP, in terms of the Avrami equation, the Avrami exponent n for the pure PP was determined about 2. Using and increasing the amount of PBRP in the nanocomposites increased the n value up to 3.4; indicating a heterogeneous nucleation followed by a three-dimensional crystal growth. WAXS results showed that the existence of PBRP had no effect on the α-form of PP crystals. However, the use of PBRP promoted the crystals to become perfect and resulted in a larger crystallite size.

  13. Morphological and behavioral markers of environmentally induced retardation of brain development: an animal model

    International Nuclear Information System (INIS)

    Altman, J.

    1987-01-01

    In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brain regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references

  14. Crickets in space: morphological, physiological and behavioral alterations induced by space flight and hypergravity

    Science.gov (United States)

    Horn, E.; Agricola, H.; Böser, S.; Förster, S.; Kämper, G.; Riewe, P.; Sebastian, C.

    "Crickets in Space" was a Neurolab experiment by which the balance between genetic programs and the gravitational environment for the development of a gravity sensitive neuronal system was studied. The model character of crickets was justified by their external gravity receptors, identified position-sensitive interneurons (PSI) and gravity-related compensatory head response, and by the specific relation of this behavior to neuronal arousal systems activated by locomotion. These advantages allowed to study the impact of modified gravity on cellular processes in a complex organism. Eggs, 1st, 4th and 6th stage larvae of Acheta domesticus were used. Post-flight experiments revealed a low susceptibility of the behavior to micro- and hypergravity while the physiology of the PSI was significantly affected. Immunocytological investigations revealed a stage-dependent sensitivity of thoracic GABAergic motoneurons to 3g-conditions concerning their soma sizes but not their topographical arrangement. The morphology of neuromuscular junctions was not affected by 3g-hypergravity. Peptidergic neurons from cerebral sensorimotor centers revealed no significant modifications by microgravity (μg). The contrary physiological and behavioral results indicate a facilitation of 1g-readaptation originating from accessory gravity, proprioceptive and visual sense organs. Absence of anatomical modifications point to an effective time window of μg- or 3g-expo-sure related to the period of neuronal proliferation. The analysis of basic mechanisms of how animals and man adapt to altered gravitational conditions will profit from a continuation of the project "Crickets in Space".

  15. Morphological Features of Diamond Crystals Dissolved in Fe0.7S0.3 Melt at 4 GPa and 1400°C

    Science.gov (United States)

    Sonin, V. M.; Zhimulev, E. I.; Pomazanskiy, B. S.; Zemnuhov, A. L.; Chepurov, A. A.; Afanasiev, V. P.; Chepurov, A. I.

    2018-01-01

    An experimental study of the dissolution of natural and synthetic diamonds in a sulfur-bearing iron melt (Fe0.7S0.3) with high P-T parameters (4 GPa, 1400°C) was performed. The results demonstrated that under these conditions, octahedral crystals with flat faces and rounded tetrahexahedral diamond crystals are transformed into rounded octahedroids, which have morphological characteristics similar to those of natural diamonds from kimberlite. It was suggested that, taking into account the complex history of individual natural diamond crystals, including the dissolution stages, sulfur-bearing metal melts up to sulfide melts were not only diamond-forming media during the early evolution of the Earth, but also natural solvents of diamond in the mantle environment before the formation of kimberlitic melts.

  16. Effect of hydroxyapatite nano-particles on morphology, rheology and thermal behavior of poly(caprolactone)/chitosan blends

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani, Fereshte Mohammad [Department of Polymer Engineering, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Kaffashi, Babak, E-mail: kaffashi@ut.ac.ir [Department of Polymer Engineering, School of Chemical Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Shokrollahi, Parvin, E-mail: p.shokrolahi@ippi.ac.ir [Department of Biomaterials, Iran Polymer and Petrochemical Institute, Tehran (Iran, Islamic Republic of); Akhlaghi, Shahin; Hedenqvist, Mikael S. [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Fibre and Polymer Technology, SE-100 44 Stockholm (Sweden)

    2016-02-01

    The effect of hydroxyapatite nano-particles (nHA) on morphology, and rheological and thermal properties of PCL/chitosan blends was investigated. The tendency of nHA to reside in the submicron-dispersed chitosan phase is determined using SEM and AFM images. The presence of electrostatic interaction between amide sites of chitosan and ionic groups on the nHA surface was proved by FTIR. It is shown that the chitosan phase is thermodynamically more favorable for the nano-particles to reside than the PCL phase. Lack of implementation of Cox–Merz theory for this system shows that the polymer–nano-particle network is destructed by the flow. Results from dynamic rheological measurements and Zener fractional model show that the presence of nHA increases the shear moduli and relaxation time of the PCL/chitosan blends. DSC measurements showed that nHA nano-particles are responsible for the increase in melting and crystallization characteristics of the PCL/chitosan blends. Based on thermogravimetric analysis, the PCL/chitosan/nHA nano-composites exhibited a greater thermal stability compared to the nHA-free blends. - Highlights: • In PCL/chitosan/nHA nano-composites, nHA shows tendency to chitosan phase. • At low shear rates, nano-composites show higher viscosity than unfilled blends. • At high shear rates, nano-composites show shear-thinning behavior. • nHA increases the shear moduli and relaxation time of PCL/chitosan blends. • The polymer/nano-particle network is destructed by the flow.

  17. Cyclic Deformation Behavior of Aged FeNiCoAlTa Single Crystals

    Science.gov (United States)

    Krooß, P.; Niendorf, T.; Karaman, I.; Chumlyakov, Y.; Maier, H. J.

    2012-11-01

    The cyclic deformation behavior of [001] oriented Fe-28Ni-17Co-11.5Al-2.5Ta (at.%) shape memory single crystals was investigated under tension. Dog-bone shaped specimens were tested up to 100 cycles after different aging heat treatments in order to characterize the cyclic stress-strain response and functional degradation. The smaller particles formed as a consequence of short aging for 1 h at 700°C, as compared to longer aging for 7 h, resulted in significantly enhanced resistance to cyclic degradation.

  18. Dielectric behavior of antiferroelectric liquid crystals in presence of flexoelectric effect

    International Nuclear Information System (INIS)

    Das, Deblal; Mandal, Pravash; Majumder, Tapas Pal

    2015-01-01

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization. (author)

  19. Dielectric Behavior of Antiferroelectric Liquid Crystals in Presence of Flexoelectric Effect

    Science.gov (United States)

    Das, Deblal; Mandal, Pravash; Pal Majumder, Tapas

    2015-06-01

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization.

  20. Dielectric behavior of antiferroelectric liquid crystals in presence of flexoelectric effect

    Energy Technology Data Exchange (ETDEWEB)

    Das, Deblal; Mandal, Pravash; Majumder, Tapas Pal, E-mail: tpm@klyuniv.ac.in [Department of Physics, University of Kalyani, West Bengal (India)

    2015-06-15

    We studied theoretically the effect of flexoelectricity on the behavior of dielectric fluctuations of antiferroelectric liquid crystals (AFLCs) influenced by the mechanical distortion associated with flexoelectric effect. By using the appropriate free energy and the Landau-Ginzburg equation, we found an approximate expression of dielectric permittivity, which was strongly influenced by the existence of flexoelectric polarization for both in-phase and anti-phase motions. Consequently, the corresponding dielectric strength for both in-phase and anti-phase motions were varied due to the existence of flexoelectric polarization. (author)

  1. Speciation, Divergence, and the Origin of Gryllus rubens: Behavior, Morphology, and Molecules

    Directory of Open Access Journals (Sweden)

    David A. Gray

    2011-05-01

    Full Text Available The last 25 years or so has seen a huge resurgence of interest in speciation research. This has coincided with the development and widespread use of new tools in molecular genetics, especially DNA sequencing, to inform ecological and evolutionary questions. Here I review about a decade of work on the sister species of field crickets Gryllus texensis and G. rubens. This work has included analysis of morphology, behavior, and the mitochondrial DNA molecule. The molecular work in particular has dramatically re-shaped my interpretation of the speciational history of these taxa, suggesting that rather than ‘sister’ species we should consider these taxa as ‘mother-daughter’ species with G. rubens derived from within a subset of ancestral G. texensis.

  2. Toxicity of organophosphates on morphology and locomotor behavior in brine shrimp, Artemia salina.

    Science.gov (United States)

    Venkateswara Rao, J; Kavitha, P; Jakka, N M; Sridhar, V; Usman, P K

    2007-08-01

    The acute toxicity and hatching success of four organophosphorus insecticides--acephate (ACEP), chlorpyrifos (CPP), monocrotophos (MCP), and profenofos (PF)--was studied in a short-term bioassay using brine shrimp, Artemia salina. Fifty percent hatchability inhibition concentration and median lethal concentration (LC(50)) values were calculated after probit transformation of the resulting data. Among the insecticides tested, CPP is found to be the most toxic and also to inhibit hatching success of A. salina cysts in a concentration-dependent manner. In addition, the effect of these pesticides on locomotor behavior (swimming speed) and morphologic differences were studied in LC(50)-exposed nauplii after 24 hours. The in vivo effect of these insecticides on acetylcholinesterase (Enzyme commission number (EC 3.1.1.7) activity was also determined in LC(50)-exposed nauplii after 24 hours. Maximum percent decrease in their swimming speed and significant morphologic alterations were noticed in CPP-exposed brine shrimps. The order of toxicity was CPP > PF > MCP > ACEP in all the parameters studied.

  3. Investigation into the morphology, composition, structure and dry tribological behavior of rice husk ceramic particles

    Science.gov (United States)

    Hu, Enzhu; Hu, Kunhong; Xu, Zeyin; Hu, Xianguo; Dearn, Karl David; Xu, Yong; Xu, Yufu; Xu, Le

    2016-03-01

    To expand the application of rice husk (RH) resource, this study developed carbon-based RH ceramic (RHC) particles using a common high-temperature carbonization method. The morphology, composition, and structure of the RHC particles were characterized with a series of modern analysis technologies and were then compared with those of the initial RH powder and carbonized RH (CRH) particles. The dry tribological behavior of RHC particle adobes (RHAs) was also investigated. Results showed the sheet-shaped morphology of the RHC particles. The graphitization degree of the RHC particles was lower than that of the CRH particles possibly because the phenolic resin (PR) filled the micro-pores of the RH particles, thereby prompting the formation of amorphous carbon in the RHC particles as a result of high-temperature carbonization. The appearance of a hydroxy function group (sbnd OH) on the surface of the RHC particles was ascribed to the decomposition of PR at 900 °C. The friction coefficients and mass loss rates of the RHAs almost increased with the rise in load and velocity. In addition, the friction coefficients of the RHAs decreased at high load (5 N) and velocity (0.261 m/s) conditions. Such outcome indicated that the variation of contact area between steel ball and RHA at high load and velocity conditions resulted in the abrasive wear or catastrophic wear.

  4. Biological impacts of glyphosate on morphology, embryo biomechanics and larval behavior in zebrafish (Danio rerio).

    Science.gov (United States)

    Zhang, Shuhui; Xu, Jia; Kuang, Xiangyu; Li, Shibao; Li, Xiang; Chen, Dongyan; Zhao, Xin; Feng, Xizeng

    2017-08-01

    All of these days, residues of herbicides such as glyphosate are widely distributed in the environment. The ubiquitous use of glyphosate has drawn extensive attention to its toxicity as an organic pollutant. In this study, we employed larval zebrafish as an animal model to evaluate the effect of different concentrations of glyphosate on early development via morphological, biomechanics, behavioral and physiological analyses. Morphological results showed that an obvious delay occurred in the epiboly process and body length, eye and head area were reduced at concentrations higher than 10 mg/L. The expression of ntl (no tail) shortened and krox20 (also known as Egr2b, early growth response 2b) changed as the glyphosate concentration increased, but there was no change in the expression of shh (sonic hedgehog). In addition, biomechanical analysis of the elasticity of chorion indicated that treated embryos' surface tension was declined. Furthermore, a 48-h locomotion test revealed that embryonic exposure to glyphosate significantly elevated locomotor activities, which is probably attributed to motoneuronal damage. The decreased surface tension of chorion and the increased locomotive activities may contribute to the hatching rates after glyphosate treatment. Our study enriches the researches of evaluating glyphosate toxicity and probablely plays a warning role in herbicides used in farming. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Scaling behavior and morphological properties of the interfaces obtained by the multilayer deposition process

    International Nuclear Information System (INIS)

    Achik, I.; Boughaleb, Y.; Hader, A.; Sbiaai, K.; Hajjaji, A.

    2013-01-01

    The aim of the present work was to study numerically the scaling behavior and the morphological properties of the interfaces generated by the multilayer deposition process. We have noticed that, in the case where the ratio of the surface diffusion coefficient to the deposition rate reaches high values D/F > > 1, the interface consists of mound structures. By using the dynamic scaling, we have shown that the height–height correlation function scales with time t and length l as G(l,t) ∼ l α f(t/l α/β ) with β = 0.25 ± 0.05 and α = 0.51 ± 0.02. These exponent values are equal to the ones predicted by the Edwards–Wilkinson approach. Besides, our results are in agreement with the growth system of Cu/Cu(100) at 300 K which has been characterized in more detail by a combined scanning tunneling microscopy and spot profile analysis — low energy electronic diffusion study. Moreover, by considering two different methods, we have examined the fractal aspect of the obtained interfaces. - Highlights: • The adlayer interfaces present mound morphologies. • The adlayer interfaces scale with the Family–Vicsek law. • The critical exponents (α, β) are in agreement with those of Edwards–Wilkinson approach

  6. Crystallization behavior of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders synthesized by a coprecipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Hsueh-Liang [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Institute of Nanotechnology and Microsystems Engineering, National Cheng Kung University, 1 Ta- Hsueh Road, Tainan 70101, Taiwan (China); Du, Je-Kang [Department of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, Chung Ho Memorial Hospital, 100 Tzyou 1st Road, Kaohsiung 80708, Taiwan (China); Chen, Ker-Kong, E-mail: enamel@kmu.edu.tw [Department of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Department of Dentistry, Kaohsiung Medical University, Chung Ho Memorial Hospital, 100 Tzyou 1st Road, Kaohsiung 80708, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetic Science, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China)

    2016-09-05

    Crystallization behaviors of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders were studied with zirconium nitrate (Zr(NO{sub 3}){sub 4}·xH{sub 2}O), yttrium nitrate (Y(NO{sub 3}){sub 3}·6H{sub 2}O) and strontium nitrate (Sr(NO{sub 3}){sub 2}) constituting the initial materials. Differential thermal analysis (DTA), X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED), nano beam electron diffraction (NBED) and high-resolution TEM (HRTEM) were utilized to characterize the crystallization behavior of ZrO{sub 2}−3Y{sub 2}O{sub 3}−xSrO precursor powders. The activation energies of tetragonal ZrO{sub 2} (t-ZrO{sub 2}) crystallization were 389.1, 327.6, and 315.1 kJ/mol with SrO content for 1, 2, and 3 mol%, respectively, obtained with a non-isothermal method. The growth morphology parameter and growth mechanism index were close to 2.0 and 1.0, respectively, showing that t-ZrO{sub 2} had a plate-like morphology. - Highlights: • The single phase of tetragonal ZrO{sub 2} formed when calcined at 923 K for 2 h. • ZrO{sub 2}−3Y{sub 2}O{sub 3}−2SrO precursor powders crystallization is at 765.6 K. • The activation energy of t-ZrO{sub 2} crystallization was 389.1 kJ/mol with 1 mol% SrO. • The growth morphology and index of crystallization were close to 2.0 and 1.0.

  7. A lifelong Odyssey: from structural and morphological engineering of functional solids to bio-chirogenisis and pathological crystallization

    Science.gov (United States)

    Lahav, Meir; Leiserowitz, Leslie

    2015-11-01

    This cooperative endeavour first describes early studies in chemical crystallography, encompassing molecular packing modes, characterization of weak hydrogen bonds, the engineering of functional crystals and monitoring of reaction pathways in molecular crystals by x-ray and neutron diffraction. With the design of ‘tailor-made’ auxiliary molecules, it became possible to correlate molecular enantiomerism and crystal enantiomorphism, to control the early stages of crystal nucleation, to resolve enantiomers by crystallization, induce the precipitation of metastable polymorphs, and shed light on the role played by solvent on crystal growth. With such auxiliaries, the structure of mixed crystals was revised and the ability to perform ‘absolute’ asymmetric synthesis in host centrosymmetric crystals demonstrated. With the introduction of grazing incidence synchrotron x-ray diffraction from liquid surfaces it also became possible to design and characterize crystalline thin film architectures at the air-water interface providing a general insight on the mechanism of crystal nucleation at the molecular level, in particular that of ice and cholesterol. Finally the collective knowhow from these studies were crucial for obtaining homochiral peptides prepared from the polymerization of racemates of amphiphilic amino acids dissolved in aqueous solution, and for experiments towards elucidating the pathological crystallization of cholesterol and the malaria pigment in Plasmodium-infected red blood cells.

  8. Mechanical properties, morphology, and hydrolytic degradation behavior of polylactic acid / natural rubber blends

    Science.gov (United States)

    Buys, Y. F.; Aznan, A. N. A.; Anuar, H.

    2018-01-01

    Due to its biodegradability and renewability, polylactic acid (PLA) has been receiving enormous attention as a potential candidate to replace petroleum based polymers. However, PLA has limitation due to its inherent brittleness. In order to overcome this limitation, blending PLA with elastomeric materials such as natural rubber (NR) are commonly reported. In previous, several researches on PLA/NR blend had been reported, with most of them evaluated the mechanical properties. On the other hand, study of degradation behavior is significance of importance, as controlling materials degradation is required in some applications. This research studied the effect of blend composition on mechanical properties, morphology development, and hydrolytic degradation behavior of PLA/NR blends. Various compositions of PLA/NR blends were prepared by melt blending technique. Tensile test and impact test of the blends were performed to evaluate the mechanical properties. Addition of NR improved the elongation at break and impact strength of the blends, but reduced the tensile strength and stiffness of the specimens. Dynamic Mechanical Analysis (DMA) measurements of the blends displayed two peaks at temperature -70˚C which corresponded to T g of NR and 65˚C which corresponded to T g of PLA. Field Emission Scanning Electron Microscopy (FE-SEM) micrograph of 70/30 PLA/NR specimen also showed two distinct phases, which lead to indication that PLA/NR blends are immiscible. Hydrolytic degradation behavior was evaluated by measuring the remaining weight of the samples immersed in sodium hydroxide solution for a predetermined times. It was shown that the degradation behavior of PLA/NR blends is affected by composition of the blends, with 100 PLA and 70/30 PLA/NR blend showed the fastest degradation rate and 100 NR displayed the slowest one.

  9. Crystallization and unusual rheological behavior in poly(ethylene oxide)–clay nanocomposites

    KAUST Repository

    Kelarakis, Antonios

    2011-05-01

    We report a systematic study of the crystallization and rheological behavior of poly(ethylene oxide) (PEO)-clay nanocomposites. To that end a series of nanocomposites based on PEOs of different molecular weight (103 < MW < 105 g/mol) and clay surface modifier was synthesized and characterized. Incorporation of organoclays with polar (MMT-OH) or aromatic groups (MMT-Ar) suppresses the crystallization of polymer chains in low MW PEO, but does not significantly affect the crystallization of high MW matrices. In addition, the relative complex viscosity of the nanocomposites based on low MW PEO increases significantly, but the effect is less pronounced at higher MWs. The viscosity increases in the series MMT-Alk < MMT-OH < MMT-Ar. In contrast to the neat PEO which exhibits a monotonic decrease of viscosity with temperature, all nanocomposites show an increase after a certain temperature. This is the first report of such dramatic enhancements in the viscoelasticity of nanocomposites, which are reversible, are based on a simple polymer matrix and are true in a wide temperature range. © 2011 Elsevier Ltd. All rights reserved.

  10. Mechanical properties and crystallization behavior of three kinds of straws/nylon 6 composites.

    Science.gov (United States)

    Huang, Zhiliang; Yin, Qianjuan; Wang, Qianwen; Wang, Pinghua; Liu, Tingguo; Qian, Liwu

    2017-10-01

    After alkali treatment, wheat straw, maize straw and rice straw were mixed with a mixture of nylon 6 (PA6) and prepared into composites using the melt blending method. The mechanical properties and crystallization behavior of three kinds of straw fiber/PA6 composites were studied using tensile and impact tests, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The results showed that increasing of the three kinds of straw fibers initially increased the tensile strength of the composites and then decreased, and that the tensile strength reached a maximum value when the wheat straw fiber content was 10%, which was 56.9% higher than that of the pure PA6. The impact strength of the composites initially decreased and then increased, with the maximum impact obtained for the composites with the wheat straw fiber content of 10%, which was 39.2% higher than that of the pure PA6. The introduction of the three kinds of straw fiber also induced the formation of α crystal formed in the PA6. With the increase of the straw fiber content, the grain size of the composite increased continuously, the crystallization temperature (Tc) decreased, the melting temperature (Tm) and crystalline changed slightly, and the maximum degree of crystallinity was obtained when the wheat straw fiber content was 10%. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Effects of Polymeric Additives on the Crystallization and Release Behavior of Amorphous Ibuprofen

    Directory of Open Access Journals (Sweden)

    Su Yang Lee

    2013-01-01

    Full Text Available Some polymeric additives were studied to understand their effects on the amorphous phase of ibuprofen (IBU, used as a poorly water soluble pharmaceutical model compound. The amorphous IBU in bulk, as well as in nanopores (diameter ~24 nm of anodic aluminum oxide, was examined with the addition of poly(acrylic acid, poly(N-vinyl pyrrolidone, or poly(4-vinylphenol. Results of bulk crystallization showed that they were effective in limiting the crystal growth, while the nucleation of the crystalline phase in contact with water was nearly instantaneous in all cases. Poly(N-vinyl pyrrolidone, the most effective additive, was in specific interaction with IBU, as revealed by IR spectroscopy. The addition of the polymers was combined with the nanoscopic confinement to further stabilize the amorphous phase. Still, the IBU with addition of polymeric additives showed sustained release behavior. The current study suggested that the inhibition of the crystal nucleation was probably the most important factor to stabilize the amorphous phase and fully harness its high solubility.

  12. Phase equilibrium, crystallization behavior and thermodynamic studies of (m-dinitrobenzene + vanillin) eutectic system

    International Nuclear Information System (INIS)

    Singh, Jayram; Singh, N.B.

    2015-01-01

    Graphical abstract: The phase diagram of (m-dinitrobenzene + vanillin) system. - Highlights: • (Thaw + melt) method has shown that (m-dinitrobenzene + vanillin) system forms simple eutectic type phase diagram. • Excess thermodynamic functions showed that eutectic mixture is non-ideal. • The flexural strength measurements have shown that in eutectic mixture, crystallization occurs in an ordered way. - Abstract: The phase diagram of (m-dinitrobenzene + vanillin) system has been studied by the thaw melt method and an eutectic type phase diagram was obtained. The linear velocities of crystallization of the parent components and the eutectic mixture were determined. The enthalpy of fusion of the components and the eutectic mixture were determined using the differential scanning calorimetric technique. Excess Gibbs energy, excess entropy, excess enthalpy of mixing, and interfacial energy have been calculated. FTIR spectroscopic studies and flexural strength measurements were also made. The results have shown that the eutectic is a non-ideal mixture of the two components. On the basis of Jackson’s roughness parameter, it is predicted that the eutectic has faceted morphology

  13. Melting, crystallization and optical behaviors of poly (ethylene terephthalate)-silica/polystyrene nanocomposite films

    International Nuclear Information System (INIS)

    Wu Tianbin; Ke Yangchuan

    2007-01-01

    Poly (ethylene terephthalate) (PET)-silica (SiO 2 )/polystyrene (PS) nanocomposite films were prepared by melting PET with the core-shell SiO 2 /PS nanoparticles. Differential scanning calorimetry (DSC) results showed that the crystallization temperature of PET-SiO 2 /PS nanocomposite films with 2 wt.% PS-encapsulated SiO 2 nanoparticles reached 205.1 deg. C, 11.6 deg. C higher than that of PET. For crystallized PET-SiO 2 /PS nanocomposite films, double melting peaks appeared in DSC curves similar to PET. Scanning electron microscopy revealed a netlike fibre morphology for the amorphous PET-SiO 2 /PS nanocomposite films with 2 wt.% PS-encapsulated SiO 2 nanoparticles. The light transmittance of these amorphous PET-SiO 2 /PS nanocomposite films reached 87.9%, compared to 84.2% for PET. With the increase of annealing temperature from 110 to 150 deg. C, the transmittance of PET-SiO 2 /PS nanocomposite films decreased slowly from 69.9 to 46.9%, while their haziness increased slightly from 45.8 to 48.2%. All these phenomena are suggested to result from the strongly heterogeneous nucleation of PS-encapsulated SiO 2 nanoparticles in PET

  14. Evaluation of Front Morphological Development of Reactive Solute Transport Using Behavior Diagrams

    Directory of Open Access Journals (Sweden)

    Jui-Sheng Chen

    2009-01-01

    Full Text Available While flowing through porous medium, ground water flow dissolves minerals thereby in creasing medium porosity and ultimately permeability. Reactive fluid flows preferentially into highly permeable zones, which are therefore dissolved most rapidly, producing a further preferential permeability enhancement. Accordingly, slight non-uniformities present in porous medium can be amplified and lead to fingering reaction fronts. The objective of this study is to investigate dissolution-induced porosity changes on reaction front morphology in homogeneous porous medium with two non-uniformities. Four controlling parameters, including up stream pressure gradient, reaction rate constant, non-uniformities spacing and non-uniformity strength ratio are comprehensively considered. By using a modified version of the numerical code, NSPCRT, to conduct a series of numerical simulations, front behavior diagrams are constructed to illustrate the morphologies of reaction fronts under various combinations of these four factors. Simulation results indicate that the two non-uniformities are inhibited into a planar front under low up stream pressure gradient, merge into a single-fingering front under inter mediate up stream pressure gradient, or grow into a double-fingers front under high up stream pressure gradient. More over, the two non-uniformities tend to develop intoadouble-fingering front as the non-uniformity strength ratio in creases from 0.2 to 1.0, and merge into a single-fingering front while the non-uniformity strength ratio in creases from 1.0 to 1.8. When the reaction rate constant is small, the two non-uniformities merge into a single front. Reaction rate constant significantly affects front advancing velocity. The front advancing velocity decreases with the reaction rate constant. Based on these results, front behavior diagrams which de fine the morphologies of the reaction fronts for these four parameters are constructed. Moreover, non

  15. Dynamic and steady state viscoelastic behavior and morphology of MAPP treated PP/sisal composites

    International Nuclear Information System (INIS)

    Mohanty, Smita; Nayak, Sanjay K.

    2007-01-01

    The present paper summarizes an experimental study on the molten viscoelastic behavior of PP/sisal composites under steady and dynamic state. Variations in melt viscosity and die swell of the composites with an increase in shear rate, fibre loading and coupling agent concentration have been investigated using capillary rheometer. It was observed that with the addition of sisal fibers and MAPP, the melt viscosity of the composites increased due to improved fiber-matrix interfacial adhesion. Further the dynamic viscoelastic behavior measured, employing parallel plate rheometer revealed an increase in the storage modulus (G') indicating higher stiffness in case of fibre filled composites as compared with the virgin matrix. Time temperature superposition was applied to generate various viscoelastic master curves. The fiber-matrix morphology of the extrudates was also examined using scanning electron microscopy, which corroborated the findings of the rheological properties. The extrudate cross sections of the composites displayed uniform distribution of fibers within the PP matrix with lesser surface irregularities at high shear rates

  16. Crystallization and Martensitic Transformation Behavior of Ti-Ni-Si Alloy Ribbons Prepared via Melt Spinning.

    Science.gov (United States)

    Park, Ju-Wan; Kim, Yeon-Wook; Nam, Tae-Hyun

    2018-09-01

    Ti-(50-x)Ni-xSi (at%) (x = 0.5, 1.0, 3.0, 5.0) alloy ribbons were prepared via melt spinning and their crystallization procedure and transformation behavior were investigated using differential scanning calorimtry, X-ray diffraction, and transmission electron microscopy. Ti-Ni-Si alloy ribbons with Si content less than 1.0 at% were crystalline, whereas those with Si content more than 3.0 at% were amorphous. Crystallization occurred in the sequence of amorphous →B2 → B2 → Ti5Si4 + TiNi3 → B2 + Ti5Si4 + TiNi3 + TiSi in the Ti-47.0Ni-3.0Si alloy and amorphous →R → R + Ti5Si4 + TiNi3 → R + Ti5Si4 + TiNi3 + TiSi in the Ti-45.0Ni-5.0Si alloy. The activation energy for crystallization was 189 ±8.6 kJ/mol for the Ti-47Ni-3Si alloy and 212±8.6 kJ/mol for the Ti-45Ni-5Si alloy. One-stage B2-R transformation behavior was observed in Ti-49.5Ni-0.5Si, Ti-49.0Ni-1.0Si, and Ti-47.0Ni- 3.0Si alloy ribbons after heating to various temperatures in the range of 873 K to 1073 K. In the Ti-45.0Ni-5.0Si alloy, one-stage B2-R transformation occurred after heating to 893 K, two-stage B2-R-B19' occurred after heating to 973 K, and two-stage B2-R-B19' occurred on cooling and one-stage B19'-B2 occurred on heating, after heating to 1073 K.

  17. Self-cleaning behavior in polyurethane/silica coatings via formation of a hierarchical packed morphology of nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Iman [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Mir Mohamad Sadeghi, Gity, E-mail: Gsadeghi@aut.ac.ir [Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, P.O. Box 15875/4413, Tehran (Iran, Islamic Republic of); Seyfi, Javad [Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, P.O. Box 36155-163, Shahrood (Iran, Islamic Republic of); Jafari, Seyed-Hassan [School of Chemical Engineering, University of Tehran, P.O. Box 11155-4563, Tehran (Iran, Islamic Republic of); Khonakdar, Hossein Ali [Iran Polymer and Petrochemical Institute, P.O. Box 14965/115, Tehran (Iran, Islamic Republic of)

    2016-04-15

    Graphical abstract: - Highlights: • Self-cleaning behavior was imparted to the hydrophilic polyurethane. • A hierarchical packed morphology is responsible for the superhydrophobicity. • Prolonged pressing process cannot lead to superhydrophobicity due to migration of TPU. • Samples exhibited excellent stability against media with a wide range of pH values. - Abstract: In the current research, a hierarchical morphology comprising of packed assembly of nanoparticles was induced in thermoplastic polyurethane (TPU)/silica nanocomposite coatings in order to achieve self-cleaning behavior. Moderately hydrophilic behavior of TPU hinders its transforming to a superhydrophobic material. In the presented method, a very thin layer of silica nanoparticles is applied to the surface of TPU sheets under elevated temperature and pressure. As temperature and pressure of the process remain unchanged, processing time was considered as a main variable. Based on scanning electron microscopy and confocal microscopy results, it was found that at a certain processing time, nanoparticles can form an utterly packed morphology leading to a self-cleaning behavior. Once the process was prolonged, TPU macromolecules found the chance to migrate onto the coating's top layer due to the enhanced mobility of chains at high temperature. This observation was further proved by X-ray photoelectron spectroscopy analysis and cross-sectional morphology. The presented method has promising potentials in transforming intrinsically hydrophilic polymers into superhydrophobic materials with self-cleaning behavior.

  18. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation.

    Directory of Open Access Journals (Sweden)

    Monica R P Elmore

    Full Text Available Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg or phosphate buffered saline (PBS was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR, as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function

  19. Characterizing newly repopulated microglia in the adult mouse: impacts on animal behavior, cell morphology, and neuroinflammation.

    Science.gov (United States)

    Elmore, Monica R P; Lee, Rafael J; West, Brian L; Green, Kim N

    2015-01-01

    Microglia are the primary immune cell in the brain and are postulated to play important roles outside of immunity. Administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor, PLX3397, to adult mice results in the elimination of ~99% of microglia, which remain eliminated for as long as treatment continues. Upon removal of the inhibitor, microglia rapidly repopulate the entire adult brain, stemming from a central nervous system (CNS) resident progenitor cell. Using this method of microglial elimination and repopulation, the role of microglia in both healthy and diseased states can be explored. Here, we examine the responsiveness of newly repopulated microglia to an inflammatory stimulus, as well as determine the impact of these cells on behavior, cognition, and neuroinflammation. Two month-old wild-type mice were placed on either control or PLX3397 diet for 21 d to eliminate microglia. PLX3397 diet was then removed in a subset of animals to allow microglia to repopulate and behavioral testing conducted beginning at 14 d repopulation. Finally, inflammatory profiling of the microglia-repopulated brain in response to lipopolysaccharide (LPS; 0.25 mg/kg) or phosphate buffered saline (PBS) was determined 21 d after inhibitor removal using quantitative real time polymerase chain reaction (RT-PCR), as well as detailed analyses of microglial morphologies. We find mice with repopulated microglia to perform similarly to controls by measures of behavior, cognition, and motor function. Compared to control/resident microglia, repopulated microglia had larger cell bodies and less complex branching in their processes, which resolved over time after inhibitor removal. Inflammatory profiling revealed that the mRNA gene expression of repopulated microglia was similar to normal resident microglia and that these new cells appear functional and responsive to LPS. Overall, these data demonstrate that newly repopulated microglia function similarly to the

  20. Fundamental study on dissolution behavior of poly(methyl methacrylate) by quartz crystal microbalance

    Science.gov (United States)

    Konda, Akihiro; Yamamoto, Hiroki; Yoshitake, Shusuke; Kozawa, Takahiro

    2016-03-01

    Ionizing radiations such as extreme ultraviolet (EUV) and electron beam (EB) are the most promising exposure source for next-generation lithographic technology. In the realization of high resolution lithography, it is necessary for resist materials to improve the trade-off relationship among sensitivity, resolution, and line width roughness (LWR). In order to overcome them, it is essential to understand basic chemistry of resist matrices in resist processes. In particular, the dissolution process of resist materials is a key process. Therefore, it is essential for next-generation resist design for ionizing radiation to clarify the dissolution behavior of the resist film into developer. However, the details in dissolution process of EUV and EB resist films have not been investigated thus far. In this study, main chain scission and dissolution behavior of poly(methyl methacrylate) (PMMA) as main chain scission type resist was investigated using quartz crystal microbalance (QCM) method and gel permeation chromatography (GPC) in order to understand the relationship between the degree of PMMA degradation and dissolution behavior. The relationship between the molecular weight after irradiation and the swelling behavior was clarified.

  1. A thermodynamics model for morphology prediction of aluminum nano crystals fabricated by the inert gas condensation method

    Science.gov (United States)

    Wen, Yu; Xia, Dehong

    2018-03-01

    The purpose of this study is to provide scientific guidance for the morphological control of nanoparticle synthesis using the gas phase method. A universal thermodynamics model is developed to predict the morphology of nanoparticles fabricated using the inert gas condensation method. By using this model, the morphologies of aluminum nanocrystals are predicted under various preparation conditions. There are two types of energy that jointly determine the formation of nanoparticle morphology—Gibbs free energy for nanoparticles and energy variation during the process. The results show that energy variation dominates morphology formation when the cooling rate is less than 2 × 1011 K s-1 in the aluminum nanocrystal production process. At the beginning of the nanoparticle growth, the most stable morphology is predicted to be spherical, but the energetically preferred morphology becomes cubic as the particle grows. The turning point in the particle size at which spherical morphology is no longer the most stable morphology is exhibited as a function of pressure in a condensation chamber for different cooling rates. In this paper, we focus on the need for morphology prediction based on preparation conditions. It is concluded that nanoparticles with various morphologies could be obtained by adjusting the cooling rate and pressure in the condensation chamber.

  2. Thermal profiles, crystallization behaviors and microstructure of diacylglycerol-enriched palm oil blends with diacylglycerol-enriched palm olein.

    Science.gov (United States)

    Xu, Yayuan; Zhao, Xiaoqing; Wang, Qiang; Peng, Zhen; Dong, Cao

    2016-07-01

    To elucidate the possible interaction mechanisms between DAG-enriched oils, this study investigated how mixtures of DAG-enriched palm-based oils influenced the phase behavior, thermal properties, crystallization behaviors and the microstructure in binary fat blends. DAG-enriched palm oil (PO-DAGE) was blended with DAG-enriched palm olein (POL-DAGE) in various percentages (0%, 10%, 30%, 50%, 70%, 90%, 100%). Based on the observation of iso-solid diagram and phase diagram, the binary mixture of PO-DAGE/POL-DAGE showed a better compatibility in comparison with their corresponding original blends. DSC thermal profiles exhibited that the melting and crystallization properties of PO-DAGE/POL-DAGE were distinctively different from corresponding original blends. Crystallization kinetics revealed that PO-DAGE/POL-DAGE blends displayed a rather high crystallization rate and exhibited no spherulitic crystal growth. From the results of polarized light micrographs, PO-DAGE/POL-DAGE blends showed more dense structure with very small needle-like crystals than PO/POL. X-ray diffraction evaluation revealed when POL-DAGE was added in high contents to PO-DAGE, above 30%, β-polymorph dominated, and the mount of β' forms crystals was decreasing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes.

    Science.gov (United States)

    Idris, Alamin; Man, Zakaria; Maulud, Abdulhalim S; Khan, Muhammad Saad

    2017-04-05

    The phase separation behavior of bisphenol-A-polycarbonate (PC), dissolved in N -methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes' performances were tested for their permeance to CO₂, CH₄, and N₂ gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO₂/N₂ and CO₂/CH₄ selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO₂/N₂ and CO₂/CH₄ selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications.

  4. Effects of Phase Separation Behavior on Morphology and Performance of Polycarbonate Membranes

    Directory of Open Access Journals (Sweden)

    Alamin Idris

    2017-04-01

    Full Text Available The phase separation behavior of bisphenol-A-polycarbonate (PC, dissolved in N-methyl-2-pyrrolidone and dichloromethane solvents in coagulant water, was studied by the cloud point method. The respective cloud point data were determined by titration against water at room temperature and the characteristic binodal curves for the ternary systems were plotted. Further, the physical properties such as viscosity, refractive index, and density of the solution were measured. The critical polymer concentrations were determined from the viscosity measurements. PC/NMP and PC/DCM membranes were fabricated by the dry-wet phase inversion technique and characterized for their morphology, structure, and thermal stability using field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis, respectively. The membranes’ performances were tested for their permeance to CO2, CH4, and N2 gases at 24 ± 0.5 °C with varying feed pressures from 2 to 10 bar. The PC/DCM membranes appeared to be asymmetric dense membrane types with appreciable thermal stability, whereas the PC/NMP membranes were observed to be asymmetric with porous structures exhibiting 4.18% and 9.17% decrease in the initial and maximum degradation temperatures, respectively. The ideal CO2/N2 and CO2/CH4 selectivities of the PC/NMP membrane decreased with the increase in feed pressures, while for the PC/DCM membrane, the average ideal CO2/N2 and CO2/CH4 selectivities were found to be 25.1 ± 0.8 and 21.1 ± 0.6, respectively. Therefore, the PC/DCM membranes with dense morphologies are appropriate for gas separation applications.

