WorldWideScience

Sample records for behaved charged superdense

  1. Quantum control using genetic algorithms in quantum communication: superdense coding

    International Nuclear Information System (INIS)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-01-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations. (paper)

  2. The quark-cluster phase of superdense matter

    Directory of Open Access Journals (Sweden)

    Guo-Chen Yang

    1983-01-01

    Full Text Available A quark-cluster phase of superdense matter is suggested. The 3-quark cluster is defined by γ3 = 0andγ8 = 0 but it is not necessarily a color-singlet. The new phase would lead to a long distance order of spin in superdense matter.

  3. A charged anisotropic well-behaved Adler-Finch-Skea solution satisfying Karmarkar condition

    Science.gov (United States)

    Bhar, Piyali; Singh, Ksh. Newton; Rahaman, Farook; Pant, Neeraj; Banerjee, Sumita

    In the present paper, we discover a new well-behaved charged anisotropic solution of Einstein-Maxwell’s field equations. We ansatz the metric potential g00 of the form given by Maurya et al. (Eur. Phys. J. C 76(12) (2016) 693) with n = 2. In their paper, it is mentioned that for n = 2, the solution is not well-behaved for neutral configuration as the speed of sound is nondecreasing radially outward. However, the solution can represent a physically possible configuration with the inclusion of some net electric charge, i.e. the solution can become a well-behaved solution with decreasing sound speed radially outward for a charged configuration. Due to the inclusion of electric charge, the solution leads to a very stiff equation-of-state (EoS) with the velocity of sound at the center vr02 = 0.819, vt02 = 0.923 and the compactness parameter u = 0.823 is close to the Buchdahl limit 0.889. This stiff EoS support a compact star configuration of mass 5.418M⊙ and radius of 10.1km.

  4. High spin effects in superdense matter

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.

    1978-04-01

    A model of relativistic interacting superdense matter with vector, scalar and symmetric second rank tensor exchange is developed. The Green's functions of the model are solved in the self consistent Hartree approximation. The contributions of the symmetric second rank tensor are emphasized. It is found that these high spin contributions effect the superdense matter at densities just beyond those predicted to occur in neutron star matter or nuclear collisions. The spin-two effects do produce an unusual asymptotic dependence, p = - 1 / 3 epsilon. This effect is examined in a simple model of the early universe

  5. Quantum secure direct communication with high-dimension quantum superdense coding

    International Nuclear Information System (INIS)

    Wang Chuan; Li Yansong; Liu Xiaoshu; Deng Fuguo; Long Guilu

    2005-01-01

    A protocol for quantum secure direct communication with quantum superdense coding is proposed. It combines the ideas of block transmission, the ping-pong quantum secure direct communication protocol, and quantum superdense coding. It has the advantage of being secure and of high source capacity

  6. Tikekar superdense stars in electric fields

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  7. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  8. Validity of second order analysis of superdense matter

    International Nuclear Information System (INIS)

    Bowers, R.L.; Gleeson, A.M.; Pedigo, R.D.

    1975-01-01

    The limitations of relativistic calculations of the properties of superdense matter obtained from strictly second order terms is discussed. Extension of the model to overcome these limitations leads to serious complications which can only be overcome by a fully self-consistent treatment. (U.S.)

  9. Estimation of Nuclei Cooling Time by Electrons in Superdense Nonequilibrium Plasma

    CERN Document Server

    Kostenko, B F

    2004-01-01

    Estimations of nuclei cooling time by electrons in superdense nonequilibrium plasma formed at cavitation bubble collapse in deuterated acetone have been carried out. The necessity of these computations was stipulated by using in the latest theoretical calculations of nuclear reaction rate in these processes one poorly grounded assumption that electron temperatures remain essentially lower than nuclei ones during thermonuclear synthesis time t_s. The estimations have shown that the initial electron temperatures at the moment of superdense plasma formation with \\rho =100 g/cm^3 turn out to be appreciably lower than the nuclear temperatures, while the nuclei cooling time is of the same order as t_s.

  10. Super-dense teleportation for space applications

    Science.gov (United States)

    Zeitler, Chris; Graham, Trent M.; Chapman, Joseph; Bernstein, Herbert; Kwiat, Paul G.

    2016-03-01

    Establishing a quantum communication network would provide advantages in areas such as security and information processing. Such a network would require the implementation of quantum teleportation between remote parties. However, for photonic "qudits" of dimension greater than two, this teleportation always fails due to the inability to carry out the required quantum Bell-state measurement. A quantum communication protocol called Superdense Teleportation (SDT) can allow the reconstruction of a state without the usual 2-photon Bell-state measurements, enabling the protocol to succeed deterministically even for high dimensional qudits. This technique restricts the class of states transferred to equimodular states, a type of superposition state where each term can differ from the others in phase but not in amplitude; this restricted space of transmitted states allows the transfer to occur deterministically. We report on our implementation of SDT using photon pairs that are entangled in both polarization and temporal mode. After encoding the phases of the desired equimodular state on the signal photon, we perform a complete tomography on the idler photon to verify that we properly prepared the chosen state. Beyond our tabletop demonstration, we are working towards an implementation between a space platform in low earth orbit and a ground telescope, to demonstrate the feasibility of space-based quantum communication. We will discuss the various challenges presented by moving the experiment out of the laboratory, and our proposed solutions to make Superdense Teleportation realizable in the space setting.

  11. Charging and switching of ferroelectrets: how much can ferroelectrets behave like ferroelectrics?

    International Nuclear Information System (INIS)

    Schwoediauer, R.; Graz, I.; Bauer, S.

    2004-01-01

    Dielectrics with good charge storage capability, so called charge electrets, are non or weakly-polar materials. Despite their non-polar nature porous charge electrets with internally charged surfaces can exhibit very pronounced piezoelectricity. Such systems have been termed 'ferroelectrets' and they have been receiving growing attention over the last few years. Their puzzling and unexpected features resemble very much those normally known from traditional ferroelectrics: ferroelectrets are piezo- and pyroelectric, their polarization can be reversed by means of an external field and electrical as well as mechanical hysteresis loops were observed. As conventional ferroelectrics are different and more complicated than ferromagnets, so are ferroelectrets different and more complex than most ferroelectrics. Here we report about the very different charging and switching mechanism in ferroelectrets, both in simple model-systems and in less simple foam structures. These mechanisms are crucial and form the basis for the striking phenomenological similarities to ferroelectrics. We also want to address some of the specific peculiarities and pitfalls related to present ferroelectrets and their characterization. Interfacial charge injection at high electric fields and anelastic non-linearities, for instance, can be the cause for false ferroelectric-like hysteresis effects which do not reflect any polarization reversal. Our contribution is an attempt towards a more comprehensive picture of how much ferroelectrets behave like ferroelectrics. (author)

  12. Charged fluid distribution in higher dimensional spheroidal space-time

    Indian Academy of Sciences (India)

    A general solution of Einstein field equations corresponding to a charged fluid distribution on the background of higher dimensional spheroidal space-time is obtained. The solution generates several known solutions for superdense star having spheroidal space-time geometry.

  13. Hot super-dense compact object with particular EoS

    Science.gov (United States)

    Tito, E. P.; Pavlov, V. I.

    2018-03-01

    We show the possibility of existence of a self-gravitating spherically-symmetric equilibrium configuration for a neutral matter with neutron-like density, small mass M ≪ M_{⊙}, and small radius R ≪ R_{⊙}. We incorporate the effects of both the special and general theories of relativity. Such object may be formed in a cosmic cataclysm, perhaps an exotic one. Since the base equations of hydrostatic equilibrium are completed by the equation of state (EoS) for the matter of the object, we offer a novel, interpolating experimental data from high-energy physics, EoS which permits the existence of such compact system of finite radius. This EoS model possesses a critical state characterized by density ρc and temperature Tc. For such an object, we derive a radial distribution for the super-dense matter in "liquid" phase using Tolman-Oppenheimer-Volkoff equations for hydrostatic equilibrium. We demonstrate that a stable configuration is indeed possible (only) for temperatures smaller than the critical one. We derive the mass-radius relation (adjusted for relativistic corrections) for such small (M ≪ M_{⊙}) super-dense compact objects. The results are within the constraints established by both heavy-ion collision experiments and theoretical studies of neutron-rich matter.

  14. Monochromatic X-ray probing of a superdense plasma

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Shelkovenko, T.A.; Romanova, V.M.; Faenov, A.Ya.; Dyakin, V.A.; Pikuz, T.A.

    1995-01-01

    Investigation results are presented of the superdense plasma of an exploding wire by means of a new scheme of X-ray monochromatic probing. The scheme permits not only to obtain the shadow images of bright plasma objects in separate spectral lines with a high spatial resolution but and to lower requirements to a radiation source. Experimental results confirm existence of a small-dense plasma coronae, appeared during the initial stage of a discharge through a wire, and a dense core, existing at the pinch axis in the discharge process. 13 refs.; 3 figs

  15. Quantum Secure Direct Intercommunication with Superdense Coding and Entanglement Swapping

    International Nuclear Information System (INIS)

    Huang Dazu; Guo Ying; Zeng Guihua

    2008-01-01

    A quantum secure direct intercommunication scheme is proposed to exchange directly the communicators' secret messages by making use of swapping entanglement of Bell states. It has great capacity to distribute the secret messages since these messages have been imposed on high-dimensional Bell states via the local unitary operations with superdense coding. The security is ensured by the secure transmission of the travel sequences and the application of entanglement swapping

  16. NATO Advanced Research Workshiop on Superdense QCD Matter and Compact Stars

    CERN Document Server

    Blaschke, David

    2006-01-01

    This volume covers the main topics in the theory of superdense QCD matter and its application to the astrophysics of compact stars in a comprehensive and yet accessible way. The material is presented as a combination of extensive introductory lectures and more topical contributions. The book is centered around the question whether hypothetical new states of dense matter in the compact star interior could give clues to the explanation of puzzling phenomena such as gamma-ray bursts, pulsar glitches, compact star cooling and gravitational waves.

  17. Generating multi-photon W-like states for perfect quantum teleportation and superdense coding

    Science.gov (United States)

    Li, Ke; Kong, Fan-Zhen; Yang, Ming; Ozaydin, Fatih; Yang, Qing; Cao, Zhuo-Liang

    2016-08-01

    An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.

  18. Quantum secure direct communication network with superdense coding and decoy photons

    International Nuclear Information System (INIS)

    Deng Fuguo; Li Xihan; Li Chunyan; Zhou Ping; Zhou Hongyu

    2007-01-01

    A quantum secure direct communication network scheme is proposed with quantum superdense coding and decoy photons. The servers on a passive optical network prepare and measure the quantum signal, i.e. a sequence of the d-dimensional Bell states. After confirming the security of the photons received from the receiver, the sender codes his secret message on them directly. For preventing a dishonest server from eavesdropping, some decoy photons prepared by measuring one photon in the Bell states are used to replace some original photons. One of the users on the network can communicate to any other one. This scheme has the advantage of high capacity, and it is more convenient than others as only a sequence of photons is transmitted in quantum line

  19. Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding

    International Nuclear Information System (INIS)

    Xia, Yan; Song, He-Shan

    2007-01-01

    We present a controlled quantum secure direct communication protocol that uses a 2-dimensional Greenberger-Horne-Zeilinger (GHZ) entangled state and a 3-dimensional Bell-basis state and employs the high-dimensional quantum superdense coding, local collective unitary operations and entanglement swapping. The proposed protocol is secure and of high source capacity. It can effectively protect the communication against a destroying-travel-qubit-type attack. With this protocol, the information transmission is greatly increased. This protocol can also be modified, so that it can be used in a multi-party control system

  20. Hippocampal activity during transient respiratory events in the freely behaving cat

    DEFF Research Database (Denmark)

    Poe, G R; Kristensen, Morten Pilgaard; Rector, D M

    1996-01-01

    We measured dorsal hippocampal activity accompanying sighs and apnea using reflectance imaging and electrophysiologic measures in freely behaving cats. Reflected 660-nm light from a 1-mm2 area of CA1 was captured during sighs and apnea at 25 Hz through a coherent image conduit coupled to a charge...

  1. New interior solution describing relativistic fluid sphere

    Indian Academy of Sciences (India)

    Anewexact solution of embedding class I is presented for a relativistic anisotropicmassive fluid sphere. The new exact solution satisfies Karmarkar condition, is well-behaved in all respects, and therefore is suitable for the modelling of superdense stars. Consequently, using this solution, we have studied in detail two ...

  2. Superdense Coding with GHZ and Quantum Key Distribution with W in the ZX-calculus

    Directory of Open Access Journals (Sweden)

    Anne Hillebrand

    2012-10-01

    Full Text Available Quantum entanglement is a key resource in many quantum protocols, such as quantum teleportation and quantum cryptography. Yet entanglement makes protocols presented in Dirac notation difficult to verify. This is why Coecke and Duncan have introduced a diagrammatic language for quantum protocols, called the ZX-calculus. This diagrammatic notation is both intuitive and formally rigorous. It is a simple, graphical, high level language that emphasises the composition of systems and naturally captures the essentials of quantum mechanics. In the author's MSc thesis it has been shown for over 25 quantum protocols that the ZX-calculus provides a relatively easy and more intuitive presentation. Moreover, the author embarked on the task to apply categorical quantum mechanics on quantum security; earlier works did not touch anything but Bennett and Brassard's quantum key distribution protocol, BB84. Superdense coding with the Greenberger-Horne-Zeilinger state and quantum key distribution with the W-state are presented in the ZX-calculus in this paper.

  3. Formation and internal structure of superdense dark matter clumps and ultracompact minihaloes

    Energy Technology Data Exchange (ETDEWEB)

    Berezinsky, V.S. [INFN, Laboratori Nazionali del Gran Sasso, Center for Astroparticle Physics at LNGS (CFA), I-67010 Assergi (AQ) (Italy); Dokuchaev, V.I.; Eroshenko, Yu.N., E-mail: berezinsky@lngs.infn.it, E-mail: dokuchaev@lngs.infn.it, E-mail: eroshenko@inr.ac.ru [Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, 117312 Moscow (Russian Federation)

    2013-11-01

    We discuss the formation mechanisms and structure of the superdense dark matter clumps (SDMC) and ultracompact minihaloes (UCMH), outlining the differences between these types of DM objects. We define as SDMC the gravitationally bounded DM objects which have come into virial equilibrium at the radiation-dominated (RD) stage of the universe evolution. Such objects can be formed from the isocurvature (entropy) density perturbations or from the peaks in the spectrum of curvature (adiabatic) perturbation. The axion miniclusters (Kolb and Tkachev 1994) are the example of the former model. The system of central compact mass (e.g. in the form of SDMC or primordial black hole (PBH)) with the outer DM envelope formed in the process of secondary accretion we refer to as UCMH. Therefore, the SDMC can serve as the seed for the UCMH in some scenarios. Recently, the SDMC and UCMH were considered in the many works, and we try to systematize them here. We consider also the effect of asphericity of the initial density perturbation in the gravitational evolution, which decreases the SDMC amount and, as the result, suppresses the gamma-ray signal from DM annihilation.

  4. Model of superdense matter and its application to neutron stars

    International Nuclear Information System (INIS)

    Pedico, R.D.

    1976-01-01

    A phenomenological model of superdense baryonic matter at zero temperature is developed and the resulting equation of state is employed in the calculation of neutron star masses and moments of inertia. The strong interactions between the baryons are described by couplings to one scalar and one vector field. These fields are not identified with observed mesons. Only a particular class of diagrams, constructed from tadpole terms, is retained in this investigation. It is argued that these terms contain the leading order density dependence of any set of diagrams that can be built up from fundamental two baryon-one meson vertices. The two parameters in the model, the coupling strengths, are fixed by the requirement that the accepted binding energy of infinite nuclear matter be reproduced at nuclear density. These couplings are used to calculate a forward proton-neutron cross section, which is found to agree with experimental data over a limited energy range. A pressure-energy density equation of state is generated for an electrically neutral system of electrons, muons, and the lowest mass baryon octet. The constituents are held in chemical equilibrium by the weak interactions. The equation of state exhibits a broad phase transition encompassing nuclear density, which leads to neutron stars containing a nearly incompressible core surrounded by a significantly less dense shell. The masses and moments of inertia of these model neutron stars are in good agreement with observational data for pulsars

  5. Effects of Discrete Charge Clustering in Simulations of Charged Interfaces.

    Science.gov (United States)

    Grime, John M A; Khan, Malek O

    2010-10-12

    A system of counterions between charged surfaces is investigated, with the surfaces represented by uniform charged planes and three different arrangements of discrete surface charges - an equispaced grid and two different clustered arrangements. The behaviors of a series of systems with identical net surface charge density are examined, with particular emphasis placed on the long ranged corrections via the method of "charged slabs" and the effects of the simulation cell size. Marked differences are observed in counterion distributions and the osmotic pressure dependent on the particular representation of the charged surfaces; the uniformly charged surfaces and equispaced grids of discrete charge behave in a broadly similar manner, but the clustered systems display a pronounced decrease in osmotic pressure as the simulation size is increased. The influence of the long ranged correction is shown to be minimal for all but the very smallest of system sizes.

  6. Pupils' reasons for learning and behaving and for not learning and behaving in English and maths lessons in a secondary school.

    Science.gov (United States)

    Norwich, B

    1999-12-01

    There is renewed interest in motivation and school learning, though there has been relatively little theory-linked research in English schools. In the first stage, to explore pupils' reasons for learning and behaving and for not learning and behaving in English, maths and other subjects. In the second stage, to examine differences in reasons across subjects, for learning and behaving and for not learning and behaving for boys and girls in two year groups in one secondary school. Stage 1, 16 pupils in years 7, 8 and 9 in two London secondary schools; Stage 2, 267 pupils in years 7 and 9 in one of these schools. Stage 1--semi-structured interviews were conducted to elicit different kinds of reasons conceptualised in terms of the Deci & Ryan's (1985) framework of self-determination. From these elicited reasons, an inventory 'Why I Learn' was designed. Stage 2--the inventory was administered to identify reasons for learning and behaving and for not learning and behaving in English and maths. Parent introjected reasons were the highest for learning and behaving while teacher introjected and intrinsic reasons were the lowest. Intrinsic reasons were highest for not learning and behaving. Year group differences in reason levels were more significant than gender or subject differences. Reasons for learning and behaving were more differentiated from each other than reasons for not learning and behaving. The results are discussed in terms of their significance for self-determination theory, research into the conditions promoting greater self-determination in school learning and further development of the inventory for programme evaluation.