  5. A Simulation Study on the Effects of Dendritic Morphology on Layer V Prefontal Pyramidal Cell Firing Behavior

    Directory of Open Access Journals (Sweden)

    Maria ePsarrou

    2014-09-01

    Full Text Available Pyramidal cells, the most abundant neurons in neocortex, exhibit significant structural variability across different brain areas and layers in different species. Moreover, in response to a somatic step current, these cells display a range of firing behaviors, the most common being (1 repetitive action potentials (Regular Spiking - RS, and (2 an initial cluster of 2-5 action potentials with short ISIs followed by single spikes (Intrinsic Bursting - IB. A correlation between firing behavior and dendritic morphology has recently been reported. In this work we use computational modeling to investigate quantitatively the effects of the basal dendritic tree morphology on the firing behavior of 112 three-dimensional reconstructions of layer V PFC rat pyramidal cells. Particularly, we focus on how different morphological (diameter, total length, volume and branch number and passive (Mean Electrotonic Path length features of basal dendritic trees shape somatic firing when the spatial distribution of ionic mechanisms in the basal dendritic trees is uniform or non-uniform. Our results suggest that total length, volume and branch number are the best morphological parameters to discriminate the cells as RS or IB, regardless of the distribution of ionic mechanisms in basal trees. The discriminatory power of total length, volume and branch number remains high in the presence of different apical dendrites. These results suggest that morphological variations in the basal dendritic trees of layer V pyramidal neurons in the PFC influence their firing patterns in a predictive manner and may in turn influence the information processing capabilities of these neurons.

  6. Nucleation and crystal growth behavior of nepheline in simulated high-level waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Amoroso, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-26

    The Savannah River National Laboratory (SRNL) has been tasked with supporting glass formulation development and process control strategies in key technical areas, relevant to the Department of Energy’s Office of River Protection (DOE-ORP) and related to high-level waste (HLW) vitrification at the Waste Treatment and Immobilization Plant (WTP). Of specific interest is the development of predictive models for crystallization of nepheline (NaAlSiO4) in HLW glasses formulated at high alumina concentrations. This report summarizes recent progress by researchers at SRNL towards developing a predicative tool for quantifying nepheline crystallization in HLW glass canisters using laboratory experiments. In this work, differential scanning calorimetry (DSC) was used to obtain the temperature regions over which nucleation and growth of nepheline occur in three simulated HLW glasses - two glasses representative of WTP projections and one glass representative of the Defense Waste Processing Facility (DWPF) product. The DWPF glass, which has been studied previously, was chosen as a reference composition and for comparison purposes. Complementary quantitative X-ray diffraction (XRD) and optical microscopy confirmed the validity of the methodology to determine nucleation and growth behavior as a function of temperature. The nepheline crystallization growth region was determined to generally extend from ~ 500 to >850 °C, with the maximum growth rates occurring between 600 and 700 °C. For select WTP glass compositions (high Al2O3 and B2O3), the nucleation range extended from ~ 450 to 600 °C, with the maximum nucleation rates occurring at ~ 530 °C. For the DWPF glass composition, the nucleation range extended from ~ 450 to 750 °C with the maximum nucleation rate occurring at ~ 640 °C. The nepheline growth at the peak temperature, as determined by XRD, was between 35 - 75 wt.% /hour. A maximum nepheline growth rate of ~ 0.1 mm/hour at 700 °C was measured for the DWPF

  7. Crystal Engineering of Hand-Twisted Helical Crystals.

    Science.gov (United States)

    Saha, Subhankar; Desiraju, Gautam R

    2017-02-08

    A strategy is outlined for the design of hand-twisted helical crystals. The starting point in the exercise is the one-dimensional (1D) plastic crystal, 1,4-dibromobenzene, which is then changed to a 1D elastic crystal, exemplified by 4-bromophenyl 4'-chlorobenzoate, by introduction of a molecular synthon -O-CO- in lieu of the supramolecular synthon Br···Br in the precursor. The 1D elastic crystals are next modified to two-dimensional (2D) elastic crystals, of the type 4-bromophenyl 4'-nitrobenzoate where the halogen bonding and C-H···O hydrogen bonding are well-matched. Finally, varying the interaction strengths in these 2D elastic crystals gives plastic crystals with two pairs of bendable faces but without slip planes. Typical examples are 4-chlorophenyl and 4-bromophenyl 4'-nitrobenzoate. This type of 2D plasticity represents a new type of bendable crystals in which plastic behavior is seen with a fair degree of isotropic character in the crystal packing. The presence of two sets of bendable faces, generally orthogonal to each other, allows for the possibility of hand-twisting of the crystals to give grossly helical morphologies. Accordingly, we propose the name hand-twisted helical crystals for these substances.

  8. Sexual conflict predicts morphology and behavior in two species of penduline tits

    Directory of Open Access Journals (Sweden)

    Komdeur Jan

    2010-04-01

    Full Text Available Abstract Background The evolutionary interests of males and females rarely coincide (sexual conflict, and these conflicting interests influence morphology, behavior and speciation in various organisms. We examined consequences of variation in sexual conflict in two closely-related passerine birds with contrasting breeding systems: the Eurasian penduline tit Remiz pendulinus (EPT exhibiting a highly polygamous breeding system with sexually antagonistic interests over parental care, and the socially monogamous Cape penduline tit Anthoscopus minutus (CPT. We derived four a priori predictions from sexual conflict theory and tested these using data collected in Central Europe (EPT and South Africa (CPT. Firstly, we predicted that EPTs exhibit more sexually dimorphic plumage than CPTs due to more intense sexual selection. Secondly, we expected brighter EPT males to provide less care than duller males. Thirdly, since song is a sexually selected trait in many birds, male EPTs were expected to exhibit more complex songs than CPT males. Finally, intense sexual conflict in EPT was expected to lead to low nest attendance as an indication of sexually antagonistic interests, whereas we expected more cooperation between parents in CPT consistent with their socially monogamous breeding system. Results Consistent with our predictions EPTs exhibited greater sexual dimorphism in plumage and more complex song than CPTs, and brighter EPT males provided less care than duller ones. EPT parents attended the nest less frequently and less simultaneously than CPT parents. Conclusions These results are consistent with sexual conflict theory: species in which sexual conflict is more manifested (EPT exhibited a stronger sexual dimorphism and more elaborated sexually selected traits than species with less intense sexual conflict (CPT. Our results are also consistent with the notion that EPTs attempt to force their partner to work harder as expected under sexual conflict: each

  9. The effect of low-osmolar ionic and nonionic contrast media on human blood viscosity, erythrocyte morphology, and aggregation behavior

    NARCIS (Netherlands)

    Hardeman, M. R.; Goedhart, P.; Koen, I. Y.

    1991-01-01

    The effects of three low-osmolar radiographic contrast media (CM)--two nonionic (iohexol, iopamidol) and one ionic (ioxaglate)--on red blood cell (RBC) morphology and aggregation behavior, as well as on blood and plasma viscosity, have been studied. Blood taken from normal, healthy individuals and

  10. Simple, Green, and High-Yield Production of Boron-Based Nanostructures with Diverse Morphologies by Dissolution and Recrystallization of Layered Magnesium Diboride Crystals in Water.

    Science.gov (United States)

    Gunda, Harini; Das, Saroj Kumar; Jasuja, Kabeer

    2018-01-03

    Layered metal diborides that contain metal atoms sandwiched between boron honeycomb planes offer a rich opportunity to access graphenic forms of boron. We recently demonstrated that magnesium diboride (MgB 2 ) could be exfoliated by ultrasonication in water to yield boron-based nanosheets. However, knowledge of the fate of metal boride crystals in aqueous phases is still in its incipient stages. This work presents our preliminary findings on the discovery that MgB 2 crystals can undergo dissolution in water under ambient conditions to result in precursors (prenucleation clusters) that, upon aging, undergo nonclassical crystallization preferentially growing in lateral directions by two-dimensional (2D) oriented attachment. We show that this recrystallization can be utilized as an avenue to obtain a high yield (≈92 %) of boron-based nanostructures, including nanodots, nanograins, nanoflakes, and nanosheets. These nanostructures comprise boron honeycomb planes chemically modified with hydride and oxy functional groups, which results in an overall negative charge on their surfaces. This ability of MgB 2 crystals to yield prenucleation clusters that can self-seed to form nanostructures comprising chemically modified boron honeycomb planes presents a new facet to the physicochemical interaction of MgB 2 with water. These findings also open newer avenues to obtain boron-based nanostructures with tunable morphologies by varying the chemical milieu during recrystallization. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Effects of testosterone on sexual behavior and morphology in adult female leopard geckos, Eublepharis macularius.

    Science.gov (United States)

    Rhen, T; Ross, J; Crews, D

    1999-10-01

    The leopard gecko, Eublepharis macularius, is a species in which testosterone (T) is the primary circulating sex hormone in adults of both sexes. There are, however, sex differences in T physiology. Whereas males have prolonged periods with high T levels, T levels cycle in accord with follicular development in females. Specifically, T concentration increases during vitellogenesis, drops after ovulation, and then remains at previtellogenic levels until eggs are laid and the next follicular cycle begins. To determine the function of T in females, we manipulated both the level and the duration of T elevation using Silastic implants in intact, adult female leopard geckos. Females had low ( approximately 1 ng/ml), medium ( approximately 100 ng/ml), or high ( approximately 200 ng/ml) T levels for either a short (8 days) or a long (35 days) duration. Behavior tests with males were conducted on days 1-5 in the short-duration group or on days 29-33 in the long-duration group. For both short- and long-duration groups, T treatment decreased attractivity in females with medium and high T levels compared to females with low T levels. In contrast, females with a medium T level were more receptive than females with a low T level in the short-duration group. Females in the long-duration group were unreceptive regardless of T level. Females treated for a long duration also displayed more aggression toward and evoked more aggression from males than short duration females. Short-duration T treatment had no masculinizing effect on female morphology, whereas medium and high T levels for a long duration induced development of hemipenes. Overall, these results suggest that T can both increase and decrease sexual behaviors in the female leopard gecko.

  12. Controlled deposition of highly ordered soluble acene thin films: effect of morphology and crystal orientation on transistor performance

    NARCIS (Netherlands)

    Sele, C.W.; Kjellander, B.K.C.; Niesen, B.; Thornton, M.J.; Putten, J.B.P.H. van der; Myny, K.; Wondergem, H.J.; Moser, A.; Resel, R.; Breemen, A.J.J.M. van; Aerle, N.A.J.M. van; Heremans, P.; Anthony, J.E.; Gelinck, G.H.

    2009-01-01

    (Figure Presented) Controlling the morphology of soluble small molecule organic semiconductors is crucial for the application of such materials in electronic devices. Using a simple dip-coating process we systematically vary the film drying speed to produce a range of morphologies, including

  13. Tridimensional morphology and kinetics of etch pit on the {l_brace}0 0 0 1{r_brace} plane of sapphire crystal

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lunyong [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun Jianfei, E-mail: jfsun_hit@263.net [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Zuo Hongbo; Yuan Zhiyong [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China); Zhou Ji; Xing Dawei [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Han Jiecai [Center for Composite Materials, Harbin Institute of Technology, Harbin 150001 (China)

    2012-08-15

    The tridimensional morphology and etching kinetics of the etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal ({alpha}-Al{sub 2}O{sub 3}) in molten KOH were studied experimentally. It was shown that the etch pit takes on tridimensional morphologies with triangular symmetry same as the symmetric property of the sapphire crystal. Pits like centric and eccentric triangular pyramid as well as hexagonal pyramid were observed, but the latter is less in density. In-depth analyses show the side walls of the etch pits belong to the {l_brace}1 1{sup Macron} 0 2{sup Macron }{r_brace} family, and the triangular pit contains edges full composed by Al{sup 3+} ions on the etching surface so it is more stable than the hexagonal pit since its edges on the etching surface contains Al{sup 2+} ions. The etch pits developed in a manner of kinematic wave by the step moving with constant speed, which is controlled by the chemical reaction with activation energy of 96.6 kJ/mol between Al{sub 2}O{sub 3} and KOH. - Graphical abstract: Schematic showing the atomic configuration of the predicted side walls of regular triangular pyramid shaped etch pit on the C-{l_brace}0 0 0 1{r_brace} plane of sapphire crystal. Highlights: Black-Right-Pointing-Pointer Observed the tridimensional morphology of etch pits. Black-Right-Pointing-Pointer Figured out the atomic configuration origin of the etch pits. Black-Right-Pointing-Pointer Quantitatively determined the etch rates of the etch pits.

  14. Comparison of wing morphology in three birds of prey: correlations with differences in flight behavior.

    Science.gov (United States)

    Corvidae, Elaine L; Bierregaard, Richard O; Peters, Susan E

    2006-05-01

    Flight is the overriding characteristic of birds that has influenced most of their morphological, physiological, and behavioral features. Flight adaptations are essential for survival in the wide variety of environments that birds occupy. Therefore, locomotor structure, including skeletal and muscular characteristics, is adapted to reflect the flight style necessitated by different ecological niches. Red-tailed hawks (Buteo jamaicensis) soar to locate their prey, Cooper's hawks (Accipiter cooperii) actively chase down avian prey, and ospreys (Pandion haliaetus) soar and hover to locate fish. In this study, wing ratios, proportions of skeletal elements, and relative sizes of selected flight muscles were compared among these species. Oxidative and glycolytic enzyme activities of several muscles were also analyzed via assays for citrate synthase (CS) and for lactate dehydrogenase (LDH). It was found that structural characteristics of these three raptors differ in ways consistent with prevailing aerodynamic models. The similarity of enzymatic activities among different muscles of the three species shows low physiological differentiation and suggests that wing architecture may play a greater role in determining flight styles for these birds. Copyright 2006 Wiley-Liss, Inc.

  15. Oxidation behavior of multiwall carbon nanotubes with different diameters and morphology

    Science.gov (United States)

    Mazov, Ilya; Kuznetsov, Vladimir L.; Simonova, Irina A.; Stadnichenko, Andrey I.; Ishchenko, Arkady V.; Romanenko, Anatoly I.; Tkachev, Evgeniy N.; Anikeeva, Olga B.

    2012-06-01

    Multiwall carbon nanotubes (MWNT) with three medium diameters (20-22, 9-13, and 6-8 nm) and different morphology were chemically oxidized using concentrated nitric acid, mixture of nitric and sulfuric acids ("mélange" solution) and mixture of sulfuric acid and hydrogen peroxide ("piranha" solution). Influence of MWNT type and structure as well as type of oxidizer on the surface composition and structure of nanotubes after oxidation was investigated. Acid-base titration, X-ray photoelectron spectroscopy and thermal gravimetric analysis were used for quantitative and qualitative investigation of surface group composition of initial and oxidized nanotubes. Amount of oxygen-containing groups on the surface of oxidized MWNT depends on the type of initial MWNT. It was found that ratio of different oxygen containing groups is less dependent on the type of oxidizer. Electrophysical properties of initial and oxidized nanotubes were investigated in temperature range 4-293 K and main types of electrical conductivity were determined. It was shown that oxidation results in decrease in electrical conductivity of all samples with simultaneous change in the conductivity mechanism. Dispersive behavior of initial and oxidized nanotubes in different commonly used solvents was investigated. It was shown that oxidation leads to the improvement of sedimentation stability of MWNT in polar solvents.

  16. Micromechanical approach of the fatigue behavior in a superplastic single crystal

    International Nuclear Information System (INIS)

    Patoor, E.; Siredey, N.; Eberhardt, A.; Berveiller, M.

    1995-01-01

    Mechanical cycling of superelastic alloys leads to significant change in their observed behavior. Critical stress needed to induce the martensitic transformation is reduced while the tangent transformation modulus is increased. Microstructural observations have shown that a mechanical cycling produced a strongly oriented pattern of dislocations. This dislocation network is associated to an internal stress field. It seems reasonable to relate this internal stress field to the observed evolution of the mechanical response. This is phenomenologically performed in this work considering the thermodynamical potential associated to the martensitic transformation of a single crystal of parent phase in presence of a microstructure of defects. Evolutions of the microstructural state are defined using the volume fraction associated to the variant of martensite and additional volume fractions of defects related to the dislocation pattern. Results such obtained well-captured experimental observations. (orig.)

  17. Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses

    Science.gov (United States)

    Shaaban, KH. S.; Abo-naf, S. M.; Abd Elnaeim, A. M.; Hassouna, M. E. M.

    2017-06-01

    The effect of MoO3 addition on the crystallization characteristics of 2Al2O3-23Li2O-(75 - x) B2O3 glass (where x MoO3 = 0, 10, 20, and 40 mol %) has been investigated. The compositional dependence of the glass transition ( T g), and crystallization ( T c) temperatures was determined by the differential thermal analysis (DTA). It was found that both the T g and T c decrease with increasing MoO3 content. The amorphous nature of the as-quenched glass and crystallinity of the produced glass-ceramics were confirmed by X-ray powder diffraction (XRD) analysis. Glass-ceramics embedded with diomignite (lithium diborate, Li2B4O7) were produced from all investigated glasses by heat-treating the as-quenched glasses at the appropriate temperatures obtained from the DTA traces. Addition of MoO3 to the glass composition at 10% MoO3, causes the formation of lithium molybdenum oxide (Li4MoO5) crystalline phase in addition to the diomignite phase. Increasing MoO3 content to 20% causes a phase transformation of lithium molybdenum oxide from the (Li4MoO5) to the (Li2MoO4) phase and the formation of another lithium borate (Li4B2O5) phase in addition to the diomignite. Further increase of MoO3 content to 40% results in another phase transformation to the lithium aluminum molybdenum oxide [LiAl(MoO4)2], and, in this case, the molybdenum content was excess enough to crystallize the molybdate (MoO3) itself. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the formed solid solution phases. The values of the T g decrease with increasing the MoO3 content. The ultrasonic wave velocities and elastic moduli were determined using the pulse-echo method. Both velocities ( v L and v T) were increased as the MoO3 content, this increase can be attributed to the higher bond strength of Mo-O (607 kJ mol-1) than that of B-O (392 kJ mol-1).

  18. The morphological and behavioral analysis of geographically separated Rammeihippus turcicus (Orthoptera: Acrididae: Gomphocerinae) populations: data result in taxonomical conflict.

    Science.gov (United States)

    Şirin, Deniz; Mol, Abbas; Akyıldız, Gürkan

    2014-10-15

    Rammeihippus Woznessenskij, 1996 (Orthoptera: Acrididae: Gomphocerinae) is a genus represented by two species. Rammeihippus turcicus (Ramme, 1939) is the only known species of the genus from Anatolia. As for most of the Gomphocerinae species in Anatolia, all populations of the species are intermittently distributed at high altitudes. In this study, three populations of R. turcicus were studied for the first time to determine the song and mating behavior. Males of the species produce typical calling song for Gomphocerinae and complex courtship songs and mating behavior. Thus, an accurate taxonomy requires extensive material and different character sources. In this study, the Anatolian Rammeihippus was re-examined on the basis of qualitative and morphometric morphology, male songs, and behavioral characteristics. There was no agreement between the results of the song and morphology. Acoustic analysis suggested one species and patchy distribution in the area, whereas morphology pointed out that each population was a different taxonomical unit. The results of the study show that the aberrant morphology does not necessarily indicate a new species in the Gomphocerinae genus. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  19. Crystalline structures and crystallization behaviors of poly(L-lactide) in poly(L-lactide)/graphene nanosheet composites

    DEFF Research Database (Denmark)

    Li, Jingqing; Xiao, Peitao; Li, Hongfei

    2015-01-01

    Poly(L-lactide) (PLLA)/graphene nanosheet (GNS) composites and pure PLLA were prepared by the solution blending method. Crystalline structures and crystallization behaviors of PLLA in the composite were investigated by XRD, POM, SAXS, and DSC. It was found that α′ form PLLA formation seemed...... to be more preferred than α form PLLA formation in PLLA/GNS composites at crystallization temperatures Tcs within the α′–α crystal formation transition region due to the existence of GNSs, resulting in an obvious shift of the α′–α crystal formation transition of PLLA in PLLA/GNSs towards high Tcs compared...... and spherulite growth rate increased mainly because of the increasing segmental mobility of PLLA chains due to GNS addition; whereas, GNSs showed no observable influence on the determined zero growth temperature Tzg of α form PLLA and the Tzg was estimated lower than the equilibrium melting point of PLLA...

  20. Optical parameters and dispersion behavior of potassium magnesium chloride sulfate single crystals doped with Co+2 ions.

    Science.gov (United States)

    Abu El-Fadl, A; Abd-Elsalam, A M

    2018-05-05

    Single crystals of potassium magnesium chloride sulfate (KMCS) doped with cobalt ions were grown by slow cooling method. Powder XRD study confirmed the monoclinic structure of the grown crystals. The functional group vibrations were checked through FTIR spectroscopy measurements. In optical studies, the absorbance behavior of the crystals and their optical energy gap were established by Tauc plot. The refractive index, the extinction coefficient and other optical constants were calculated for the grown crystals. The normal dispersion of the refractive index was analyzed according to single oscillator Sellmeier's model. The Urbach's rule was applied to analyze the localized states density in the forbidden gap. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Effect of irradiation on differential thermal properties and crystallization behavior of some lithium borate glasses

    International Nuclear Information System (INIS)

    El-Alaily, N.A.; Mohamed, R.M.

    2001-01-01

    Differential thermal properties and the crystallization behavior of binary system Li 2 O-B 2 O 3 glasses were investigated. The effects of the presence of oxides of aluminum, lead or one of the transition metals TiO 2 or V 2 O 5 or Fe 2 O 3 in the parent glass were also studied. The effects of three different heat treatments on the crystalline structure of all the studied glasses were also investigated. The results showed that all glass samples were amorphous before the heat treatment, with the most common formed phase being tetraborate Li 2 B 8 O 13 (Li 2 O-4B 2 O 3 ). The exposure of the glass samples to either gamma rays or fast neutrons resulted in considerable changes in their thermal behavior. The results also showed that T g increases for all studied glasses when subjected to irradiation either by fast neutron or gamma rays, while T c decreased only at higher doses

  2. Crystal chemistry and temperature behavior of the natural hydrous borate colemanite, a mineral commodity of boron

    Science.gov (United States)

    Lotti, Paolo; Gatta, G. Diego; Demitri, Nicola; Guastella, Giorgio; Rizzato, Silvia; Ortenzi, Marco Aldo; Magrini, Fabrizio; Comboni, Davide; Guastoni, Alessandro; Fernandez-Diaz, Maria Teresa

    2017-11-01

    Colemanite, CaB3O4(OH)3ṡH2O, is the most common hydrous Ca-borate, as well as a major mineral commodity of boron. In this study, we report a thorough chemical analysis and the low-temperature behavior of a natural sample of colemanite by means of a multi-methodological approach. From the chemical point of view, the investigated sample resulted to be relatively pure, its composition being very close to the ideal one, with only a minor substitution of Sr2+ for Ca2+. At about 270.5 K, a displacive phase transition from the centrosymmetric P21/a to the acentric P21 space group occurs. On the basis of in situ single-crystal synchrotron X-ray (down to 104 K) and neutron diffraction (at 20 K) data, the hydrogen-bonding configuration of both the polymorphs and the structural modifications at the atomic scale at varying temperatures are described. The asymmetric distribution of ionic charges along the [010] axis, allowed by the loss of the inversion center, is likely responsible for the reported ferroelectric behavior of colemanite below the phase transition temperature.

  3. Tracing Mantle Plumes: Quantifying their Morphology and Behavior from Seismic Tomography

    Science.gov (United States)

    O'Farrell, K. A.; Eakin, C. M.; Jones, T. D.; Garcia, E.; Robson, A.; Mittal, T.; Lithgow-Bertelloni, C. R.; Jackson, M. G.; Lekic, V.; Rudolph, M. L.

    2016-12-01

    Hotspot volcanism provides a direct link between the deep mantle and the surface, but the location, depth and source of the mantle plumes that feed hotspots are highly controversial. In order to address this issue it is important to understand the journey along which plumes have travelled through the mantle. The general behavior of plumes in the mantle also has the potential to tell us about the vigor of mantle convection, net rotation of the mantle, the role of thermal versus chemical anomalies, and important bulk physical properties of the mantle such as the viscosity profile. To address these questions we developed an algorithm to trace plume-like features in shear-wave (Vs) seismic tomographic models based on picking local minima in velocity and searching for continuous features with depth. We apply this method to several of the latest tomographic models and can recover 30 or more continuous plume conduits that are >750 km long. Around half of these can be associated with a known hotspot at the surface. We study the morphology of these plume chains and find that the largest lateral deflections occur near the base of the lower mantle and in the upper mantle. We analyze the preferred orientation of the plume deflections and their gradient to infer large scale mantle flow patterns and the depth of viscosity contrasts in the mantle respectively. We also retrieve Vs profiles for our traced plumes and compare with velocity profiles predicted for different mantle adiabat temperatures. We use this to constrain the thermal anomaly associated with these plumes. This thermal anomaly is then converted to a density anomaly and an upwelling velocity is derived. We compare this to buoyancy fluxes calculated at the surface and use this in conjunction with our measured plume tilts/deflections to estimate the strength of the "mantle wind".

  4. Morphological, behavioral and biological aspects of Azya luteipes Mulsant fed on Coccus viridis (Green

    Directory of Open Access Journals (Sweden)

    Juliana Nais

    2012-02-01

    Full Text Available One of the major pests of nursery seedlings of coffee (Coffea arabica L. is the green scale, Coccus viridis (Green (Hemiptera: Coccidae. The main predators of this species are beetles of the family Coccinellidae, especially Azya luteipes Mulsant. Morphological, behavioral and biological aspects of A. luteipes feeding on C. viridis on coffee plants were examined under laboratory conditions. Tests were conducted in room temperature at 28 ± 2 ºC. A. luteipes oviposits on the underside of the scale's body, laying two to four eggs per insect. The eggs have a subelliptical form and a white-clear color, and the incubation period is 8.3 ± 1.2 days. The number of eggs laid per female per day varies between eight and ten. A. luteipes undergoes four larval instars with durations of 2.0 ± 0, 3.2 ± 0.5, 3.6 ± 0.5 and 4.6 ± 0 days for the 1st, 2nd, 3rd and 4th instars, respectively. The average durations of the prepupal and pupal stages were 2.0 ± 0 and 10.9 ± 1.3 days, respectively. The viability of the larvae during each instar was 91.9, 89.3, 90.2 and 96.4 %, respectively, and the viabilities of prepupae and pupae were 99.1 and 98.2 %. The average duration of the egg-adult cycle was 34.3 ± 2.6 days, and the sex ratio was 0.52 %. Females presented a gray-colored head, while males presented a yellow head.

  5. Acetyl-L-carnitine improves behavior and dendritic morphology in a mouse model of Rett syndrome.

    Directory of Open Access Journals (Sweden)

    Laura R Schaevitz

    Full Text Available Rett syndrome (RTT is a devastating neurodevelopmental disorder affecting 1 in 10,000 girls. Approximately 90% of cases are caused by spontaneous mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2. Girls with RTT suffer from severe motor, respiratory, cognitive and social abnormalities attributed to early deficits in synaptic connectivity which manifest in the adult as a myriad of physiological and anatomical abnormalities including, but not limited to, dimished dendritic complexity. Supplementation with acetyl-L-carnitine (ALC, an acetyl group donor, ameliorates motor and cognitive deficits in other disease models through a variety of mechanisms including altering patterns of histone acetylation resulting in changes in gene expression, and stimulating biosynthetic pathways such as acetylcholine. We hypothesized ALC treatment during critical periods in cortical development would promote normal synaptic maturation, and continuing treatment would improve behavioral deficits in the Mecp2(1lox mouse model of RTT. In this study, wildtype and Mecp2(1lox mutant mice received daily injections of ALC from birth until death (postnatal day 47. General health, motor, respiratory, and cognitive functions were assessed at several time points during symptom progression. ALC improved weight gain, grip strength, activity levels, prevented metabolic abnormalities and modestly improved cognitive function in Mecp2 null mice early in the course of treatment, but did not significantly improve motor or cognitive functions assessed later in life. ALC treatment from birth was associated with an almost complete rescue of hippocampal dendritic morphology abnormalities with no discernable side effects in the mutant mice. Therefore, ALC appears to be a promising therapeutic approach to treating early RTT symptoms and may be useful in combination with other therapies.

  6. Controlling morphology and crystallite size of Cu(In0.7Ga0.3)Se2 nano-crystals synthesized using a heating-up method

    International Nuclear Information System (INIS)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I; Chia, Chih-Ta; Yen, Fu-Su

    2013-01-01

    CuIn 0.7 Ga 0.3 Se 2 (CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn 0.7 Ga 0.3 Se 2 (CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.

  7. Effect of surface funcionalized carbon nanotubes on the morphology, as well as thermal, thermomechanical, and crystallization properties of polyactide

    CSIR Research Space (South Africa)

    Ramontja, J

    2011-01-01

    Full Text Available revealed homogenous dispersion of f-MWCNTs in the PLA matrix with some agglomerates. Melting and crystallization phenomena of the nanocomposite studied through differential scanning calorimeter (DSC), wide angle X-ray scattering (WAXS), and POM show that f...

  8. Dielectric behavior and phase transition in [111]-oriented PIN–PMN–PT single crystals under dc bias

    Directory of Open Access Journals (Sweden)

    Yuhui Wan

    2014-01-01

    Full Text Available Temperature and electric field dependences of the dielectric behavior and phase transition for [111]-oriented 0.23PIN–0.52PMN–0.25PT (PIN-PMN–0.25PT and 0.24PIN–0.43PMN–0.33PT (PIN–PMN–0.33PT single crystals were investigated over a temperature range from -100°C to 250°C using field-heating (FH dielectric measurements. The transition phenomenon from ferroelectric microdomain to macrodomain was found in rhombohedra (R phase region in the single crystals under dc bias. This transition temperature Tf of micro-to-macrodomain is sensitive to dc bias and move quickly to lower temperature with increasing dc bias. The phase transition temperatures in the two single crystals shift toward high temperature and the dielectric permittivities at the phase transition temperature decrease with increasing dc bias. Especially, the phase transition peaks are gradually broad in PIN–PMN–0.33PT single crystal with the increasing dc bias. Effects of dc bias on the dielectric behavior and phase transition in PIN–PMN–PT single crystals are discussed.

  9. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  10. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats.

    Science.gov (United States)

    Norazlimi, Nor Atiqah; Ramli, Rosli

    2015-01-01

    A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus), Common redshank (Tringa totanus), Whimbrel (Numenius phaeopus), and Little heron (Butorides striata)) and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder). The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R = 0.443, p birds (mm) and species (H = 15.96, p = 0.0012). Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  11. Surface Morphology and Corrosion Behavior of Hydroxyapatite-Coated Co-Cr Implant: Effect of Sintering Conditions

    Science.gov (United States)

    Shirdar, Mostafa Rezazadeh; Taheri, Mohammad Mahdi

    2017-12-01

    The surface morphology and corrosion behavior of a hydroxyapatite (HA)-coated cobalt-chromium (Co-Cr) implant after sintering posttreatment using different times and temperatures were investigated. The substrates were electrophoretically coated with calcium phosphate in solution of Ca(NO3)·4H2O and NH4H2PO4. Sintering at four different conditions was then performed on the as-deposited samples. Scanning electron microscopy, contact angle measurement, and potentiodynamic polarization studies were employed to investigate the surface morphology, porosity, wettability, and corrosion behavior of the coated samples. The results revealed that the HA-coated substrate sintered at temperature of 600°C for 20 min showed fairly uniform microstructure with the highest density and corrosion resistance compared with the other conditions. Moreover, the highest wettability was exhibited by the HA surface sintered at temperature of 500°C for 60 min.

  12. Effect of borax on the wetting properties and crystallization behavior of sodium sulfate

    NARCIS (Netherlands)

    Granneman, S.J.C.; Shahidzadeh, Noushine; Lubelli, B.; van Hees, R.P.J.

    2017-01-01

    Borax has been identified as a possible crystallization modifier for sodium sulfate. Understanding the effect of borax on factors influencing transport and crystallization kinetics of sodium sulfate helps to clarify how this modifier might limit crystallization damage. It has been observed that the

  13. Effect of Y{sub 2}O{sub 3} addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-W.; Shen, Y.-H. [Department of Resources Engineering, National Chen Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-M. [Yuan Ze Fuel Cell Center, Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chung-Li, Taoyuan 320, Taiwan (China)], E-mail: imhung@saturn.yzu.edu.tw; Wen, S.-B. [General Education Center, Meiho Institute of Technology, 23 Pingguang Road, Neipu, Pingtung 91202, Taiwan (China); Lee, H.-E. [Faculty of Dentistry, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: mcwang@kmu.edu.tw

    2009-03-20

    The effect of Y{sub 2}O{sub 3} (8 mol% {<=} Y{sub 2}O{sub 3} {<=} 10 mol%) addition on the crystal growth and sintering behavior of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl{sub 2}.8H{sub 2}O and Y(NO{sub 3}){sub 3}.6H{sub 2}O ethanol-water solutions at low temperatures has been studied. X-ray diffraction (XRD), Brunauer-Emmett-Teller specific surface area analyses (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and dilatometric analysis (DA) have been utilized to characterize the YSZ nanocrystallites. Characterization reveals that the YSZ nanopowders are weakly agglomerated. When calcined at various temperatures for 2 h, the crystallite size increases and the surface area of the YSZ powders decreases when the calcination temperature increased from 673 to 1273 K. A nanocrystallite size distribution between 10 and 15 nm is obtained in the TEM examination, which is consistent with the XRD investigation. The activation energy for crystal growth were determined as 5.75 {+-} 0.68, 4.22 {+-} 0.51, and 5.24 {+-} 0.20 kJ/mol for 8, 9 and 10 YSZ precipitates, respectively. The morphology of the YSZ sintered at high temperature indicates the abnormal growth is due to the low activation energy for crystallite growth.

  14. Effect of Y2O3 addition on the crystal growth and sintering behavior of YSZ nanopowders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Shen, Y.-H.; Hung, I-M.; Wen, S.-B.; Lee, H.-E.; Wang, M.-C.

    2009-01-01

    The effect of Y 2 O 3 (8 mol% ≤ Y 2 O 3 ≤ 10 mol%) addition on the crystal growth and sintering behavior of yttria-stabilized zirconia (YSZ) nanocrystallites prepared by a sol-gel process with various mixtures of ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O ethanol-water solutions at low temperatures has been studied. X-ray diffraction (XRD), Brunauer-Emmett-Teller specific surface area analyses (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and dilatometric analysis (DA) have been utilized to characterize the YSZ nanocrystallites. Characterization reveals that the YSZ nanopowders are weakly agglomerated. When calcined at various temperatures for 2 h, the crystallite size increases and the surface area of the YSZ powders decreases when the calcination temperature increased from 673 to 1273 K. A nanocrystallite size distribution between 10 and 15 nm is obtained in the TEM examination, which is consistent with the XRD investigation. The activation energy for crystal growth were determined as 5.75 ± 0.68, 4.22 ± 0.51, and 5.24 ± 0.20 kJ/mol for 8, 9 and 10 YSZ precipitates, respectively. The morphology of the YSZ sintered at high temperature indicates the abnormal growth is due to the low activation energy for crystallite growth

  15. Crystallization behaviors of Zr-Ti-Cu-Ni-Be BMG sheet fabricated by squeeze-casting method and its micro-scaled forming

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, H.G. [Advanced Fusion Process Group, Production Technology R and D Department, Korea Institute of Industrial Technology, Incheon (Korea, Republic of); Lee, J.B., E-mail: ljb01@kitech.re.kr [Advanced Fusion Process Group, Production Technology R and D Department, Korea Institute of Industrial Technology, Incheon (Korea, Republic of)

    2012-09-25

    Highlights: Black-Right-Pointing-Pointer Compressibility and formability of Zr{sub 62.6}Ti{sub 11}Cu{sub 13.2}Ni{sub 9.8}Be{sub 3.4} BMG sheets increases with an increase in forging temperature and pressure. Black-Right-Pointing-Pointer Crystallization in the alloy BMG sheet began to occur during micro-scaled forming. Black-Right-Pointing-Pointer The volume fraction of crystalline phase increases as the forging temperature and pressure increase. - Abstract: We report the micro-scaled forming of Zr{sub 62.6}Ti{sub 11}Cu{sub 13.2}Ni{sub 9.8}Be{sub 3.4} bulk metallic glass (BMG) as a function of the forging pressure within super-cooled liquid region (SLR), and its effects on the transition to crystallization. The morphology after micro-scaled forming was examined by using a field emission scanning electron microscope (FE-SEM). Thermal behavior of the forged samples was analyzed by using a differential scanning calorimeter (DSC). It was found for perfect forming of the alloy BMG sheets that the temperature of 703 K and the pressure of 20 MPa are required in the present study. The compressibility and the volume fraction of crystalline phase increase with an increase of the forging pressure and temperature, and they are sensitive to temperature more than pressure within SLR.

  16. In Situ Mechanical Behavior of Mineral Crystals in Human Cortical Bone under Compressive Load Using Synchrotron X-Ray Scattering Techniques

    Science.gov (United States)

    Giri, Bijay; Almer, Jon D.; Dong, X. Neil; Wang, Xiaodu

    2012-01-01

    Mineral crystals, the major strength-bearing component of bone, are aligned in longitudinal bone with (00l) axes preferentially along the longitudinal axis, which in concert with crystal anisotropy leads to macroscopic anisotropy in mechanical behavior. Thus, it is of great interest to delineate the contributions of different subsets of mineral crystals as a function of orientation, on the bulk mechanical behavior of bone. Using a unique synergistic approach combining a progressive loading scheme and synchrotron X-ray scattering techniques, human cortical bone specimens were loaded in compression to examine the in situ mechanical behavior of mineral crystals as the function of orientation. The orientation distribution of mineral crystals was quantitatively estimated by measuring the X-ray diffraction intensity from the crystallographic (002) plane in different orientations. In addition, the average longitudinal (c-axis), transverse (a-axis), and shear strains of the subset of mineral crystals aligned in each orientation were determined by measuring the lattice deformation in the crystals normal to three distinct crystallographic planes (i.e. 002, 310, and 213). The experimental results indicated that the in situ strain and stress of mineral crystals varied with orientation. The normal strain and stress exerted on the longitudinally aligned mineral crystals were markedly greater than those on the transversely oriented crystals, whereas the shear stress reached a maximum for the crystals aligned in ±30° with respect to the loading direction, which coincided with the long axis of bone. The maximum principal strain and stress were observed in the mineral crystals oriented along the loading axis, with a similar trend observed in the maximum shear strain and stress. By examining their in situ behavior, the contribution of mineral crystals to load bearing and the bulk behavior of bone are discussed. PMID:22982959

  17. Morphology evolution during cooling of quiescent immiscible polymer blends: matrix crystallization effect on the dispersed phase coalescence

    Czech Academy of Sciences Publication Activity Database

    Dimzoski, Bojan; Fortelný, Ivan; Šlouf, Miroslav; Sikora, Antonín; Michálková, Danuše

    2013-01-01

    Roč. 70, č. 1 (2013), s. 263-275 ISSN 0170-0839 R&D Projects: GA AV ČR IAA200500903 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymer blends * coalescence * morphology evolution Subject RIV: BJ - Thermodynamics Impact factor: 1.491, year: 2013

  18. Morphology, Nucleation, and Isothermal Crystallization Kinetics of Poly(Butylene Succinate Mixed with a Polycarbonate/MWCNT Masterbatch

    Directory of Open Access Journals (Sweden)

    Thandi P. Gumede

    2018-04-01

    Full Text Available In this study, nanocomposites were prepared by melt blending poly(butylene succinate (PBS with a polycarbonate (PC/multi-wall carbon nanotubes (MWCNTs masterbatch, in a twin-screw extruder. The nanocomposites contained 0.5, 1.0, 2.0, and 4.0 wt% MWCNTs. Differential scanning calorimetry (DSC, small angle X-ray scattering (SAXS and wide angle X-ray scattering (WAXS results indicate that the blends are partially miscible, hence they form two phases (i.e., PC-rich and PBS-rich phases. The PC-rich phase contained a small amount of PBS chains that acted as a plasticizer and enabled crystallization of the PC component. In the PBS-rich phase, the amount of the PC chains present gave rise to increases in the glass transition temperature of the PBS phase. The presence of two phases was supported by scanning electron microscopy (SEM and atomic force microscopy (AFM analysis, where most MWCNTs aggregated in the PC-rich phase (especially at the high MWCNTs content of 4 wt% and a small amount of MWCNTs were able to diffuse to the PBS-rich phase. Standard DSC scans showed that the MWCNTs nucleation effects saturated at 0.5 wt% MWCNT content on the PBS-rich phase, above this content a negative nucleation effect was observed. Isothermal crystallization results indicated that with 0.5 wt% MWCNTs the crystallization rate was accelerated, but further increases in MWCNTs loading (and also in PC content resulted in progressive decreases in crystallization rate. The results are explained by increased MWCNTs aggregation and reduced diffusion rates of PBS chains, as the masterbatch content in the blends increased.