  7. Spherically symmetric charged compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India); Chowdhury, Sourav Roy [Seth Anandaram Jaipuria College, Department of Physics, Kolkata, West Bengal (India)

    2015-08-15

    In this article we consider the static spherically symmetric metric of embedding class 1. When solving the Einstein-Maxwell field equations we take into account the presence of ordinary baryonic matter together with the electric charge. Specific new charged stellar models are obtained where the solutions are entirely dependent on the electromagnetic field, such that the physical parameters, like density, pressure etc. do vanish for the vanishing charge. We systematically analyze altogether the three sets of Solutions I, II, and III of the stellar models for a suitable functional relation of ν(r). However, it is observed that only the Solution I provides a physically valid and well-behaved situation, whereas the Solutions II and III are not well behaved and hence not included in the study. Thereafter it is exclusively shown that the Solution I can pass through several standard physical tests performed by us. To validate the solution set presented here a comparison has also been made with that of the compact stars, like RX J 1856 - 37, Her X - 1, PSR 1937+21, PSRJ 1614-2230, and PSRJ 0348+0432, and we have shown the feasibility of the models. (orig.)

  8. BehavePlus fire modeling system, version 5.0: Variables

    Science.gov (United States)

    Patricia L. Andrews

    2009-01-01

    This publication has been revised to reflect updates to version 4.0 of the BehavePlus software. It was originally published as the BehavePlus fire modeling system, version 4.0: Variables in July, 2008.The BehavePlus fire modeling system is a computer program based on mathematical models that describe wildland fire behavior and effects and the...

  9. Changes in Sensory Responsiveness in Behaving Primates.

    Science.gov (United States)

    1986-07-14

    controlled behavioral training and monitoring, and electrophysiological recording in awake , behaving monkeys. All I, research equipment listed in the original...recording from the sensorimotor cortices was conducted on May 21. Under general anesthesia, a craniotomy was performed over the pre- and postcentral cortices...Department of Neurosurgery at U.T. Dr. Klein is somewhat unusual in that he has had previous experience recording from awake , behaving monkeys. The experience

  10. behaved particle swarm optimization (QPSO)

    African Journals Online (AJOL)

    Administrator

    2011-06-13

    Jun 13, 2011 ... experiment results of L-glutamic acid fermentation process showed that our ... Key words: Soft-sensing model, quantum-behaved particle swarm optimization ... information about such biochemical variables is, in most practical ...

  11. Ionic liquids behave as dilute electrolyte solutions

    Science.gov (United States)

    Gebbie, Matthew A.; Valtiner, Markus; Banquy, Xavier; Fox, Eric T.; Henderson, Wesley A.; Israelachvili, Jacob N.

    2013-01-01

    We combine direct surface force measurements with thermodynamic arguments to demonstrate that pure ionic liquids are expected to behave as dilute weak electrolyte solutions, with typical effective dissociated ion concentrations of less than 0.1% at room temperature. We performed equilibrium force–distance measurements across the common ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([C4mim][NTf2]) using a surface forces apparatus with in situ electrochemical control and quantitatively modeled these measurements using the van der Waals and electrostatic double-layer forces of the Derjaguin–Landau–Verwey–Overbeek theory with an additive repulsive steric (entropic) ion–surface binding force. Our results indicate that ionic liquids screen charged surfaces through the formation of both bound (Stern) and diffuse electric double layers, where the diffuse double layer is comprised of effectively dissociated ionic liquid ions. Additionally, we used the energetics of thermally dissociating ions in a dielectric medium to quantitatively predict the equilibrium for the effective dissociation reaction of [C4mim][NTf2] ions, in excellent agreement with the measured Debye length. Our results clearly demonstrate that, outside of the bound double layer, most of the ions in [C4mim][NTf2] are not effectively dissociated and thus do not contribute to electrostatic screening. We also provide a general, molecular-scale framework for designing ionic liquids with significantly increased dissociated charge densities via judiciously balancing ion pair interactions with bulk dielectric properties. Our results clear up several inconsistencies that have hampered scientific progress in this important area and guide the rational design of unique, high–free-ion density ionic liquids and ionic liquid blends. PMID:23716690

  12. Charged analogue of Vlasenko–Pronin superdense star with ...

    Indian Academy of Sciences (India)

    2015-11-27

    Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015. Guest Editors: Anurag Srivastava, C. S. Praveen, H. S. Tewari. © 2015 Indian Academy of Sciences, Bengaluru. Contact | Site index.

  13. Charged analogue of Vlasenko–Pronin superdense star with ...

    Indian Academy of Sciences (India)

    . , −κp + q2 r4. , −κp − q2 r4. , −κp − q2 r4. ) . (4). In modern cosmology, the term represents the dark energy. It is also equivalent to vac- uum energy because it is the energy density of vacuum. Therefore, in the field equations, the variable ...

  14. Numerical investigation for one bad-behaved flow in a Pelton turbine

    International Nuclear Information System (INIS)

    Wei, X Z; Yang, K; Wang, H J; Gong, R Z; Li, D Y

    2015-01-01

    The gas-liquid two-phase flow in pelton turbines is very complicated, there are many kinds of bad-behaved flow in pelton turbines. In this paper, CFD numerical simulation for the pelton turbine was conducted using VOF two-phase model. One kind of bad-behaved flow caused by the two jets was captured, and the bad-behaved flow was analysed by torque on buckets. It can be concluded that the angle between the two jets and the value of ratio of runner diameter and jet diameter are important parameters for the bad-behaved flow. Furthermore, the reason why the efficiency of some multi-jet type turbines is very low can be well explained by the analysis of bad-behaved flow. Finally, some suggestions for improvement were also provided in present paper

  15. Numerical investigation for one bad-behaved flow in a Pelton turbine

    Science.gov (United States)

    Wei, X. Z.; Yang, K.; Wang, H. J.; Gong, R. Z.; Li, D. Y.

    2015-01-01

    The gas-liquid two-phase flow in pelton turbines is very complicated, there are many kinds of bad-behaved flow in pelton turbines. In this paper, CFD numerical simulation for the pelton turbine was conducted using VOF two-phase model. One kind of bad-behaved flow caused by the two jets was captured, and the bad-behaved flow was analysed by torque on buckets. It can be concluded that the angle between the two jets and the value of ratio of runner diameter and jet diameter are important parameters for the bad-behaved flow. Furthermore, the reason why the efficiency of some multi-jet type turbines is very low can be well explained by the analysis of bad-behaved flow. Finally, some suggestions for improvement were also provided in present paper.

  16. Improved quantum-behaved particle swarm optimization with local search strategy

    Directory of Open Access Journals (Sweden)

    Maolong Xi

    2017-03-01

    Full Text Available Quantum-behaved particle swarm optimization, which was motivated by analysis of particle swarm optimization and quantum system, has shown compared performance in finding the optimal solutions for many optimization problems to other evolutionary algorithms. To address the problem of premature, a local search strategy is proposed to improve the performance of quantum-behaved particle swarm optimization. In proposed local search strategy, a super particle is presented which is a collection body of randomly selected particles’ dimension information in the swarm. The selected probability of particles in swarm is different and determined by their fitness values. To minimization problems, the fitness value of one particle is smaller; the selected probability is more and will contribute more information in constructing the super particle. In addition, in order to investigate the influence on algorithm performance with different local search space, four methods of computing the local search radius are applied in local search strategy and propose four variants of local search quantum-behaved particle swarm optimization. Empirical studies on a suite of well-known benchmark functions are undertaken in order to make an overall performance comparison among the proposed methods and other quantum-behaved particle swarm optimization. The simulation results show that the proposed quantum-behaved particle swarm optimization variants have better advantages over the original quantum-behaved particle swarm optimization.

  17. The invariance of classical electromagnetism under Charge-conjugation, Parity and Time-reversal (CPT) transformations

    Science.gov (United States)

    Norbury, John W.

    1989-01-01

    The invariance of classical electromagnetism under charge-conjugation, parity, and time-reversal (CPT) is studied by considering the motion of a charged particle in electric and magnetic fields. Upon applying CPT transformations to various physical quantities and noting that the motion still behaves physically demonstrates invariance.

  18. SUPERDENSE GALAXIES AND THE MASS-SIZE RELATION AT LOW REDSHIFT

    International Nuclear Information System (INIS)

    Poggianti, B. M.; Calvi, R.; Fasano, G.; Vulcani, B.; Bettoni, D.; Gullieuszik, M.; Omizzolo, A.; Bindoni, D.; D'Onofrio, M.; Moretti, A.; Valentinuzzi, T.; Fritz, J.; De Lucia, G.

    2013-01-01

    We search for massive and compact galaxies (superdense galaxies, hereafter SDGs) at z = 0.03-0.11 in the Padova-Millennium Galaxy and Group Catalogue, a spectroscopically complete sample representative of the general field population of the local universe. We find that compact galaxies with radii and mass densities comparable to high-z massive and passive galaxies represent 4.4% of all galaxies with stellar masses above 3 × 10 10 M ☉ , yielding a number density of 4.3 × 10 –4 h 3 Mpc –3 . Most of them are S0s (70%) or ellipticals (23%), are red, and have intermediate-to-old stellar populations, with a median luminosity-weighted age of 5.4 Gyr and a median mass-weighted age of 9.2 Gyr. Their velocity dispersions and dynamical masses are consistent with the small radii and high stellar mass estimates. Comparing with the WINGS sample of cluster galaxies at similar redshifts, the fraction of SDGs is three times smaller in the field than in clusters, and cluster SDGs are on average 4 Gyr older than field SDGs. We confirm the existence of a universal trend of smaller radii for older luminosity-weighted ages at fixed galaxy mass. As a consequence, the median mass-size relation shifts toward smaller radii for galaxies with older stars, but the effect is much more pronounced in clusters than in the field. Our results show that, on top of the well-known dependence of stellar age on galaxy mass, the luminosity-weighted age of galaxies depends on galaxy compactness at fixed mass and, for a fixed mass and radius, on environment. This effect needs to be taken into account in order not to overestimate the evolution of galaxy sizes from high to low z. Our results and hierarchical simulations suggest that a significant fraction of the massive compact galaxies at high z have evolved into compact galaxies in galaxy clusters today. When stellar age and environmental effects are taken into account, the average amount of size evolution of individual galaxies between high and low

  19. Dynamical charge fluctuation at FAIR energy

    International Nuclear Information System (INIS)

    Ghosh, Somnath; Mukhopadhyay, Amitabha

    2015-01-01

    The Compressed Baryonic Matter (CBM) experiment to be held at the Facility for antiproton and ion research (FAIR) is being designed to investigate the baryonic matter under extreme thermodynamic conditions. The hot and dense matter produced in this experiment will be rich in baryon number. It would be worthwhile to examine how the signatures proposed for identifying and characterizing a baryon free QGP like state behave in a baryon rich environment. Event-by-event fluctuation of net electrical charge and/or baryon number is one such indicator of the formation of the QGP, used and tested in RHIC and LHC heavy-ion experiments. One starts by defining the net charge Q = (N + - N - ) and the total charge N ch = (N + + N - ) where the quantities N + and N - are respectively, the multiplicities of positively and negatively charged particles

  20. Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm

    OpenAIRE

    Yumin, Dong; Li, Zhao

    2014-01-01

    Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...

  1. Charge collection efficiency of GaAs detectors studied with low-energy heavy charged particles

    CERN Document Server

    Bates, R; Linhart, V; O'Shea, V; Pospísil, S; Raine, C; Smith, K; Sinor, M; Wilhelm, I

    1999-01-01

    Epitaxially grown GaAs layers have recently been produced with sufficient thickness and low enough free carrier concentration to permit their use as radiation detectors. Initial tests have shown that the epi-material behaves as a classical semiconductor as the depletion behaviour follows the square root dependency on the applied bias. This article presents the results of measurements of the growth of the active depletion depth with increasing bias using low-energy protons and alpha particles as probes for various depths and their comparison to values extrapolated from capacitance measurements. From the proton and alpha particle spectroscopic measurements, an active depth of detector material that collects 100% of the charge generated inside it was determined. The consistency of these results with independent capacitance measurements supports the idea that the GaAs epi-material behaves as a classical semiconductor. (author)

  2. Net charge of quark jets in (anti)neutrino interactions

    International Nuclear Information System (INIS)

    Teper, M.

    1981-01-01

    We analyse recent measurements of the net charges of quark jets in neutrino and antineutrino interactions. The data indicates that (i) the two quarks in the nucleon fragmentation region prefer to behave as a diquark rather than as a pair of independent quarks, and (ii) the struck quark does not appear to suffer any soft charge exchange of the kind that occurs when a valence quark inside a nucleon is slowed to x approx. O. (orig.)

  3. Spin-coupled charge dynamics in layered manganite crystals

    CERN Document Server

    Tokura, Y; Ishikawa, T

    1998-01-01

    Anisotropic charge dynamics has been investigated for single crystals of layered manganites, La sub 2 sub - sub 2 sub x Sr sub 1 sub + sub 2 sub x Mn sub 2 O sub 7 (0.3<=X<=0.5). Remarkable variations in the magnetic structure and in the charge-transport properties are observed by changing the doping level x . A crystal with x = 0.3 behaves like a 2-dimensional ferromagnetic metal in the temperature region between approx 90 K and approx 270 K and shows an interplane tunneling magnetoresistance at lower temperatures which is sensitive to the interplane magnetic coupling between the adjacent MnO sub 2 bilayers. Optical probing of these layered manganites has also clarified the highly anisotropic and incoherent charge dynamics.

  4. Yang-Mills fields due to an infinite charge cylinder

    International Nuclear Information System (INIS)

    Campbell, W.B.; Joseph, D.W.; Morgan, T.A.; Nebraska Univ., Lincoln

    1981-01-01

    The problem of determining time-independent solutions of the classical Yang-Mills equations for infinitely long charge cylinders is studied. A useful expression for the total energy in the field in terms of just the sources is derived. Numerical solutions have been found in the special cases of a small charge cylinder with a magnetic field B that either lies along the axis of symmetry or encircles the axis. It is as if these two solutions were due to currents encircling the axis or parallelling it, respectively. The condition that the solutions behave well at infinity implies an exponential fall off for the fields in the azimuthal B field case and a fall off more rapid than 1/R in the axial B field case, so that in both cases the existence of a B field requires the charge on the axis to be shieled. Consequently, these solutions do not behave at infinity at all like the Maxwell solution for a charge cylinder, and they have a lower energy per unit length. They show that in Yang-Mills theories the source does not determine a unique field. A classical interpretation of this is that the field remembers how the charges were transported during the construction of the cylinder. It also suggests that a quantum mechanical version of this problem would exhibit a spontaneous symmetry breaking to a less symmetric, lower energy vacuum. These solutions exhibit a twofold degeneracy, as the magnetic field may be either left- or right-handed in the azimuthal B field case, or point along the +z or -z axis in the axial B field case. (orig.)

  5. Charge correlation effects on ionization of weak polyelectrolytes

    International Nuclear Information System (INIS)

    Panagiotopoulos, A Z

    2009-01-01

    Ionization curves of weak polyelectrolytes were obtained as a function of the charge coupling strength from Monte Carlo simulations. In contrast to many earlier studies, the present work treats counterions explicitly, thus allowing the investigation of charge correlation effects at strong couplings. For conditions representing typical weak polyelectrolytes in water near room temperature, ionization is suppressed because of interactions between nearby dissociated groups, as also seen in prior work. A novel finding here is that, for stronger couplings, relevant for non-aqueous environments in the absence of added salt, the opposite behavior is observed-ionization is enhanced relative to the behavior of the isolated groups due to ion-counterion correlation effects. The fraction of dissociated groups as a function of position along the chain also behaves non-monotonically. Dissociation is highest near the ends of the chains for aqueous polyelectrolytes and highest at the chain middle segments for non-aqueous environments. At intermediate coupling strengths, dissociable groups appear to behave in a nearly ideal fashion, even though chain dimensions still show strong expansion effects due to ionization. These findings provide physical insights on the impact of competition between acid/base chemical equilibrium and electrostatic attractions in ionizable systems.

  6. Charged plate in asymmetric electrolytes: One-loop renormalization of surface charge density and Debye length due to ionic correlations.

    Science.gov (United States)

    Ding, Mingnan; Lu, Bing-Sui; Xing, Xiangjun

    2016-10-01

    Self-consistent field theory (SCFT) is used to study the mean potential near a charged plate inside a m:-n electrolyte. A perturbation series is developed in terms of g=4πκb, where band1/κ are Bjerrum length and bare Debye length, respectively. To the zeroth order, we obtain the nonlinear Poisson-Boltzmann theory. For asymmetric electrolytes (m≠n), the first order (one-loop) correction to mean potential contains a secular term, which indicates the breakdown of the regular perturbation method. Using a renormalizaton group transformation, we remove the secular term and obtain a globally well-behaved one-loop approximation with a renormalized Debye length and a renormalized surface charge density. Furthermore, we find that if the counterions are multivalent, the surface charge density is renormalized substantially downwards and may undergo a change of sign, if the bare surface charge density is sufficiently large. Our results agrees with large MC simulation even when the density of electrolytes is relatively high.