  19. Impact of particle morphology on structure, crystallization kinetics, and properties of PCL composites with TiO2-based particles

    Czech Academy of Sciences Publication Activity Database

    Vacková, Taťana; Kratochvíl, Jaroslav; Ostafinska, Aleksandra; Krejčíková, Sabina; Nevoralová, Martina; Šlouf, Miroslav

    2017-01-01

    Roč. 74, č. 2 (2017), s. 445-464 ISSN 0170-0839 R&D Projects: GA ČR(CZ) GA14-17921S; GA TA ČR(CZ) TE01020118; GA MŠk(CZ) LO1507 Institutional support: RVO:61389013 Keywords : polycaprolactone composites * crystallization kinetics * matrix degradation Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 1.430, year: 2016

  20. Crystallization kinetics and morphology of PBT/MMT and PTT/MMT nanocomposites during injection molding;Cinetica de cristalizacao e morfologia de nanocompositos de PBT/MMT e PTT/MMT durante a moldagem por injecao

    Energy Technology Data Exchange (ETDEWEB)

    Favaro, Marcia M.; Branciforti, Marcia C.; Bretas, Rosario E.S., E-mail: mmfavaro@gmail.co [Universidade Federal de Sao Carlos (DEM/UFSCar), SP (Brazil). Dept. de Engenharia de Materiais

    2009-07-01

    This work had as main objective to study the crystallization of nanocomposites of poly(butylene terephthalate) (PBT) and poly(trimethylene terephthalate) (PTT) with a montmorillonite nanoclay (MMT) using an on-line optical monitoring system during the injection molding and to characterize the morphologies of the injection samples by polarized light optical microscopy (PLOM), wide angle X-ray diffraction (WAXS) and differential scanning calorimetry (DSC). The optical system allowed to analyze the crystallization process by the changes of the optical properties during the solidification of the materials. It was concluded that the MMT lamellae accelerated the overall crystallization of the polymers. By PLOM, it was observed that the nanoclay caused qualitative changes on the morphology of the PTT (polymer with slow crystallization kinetics). The crystallinity indexes were not affected by the addition of the MMT; however, by WAXS it was shown that the nanocomposites had a higher orientation degree. (author)

  1. On the Mechanical Behavior of a New Single-Crystal Superalloy for Industrial Gas Turbine Applications

    Science.gov (United States)

    Sato, Atsushi; Moverare, Johan J.; Hasselqvist, Magnus; Reed, Roger C.

    2012-07-01

    The mechanical behavior of a new single-crystal nickel-based superalloy for industrial gas turbine (IGT) applications is studied under creep and out-of-phase (OP) thermomechanical fatigue (TMF) conditions. Neutron diffraction methods and thermodynamic modeling are used to quantify the variation of the gamma prime ( γ') strengthening phase around the γ' solvus temperature; these aid the design of primary aging heat treatments to develop either uniform or bimodal microstructures of the γ' phase. Under creep conditions in the temperature range 1023 K to 1123 K (750 °C to 850 °C), with stresses between 235 to 520 MPa, the creep performance is best with a finer and uniform γ' microstructure. On the other hand, the OP TMF performance improves when the γ' precipitate size is larger. Thus, the micromechanical degradation mechanisms occurring during creep and TMF are distinct. During TMF, localized shear banding occurs with the γ' phase penetrated by dislocations; however, during creep, the dislocation activity is restricted to the matrix phase. The factors controlling TMF resistance are rationalized.

  2. A Conceptual Model for Shear-Induced Phase Behavior in Crystallizing Cocoa Butter

    International Nuclear Information System (INIS)

    Mazzanti, G.; Guthrie, S.; Marangoni, A.; Idziak, S.

    2007-01-01

    We propose a conceptual model to explain the quantitative data from synchrotron X-ray diffraction experiments on the shear-induced phase behavior of cocoa butter, the main structural component of chocolate. We captured two-dimensional diffraction patterns from cocoa butter at crystallization temperatures of 17.5, 20.0, and 22.5 o C under shear rates from 45 to 1440 s -1 and under static conditions. From the simultaneous analysis of the integrated intensity, correlation length, lamellar thickness, and crystalline orientation, we postulate a conceptual model to provide an explanation for the distribution of phases II, IV, V, and X and the kinetics of the process. As previously proposed in the literature, we assume that the crystallites grow layer upon layer of slightly different composition. The shear rate and temperature applied define these compositions. Simultaneously, the shear and temperature define the crystalline interface area available for secondary nucleation by promoting segregation and affecting the size distribution of the crystallites. The combination of these factors (composition, area, and size distribution) favors dramatically the early onset of phase V under shear and determines the proportions of phases II, IV, V, and X after the transition. The experimental observations, the methodology used, and the proposed explanation are of fundamental and industrial interest, since the structural properties of crystalline networks are determined by their microstructure and polymorphic crystalline state. Different proportions of the phases will thus result in different characteristics of the final material

  3. A new zinc(II supramolecular square: Synthesis, crystal structure, thermal behavior and luminescence

    Directory of Open Access Journals (Sweden)

    Wang Xiu-Yan

    2015-01-01

    Full Text Available A new square-shaped Zn(II complex, namely, [Zn4(L4(phen4]•6H2O (1 (L = 2-hydroxynicotinate and phen = 1,10- phenanthroline, has been synthesized under hydrothermal condition. The crystal of 1 belongs to triclinic, space group P -1 with a = 10.773(2 Å, b = 12.641(3 Å, c = 13.573(3 Å, α = 107.44(3º, β = 102.66(3º, γ = 93.89(3°, C72H56N12O18Zn4, Mr = 1638.77, V = 1702.8(6 Å3 , Z = 1, Dc = 1.598 g/cm3 , S = 1.045, μ(MoKα = 1.475 mm-1 , F(000 = 836, R = 0.0472 and wR = 0.0919. In 1, four L ligands bridge four Zn(II atoms to form a square-shaped structure, where four phen ligands are respectively located on four corners of the square. The π-π stacking interactions extend the adjacent squares into a 1D supramolecular chain. The thermal behavior of 1 has been characterized. Moreover, its solid state luminescence property has been studied at room temperature.

  4. Analysis of Titania Nanosheet Adsorption Behavior Using a Quartz Crystal Microbalance Sensor

    Directory of Open Access Journals (Sweden)

    Yuichiro Tashiro

    2018-01-01

    Full Text Available We investigated the adsorption of albumin and fibronectin on a titania nanosheet- (TNS- modified quartz crystal microbalance (QCM sensor. A Ti QCM sensor was fabricated by reactive magnetron sputtering. A thin layer of Ti was deposited on the QCM sensor. This sensor was then alkali-modified by treatment with NaOH at room temperature to fabricate the titania nanosheets. Scanning probe microscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy were performed to investigate the surface topology and chemical components of each sensor. The TNS had a titanium oxide film exhibiting a nodular structure and a thickness of 13 nm on the QCM sensor. Furthermore, QCM measurements showed significantly greater amounts of albumin and fibronectin adsorbed on the TNS than on titanium. The NaOH treatment of titanium modified the sensor surface and improved the adsorption behaviors of proteins related to the initial adhesion of bone marrow cells. Therefore, we concluded that TNS improves the initial adhesion between the implant materials and the surrounding tissues.

  5. Effects of Solidification Conditions on the Crystal Selection Behavior of an Al Base Alloy During Directional Solidification

    Science.gov (United States)

    Liu, Jin-lai; Jin, Tao; Luo, Xiong-hong; Feng, Shao-bo; Zhao, Jiu-zhou

    2016-05-01

    Al base alloy can be used as model alloy of Ni base single crystal superalloy due to their similarity on microstructure, while its lower melt temperature can match the restricted temperature of furnace working in space. The crystal selection behavior Al base alloy during directional solidification is studied by Bridgman process. With rise of heating temperature and decrease of withdraw rate, the number of grains passed spiral selector reduces. At heating temperature 900 ∘C and withdraw rate 2mm/min, an Al base single crystal alloy can be produced. At higher heating temperature more Mg segregates to dendrite stem, which cause smaller liquid volume fraction. At lower withdraw rate less Cu segregate to interdendrite region, which cause reduced constitutional undercooling. These two factors lead to the shrinkage of secondary dendrite arm, thus the efficiency of spiral selector is improved.

  6. Crystallization in polymer nanocomposites

    Science.gov (United States)

    Chrissopoulou, Kyriakh; Perivolari, Helena; Leisch, Stefanos; Papananou, Hellen; Anastasiadis, Spiros H.

    Polymer crystallization is a very interesting topic since it is responsible for the final properties of the materials. On the other hand, addition of inorganic nanomaterials has been recently widely used to optimize polymer properties. In this work, the effect of the presence of surfaces and of the severe confinement on polymer morphology and crystallization are investigated in hydrophilic nanohybrids of poly(ethylene oxide) and silica nanoparticles of different sizes; hybrids with different ratios of the two kinds of nanoparticles were synthesized as well, to achieve the highest confinement. Differential Scanning Calorimetry (DSC) and X-Ray Diffraction (XRD) were utilized to investigate the behavior and showed that the polymer chains that were able to crystallize showed a different crystalline behavior in the hybrids with lower Tm and lower crystallinity. Under severe confinement polymer crystallization was completely suppressed. Moreover, the crystallization kinetics was investigated with Isothermal Polarized Optical Microscopy (POM) and Isothermal Differential Scanning Calorimetry (DSC) showing different characteristics in the hybrids compared to that of the neat polymer depending on the silica content. Sponsored by the Greek GSRT (AENAO research project, Action KRIPIS)

  7. Effect of wheel speed on the crystallization behavior of as-quenched Nd-Fe-B alloys

    Directory of Open Access Journals (Sweden)

    Kuo Men

    2016-02-01

    Full Text Available A series of alloys composed of Nd9Fe85Nb0.5B5.5 were prepared through rapid quenching by different wheel speeds. Nanocomposite was usually obtained by subjecting the as-quenched alloys to a crystallization annealing. The crystallization behavior was investigated by differential scanning calorimetry (DSC as the primary method. The results showed that the DSC curve of sample prepared at 15 m/s had only one exothermic peak at about 690 °C. When the wheel speed increased to 18-27 m/s, one more peak at 590 °C appeared. Moreover, the intensity of this new peak enhances while the original one at 690 °C declined as the speed increases within this range. When the speed further grew up to 30, 35, or 40 m/s , only the peak at 590 °C remained while the other disappeared. This could be ascribed to the different initial phase structures of the alloys, which were found to vary with the wheel speeds. As can be seen, with increasing the wheel speed, the contents of amorphous and metastable phase increased while Nd2Fe14B phase decreased. This change resulted in a huge effect on the crystallization behavior. We could deduce the relative content of each phase from the integral areas of peaks in DSC curves in different samples and figure out the phase transition in the crystallization. The results showed that the crystallization of samples prepared by relatively high speeds, which are almost amorphous initially, manifest as only one step, while those prepared by relatively low speeds showed two. Subsequently, we analyzed the crystallization process and interpreted it from the theory of energy barrier.

  8. Structure, morphology and optical behavior of Ni1-xCoxO thin films prepared by a modified sol-gel method

    Science.gov (United States)

    Alshahrie, Ahmed

    2016-08-01

    Nanocrystalline Ni1-xCoxO thin films (0 ≤ x ≤ 0.4) have been prepared on glass substrates using sol-gel/spin-coating technique. The effect of the concentration of cobalt ions on the structure, morphology and optical behavior of the doped NiO thin films are investigated by the X-ray diffractometer, scanning electron microscopy, Raman spectroscopy and spectrophotometer. All films showed a single phase face centered cubic structure, implying the complete solubility of the Co ions into the NiO cubic crystal up to 40 at.%, for the first time. The texture coefficient revealed that the Co ions tend to force the NiO grains to grow along (200) direction. The Raman spectroscopy showed one longitudinal optical phonon mode (LO) at 518 cm-1 and two longitudinal optical phonons mode (2LO) at 1070 cm-1. The decrease of the intensity and the shift of the peak position of the two modes, indicating the scattering contribution of the LO-mode outside the center of Brillouin zone and the creation of oxygen vacancies due to the incorporated Co ions into the NiO cubic crystals. The Ni1-xCoxO thin films have shown high optical transparency around 80%. A decrease of the band gap energy of the NiO films from 3.69 eV to 3.41 eV was observed when the concentration of Co ions increased to 10 at.%, followed by an increase to 3.58 eV as the Co ions concentration increased to 40 at.%. The high optical conductivity and low dissipation factor of the developed Ni1-xCoxO thin films will open a new avenue for future applications in the optoelectronic devices such as reflectance mirror and display light shutter.

  9. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    DEFF Research Database (Denmark)

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    Hollow nanostructures have a wide range of applications in nanotechnology. To accurately fabricate such nanostructures, the first and common key step is to synthesize high quality templates with controlled symmetry and geometry, ideally through a green, efficient, and economical approach. However....... These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...

  10. Effect of Fullerene Derivates on Thermal and Crystallization Behavior of PBT/Decylamine-C and PBT/TCNEO-C Nanocomposites

    Directory of Open Access Journals (Sweden)

    A. Woźniak-Braszak

    2012-01-01

    Full Text Available The paper describes the process of the preparation of new nanocomposites based on poly(butylene terephthalate and C60 nanoparticles modified by decylamine (DA and tetracyanoethylene oxide (TCNEO, respectively. Thermal and crystallization properties of new synthesized nanocomposites were investigated by means of thermal differential scanning calorimetry (DSC. The experimental results demonstrate the effect of fullerene derivates, DA-C60 and TCNEO-C60, on the melting and crystallinity processes of nanocomposites. The morphology of new nanocomposites was investigated by SEM.

  11. A novel numerical model to predict the morphological behavior of magnetic liquid marbles using coarse grained molecular dynamics concepts

    Science.gov (United States)

    Polwaththe-Gallage, Hasitha-Nayanajith; Sauret, Emilie; Nguyen, Nam-Trung; Saha, Suvash C.; Gu, YuanTong

    2018-01-01

    Liquid marbles are liquid droplets coated with superhydrophobic powders whose morphology is governed by the gravitational and surface tension forces. Small liquid marbles take spherical shapes, while larger liquid marbles exhibit puddle shapes due to the dominance of gravitational forces. Liquid marbles coated with hydrophobic magnetic powders respond to an external magnetic field. This unique feature of magnetic liquid marbles is very attractive for digital microfluidics and drug delivery systems. Several experimental studies have reported the behavior of the liquid marbles. However, the complete behavior of liquid marbles under various environmental conditions is yet to be understood. Modeling techniques can be used to predict the properties and the behavior of the liquid marbles effectively and efficiently. A robust liquid marble model will inspire new experiments and provide new insights. This paper presents a novel numerical modeling technique to predict the morphology of magnetic liquid marbles based on coarse grained molecular dynamics concepts. The proposed model is employed to predict the changes in height of a magnetic liquid marble against its width and compared with the experimental data. The model predictions agree well with the experimental findings. Subsequently, the relationship between the morphology of a liquid marble with the properties of the liquid is investigated. Furthermore, the developed model is capable of simulating the reversible process of opening and closing of the magnetic liquid marble under the action of a magnetic force. The scaling analysis shows that the model predictions are consistent with the scaling laws. Finally, the proposed model is used to assess the compressibility of the liquid marbles. The proposed modeling approach has the potential to be a powerful tool to predict the behavior of magnetic liquid marbles serving as bioreactors.

  12. Different crystal morphologies arising from different preparation methods of a same polymorphic form may result in different properties of the final materials: the case of diclofenac sodium trihydrate.

    Science.gov (United States)

    Rodomonte, Andrea; Antoniella, Eleonora; Bertocchi, Paola; Gaudiano, Maria Cristina; Manna, Livia; Bartolomei, Monica

    2008-09-29

    Diclofenac sodium is a nonsteroidal anti-inflammatory drug widely used in painful and inflammatory diseases. It can exist in different hydrate phases. Recently the physico-chemical and pharmaceutical properties of a trihydrate form, named DSH3 were reported by the same authors. This short communication discusses how samples of a same polymorphic form can display dissimilar analytical signatures when obtained by different routes. Data from hot-stage microscopy, FT-IR spectroscopy, X-ray powder diffraction (XRDP) and thermal analysis were used to characterise the DSH3 samples prepared by different methods. Through the case study of diclofenac sodium, this work highlights how the method used to prepare a specific crystal modification can generate samples with different morphologies and therefore different properties and physical stability.

  13. The effect of different clays on the structure, morphology and degradation behavior of poly(lactic acid)

    CSIR Research Space (South Africa)

    Neppalli, R

    2014-01-01

    Full Text Available ., 2010; Fukushima et al., 2011). Anionic clays appear to be more effective in increasing the fraction of crystallized polymer in the composites. I n t e n s i t y ( a . u . ) 3025201510 Diffraction angle (° 2) PLA PLA-HPS PLA-43B PLA-PERK Figure 3... I n t e n s i t y ( a . u . ) 25x10 -3 2015105 2 sin   PLA PLA-PERK PLA-HPS PLA-43B Fig. 3 Lorentz-corrected SAXS patterns of pure PLA matrix polymer and of its composites The morphology of the polymer at lamellar level was studied...

  14. Crystal structure, vibrational, spectral investigation, quantum chemical DFT calculations and thermal behavior of Diethyl [hydroxy (phenyl) methyl] phosphonate

    Science.gov (United States)

    Ouksel, Louiza; Chafaa, Salah; Bourzami, Riadh; Hamdouni, Noudjoud; Sebais, Miloud; Chafai, Nadjib

    2017-09-01

    Single Diethyl [hydroxy (phenyl) methyl] phosphonate (DHPMP) crystal with chemical formula C11H17O4P, was synthesized via the base-catalyzed Pudovik reaction and Lewis acid as catalyst. The results of SXRD analyzes indicate that this compound crystallizes into a mono-clinic system with space group P21/n symmetry and Z = 4. The crystal structure parameters are a = 9.293 Å, b = 8.103 Å, c = 17.542 Å, β = 95.329° and V = 1315.2 Å3, the structure displays one inter-molecular O-H⋯O hydrogen bonding. The UV-Visible absorption spectrum shows that the crystal exhibits a good optical transmission in the visible domain, and strong absorption in middle ultraviolet one. The vibrational frequencies of various functional groups present in DHPMP crystal have been deduced from FT-IR and FT-Raman spectra and then compared with theoretical values performed with DFT (B3LYP) method using 6-31G (p, d) basis sets. Chemical and thermodynamic parameters such as: ionization potential (I), electron affinity (A), hardness (σ), softness (η), electronegativity (χ) and electrophilicity index (ω), are also calculated using the same theoretical method. The thermal decomposition behavior of DHPMP, studied by using thermogravimetric analysis (TDG), shows a thermal stability until to 125 °C.

  15. Effects of quartz on crystallization behavior of mold fluxes and microstructural characteristics of flux film.

    Science.gov (United States)

    Lei, Liu; Xiuli, Han; Mingduo, Li; Di, Zhang

    2018-01-01

    Mold fluxes are mainly prepared using cement clinker, quartz, wollastonite, borax, fluorite, soda ash and other mineral materials. Quartz, as one of the most common and essential materials, was chosen for this study to analyze itseffects on crystallization temperature, critical cooling rate, crystal incubation time, crystallization ratio and phases of flux film. We used the research methods of process mineralogy with the application of the single hot thermocouple technique, heat flux simulator, polarizing microscope, X-ray diffraction, etc. Results: By increasing the quartz content from 16 mass% to 24 mass%, the crystallization temperature, critical cooling rate and crystallization ratio of flux film decreased, and the crystal incubation time was extended. Meanwhile, the mineralogical structure of the flux film changed, with a large amount of wollastonite precipitation and a significant decrease in the cuspidine content until it reached zero. This showed a steady decline in the heat transfer control capacity of the flux film. The reason for the results above is that, by increasing the quartz content, the silicon-oxygen tetrahedron network structure promoted a rise in viscosity and restrained ion migration, inhibiting crystal nucleation and growth, leading to the weakening of the crystallization and a decline in the crystallization ratio.

  16. Synthesis of nanoparticles in a flame aerosol reactor with independent and strict control of their size, crystal phase and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Jingkun; Chen, D-R; Biswas, Pratim [Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St Louis, Campus Box 1180, St Louis, MO 63130 (United States)

    2007-07-18

    A flame aerosol reactor (FLAR) was developed to synthesize nanoparticles with desired properties (crystal phase and size) that could be independently controlled. The methodology was demonstrated for TiO{sub 2} nanoparticles, and this is the first time that large sets of samples with the same size but different crystal phases (six different ratios of anatase to rutile in this work) were synthesized. The degree of TiO{sub 2} nanoparticle agglomeration was determined by comparing the primary particle size distribution measured by scanning electron microscopy (SEM) to the mobility-based particle size distribution measured by online scanning mobility particle spectrometry (SMPS). By controlling the flame aerosol reactor conditions, both spherical unagglomerated particles and highly agglomerated particles were produced. To produce monodisperse nanoparticles, a high throughput multi-stage differential mobility analyser (MDMA) was used in series with the flame aerosol reactor. Nearly monodisperse nanoparticles (geometric standard deviation less than 1.05) could be collected in sufficient mass quantities (of the order of 10 mg) in reasonable time (1 h) that could be used in other studies such as determination of functionality or biological effects as a function of size.

  17. The Crystal Structure and Morphology of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) p-Xylene Solvate: A Joint Experimental and Simulation Study

    OpenAIRE

    Shen, Fanfan; Lv, Penghao; Sun, Chenghui; Zhang, Rubo; Pang, Siping

    2014-01-01

    The crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaiso-wurtzitane (CL-20) p-xylene solvate, and the solvent effects on the crystal faces of CL-20 were studied through a combined experimental and theoretical method. The properties were analyzed by thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).The growth morphology of CL-20p-xylene solvate crystal was predicted with a modified attachment...

  18. Ductile–brittle behavior at blunted cavities in 3D iron crystals uncovered and covered by copper atoms

    Czech Academy of Sciences Publication Activity Database

    Pelikán, Vladimír; Hora, Petr; Červená, Olga; Spielmannová, Alena; Machová, Anna

    2010-01-01

    Roč. 4, č. 2 (2010), s. 191-200 ISSN 1802-680X R&D Projects: GA ČR(CZ) GA101/07/0789; GA AV ČR KJB200760802 Institutional research plan: CEZ:AV0Z20760514 Keywords : molecular dynamics * bcc iron crystal * blunted cavity * copper cover * ductile–brittle behavior Subject RIV: JG - Metallurgy http://www.kme.zcu.cz/acm/index.php/acm/article/view/48

  19. The Effects of Annealing Parameters on the Crystallization and Morphology of Cu(In,GaSe2 Absorber Layers Prepared by Annealing Stacked Metallic Precursors

    Directory of Open Access Journals (Sweden)

    Chia-Ho Huang

    2014-01-01

    Full Text Available CIGS films are prepared by single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor. The annealing processes were performed using various Ar pressures, heating rates, and soaking times. A higher Ar pressure is needed to fabricate highly crystalline CIGS films, as no extra Se-vapor source is supplied. As the heating rate increases, the surface morphologies of the CIGS films become looser and some cracks are observed. However, the influence of soaking time is insignificant and the selenization process only requires a short time when the precursors are selenized at a higher temperature with a lower heating rate and a higher Ar pressure. In this study, a dense chalcopyrite CIGS film with a thickness of about 1.5-1.6 μm, with large grains (~1.2 μm and no cracking or peeling is obtained after selenizing at a temperature of 550°C, an Ar pressure of 300 Torr, a heating rate of 60°C/min, and a soaking time of 20 min. By adequate design of the stacked precursor and controlling the annealing parameters, single-stage annealing of the solid Se-coated In/Cu-Ga bilayer precursor is simplified for the fabrication of a fully crystallized chalcopyrite CIGS absorber layers with good crystallization and large grains.

  20. Comparative Subcellular Localization Analysis of Magnetosome Proteins Reveals a Unique Localization Behavior of Mms6 Protein onto Magnetite Crystals.

    Science.gov (United States)

    Arakaki, Atsushi; Kikuchi, Daiki; Tanaka, Masayoshi; Yamagishi, Ayana; Yoda, Takuto; Matsunaga, Tadashi

    2016-10-15

    The magnetosome is an organelle specialized for inorganic magnetite crystal synthesis in magnetotactic bacteria. The complex mechanism of magnetosome formation is regulated by magnetosome proteins in a stepwise manner. Protein localization is a key step for magnetosome development; however, a global study of magnetosome protein localization remains to be conducted. Here, we comparatively analyzed the subcellular localization of a series of green fluorescent protein (GFP)-tagged magnetosome proteins. The protein localizations were categorized into 5 groups (short-length linear, middle-length linear, long-length linear, cell membrane, and intracellular dispersing), which were related to the protein functions. Mms6, which regulates magnetite crystal growth, localized along magnetosome chain structures under magnetite-forming (microaerobic) conditions but was dispersed in the cell under nonforming (aerobic) conditions. Correlative fluorescence and electron microscopy analyses revealed that Mms6 preferentially localized to magnetosomes enclosing magnetite crystals. We suggest that a highly organized spatial regulation mechanism controls magnetosome protein localization during magnetosome formation in magnetotactic bacteria. Magnetotactic bacteria synthesize magnetite (Fe3O4) nanocrystals in a prokaryotic organelle called the magnetosome. This organelle is formed using various magnetosome proteins in multiple steps, including vesicle formation, magnetosome alignment, and magnetite crystal formation, to provide compartmentalized nanospaces for the regulation of iron concentrations and redox conditions, enabling the synthesis of a morphologically controlled magnetite crystal. Thus, to rationalize the complex organelle development, the localization of magnetosome proteins is considered to be highly regulated; however, the mechanisms remain largely unknown. Here, we performed comparative localization analysis of magnetosome proteins that revealed the presence of a spatial

  1. Radiofrequency electromagnetic radiation exposure effects on amygdala morphology, place preference behavior and brain caspase-3 activity in rats.

    Science.gov (United States)

    Narayanan, Sareesh Naduvil; Mohapatra, Nirupam; John, Pamala; K, Nalini; Kumar, Raju Suresh; Nayak, Satheesha B; Bhat, P Gopalakrishna

    2018-03-01

    The purpose of the study was to evaluate the changes in amygdala morphology and emotional behaviors, upon exposure to chronic RF-EMR in adolescent rats. Four weeks old male albino Wistar rats were exposed to 900 MHz (power density:146.60 μW/cm2) from a mobile phone in silent-mode for 28 days. Amygdala morphology was studied using cresyl violet, TUNEL and Golgi-Cox staining. Place preference behavior was studied using light/dark chamber test and following this brain caspase-3 activity was determined. Number of healthy neurons was decreased in the basolateral amygdala and cortical amygdala but not in the central amygdala after RF-EMR exposure. It also induced apoptosis in the amygdala. RF-EMR exposure altered dendritic arborization pattern in basolateral amygdala but not in the central amygdala. Altered place preference and hyperactivity-like behavior was evident after RF-EMR exposure, but brain caspase-3 activity did not change. RF-EMR exposure perturbed normal cellular architecture of amygdala and this was associated with altered place preference. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Indirect genetic effects and sexual conflicts: Partner genotype influences multiple morphological and behavioral reproductive traits in a flatworm.

    Science.gov (United States)

    Marie-Orleach, Lucas; Vogt-Burri, Nadja; Mouginot, Pierick; Schlatter, Aline; Vizoso, Dita B; Bailey, Nathan W; Schärer, Lukas

    2017-05-01

    The expression of an individual's phenotypic traits can be influenced by genes expressed in its social partners. Theoretical models predict that such indirect genetic effects (IGEs) on reproductive traits should play an important role in determining the evolutionary outcome of sexual conflict. However, empirical tests of (i) whether reproductive IGEs exist, (ii) how they vary among genotypes, and (iii) whether they are uniform for different types of reproductive traits are largely lacking. We addressed this in a series of experiments in the simultaneously hermaphroditic flatworm Macrostomum lignano. We found strong evidence for IGEs on both morphological and behavioral reproductive traits. Partner genotype had a significant impact on the testis size of focal individuals-varying up to 2.4-fold-suggesting that IGEs could mediate sexual conflicts that target the male sex function. We also found that time to first copulation was affected by a genotype × genotype interaction between mating partners, and that partner genotype affected the propensity to copulate and perform the postcopulatory suck behavior, which may mediate conflicts over the fate of received ejaculate components. These findings provide clear empirical evidence for IGEs on multiple behavioral and morphological reproductive traits, which suggests that the evolutionary dynamics of these traits could be altered by genes contained in the social environment. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  3. Effects of orientation on the rolling and recrystallization behavior of tantalum single crystals

    International Nuclear Information System (INIS)

    Snyder, W.B. Jr.

    1976-12-01

    Some deformed single crystals are more difficult to recrystallize than others. Tantalum single crystals were rolled unidirectionally at room temperature to a thickness reduction of 80 percent. Optical and electron metallography, X-ray line broadening and pole figure analyses, and microhardness testing were used to study the deformed, recovered, and recrystallized structures of these crystals. Crystal stability, reorientation, and deformation banding was interpreted in terms of the Taylor theory of plasticity as applied to pencil glide in body-centered-cubic metals. Experimental results were in partial agreement with the theory. Nucleation of recrystallization was found to occur by the polygonization and growth of dislocation cells originally present in the deformed structure. Impingement of these growing nuclei resulted in a fully recrystallized structure whose orientations were present in the deformed crystal

  4. Connecting the Morphological and Crystal Structural Changes during the Conversion of Lithium Hydroxide Monohydrate to Lithium Carbonate Using Multi-Scale X-ray Scattering Measurements

    Directory of Open Access Journals (Sweden)

    Greeshma Gadikota

    2017-09-01

    Full Text Available While CO2 storage technologies via carbon mineralization have focused on the use of earth-abundant calcium- and magnesium-bearing minerals, there is an emerging interest in the scalable synthesis of alternative carbonates such as lithium carbonate. Lithium carbonate is the carbonated end-product of lithium hydroxide, a highly reactive sorbent for CO2 capture in spacecraft and submarines. Other emerging applications include tuning the morphology of lithium carbonates synthesized from the effluent of treated Li-bearing batteries, which can then be reused in ceramics, glasses, and batteries. In this study, in operando Ultra-Small-Angle, Small-Angle, and Wide-Angle X-ray Scattering (USAXS/SAXS/WAXS measurements were used to link the morphological and crystal structural changes as lithium hydroxide monohydrate is converted to lithium carbonate. The experiments were performed in a flow-through reactor at PCO2 of 1 atm and at temperatures in the range of 25–500 °C. The dehydration of lithium hydroxide monohydrate to form lithium hydroxide occurs in the temperature range of 25–150 °C, while the onset of carbonate formation is evident at around 70 °C. A reduction in the nanoparticle size and an increase in the surface area were noted during the dehydration of lithium hydroxide monohydrate. Lithium carbonate formation increases the nanoparticle size and reduces the surface area.

  5. Surface morphology and chemical state of epitaxial Al sub 2 O sub 3 film on Cu-9%Al(111) single crystal

    CERN Document Server

    Yamauchi, Y; Song, W

    2003-01-01

    We investigated the surface morphology, natures of chemical bond and thickness of oxide film grew on the Cu-9%Al (111) single crystal by means of Auger electron spectroscopy (AES) and a scanning electron microscopy (SEM). By introducing 1300L oxygen at 725degC, aluminum was oxidized and copper was not, and the epitaxial alumina film grew on the Cu-9%Al surface. The alumina surface showed two morphologies in SEM image. One was a flat surface with a few small defects, and the other was a rough surface which had smooth and rough regions. The rough surface was remarkably seen in sputtered region to obtain clean surface. The alumina film whose thickness was about 3.5 nm uniformly grew on the flat surface, and the thickness was about 3.0-3.5 nm on rough surface. It is concluded that the surface roughness in alumina is related to the roughness of clean surface. Therefore, to grow the uniform alumina film over large area of Cu-9%Al surface, it is essential to obtain the flat clean surface prior to oxidation. (author)

  6. Prismatic to Asbestiform Offretite from Northern Italy: Occurrence, Morphology and Crystal-Chemistry of a New Potentially Hazardous Zeolite

    Directory of Open Access Journals (Sweden)

    Michele Mattioli

    2018-02-01

    Full Text Available A multi-methodological approach, based upon field investigation, morphological characterization, chemical analysis and structure refinement was applied to different samples of fibrous offretite, a new potentially hazardous zeolite recently discovered in northern Italy. Their morphology ranges from stocky-prismatic to asbestiform. All the investigated fibers may be considered as “inhalable”, and they are well within the range of the “more carcinogenic fibers” regarding diameter. As regards the length, the main mode observed in the asbestiform samples is 20–25 μm, and ~93% of the measured fibers are >5 μm and may be significantly associated with carcinogenesis also in terms of lengths. The chemical-structural features of the investigated fibers are comparable: the extra-framework cations K+, Mg2+ and Ca2+ are present in all samples in similar proportions, and refined cell parameters are similar among the samples. Offretite occurs in 60% of the investigated sites, with an estimated amount up to 75 vol % of the associated minerals. The presence of this mineral could be of concern for risk to human health, especially if one considers the vast number of quarries and mining-related activities that are operating in the zeolite host rocks.

  7. A single point mutation changes the crystallization behavior of Mycoplasma arthritidis-derived mitogen

    International Nuclear Information System (INIS)

    Guo, Yi; Li, Zhong; Van Vranken, Sandra J.; Li, Hongmin

    2006-01-01

    The mutagenesis, crystallization and preliminary crystallographic analysis of M. arthritidis-derived mitogen is described. Mycoplasma arthritidis-derived mitogen (MAM) functions as a conventional superantigen (SAg). Although recombinant MAM has been crystallized by the hanging-drop vapour-diffusion method, the crystals diffracted poorly to only 5.0 Å resolution, with large unit-cell parameters a = 163.8, b = 93.0, c = 210.9 Å, β = 93.7° in the monoclinic space group P2 1 . Unit-cell content analysis revealed that as many as 24 molecules could be present in the asymmetric unit. Systematic alanine mutagenesis was applied in order to search for mutants that give crystals of better quality. Two mutants, L50A and K201A, were crystallized under the same conditions as wild-type MAM (MAM wt ). Crystals of the L50A mutant are isomorphous with those of MAM wt , while a new crystal form was obtained for the K201 mutant, belonging to the cubic space group P4 1 32 with unit-cell parameters a = b = c = 181.9 Å. Diffraction data were collected to 3.6 and 2.8 Å resolution from crystals of the MAM L50A and K201A mutants, respectively. Molecular-replacement calculations suggest the presence of two molecules in the asymmetric unit for the MAM K201A mutant crystal, resulting in a V M of 5.0 Å Da −1 and a solvent content of 75%. An interpretable electron-density map for the MAM K201A mutant crystal was produced using the molecular-replacement method

  8. Mechanical behavior of ultra-fine grained and nanocrystalline metals and single crystals: Experiments, modeling and simulations

    Science.gov (United States)

    Liu, Jian

    Ultra-fine grained (ufg, 100 nm viscoplastic phenomenological Khan--Liang--Farrokh (KLF) model is used to correlate the experimental results of the ufg/nc Ti. Crystal Plasticity Finite Element Method (CPFEM) with three different single crystal plasticity constitutive models is used for the purpose of incorporating strain rate and temperature effects into CPFEM. The classical and two newly developed single crystal plasticity models are used to simulate the deformation responses of single crystal aluminum. A constitutive model based on intragranular dislocation slip is shown to correlate closely to the stain rate effect and latent hardening behavior of single crystal Al. For ufg/nc face-centered cubic (FCC) material, we assume that dislocation slip is still the most important deformation mechanism while there is no interaction between dislocations within grains. We develop a constitutive model based on dislocation glide within ufg/nc grains and include all stages of dislocation activities especially their interactions with GB. An Arrhenius type rate is established based on the thermal activated depinning of dislocations from GB obstacles. The thermal strength is obtained as a function of the activation energy of the GB obstacles and the activation length. The athermal part includes the strength due to the grain size dependence and the strength due to the dislocation density. The model parameters for two ufg/nc materials are determined by comparing experimental results to the one dimensional (1D) flow stress model using a Taylor's factor. The new constitutive model is incorporated into three dimensional crystal plasticity and the crystal plasticity model is implemented into a UMAT subroutine of ABAQUS finite element program. The uniaxial deformation responses of two ufg/nc materials are simulated using the previously determined model parameters. CPFEM simulations give flow stress predictions that are very close to 1D model correlations/predictions. It is a clear

  9. Morphological stability of 4H-SiC crystals in solution growth on {0001} and {1 1 ̅0m } surfaces

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Hayashi, Yuichiro; Kato, Tomohisa; Okumura, Hajime

    2017-06-01

    For solution growth of 4H-SiC, the surface morphology of the crystals grown on {0001 } and {1 1 ̅0m } (m=0‒4, 10 and 20) surfaces was systematically investigated. For short-term growth for 30 min on {0001 } and {1 1 ̅0m } (m=0 and 2) seeds, the height of the macrosteps was less than 400 nm, and terraces having the same crystallographic orientation as the seeds were formed. In contrast, the growth surfaces on {1 1 ̅0m } (m=4, 10 and 20) seeds became rough owing to the surface reconstruction with the {1 1 ̅02 } and {0001} planes, suggesting the morphological stability of the {1 1 ̅0m } (m=0 and 2) planes. Long-term morphological stability was examined by bulk growth experiments for 24 h. A smooth growth surface was obtained on both (1 ̅10 1 ̅) and (1 ̅10 2 ̅) seeds. Surface roughening owing to the macrostep faceting was observed for the long-term growth on (000 1 ̅) and (1 1 ̅00) seeds, whereas smooth step-terrace surfaces were obtained for the short-term growth on these planes. We also found that surface roughening tended to increase in the step-flow directions in which the angle formed by the original growth surface and a faceted slope of large macrosteps is large. Among the (1 ̅10 m ̅) (m=1 and 2) planes, growth on a (1 ̅10 1 ̅) plane exhibited the smoothest surface even after long-term growth with several millimeters in thickness.