  7. Correlation potential of a test ion near a strongly charged plate.

    Science.gov (United States)

    Lu, Bing-Sui; Xing, Xiangjun

    2014-03-01

    We analytically calculate the correlation potential of a test ion near a strongly charged plate inside a dilute m:-n electrolyte. We do this by calculating the electrostatic Green's function in the presence of a nonlinear background potential, the latter having been obtained using the nonlinear Poisson-Boltzmann theory. We consider the general case where the dielectric constants of the plate and the electrolyte are distinct. The following generic results emerge from our analyses: (1) If the distance to the plate Δz is much larger than a Gouy-Chapman length, the plate surface will behave effectively as an infinitely charged surface, and the dielectric constant of the plate effectively plays no role. (2) If Δz is larger than a Gouy-Chapman length but shorter than a Debye length, the correlation potential can be interpreted in terms of an image charge that is three times larger than the source charge. This behavior is independent of the valences of the ions. (3) The Green's function vanishes inside the plate if the surface charge density is infinitely large; hence the electrostatic potential is constant there. In this respect, a strongly charged plate behaves like a conductor plate. (4) If Δz is smaller than a Gouy-Chapman length, the correlation potential is dominated by the conventional image charge due to the dielectric discontinuity at the interface. (5) If Δz is larger than a Debye length, the leading order behavior of the correlation potential will depend on the valences of the ions in the electrolyte. Furthermore, inside an asymmetric electrolyte, the correlation potential is singly screened, i.e., it undergoes exponential decay with a decay width equal to the Debye length.

  8. Concurrent reflectance imaging and microdialysis in the freely behaving cat

    DEFF Research Database (Denmark)

    Poe, G R; Nitz, D A; Rector, D M

    1996-01-01

    We present a method to perform simultaneous microdialysis with light reflectance imaging of neural activity in a discrete brain region of the freely behaving animal. We applied this method to the dorsal hippocampus of freely behaving cats to (1) measure extracellular glutamate and reflectance...... imaged neural activity. Sequential images showed that cocaine perfusion elicited a propagating reflectance change as cocaine reached the tissue. Microperfusion of hypo-osmotic solution ( - 100 mOsm), which increases cell volume, decreased reflectance. Microperfusion of hyperosmotic sucrose solutions...

  9. Responsiveness in Behaving Monkeys and Human Subjects

    Science.gov (United States)

    1993-07-31

    Status of Current Research - Statement of Work Each study involving awake , behaving monkey neurophysiological recording used a behavioral paradigm that...anesthesia. A craniotomy was performed at approximately A+ 14.5mm. The recording chamber then was fixed to the skull at a lateral angle of 8’ from

  10. Age differences in how consumers behave following exposure to DTC advertising.

    Science.gov (United States)

    DeLorme, Denise E; Huh, Jisu; Reid, Leonard N

    2006-01-01

    This study was conducted to provide additional evidence on how consumers behave following direct-to-consumer (DTC) advertising exposure and to determine if there are differences in ad-prompted acts (drug inquiry and drug requests) between different age groups (i.e., older, mature, and younger adults). The results suggest that younger, mature, and older consumers are all moved to act by DTC drug ads, but that each age group behaves in different ways. Somewhat surprisingly, age was not predictive of ad-prompted behavior. DTC advertising was no more effective at moving older consumers to behave than their younger counterparts. These results suggest that age does not matter that much when it comes to the "moving power" of prescription drug advertising, even though research indicates that older consumers are more vulnerable to the persuasive effects of communication.

  11. All spherically symmetric charged anisotropic solutions for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2017-06-15

    In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)

  12. A Novel Distributed Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Yangyang Li

    2017-01-01

    Full Text Available Quantum-behaved particle swarm optimization (QPSO is an improved version of particle swarm optimization (PSO and has shown superior performance on many optimization problems. But for now, it may not always satisfy the situations. Nowadays, problems become larger and more complex, and most serial optimization algorithms cannot deal with the problem or need plenty of computing cost. Fortunately, as an effective model in dealing with problems with big data which need huge computation, MapReduce has been widely used in many areas. In this paper, we implement QPSO on MapReduce model and propose MapReduce quantum-behaved particle swarm optimization (MRQPSO which achieves parallel and distributed QPSO. Comparisons are made between MRQPSO and QPSO on some test problems and nonlinear equation systems. The results show that MRQPSO could complete computing task with less time. Meanwhile, from the view of optimization performance, MRQPSO outperforms QPSO in many cases.

  13. Anticipating and Resisting the Temptation to Behave Unethically.

    Science.gov (United States)

    Sheldon, Oliver J; Fishbach, Ayelet

    2015-07-01

    Ethical dilemmas pose a self-control conflict between pursuing immediate benefits through behaving dishonestly and pursuing long-term benefits through acts of honesty. Therefore, factors that facilitate self-control for other types of goals (e.g., health and financial) should also promote ethical behavior. Across four studies, we find support for this possibility. Specifically, we find that only under conditions that facilitate conflict identification--including the consideration of several decisions simultaneously (i.e., a broad decision frame) and perceived high connectedness to the future self--does anticipating a temptation to behave dishonestly in advance promote honesty. We demonstrate these interaction patterns between conflict identification and temptation anticipation in negotiation situations (Study 1), lab tasks (Study 2), and ethical dilemmas in the workplace (Studies 3-4). We conclude that identifying a self-control conflict and anticipating a temptation are two necessary preconditions for ethical decision making. © 2015 by the Society for Personality and Social Psychology, Inc.

  14. Weak polyelectrolyte complexation driven by associative charging

    Science.gov (United States)

    Rathee, Vikramjit S.; Zervoudakis, Aristotle J.; Sidky, Hythem; Sikora, Benjamin J.; Whitmer, Jonathan K.

    2018-03-01

    Weak polyelectrolytes are relevant for a wide range of fields; in particular, they have been investigated as "smart" materials for chemical separations and drug delivery. The charges on weak polyelectrolytes are dynamic, causing polymer chains to adopt different equilibrium conformations even with relatively small changes to the surrounding environment. Currently, there exists no comprehensive picture of this behavior, particularly where polymer-polymer interactions have the potential to affect charging properties significantly. In this study, we elucidate the novel interplay between weak polyelectrolyte charging and complexation behavior through coupled molecular dynamics and Monte Carlo simulations. Specifically, we investigate a model of two equal-length and oppositely charging polymer chains in an implicit salt solution represented through Debye-Hückel interactions. The charging tendency of each chain, along with the salt concentration, is varied to determine the existence and extent of cooperativity in charging and complexation. Strong cooperation in the charging of these chains is observed at large Debye lengths, corresponding to low salt concentrations, while at lower Debye lengths (higher salt concentrations), the chains behave in apparent isolation. When the electrostatic coupling is long-ranged, we find that a highly charged chain strongly promotes the charging of its partner chain, even if the environment is unfavorable for an isolated version of that partner chain. Evidence of this phenomenon is supported by a drop in the potential energy of the system, which does not occur at the lower Debye lengths where both potential energies and charge fractions converge for all partner chain charging tendencies. The discovery of this cooperation will be helpful in developing "smart" drug delivery mechanisms by allowing for better predictions for the dissociation point of delivery complexes.

  15. Entanglement Entropy for the charged BTZ black hole

    International Nuclear Information System (INIS)

    Larrañaga, A.

    2011-01-01

    Using the AdS/CFT correspondence we calculate the explicit form of the entanglement entropy for the charged BTZ (Banados-Teitelboim-Zanelli) black hole. The leading term in the large temperature expansion of the entropy function for this black hole reproduces its Bekenstein-Hawking entropy and the subleading term, representing the first corrections due to quantum entanglement, behaves as a logarithm of the BH entropy. It has also been obtained an inverse of area term in subleading order similar to the reported when considering Hawking radiation as quantum tunneling of particles through the event horizon

  16. BEHAVE: fire behavior prediction and fuel modeling system--FUEL subsystem

    Science.gov (United States)

    Robert E. Burgan; Richard C. Rothermel

    1984-01-01

    This manual documents the fuel modeling procedures of BEHAVE--a state-of-the-art wildland fire behavior prediction system. Described are procedures for collecting fuel data, using the data with the program, and testing and adjusting the fuel model.

  17. How are we behaving?

    CERN Multimedia

    2012-01-01

    It’s almost two years since CERN introduced a Code of Conduct. The results may not be immediately measurable, but I’d like to think it’s made the lab a better place to be. The Code of Conduct is based on values that most of us immediately identify with, and so implementing it comes as second nature. Nevertheless, in an organisation of over 10,000 people, it’s useful to have a set of guidelines and there have been occasions on which it’s been necessary to remind people of them.   I use the figure of 10,000 advisedly since the Code of Conduct applies to us all, those on the CERN payroll as well as users of the lab’s facilities and people working for CERN contractors, as long as they are acting on CERN’s behalf. The Code also applies to us whether we are on the CERN site or anywhere else. CERN is a major presence in the region. The way we behave can have a significant influence on how our neighbours perceive us, and how the la...