  10. Unique cold-crystallization behavior and kinetics of biodegradable poly[(butylene succinate)-co adipate] nanocomposites: a high speed differential scanning calorimetry study

    CSIR Research Space (South Africa)

    Bandyopadhyay, J

    2014-08-01

    Full Text Available . The effect of such structural changes on the cold-crystallization behavior and kinetics of PBSANCs were investigated using a high-speed DSC. Surprisingly, the DSC thermograms revealed that the characteristic cold-crystallization peak of neat PBSA shifts...

  11. The effect of specific beta-nucleation on morphology and mechanical behavior of isotactic polypropylene

    Czech Academy of Sciences Publication Activity Database

    Kotek, Jiří; Raab, Miroslav; Baldrian, Josef; Grellmann, W.

    2002-01-01

    Roč. 85, č. 6 (2002), s. 1174-1184 ISSN 0021-8995 R&D Projects: GA ČR GA106/99/P011; GA ČR GA106/98/0718; GA AV ČR IAA4050904 Institutional research plan: CEZ:AV0Z4050913 Keywords : polypropylene * morphology * beta-nucleation Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.927, year: 2002

  12. Thermal, mechanical and morphological behavior of starch thermoplastic (TPS) and polycaprolactone (PCL)

    International Nuclear Information System (INIS)

    Campos, Adriana de; Marconcini, Jose M.; Mattoso, Luiz H.C.

    2011-01-01

    Thermal, mechanical and morphological properties of thermoplastic starch (TPS) and polycaprolactone (PCL) blend obtained by extrusion was studied. The results showed that TPS/PCL blends are immiscible, however it is suggested some interaction in the interphase between TPS and PCL as observed by crystallinity decrease of the blend. The PCL addition in the TPS improves the properties and decreases the cost of the blend. (author)

  13. A probabilistic analysis of the crystal oscillator behavior at low drive levels

    Science.gov (United States)

    Shmaliy, Yuriy S.; Brendel, Rémi

    2008-03-01

    The paper discusses a probabilistic model of a crystal oscillator at low drive levels where the noise intensity is comparable with the oscillation amplitude. The stationary probability density of the oscillations envelope is derived and investigated for the nonlinear resonator loses. A stochastic explanation is given for the well-known phenomenon termed sleeping sickness associated with losing a facility of self-excitation by a crystal oscillator after a long storage without a power supply. It is shown that, with low drive levels leading to an insufficient feedback, a crystal oscillator generates the noise-induced oscillations rather than it absolutely "falls in sleep".

  14. Dentritic morphology and microsegregation in directionally solidified superalloy, PWA-1480, single crystal: Effect of gravity; center director's discretionary fund report

    Science.gov (United States)

    Tewari, S. N.; Kumar, M. Vijaya; Lee, J. E.; Curreri, P. A.

    1990-01-01

    Primary dendrite spacings, secondary dendrite spacings, and microsegregation have been examined in PWA-1480 single crystal specimens which were directionally solidified during parabolic maneuvers on the KC-135 aircraft. Experimentally observed growth rate and thermal gradient dependence of primary dendrite spacings are in good agreement with predictions from dendrite growth models for binary alloys. Secondary dendrite coarsening kinetics show a reasonable fit with the predictions from an analytical model proposed by Kirkwood for a binary alloy. The partition coefficients of tantalum, titanium, and aluminum are observed to be less than unity, while that for tungsten and cobalt are greater than unity. This is qualitatively similar to the nickel base binaries. Microsegregation profiles experimentally observed for PWA-1480 superalloy show a good fit with Bower, Brody, and Flemings model developed for binary alloys. Transitions in gravity levels do not appear to affect primary dendrite spacings. A trend of decreased secondary arm spacings with transition from high gravity to the low gravity period was observed at a growth speed of 0.023 cm s(exp -1). However, definite conclusions can only be drawn by experiments at lower growth speeds which make it possible to examine the side-branch coarsening kinetics over a longer duration. Such experiments, not possible due to the insufficient low-gravity time of the KC-135, may be carried out in the low-gravity environment of space.

  15. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals.

    Science.gov (United States)

    Wang, Guang; Garvey, Christopher J; Zhao, Han; Huang, Kang; Kong, Lingxue

    2017-07-21

    Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF) membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs) and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  16. Toward the Fabrication of Advanced Nanofiltration Membranes by Controlling Morphologies and Mesochannel Orientations of Hexagonal Lyotropic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Guang Wang

    2017-07-01

    Full Text Available Water scarcity has been recognized as one of the major threats to human activity, and, therefore, water purification technologies are increasingly drawing attention worldwide. Nanofiltration (NF membrane technology has been proven to be an efficient and cost-effective way in terms of the size and continuity of the nanostructure. Using a template based on hexagonal lyotropic liquid crystals (LLCs and partitioning monomer units within this structure for subsequent photo-polymerisation presents a unique path for the fabrication of NF membranes, potentially producing pores of uniform size, ranging from 1 to 5 nm, and large surface areas. The subsequent orientation of this pore network in a direction normal to a flat polymer film that provides ideal transport properties associated with continuous pores running through the membrane has been achieved by the orientation of hexagonal LLCs through various strategies. This review presents the current progresses on the strategies for structure retention from a hexagonal LLCs template and the up-to-date techniques used for the reorientation of mesochanels for continuity through the whole membrane.

  17. Critical Role of the Spacer Length of Gemini Surfactants on the Formation of Ionic Liquid Crystals and Thermotropic Behavior.

    Science.gov (United States)

    Fernandes, Ricardo M F; Wang, Yujie; Tavares, Pedro B; Nunes, Sandra C C; Pais, Alberto A C C; Marques, Eduardo F

    2017-11-22

    Numerous reports have shown that the self-assembling properties of 12-s-12 bis(quaternary ammonium) gemini surfactants in aqueous solution are significantly influenced by s, the number of methylene groups in the covalent spacer. However, the role played by s on the phase behavior of the single compounds has not been investigated in a similarly systematic way. Here, we report on the thermotropic phase behavior of the anhydrous compounds with s = 2-6, 8, 10, and 12, resorting to differential scanning calorimetry (DSC), polarized light microscopy (PLM), and X-ray diffraction (XRD). All of the compounds show a stepwise melting behavior, decomposing at 200 °C. As the spacer length increases, nonmonotonic trends are observed for the thermodynamic parameters of the thermotropic phase transitions, mesophase formation, and solid-state d 00l spacings. In particular, the number and type of mesophases (ordered smectic phases and/or fluid smectic liquid crystals) depend critically on s. Further, upon heating molecules with s liquid phase, while those with long spacers, s = 8-12, reach the isotropization (clearing) temperature, hence forming both ionic liquid crystals and ionic liquid phases. We demonstrate that the melting behavior and type of ionic mesophases formed by gemini molecules can be usefully manipulated by a simple structural parameter like the length of the covalent linker.

  18. The Crystal Structure and Behavior of Fenamic Acid-Acridine Complex Under High Pressure.

    Science.gov (United States)

    Jerzykiewicz, Lucjan; Sroka, Adam; Majerz, Irena

    2016-12-01

    The crystal structure of fenamic acid-acridine complex is determined by X-ray diffraction. The strong OHN hydrogen bond linking the complex components and other interactions responsible for packing of the molecules into a crystal are investigated within the Quantum Theory of Atom in Molecule theory. The crystal structure is compared with the structure optimized at B3LYP/6-311++G** level and with the theoretical structures optimized under systematically changed pressure. Analysis of the lattice constants, hydrogen bond lengths, and angles of the inter- and intramolecular hydrogen bond under compression is performed. The structural transformation observed at 5 GPa is connected with a change in the intermolecular OHN hydrogen bond. The proton shifts to acceptor and a new interaction in the crystal appears. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  19. Charge Transport and Phase Behavior of Imidazolium-Based Ionic Liquid Crystals from Fully Atomistic Simulations.

    Science.gov (United States)

    Quevillon, Michael J; Whitmer, Jonathan K

    2018-01-02

    Ionic liquid crystals occupy an intriguing middle ground between room-temperature ionic liquids and mesostructured liquid crystals. Here, we examine a non-polarizable, fully atomistic model of the 1-alkyl-3-methylimidazolium nitrate family using molecular dynamics in the constant pressure-constant temperature ensemble. These materials exhibit a distinct "smectic" liquid phase, characterized by layers formed by the molecules, which separate the ionic and aliphatic moieties. In particular, we discuss the implications this layering may have for electrolyte applications.

  20. Effect of cellulose nanocrystals (CNC) on rheological and mechanical properties and crystallization behavior of PLA/CNC nanocomposites.

    Science.gov (United States)

    Kamal, Musa R; Khoshkava, Vahid

    2015-06-05

    In earlier work, we reported that spray freeze drying of cellulose nanocrystals (CNC) yields porous agglomerate structures. On the other hand, the conventional spray dried CNC (CNCSD) and the freeze dried CNC (CNCFD) produce compact solid structures with very low porosity. As it is rather difficult to obtain direct microscopic evidence of the quality of dispersion of CNC in polymer nanocomposites, it was shown that supporting evidence of the quality and influence of dispersion in a polypropylene (PP)/CNC nanocomposite could be obtained by studying the rheological behavior, mechanical properties and crystallization characteristics of PP/CNC nanocomposites. In an effort to produce a sustainable, fully biosourced, biodegradable nanocomposite, this manuscript presents the results of a study of the rheological, mechanical and crystallization behavior of PLA/CNCSFD nanocomposites obtained by melt processing. The results are analyzed to determine CNC network formation, rheological percolation threshold concentrations, mechanical properties in the rubbery and glassy states, and the effect of CNCSFD on crystalline nucleation and crystallization rates of PLA. These results suggest that the porosity and network structure of CNCSFD agglomerates contribute significantly to good dispersion of CNC in the PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Effect of Pre-Fatigue on the Monotonic Deformation Behavior of a Coplanar Double-Slip-Oriented Cu Single Crystal

    Directory of Open Access Journals (Sweden)

    Xiao-Wu Li

    2016-11-01

    Full Text Available The [ 2 ¯ 33 ] coplanar double-slip-oriented Cu single crystals were pre-fatigued up to a saturation stage and then uniaxially tensioned or compressed to fracture. The results show that for the specimen pre-fatigued at a plastic strain amplitude γpl of 9.2 × 10−4, which is located within the quasi-plateau of the cyclic stress-strain (CSS curve, its tensile strength and elongation are coincidently improved, showing an obvious strengthening effect by low-cycle fatigue (LCF training. However, for the crystal specimens pre-fatigued at a γpl lower or higher than the quasi-plateau region, due to a low pre-cyclic hardening or the pre-induction of fatigue damage, no marked strengthening effect by LCF training occurs, and even a weakening effect by LCF damage takes place instead. In contrast, the effect of pre-fatigue deformation on the uniaxial compressive behavior is not so significant, since the compressive deformation is in a stress state more beneficial to the ongoing plastic deformation and it is insensitive to the damage induced by pre-cycling. Based on the observations and comparisons of deformation features and dislocation structures in the uniaxially deformed [ 2 ¯ 33 ] crystal specimens which have been pre-fatigued at different γpl, the micro-mechanisms for the effect of pre-fatigue on the static mechanical behavior are discussed.

  2. The Crystal Structure and Morphology of 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20 p-Xylene Solvate: A Joint Experimental and Simulation Study

    Directory of Open Access Journals (Sweden)

    Fanfan Shen

    2014-11-01

    Full Text Available The crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaiso-wurtzitane (CL-20 p-xylene solvate, and the solvent effects on the crystal faces of CL-20 were studied through a combined experimental and theoretical method. The properties were analyzed by thermogravimetry-differential scanning calorimetry (TG-DSC, Fourier transform infrared spectroscopy (FTIR and X-ray diffraction (XRD.The growth morphology of CL-20p-xylene solvate crystal was predicted with a modified attachment energy model. The crystal structure of CL-20p-xylene solvate belonged to the Pbca space group with the unit cell parameters, a = 8.0704(12 Å, b=13.4095(20 Å, c = 33.0817(49 Å, and Z = 4, which indicated that the p-xylene solvent molecules could enter the crystal lattice of CL-20 and thus the CL-20 p-xylene solvate is formed. According to the solvent-effected attachment energy calculations, (002 and (11−1 faces should not be visible at all, while the percentage area of the (011 face could be increased from 7.81% in vacuum to 12.51% in p-xylene solution. The predicted results from the modified attachment energy model agreed very well with the observed morphology of crystals grown from p-xylene solution.

  3. The crystal structure and morphology of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) p-xylene solvate: a joint experimental and simulation study.

    Science.gov (United States)

    Shen, Fanfan; Lv, Penghao; Sun, Chenghui; Zhang, Rubo; Pang, Siping

    2014-11-13

    The crystal structure of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaiso-wurtzitane (CL-20) p-xylene solvate, and the solvent effects on the crystal faces of CL-20 were studied through a combined experimental and theoretical method. The properties were analyzed by thermogravimetry-differential scanning calorimetry (TG-DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).The growth morphology of CL-20p-xylene solvate crystal was predicted with a modified attachment energy model. The crystal structure of CL-20p-xylene solvate belonged to the Pbca space group with the unit cell parameters, a=8.0704(12) Å, b=13.4095(20) Å, c=33.0817(49) Å, and Z=4, which indicated that the p-xylene solvent molecules could enter the crystal lattice of CL-20 and thus the CL-20 p-xylene solvate is formed. According to the solvent-effected attachment energy calculations, (002) and (11-1) faces should not be visible at all, while the percentage area of the (011) face could be increased from 7.81% in vacuum to 12.51% in p-xylene solution. The predicted results from the modified attachment energy model agreed very well with the observed morphology of crystals grown from p-xylene solution.

  4. Crystallization of Trehalose in Frozen Solutions and its Phase Behavior during Drying

    Energy Technology Data Exchange (ETDEWEB)

    Sundaramurthi, Prakash; Patapoff, Thomas W.; Suryanarayanan, Raj (Genentech); (UMM)

    2015-02-19

    To study the crystallization of trehalose in frozen solutions and to understand the phase transitions during the entire freeze-drying cycle. Aqueous trehalose solution was cooled to -40 C in a custom-designed sample holder. The frozen solution was warmed to -18 C and annealed, and then dried in the sample chamber of the diffractometer. XRD patterns were continuously collected during cooling, annealing and drying. After cooling, hexagonal ice was the only crystalline phase observed. However, upon annealing, crystallization of trehalose dihydrate was evident. Seeding the frozen solution accelerated the solute crystallization. Thus, phase separation of the lyoprotectant was observed in frozen solutions. During drying, dehydration of trehalose dihydrate yielded a substantially amorphous anhydrous trehalose. Crystallization of trehalose, as trehalose dihydrate, was observed in frozen solutions. The dehydration of the crystalline trehalose dihydrate to substantially amorphous anhydrate occurred during drying. Therefore, analyzing the final lyophile will not reveal crystallization of the lyoprotectant during freeze-drying. The lyoprotectant crystallization can only become evident by continuous monitoring of the system during the entire freeze-drying cycle. In light of the phase separation of trehalose in frozen solutions, its ability to serve as a lyoprotectant warrants further investigation.

  5. Picosecond laser pulse-driven crystallization behavior of SiSb phase change memory thin films

    International Nuclear Information System (INIS)

    Huang Huan; Li Simian; Zhai Fengxiao; Wang Yang; Lai Tianshu; Wu Yiqun; Gan Fuxi

    2011-01-01

    Highlights: → We reported crystallization dynamics of a novel SiSb phase change material. → We measured optical constants of as-deposited and irradiated SiSb areas. → Optical properties of as-deposited and irradiated SiSb thin film were compared. → Crystallization of irradiated SiSb was confirmed by using AFM and micro-Raman spectra. → The heat conduction effect of lower metal layer of multi-layer films was studied. - Abstract: Transient phase change crystallization process of SiSb phase change thin films under the irradiation of picosecond (ps) laser pulse was studied using time-resolved reflectivity measurements. The ps laser pulse-crystallized domains were characterized by atomic force microscope, Raman spectra and ellipsometrical spectra measurements. A reflectivity contrast of about 15% can be achieved by ps laser pulse-induced crystallization. A minimum crystallization time of 11 ns was achieved by a low-fluence single ps laser pulse after pre-irradiation. SiSb was shown to be very promising for fast phase change memory applications.

  6. The Relationships between Morphological Characteristics and Foraging Behavior in Four Selected Species of Shorebirds and Water Birds Utilizing Tropical Mudflats

    Directory of Open Access Journals (Sweden)

    Nor Atiqah Norazlimi

    2015-01-01

    Full Text Available A study was conducted to investigate the relationship between the physical morphology of shorebirds and water birds (i.e., Lesser adjutant (Leptoptilos javanicus, Common redshank (Tringa totanus, Whimbrel (Numenius phaeopus, and Little heron (Butorides striata and their foraging behavior in the mudflats area of Selangor, Peninsular Malaysia, from August 2013 to July 2014 by using direct observation techniques (using binoculars and a video recorder. The actively foraging bird species were watched, and their foraging activities were recorded for at least 30 seconds for up to a maximum of five minutes. A Spearman Rank Correlation highlighted a significant relationship between bill size and foraging time (R=0.443, p<0.05, bill size and prey size (R=-0.052, p<0.05, bill size and probing depth (R=0.42, p=0.003, and leg length and water/mud depth (R=0.706, p<0.005. A Kruskal-Wallis Analysis showed a significant difference between average estimates of real probing depth of the birds (mm and species (H=15.96, p=0.0012. Three foraging techniques were recorded: pause-travel, visual-feeding, and tactile-hunting. Thus, morphological characteristics of bird do influence their foraging behavior and strategies used when foraging.

  7. Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance.

    Science.gov (United States)

    Sabetghadam, Anahid; Seoane, Beatriz; Keskin, Damla; Duim, Nicole; Rodenas, Tania; Shahid, Salman; Sorribas, Sara; Le Guillouzer, Clément; Clet, Guillaume; Tellez, Carlos; Daturi, Marco; Coronas, Joaquin; Kapteijn, Freek; Gascon, Jorge

    2016-05-10

    Mixed-matrix membranes (MMMs) comprising NH 2 -MIL-53(Al) and Matrimid ® or 6FDA-DAM have been investigated. The MOF loading has been varied between 5 and 20 wt%, while NH 2 -MIL-53(Al) with three different morphologies: nanoparticles, nanorods and microneedles have been dispersed in Matrimid ® . The synthesized membranes have been tested in the separation of CO 2 from CH 4 in an equimolar mixture. At 3 bar and 298 K for 8 wt% MOF loading, incorporation of NH 2 -MIL-53(Al) nanoparticles leads to the largest improvement compared to nanorods and microneedles. The incorporation of the best performing filler, i.e. NH 2 -MIL-53(Al) nanoparticles, to the highly permeable 6FDA-DAM has a larger effect, and the CO 2 permeability increased up to 85 % with slightly lower selectivities for 20 wt% MOF loading. Specifically, these membranes have a permeability of 660 Barrer with CO 2 /CH 4 separation factor of 28, leading to a performance very close to the Robeson limit of 2008. Furthermore, a new non-destructive technique based on Raman spectroscopy mapping is introduced to assess the homogeneity of the filler dispersion in the polymer matrix. The MOF contribution can be calculated by modelling the spectra. The determined homogeneity of the MOF filler distribution in the polymer is confirmed by FIB-SEM analysis.

  8. Thermally sensitive block copolymer particles prepared via aerosol flow reactor method: Morphological characterization and behavior in water.

    Science.gov (United States)

    Nykänen, Antti; Rahikkala, Antti; Hirvonen, Sami-Pekka; Aseyev, Vladimir; Tenhu, Heikki; Mezzenga, Raffaele; Raula, Janne; Kauppinen, Esko; Ruokolainen, Janne

    2012-10-23

    This work describes properties of thermo-sensitive submicron sized particles having the same chemical composition but different morphologies. These particles have been prepared with an aerosol technique using dimethylformamide solutions of linear polystyrene-block-poly(N-isopropylacrylamide-block-polystyrene, PS-b-PNIPAM-b-PS. The particles were characterized by cryo-electron microscopy, microcalorimetry, and light scattering. Block-copolymers self-assembled within the particles forming onion-like, gyroid-like, and spherical morphologies having poly(N-isopropylacrylamide) matrix and physically cross-linking polystyrene domains. The particles were dispersed in aqueous media and their behavior in water was studied both below and above the lower critical solution temperature of poly(N-isopropylacrylamide). We found out that the particles with spherical and gyroid-like morphologies swell considerably in water at 20 °C, whereas at 40 °C the particles resemble more of those studied without water treatment. Light scattering experiments showed that the particles gradually aggregate and precipitate with time at 40 °C. Microcalorimetric studies revealed for all three studied morphologies that PNIPAM undergoes a two-step transition due to the different hydration levels of PNIPAM inside and outside the particles. Thicknesses of the PS and PNIPAM layers within the onion-like particles were analyzed using the TEM micrographs by fitting a model of electron density to the integrated electron intensity data. The surface layer of the particles was found out to be PNIPAM, which was supported by light scattering and microcalorimetry. It was also found out from the TEM micrograph analysis that the width of the outmost PS layer is considerably thinner than the one in the dry state prior to immersion in water, and a degradation scheme is proposed to explain these results.

  9. Oriented Crystallization and Mechanical Properties of Polypropylene Nucleated on Fibrillated Polytetrafluorethylene Scaffolds

    NARCIS (Netherlands)

    van der Meer, D.W.; Milazzo, Daniel; Sanguineti, Aldo; Vancso, Gyula J.

    2005-01-01

    It is known that friction deposited polytetrafluoroethylene (PTFE) layers are able to nucleate crystallization of thin films of isotactic polypropylene (iPP). In order to investigate the influence of PTFE on the crystallization behavior and morphology of iPP in bulk, PTFE-particles of two different

  10. Using safe materials to control Varroa mites with studying grooming behavior of honey bees and morphology of Varroa over winter

    Directory of Open Access Journals (Sweden)

    Hossam F. Abou-Shaara

    2017-12-01

    Full Text Available Extracts of drone larvae and propolis as safe materials are anticipated to boost the grooming behavior of honey bees against Varroa mites. It is also expected that grooming behavior of bees and morphology of Varroa are stable during the least active period of the year to bee colonies (i.e winter. Sugar syrup alone or mixed with drone larvae extract or propolis extract were examined as potential Varroa control materials to test these hypothesizes. Moreover, percentages of groomed mites along with body lengths and widths of Varroa were studied on weekly basis during winter. The results showed that propolis extract was able to increase the number of fallen mites under field conditions but with lethal impacts on bee workers in the laboratory than extract of drone larvae or sugar syrup. All the treatments were not able to boost the grooming behavior of bees. The results proved that grooming behavior was stable during winter. Therefore, it is better to select colonies with grooming potential against Varroa during winter in selection programs. December was significantly the minimal month in percentage of groomed mites based on the overall means. Means of measured characteristics of Varroa declined significantly over the study period. For beekeepers, using sugar syrup as spray on bees during regularly colony inspection can help managing Varroa populations without harming the bees.

  11. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang

    2016-01-01

    scanning calorimetry (DSC) measurements. The data obtained from the stretched samples within 70-90 degrees C showed that all of the formed crystals are disordered alpha' form with more compact chain packing than that of the cold crystallization. Upon stretching at 70 degrees C, the mesocrystal appears......Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...... in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally...

  12. Unique crystallization behavior of sodium manganese pyrophosphate Na2MnP2O7 glass and its electrochemical properties

    Directory of Open Access Journals (Sweden)

    Morito Tanabe

    2017-06-01

    Full Text Available Crystallization behavior of Na2MnP2O7 precursor glass was examined. Layered type Na2MnP2O7 was formed at 461 °C for 3 h in N2 filled electric furnace. Irreversible phase change was confirmed from layered Na2MnP2O7 to β-Na2MnP2O7 over 600 °C. At 650 °C crystallized phase was completely changed to β-phase. By means of charge and discharge testing it is found that layered Na2MnP2O7 is also active as cathode in sodium ion batteries. We found glass-ceramics technology is one of the suitable process for the synthesis of layered Na2MnP2O7 cathode without any complicate process.

  13. Morphological, behavioral, and genetic divergence of sympatric morphotypes of the treefrog Polypedates leucomystax in Peninsular Malaysia

    DEFF Research Database (Denmark)

    Narins, Peter M; Feng, Albert S.; Yong, Hoi Sen

    1998-01-01

    We studied the vocal behaviors of two distinct morphs of the Old World treefrog Polypedates leucomystax (Rhacophoridae) in Peninsula Malaysia in the animals' natural habitat. Morph A is the larger of the two forms, exhibits a series of dorsal stripes, produces three separate call types, and illus......We studied the vocal behaviors of two distinct morphs of the Old World treefrog Polypedates leucomystax (Rhacophoridae) in Peninsula Malaysia in the animals' natural habitat. Morph A is the larger of the two forms, exhibits a series of dorsal stripes, produces three separate call types...

  14. Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice.

    Science.gov (United States)

    Qin, M; Xia, Z; Huang, T; Smith, C B

    2011-10-27

    Several lines of clinical evidence support the idea that fragile X syndrome (FXS) may involve a dysregulation of hypothalamic-pituitary-adrenal axis function [Wisbeck et al. (2000) J Dev Behav Pediatr 21:278-282; Hessl et al. (2002) Psychoneuroendocrinology 27:855-872]. We had tested this idea in a mouse model of FXS (Fmr1 KO) and found that the hormonal response to acute stress was similar to that of wild-type (WT) mice [Qin and Smith (2008) Psychoneuroendocrinology 33:883-889]. We report here responses to chronic stress (CS) in Fmr1 KO mice. Following restraint for 120 min/d, 10 consecutive days, we assessed dendrite and spine morphology in basolateral amygdala (BLA). We also monitored behavior in an elevated plus maze (EPM) and the hormonal response to this novel spatial environment. After CS, mice of both genotypes underwent adrenal hypertrophy, but effects were greater in WT mice. Behavior in the EPM indicated that only WT mice had the expected increase in anxiety following CS. Serum corticosterone and adrenocorticotropic hormone (ACTH) levels were both increased following the spatial novelty of EPM, and there were no differences between genotypes in the hormonal responses. BLA dendritic branching increased proximal to the soma in WT, but in Fmr1 KO mice branching was unaffected close to the soma and slightly decreased at one point distal to the soma. Similarly, spine density on apical and basal dendrites increased in WT but decreased in Fmr1 KO mice. Spine length on apical and basal dendrites increased in WT but was unaffected in Fmr1 KO mice. These differences in behavioral response and effects on neuron morphology in BLA suggest a diminished adaptive response of Fmr1 KO mice. Published by Elsevier Ltd.

  15. Morphological, behavioral, and genetic divergence of sympatric morphotypes of the treefrog Polypedates leucomystax in Peninsular Malaysia

    DEFF Research Database (Denmark)

    Narins, Peter M; Feng, Albert S.; Yong, Hoi Sen

    1998-01-01

    We studied the vocal behaviors of two distinct morphs of the Old World treefrog Polypedates leucomystax (Rhacophoridae) in Peninsula Malaysia in the animals' natural habitat. Morph A is the larger of the two forms, exhibits a series of dorsal stripes, produces three separate call types, and illus...

  16. Reverse micelles directed synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides and investigation of their crystal structure and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Matejova, Lenka, E-mail: matejova@icpf.cas.cz [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Catalysis and Reaction Engineering, Rozvojova 135, 165 02 Prague 6 (Czech Republic); Vales, Vaclav [Charles University in Prague, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Fajgar, Radek [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Aerosols and Laser Studies, Rozvojova 135, 165 02 Prague 6 (Czech Republic); Matej, Zdenek; Holy, Vaclav [Charles University in Prague, Faculty of Mathematics and Physics, Department of Condensed Matter Physics, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Solcova, Olga [Institute of Chemical Process Fundamentals of the ASCR, v. v. i., Department of Catalysis and Reaction Engineering, Rozvojova 135, 165 02 Prague 6 (Czech Republic)

    2013-02-15

    The synthesis of TiO{sub 2}-CeO{sub 2} mixed oxides based on the sol-gel process controlled within reverse micelles of non-ionic surfactant Triton X-114 in cyclohexane is reported. The crystallization, phase composition, trends in nanoparticles growth and porous structure properties are studied as a function of Ti:Ce molar composition and annealing temperature by in-situ X-ray diffraction, Raman spectroscopy and physisorption. The brannerite-type CeTi{sub 2}O{sub 6} crystallizes as a single crystalline phase at Ti:Ce molar composition of 70:30 and in the mixture with cubic CeO{sub 2} and anatase TiO{sub 2} for composition 50:50. At Ti:Ce molar ratios 90:10 and 30:70 the mixtures of TiO{sub 2} anatase, rutile and cubic CeO{sub 2} appear. In these mixtures TiO{sub 2} rutile is formed at higher temperatures than conventionally. Additionally, the amount of a present amorphous phase in individual mixtures was estimated from diffraction data. The porous structure morphology depends both on molar composition and annealing temperature. This is correlated with the presence of carbon impurities of different character. - Graphical abstract: The phase composition of Ti90--Ce10 and Ti50--Ce50 oxide mixtures as a function of annealing temperature. The amount of the amorphous phase was estimated and attributed to TiO{sub 2}. Highlights: Black-Right-Pointing-Pointer Ti/Ce oxides were prepared using reverse micelles of Triton X-114. Black-Right-Pointing-Pointer Crystallization of TiO{sub 2}, CeO{sub 2} or CeTi{sub 2}O{sub 6} depends on Ti:Ce molar ratio. Black-Right-Pointing-Pointer Amorphous phase attributed to TiO{sub 2} was identified. Black-Right-Pointing-Pointer Metal oxides surface area is influenced by the character of present carbon impurities.

  17. Growth morphology of CL-20/HMX cocrystal explosive: insights from solvent behavior under different temperatures.

    Science.gov (United States)

    Han, Gang; Li, Qi-Fa; Gou, Rui-Jun; Zhang, Shu-Hai; Ren, Fu-de; Wang, Li; Guan, Rong

    2017-11-28

    A 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model was constructed to investigate the effect of temperature on cocrystal morphology. A constant volume and temperature molecular dynamics (NVT-MD) simulation was performed on the interfacial model at various temperatures (295-355 K, 20 K intervals). The surface electrostatic potential (ESP) of the CL-20/HMX cocrystal structure and IPA molecule were studied by the B3LYP method at 6-311++G (d, p) level. The surface energies, polarities, adsorption energy, mass density distribution, radial distribution function (RDF), mean square displacement (MSD) and relative changes of attachment energy were analyzed. The results show that polarities of (1 0 0) and (0 1 1) cocrystal surfaces may be more negative and affected by IPA solvent. The adsorption energy per area indicates that growth of the (1 0-2) face in IPA conditions may be more limited, while the (1 0 0) face tends to grow more freely. MSD and diffusion coefficient (D) analyses demonstrated that IPA molecules gather more easily on the cocrystal surface at lower temperatures, and hence have a larger effect on the growth of cocrystal faces. RDF analysis shows that, with the increasing of temperature, the strength of hydrogen bond interactions between cocrystal and solvent becomes stronger, being highest at 335 K for the (1 0 0) and (0 1 1) interfacial models. Results of relative changes of modified attachment energy show that (1 0 0) and (0 1 1) faces tends to be larger than other faces. Moreover, the predicted morphologies at 295 and 355 K are consistent with experimental values, proving that the CL-20/HMX-IPA interfacial model is a reasonable one for this study. Graphical Abstract Construction of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) /1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane (HMX)-isopropanol (IPA) interfacial model, analysis

  18. Crystallization phenomena in slags

    Science.gov (United States)

    Orrling, Carl Folke

    2000-09-01

    The crystallization of the mold slag affects both the heat transfer and the lubrication between the mold and the strand in continuous casting of steel. In order for mold slag design to become an engineering science rather than an empirical exercise, a fundamental understanding of the melting and solidification behavior of a slag must be developed. Thus it is necessary to be able to quantify the phenomena that occur under the thermal conditions that are found in the mold of a continuous caster. The double hot thermocouple technique (DHTT) and the Confocal Laser Scanning Microscope used in this study are two novel techniques for investigating melting and solidification phenomena of transparent slags. Results from these techniques are useful in defining the phenomena that occur when the slag film infiltrates between the mold and the shell of the casting. TTT diagrams were obtained for various slags and indicated that the onset of crystallization is a function of cooling rate and slag chemistry. Crystal morphology was found to be dependent upon the experimental temperature and four different morphologies were classified based upon the degree of melt undercooling. Continuous cooling experiments were carried out to develop CCT diagrams and it was found that the amount and appearance of the crystalline fraction greatly depends on the cooling conditions. The DHTT can also be used to mimic the cooling profile encountered by the slag in the mold of a continuous caster. In this differential cooling mode (DCT), it was found that the details of the cooling rate determine the actual response of the slag to a thermal gradient and small changes can lead to significantly different results. Crystal growth rates were measured and found to be in the range between 0.11 mum/s to 11.73 mum/s depending on temperature and slag chemistry. Alumina particles were found to be effective innoculants in oxide melts reducing the incubation time for the onset of crystallization and also extending

  19. Flexoelectric behavior in PIN-PMN-PT single crystals over a wide temperature range

    Science.gov (United States)

    Shu, Longlong; Li, Tao; Wang, Zhiguo; Li, Fei; Fei, Linfeng; Rao, Zhenggang; Ye, Mao; Ke, Shanming; Huang, Wenbin; Wang, Yu; Yao, Xi

    2017-10-01

    Flexoelectricity couples strain gradient to polarization and usually exhibits a large coefficient in the paraelectric phase of the ferroelectric perovskites. In this study, we employed the relaxor 0.3Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PIN-PMN-PT) single crystals to study the relationship between flexoelectric coefficients and the crystal structure. The flexoelectric coefficients in PIN-PMN-PT single crystal are found to vary from 57 μC/m at orthorhombic/monoclinic phase to 135 μC/m at tetragonal phase, and decreases to less than 27 μC/m in the temperature above Tm. This result discloses that ferroelectricity can significantly enhance the flexoelectricity in this kind of perovskite.

  20. Shear and Rapeseed Oil Addition Affect the Crystal Polymorphic Behavior of Milk Fat

    DEFF Research Database (Denmark)

    Kaufmann, Niels; Kirkensgaard, Jacob Judas Kain; Andersen, Ulf

    2013-01-01

    The effect of shear on the crystallization kinetics of anhydrous milk fat (AMF) and blends with 20 and 30 % w/w added rapeseed oil (RO) was studied. Pulse 1H NMR was used to follow the a to b0 polymorphic transition. The NMR method was confirmed and supported by SAXS/WAXS experiments. Samples were...... faster in the presence of RO allowing more room for the conformational changes to occur. Final SFC decreased with increasing RO content. Shear applied in 20 and 30 % blends caused the destruction of b0-related 3L structure leaving only 2L packing. In AMF and statically crystallized samples, both 3L and 2...

  1. Nonlinear behavior of structural and luminescent properties in Gd(NbxTa1-x)O4 mixed crystals

    Science.gov (United States)

    Voloshyna, Olesia; Sidletskiy, Oleg; Spassky, Dmitry; Gerasymov, Iaroslav; Romet, Ivo; Belsky, Andrey

    2018-02-01

    Ceramic samples of gadolinium tantalo-niobate mixed crystals were obtained by the solid-state technique. The dependence of luminescence properties on the Nb/Ta ratio in the Gd(NbxTa1-x)O4 system is studied in the 5-450 K temperature range, including thermostimulated luminescence curves in the series of solid solutions. The relation of nonlinear behavior of light output with x variation to non-homogeneous distribution of Nb and Ta in solid solutions is discussed.

  2. Morphological and Behavioral Changes in the Pathogenesis of a Novel Mouse Model of Communicating Hydrocephalus

    Science.gov (United States)

    McMullen, Allison B.; Baidwan, Gurlal S.; McCarthy, Ken D.

    2012-01-01

    The Ro1 model of hydrocephalus represents an excellent model for studying the pathogenesis of hydrocephalus due to its complete penetrance and inducibility, enabling the investigation of the earliest cellular and histological changes in hydrocephalus prior to overt pathology. Hematoxylin and eosin staining, immunofluorescence and electron microscopy were used to characterize the histopathological events of hydrocephalus in this model. Additionally, a broad battery of behavioral tests was used to investigate behavioral changes in the Ro1 model of hydrocephalus. The earliest histological changes observed in this model were ventriculomegaly and disorganization of the ependymal lining of the aqueduct of Sylvius, which occurred concomitantly. Ventriculomegaly led to thinning of the ependyma, which was associated with periventricular edema and areas of the ventricular wall void of cilia and microvilli. Ependymal denudation was subsequent to severe ventriculomegaly, suggesting that it is an effect, rather than a cause, of hydrocephalus in the Ro1 model. Additionally, there was no closure of the aqueduct of Sylvius or any blockages within the ventricular system, even with severe ventriculomegaly, suggesting that the Ro1 model represents a model of communicating hydrocephalus. Interestingly, even with severe ventriculomegaly, there were no behavioral changes, suggesting that the brain is able to compensate for the structural changes that occur in the pathogenesis of hydrocephalus if the disorder progresses at a sufficiently slow rate. PMID:22291910

  3. Morphology of Diamond Layers Grown on Different Facets of Single Crystal Diamond Substrates by a Microwave Plasma CVD in CH4-H2-N2 Gas Mixtures

    Directory of Open Access Journals (Sweden)

    Evgeny E. Ashkinazi

    2017-06-01

    Full Text Available Epitaxial growth of diamond films on different facets of synthetic IIa-type single crystal (SC high-pressure high temperature (HPHT diamond substrate by a microwave plasma CVD in CH4-H2-N2 gas mixture with the high concentration (4% of nitrogen is studied. A beveled SC diamond embraced with low-index {100}, {110}, {111}, {211}, and {311} faces was used as the substrate. Only the {100} face is found to sustain homoepitaxial growth at the present experimental parameters, while nanocrystalline diamond (NCD films are produced on other planes. This observation is important for the choice of appropriate growth parameters, in particular, for the production of bi-layer or multilayer NCD-on-microcrystalline diamond (MCD superhard coatings on tools when the deposition of continuous conformal NCD film on all facet is required. The development of the film morphology with growth time is examined with SEM. The structure of hillocks, with or without polycrystalline aggregates, that appear on {100} face is analyzed, and the stress field (up to 0.4 GPa within the hillocks is evaluated based on high-resolution mapping of photoluminescence spectra of nitrogen-vacancy NV optical centers in the film.

  4. Transition between metamaterial and photonic-crystal behavior in arrays of dielectric rods

    Czech Academy of Sciences Publication Activity Database

    Dominec, Filip; Kadlec, Christelle; Němec, Hynek; Kužel, Petr; Kadlec, Filip

    2014-01-01

    Roč. 22, č. 25 (2014), s. 30492-30503 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA14-25639S Institutional support: RVO:68378271 Keywords : metamaterials * photonic crystals * negative refractive index * dielectrics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.488, year: 2014

  5. Effect of H{sup +} ion implantation on structural, morphological, optical and dielectric properties of L-arginine monohydrochloride monohydrate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sangeetha, K. [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India); Kumar, P. [Inter-University Accelerator Centre, P.O. Box 10502, Aruna Asaf Ali Marg, New Delhi 110067 (India); Bhagvannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110012 (India); Ramamurthi, K. [Crystal Growth and Thin film Laboratory, Department of Physics, School of Physics, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu (India)

    2011-06-15

    L-arginine monohydrochloride monohydrate (LAHCl) single crystals have been implanted with 100 keV H{sup +} ions at different ion fluence ranging from 10{sup 12} to 10{sup 15} ions/cm{sup 2}. Implanted LAHCl single crystals have been investigated for property changes. Crystal surface and crystalline perfection of the pristine and implanted crystals were analyzed by atomic force microscope and high-resolution X-ray diffraction studies, respectively. Optical absorption bands induced by colour centers, refractive index and birefringence, mechanical stability and dielectric constant of implanted crystals were studied at different ion fluence and compared with that of pristine LAHCl single crystal.

  6. Influence of Cooling Holes Distribution on High Cycle Fatigue Fracture Behavior of DD6 Single Crystal Superalloy

    Directory of Open Access Journals (Sweden)

    HU Chun-yan

    2017-04-01

    Full Text Available The modeling air-cooled turbine blades specimens of DD6 single crystal superalloy with different distributions of cooling film holes were used to study the high cycle fatigue properties at room temperature. The SEM fracture observation was carried out. The results indicate that the cooling holes have significant effects on the high fatigue life of DD6 single crystal superalloy. The average life of non-hole specimens is four times of that of the three-row holes specimens under the same testing conditions. However, the distribution of cooling film holes has relatively less influence on fatigue life. The fracture of the specimens with non-hole is linear source by SEM analysis, but the cracks are found around the cooling film holes and the fracture of the specimens with single row to three rows is a typical multi-source rupture, and cracks all initiate from near film holes. According to fracture and crystallography theoretical conjecture, the cracks propagate along the {001} slip plane for non-hole, single-row holes and the middle location of the multi-row holes specimens. However, the cracks around the holes grow along the {111} slip plane for upper and lower holes of the specimens with multi-row holes. In addition, the distribution of stress field along cooling holes of four different specimens was analysed by FEM method. The results show that the fracture location and morphology of specimens are consistent well with numerical simulation analysis.

  7. On morphologies, microsegregation, and mechanical behavior of directionally solidified cobalt-base superalloy at medium cooling rate

    Science.gov (United States)

    Chu, Shuangjie; Li, Jianguo; Liu, Zhongyuan; Shi, Zhengxing; Fu, Hengzhi

    1994-03-01

    A newly developed experimental setup that can provide a temperature gradient of 1300 K/cm has been used in the research of the morphologies, microsegregation, and mechanical behavior of directionally solidified cobalt-base superalloy (known as K10 in PR China) at medium cooling rates from 38 to 60 K/s. Experimental results show that the primary and secondary dendrite spacings of K10 become less than one-fifth and one-eighth, respectively, of those obtainable with a conventional 100 K/cm temperature gradient and a cooling rate below 1 K/s: the carbides are directionally arrayed and the carbides’ morphology changes from islands of general cast state into worms; microsegregation is almost completely eliminated; the mechanical properties, as can be expected, are greatly superior to those obtainable with 100 K/cm temperature gradient; at 1073 K, creep-rupture strength increases from 167 to 196 MPa; endurance life is raised from 10 to 30 hours; the reduction in area increases from 12 to 52 pct; and the specific elongation increases from 17 to 46 pct. And with the increase of cooling rate, there are always corresponding improvements of mechanical properties of K10. Otherwise, the fractography of superfine columnar structure samples is high-toughness transgranular fracture, with cracks originating at the edge of carbides.

  8. Nanocomposites of cellulose/iron oxide: influence of synthesis conditions on their morphological behavior and thermal stability

    International Nuclear Information System (INIS)

    Ma Mingguo; Zhu Jiefang; Li Shuming; Jia Ning; Sun Runcang

    2012-01-01

    Nanocomposites of cellulose/iron oxide have been successfully prepared by hydrothermal method using cellulose solution and Fe(NO 3 ) 3 ·9H 2 O at 180 °C. The cellulose solution was obtained by the dissolution of microcrystalline cellulose in NaOH/urea aqueous solution, which is a good system to dissolve cellulose and favors the synthesis of iron oxide without needing any template or other reagents. The phases, microstructure, and morphologies of nanocomposites were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectra (EDS). The effects of the heating time, heating temperature, cellulose concentration, and ferric nitrate concentration on the morphological behavior of products were investigated. The experimental results indicated that the cellulose concentration played an important role in both the phase and shape of iron oxide in nanocomposites. Moreover, the nanocomposites synthesized by using different cellulose concentrations displayed different thermal stabilities. - Highlights: ► Nanocomposites of cellulose/iron oxide have been prepared by hydrothermal method. ► The cellulose concentration played an important role in the phase of iron oxide. ► The cellulose concentration played an important role in the shape of iron oxide. ► The samples displayed different thermal stabilities.

  9. Morphological and behavioral responses of zebrafish after 24h of ketamine embryonic exposure.

    Science.gov (United States)

    Félix, Luís M; Serafim, Cindy; Martins, Maria J; Valentim, Ana M; Antunes, Luís M; Matos, Manuela; Coimbra, Ana M

    2017-04-15

    Ketamine, one anesthetic used as an illicit drug, has been detected both in freshwater and marine ecosystems. However, knowledge of its impact on aquatic life is still limited. This study aimed to test its effects in zebrafish embryos by analyzing its time- and dose-dependent developmental toxicity and long-term behavioral changes. The 24h-LC 50 was calculated from percent survival using probit analysis. Based on the 24h-LC 50 (94.4mgL -1 ), embryos (2hour post-fertilization - hpf) were divided into four groups, including control, and exposed for 24h to ketamine concentrations of 50, 70 or 90mgL -1 . Developmental parameters were evaluated on the course of the experimental period, and anatomical abnormalities and locomotor deficits were analyzed at 144hpf. Although the portion of ketamine transferred into the embryo was higher in the lowest exposed group (about 0.056±0.020pmol per embryo), the results showed that endpoints such as increased mortality, edema, heart rate alterations, malformation and abnormal growth rates were significantly affected. At 144hpf, the developmental abnormalities included thoracic and trunk abnormalities in the groups exposed to 70 and 90mgL -1 . Defects in cartilage (alcian blue) and bone (calcein) elements also corroborated the craniofacial anomalies observed. A significant up-regulation of the development-related gene nog3 was detected by qRT-PCR at 8 hpf. Early exposure to ketamine also resulted in long-term behavioral changes, such as an increase in thigmotaxis and disruption of avoidance behavior at 144 hpf. Altogether, this study provides new evidence on the ketamine teratogenic potential, indicating a possible pharmacological impact of ketamine in aquatic environments. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Evaluation of the long-term corrosion behavior of dental amalgams: influence of palladium addition and particle morphology.

    Science.gov (United States)

    Colon, Pierre; Pradelle-Plasse, Nelly; Galland, Jacques

    2003-05-01

    The purpose of this investigation was to evaluate the long-term corrosion behavior of experimental amalgams as a function of particle morphology and palladium content. Samples of four experimental high copper amalgams were prepared according to ADA specifications. Two of them had the same chemical composition but one had lathe cut particles (LCP) and the other had spherical particles (SP). The two others had spherical powders with an addition of 0.5 wt% of palladium (SP 0.5) and 1 wt% of palladium(SP 1) for the other. Corrosion resistance was evaluated by electrochemical techniques in Ringer's solution in a thermostated cell at 37 degrees C for samples aged 5, 8, 12, 16 months and 10 years. Potentiokinetic curves were drawn and the potential and the current density corresponding to the first anodic peak were registered. For all the amalgam samples the corrosion behavior improves over the 10-year period. SP samples exhibit a better behavior than LCP. Palladium addition improves corrosion behavior as compared to samples without palladium. No real difference is found regarding the amount of palladium between 0.5 and 1%. The potentials progress from a range between 0 and 20 mV/SCE to a range of 60-80 after 10 years. The stabilization of the potential begins after only 16 months. Except for the LCP, all the values converge to the same level of 80 mV/SCE. The addition of no more than 0.5 wt% Palladium in a high copper amalgam powder improves the corrosion behavior of the amalgam up to a period of 10 years. The potential of the first anodic peak increases for each amalgam, probably in relation to the evolution of the structure of the material. Clinically, it is of interest to consider the good electrochemical behavior of older restorations when contemplating the repair or replacement of such fillings. At the same time, galvanic current can occur when a new amalgam restoration is placed in contact with an old one even if the same amalgam is used. In this situation, the new

  11. Effect of reinforcing particle type on morphology and age-hardening behavior of Al–4.5 wt.% Cu based nanocomposites synthesized through mechanical milling

    International Nuclear Information System (INIS)

    Mostaed, A.; Saghafian, H.; Mostaed, E.; Shokuhfar, A.; Rezaie, H.R.

    2013-01-01

    The effects of reinforcing particle type (SiC and TiC) on morphology and precipitation hardening behavior of Al–4.5%Cu based nanocomposites synthesized via mechanical milling were investigated in the current work. In order to study the microstructure and morphology of mechanically milled powder, X-ray diffraction technique, scanning electron microscopy and high resolution transmission electron microscopy were utilized. Results revealed that at the early stages of mechanical milling, when reinforcing particles are polycrystal, the alloying process is enhanced more in the case of using the TiC particles as reinforcement. But, at the final stages of mechanical milling, when reinforcing particles are single crystal, the alloying process is enhanced more in the case of using the SiC ones. Transmission electron microscopy results demonstrated that Al–4.5 wt.%Cu based nanocomposite powders were synthesized and confirmed that the mutual diffusion of aluminum and copper occurs through the interfacial plane of (200). The hardness results showed that not only does introducing 4 vol.% of reinforcing particles (SiC or TiC) considerably decrease the porosity of the bulk composite samples, but also it approximately doubles the hardness of Al–4.5 wt.%Cu alloy (53.4 HB). Finally, apart from TEM and scanning electron microscopy observation which are localized, a decline in hardness in the TiC and SiC contained samples, respectively, after 1.5 and 2 h aging time at 473 K proves the fact that the size of SiC particles is smaller than the size of the TiC ones. - Highlights: ► HRTEM results show mutual diffusion of Al and Cu occurs through the (200) planes. ► TiC particles enhance alloying process more than the SiC ones at the early stages of MM. ► SiC particles enhance alloying process more than the TiC ones at the final stages of MM

  12. Differential impact of Met receptor gene interaction with early-life stress on neuronal morphology and behavior in mice.

    Science.gov (United States)

    Heun-Johnson, Hanke; Levitt, Pat

    2018-02-01

    Early adversity in childhood increases the risk of anxiety, mood, and post-traumatic stress disorders in adulthood, and specific gene-by-environment interactions may increase risk further. A common functional variant in the promoter region of the gene encoding the human MET receptor tyrosine kinase (rs1858830 ' C' allele) reduces expression of MET and is associated with altered cortical circuit function and structural connectivity. Mice with reduced Met expression exhibit changes in anxiety-like and conditioned fear behavior, precocious synaptic maturation in the hippocampus, and reduced neuronal arbor complexity and synaptogenesis. These phenotypes also can be produced independently by early adversity in wild-type mice. The present study addresses the outcome of combining early-life stress and genetic influences that alter timing of maturation on enduring functional and structural phenotypes. Using a model of reduced Met expression ( Met +/- ) and early-life stress from postnatal day 2-9, social, anxiety-like, and contextual fear behaviors in later life were measured. Mice that experienced early-life stress exhibited impairments in social interaction, whereas alterations in anxiety-like behavior and fear learning were driven by Met haploinsufficiency, independent of rearing condition. Early-life stress or reduced Met expression decreased arbor complexity of ventral hippocampal CA1 pyramidal neurons projecting to basolateral amygdala. Paradoxically, arbor complexity in Met +/- mice was increased following early-life stress, and thus not different from arbors in wild-type mice raised in control conditions. The changes in dendritic morphology are consistent with the hypothesis that the physiological state of maturation of CA1 neurons in Met +/- mice influences their responsiveness to early-life stress. The dissociation of behavioral and structural changes suggests that there may be phenotype-specific sensitivities to early-life stress.

  13. Influence of Particle Phase Morphology on the Hygroscopic Behavior of Atmospheric Aerosols

    Science.gov (United States)

    Hodas, N.; Zuend, A.; Flagan, R. C.; Seinfeld, J.

    2014-12-01

    While current models generally treat organic and mixed organic-inorganic aerosol particles as well-mixed liquids, these particles can exist in multiple phase states depending on their chemical composition and on ambient conditions such as relative humidity (RH). For example, multi-component particles can undergo phase separations in which an inorganic-electrolyte-rich phase and an organic-rich phase coexist within one particle. Organic aerosols have been shown to exist in an amorphous, highly viscous semi-solid state under atmospherically relevant conditions. Hygroscopic growth factors (GFs) of ten laboratory-generated, organic-inorganic aerosol systems with phase morphologies ranging from well-mixed liquids, to phase-separated particles, to viscous semi-solids were measured with the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe at RH values ranging from 30 - 90%. Measured GFs were compared to water-uptake calculations in which it was assumed that particles could be represented as thermodynamically ideal, well-mixed liquids, as well as those predicted by the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model. Both ideal and AIOMFAC-predicted GFs were in good agreement with experimental GFs for aerosol systems that exist as well-mixed liquids across the range of RHs tested; however, substantial disagreement between experimental and ideal GFs was observed for phase-separated particles. This disagreement was greatest at low to moderate RHs, whereas experimental GFs approached the ideal curve at high RH as phase-separated particles merged to a single phase with increased water content. AIOMFAC, which offers the ability to predict liquid-liquid and liquid-solid phase separations within a thermodynamic equilibrium computation, was within 10% of experimental GFs at all RHs for all aerosol systems. The assumption that water uptake is driven by ideal, equilibrium partitioning leads to errors in calculated particle

  14. Morphology, thermal properties and crystallization kinetics of ternary blends of the polylactide and starch biopolymers and nanoclay: The role of nanoclay hydrophobicity

    CSIR Research Space (South Africa)

    Wokadala, OC

    2015-08-01

    Full Text Available blend samples. Avrami bulk crystallization analysis and polarized optical microscopic observation demonstrated that hydrophobic clays hindered the crystallization of the PLA phase into the formation of disc-shaped spherulites. On the basis of obtained...

  15. Preparation, Morphology Transformation and Magnetic Behavior of Co3O4 Nano-Leaves

    International Nuclear Information System (INIS)

    Meng Ling-Rong; Zhou He-Ping; Peng Qing; Chen Wei-Meng; Chen Chin-Ping

    2010-01-01

    A series of cubic phase Co 3 O 4 nano-leaves were prepared via a combined approach of solution reaction and calcination. According to x-ray diffraction and electron microscopy, we find that the Co 3 O 4 grain size increases with calcination temperature. This can induce many gaps in the products. M-T and M-H magnetization measurements reveal the typical antiferromagnetic behavior of nano-leaves. The effective moments of the samples prepared at 300, 400 and 500°C are 5.6, 5.8 and 5.7μ B per formula unit (FU), respectively, larger than the bulk value of 4.14μ B /FU. (cross-disciplinary physics and related areas of science and technology)

  16. Magnetodielectric and Metalomagnetic 1D Photonic Crystals Homogenization: ε-μ Local Behavior

    Directory of Open Access Journals (Sweden)

    J. I. Rodríguez Mora

    2016-01-01

    Full Text Available A theory for calculating the effective optic response of photonic crystals with metallic and magnetic inclusions is reported, for the case when the wavelength of the electromagnetic fields is much larger than the lattice constant. The theory is valid for any type of Bravais lattice and arbitrary form of inclusions in the unitary cell. An equations system is obtained for macroscopic magnetic field and magnetic induction components expanding microscopic electromagnetic fields in Bloch waves. Permittivity and permeability effective tensors are obtained comparing the equations system with an anisotropic nonlocal homogenous medium. In comparison with other homogenization theories, this work uses only two tensors: nonlocal permeability and permittivity. The proposal showed here is based on the use of permeability equations, which are exact and very simple. We present the explicit form of these tensors in the case of binary 1D photonic crystals.

  17. First-order transition and tricritical behavior of the transverse crystal field spin-1 Ising model

    Science.gov (United States)

    Costabile, Emanuel; Viana, J. Roberto; de Sousa, J. Ricardo; de Arruda, Alberto S.

    2015-06-01

    The phase diagram of the spin-1 Ising model in the presence of a transverse crystal-field anisotropy (Dx) is studied within the framework of an effective-field theory with correlation. The effect of the coordination number (z) on the phase diagram in the T -Dx plane is investigated. We observe only second-order transitions for coordination number z Ricardo de Sousa and Branco, Phys. Rev. E 77 (2008) 012104] with a single tricritical point in the phase diagram.

  18. Crystallization Behavior of Poly(ethylene oxide) in Vertically Aligned Carbon Nanotube Array.

    Science.gov (United States)

    Sheng, Jiadong; Zhou, Shenglin; Yang, Zhaohui; Zhang, Xiaohua

    2018-03-27

    We investigate the effect of the presence of vertically aligned multiwalled carbon nanotubes (CNTs) on the orientation of poly(ethylene oxide) (PEO) lamellae and PEO crystallinity. The high alignment of carbon nanotubes acting as templates probably governs the orientation of PEO lamellae. This templating effect might result in the lamella planes of PEO crystals oriented along a direction parallel to the long axis of the nanotubes. The presence of aligned carbon nanotubes also gives rise to the decreases in PEO crystallinity, crystallization temperature, and melting temperature due to the perturbation of carbon nanotubes to the crystallization of PEO. These effects have significant implications for controlling the orientation of PEO lamellae and decreasing the crystallinity of PEO and thickness of PEO lamellae, which have significant impacts on ion transport in PEO/CNT composite and the capacitive performance of PEO/CNT composite. Both the decreased PEO crystallinity and the orientation of PEO lamellae along the long axes of vertically aligned CNTs give rise to the decrease in the charge transfer resistance, which is associated with the improvements in the ion transport and capacitive performance of PEO/CNT composite.

  19. Deuteration of human carbonic anhydrase for neutron crystallography: Cell culture media, protein thermostability, and crystallization behavior.

    Science.gov (United States)

    Koruza, K; Lafumat, B; Végvári, Á; Knecht, W; Fisher, S Z

    2018-05-01

    Deuterated proteins and other bio-derived molecules are important for NMR spectroscopy, neutron reflectometry, small angle neutron scattering, and neutron protein crystallography. In the current study we optimized expression media and cell culture conditions to produce high levels of 3 different deuterated human carbonic anhydrases (hCAs). The labeled hCAs were then characterized and tested for deuterium incorporation by mass spectrometry, temperature stability, and propensity to crystallize. The results show that is possible to get very good yields (>10 mg of pure protein per liter of cell culture under deuterated conditions) and that protein solubility is unaffected at the crystallization concentrations tested. Using unlabeled carbon source and recycled heavy water, we were able to get 65-77% deuterium incorporation, sufficient for most neutron-based techniques, and in a very cost-effective way. For most deuterated proteins characterized in the literature, the solubility and thermal stability is reduced. The data reported here is consistent with these observations and it was clear that there are measurable differences between hydrogenous and deuterated versions of the same protein in T m and how they crystallize. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Synergistic Effects of Nucleating Agents and Plasticizers on the Crystallization Behavior of Poly(lactic acid

    Directory of Open Access Journals (Sweden)

    Xuetao Shi

    2015-01-01

    Full Text Available The synergistic effect of nucleating agents and plasticizers on the thermal and mechanical performance of PLA nanocomposites was investigated with the objective of increasing the crystallinity and balancing the stiffness and toughness of PLA mechanical properties. Calcium carbonate, halloysite nanotubes, talc and LAK (sulfates were compared with each other as heterogeneous nucleating agents. Both the DSC isothermal and non-isothermal studies indicated that talc and LAK were the more effective nucleating agents among the selected fillers. Poly(D-lactic acid (PDLA acted also as a nucleating agent due to the formation of the PLA stereocomplex. The half crystallization time was reduced by the addition of talc to about 2 min from 37.5 min of pure PLA by the isothermal crystallization study. The dynamic mechanical thermal study (DMTA indicated that nanofillers acted as both reinforcement fillers and nucleating agents in relation to the higher storage modulus. The plasticized PLA studied by DMTA indicated a decreasing glass transition temperature with the increasing of the PEG content. The addition of nanofiller increased the Young’s modulus. PEG had the plasticization effect of increasing the break deformation, while sharply decreasing the stiffness and strength of PLA. The synergistic effect of nanofillers and plasticizer achieved the balance between stiffness and toughness with well-controlled crystallization.

  1. Crystal structure determination and thermal behavior upon melting of p-synephrine

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, Frédéric [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France); Négrier, Philippe [Laboratoire Ondes et Matière d' Aquitaine, Université de Bordeaux, UMR CNRS 5798, 351 cours de la Libération, 33 405 Talence Cedex (France); Corvis, Yohann [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France); Espeau, Philippe, E-mail: philippe.espeau@parisdescartes.fr [Unité de Technologies Chimiques et Biologiques pour la Santé, U1022 INSERM, UMR8258 CNRS, Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Sorbonne Paris Cité, 4 Avenue de l' Observatoire, 75006 Paris (France)

    2016-05-20

    Highlights: • The refinement of the crystal structure is achieved from X-ray powder diffraction. • P-Synephrine is revealed to be a racemic compound. • Degradation during melting can be bypassed using high DSC scan rates. • The temperature and enthalpy of melting are then proposed for this compound. - Abstract: The crystal structure of p-synephrine was solved from a high-resolution X-ray powder diffraction pattern optimized by energy-minimization calculations using the Dreiding force field. The title compound crystallizes in a monoclinic system (space group P2{sub 1}/c, Z = 4, with a = 8.8504(11) Å, b = 12.1166(15) Å, c = 9.7820(11) Å, β = 122.551(2)°, V = 884.21(19) Å{sup 3} and d = 1.256 g cm{sup −3}). Since p-synephrine degrades upon melting, its melting data were determined from DSC experiments carried out as a function of the heating rate. This method allowed determining a melting temperature and enthalpy equal to 199.8 ± 1.3 °C and 57 ± 3 kJ mol{sup −1}, respectively.

  2. Vitamin E reduces endosulfan-induced toxic effects on morphology and behavior in early development of zebrafish (Danio rerio).

    Science.gov (United States)

    Dale, K; Rasinger, J D; Thorstensen, K L; Penglase, S; Ellingsen, S

    2017-03-01

    The aim of this study was to investigate if vitamin E (α-TOC) modulates the developmental toxicity of the pesticide endosulfan (ESF), using a modified zebrafish embryotoxicity test (ZET). Zebrafish (Danio rerio) embryos were exposed from 6 to 72 h post fertilization (hpf) to either ESF (0.1-50 mg/L) or α-TOC (0.01-3 mM) alone or in combination. The effects of these exposures on embryonic morphology, larval behavior and antioxidant gene expression were analyzed. Phenotypic analysis at 48 hpf showed that ESF led to a dose-dependent increase in embryonic deformities, including axis malformations, pericardial edema and reduced pigmentation. Co-exposure of ESF with α-TOC (1-3 mM) significantly (p effect. The ESF-induced hyperactivity was ameliorated by α-TOC. Elevated ESF concentrations caused down-regulation of the antioxidant genes cuzn-sod, gpx1a and cat, suggesting that ESF promoted oxidative stress in the embryos. α-TOC did not prevent the ESF-induced dysregulation of these genes. These results demonstrate that α-TOC protects against phenotypic and behavioral effects caused by ESF but did not rescue ESF-induced aberrations in antioxidant gene expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Aquatic prey capture in snakes: the link between morphology, behavior and hydrodynamics

    Science.gov (United States)

    Segall, Marion; Herrel, Anthony; Godoy-Diana, Ramiro; Funevol Team; Pmmh Team

    2017-11-01

    Natural selection favors animals that are the most successful in their fitness-related behaviors, such as foraging. Secondary adaptations pose the problem of re-adapting an already 'hypothetically optimized' phenotype to new constraints. When animals forage underwater, they face strong physical constraints, particularly when capturing a prey. The capture requires the predator to be fast and to generate a high acceleration to catch the prey. This involves two main constraints due to the surrounding fluid: drag and added mass. Both of these constraints are related to the shape of the animal. We experimentally explore the relationship between shape and performance in the context of an aquatic strike. As a model, we use 3D-printed snake heads of different shapes and frontal strike kinematics based on in vivo observations. By using direct force measurements, we compare the drag and added mass generated by aquatic and non-aquatic snake models during a strike. Our results show that drag is optimized in aquatic snakes. Added mass appears less important than drag for snakes during an aquatic strike. The flow features associated to the hydrodynamic forces measured allows us to propose a mechanism rendering the shape of the head of aquatic snakes well adapted to catch prey underwater. Region Ile de France and the doctoral school Frontieres du Vivant (FdV) - Programme Bettencourt.

  4. Evidence for migratory spawning behavior by morphologically distinct Cisco (Coregonus artedi) from a small inland lake

    Science.gov (United States)

    Ross, Alexander J.; Weidel, Brian C.; Leneker, Mellisa; Solomon, Christopher T.

    2017-01-01

    Conservation and management of rare fishes relies on managers having the most informed understanding of the underlying ecology of the species under investigation. Cisco (Coregonus artedi), a species of conservation concern, is a cold-water pelagic fish that is notoriously variable in morphometry and life history. Published reports indicate, at spawning time, Cisco in great lakes may migrate into or through large rivers, whereas those in small lakes move inshore. Nonetheless, during a sampling trip to Follensby Pond, a 393 ha lake in the Adirondack Mountains, New York, we observed gravid Cisco swimming over an outlet sill from a narrow shallow stream and into the lake. We opportunistically dip-netted a small subsample of 11 individuals entering the lake from the stream (three female, eight male) and compared them to fish captured between 2013 and 2015 with gillnets in the lake. Stream-captured Cisco were considerably larger than lake-captured individuals at a given age, had significantly larger asymptotic length, and were present only as mature individuals between age of 3 and age 5. These results could suggest either Cisco are migrating from a nearby lake to spawn in Follensby Pond, or that a distinct morphotype of Cisco from Follensby Pond migrates out to the stream and then back in at spawning time. Our results appear to complement a handful of other cases in which Cisco spawning migrations have been documented and to provide the first evidence for such behavior in a small inland lake.

  5. Morphology and electrochemical behavior of Ag-Cu nanoparticle-doped amalgams.

    Science.gov (United States)

    Chung, Kwok-Hung; Hsiao, Li-Yin; Lin, Yu-Sheng; Duh, Jenq-Gong

    2008-05-01

    The aim of this study was to introduce Ag-Cu phase nanopowder as an additive to improve the corrosion behavior of dental amalgams. A novel Ag-Cu nanopowder was synthesized by the precipitation method. An amalgam alloy powder (World-Cap) was added and mixed with 5 wt.% and 10 wt.% of Ag-Cu nanopowders, respectively, to form experimental amalgam alloy powders. The original alloy powder was used as a control. Alloy powders were examined using X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy and electron probe microanalysis. Amalgam disk specimens of metallurgically prepared were tested in 0.9% NaCl solution using electrochemical methods. The changes in the corrosion potential and anodic polarization characteristics were determined. Corrosion potential data were analyzed statistically (n=3, analysis of variance, Tukey's test, pamalgams. The Ag-Cu nanoparticle-doped amalgams exhibited zero current potentials more positive than the control (pamalgam could be improved by Ag-Cu nanoparticle-doping.

  6. Dynamic Behavior of Hybrid APM (Advanced Pore Morphology Foam and Aluminum Foam Filled Structures

    Directory of Open Access Journals (Sweden)

    Joerg Weise

    2012-06-01

    Full Text Available The aim of this work is to evaluate the effect of different densities of hybrid aluminum polymer foam on the frequency behavior of a foam filled steel structure with different ratios between steel and foam masses. The foam filled structure is composed of three steel tubes with a welded flange at both ends bolted together to form a portal grounded by its free ends. Structure, internal and ground constraints have been designed and manufactured in order to minimize nonlinear effects and to guarantee optimal constraint conditions. Mode shapes and frequencies were verified with finite elements models (FEM to be in the range of experimental modal analysis, considering the frequency measurement range limits for instrumented hammer and accelerometer. Selected modes have been identified with suitable modal parameters extraction techniques. Each structure has been tested before and after filling, in order to compute the percentage variation of modal parameters. Two different densities of hybrid aluminum polymer foam have been tested and compared with structures filled with aluminum foams produced using the powder compact melting technique. All the foam fillings were able to suppress high frequency membrane modes which results in a reduction of environmental noise and an increase in performance of the components. Low frequency modes show an increase in damping ratio only when small thickness steel frames are filled with either Hybrid APM or Alulight foam.

  7. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    Science.gov (United States)

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  8. Polypropylene/Short Glass Fibers Composites: Effects of Coupling Agents on Mechanical Properties, Thermal Behaviors, and Morphology

    Directory of Open Access Journals (Sweden)

    Jia-Horng Lin

    2015-12-01

    Full Text Available This study uses the melt compounding method to produce polypropylene (PP/short glass fibers (SGF composites. PP serves as matrix while SGF serves as reinforcement. Two coupling agents, maleic anhydride grafted polypropylene, (PP-g-MA and maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer (SEBS-g-MA are incorporated in the PP/SGF composites during the compounding process, in order to improve the interfacial adhesion and create diverse desired properties of the composites. According to the mechanical property evaluations, increasing PP-g-MA as a coupling agent provides the composites with higher tensile, flexural, and impact properties. In contrast, increasing SEBS-g-MA as a coupling agent provides the composites with decreasing tensile and flexural strengths, but also increasing impact strength. The DSC results indicate that using either PP-g-MA or SEBS-g-MA as the coupling agent increases the crystallization temperature. However, the melting temperature of PP barely changes. The spherulitic morphology results show that PP has a smaller spherulite size when it is processed with PP-g-MA or SEBS-g-MA as the coupling agent. The SEM results indicate that SGF is evenly distributed in PP matrices, but there are distinct voids between these two materials, indicating a poor interfacial adhesion. After PP-g-MA or SEBS-g-MA is incorporated, SGF can be encapsulated by PP, and the voids between them are fewer and indistinctive. This indicates that the coupling agents can effectively improve the interfacial compatibility between PP and SGF, and as a result improves the diverse properties of PP/SGF composites.

  9. Silicon wafer wettability and aging behaviors: Impact on gold thin-film morphology

    KAUST Repository

    Yang, Xiaoming

    2014-10-01

    This paper reports on the wettability and aging behaviors of the silicon wafers that had been cleaned using a piranha (3:1 mixture of sulfuric acid (H2SO4, 96%) and hydrogen peroxide (H2O 2, 30%), 120 °C), SC1 (1:1:5 mixture of NH4OH, H 2O2 and H2O, at 80°C) or HF solution (6 parts of 40% NH4F and 1 part of 49% HF, at room temperature) solution, and treated with gaseous plasma. The silicon wafers cleaned using the piranha or SC1 solution were hydrophilic, and the water contact angles on the surfaces would increase along with aging time, until they reached the saturated points of around 70°. The contact angle increase rate of these wafers in a vacuum was much faster than that in the open air, because of loss of water, which was physically adsorbed on the wafer surfaces. The silicon wafers cleaned with the HF solution were hydrophobic. Their contact angle decreased in the atmosphere, while it increased in the vacuum up to 95°. Gold thin films deposited on the hydrophilic wafers were smoother than that deposited on the hydrophobic wafers, because the numerous oxygen groups formed on the hydrophilic surfaces would react with gold adatoms in the sputtering process to form a continuous thin film at the nucleation stage. The argon, nitrogen, oxygen gas plasma treatments could change the silicon wafer surfaces from hydrophobic to hydrophilic by creating a thin (around 2.5 nm) silicon dioxide film, which could be utilized to improve the roughness and adhesion of the gold thin film. © 2014 Elsevier Ltd. All rights reserved.

  10. Dynamic behaviors of ferroelectric liquid crystal molecules under an applied electric field

    Science.gov (United States)

    Kawaguchi, Masato; Takei, Misaki; Yamashita, Masafumi

    2009-03-01

    The dynamic changes in ferroelectric liquid crystal (FLC) molecular alignments under an applied electric field are examined by observing the formation of conoscopic figures with a time resolution of 0.1 ms. Close agreements between observed and simulated conoscopic figures under low voltage (30 V) were obtained. Under high voltage (120 V), however, the observed conoscopic figures became blurred between 0.8 ms and 1.1 ms after reversal of the electric field. The light scattering producing the blurriness occurred due to the development of fast transient molecular alignments during the switching transition above the applied voltage 70 V.

  11. Behavioral, Morphological, and Gene Expression Changes Induced by 60Co-γ Ray Irradiation in Bactrocera tau (Walker

    Directory of Open Access Journals (Sweden)

    Jun Cai

    2018-02-01

    Full Text Available The sterile insect technique (SIT may reduce pest populations by allowing sufficient amount of irradiation-induced sterile males to mate with wild females whilst maintaining mating ability comparable to wild males. Although the SIT methods are well understood, the optimal sterilizing dose and processing development stage for application vary among species. To ensure effective pest control programs, effects of irradiation on physiology, behavior, and gene function in the target species should be defined, however, little is known about irradiation effects in Bactrocera tau. Here, the effects of irradiation on rates of fecundity, egg hatch, eclosion, mating competitiveness, flight capability, morphology of reproductive organs, and yolk protein (YP gene expression were studied. The results showed that rates of female fecundity and egg hatch decreased significantly (51 ± 19 to 0.06 ± 0.06 and 98.90 ± 1.01 to 0, respectively when pupae were treated with >150 Gy irradiation. Flight capability and mating competitiveness were not significantly influenced at doses <250 Gy. Ovaries and fallopian tubes became smaller after irradiation, but there was no change in testes size. Finally, we found that expression of the YP gene was up-regulated by irradiation at 30 and 45 days post-emergence, but the mechanisms were unclear. Our study provides information on the determination of the optimal irradiation sterilizing dose in B. tau, and the effects of irradiation on physiology, morphology and gene expression that will facilitate an understanding of sub-lethal impacts of the SIT and expand its use to the control of other species.

  12. Stimuli-Responsive Cubosomes Formed from Blue Phase Liquid Crystals.

    Science.gov (United States)

    Bukusoglu, Emre; Wang, Xiaoguang; Martinez-Gonzalez, Jose A; de Pablo, Juan J; Abbott, Nicholas L

    2015-11-18

    Cubosomes formed from blue phase liquid crystals (BPs) dispersed in aqueous media exhibit optical responses to biological amphiphiles. In this study, the formation of aqueous dispersions of BPs is reported, and the effects of confinement and lipids on the phase behavior, optical appearance, and morphology of BP droplets are characterized. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis, spectral, crystal structure, thermal behavior, antimicrobial and DNA cleavage potential of two octahedral cadmium complexes: A supramolecular structure

    Science.gov (United States)

    Montazerozohori, M.; Musavi, S. A.; Masoudiasl, A.; Naghiha, A.; Dusek, M.; Kucerakova, M.

    2015-02-01

    Two new cadmium(II) complexes with the formula of CdL2(NCS)2 and CdL2(N3)2 (in which L is 2,2-dimethyl-N,N‧-bis-(3-phenyl-allylidene)-propane-1,3-diamine) have been synthesized and characterized by elemental analysis, molar conductivity measurements, FT/IR, UV-Visible, 1H and 13C NMR spectra and X-ray studies. The crystal structure analysis of CdL2(NCS)2 indicated that it crystallizes in orthorhombic system with space group of Pbca. Two Schiff base ligands are bonded to cadmium(II) ion as N2-donor chelate. Coordination geometry around the cadmium ion was found to be partially distorted octahedron. The Cd-Nimine bond distances are found in the range of 2.363(2)-2.427(2) Å while the Cd-Nisothiocyanate bond distances are 2.287(2) Å and 2.310(2) Å. The existence of C-H⋯π and C-H⋯S interactions in the CdL2(NCS)2 crystal leads to a supramolecular structure in its network. Then cadmium complexes were screened in vitro for their antibacterial and antifungal activities against two Gram-negative and two Gram-positive bacteria and also against Candida albicans as a fungus. Moreover, the compounds were subjected for DNA-cleavage potential by gel electrophoresis method. Finally thermo-gravimetric analysis of the complexes was applied for thermal behavior studies and then some thermo-kinetics activation parameters were evaluated.

  14. Low-level x-irradiation of the brain during development: morphological, physiological, and behavioral consequences. Progress report, September 1, 1974--August 31, 1975

    International Nuclear Information System (INIS)

    Altman, J.

    1975-01-01

    Progress is reported on studies on the effects of exposure to low-dose x radiation on the developing brain of rats. Brief summaries of results of morphological, physiological, and behavioral studies on rats exposed using various x-irradiation schedules are included. A list of papers published and submitted for publication during the period is included. (U.S.)

  15. Impact of hydrogenated starch hydrolysate on glass transition, hygroscopic behavior and crystallization of isomalt-based systems

    Directory of Open Access Journals (Sweden)

    Kanitha Tananuwong

    2017-02-01

    Full Text Available Glass transition behavior, adsorption isotherm and crystallization of isomalt-hydrogenated starch hydrolysate (HSH mixtures (0-20% HSH and pure HSH were investigated. At similar solid content, Tg decreased as HSH concentration increased. Tg data at different solid contents were well-fitted with Gordon-Taylor equation (gR2≥0.97. Adsorption isotherm showed that systems with greater HSH concentration became more hygroscopic. Accelerated storage test (30°C, 84% RH of modeled hard candy containing 10% HSH and pure isomalt formula was done. HSH enhanced water uptake and crystallization of polyols in hard candy during aging without packaging; however, those effects were lessen for the samples aged in polyethylene terephthalate/cast polypropylene (PET/CPP pouches, and were negligible after the application of superior moisture barrier, oriented polypropylene/metalized cast polypropylene (OPP/MCPP film. Although HSH adversely affected storage stability of sugarless hard candies, it could be add into the formulation together with the application of packaging having a good moisture barrier.

  16. Crystallization phenomena of isotactic polystyrene

    NARCIS (Netherlands)

    Lemstra, Peter Jan

    1975-01-01

    In this thesis the crystallization behavior of isotactic polystyrene has been described. The kinetics of the crystallization process and the crystalline structure were studied both for crystallization in the bulk and from dilute solutions. ... Zie Summary

  17. Crystallization and atomic diffusion behavior of high coercive Ta/Nd-Fe-B/Ta-based permanent magnetic thin film

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Na; Zhang, Xiao; You, Caiyin; Fu, Huarui [Xi' an University of Technology, School of Materials Science and Engineering, Xi' an (China); Shen, Qianlong [Logistics University of People' s Armed Police Force, Tianjin (China)

    2017-06-15

    A high coercivity of about 20.4 kOe was obtained through post-annealing the sputtered Ta/Nd-Fe-B/Ta-based permanent magnetic thin films. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses were performed to investigate the crystallization and atomic diffusion behaviors during post-annealing. The results show that the buffer and capping Ta layers prefered to intermix with Fe and B atoms, and Nd tends to be combined with O atoms. The preferred atomic combination caused the appearance of the soft magnetic phase of Fe-Ta-B, resulting in a kink of the second quadratic magnetic hysteresis loop. The preferred atomic diffusion and phase formation of the thin films were well explained in terms of the formation enthalpy of the various compounds. (orig.)