  18. Photoinduced High-Frequency Charge Oscillations in Dimerized Systems

    Science.gov (United States)

    Yonemitsu, Kenji

    2018-04-01

    Photoinduced charge dynamics in dimerized systems is studied on the basis of the exact diagonalization method and the time-dependent Schrödinger equation for a one-dimensional spinless-fermion model at half filling and a two-dimensional model for κ-(bis[ethylenedithio]tetrathiafulvalene)2X [κ-(BEDT-TTF)2X] at three-quarter filling. After the application of a one-cycle pulse of a specifically polarized electric field, the charge densities at half of the sites of the system oscillate in the same phase and those at the other half oscillate in the opposite phase. For weak fields, the Fourier transform of the time profile of the charge density at any site after photoexcitation has peaks for finite-sized systems that correspond to those of the steady-state optical conductivity spectrum. For strong fields, these peaks are suppressed and a new peak appears on the high-energy side, that is, the charge densities mainly oscillate with a single frequency, although the oscillation is eventually damped. In the two-dimensional case without intersite repulsion and in the one-dimensional case, this frequency corresponds to charge-transfer processes by which all the bonds connecting the two classes of sites are exploited. Thus, this oscillation behaves as an electronic breathing mode. The relevance of the new peak to a recently found reflectivity peak in κ-(BEDT-TTF)2X after photoexcitation is discussed.

  19. Topological charge on the lattice: a field theoretical view of the geometrical approach

    International Nuclear Information System (INIS)

    Rastelli, L.; Rossi, P.; Vicari, E.

    1997-01-01

    We construct sequences of ''field theoretical'' lattice topological charge density operators which formally approach geometrical definitions in 2D CP N-1 models and 4D SU(N) Yang-Mills theories. The analysis of these sequences of operators suggests a new way of looking at the geometrical method, showing that geometrical charges can be interpreted as limits of sequences of field theoretical (analytical) operators. In perturbation theory, renormalization effects formally tend to vanish along such sequences. But, since the perturbative expansion is asymptotic, this does not necessarily lead to well-behaved geometrical limits. It indeed leaves open the possibility that non-perturbative renormalizations survive. (orig.)

  20. Wave fronts, pulses and wave trains in photoexcited superlattices behaving as excitable or oscillatory media

    International Nuclear Information System (INIS)

    Arana, J I; Bonilla, L L; Grahn, H T

    2011-01-01

    Undoped and strongly photoexcited semiconductor superlattices with field-dependent recombination behave as excitable or oscillatory media with spatially discrete nonlinear convection and diffusion. Infinitely long, dc-current-biased superlattices behaving as excitable media exhibit wave fronts with increasing or decreasing profiles, whose velocities can be calculated by means of asymptotic methods. These superlattices can also support pulses of the electric field. Pulses moving downstream with the flux of electrons can be constructed from their component wave fronts, whereas pulses advancing upstream do so slowly and experience saltatory motion: they change slowly in long intervals of time separated by fast transitions during which the pulses jump to the previous superlattice period. Photoexcited superlattices can also behave as oscillatory media and exhibit wave trains. (paper)

  1. Low-energy scattering of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, R.O.; Garibotti, C.R. (Instituto Balseiro, Argentina)

    1983-04-23

    The off-energy-shell T-matrix for two charged particles is studied in the low momentum limit ( k ->0 ). The T-matrix for a Coulomb interaction (Tsub(C)) is usually considered as the limit of the amplitude for a screened potential (Tsub(s)) when the screening is removed. This statement is not true for small enough energies. For an attractive interaction Tsub(C) and Tsub(s) differ significantly when k -> 0. Tsub(C) behaves as k sup(-0.5), while Tsub(s) keeps its k/sup -1/ behaviour even when the screening is turned off. This is an effect which would be observed in ion-atom collisions when one electron is ejected from the atom and captured into a continuum state of the ion.

  2. Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model

    Directory of Open Access Journals (Sweden)

    Mi-Yuan Shan

    2013-01-01

    Full Text Available We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO in vague sets (IVSs is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable.

  3. Ion-beam plasma and propagation of intense compensated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Gabovich, M D [AN Ukrainskoj SSR, Kiev. Inst. Fiziki

    1977-02-01

    Discussed are the results of investigation of plasma properties received by neutralization of intense ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown that not only dynamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account in solving the problem of obtaining ''superdense'' compensated beams.

  4. Ion-beam plasma and propagation of intense compensated ion beams

    International Nuclear Information System (INIS)

    Gabovich, M.D.

    1977-01-01

    Discussed are the results of investigation of plasma properties recieved by neutralization of intensive ion beam space charge. Considered is the process of ion beam compensation by charges, formed as a result of gas ionization by this beam or by externally introduced ones. Emphasis is placed on collective phenomena in ion-beam plasma, in particular on non-linear effects limiting amplitude of oscillations. It is shown, that not only dinamic decompensation but the Coulomb collisions of ions with electrons as well as other collective oscillations significantly affects the propagation of compensated ion beams. All the processes are to be taken into account at solving the problem of obtaining ''superdense'' compensated beams

  5. On non-linear magnetic-charged black hole surrounded by quintessence

    Science.gov (United States)

    Nam, Cao H.

    2018-06-01

    We derive a non-linear magnetic-charged black hole surrounded by quintessence, which behaves asymptotically like the Schwarzschild black hole surrounded by quintessence but at the short distances like the dS geometry. The horizon properties of this black hole are investigated in detail. The thermodynamics of the black hole is studied in the local and global views. Finally, by calculating the heat capacity and the free energy, we point to that the black hole may undergo a thermal phase transition, between a larger unstable black hole and a smaller stable black hole, at a critical temperature.

  6. Low-energy scattering of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Barrachina, R.O.; Garibotti, C.R. (Universidad Nacional de Cuyo, San Carlos de Bariloche (Argentina). Inst. Balseiro)

    1983-04-23

    The off-energy-shell T-matrix for two charged particles is studied in the low momentum limit (k->0). The T-matrix for a Coulomb interaction (Tsub(C)) is usually considered as the limit of the amplitude for a screened potential (Tsub(s)) when the screening is removed. We show that this statement is not true for small enough energies. For an attractive interaction Tsub(C) and Tsub(s) differ significantly when k->0. Tsub(c) behaves as ksup(-1/2), while Tsub(s) keeps its k/sup -1/ behaviour even when the screening is turned off. We note that this is an effect which would be observed in ion-atom collisions when one electron is ejected from the atom and captured into a continuum state of the ion.

  7. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT

    Directory of Open Access Journals (Sweden)

    Xiaohua Nie

    2017-01-01

    Full Text Available Cat Swarm Optimization (CSO algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO algorithm, the application of CSO is greatly limited by the drawback of “premature convergence,” that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.

  8. Chaos Quantum-Behaved Cat Swarm Optimization Algorithm and Its Application in the PV MPPT.

    Science.gov (United States)

    Nie, Xiaohua; Wang, Wei; Nie, Haoyao

    2017-01-01

    Cat Swarm Optimization (CSO) algorithm was put forward in 2006. Despite a faster convergence speed compared with Particle Swarm Optimization (PSO) algorithm, the application of CSO is greatly limited by the drawback of "premature convergence," that is, the possibility of trapping in local optimum when dealing with nonlinear optimization problem with a large number of local extreme values. In order to surmount the shortcomings of CSO, Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed in this paper. Firstly, Quantum-behaved Cat Swarm Optimization (QCSO) algorithm improves the accuracy of the CSO algorithm, because it is easy to fall into the local optimum in the later stage. Chaos Quantum-behaved Cat Swarm Optimization (CQCSO) algorithm is proposed by introducing tent map for jumping out of local optimum in this paper. Secondly, CQCSO has been applied in the simulation of five different test functions, showing higher accuracy and less time consumption than CSO and QCSO. Finally, photovoltaic MPPT model and experimental platform are established and global maximum power point tracking control strategy is achieved by CQCSO algorithm, the effectiveness and efficiency of which have been verified by both simulation and experiment.

  9. Detecting charging state of ultra-fine particles: instrumental development and ambient measurements

    Directory of Open Access Journals (Sweden)

    L. Laakso

    2007-01-01

    Full Text Available The importance of ion-induced nucleation in the lower atmosphere has been discussed for a long time. In this article we describe a new instrumental setup – Ion-DMPS – which can be used to detect contribution of ion-induced nucleation on atmospheric new particle formation events. The device measures positively and negatively charged particles with and without a bipolar charger. The ratio between "charger off" to "charger on" describes the charging state of aerosol particle population with respect to equilibrium. Values above one represent more charges than in an equilibrium (overcharged state, and values below unity stand for undercharged situation, when there is less charges in the particles than in the equilibrium. We performed several laboratory experiments to test the operation of the instrument. After the laboratory tests, we used the device to observe particle size distributions during atmospheric new particle formation in a boreal forest. We found that some of the events were clearly dominated by neutral nucleation but in some cases also ion-induced nucleation contributed to the new particle formation. We also found that negative and positive ions (charged particles behaved in a different manner, days with negative overcharging were more frequent than days with positive overcharging.

  10. BEHAVE: fire behavior prediction and fuel modeling system-BURN Subsystem, part 1

    Science.gov (United States)

    Patricia L. Andrews

    1986-01-01

    Describes BURN Subsystem, Part 1, the operational fire behavior prediction subsystem of the BEHAVE fire behavior prediction and fuel modeling system. The manual covers operation of the computer program, assumptions of the mathematical models used in the calculations, and application of the predictions.

  11. Two-Photon Functional Imaging of the Auditory Cortex in Behaving Mice: From Neural Networks to Single Spines

    Directory of Open Access Journals (Sweden)

    Ruijie Li

    2018-04-01

    Full Text Available In vivo two-photon Ca2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca2+ indicators, we recorded the Ca2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca2+ indicators (GECIs, we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.