  18. The creep deformation behavior of a single-crystal Co–Al–W-base superalloy at 900 °C

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Yu, J.J., E-mail: jjyu@imr.ac.cn; Cui, C.Y.; Sun, X.F.

    2015-05-21

    The creep deformation behavior of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content has been studied at stresses between 275 and 310 MPa at 900 °C. The alloy exhibits comparable creep strength with that of Co–Al–W-base alloys containing more tungsten. The creep deformation consists of three stages, the primary stage, the steady-state stage and the tertiary stage, when described by the creep strain rate versus time curve. At 900 °C, γ′ precipitates tend to raft along the direction of applied tensile stress in the steady-state creep stage and a topologically inverted and rafting γ/γ′ microstructure is formed in the tertiary stage. The main deformation mechanism in the primary creep stage is dislocation shearing of γ′ precipitates, and in the following creep stages, the dominant deformation mechanism is dislocations bypassing γ′ precipitates.

  19. Eutectic crystallization behavior of new Zr48Cu36Al8Ag8 alloy with high glass-forming ability

    International Nuclear Information System (INIS)

    Zhang, Q S; Zhang, W; Xie, G Q; Inoue, A

    2009-01-01

    A water quenching method is used to produce as-cast Zr 48 Cu 36 Al 8 Ag 8 rods with diameters from 20 mm to 25 mm. The microstructures of the as-cast samples were investigated by X-ray diffraction, optical microscopy and scanning electron microscopy. Furthermore, the crystallization behavior of the Zr 48 Cu 36 Al 8 Ag 8 glassy alloy was examined by XRD and transmission electron microscopy. Based on the results obtained one can assume that the simultaneous precipitation of the Zr 2 Cu+AlCu 2 Zr eutectic phases is the possible reason for the high stabilization of the quaternary Zr 48 Cu 36 Al 8 Ag 8 supercooled liquid.

  20. The creep deformation behavior of a single-crystal Co–Al–W-base superalloy at 900 °C

    International Nuclear Information System (INIS)

    Shi, L.; Yu, J.J.; Cui, C.Y.; Sun, X.F.

    2015-01-01

    The creep deformation behavior of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content has been studied at stresses between 275 and 310 MPa at 900 °C. The alloy exhibits comparable creep strength with that of Co–Al–W-base alloys containing more tungsten. The creep deformation consists of three stages, the primary stage, the steady-state stage and the tertiary stage, when described by the creep strain rate versus time curve. At 900 °C, γ′ precipitates tend to raft along the direction of applied tensile stress in the steady-state creep stage and a topologically inverted and rafting γ/γ′ microstructure is formed in the tertiary stage. The main deformation mechanism in the primary creep stage is dislocation shearing of γ′ precipitates, and in the following creep stages, the dominant deformation mechanism is dislocations bypassing γ′ precipitates

  1. Theory of mind mediates the prospective relationship between abnormal social brain network morphology and chronic behavior problems after pediatric traumatic brain injury.

    Science.gov (United States)

    Ryan, Nicholas P; Catroppa, Cathy; Beare, Richard; Silk, Timothy J; Crossley, Louise; Beauchamp, Miriam H; Yeates, Keith Owen; Anderson, Vicki A

    2016-04-01

    Childhood and adolescence coincide with rapid maturation and synaptic reorganization of distributed neural networks that underlie complex cognitive-affective behaviors. These regions, referred to collectively as the 'social brain network' (SBN) are commonly vulnerable to disruption from pediatric traumatic brain injury (TBI); however, the mechanisms that link morphological changes in the SBN to behavior problems in this population remain unclear. In 98 children and adolescents with mild to severe TBI, we acquired 3D T1-weighted MRIs at 2-8 weeks post-injury. For comparison, 33 typically developing controls of similar age, sex and education were scanned. All participants were assessed on measures of Theory of Mind (ToM) at 6 months post-injury and parents provided ratings of behavior problems at 24-months post-injury. Severe TBI was associated with volumetric reductions in the overall SBN package, as well as regional gray matter structural change in multiple component regions of the SBN. When compared with TD controls and children with milder injuries, the severe TBI group had significantly poorer ToM, which was associated with more frequent behavior problems and abnormal SBN morphology. Mediation analysis indicated that impaired theory of mind mediated the prospective relationship between abnormal SBN morphology and more frequent chronic behavior problems. Our findings suggest that sub-acute alterations in SBN morphology indirectly contribute to long-term behavior problems via their influence on ToM. Volumetric change in the SBN and its putative hub regions may represent useful imaging biomarkers for prediction of post-acute social cognitive impairment, which may in turn elevate risk for chronic behavior problems. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  2. Magnetic anisotropy induced by crystallographic orientation and morphological alignment in directionally-solidified eutectic Mn-Sb alloy

    International Nuclear Information System (INIS)

    Lou, Chang-Sheng; Liu, Tie; Dong, Meng; Wu, Chun; Shao, Jian-Guo; Wang, Qiang

    2017-01-01

    The influences of the crystallographic orientation and morphological alignment upon the magnetic anisotropic behavior of polycrystalline materials were investigated. Microstructures obtained in eutectic Mn-Sb alloys via directional solidification simultaneously displayed crystallographic orientation and morphological alignment. Both the crystallographic orientation and the morphological alignment were able to induce magnetic anisotropy in the alloys, wherein the influence of the crystallographic orientation and the morphological alignment upon the magnetic anisotropic behavior of the alloys strongly depended upon their directions and exhibited either mutual promotion or competition. These findings may provide useful guidance for the fabrication design of functional magnetic materials. - Highlights: • We study effects of orientation in crystal and morphology on magnetic anisotropy. • Both orientation in crystal and morphology can induce magnetic anisotropy. • Their effects depend on direction and exhibit either mutual promotion or competition.

  3. Studying effect of MoO{sub 3} on elastic and crystallization behavior of lithium diborate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shaaban, KH.S.; Abd Elnaeim, A.M. [El-Azhar University, Physics Department, Faculty of Science, Assiut (Egypt); Abo-naf, S.M. [National Research Centre, Glass Research Department, Cairo (Egypt); Hassouna, M.E.M. [Beni-Suef University, Chemistry Department, Faculty of Science, Beni Suef (Egypt)

    2017-06-15

    The effect of MoO{sub 3} addition on the crystallization characteristics of 2Al{sub 2}O{sub 3}-23Li{sub 2}O-(75 - x) B{sub 2}O{sub 3} glass (where x MoO{sub 3} = 0, 10, 20, and 40 mol %) has been investigated. The compositional dependence of the glass transition (T{sub g}), and crystallization (T{sub c}) temperatures was determined by the differential thermal analysis (DTA). It was found that both the T{sub g} and T{sub c} decrease with increasing MoO{sub 3} content. The amorphous nature of the as-quenched glass and crystallinity of the produced glass-ceramics were confirmed by X-ray powder diffraction (XRD) analysis. Glass-ceramics embedded with diomignite (lithium diborate, Li{sub 2}B{sub 4}O{sub 7}) were produced from all investigated glasses by heat-treating the as-quenched glasses at the appropriate temperatures obtained from the DTA traces. Addition of MoO{sub 3} to the glass composition at 10% MoO{sub 3}, causes the formation of lithium molybdenum oxide (Li{sub 4}MoO{sub 5}) crystalline phase in addition to the diomignite phase. Increasing MoO{sub 3} content to 20% causes a phase transformation of lithium molybdenum oxide from the (Li{sub 4}MoO{sub 5}) to the (Li{sub 2}MoO{sub 4}) phase and the formation of another lithium borate (Li{sub 4}B{sub 2}O{sub 5}) phase in addition to the diomignite. Further increase of MoO{sub 3} content to 40% results in another phase transformation to the lithium aluminum molybdenum oxide [LiAl(MoO{sub 4}){sub 2}], and, in this case, the molybdenum content was excess enough to crystallize the molybdate (MoO{sub 3}) itself. Scanning electron microscopy (SEM) was used to characterize the morphology and microstructure of the formed solid solution phases. The values of the T{sub g} decrease with increasing the MoO{sub 3} content. The ultrasonic wave velocities and elastic moduli were determined using the pulse-echo method. Both velocities (v{sub L} and v{sub T}) were increased as the MoO{sub 3} content, this increase can be

  4. Orientational behavior of a nematic liquid crystal filled with inorganic oxide nanoparticles

    International Nuclear Information System (INIS)

    Gavrilko, T.; Kovalchuk, O.; Nazarenko, V.; Hauser, A.; Kresse, H.

    2004-01-01

    We report the results of dielectric spectroscopy, Fourier transformed infrared spectroscopy (FTIR) and atomic force microscopy (AFM) studies performed on the nematic liquid crystal (LC) mixture Merck ZLI-1132 filled with TiO 2 (rutile and anatase) and SiO 2 nanoparticles. The observed static dielectric permittivities are interpreted in terms of orientation of the LC with respect to the measuring electric field. Adding of SiO 2 particles mainly induces a statistical orientation of LC molecules, whereas TiO 2 particles promote the perpendicular orientation. The dynamics of LC molecules in all systems is very similar. The reason for the slightly faster reorientation observed in the mixtures may be connected with a disturbed nematic order near the surface of solid particles

  5. Peculiar behavior of magnetoresistance in HgSe single crystal with low electron concentration

    Science.gov (United States)

    Lonchakov, A. T.; Bobin, S. B.; Deryushkin, V. V.; Okulov, V. I.; Govorkova, T. E.; Neverov, V. N.

    2018-02-01

    Magnetoresistive properties of the single crystal of HgSe with a low electron concentration were studied in a wide range of temperatures and magnetic fields. Some fundamental parameters of the spectrum and scattering of electrons were experimentally determined. Two important features of magnetic transport were found—strong transverse magnetoresistance (MR) and negative longitudinal MR, which can indicate the existence of the topological phase of the Weyl semimetal (WSM) in HgSe. Taking this hypothesis into account, we suggest a modified band diagram of mercury selenide at low electron energies. The obtained results are essential for the deeper understanding of both physics of gapless semiconductors and WSMs—promising materials for various applications in electronics, spintronics, computer, and laser technologies.

  6. Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper

    Science.gov (United States)

    Ren, Yumei; Wang, Tianjiao; Chen, Zhimin; Li, Jing; Tian, Qiuge; Yang, Hongxia; Xu, Qun

    2016-11-01

    The conductive chiral MWCNTs@NCC nanopapers obtained by the assembly of nanocrystalline cellulose liquid crystals (NCC LCs) host matrix along with one-dimensional (1-D) multi-walled carbon nanotubes (MWCNTs) have been studied in this work. Circular dichroism (CD) studies show strong signals stemming from the chiral nematic structure. Notably, the introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. Our experimental results indicate the multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. Moreover it also confirms the resulting nanopaper has an increased conductivity of 4.2 S/m at 1.96 wt% MWCNTs. So the co-assembly of the nanocomposite herein opens a gateway for preparing functional materials combining the photonic properties of the NCC LCs matrix with other building blocks that can supply other advantageous functions.

  7. Effect of grain defects on the mechanical behavior of nickel-based single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Haibin; Guo, Haiding [Nanjing Univ. of Aeronautics and Astronautics (China). Jiangsu Province Key Lab. of Aerospace Power System

    2017-03-15

    In this paper, a single crystal (SC) partition model, consisting of primary grains and grain defects, is proposed to simulate the weakening effect of grain defects generated at geometric discontinuities of SC materials. The plastic deformation of SC superalloy is described with the modified yield criterion, associated flow rule and hardening law. Then a bicrystal model containing only one group of misoriented grains under uniaxial loading is constructed and analyzed in the commercial finite element software ABAQUS. The simulation results indicate that the yield strength and elastic modulus of misoriented grains, which are determined by the crystallographic orientation, have a significant effect on the stress distribution of the bicrystal model. A critical stress, which is calculated by the stress state at critical regions, is proposed to evaluate the local stress rise at the sub-boundary of primary and misoriented grains.

  8. A study of size dependent structure, morphology and luminescence behavior of CdS films on Si substrate

    International Nuclear Information System (INIS)

    Kaushik, Diksha; Singh, Ragini Raj; Sharma, Madhulika; Gupta, D.K.; Lalla, N.P.; Pandey, R.K.

    2007-01-01

    Size tunable cadmium sulfide (CdS) films deposited by a dip coating technique on silicon (100) and indium tin oxide/glass substrates have been characterized using X-ray diffraction, X-ray reflectivity, transmission electron microscopy, atomic force microscopy and photoluminescence spectroscopy. The structural characterization indicated growth of an oriented phase of cadmium sulfide. Transmission electron microscopy used to calculate the particle size indicated narrow size dispersion. The tendency of nanocrystalline CdS films to form ordered clusters of CdS quantum dots on silicon (100) substrate has been revealed by morphological studies using atomic force microscopy. The photoluminescence emission spectroscopy of the cadmium sulfide films has also been investigated. It is shown that the nanocrystalline CdS exhibit intense photoluminescence as compared to the large grained polycrystalline CdS films. The effect of quantum confinement also manifested as a blue shift of photoluminescence emission. It is shown that the observed photoluminescence behavior of CdS is substantially enhanced when the nanocrystallites are assembled on silicon (100) substrate

  9. Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting.

    Science.gov (United States)

    Yao, Xian-Zhi; Guo, Zheng; Yuan, Qing-Hong; Liu, Zhong-Gang; Liu, Jin-Huai; Huang, Xing-Jiu

    2014-08-13

    This study attempts to understand the intrinsic impact of different morphologies of nanocrystals on their electrochemical stripping behaviors toward heavy metal ions. Two differently shaped Fe3O4 nanocrystals, i.e., (100)-bound cubic and (111)-bound octahedral, have been synthesized for the experiments. Electrochemical results indicate that Fe3O4 nanocrystals with different shapes show different stripping behaviors toward heavy metal ions. Octahedral Fe3O4 nanocrystals show better electrochemical sensing performances toward the investigated heavy metal ions such as Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II), in comparison with cubic ones. Specifically, Pb(II) is found to have the best stripping performance on both the (100) and (111) facets. To clarify these phenomena, adsorption abilities of as-prepared Fe3O4 nanocrystals have been investigated toward heavy metal ions. Most importantly, combined with theoretical calculations, their different electrochemical stripping behaviors in view of facet effects have been further studied and enclosed at the level of molecular/atom. Finally, as a trial to find a disposable platform completely free from noble metals, the potential application of the Fe3O4 nanocrystals for electrochemical detection of As(III) in drinking water is demonstrated.

  10. Irradiation of zinc single crystal with 500 keV singly-charged carbon ions: surface morphology, structure, hardness, and chemical modifications

    Science.gov (United States)

    Waqas Khaliq, M.; Butt, M. Z.; Saleem, Murtaza

    2017-07-01

    Cylindrical specimens of (1 0 4) oriented zinc single crystal (diameter  =  6 mm and length  =  5 mm) were irradiated with 500 keV C+1 ions with the help of a Pelletron accelerator. Six specimens were irradiated in an ultra-high vacuum (~10‒8 Torr) with different ion doses, namely 3.94  ×  1014, 3.24  ×  1015, 5.33  ×  1015, 7.52  ×  1015, 1.06  ×  1016, and 1.30  ×  1016 ions cm-2. A field emission scanning electron microscope (FESEM) was utilized for the morphological study of the irradiated specimens. Formation of nano- and sub-micron size rods, clusters, flower- and fork-like structures, etc, was observed. Surface roughness of the irradiated specimens showed an increasing trend with the ions dose. Energy dispersive x-ray spectroscopy (EDX) helped to determine chemical modifications in the specimens. It was found that carbon content varied in the range 22.86-31.20 wt.% and that oxygen content was almost constant, with an average value of 10.16 wt.%. The balance content was zinc. Structural parameters, i.e. crystallite size and lattice strain, were determined by Williamson-Hall analysis using x-ray diffraction (XRD) patterns of the irradiated specimens. Both crystallite size and lattice strain showed a decreasing trend with the increasing ions dose. A good linear relationship between crystallite size and lattice strain was observed. Surface hardness depicted a decreasing trend with the ions dose and followed an inverse Hall-Petch relation. FTIR spectra of the specimens revealed that absorption bands gradually diminish as the dose of singly-charged carbon ions is increased from 3.94  ×  1014 ions cm-1 to 1.30  ×  1016 ions cm-1. This indicates progressive deterioration of chemical bonds with the increase in ion dose.

  11. Morphological and behavioral development of the piracanjuba larvae Desenvolvimento morfológico e comportamental de larvas de piracanjuba

    Directory of Open Access Journals (Sweden)

    Cláudia Maria Reis Raposo Maciel

    2010-05-01

    Full Text Available The objective of this work was to study the morphologic development and the swimming and feeding behaviors of piracanjuba larvae, Brycon orbignyanus Valenciennes (1849 (Characiformes, Characidae, Bryconinae, during the period from zero to 172 hours after hatching (standard length = 3.62 - 11.94 mm. The morphological analyses were accomplished by using a trinocular stereo microscope, while the behavioral analyses were performed through periodic observations. In 28 hours after hatching, the larvae (standard length = 6.25 ± 0.13 mm showed the following structural and behavioral characteristics that made them become active predators able to overcome a larval critical phase, the beginning of exogenous feeding: presence of pigmented eyes, terminal and wide mouth, developed oral dentition, developing digestive tube, yolk sac reduction, fins and swim bladder formation, horizontal swimming, cannibalism, and predation. Intense cannibalism among larvae was verified from 26 to 72 hours. At the end of the metamorphosis - 172 hours after hatching - the larvae measuring 11.94 + 0.80 mm in standard length presented a flexed notochord, caudal fin bifurcation, dorsal and anal fin formation, synchronized movements, and formation of shoals, characteristics that together allow enhanced perception and locomotio in exploration of the environment, determining the best moment for transfering to the fishponds. New studies can contribute to commercial fish farming by improving feeding management, performance, survival, and productivity of this species.Objetivou-se estudar o desenvolvimento morfológico e os comportamentos natatório e alimentar de larvas de piracanjuba, Brycon orbignyanus Valenciennes (1849 (Characiformes, Characidae, Bryconinae no período de 0 a 172 horas após a eclosão (comprimento-padrão = 3,62 - 11,94 mm. As análises morfológicas foram realizadas com auxílio de um microscópio estereoscópico trinocular e as comportamentais, por meio de

  12. On the crystallization behavior of syndiotactic-b-atactic polystyrene stereodiblock copolymers, atactic/syndiotactic polystyrene blends, and aPS/sPS blends modified with sPS-b-aPS

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Liana, E-mail: liana.annunziatta@univ-rennes1.fr [Organométalliques et Catalyse, UMR 6226 Sciences Chimiques CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France); Monasse, Bernard, E-mail: bernard.monasse@mines-paristech.fr [Mines-ParisTech, CEMEF, Centre de Mise en Forme des Matériaux, UMR CNRS 7635, Sophia Antipolis (France); Rizzo, Paola; Guerra, Gaetano [Dipartimento di Chimica e Biologia, Università degli studi di Salerno, Via Ponte don Melillo, I-84084 Fisciano, SA (Italy); Duc, Michel [Total Petrochemicals Research Feluy, Zone Industrielle Feluy C, B-7181 Seneffe (Belgium); Carpentier, Jean-François, E-mail: jean-francois.carpentier@univ-rennes1.fr [Organométalliques et Catalyse, UMR 6226 Sciences Chimiques CNRS, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex (France)

    2013-09-16

    Crystallization and morphological features of syndiotactic-b-atactic polystyrene stereodiblock copolymers (sPS-b-aPS), atactic/syndiotactic polystyrene blends (aPS/sPS), and aPS/sPS blends modified with sPS-b-aPS, with different compositions in aPS and sPS, have been investigated using differential scanning calorimetry (DSC), polarized light optical microscopy (POM) and wide angle X-ray diffraction (WAXRD) techniques. For comparative purposes, the properties of parent pristine sPS samples were also studied. WAXRD analyses revealed for all the samples, independently from their composition (aPS/sPS ratio) and structure (blends, block copolymers, blends modified with block copolymers), the same polymorphic β form of sPS. The molecular weight of aPS and sPS showed opposite effects on the crystallization of 50:50 aPS/sPS blends: the lower the molecular weight of aPS, the slower the crystallization while the lower the molecular weight of sPS, the faster the crystallization. DSC studies performed under both isothermal and non-isothermal conditions, independently confirmed by POM studies, led to a clear trend for the crystallization rate at a given sPS/aPS ratio (ca. 50:50 and 20:80): sPS homopolymers > sPS-b-aPS block copolymers ∼sPS/aPS blends modified with sPS-b-aPS copolymers > sPS/aPS blends. Interestingly, sPS-b-aPS block copolymers not only crystallized faster than blends, but also affected positively the crystallization behavior of blends. At 50:50 sPS/aPS ratio, blends (Blend-2), block copolymers (Cop-1) and blends modified with block copolymers (Blend-2-mod) crystallized via spherulitic crystalline growth controlled by an interfacial process. In all cases, an instantaneous nucleation was observed. The density of nuclei in block copolymers (160,000−190,000 nuclei mm{sup −3}) was always higher than that in blends and modified blends (30,000−60,000 nuclei mm{sup −3}), even for quite different sPS/aPS ratio. At 20:80 sPS/aPS ratio, the block copolymers

  13. Bryophyte-Feeders in a Basal Brachyceran Lineage (Diptera: Rhagionidae: Spaniinae): Adult Oviposition Behavior and Changes in the Larval Mouthpart Morphology Accompanied with the Diet Shifts

    Science.gov (United States)

    Kato, Makoto

    2016-01-01

    Dipteran larval morphology exhibits overwhelming variety, affected by their diverse feeding habits and habitat use. In particular, larval mouthpart morphology is associated with feeding behavior, providing key taxonomic traits. Despite most larval Brachycera being carnivorous, a basal brachyceran family, Rhagionidae, contains bryophyte-feeding taxa with multiple feeding habits. To elucidate the life history, biology, and morphological evolution of the bryophyte-feeding rhagionids, the larval feeding behavior and morphology, and the adult oviposition behavior of four species belonging to three genera of Spaniinae (Spania Meigen, Litoleptis Chillcott and Ptiolina Zetterstedt) are described. Moreover, changes of the larval morphology associated with the evolution of bryophyte-feeding are traced by molecular phylogenetic analyses. Spania and Litoleptis (thallus-miners of thallose liverworts) share a toothed form of apical mandibular sclerite with an orifice on its dorsal surface, which contrasts to those of the other members of Rhagionidae possessing a blade-like mandibular hook with an adoral groove; whereas, Ptiolina (stem borer of mosses) exhibits a weak groove on the adoral surface of mandible and highly sclerotized maxilla with toothed projections. Based on the larval feeding behavior of the thallus-miners, it is inferred that the toothed mandibles with the dorsal orifice facilitate scraping plant tissue and then imbibing it with a great deal of the sap. A phylogeny indicated that the bryophyte-feeding genera formed a clade with Spaniopsis and was sister to Symphoromyia, which presumably are detritivores. This study indicates that the loss or reduction of adoral mandibular groove and mandibular brush is coincident with the evolution of bryophyte-feeding, and it is subsequently followed by the occurrence of dorsal mandibular orifice and the loss of creeping welts accompanying the evolution of thallus-mining. PMID:27812169

  14. Transfer behavior of quantum states between atoms in photonic crystal coupled cavities

    International Nuclear Information System (INIS)

    Zhang Ke; Li Zhiyuan

    2010-01-01

    In this article, we discuss the one-excitation dynamics of a quantum system consisting of two two-level atoms each interacting with one of two coupled single-mode cavities via spontaneous emission. When the atoms and cavities are tuned into resonance, a wide variety of time-evolution behaviors can be realized by modulating the atom-cavity coupling strength g and the cavity-cavity hopping strength λ. The dynamics is solved rigorously via the eigenproblem of an ordinary coupled linear system and simple analytical solutions are derived at several extreme situations of g and λ. In the large hopping limit where g >λ, the time-evolution behavior of the system is characterized by the usual slowly varying carrier envelope superimposed upon a fast and violent oscillation. At a certain instant, the energy is fully transferred from the one quantum subsystem to the other. When the two interaction strengths are comparable in magnitude, the dynamics acts as a continuous pulse having irregular frequency and line shape of peaks and valleys, and the complicated time-evolution behaviors are ascribed to the violent competition between all the one-excitation quantum states. The coupled quantum system of atoms and cavities makes a good model to study cavity quantum electrodynamics with great freedoms of many-body interaction.

  15. Temperature dependence of deformation behavior in a Co–Al–W-base single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Shi, L.; Yu, J.J., E-mail: jjyu@imr.ac.cn; Cui, C.Y.; Sun, X.F.

    2015-01-03

    Tensile properties of a single-crystal Co–Al–W–Ni–Cr–Ta alloy with low tungsten content have been studied within the temperatures ranging from 20 to 1000 °C at a constant strain rate of 1.0×10{sup −4} s{sup −1}. The alloy exhibits comparable yield strength with that of Co–Al–W-base alloys containing more tungsten. From 600 °C to 800 °C, a yield strength anomaly is observed, probably due to the cross-slip of superdislocations from the octahedral plane to the cube plane. TEM analysis demonstrates that stacking faults (SFs) appear both in γ channels and γ′ precipitates in a wide temperature range. These SFs are responsible for the obvious strain hardening observed in stress–strain curves. From room temperature to 900 °C, the deformation is dominated by dislocations shearing γ′ particles. At 1000 °C, the main deformation mechanism is dislocations bypassing γ′ particles.

  16. Behavior of sup(80m)Br in potassium bromate crystals

    International Nuclear Information System (INIS)

    Serrano G, J.

    1976-01-01

    A study was made about the chemical changes caused by isomeric transition of sup(80m)Br to sup(80)Br potassium bromate crystals marked with sup(80m)Br and the thermic annealing reactions of the isomeric transition products. Once the isomeric transition has been completed, transition associated with the emission of internal conversion electrons and Auger processes, the chemical analysis of the system which is being studied shows a change in the atom or ion due to the nuclear transformation. The described chemical changes can be reverted if the compound which contains the transformed atomic nucleus is heated before the chemical analysis is performed. Such a process was called annealing reaction and generally conduces to an increase of the retention considered as the percentage of radioactive atoms which reappear in the original chemical form after the nuclear transformation of a reliable technique which will permit the quantitative separation of the chemical fractions produced during the nuclear transformation of the metastable isomer, with the purpose to evaluate the percentage of the produced chemical change as well as the retention. The establishment of this technique was reached. (author)

  17. Dissolution behavior of negative-type photoresists for display manufacture studied by quartz crystal microbalance method

    Science.gov (United States)

    Tsuneishi, Asuka; Uchiyama, Sachiyo; Kozawa, Takahiro

    2018-04-01

    Photoresists have been widely used as patterning materials for electronic devices such as displays and semiconductors. Understanding pattern formation mechanisms is essential for the efficient development of resist materials. In particular, the dissolution mechanism of resist materials is an important process in pattern formation. In this study, the dissolution mechanisms of negative-type resists for display manufacture were investigated using a quartz crystal microbalance (QCM) method. The changes in frequency during development were measured for polymer and resist films. The observed major trend was as follows. The development type changed from an insoluble state to a peeling type and a dissolution type with Case II diffusion with an increase in the acid value of the polymers. The characteristics of the dissolution with Case II diffusion are the formation of a transient swelling layer (dissolution front) and steady-state front motion (linear weight loss). For the dissolution with Case II diffusion, the dissolution time and the original thickness of the transient swelling layer decreased with an increase in the acid value of the polymers.

  18. Effect of electron beam irradiation on thermal and crystallization behavior of PP/EPDM blend

    Science.gov (United States)

    Balaji, Anand Bellam; Ratnam, Chantara Thevy; Khalid, Mohammad; Walvekar, Rashmi

    2017-12-01

    The irradiation stability of ethylene-propylene diene terpolymer (EPDM)/ polypropylene (PP) blends is studied in an attempt to develop radiation compatible PP/EPDM blends suitable for medical applications. The PP/EPDM blends with mixing ratios of 80/20, 50/50/ 20/80 were prepared in an internal mixer at 165 °C and a rotor speed of 50 rpm followed by compression molding. The blends and the individual components were irradiated using 3.0 MeV electron beam (EB) accelerator at doses ranging from 0 to 100 kGy in air and room temperature. Later, the PP/EPDM blends were subjected to gel content, thermal stability, crystallization and dynamic mechanical properties before and after irradiation. Results revealed that the irradiation-induced crosslinking in the PP/EPDM blend increases with the increasing irradiation dose and the EPDM content in the blend. However, the thermal stability of the blends did not show any significant changes upon irradiation. The dynamic mechanical analysis shows that the EPDM rich blend has higher compatibility than PP dominant blends. A further improvement in the blend compatibility found to be achieved upon irradiation.

  19. Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yumei; Wang, Tianjiao; Chen, Zhimin; Li, Jing; Tian, Qiuge; Yang, Hongxia; Xu, Qun, E-mail: qunxu@zzu.edu.cn

    2016-11-01

    Highlights: • In this study conductive chiral MWCNTs@NCC nanopapers were prepared. • The introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. • The multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. • The resulting nanopaper has an increased conductivity. - Abstract: The conductive chiral MWCNTs@NCC nanopapers obtained by the assembly of nanocrystalline cellulose liquid crystals (NCC LCs) host matrix along with one-dimensional (1-D) multi-walled carbon nanotubes (MWCNTs) have been studied in this work. Circular dichroism (CD) studies show strong signals stemming from the chiral nematic structure. Notably, the introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. Our experimental results indicate the multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. Moreover it also confirms the resulting nanopaper has an increased conductivity of 4.2 S/m at 1.96 wt% MWCNTs. So the co-assembly of the nanocomposite herein opens a gateway for preparing functional materials combining the photonic properties of the NCC LCs matrix with other building blocks that can supply other advantageous functions.

  20. Orientation dependence of deformation and penetration behavior of tungsten single crystal rods

    International Nuclear Information System (INIS)

    Bruchey, W.J. Jr.; Horwath, E.J.; Kingman, P.W.

    1991-01-01

    This paper reports on deformation and flow at a target/penetrator interface that occurs under conditions of high hydrostatic pressure and associated heat generation. To further elucidate the role of material structure in the penetration process, oriented single crystals of tungsten have been launched into steel targets and the residual penetrators recovered and analyzed. Both the penetration depth and the deformation characteristics were strongly influenced by the crystallographic orientation. Deformation modes for the left-angle 100 right-angle rod, which exhibited the best performance, appeared to involve considerable localized slip/cleavage and relatively less plastic working; the residual penetrator was extensively cracked and the eroded penetrator material was extruded in a smooth tube lined with an oriented array of discrete particle exhibiting cleavage fractures. Deformation appeared to be much less localized and to involve more extensive plastic working in the left-angle 011 right-angle rod, which exhibited the poorest penetration, while the left-angle 111 right-angle behaved in an intermediate fashion

  1. Copper oxide content dependence of crystallization behavior, glass forming ability, glass stability and fragility of lithium borate glasses

    International Nuclear Information System (INIS)

    Soliman, A.A.; Kashif, I.

    2010-01-01

    Differential thermal analysis (DTA) and X-ray diffraction (XRD) have been employed to investigate the copper oxide content dependence of the glass transition temperatures data, activation energy for the glass transition E t , glass stability GS, fragility index Fi, the glass-forming ability (GFA) and crystallization behavior of {(100-x) mol% Li 2 B 4 O 7 -x mol% CuO} glass samples, where x=0-40 mol% CuO. From the dependence of the glass transition temperature T g on the heating rate β, the fragility, F i , and the activation energy, E t , have been calculated. It is seen that F i and E t are attained their minimum values at 0 x -T g , SCL region and the GS. The GFA has been investigated on the basis of Hruby parameter K H , which is a strong indicator of GFA, and the relaxation time. Results of GFA are in good agreement with the fragility index, F i , calculations indicating that {90Li 2 B 4 O 7 .10CuO} is the best glass former. The stronger glass forming ability has decreasing the fragility index. XRD result indicates that no fully amorphous samples but a mixture of crystalline and amorphous phases are formed in the samples containing x>25 mol% CuO and below it composed of glassy phase. Increasing the CuO content above 25 mol% helps the crystallization process, and thus promotes a distinct SCL region. XRD suggests the presence of micro-crystallites of remaining residual amorphous matrix by increasing the CuO content.

  2. Growth rate and surface morphology of 4H-SiC crystals grown from Si-Cr-C and Si-Cr-Al-C solutions under various temperature gradient conditions

    Science.gov (United States)

    Mitani, Takeshi; Komatsu, Naoyoshi; Takahashi, Tetsuo; Kato, Tomohisa; Fujii, Kuniharu; Ujihara, Toru; Matsumoto, Yuji; Kurashige, Kazuhisa; Okumura, Hajime

    2014-09-01

    The growth rate and surface morphology of 4H-SiC crystals prepared by solution growth with Si1-xCrx and Si1-x-yCrxAly (x=0.4, 0.5 and 0.6; y=0.04) solvents were investigated under various temperature conditions. The growth rate was examined as functions of the temperature difference between the growth surface and C source, the amount of supersaturated C and supersaturation at the growth surface. We found that generation of trench-like surface defects in 4H-SiC crystals was suppressed using Si1-x-yCrxAly solvents even under highly supersaturated conditions where the growth rate exceeded 760 μm/h. Conversely, trench-like defects were observed in crystals grown with Si1-xCrx solvents under all experimental conditions. Statistical observation of the macrostep structure showed that the macrostep height in crystals grown with Si1-x-yCrxAly solvents was maintained at lower levels than that obtained using Si1-xCrx solvents. Addition of Al prevents the macrosteps from developing into large steps, which are responsible for the generation of trench-like surface defects.

  3. Effect of donor and acceptor dopants on crystallization, microstructural and dielectric behaviors of barium strontium titanate glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Avadhesh Kumar, E-mail: yadav.av11@gmail.com [Department of Physics, Dr. Bheem Rao Ambedkar Government Degree College, Anaugi, Kannauj (India); Gautam, C.R. [Department of Physics, University of Lucknow, Lucknow 226007 (India); Singh, Prabhakar [Department of Physics, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005 (India)

    2016-07-05

    Bulk transparent barium strontium titanate borosilicate glasses in glass system (65-x)[(Ba{sub 0.6}Sr{sub 0.4}).TiO{sub 3}]-30[2SiO{sub 2}.B{sub 2}O{sub 3}]-5[K{sub 2}O]-x[A{sub 2}O{sub 3}], A = La, Fe (x = 2, 5 and 10) were prepared by rapid melt-quench technique and subsequently, converted into glass ceramics by regulated heat treatment process. The phase identification was carried out by X-ray powder diffraction and their surface morphology was studied by scanning electron microscopy. The dielectric properties were studied by impedance spectroscopic technique. Investigated glass samples were crystallized into major and secondary phases of Ba{sub 1.91}Sr{sub 0.09}TiO{sub 4} and Ba{sub 2}TiSi{sub 2}O{sub 8}, respectively. A very high dielectric constant having value upto 68000 was found in glass ceramic sample BST5K10F. This high value of dielectric constant was attributed to interfacial polarization, which arose due to conductivity difference among semiconducting crystalline phases, conducting grains and insulating grain boundaries. Donor dopant La{sub 2}O{sub 3} and acceptor dopant Fe{sub 2}O{sub 3} play an important role for enhancing crystallization, dielectric constant and retardation of dielectric loss in the samples. Moreover, higher value of dielectric constant and lower value of dielectric loss was found in Fe{sub 2}O{sub 3} doped samples in comparison to La{sub 2}O{sub 3} doped samples. - Highlights: • Bulk transparent barium strontium titanate glasses are successfully prepared. • A very high dielectric constant upto 68000 was found in glass ceramics. • La{sub 2}O{sub 3} and Fe{sub 2}O{sub 3} play role for enhancing value of dielectric constant. • Higher dielectric constant with low dielectric loss was found in Fe{sub 2}O{sub 3} doped sample. • Such glass ceramics may be used in making capacitors for high energy storage.

  4. Strong photonic crystal behavior in regular arrays of core-shell and quantum disc InGaN/GaN nanorod light-emitting diodes

    International Nuclear Information System (INIS)

    Lewins, C. J.; Le Boulbar, E. D.; Lis, S. M.; Shields, P. A.; Allsopp, D. W. E.; Edwards, P. R.; Martin, R. W.

    2014-01-01

    We show that arrays of emissive nanorod structures can exhibit strong photonic crystal behavior, via observations of the far-field luminescence from core-shell and quantum disc InGaN/GaN nanorods. The conditions needed for the formation of directional Bloch modes characteristic of strong photonic behavior are found to depend critically upon the vertical shape of the nanorod sidewalls. Index guiding by a region of lower volume-averaged refractive index near the base of the nanorods creates a quasi-suspended photonic crystal slab at the top of the nanorods which supports Bloch modes. Only diffractive behavior could be observed without this region. Slab waveguide modelling of the vertical structure shows that the behavioral regime of the emissive nanorod arrays depends strongly upon the optical coupling between the nanorod region and the planar layers below. The controlled crossover between the two regimes of photonic crystal operation enables the design of photonic nanorod structures formed on planar substrates that exploit either behavior depending on device requirements.

  5. Analysis of the effect of gallium content on the magnetomechanical behavior of single-crystal FeGa alloys using an energy-based model

    International Nuclear Information System (INIS)

    Atulasimha, Jayasimha; Flatau, Alison B; Cullen, James R

    2008-01-01

    The magnetomechanical behavior of single-crystal iron–gallium alloys with varying gallium content was found to be strongly dependent on the Ga content (Atulasimha 2006 PhD Thesis). An energy-based model (Atulasimha 2006 PhD Thesis, Armstrong and William 1997 J. Appl. Phys. 81 2321) is employed to simulate the strikingly different actuation behavior (λ–H and B–H curves under different compressive stresses) and validated against experimental data for 19, 24.7 and 29 at.% Ga, [100] oriented, slow-cooled single-crystal FeGa alloys. The effect of gallium content on the model parameters, specifically the cubic magnetocrystalline anisotropy constants and the Armstrong-smoothing factor Ω, their physical significance and ultimately their effect on the magnetomechanical behavior are analyzed and explained

  6. Mathematical model to analyze the dissolution behavior of metastable crystals or amorphous drug accompanied with a solid-liquid interface reaction.

    Science.gov (United States)

    Hirai, Daiki; Iwao, Yasunori; Kimura, Shin-Ichiro; Noguchi, Shuji; Itai, Shigeru

    2017-04-30

    Metastable crystals and the amorphous state of poorly water-soluble drugs in solid dispersions (SDs), are subject to a solid-liquid interface reaction upon exposure to a solvent. The dissolution behavior during the solid-liquid interface reaction often shows that the concentration of drugs is supersaturated, with a high initial drug concentration compared with the solubility of stable crystals but finally approaching the latter solubility with time. However, a method for measuring the precipitation rate of stable crystals and/or the potential solubility of metastable crystals or amorphous drugs has not been established. In this study, a novel mathematical model that can represent the dissolution behavior of the solid-liquid interface reaction for metastable crystals or amorphous drug was developed and its validity was evaluated. The theory for this model was based on the Noyes-Whitney equation and assumes that the precipitation of stable crystals at the solid-liquid interface occurs through a first-order reaction. Moreover, two models were developed, one assuming that the surface area of the drug remains constant because of the presence of excess drug in the bulk and the other that the surface area changes in time-dependency because of agglomeration of the drug. SDs of Ibuprofen (IB)/polyvinylpyrrolidone (PVP) were prepared and their dissolution behaviors under non-sink conditions were fitted by the models to evaluate improvements in solubility. The model assuming time-dependent surface area showed good agreement with experimental values. Furthermore, by applying the model to the dissolution profile, parameters such as the precipitation rate and the potential solubility of the amorphous drug were successfully calculated. In addition, it was shown that the improvement in solubility with supersaturation was able to be evaluated quantitatively using this model. Therefore, this mathematical model would be a useful tool to quantitatively determine the supersaturation

  7. Oxidation and crystallization behavior of calcium europium silicon nitride thin films during rapid thermal processing

    Energy Technology Data Exchange (ETDEWEB)

    Jong, M. de, E-mail: m.dejong-1@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Enter, V.E. van, E-mail: vvanenter@gmail.com [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands); Schuring, E.W., E-mail: schuring@ecn.nl [Energy Center of the Netherlands, Westerduinweg 3, 1755LE Petten (Netherlands); Kolk, E. van der, E-mail: e.vanderkolk@tudelft.nl [Faculty of Applied Science, Delft University of Technology, Mekelweg 15, 2629JB Delft (Netherlands)

    2016-03-31

    Luminescent thin films were fabricated on silicon wafers using reactive magnetron sputtering of Ca, Si and Eu in Ar/N{sub 2} atmosphere. In order to activate the luminescence, the as-deposited nitride films were heated to 1100 °C by a rapid thermal processing treatment. X-ray diffraction measurements reveal the crystal phases that form during thermal treatment. By recording scanning electron microscopy images of the surface and the cross-section of the film at different radial locations, the formation of different layers with a thickness depending on the radial position is revealed. Energy dispersive x-ray spectroscopy analysis of these cross-sections reveals the formation of an oxide top layer and a nitride bottom layer. The thickness of the top layer increases as a function of radial position on the substrate and the thickness of the bottom layer decreases accordingly. The observation of different 4f{sup 6}5d{sup 1} → 4f{sup 7} Eu{sup 2+} luminescence emission bands at different radial positions correspond to divalent Eu doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4} and CaSiO{sub 3}, which is in agreement with the phases identified by X-ray diffraction analysis. A mechanism for the observed oxidation process of the nitride films is proposed that consists of a stepwise oxidation from the as-deposited amorphous nitride state to crystalline Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, to Ca{sub 2}SiO{sub 4} and finally CaSiO{sub 3}. The oxidation rate and final state of oxidation show a strong temperature–time dependency during anneal treatment. - Highlights: • A thin film of nitridated Ca, Si and Eu was deposited using magnetron sputtering. • Rapid thermal processing (RTP) results in Eu{sup 2+} doped Ca{sub 3}Si{sub 2}O{sub 4}N{sub 2}, Ca{sub 2}SiO{sub 4}, and CaSiO{sub 3}. • Oxidation rate differs with radial position due to a temperature gradient during RTP. • Cross-section SEM–EDX shows how the oxidation progresses in lateral direction.

  8. Social defeat stress induces depression-like behavior and alters spine morphology in the hippocampus of adolescent male C57BL/6 mice

    OpenAIRE

    I?iguez, Sergio D.; Aubry, Antonio; Riggs, Lace M.; Alipio, Jason B.; Zanca, Roseanna M.; Flores-Ramirez, Francisco J.; Hernandez, Mirella A.; Nieto, Steven J.; Musheyev, David; Serrano, Peter A.

    2016-01-01

    Social stress, including bullying during adolescence, is a risk factor for common psychopathologies such as depression. To investigate the neural mechanisms associated with juvenile social stress-induced mood-related endophenotypes, we examined the behavioral, morphological, and biochemical effects of the social defeat stress model of depression on hippocampal dendritic spines within the CA1 stratum radiatum. Adolescent (postnatal day 35) male C57BL/6 mice were subjected to defeat episodes fo...

  9. Crystallization Experiments in the MgO-CO2-H2O system: Role of Amorphous Magnesium Carbonate Precursors in Magnesium Carbonate Hydrated Phases and Morphologies in Low Temperature Hydrothermal Fluids

    Science.gov (United States)

    Giampouras, Manolis; Garcia-Ruiz, Juan Manuel; Garrido, Carlos J.

    2017-04-01

    Numerous forms of hydrated or basic magnesium carbonates occur in the complex MgO-CO2-H2O system. Mineral saturation states from low temperature hydrothermal fluids in Semail Ophiolite (Oman), Prony Bay (New Caledonia) and Lost City hydrothermal field (mid-Atlantic ridge) strongly indicate the presence of magnesium hydroxy-carbonate hydrates (e.g. hydromagnesite) and magnesium hydroxides (brucite). Study of formation mechanisms and morphological features of minerals forming in the MgO-CO2-H2O system could give insights into serpentinization-driven, hydrothermal, alkaline environments, which are related to early Earth conditions. Temperature, hydration degree, pH and fluid composition are crucial factors regarding the formation, coexistence and transformation of such mineral phases. The rate of supersaturation, on the other hand, is a fundamental parameter to understand nucleation and crystal growth processes. All these parameters can be examined in a solution using different crystallization techniques. In the present study, we applied different crystallization techniques to synthesize and monitor the crystallization of Mg-bearing carbonates and hydroxides under abiotic conditions. Various crystallization techniques (counter-diffusion, vapor diffusion and unseeded solution mixing) were used to screen the formation conditions of each phase, transformation processes and structural development. Mineral and textural characterization of the different synthesized phases were carried out by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscopy coupled to dispersive energy spectroscopy (FE-SEM-EDS). Experimental investigation of the effect of pH level and silica content under variable reactant concentrations revealed the importance of Amorphous Magnesium Carbonate (AMC) in the formation of hydroxy-carbonate phases (hydromagnesite and dypingite). Micro-structural resemblance between AMC precursors and later stage crystalline phases highlights the

  10. Influence of clay content on the melting behavior and crystal structure of nonisothermal crystallized poly(L-lactic acid)/nanocomposites

    Czech Academy of Sciences Publication Activity Database

    Ublekov, F.; Baldrian, Josef; Kratochvíl, Jaroslav; Steinhart, M.; Nedkov, E.

    2012-01-01

    Roč. 124, č. 2 (2012), s. 1643-1648 ISSN 0021-8995 Institutional research plan: CEZ:AV0Z40500505 Keywords : biopolymers * nanocomposite s * crystal structures Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.395, year: 2012

  11. Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow

    Science.gov (United States)

    Russew, K.; Stojanova, L.; Yankova, S.; Fazakas, E.; Varga, L. K.

    2009-01-01

    Six Cu100-xZrx amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min-1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu64Zr36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.

  12. An investigation of crystallization and rheological behaviors of PLA/HDPE/Nano-CaCO3 composites by experimental design

    Science.gov (United States)

    de Oliveira, Amanda G.; Teixeira, Viviane G.; da Silva, Ana Lúcia N.; de Sousa, Ana Maria F.

    2015-05-01

    Nowadays, the development of products from renewable raw material has been an important subject of interest for a great number of researchers. Poly(lactic acid) is versatile polymer, synthesized from renewable resources, biodegradable and biocompatible and that has been considered as stronger candidate to replace fossil-based polymers in many application. However, the PLA still has some shortcomings to be solved, such as low thermal resistance, rate crystallization, impact resistance and gas barrier properties. Thus, adding nanofiller can be an interesting method to extend and to improve the PLA properties. The aim of this work is to evaluate the rheological and thermal properties of composites based on PLA/nano-CaCO3/HDPE by using a design of experiments (DOE)-2n Factorial, with three center points. Three factors were studied: HDPE/nano-CaCO3 masterbatch content, temperature and mixer speed. All PLA/Nano-CaCO3/HDPE experiments were characterized by differential scanning calorimetry (DSC), torque rheometry and melt flow index analysis (MFI). It was noticed that torque rheometry was affected by the addition of the HDPE/nano-CaCO3 masterbatch content and it was also observed a synergism among the factors. The nanofiller content, added in the masterbatch, also affected the flow behavior of composites produced.

  13. Role of polaron hopping in leakage current behavior of a SrTiO{sub 3} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y., E-mail: yxc238@psu.edu; Randall, C. A.; Chen, L. Q. [Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802 (United States); Bhattacharya, S. [Department of Materials Science and Engineering, Indian Institute of Technology Hyderabad, YM 502205 (India); Shen, J. [Department of Mathematics, Purdue University, West Lafayette, Indiana 47907 (United States)

    2013-12-14

    We studied the ionic/electronic transport and resistance degradation behavior of dielectric oxides by solving the electrochemical transport equations. Here, we took into account the non-periodical boundary conditions for the transport equations using the Chebyshev collocation algorithm. A sandwiched Ni|SrTiO{sub 3}|Ni capacitor is considered as an example under the condition of 1.0 V, 1.0 μm thickness for SrTiO{sub 3} layer, and a temperature of 150 °C. The applied voltage resulted in the migration of ionic defects (oxygen vacancies) from anode towards cathode. The simulated electric potential profile at steady state is in good agreement with the recent experimental observation. We introduced the possibility of polaron-hopping between Ti{sup 3+} and Ti{sup 4+} at the electrode interface. It is shown that both the oxygen vacancy transport and the polaron-hopping contribute to the resistance degradation of single crystal SrTiO{sub 3}, which is consistent with the experimental observations.

  14. Scientific and spontaneous concepts, primary and secondary genres, behavioral and crystallized ideologies: Possible interrelations and educational implications

    Directory of Open Access Journals (Sweden)

    Paula Tatiane Carréra Szundy

    2011-07-01

    Full Text Available Bearing in mind the similarities shared between Vygotsky’s theory of learning and development and the Marxist philosophy of language proposed by the Bakhtin circle, this paper aims at establishing a dialogue between the Vygotskian concepts of scientific and spontaneous knowledge and the Bakhtinian ideas concerning primary and secondary genres as well as behavioral and crystallized ideologies. Since these theoretical constructs share the assumption that consciousness is constituted through interaction with other people in a broad sociohistorical context, I believe that thinking of their interrelations can shed light on the understanding of teaching-learning situations seen, in a sociohistorical purview, as ideological arenas where knowledge is constructed and awareness is raised. In order to place the dialogue between these Vygotskian and Bakhtinian concepts into a concrete teaching-learning situation, I finalize the discussion with a reflection about the interplay of these conceptions in virtual conversations between a student and me, which are part of a distance course aiming at preparing the pupil for her EFL college entrance examinations.

  15. Thermal behavior and melt fragility number of Cu100-x Zrx glassy alloys in terms of crystallization and viscous flow

    International Nuclear Information System (INIS)

    Russew, K; Stojanova, L; Yankova, S; Fazakas, E; Varga, L K

    2009-01-01

    Six Cu 100-x Zr x amorphous alloys (x in the range 35.7 - 60 at. percent) were prepared via chill block melt spinning (CBMS) method under low pressure Helium atmosphere. Their crystallization and viscous flow behavior was studied with the aid of Perkin Elmer DSC 2C and Perkin Elmer TMS 2 devices, respectively. The viscous flow temperature dependencies at a heating rate of 20 K min -1 were interpreted on the basis of the f ree volume model. The DSC and TMS data were used to determine the fragility number m of Angell in three different ways as a function of alloy composition. It has been shown that the fragility number goes over a maximum and has a minimum at x very near to the alloy composition Cu 64 Zr 36 in good agreement with the results of Donghua Xu et al. and Wang D et al. The experimental techniques and model interpretation used provide a tool for understanding the glass forming ability (GFA) and relaxation phenomena in metallic glasses.

  16. Disorder and twinning in molecular crystals: impurity-induced effects in adipic acid.

    Science.gov (United States)

    Williams-Seton, L; Davey, R J; Lieberman, H F; Pritchard, R G

    2000-03-01

    The variation in physical properties of crystals grown in the presence of additives or impurities have previously been attributed to lattice disorder developed during crystallization. Adipic acid crystallized in the presence of a variety of stereochemically related impurities typifies such behavior with disorder manifest in variations of dissolution rates and enthalpies of solution and fusion. In this case the most extreme habit, produced by the presence of added monoalkanoic acids, is a rounded dumbbell that was suggested previously to be a twinned crystal. In this contribution such crystals are fully characterized both through their external morphology and by means of single crystal X-ray diffraction. These techniques show that these particles are not twinned but rather are disordered single crystals comprising a small number of slightly misaligned domains. The interaction between additive and substrate is modeled and new additives selected that induce the formation of true mechanical twins in adipic acid.

  17. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wei-Hsiang [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China); Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China); Chia, Chih-Ta [Department of Physics, National Taiwan Normal University, Taipei, 116 Taiwan (China); Yen, Fu-Su [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.

  18. The effects of martensite morphology on mechanical properties, corrosion behavior and hydrogen assisted cracking in A516 grade steel

    Science.gov (United States)

    Shahzad, M.; Tayyaba, Q.; Manzoor, T.; ud-din, Rafi; Subhani, T.; Qureshi, A. H.

    2018-01-01

    A low carbon A516 steel (0.2% C) having 0.9% Mn content has been annealed at 760 °C with predominantly austenite and martensite input structure. This treatment lead to a dual phase (DP) ferrite–martensite microstructures with 50% martensite volume fraction in two morphologies, i.e. bulk martensite (BM) and fibrous martensite (FM) respectively. The ferrite–martensite DP steels exhibits much higher strength (∼2 times) than ferrite–pearlite (FP) steel albeit with lower elongation (50%). The martensite morphology does not affect the uniform elongation but FM morphology exhibits higher strain to fracture. However, the corrosion rate is effected by the fraction of interfaces rather than the type of constituent phase. The BM condition with minimum interfaces has the least corrosion rate in weak acidic solution. The DP steels are more disposed to hydrogen embrittlement than FP steel. This phenomena causes a lowering of flow stress and strain fracture, the former is more progressive with rise in temperature than the latter. The crack nucleation is directly related to the corrosion rate, however despite twofold higher corrosion rate in BM condition, the extent of hydrogen embrittlement in both morphologies is similar because of the connected ferrite–martensite boundaries in BM morphology.

  19. Sintering and crystallization behavior of CaMgSi2O6-NaFeSi2O6 based glass-ceramics

    International Nuclear Information System (INIS)

    Goel, Ashutosh; Kansal, Ishu; Ferrari, Anna Maria; Pascual, Maria J.; Barbieri, Luisa; Bondioli, Federica; Lancellotti, Isabella; Ribeiro, Manuel J.; Ferreira, Jose M. F.

    2009-01-01

    We report on the synthesis, sintering, and crystallization behaviors of a glass with a composition corresponding to 90 mol % CaMgSi 2 O 6 -10 mol % NaFeSi 2 O 6 . The investigated glass composition crystallized superficially immediately after casting of the melt and needs a high cooling rate (rapid quenching) in order to produce an amorphous glass. Differential thermal analysis and hot-stage microscopy were employed to investigate the glass forming ability, sintering behavior, relative nucleation rate, and crystallization behavior of the glass composition. The crystalline phase assemblage in the glass-ceramics was studied under nonisothermal heating conditions in the temperature range of 850-950 deg. C in both air and N 2 atmosphere. X-ray diffraction studies adjoined with the Rietveld-reference intensity ratio method were employed to quantify the amount of crystalline phases, while electron microscopy was used to shed some light on the microstructure of the resultant glass-ceramics. Well sintered glass-ceramics with diopside as the primary crystalline phase were obtained where the amount of diopside varied with the heating conditions.

  20. Nano-scale mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic.

    Science.gov (United States)

    Springall, Gabriella A C; Yin, Ling

    2018-03-09

    This paper reports on the mechanical behavior of pre-crystallized CAD/CAM zirconia-reinforced lithium silicate glass ceramic (ZLS) using nanoindentation with a Berkovich diamond tip and in situ scanning probe microscopy (SPM). The indentation contact hardness, the elastic modulus, and the elasticity and plasticity of the material were determined using the Oliver-Pharr method, the Sakai model and the Meyer's law at peak loads of 2.5-10 mN and a loading rate of 0.5 mN/s. The load-displacement curves at all applied loads indicate that ZLS deformed plastically without fracture. The discrete discontinuities in the load-displacement curves might have arisen from the shear plane activation for plastic deformation. The measured hardness and elastic modulus were load-independent (ANOVA, p > 0.05), in ranges of 8.17 ± 1.23 GPa to 9.86 ± 1.24 GPa and 98.55 ± 7.38 GPa to 105.78 ± 9.98 GPa, respectively. The resistance to plasticity of ZLS significantly showed a second-order polynomial load relationship or a power law load dependency. Meanwhile, both the elastic and plastic displacements also significantly revealed power law load dependencies. However, the elastic and plastic deformation components were load-independent. Increased indentation loads resulted in significant decreases in the normalized elastic strain energy (p mechanical functions of ZLS restorations, particularly facilitating abrasive machining in dental CAD/CAM processing in the ductile regime. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Anomalous Ambipolar Transport of Organic Semiconducting Crystals via Control of Molecular Packing Structures.

    Science.gov (United States)

    Park, Beomjin; Kim, Kyunghun; Park, Jaesung; Lim, Heeseon; Lanh, Phung Thi; Jang, A-Rang; Hyun, Chohee; Myung, Chang Woo; Park, Seungkyoo; Kim, Jeong Won; Kim, Kwang S; Shin, Hyeon Suk; Lee, Geunsik; Kim, Se Hyun; Park, Chan Eon; Kim, Jin Kon

    2017-08-23

    Organic crystals deposited on 2-dimensional (2D) van der Waals substrates have been widely investigated due to their unprecedented crystal structures and electrical properties. van der Waals interaction between organic molecules and the substrate induces epitaxial growth of high quality organic crystals and their anomalous crystal morphologies. Here, we report on unique ambipolar charge transport of a "lying-down" pentacene crystal grown on a 2D hexagonal boron nitride van der Waals substrate. From in-depth analysis on crystal growth behavior and ultraviolet photoemission spectroscopy measurement, it is revealed that the pentacene crystal at the initial growth stage have a lattice-strained packing structure and unique energy band structure with a deep highest occupied molecular orbital level compared to conventional "standing-up" crystals. The lattice-strained pentacene few layers enable ambipolar charge transport in field-effect transistors with balanced hole and electron field-effect mobilities. Complementary logic circuits composed of the two identical transistors show clear inverting functionality with a high gain up to 15. The interesting crystal morphology of organic crystals on van der Waals substrates is expected to attract broad attentions on organic/2D interfaces for their electronic applications.

  2. Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer's Physiological Solution

    Science.gov (United States)

    Roknian, Masoud; Fattah-alhosseini, Arash; Gashti, Seyed Omid

    2018-03-01

    Plasma electrolytic oxidation has been used as a relatively new method for applying ceramic coatings having different features. In the present study, commercially pure titanium is used as substrate, and effects of trisodium phosphate electrolyte concentration on the microstructure, as well as corrosion behavior of the coating in Ringer's physiological solution are investigated. The morphology and phase compositions of coatings were analyzed by using scanning electron microscopy (SEM) and x-ray diffraction patterns. The study on the corrosion behavior of samples in a Ringer's physiological solution was carried out using open-circuit potential potentiodynamic polarization and electrochemical impedance spectroscopy. The results of electrochemical analysis proved that higher concentration of phosphate electrolyte leads to increase in the corrosion resistance of applied coatings. Accordingly, obtained results revealed that the optimum electrolyte concentration for the best corrosion behavior was 20 g L-1. Furthermore, SEM images and reduction in the dielectric breakdown potential indicated that increase in the electrolyte concentration leads to morphological improvement and smoothening of the surface.

  3. Interpretation of the vacancy-ordering controlled growth morphology of Hg5In2Te8 precipitates in Hg3In2Te6 single crystals by TEM observation and crystallographic calculation

    International Nuclear Information System (INIS)

    Sun, Jie; Fu, Li; Liu, Hongwei; Ringer, S.P.; Liu, Zongwen

    2015-01-01

    Graphical abstract: The growth morphology and detailed crystallography of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix to has been interpreted by means of transmission electron microscopy and invariant element deformation model. Three crystallographic equivalent variants of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix were found to have different growth directions and habit planes. Such growth morphology is fully attributed to the lattice shrinkage induced by vacancy ordering under high temperature in Hg 5 In 2 Te 8 . Through near coincident site lattice and invariant strain calculation, the morphology and crystallographic features of the precipitate has been successfully interpreted. - Highlights: • The growth morphology of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 was observed by TEM. • Near-CSL calculation show 0.7577% lattice shrinkage of Hg 5 In 2 Te 8 at high temperature. • All the involved factors have inverse relationship with the move speed of interface. • The calculated crystallography features of Hg 5 In 2 Te 8 agree well with the TEM results. - Abstract: Generally, the crystal growth morphology in liquid or vapor was controlled by chemical potential, while that in solid solute was restricted by 3D strain matching between matrix and secondary phase. It is already known that the growth and evolution of the morphology of secondary phase during the solid phase transformation are highly determined by the variation of interface energy induced by lattice mismatch. In this work, the growth morphology and crystallography of Hg 5 In 2 Te 8 precipitates in Hg 3 In 2 Te 6 matrix were investigated by means of transmission electron microscopy (TEM). It was found that the growth of Hg 5 In 2 Te 8 precipitates displayed an unusual growth morphology which contain three crystallographically equivalent variants with different growth directions in Hg 3 In 2 Te 6 matrix, suggesting a slight lattice constant variation of Hg 5 In 2 Te 8 precipitate

  4. Neonatal Stress Has a Long-Lasting Sex-Dependent Effect on Anxiety-Like Behavior and Neuronal Morphology in the Prefrontal Cortex and Hippocampus.

    Science.gov (United States)

    de Melo, Silvana Regina; de David Antoniazzi, Caren Tatiane; Hossain, Shakhawat; Kolb, Bryan

    2018-02-22

    The long-lasting effects of early stress on brain development have been well studied. Recent evidence indicates that males and females respond differently to the same stressor. We examined the chronic effects of daily maternal separation (MS) on behavior and cerebral morphology in both male and female rats. Cognitive and anxiety-like behaviors were evaluated, and neuroplastic changes in 2 subregions of the prefrontal cortex (dorsal agranular insular cortex [AID] and cingulate cortex [Cg3]) and hippocampus (CA1 and dentate gyrus) were measured in adult male and female rats. The animals were subjected to MS on postnatal day (P) 3-14 for 3 h per day. Cognitive and emotional behaviors were assessed in the object/context mismatch task, elevated plus maze, and locomotor activity test in early adulthood (P87-P95). Anatomical assessments were performed in the prefrontal cortex (i.e., cortical thickness and spine density) and hippocampus (i.e., spine density). Sex-dependent effects were observed. MS increased anxiety-related behavior only in males, whereas locomotor activity was higher in females, with no effects on cognition. MS decreased spine density in the AID and increased spine density in the CA1 area in males. Females exhibited an increase in spine density in the Cg3. Our findings confirm previous work that found that MS causes long-term behavioral and anatomical effects, and these effects were dependent on sex and the duration of MS stress. © 2018 S. Karger AG, Basel.

  5. Theoretical study of the impact of stress and interstitial oxygen on the behavior of intrinsic point defects in growing Czochralski Si crystals

    Science.gov (United States)

    Sueoka, K.; Nakamura, K.; Vanhellemont, J.

    2017-09-01

    For the development of crystal pulling processes for 450 mm-diameter defect-free Si crystals, it is important to evaluate the impact of thermal stress on intrinsic point defect behavior during crystal growth. In a crystal growing from a melt, the melt/solid interface can be considered as being stress-free. Due to that the thermal stress in the growing substrate near the interface is internal plane stress. Previously, we evaluated the impact of (001) planar-isotropic stress on the formation enthalpy (Hf) of the vacancy (V) and the self-interstitial (I) using density functional theory (DFT) calculations, and explained quantitatively the published experimental values of the so-called ;Voronkov criterion;. The thermal stress in a growing crystal is indeed planar but is not isotropic in the plane except for the central region of the crystal. The purpose of the present study is to estimate the impact of planar-anisotropic stress on the formation enthalpy Hf of V and I. It is found that the three stress dependencies of σx: σy=1: 1 (planar-isotropic), 2: 1, 5: 1 (planar-anisotropic) are close to each other, independent of the assumption of isotropic or anisotropic planar stress. This is the reason why the experimental results obtained over the whole radial direction of the crystal are well reproduced by the calculated results assuming planar-isotropic stress. A uniaxial stress dependence which is a good assumption for the crystal peripheral region, leads also to results that are close to those for the planar stress dependence. Also the mechanisms behind the experimentally observed impact of interstitial oxygen (Oi), introduced during Czochralski Si growth, on V and I concentrations are clarified. DFT calculations are performed to obtain the formation energies (Ef) of V and I at all sites within a sphere with 5 Å radius around the Oi atom. Formation (vibration) entropy (Sf) calculations for V and I are also performed. It is found that both EfV and SfV of V in the zigzag

  6. Thermally sensitive block copolymer particles prepared via aerosol flow reactor method: Morphological characterization and behavior in water

    OpenAIRE

    Nykänen, Antti; Rahikkala, Antti; Hirvonen, Sami-Pekka; Aseyev, Vladimir; Tenhu, Heikki; Mezzenga, Raffaele; Raula, Janne; Kauppinen, Esko; Ruokolainen, Janne

    2012-01-01

    This work describes properties of thermo-sensitive submicron sized particles having the same chemical composition but different morphologies. These particles have been prepared with an aerosol technique using dimethylformamide solutions of linear polystyrene-block-poly(N-isopropylacrylamide-block-polystyrene, PS-b-PNIPAM-b-PS. The particles were characterized by cryo-electron microscopy, microcalorimetry, and light scattering. Block-copolymers self-assembled within the particles forming onion...

  7. Influence of PbCl2 content in PbI2 solution of DMF on the absorption, crystal phase, morphology of lead halide thin films and photovoltaic performance in planar perovskite solar cells

    International Nuclear Information System (INIS)

    Wang, Mao; Shi, Chengwu; Zhang, Jincheng; Wu, Ni; Ying, Chao

    2015-01-01

    In this paper, the influence of PbCl 2 content in PbI 2 solution of DMF on the absorption, crystal phase and morphology of lead halide thin films was systematically investigated and the photovoltaic performance of the corresponding planar perovskite solar cells was evaluated. The result revealed that the various thickness lead halide thin film with the small sheet-like, porous morphology and low crystallinity can be produced by adding PbCl 2 powder into PbI 2 solution of DMF as a precursor solution. The planar perovskite solar cell based on the 300-nm-thick CH 3 NH 3 PbI 3−x Cl x thin film by the precursor solution with the mixture of 0.80 M PbI 2 and 0.20 M PbCl 2 exhibited the optimum photoelectric conversion efficiency of 10.12% along with an open-circuit voltage of 0.93 V, a short-circuit photocurrent density of 15.70 mA cm −2 and a fill factor of 0.69. - Graphical abstract: The figure showed the surface and cross-sectional SEM images of lead halide thin films using the precursor solutions: (a) 0.80 M PbI 2 , (b) 0.80 M PbI 2 +0.20 M PbCl 2 , (c) 0.80 M PbI 2 +0.40 M PbCl 2 , and (d) 0.80 M PbI 2 +0.60 M PbCl 2 . With the increase of the PbCl 2 content in precursor solution, the size of the lead halide nanosheet decreased and the corresponding thin films gradually turned to be porous with low crystallinity. - Highlights: • Influence of PbCl 2 content on absorption, crystal phase and morphology of thin film. • Influence of perovskite film thickness on photovoltaic performance of solar cell. • Lead halide thin film with small sheet-like, porous morphology and low crystallinity. • Planar solar cell with 300 nm-thick perovskite thin film achieved PCE of 10.12%.

  8. Steering a crystallization process to reduce crystal polydispersity; case study of insulin crystallization

    Science.gov (United States)

    Nanev, Christo N.; Petrov, Kostadin P.

    2017-12-01

    The use of the classical nucleation-growth-separation principle (NGSP) was restricted hitherto to nucleation kinetics studies only. A novel application of the NGSP is proposed. To reduce crystal polydispersity internal seeding of equally-sized crystals is suggested, the advantage being avoidance of crystal grinding, sieving and any introduction of impurities. In the present study, size distributions of grown insulin crystals are interpreted retrospectively to select the proper nucleation stage parameters. The conclusion is that when steering a crystallization process aimed at reducing crystal polydispersity, the shortest possible nucleation stage duration has to be chosen because it renders the closest size distribution of the nucleated crystal seeds. Causes of inherent propensity to increasing crystal polydispersity during prolonged growth are also explored. Step sources of increased activity, present in some crystals while absent in others, are pointed as the major polydispersity cause. Insulin crystal morphology is also considered since it determines the dissolution rate of a crystalline medicine.

  9. Growth of Cu{sup 2+} and Mg{sup 2+} doped nonlinear optical LATF crystals and their characterization

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: lxj@mail.sdu.edu.c [School of Science, University of Jinan, Jiwei Road 106, Jinan 250022, Shandong (China); Xu, D. [State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100 (China); Wei, X.Q.; Ren, M.J. [School of Science, University of Jinan, Jiwei Road 106, Jinan 250022, Shandong (China); Zhang, G.H. [State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan 250100 (China)

    2010-02-15

    Single crystals of pure, Cu{sup 2+} and Mg{sup 2+} doped L-arginine trifluoroacetate (LATF) have been grown by the temperature lowering method. The presence of Cu{sup 2+} and Mg{sup 2+} was determined by atomic absorption spectroscopy (AAS). Single crystal X-ray diffraction studies were performed to calculate the lattice parameters of the pure and doped crystals. Absorption of these crystals was analyzed and the result confirms that they possess low absorption in the range 230-1100 nm. Thermal analysis (TGA, DTA) and Fourier transform infrared (FTIR) spectroscopy were carried out to investigate the thermal behavior and molecular vibrations of these crystals, respectively. The second harmonic generation (SHG) measurement reveals the NLO properties of pure and doped crystal. Surface morphologies of these crystals were also observed and studied in detail by atomic force microscopy.

  10. Creep behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982 ∘C

    Directory of Open Access Journals (Sweden)

    Xue Fei

    2014-01-01

    Full Text Available The tensile creep behavior of a Co-Al-W-base single crystal alloy containing Ta and Ti was investigated at 982 ∘C and 248 MPa. The lattice misfit of experimental alloy was measured to be positive by synchrotron X-ray diffraction at high temperature, and long term heat treatment at 1000 ∘C for 1000 h revealed a γ′ volume fraction of 75% without secondary phases. The creep test indicated that the creep properties of experimental alloy exceeded commercial 1st generation Ni-base single crystal superalloy CMSX-3 with respect to the rupture life. The initial cuboidal γ′ precipitates directionally coarsened parallel to the applied stress axis during the creep process. The stacking faults in {111} planes within γ′ rafts were the primary creep deformation mode by TEM investigation.

  11. Dynamics of Hexavalent Chromium in Four Types of Aquaculture Ponds and Its Effects on the Morphology and Behavior of Cultured Clarias gariepinus (Burchell 1822).

    Science.gov (United States)

    Mustapha, Moshood Keke

    2017-04-01

    Hexavalent chromium is a bio accumulative toxic metal in water and fish. It enters aquaculture ponds mainly through anthropogenic sources. Hexavalent chromium concentrations and its effects on the morphology and behavior of Clarias gariepinus were investigated from four aquaculture ponds for 12 weeks. Chromium was measured using diphenyl carbohdrazide method; alkalinity and hardness were measured using colometric method and analyzed with Bench Photometer. Temperature and pH were measured using pH/EC/TDS/Temp combined tester. Temporal and spatial replications of samples were done with triplicates morphological and behavioural effects of the metal on fish were observed visually. Chromium ranged from no detection to 0.05 mg/L, alkalinity 105 to 245 mg/L, hardness 80 to 165 mg/L, pH 6.35 to 8.03 and temperature 29.1 to 35.9°C. Trend in the chromium concentrations in the ponds is natural > earthen > concrete > collapsible. There was a significant difference ( P < 0.05) in chromium, alkalinity, water hardness, pH and temperature among the four ponds. Significant positive correlation also existed between alkalinity, water hardness, pH, with chromium. Morphological and behavioural changes observed in the fish include irregular swimming, frequent coming to the surface, dark body colouration, mucous secretion on the body, erosion of gill epithelium, fin disintegration, abdominal distension and lethargy. High chromium concentration in natural pond was due to anthropogenic run-off of materials in to the pond. Acidic pH, low alkalinity, low water hardness also contributed to the high chromium concentration. Morphological and behavioural changes observed were attributed to the high concentrations, toxicity and bio accumulative effect of the metal. Toxicity of chromium to fish in aquaculture could threaten food security. Watershed best management practices and remediation could be adopted to reduce the effects of toxicity of chromium on pond water quality, fish flesh quality and

  12. Crystal Structures, Thermal Analysis, and Dissolution Behavior of New Solid Forms of the Antiviral Drug Arbidol with Dicarboxylic Acids

    Directory of Open Access Journals (Sweden)

    Alex N. Manin

    2015-12-01

    Full Text Available Salts of the antiviral drug arbidol (umifenovir (Arb with maleate (Mlc and fumarate (Fum anions have been obtained, and their crystal structures have been described. The crystal structure of arbidol maleate has been redetermined by single crystal X-ray diffraction at 180K. A new arbidol cocrystal in zwitterion form with succinic acid (Suc has also been found and characterized. The arbidol zwitterion was not previously seen in any of the drug crystal forms, and the [Arb + Suc] cocrystal seems to be the first found instance. Analysis of the conformational preferences of the arbidol molecule in the crystal structures has shown that it adopts two types of conformations, namely “open” and “closed” ones. Thermal stability of the arbidol salts and cocrystal have been analyzed by means of differential scanning calorimetry, thermogravimetric, and mass-spectrometry analysis. The dissolution study of the arbidol salts and cocrystal performed in aqueous buffer solutions with pH 1.2 and 6.8 has shown that both the salts and the cocrystal dissolve incongruently to form an arbidol hydrochloride monohydrate at pH 1.2 and an arbidol base at pH 6.8, respectively. The cocrystal reaches the highest solubility level in both pH 1.2 and pH 6.8 solutions.

  13. Laser MBE-grown CoFeB epitaxial layers on MgO: Surface morphology, crystal structure, and magnetic properties

    Science.gov (United States)

    Kaveev, Andrey K.; Bursian, Viktor E.; Krichevtsov, Boris B.; Mashkov, Konstantin V.; Suturin, Sergey M.; Volkov, Mikhail P.; Tabuchi, Masao; Sokolov, Nikolai S.

    2018-01-01

    Epitaxial layers of CoFeB were grown on MgO by means of laser molecular beam epitaxy using C o40F e40B20 target. The growth was combined with in situ structural characterization by three-dimensional reciprocal space mapping obtained from reflection high energy electron diffraction (RHEED) data. High-temperature single stage growth regime was adopted to fabricate CoFeB layers. As confirmed by the atomic force microscopy, the surface of CoFeB layers consists of closely spaced nanometer sized islands with dimensions dependent on the growth temperature. As shown by RHEED and XRD analysis, the CoFeB layers grown at high-temperature on MgO(001) possess body centered cubic (bcc) crystal structure with the lattice constant a =2.87 Å close to that of the C o75F e25 alloy. It was further shown that following the same high-temperature growth technique the MgO/CoFeB/MgO(001) heterostructures can be fabricated with top and bottom MgO layers of the same crystallographic orientation. The CoFeB layers were also grown on the GaN(0001) substrates using MgO(111) as a buffer layer. In this case, the CoFeB layers crystallize in bcc crystal structure with the (111) axis perpendicular to the substrate surface. The magnetic properties of the CoFeB/MgO (001) heterostructures have been investigated by measuring magnetization curves with a vibrating sample magnetometer as well as by performing magneto-optical Kerr effect (MOKE) and ferromagnetic resonance (FMR) studies. FMR spectra were obtained for the variety of the magnetic field directions and typically consisted of a single relatively narrow resonance line. The magnetization orientations and the resonance conditions were calculated in the framework of a standard magnetic energy minimization procedure involving a single K1 c cubic term for the magnetocrystalline anisotropy. This allows a fairly accurate description of the angular dependences of the resonance fields—both in-plane and out-of-plane. It was shown that CoFeB layers exhibit

  14. Morphology and In Vitro Behavior of Electrospun Fibrous Poly(D,L-lactic acid for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Toshihiro Inami

    2013-01-01

    Full Text Available This work describes the fabrication, optimization, and characterization of electrospun fibrous poly(D,L-lactic acid (PDLLA for biomedical applications. The influences of the polymer concentration of the electrospinning solution (5, 10, or 15 wt% and the solution flow rate (0.1, 0.5, 1.0, or 2.0 mL/h on the morphology of the obtained fibrous PDLLA were evaluated. The in vitro biocompatibility of two types of PDLLA, ester terminated PDLLA (PDLLA-R and carboxyl terminated PDLLA (PDLLA-COOH, was evaluated by monitoring apatite formation on samples immersed in Hanks’ balanced salt (HBS solution. 15 wt% polymer solution was the most beneficial for preparing a fibrous PDLLA structure. Meanwhile, no differences in morphology were observed for PDLLA prepared at various flow rates. Apatite precipitate is formed on both types of PDLLA only 1 day after immersion in HBS solution. After 7 days of immersion, PDLLA-COOH showed greater apatite formation ability compared with that of PDLLA-R, as measured by thin-film X-ray diffraction. The results indicated that the carboxyl group is effective for apatite precipitation in the body environment.

  15. Effect of swift heavy ion Ag9+ irradiation on the surface morphology, structure and optical properties of AgGaS2 single crystals

    Science.gov (United States)

    Prabukanthan, P.; Asokan, K.; Kanjilal, D.; Dhanasekaran, R.

    2008-12-01

    AgGaS2 (AGS) single crystals grown by chemical vapor transport (CVT) method were irradiated with Ag9+ ions (120 MeV) with various ion fluences. The irradiation was carried out at room temperature (RT) and at liquid nitrogen temperature (LNT). A glancing angle x-ray diffraction (GAXRD) analysis reveals a huge lattice disorder at RT irradiation. This is observed from an increase in the full width at half maximum (FWHM) and a decrease in the intensity of the AGS (1 1 2) peak. However, there is no change in the FWHM of the (1 1 2) peak but the intensity slightly decreases at LNT irradiation. Also, AGS (3 0 3) peak is not observed for the samples irradiated with the fluences of 5 × 1013 and 1 × 1013 ions cm-2 at RT conditions. The GAXRD results show the decrease in degree of crystallinity upon ion irradiation at RT while there is not much degradation in crystallinity upon ion irradiation at LNT. But the LNT irradiation on AGS has its own effects. Atomic force microscope (AFM) studies show that the roughness of AGS increases on increasing the ion fluences at LNT and at RT. Also, it is found that there is an increase in the surface defects with fluences of Ag9+ ion irradiation when compared to pristine AGS. UV-visible transmission spectra show that the percentage of transmission and bandgap energy decrease with increasing ion fluences and also that the peaks are broadened at LNT and at RT. The photoluminescence (PL) spectra were analyzed as a function of irradiation ion fluences in the AGS crystals at RT. It has been found that the emission intensities of band-to-band transition decrease with increase of ion fluences at LNT and at RT.