  12. Charging effects and surface potential variations of Cu-based nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, D., E-mail: daniela.gomes@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Calmeiro, T.R.; Nandy, S.; Pinto, J.V.; Pimentel, A.; Barquinha, P. [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Carvalho, P.A. [SINTEF Materials and Chemistry, PB 124 Blindern, NO-0314, Oslo (Norway); CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa (Portugal); Walmsley, J.C. [SINTEF Materials and Chemistry, Materials and Nanotechnology, Høgskoleringen 5, 7034 Trondheim (Norway); Fortunato, E., E-mail: emf@fct.unl.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal); Martins, R., E-mail: rm@uninova.pt [i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-02-29

    The present work reports charging effects and surface potential variations in pure copper, cuprous oxide and cupric oxide nanowires observed by electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM). The copper nanowires were produced by wet synthesis, oxidation into cuprous oxide nanowires was achieved through microwave irradiation and cupric oxide nanowires were obtained via furnace annealing in atmospheric conditions. Structural characterization of the nanowires was carried out by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. During the EFM experiments the electrostatic field of the positive probe charged negatively the Cu-based nanowires, which in turn polarized the SiO{sub 2} dielectric substrate. Both the probe/nanowire capacitance as well as the substrate polarization increased with the applied bias. Cu{sub 2}O and CuO nanowires behaved distinctively during the EFM measurements in accordance with their band gap energies. The work functions (WF) of the Cu-based nanowires, obtained by KPFM measurements, yielded WF{sub CuO} > WF{sub Cu} > WF{sub Cu{sub 2O}}. - Highlights: • Charge distribution study in Cu, Cu{sub 2}O and CuO nanowires through electrostatic force microscopy • Structural/surface defect role on the charge distribution along the Cu nanowires • Determination of the nanowire work functions by Kelvin probe force microscopy • Three types of nanowires give a broad idea of charge behavior on Cu based-nanowires.

  13. Evolving Models of Pavlovian Conditioning: Cerebellar Cortical Dynamics in Awake Behaving Mice

    Directory of Open Access Journals (Sweden)

    Michiel M. ten Brinke

    2015-12-01

    Full Text Available Three decades of electrophysiological research on cerebellar cortical activity underlying Pavlovian conditioning have expanded our understanding of motor learning in the brain. Purkinje cell simple spike suppression is considered to be crucial in the expression of conditional blink responses (CRs. However, trial-by-trial quantification of this link in awake behaving animals is lacking, and current hypotheses regarding the underlying plasticity mechanisms have diverged from the classical parallel fiber one to the Purkinje cell synapse LTD hypothesis. Here, we establish that acquired simple spike suppression, acquired conditioned stimulus (CS-related complex spike responses, and molecular layer interneuron (MLI activity predict the expression of CRs on a trial-by-trial basis using awake behaving mice. Additionally, we show that two independent transgenic mouse mutants with impaired MLI function exhibit motor learning deficits. Our findings suggest multiple cerebellar cortical plasticity mechanisms underlying simple spike suppression, and they implicate the broader involvement of the olivocerebellar module within the interstimulus interval.

  14. Equilibrium charge distribution on a finite straight one-dimensional wire

    Science.gov (United States)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed

    2017-09-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.

  15. Equilibrium charge distribution on a finite straight one-dimensional wire

    International Nuclear Information System (INIS)

    Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Farouk, Ahmed; Alkhambashi, Majid

    2017-01-01

    The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges. (paper)

  16. An Abstract Coalgebraic Approach to Process Equivalence for Well- Behaved Operational Semantics

    DEFF Research Database (Denmark)

    Klin, Bartek

    This thesis is part of the programme aimed at finding a mathematical theory of well-behaved structural operational semantics. General and basic results shown in 1997 in a seminal paper by Turi and Plotkin are extended in two directions, aiming at greater expressivity of the framework. The so-call...

  17. Superdense matter

    Indian Academy of Sciences (India)

    In this section we shall discuss how to use weak coupling methods in order to explore .... quark chemical potential to be larger than the strange quark mass. ..... We would like to conclude by summarizing some of the things we have learned ...

  18. Microporous nano-MgO/diatomite ceramic membrane with high positive surface charge for tetracycline removal.

    Science.gov (United States)

    Meng, Xian; Liu, Zhimeng; Deng, Cheng; Zhu, Mengfu; Wang, Deyin; Li, Kui; Deng, Yu; Jiang, Mingming

    2016-12-15

    A novel microporous nano-MgO/diatomite ceramic membrane with high positive surface charge was prepared, including synthesis of precursor colloid, dip-coating and thermal decomposition. Combined SEM, EDS, XRD and XPS studies show the nano-MgO is irregularly distributed on the membrane surface or pore walls and forms a positively charged nano coating. And the nano-MgO coating is firmly attached to the diatomite membrane via SiO chemical bond. Thus the nano-MgO/diatomite membrane behaves strong electropositivity with the isoelectric point of 10.8. Preliminary filtration tests indicate that the as-prepared nano-MgO/diatomite membrane could remove approximately 99.7% of tetracycline in water through electrostatic adsorption effect. The desirable electrostatic property enables the nano-MgO/diatomite membrane to be a candidate for removal of organic pollutants from water. And it is convinced that there will be a great application prospect of charged ceramic membrane in water treatment field. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Charge asymmetry measurements in t anti t production at 8 TeV using the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Naranjo, Roger [DESY, Hamburg (Germany)

    2015-07-01

    The charge asymmetry in t anti t production is a precision test for Standard Model predictions. It arises from interferences between next-to-leading order processes. This measurement offers a good discriminant for new physics models where the asymmetry could behave differently. We present measurements of the t anti t charge asymmetry in the dilepton channel in a fiducial region and for the full phase-space. The inclusive measurement is performed, as well as differential measurements with respect to mass, transverse momentum and the boost of the t anti t system. These studies are done using data with an integrated luminosity of 20 fb{sup -1} in pp collisions at 8 TeV, collected by the ATLAS detector at the LHC.

  20. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    Science.gov (United States)

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS).

  1. Charge and statistics of quantum Hall quasi-particles - a numerical study of mean values and fluctuations

    International Nuclear Information System (INIS)

    Kjoensberg, H.; Leinaas, J.M.

    1999-01-01

    We present Monte Carlo studies of charge expectation values and charge fluctuations for quasi-particles in the quantum Hall system. We have studied the Laughlin wave functions for quasi-hole and quasi-electron, and also Jain's definition of the quasi-electron wave function. The considered systems consist of from 50 to 200 electrons, and the filling fraction is 1/3. For all quasi-particles our calculations reproduce well the expected values of charge; ((-1)/(3)) times the electron charge for the quasi-hole, and 1/3 for the quasi-electron. Regarding fluctuations in the charge, our results for the quasi-hole and Jain quasi-electron are consistent with the expected value zero in the bulk of the system, but for the Laughlin quasi-electron we find small, but significant, deviations from zero throughout the whole electron droplet. We also present Berry phase calculations of charge and statistics parameter for the Jain quasi-electron, calculations which supplement earlier studies for the Laughlin quasi-particles. We find that the statistics parameter, calculated as a function of distance, is more well behaved for the Jain quasi-electron than it is for the Laughlin quasi-electron. However, the sign of the parameter is opposite of what is expected from qualitative arguments

  2. An Adaptive Cultural Algorithm with Improved Quantum-behaved Particle Swarm Optimization for Sonar Image Detection.

    Science.gov (United States)

    Wang, Xingmei; Hao, Wenqian; Li, Qiming

    2017-12-18

    This paper proposes an adaptive cultural algorithm with improved quantum-behaved particle swarm optimization (ACA-IQPSO) to detect the underwater sonar image. In the population space, to improve searching ability of particles, iterative times and the fitness value of particles are regarded as factors to adaptively adjust the contraction-expansion coefficient of the quantum-behaved particle swarm optimization algorithm (QPSO). The improved quantum-behaved particle swarm optimization algorithm (IQPSO) can make particles adjust their behaviours according to their quality. In the belief space, a new update strategy is adopted to update cultural individuals according to the idea of the update strategy in shuffled frog leaping algorithm (SFLA). Moreover, to enhance the utilization of information in the population space and belief space, accept function and influence function are redesigned in the new communication protocol. The experimental results show that ACA-IQPSO can obtain good clustering centres according to the grey distribution information of underwater sonar images, and accurately complete underwater objects detection. Compared with other algorithms, the proposed ACA-IQPSO has good effectiveness, excellent adaptability, a powerful searching ability and high convergence efficiency. Meanwhile, the experimental results of the benchmark functions can further demonstrate that the proposed ACA-IQPSO has better searching ability, convergence efficiency and stability.