  16. The effects of alloy purity on the mechanical behavior of soft oriented NiAl single crystals

    Science.gov (United States)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1993-01-01

    Preliminary results of the effects of alloy purity on the mechanical properties of NiAl single crystals are presented. Two stoichiometric NiAl single crystals with different impurity contents were studied. It is concluded that reductions in the interstitial and substitutional levels cause reduced yield strengths in NiAl. Heat treatment also results in reduced yield and flow stresses in both CP-NiAl and Hp-NiAl which are considered to be due to a reduction in the concentration of thermal vacancies due to vacancy coalescence during heat treatment.

  17. Crystallization kinetics of poly-(lactic acid) with and without talc: Optical microscopy and calorimetric analysis

    Science.gov (United States)

    Refaa, Z.; Boutaous, M.; Rousset, F.; Fulchiron, R.; Zinet, M.; Xin, S.; Bourgin, P.

    2014-05-01

    Poly-(lactic acid) or PLA is a biodegradable polymer synthesized from renewable resources. Recently, the discovery of new polymerization routes has allowed increasing the produced volumes. As a consequence, PLA is becoming of great interest for reducing the dependence on petroleum-based plastics. Because of its interesting mechanical properties, PLA is seen as a potential substitute for some usual polymers. However, its relatively slow crystallization kinetics can be a disadvantage with regard to industrial applications. The crystallization kinetics of PLA can be enhanced by adding nucleating agents, which also influences on crystalline morphology and rheological behavior. In the present work, the isothermal quiescent crystallization kinetics of both neat PLA and PLA/talc composite (5 wt% talc) are investigated. The effects of talc on the overall crystallization kinetics and on the crystalline morphology are analyzed using both optical microscopy measurements and thermal analysis by differential scanning calorimetry.

  18. Study of the Polarization Behavior of Ce0.9Gd0.1O2-δ Single Crystals below 350°C to Room Temperature

    DEFF Research Database (Denmark)

    Neuhaus, K.; Bernemann, M.; Hansen, Karin Vels

    2016-01-01

    was investigated by mapping the introduced defect gradient and its decay with time using Kelvin probe force microscopy. The generated surface potential gradients were found to have a diameter of up to 1 μm, which is explained by the local ionization of defect associates by the applied high electric field....... Measurements were performed at room temperature and 50°C. The polarization behavior of the Ce0.9Gd0.1O2-δ single crystals was compared to cyclovoltammetry and polarization-relaxation experiments at T ≤ 350°C and in dry air or nitrogen which were performed using a specially suited AFM (Controlled Atmosphere...

  19. Effect of diatom morphology on the small-scale behavior of the copepod Temora stylifera (Dana, 1849)

    KAUST Repository

    Mahadik, Gauri A.

    2017-05-12

    We explored the small-scale behavior of the calanoid copepod Temora stylifera in relation to the diatoms Chaetoceros socialis, Leptocylindrus aporus, Leptocylindrus danicus and Pseudo-nitzschia calliantha offered as monospecific diets at similar carbon concentrations. These four diatoms are characterized by distinct size, shape and colony forming ability and are important components of the autumnal bloom co-occurring with the seasonal peak of T. stylifera abundance in Mediterranean coastal waters. High-speed video recordings showed that T. stylifera acquired cells in a suspension feeding mode while creating feeding currents. Copepod behavior was quantified in terms of feeding, motion, and grooming activities. T. stylifera spent more time in hovering than cruising in presence of all diets. The solitary L. aporus and P. calliantha elicited longer feeding bouts, lower appendage beat frequency and shorter grooming events compared to the colonial L. danicus and C. socialis. Overall the present results indicate that the behavioral responses of T. stylifera to different diatom diets were species-specific. The observed behavioral plasticity may help T. stylifera to adjust rapidly to changes in the food environment and this can be advantageous in exploiting short-lived phytoplankton blooms.

  20. Lyotropic Phase Behavior of Poly(ethylene oxide)-Poly(butadiene) Diblock Copolymers: Evolution of the Random Network Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Sumeet; Dyrdahl, Mitchell H.E.; Gong, Xiaobo; Scriven, L.E.; Bates, Frank S. (UMM)

    2008-10-24

    The phase behavior of poly(ethylene oxide)-poly(butadiene) (PEO-PB) diblock copolymers mixed with water was studied using small-angle X-ray scattering (SAXS), cryogenic scanning electron microscopy (cryo-SEM), cryogenic transmission electron microscopy (cryo-TEM), and dynamic mechanical spectroscopy. Two sets of diblocks were synthesized by adding different lengths of PEO to hydroxy terminated PB with degrees of polymerization N{sub PB} = 46 and 170. Two-component mixtures were investigated as a function of block composition and copolymer molecular weight, between 1 and 100 wt % polymer content. Melt phase behavior is consistent with established theory and known experimental behavior for diblock copolymers. Various lyotropic liquid crystalline structures, notably lamellae (L), hexagonally packed cylinders (H), and spheres (S) arranged on cubic (body-centered cubic, face-centered cubic) lattices, were documented as a function of water content. At the higher molecular weights (N{sub PB} = 170), a random network phase (N) was identified over a sizable portion of the phase portrait, located between hexagonally ordered cylinders and ordered lamellae. This new structure, along with branching of cylindrical micelles in the dilute limit, bear a striking similarity to experimentally observed and theoretically predicted phase behavior in certain ternary water/oil/surfactant systems. These findings demonstrate that block copolymer surfactants are characterized by at least four structural building blocks -- spheres, cylinders, bilayers, and branched cylinders -- above a threshold molecular weight.

  1. Beyond R2D2 - The design of nonverbal interaction behavior optimized for robot-specific morphologies

    NARCIS (Netherlands)

    Karreman, Daphne Eleonora

    2016-01-01

    It is likely that in the near future we will meet more and more robots that will perform tasks in social environments, such as shopping malls, airports or museums. However, design guidelines that inform the design of effective nonverbal behavior for robots are scarce. This is surprising since the

  2. Studying of crystal growth and overall crystallization of naproxen from binary mixtures.

    Science.gov (United States)

    Kaminska, E; Madejczyk, O; Tarnacka, M; Jurkiewicz, K; Kaminski, K; Paluch, M

    2017-04-01

    Broadband dielectric spectroscopy (BDS) and differential scanning calorimetry (DSC) were applied to investigate the molecular dynamics and phase transitions in binary mixtures composed of naproxen (NAP) and acetylated saccharides: maltose (acMAL) and sucrose (acSUC). Moreover, the application of BDS method and optical microscopy enabled us to study both crystallization kinetics and crystal growth of naproxen from the solid dispersions with the highest content of modified carbohydrates (1:5wt ratio). It was found that the activation barriers of crystallization estimated from dielectric measurements are completely different for both studied herein mixtures. Much higher E a (=205kJ/mol) was obtained for NAP-acMAL solid dispersion. It is probably due to simultaneous crystallization of both components of the mixture. On the other hand, lower value of E a in the case of NAP-acSUC solid dispersion (81kJ/mol) indicated, that naproxen is the only crystallizing compound. This hypothesis was confirmed by X-ray diffraction studies. We also suggested that specific intermolecular dipole-dipole interactions between active substance and excipient may be an alternative explanation for the difference between activation barrier obtained for NAP-acMAL and NAP-acSUC binary mixtures. Furthermore, optical measurements showed that the activation energy for crystal growth of naproxen increases in binary mixtures. They also revealed that both excipients: acMAL and acSUC move the temperature of the maximum of crystal growth towards lower temperatures. Interestingly, this maximum occurs for nearly the same structural relaxation time, which is a good approximation of viscosity, for all samples. Finally, it was also noticed that although naproxen crystallizes to the same polymorphic form in both systems, there are some differences in morphology of obtained crystals. Thus, the observed behavior may have a significant impact on the bioavailability and dissolution rate of API produced in that way

  3. Dissolution enhancement of Deflazacort using hollow crystals prepared by antisolvent crystallization process.

    Science.gov (United States)

    Paulino, A S; Rauber, G; Campos, C E M; Maurício, M H P; de Avillez, R R; Capobianco, G; Cardoso, S G; Cuffini, S L

    2013-05-13

    Deflazacort (DFZ), a derivate of prednisolone, is a poorly soluble drug which has been proposed to have major advantages over other corticosteroids. Poorly soluble drugs present limited bioavailability due to their low solubility and dissolution rate and several strategies have been developed in order to find ways to improve them. In general, pharmaceutical laboratories use a micronized process to reduce the particle size in order to increase the dissolution of the drugs. However, this process causes changes such as polymorphic transitions, particle agglomeration and a reduction in fluidity and wettability. These solid-state properties affect the dissolution behavior and stability performance of drugs. Crystallization techniques are widely used in the pharmaceutical industry and antisolvent crystallization has been used to obtain ultrafine particles. In this study, DFZ was investigated in terms of its antisolvent crystallization in different solvents and under various preparation conditions (methanol/water ratio, stirring and evaporation rate, etc.), in order to compare the physicochemical properties between crystallized samples and raw materials available on the Brazilian market with and without micronization. Crystalline structure, morphology, and particle size, and their correlation with the Intrinsic Dissolution Rate (IDR) and dissolution profile as relevant biopharmaceutical properties were studied. Crystallization conditions were achieved which provided crystalline samples of hollow-shaped crystals with internal channels, which increased the dissolution rate of DFZ. The antisolvent crystallization process allowed the formation of hollow crystals, which demonstrated a better dissolution profile than the raw material (crystalline and micronized), making this a promising technique as a crystallization strategy for improving the dissolution and thus the bioavailability of poorly soluble drugs. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Co-metal-organic-frameworks with pure uniform crystal morphology prepared via Co2 + exchange-mediated transformation from Zn-metallogels for luminol catalysed chemiluminescence

    Science.gov (United States)

    Tang, Xue Qian; Xiao, Bo Wen; Li, Chun Mei; Wang, Dong Mei; Huang, Cheng Zhi; Li, Yuan Fang

    2017-03-01

    Cation exchange-mediated transformation from Zn-metallogels (MOGs), which was a mild facile strategy relative to the demanding hydrothermal method, was employed to develop Co2 + metal-organic frameworks (Co-MOFs) at room temperature. The obtained Co-MOFs was of uniform octahedral morphology and possessed high activity to catalyze luminol chemiluminescence without extra oxidants. By adding cysteine, the CL emission of luminol-Co-MOFs system was further enhanced. Based on this phenomenon, Co-MOFs was utilized to build a practical sensing platform for cysteine determination. Under the optimized conditions, the relative CL intensity (ΔI) was proportional to the concentration of cysteine in the range of 2-10 μM, and the detection limit was 0.49 μM (3S/N). Moreover, the established method was applied to the determination of cysteine in commercially available pharmaceutical injections.

  5. In Situ Real-Time Mechanical and Morphological Characterization of Electrodes for Electrochemical Energy Storage and Conversion by Electrochemical Quartz Crystal Microbalance with Dissipation Monitoring.

    Science.gov (United States)

    Shpigel, Netanel; Levi, Mikhael D; Sigalov, Sergey; Daikhin, Leonid; Aurbach, Doron

    2018-01-16

    Quartz crystal microbalance with dissipation monitoring (QCM-D) generates surface-acoustic waves in quartz crystal plates that can effectively probe the structure of films, particulate composite electrodes of complex geometry rigidly attached to quartz crystal surface on one side and contacting a gas or liquid phase on the other side. The output QCM-D characteristics consist of the resonance frequency (MHz frequency range) and resonance bandwidth measured with extra-ordinary precision of a few tenths of Hz. Depending on the electrodes stiffness/softness, QCM-D operates either as a gravimetric or complex mechanical probe of their intrinsic structure. For at least 20 years, QCM-D has been successfully used in biochemical and environmental science and technology for its ability to probe the structure of soft solvated interfaces. Practical battery and supercapacitor electrodes appear frequently as porous solids with their stiffness changing due to interactions with electrolyte solutions or as a result of ion intercalation/adsorption and long-term electrode cycling. Unfortunately, most QCM measurements with electrochemical systems are carried out based on a single (fundamental) frequency and, as such, provided that the resonance bandwidth remains constant, are suitable for only gravimetric sensing. The multiharmonic measurements have been carried out mainly on conducting/redox polymer films rather than on typical composite battery/supercapacitor electrodes. Here, we summarize the most recent publications devoted to the development of electrochemical QCM-D (EQCM-D)-based methodology for systematic characterization of mechanical properties of operating battery/supercapacitor electrodes. By varying the electrodes' composition and structure (thin/thick layers, small/large particles, binders with different mechanical properties, etc.), nature of the electrolyte solutions and charging/cycling conditions, the method is shown to be operated in different application modes. A

  6. Research Advances: Mechanism of Copper Acquisition by Methanotrophs; Honey Bees Use Pheromone To Delay Behavioral Maturation; Liquid Crystal Cylinders

    Science.gov (United States)

    King, Angela G.

    2005-06-01

    This Report from Other Journals surveys articles of interest to chemists that have been recently published in other science journals. Topics surveyed include reports that a molecule used to accumulate copper has been identified; adult foraging bees keep young bees "down" with pheromone; and liquid crystals allow pentagons to tile a plane.

  7. Wall Slip Effect on Shear-Induced Crystallization Behavior of Isotactic Polypropylene Containing beta-Nucleating Agent

    DEFF Research Database (Denmark)

    Luo, Baojing; Li, Hongfei; Zhang, Yao

    2014-01-01

    Shearing is unavoidable during the polymer process, and isotactic polypropylene (iPP) is one of the most used commercial polymers. iPP mixed with beta-nucleating agent TMB-5 was isothermally crystallized at 135 degrees C from melts under various shear conditions and investigated via synchrotron...

  8. Rheological Behavior of Amino-Functionalized Multi-Walled Carbon Nanotube/Polyacrylonitrile Concentrated Solutions and Crystal Structure of Composite Fibers

    Directory of Open Access Journals (Sweden)

    Hailong Zhang

    2018-02-01

    Full Text Available The rheological behavior of amino-functionalized multi-walled carbon nanotubes (amino-CNTs/polyacrylonitrile (PAN concentrated solutions in the dimethyl sulphoxide solvent and the effects of the amino-CNTs on the PAN precursor fibers by wet-spinning method were investigated. The amino-CNT/PAN concentrated solutions prepared by in situ solution polymerization with homogeneous dispersion of amino-CNTs have higher complex viscosity, storage modulus and loss modulus as compared to the control PAN concentrated solutions containing 22% PAN polymer by mass. The composite fibers with amino-CNTs of 1 wt % have lower degree of crystallization, crystal size and crystal region orientation compared to the control PAN precursor fibers. However, the amino-CNT/PAN composite fibers with diameter of about 10.5 μm exhibit higher mechanical properties than the control PAN precursor fibers with diameter of about 8.0 μm. Differential scanning calorimetry analysis demonstrated that the cyclization reaction in composite fibers have broad exothermic temperature range and low exothermic rate. These results indicate that the addition of amino-CNTs into PAN precursor fibers is beneficial to controlling the process of thermal stabilization and obtaining the higher performance of composite fibers.

  9. Crystallization behavior of (1 - x)Li2O.xNa2O.Al2O3.4SiO2 glasses

    International Nuclear Information System (INIS)

    Wang, Moo-Chin; Cheng, Chih-Wei; Chang, Kuo-Ming; Hsi, Chi-Shiung

    2010-01-01

    The crystallization behavior of the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses has been investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron diffraction (ED) and energy dispersive spectroscopy (EDS). The crystalline phase was composed of β-spodumene. The isothermal crystallization kinetics of β-spodumene from the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses has also been studied by a quantitative X-ray diffraction method. The activation energy of β-spodumene formation decreases from 359.2 to 317.8 kJ/mol when the Na 2 O content increases from 0 to 0.4 mol and it increases from 317.8 to 376.9 kJ/mol when the Na 2 O content increases from 0.4 to 0.6 mol. The surface nucleation and plate-like growth were dominant in the crystallization of the (1 - x)Li 2 O.xNa 2 O.Al 2 O 3 .4SiO 2 glasses.

  10. Observation of Wigner crystal phase and ripplon-limited mobility behavior in monolayer CVD MoS2 with grain boundary

    KAUST Repository

    Chen, Jyun-Hong

    2018-03-12

    Two-dimensional electron gas (2DEG) is crucial in condensed matter physics and is present on the surface of liquid helium and at the interface of semiconductors. Monolayer MoS2 of 2D materials also contains 2DEG in an atomic layer as field effect transistor (FET) ultrathin channel. In this study, we synthesized double triangular MoS2 through a chemical vapor deposition method to obtain grain boundaries for forming a ripple structure in FET channel. When the temperature was higher than approximately 175 K, the temperature dependence of the electron mobility μ was consistent with those in previous experiments and theoretical predictions. When the temperature was lower than approximately 175 K, the mobility behavior decreased with the temperature; this finding was also consistent with that of the previous experiments. We are the first research group to explain the decreasing mobility behavior by using the Wigner crystal phase and to discover the temperature independence of ripplon-limited mobility behavior at lower temperatures. Although these mobility behaviors have been studied on the surface of liquid helium through theories and experiments, they have not previously analyzed in 2D materials and semiconductors. We are the first research group to report the similar temperature-dependent mobility behavior of the surface of liquid helium and the monolayer MoS2.

  11. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing.

    Science.gov (United States)

    Bhatnagar, Bakul S; Martin, Susan M; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2010-06-01

    Our objective was to characterize the nonequilibrium thermal behavior of frozen aqueous solutions containing PEG and sucrose. Aqueous solutions of (i) sucrose (10%, w/v) with different concentrations of PEG (1-20%, w/v), and (ii) PEG (10%, w/v) with different concentrations of sucrose (2-20%, w/v), were cooled to -70 degrees C at 5 degrees C/min and heated to 25 degrees C at 2 degrees C/min in a differential scanning calorimeter. Annealing was performed at temperatures ranging from -50 to -20 degrees C for 2 or 6 h. Similar experiments were also performed in the low-temperature stage of a powder X-ray diffractometer. A limited number of additional DSC experiments were performed wherein the samples were cooled to -100 degrees C. In unannealed systems with a fixed sucrose concentration (10%, w/v), the T'g decreased from -35 to -48 degrees C when PEG concentration was increased from 1% to 20% (w/v). On annealing at -25 degrees C, PEG crystallized. This was evident from the increase in T'g and the appearance of a secondary melting endotherm in the DSC. Low-temperature XRD provided direct evidence of PEG crystallization. Annealing at temperatures crystallization and a devitrification event was observed above the T'g. In unannealed systems with a fixed PEG concentration (10%, w/v), the T'g increased from -50 to -40 degrees C when sucrose concentration was increased from 5% to 50%, w/v. As the annealing time increased (at -25 degrees C), the T'g approached that of a sucrose-water system, reflecting progressive PEG crystallization. A second glass transition at approximately -65 degrees C was evident in unannealed systems [10%, w/v sucrose and 10 (or 20%), w/v PEG] cooled to -100 degrees C. Investigation of the nonequilibrium behavior of frozen PEG-sucrose-water ternary system revealed phase separation in the freeze-concentrate. Annealing facilitated PEG crystallization. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  12. Effects of tamoxifen on neuronal morphology, connectivity and biochemistry of hypothalamic ventromedial neurons: Impact on the modulators of sexual behavior.

    Science.gov (United States)

    Sá, Susana I; Teixeira, Natércia; Fonseca, Bruno M

    2018-01-01

    Tamoxifen (TAM) is a selective estrogen receptor modulator, widely used in the treatment and prevention of estrogen-dependent breast cancer. Although with great clinical results, women on TAM therapy still report several side effects, such as sexual dysfunction, which impairs quality of life. The anatomo-functional substrates of the human sexual behavior are still unknown; however, these same substrates are very well characterized in the rodent female sexual behavior, which has advantage of being a very simple reflexive response, dependent on the activation of estrogen receptors (ERs) in the ventrolateral division of the hypothalamic ventromedial nucleus (VMNvl). In fact, in the female rodent, the sexual behavior is triggered by increasing circulation levels of estradiol that changes the nucleus neurochemistry and modulates its intricate neuronal network. Therefore, we considered of notice the examination of the possible neurochemical alterations and the synaptic plasticity impairment in VMNvl neurons of estradiol-primed female rats treated with TAM that may be in the basis of this neurological disorder. Accordingly, we used stereological and biochemical methods to study the action of TAM in axospinous and axodendritic synaptic plasticity and on ER expression. The administration of TAM changed the VMNvl neurochemistry by reducing ERα mRNA and increasing ERβ mRNA expression. Furthermore, present results show that TAM induced neuronal atrophy and reduced synaptic connectivity, favoring electrical inactivity. These data suggest that these cellular and molecular changes may be a possible neuronal mechanism of TAM action in the disruption of the VMNvl network, leading to the development of behavioral disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A Novel HumanCAMK2AMutation Disrupts Dendritic Morphology and Synaptic Transmission, and Causes ASD-Related Behaviors.

    Science.gov (United States)

    Stephenson, Jason R; Wang, Xiaohan; Perfitt, Tyler L; Parrish, Walker P; Shonesy, Brian C; Marks, Christian R; Mortlock, Douglas P; Nakagawa, Terunaga; Sutcliffe, James S; Colbran, Roger J

    2017-02-22

    Characterizing the functional impact of novel mutations linked to autism spectrum disorder (ASD) provides a deeper mechanistic understanding of the underlying pathophysiological mechanisms. Here we show that a de novo Glu183 to Val (E183V) mutation in the CaMKIIα catalytic domain, identified in a proband diagnosed with ASD, decreases both CaMKIIα substrate phosphorylation and regulatory autophosphorylation, and that the mutated kinase acts in a dominant-negative manner to reduce CaMKIIα-WT autophosphorylation. The E183V mutation also reduces CaMKIIα binding to established ASD-linked proteins, such as Shank3 and subunits of l-type calcium channels and NMDA receptors, and increases CaMKIIα turnover in intact cells. In cultured neurons, the E183V mutation reduces CaMKIIα targeting to dendritic spines. Moreover, neuronal expression of CaMKIIα-E183V increases dendritic arborization and decreases both dendritic spine density and excitatory synaptic transmission. Mice with a knock-in CaMKIIα-E183V mutation have lower total forebrain CaMKIIα levels, with reduced targeting to synaptic subcellular fractions. The CaMKIIα-E183V mice also display aberrant behavioral phenotypes, including hyperactivity, social interaction deficits, and increased repetitive behaviors. Together, these data suggest that CaMKIIα plays a previously unappreciated role in ASD-related synaptic and behavioral phenotypes. SIGNIFICANCE STATEMENT Many autism spectrum disorder (ASD)-linked mutations disrupt the function of synaptic proteins, but no single gene accounts for >1% of total ASD cases. The molecular networks and mechanisms that couple the primary deficits caused by these individual mutations to core behavioral symptoms of ASD remain poorly understood. Here, we provide the first characterization of a mutation in the gene encoding CaMKIIα linked to a specific neuropsychiatric disorder. Our findings demonstrate that this ASD-linked de novo CAMK2A mutation disrupts multiple Ca

  14. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste

    International Nuclear Information System (INIS)

    Chen, Lin; Wang, Shuzhong; Meng, Haiyu; Wu, Zhiqiang; Zhao, Jun

    2017-01-01

    Highlights: • Positive synergistic effect on volatiles yield during co-pyrolysis of PAW and PP. • Higher char yields than predicated value during PAW/PVC and PAW/PET blends pyrolysis. • Co-pyrolysis of PAW and plastics reduced the mean activation energy of the blends. • The plastics affected the surface morphology of co-pyrolysis chars significantly. - Abstract: Thermal behavior of Paulownia wood (PAW), model plastics (polypropylene, polyvinyl chloride and polyethylene terephthalate, abbreviated as PP, PVC and PET) and their mixtures during pyrolysis process were studied through thermogravimetric analyzer. Scanning electron microscopy technology (SEM) and fractal theory were applied to evaluate the surface morphology of pyrolysis chars. This study found that PP showed synergistic effect on PAW pyrolysis with more volatiles release than predicated value, and the maximum volatiles yield exhibited with 25% PAW blending ratio. However, higher char yields were observed compared with the predicted values during co-pyrolysis process of PAW blends with PVC or PET, and the maximum char yields were obtained under the PAW blending ratio of 75% and 25% respectively. An evident decline in mean activation energy was found during co-pyrolysis of the PAW blending with plastics. The minimum values of mean activation energy for the PAW/PP, PAW/PVC and PAW/PET were gained when the PAW blending ratio were 75%, 50% and 75% respectively. Quantitative information about surface topography of pyrolysis chars were obtained by fractal analysis of the SEM microphotograph. The fractal dimension of residual chars from PAW/PP blends increased from 1.75 to 1.84 as increasing the ratio of PP from 25% to 75%, indicating that PP addition promoted the nonuniformity of the co-pyrolysis chars. The surface morphology of residual chars from PAW/PET and PAW/PVC blends showed a contrary tendency, and the minimum values of fractal dimension were respectively 1.62 and 1.61 under 25% PAW blending

  15. The Crystal Structure and Magnetic Behavior of Quinary Osmate and Ruthenate Double Perovskites LaABB'O6(A = Ca, Sr; B = Co, Ni; B' = Ru, Os).

    Science.gov (United States)

    Morrow, Ryan; McGuire, Michael A; Yan, Jiaqiang; Woodward, Patrick M

    2018-02-23

    Six LaABB'O 6 (A = Ca, Sr; B = Co, Ni; B' = Ru, Os) double perovskites were synthesized, several for the first time, and their crystal structures and magnetic behavior were characterized with neutron powder diffraction and direct-current and alternating-current magnetometry. All six compounds crystallize with P2 1 /n space group symmetry, resulting from a - a - c + octahedral tilting and complete rock salt ordering of transition-metal ions. Despite the electronic configurations of the transition-metal ions, either d 8 -d 3 or d 7 -d 3 , not one of the six compounds shows ferromagnetism as predicted by the Goodenough-Kanamori rules. LaSrNiOsO 6 , LaSrNiRuO 6 , and LaCaNiRuO 6 display long-range antiferromagnetic order, while LaCaNiOsO 6 , LaCaCoOsO 6 , and LaSrCoOsO 6 exhibit spin-glass behavior. These compounds are compared to the previously studied LaCaCoRuO 6 and LaSrCoRuO 6 , both of which order antiferromagnetically. The observed variations in magnetic properties can be attributed largely to the response of competing superexchange pathways due to changes in B-O-B' bond angles, differences in the radial extent of the 4d (B' = Ru) and 5d (B' = Os) orbitals, and filling of the t 2g orbitals of the 3d ion.

  16. Low-level x-irradiation of the brain during development morphological, physiological, and behavioral consequences. Final report, September 1, 1976--August 31, 1977

    International Nuclear Information System (INIS)

    Altman, J.

    1977-01-01

    Morphological research was continued in the following areas: glial recovery patterns in the rat corpus callosum after x-irradiation during infancy; the prenatal development of the deep nuclei and cortex of the cerebellum; the prenatal development of the inferior olive, pontine gray and the precerebellar reticular nuclei; and the postnatal development of the olfactory bulb. In these studies autoradiography and x-irradiation were among the experimental techniques utilized. The behavioral studies, all of which are still in progress, are concerned with the effects of different schedules of postnatal x-irradiation of the cerebellum, and the effects of x-irradiation of the olfactory bulb. A list is included of 14 publications that report results in detail

  17. Comparing Various Type of Natural Fibers as Filler in TPU: Mechanical Properties, Morphological and Oil Absorption Behavior

    Directory of Open Access Journals (Sweden)

    Ahad Nor Azwin

    2017-01-01

    Full Text Available The idea of using natural fibers as filler in various polymers has been extensively studied. Various types of natural fibers and polymers have been identified and it can be varied according to the particular application and the two main composite materials will have advantages and disadvantages of each. However, natural fibers are usually selected as filler because it is readily available and environmentally friendly, inexpensive, non-toxic, biodegradable and still have good characteristics for a variety of uses. In this study, four types of natural fiber have been used which; coconut shell, coconut fiber, corn cob, and pineapple skin, as fillers in thermoplastic polyurethane (TPU. The mixing process conducted through melt mixing techniques. The percentage of TPU and natural fibers are 100/0, 95/5, 90/10 and 85/15. Different type of fiber will affect the mechanical properties of the composites and have been studied through tensile testing. It showed that the result for pineapple fiber at 5% was the highest and can also be related to the characterizations of this composite that have been studied via the SEM morphology. Swelling testing is also having been done to prove the absorbency ability by natural fiber composites in cooking oil and engine oil. Then it concluded that the pineapple fiber absorbed large amount of both oil compared to others.

  18. Toxicological evaluation of nano-sized colloidal silver in experiments on mice. behavioral reactions, morphology of internals

    Directory of Open Access Journals (Sweden)

    N.V. Zaitseva

    2015-06-01

    Full Text Available The results of toxicity studies of nano-sized colloidal silver (NCC, the most widely used in medicine, food and life, are given. When evaluating safe doses of silver NP (using commercially available NCC solution stabilized with polyvinylpyrrolidone (PVP, with the size of silver NP at the range of 5-80 nm when orally administered to male mice, BALB/c mice at doses of 0.1; 1.0 and 10 mg/kg of body weight per silver different effects from the motor and orienting-exploratory activity were revealed, for the part of them the dependence on the dose of the NCC was typical. The following peculiarities were found: reduction in motor activity to reduce the frequency of activities requiring physical effort, reduction of the execution time of these actions; increasing anxiety in terms of frequency and duration of attacks of orienting-investigative activity and animals washing. Morphological examination revealed a series of tissue changes of internal organs (especially liver and spleen, to a lesser extent – kidney, heart and colon with increase of the spectrum and severity of structural changes with increasing doses of the NCC. From the combination of the data the conclusion was made that maximal ineffective dose (NOAEL of this nanomaterial at subacute oral administration is no more than 0.1 mg/kg body weight.

  19. The effect of growth surface morphology on the crystal structure and magnetic property of L1{sub 0} order PtFe layers deposited by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Ding Wanyu, E-mail: dwysd_2000@163.com [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan) and School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028 (China); Ishiguro, Satoshi; Ogatsu, Ryo [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan); Ju, Dongying, E-mail: dyju@sit.ac.jp [Graduate School of Saitama Institute of Technology, Fukaya, Saitama 369-0293 (Japan)

    2012-08-01

    The Fe/Pt/Fe/Pt layers (Pt/Fe multilayer) were deposited on general glass substrate at room temperature by magnetron sputtering technique. Varying the deposition and post-annealing treatment parameters, the PtFe alloy (PtFe) layer with different crystal structures and magnetic properties were obtained at the interface between Fe and Pt layer. The characterization by X-ray diffraction (XRD) showed that the as-deposited Pt/Fe multilayer only contained pure Fe and Pt with body-centered and face-centered cubic structures, respectively. As-deposited Pt layer displayed (2 0 0) preferred orientation, and the columnar grains structure could be observed by the scanning electron microscopy. The PtFe layers with L1{sub 0} face-centered cubic structure could be formed at the interface between Pt and Fe layers by post-annealing the multilayers at 500 Degree-Sign C. In case of Pt/Fe multilayer deposited on smooth substrate, the larger columnar grains in Pt layer resulted in L1{sub 0} PtFe layers without any preferred orientation. While in case of Pt/Fe multilayer deposited on the rough substrate, the thinner columnar grains in Pt layer could induce L1{sub 0} PtFe layers with (2 0 0) preferred orientation. In this case, the vibrating sample magnetometer results indicated that, the magnetic coercivity in plane and out-of-plane model could reach 3.72 and 2.32 kOe, respectively. Based on above results, the L1{sub 0} structure Pt/Fe multilayer with satisfied magnetic properties could be prepared at low temperature by our simple route.

  20. Effect of copper valence on the glass structure and crystallization behavior of Bi-Pb-Cu-O glasses

    International Nuclear Information System (INIS)

    Hu, Yi; Lin, U.-L.; Liu, N.-H.

    1997-01-01

    Bi 0.43 Pb 0.35 Cu 0.22 O y glasses with different Cu + contents were prepared by melting at different temperatures. The glass structure consists of [BiO 3 [ and [BiO 6 [ units and the ratio of [BiO 3 [/[BiO 6 [ increases with increasing Cu + content. The glass transition temperature, the first crystallization temperature peak, and the thermal stability of the glasses decreases with increasing Cu + content. The value of the activation energy, E a , varies as a function of the Cu + content. The crystallization mechanism in the glasses is closely related to the glass structure, which is mainly affected by the Cu + content. (orig.)

  1. Natural rubber/graphene oxide composites: Effect of sheet size on mechanical properties and strain-induced crystallization behavior

    Directory of Open Access Journals (Sweden)

    X. Wu

    2015-08-01

    Full Text Available In order to analyze the influence of the lateral size of graphene oxide (GO on the properties of natural rubber/graphene oxide (NR/GO nanocomposites, three different sized graphene oxide sheets, namely G1, G2 and G3 were used to fabricate a series of NR/GO nanocomposites by latex mixing. The results indicate that adding GO can remarkably increase the modulus of NR. The enhancement of modulus is strongly dependent on the size of GO sheets incorporated. G1 with smallest sheet size gives the maximum reinforcement effect compared with G2 and G3. Dynamic mechanical measurement and swelling ratios (Qf/Qg indicate that G1 has stronger interfacial interaction with NR. XRD shows G1 is more effective in accelerating the strain-induced crystallization (SIC of NR. The strong interfacial interaction facilitates the stress transfer and strain-induced crystallization, both of which lead to the improved modulus.

  2. A model for high temperature creep of single crystal superalloys based on nonlocal damage and viscoplastic material behavior

    Science.gov (United States)

    Trinh, B. T.; Hackl, K.

    2014-07-01

    A model for high temperature creep of single crystal superalloys is developed, which includes constitutive laws for nonlocal damage and viscoplasticity. It is based on a variational formulation, employing potentials for free energy, and dissipation originating from plasticity and damage. Evolution equations for plastic strain and damage variables are derived from the well-established minimum principle for the dissipation potential. The model is capable of describing the different stages of creep in a unified way. Plastic deformation in superalloys incorporates the evolution of dislocation densities of the different phases present. It results in a time dependence of the creep rate in primary and secondary creep. Tertiary creep is taken into account by introducing local and nonlocal damage. Herein, the nonlocal one is included in order to model strain localization as well as to remove mesh dependence of finite element calculations. Numerical results and comparisons with experimental data of the single crystal superalloy LEK94 are shown.

  3. Effect of Fullerene Derivates on Thermal and Crystallization Behavior of PBT/Decylamine- C and PBT/TCNEO- C Nanocomposites

    OpenAIRE

    Woźniak-Braszak, A.; Jurga, K.; Jurga, J.; Baranowski, M.; Grzesiak, W.; Brycki, B.; Hołderna-Natkaniec, K.

    2012-01-01

    The paper describes the process of the preparation of new nanocomposites based on poly(butylene terephthalate) and C60 nanoparticles modified by decylamine (DA) and tetracyanoethylene oxide (TCNEO), respectively. Thermal and crystallization properties of new synthesized nanocomposites were investigated by means of thermal differential scanning calorimetry (DSC). The experimental results demonstrate the effect of fullerene derivates, DA-C60 and TCNEO-C60, on the melting and crystallinity proce...

  4. Domed Silica Microcylinders Coated with Oleophilic Polypeptides and Their Behavior in Lyotropic Cholesteric Liquid Crystals of the Same Polypeptide.

    Science.gov (United States)

    Rosu, Cornelia; Jacobeen, Shane; Park, Katherine; Reichmanis, Elsa; Yunker, Peter; Russo, Paul S

    2016-12-13

    Liquid crystals can organize dispersed particles into useful and exotic structures. In the case of lyotropic cholesteric polypeptide liquid crystals, polypeptide-coated particles are appealing because the surface chemistry matches that of the polymeric mesogen, which permits a tighter focus on factors such as extended particle shape. The colloidal particles developed here consist of a magnetic and fluorescent cylindrically symmetric silica core with one rounded, almost hemispherical end. Functionalized with helical poly(γ-stearyl-l-glutamate) (PSLG), the particles were dispersed at different concentrations in cholesteric liquid crystals (ChLC) of the same polymer in tetrahydrofuran (THF). Defects introduced by the particles to the director field of the bulk PSLG/THF host led to a variety of phases. In fresh mixtures, the cholesteric mesophase of the PSLG matrix was distorted, as reflected in the absence of the characteristic fingerprint pattern. Over time, the fingerprint pattern returned, more quickly when the concentration of the PSLG-coated particles was low. At low particle concentration the particles were "guided" by the PSLG liquid crystal to organize into patterns similar to that of the re-formed bulk chiral nematic phase. When their concentration increased, the well-dispersed PSLG-coated particles seemed to map onto the distortions in the bulk host's local director field. The particles located near the glass vial-ChLC interfaces were stacked lengthwise into architectures with apparent two-dimensional hexagonal symmetry. The size of these "crystalline" structures increased with particle concentration. They displayed remarkable stability toward an external magnetic field; hydrophobic interactions between the PSLG polymers in the shell and those in the bulk LC matrix may be responsible. The results show that bio-inspired LCs can assemble suitable colloidal particles into soft crystalline structures.

  5. Organic semiconductor crystals.

    Science.gov (United States)

    Wang, Chengliang; Dong, Huanli; Jiang, Lang; Hu, Wenping

    2018-01-22

    Organic semiconductors have attracted a lot of attention since the discovery of highly doped conductive polymers, due to the potential application in field-effect transistors (OFETs), light-emitting diodes (OLEDs) and photovoltaic cells (OPVs). Single crystals of organic semiconductors are particularly intriguing because they are free of grain boundaries and have long-range periodic order as well as minimal traps and defects. Hence, organic semiconductor crystals provide a powerful tool for revealing the intrinsic properties, examining the structure-property relationships, demonstrating the important factors for high performance devices and uncovering fundamental physics in organic semiconductors. This review provides a comprehensive overview of the molecular packing, morphology and charge transport features of organic semiconductor crystals, the control of crystallization for achieving high quality crystals and the device physics in the three main applications. We hope that this comprehensive summary can give a clear picture of the state-of-art status and guide future work in this area.

  6. The relationships among jaw-muscle fiber architecture, jaw morphology, and feeding behavior in extant apes and modern humans.

    Science.gov (United States)

    Taylor, Andrea B; Vinyard, Christopher J

    2013-05-01

    The jaw-closing muscles are responsible for generating many of the forces and movements associated with feeding. Muscle physiologic cross-sectional area (PCSA) and fiber length are two architectural parameters that heavily influence muscle function. While there have been numerous comparative studies of hominoid and hominin craniodental and mandibular morphology, little is known about hominoid jaw-muscle fiber architecture. We present novel data on masseter and temporalis internal muscle architecture for small- and large-bodied hominoids. Hominoid scaling patterns are evaluated and compared with representative New- (Cebus) and Old-World (Macaca) monkeys. Variation in hominoid jaw-muscle fiber architecture is related to both absolute size and allometry. PCSAs scale close to isometry relative to jaw length in anthropoids, but likely with positive allometry in hominoids. Thus, large-bodied apes may be capable of generating both absolutely and relatively greater muscle forces compared with smaller-bodied a