  3. Investigation of surface charge density on solid–liquid interfaces by modulating the electrical double layer

    International Nuclear Information System (INIS)

    Moon, Jong Kyun; Song, Myung Won; Pak, Hyuk Kyu

    2015-01-01

    A solid surface in contact with water or aqueous solution usually carries specific electric charges. These surface charges attract counter ions from the liquid side. Since the geometry of opposite charge distribution parallel to the solid–liquid interface is similar to that of a capacitor, it is called an electrical double layer capacitor (EDLC). Therefore, there is an electrical potential difference across an EDLC in equilibrium. When a liquid bridge is formed between two conducting plates, the system behaves as two serially connected EDLCs. In this work, we propose a new method for investigating the surface charge density on solid–liquid interfaces. By mechanically modulating the electrical double layers and simultaneously applying a dc bias voltage across the plates, an ac electric current can be generated. By measuring the voltage drop across a load resistor as a function of bias voltage, we can study the surface charge density on solid–liquid interfaces. Our experimental results agree very well with the simple equivalent electrical circuit model proposed here. Furthermore, using this method, one can determine the polarity of the adsorbed state on the solid surface depending on the material used. We expect this method to aid in the study of electrical phenomena on solid–liquid interfaces. (paper)

  4. Gravitation and relativity

    CERN Document Server

    Hoffmann, William F

    1964-01-01

    Remarks on the observational basis of general relativity ; Riemannian geometry ; gravitation as geometry ; gravitational waves ; Mach's principle and experiments on mass anisotropy ; the many faces of Mach ; the significance for the solar system of time-varying gravitation ; relativity principles and the role of coordinates in physics ; the superdense star and the critical nucleon number ; gravitation and light ; possible effects on the solar system of φ waves if they exist ; the Lyttleton-Bondi universe and charge equality ; quantization of general relativity ; Mach's principle as boundary condition for Einstein's equations.

  5. A novel vibrotactile system for stimulating the glabrous skin of awake freely behaving rats during operant conditioning.

    Science.gov (United States)

    Devecioğlu, İsmail; Güçlü, Burak

    2015-03-15

    Rat skin is innervated by mechanoreceptive fibers similar to those in other mammals. Tactile experiments with behaving rats mostly focus on the vibrissal system which does not exist in humans. The aim of this study was to design and implement a novel vibrotactile system to stimulate the glabrous skin of behaving rats during operant conditioning. A computer-controlled vibrotactile system was developed for various tasks in which the volar surface of unrestrained rats' fore- and hindpaws was stimulated in an operant chamber. The operant chamber was built from off-the-shelf components. A highly accurate electrodynamic shaker with a novel multi-probe design was used for generating mechanical displacements. Twenty-five rats were trained for four sequential tasks: (A) middle-lever (trial start signal) press, (B) side-lever press with an associated visual cue, (C) similar to (B) with the addition of an auditory/tactile stimulus, (D) auditory/tactile detection (yes/no) task. Out of 9 rats which could complete the tactile version of this training schedule, 5 had over 70% accuracy in the tactile version of the detection task. Unlike actuators for stimulating whiskers, this system does not require a particular head/body alignment and can be used with freely behaving animals. The vibrotactile system was found to be effective for conditioning freely behaving rats based on stimuli applied on the glabrous skin. However, detection accuracies were lower compared to those in tasks involving whisker stimulation reported previously, probably due to differences in cortical processing. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. A lightweight telemetry system for recording neuronal activity in freely behaving small animals

    NARCIS (Netherlands)

    Schregardus, D.S.; Pieneman, A.W.; ter Maat, A.; Brouwer, T.J.F.; Gahr, M.L.

    2006-01-01

    A miniature lightweight radio telemetric device is described which is shown to be suitable for recording neuronal activity in freely behaving animals. Its size (12 × 5 × 8 mm) and weight (1.0-1.1 g with batteries, 0.4-0.5 g without) make the device particularly suitable for recording neuronal units

  7. Charge-transfer cross sections of H+ ions in collisions with noble gas atoms in the energy range below 4.0 keV

    International Nuclear Information System (INIS)

    Kusakabe, Toshio; Sakaue, Hiroyuki A.; Tawara, Hiroyuki

    2011-01-01

    Charge-transfer cross sections in collisions of H + ions with the ground state He, Ar, Kr, and Xe atoms have been measured in the energy range below 4.0 keV with the initial growth rate method. These observed cross sections are also compared with previously published experimental data and theoretical predictions. In the He and Ar targets, it is found that some previous experimental data deviate significantly from the present observed cross sections as the collision energy decreases. It has been found that in the Kr and Xe targets, the energy dependence of the present observed cross sections behaves as “near-resonant” charge transfer. (author)

  8. An Improved Quantum-Behaved Particle Swarm Optimization Algorithm with Elitist Breeding for Unconstrained Optimization.

    Science.gov (United States)

    Yang, Zhen-Lun; Wu, Angus; Min, Hua-Qing

    2015-01-01

    An improved quantum-behaved particle swarm optimization with elitist breeding (EB-QPSO) for unconstrained optimization is presented and empirically studied in this paper. In EB-QPSO, the novel elitist breeding strategy acts on the elitists of the swarm to escape from the likely local optima and guide the swarm to perform more efficient search. During the iterative optimization process of EB-QPSO, when criteria met, the personal best of each particle and the global best of the swarm are used to generate new diverse individuals through the transposon operators. The new generated individuals with better fitness are selected to be the new personal best particles and global best particle to guide the swarm for further solution exploration. A comprehensive simulation study is conducted on a set of twelve benchmark functions. Compared with five state-of-the-art quantum-behaved particle swarm optimization algorithms, the proposed EB-QPSO performs more competitively in all of the benchmark functions in terms of better global search capability and faster convergence rate.

  9. The games economists play: Why economics students behave more selfishly than other students.

    Directory of Open Access Journals (Sweden)

    Philipp Gerlach

    Full Text Available Do economics students behave more selfishly than other students? Experiments involving monetary allocations suggest so. This article investigates the underlying motives for the economic students' more selfish behavior by separating three potential explanatory mechanisms: economics students are less concerned with fairness when making allocation decisions; have a different notion of what is fair in allocations; or are more skeptical about other people's allocations, which in turn makes them less willing to comply with a shared fairness norm. The three mechanisms were tested by inviting students from various disciplines to participate in a relatively novel experimental game and asking all participants to give reasons for their choices. Compared with students of other disciplines, economics students were about equally likely to mention fairness in their comments; had a similar notion of what was fair in the situation; however, they expected lower offers, made lower offers, and were less willing to enforce compliance with a fair allocation at a cost to themselves. The economics students' lower expectations mediated their allocation decisions, suggesting that economics students behaved more selfishly because they expected others not to comply with the shared fairness norm.

  10. Pareto-Ranking Based Quantum-Behaved Particle Swarm Optimization for Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    Na Tian

    2015-01-01

    Full Text Available A study on pareto-ranking based quantum-behaved particle swarm optimization (QPSO for multiobjective optimization problems is presented in this paper. During the iteration, an external repository is maintained to remember the nondominated solutions, from which the global best position is chosen. The comparison between different elitist selection strategies (preference order, sigma value, and random selection is performed on four benchmark functions and two metrics. The results demonstrate that QPSO with preference order has comparative performance with sigma value according to different number of objectives. Finally, QPSO with sigma value is applied to solve multiobjective flexible job-shop scheduling problems.

  11. Do Students Behave Rationally in Multiple Choice Tests? Evidence from a Field Experiment

    OpenAIRE

    María Paz Espinosa; Javier Gardeazabal

    2013-01-01

    A disadvantage of multiple choice tests is that students have incentives to guess. To discourage guessing, it is common to use scoring rules that either penalize wrong answers or reward omissions. In psychometrics, penalty and reward scoring rules are considered equivalent. However, experimental evidence indicates that students behave differently under penalty or reward scoring rules. These differences have been attributed to the different framing (penalty versus reward). In this paper, we mo...

  12. Nanocrystals in the glass and centers of localization of free charge carriers in the thick-film resistors

    International Nuclear Information System (INIS)

    Abdurakhmanov, G.

    2012-01-01

    Conduction mechanism of doped silicate glass (DSG) based on existence of nanocrystals in the glass is proposed. These nanocrystals act as localization centers of free charge carriers. Random distribution of the nanocrystal's sizes and distances between them leads to charge transport by variable length hopping. It is shown that dopant atoms generate the narrow impurity subband of 0.03 eV in width. This subband joins close to the glass valence band top or slightly (less than 0.01 eV) separated from the last. What is why the hopping mechanism coexists with thermal activation one and at low temperatures (T -n ), 0.25 800 K) structure transitions of nanocrystals take place and conductivity of DSG decreases sharply. Beyond of the minimum of conductivity (above 1000 K) energy gap is formed between the impurity subband and the valence band top of glass, so DSG behaves like a typical semiconductor. (author)

  13. The olfactory tubercle encodes odor valence in behaving mice.

    Science.gov (United States)

    Gadziola, Marie A; Tylicki, Kate A; Christian, Diana L; Wesson, Daniel W

    2015-03-18

    Sensory information acquires meaning to adaptively guide behaviors. Despite odors mediating a number of vital behaviors, the components of the olfactory system responsible for assigning meaning to odors remain unclear. The olfactory tubercle (OT), a ventral striatum structure that receives monosynaptic input from the olfactory bulb, is uniquely positioned to transform odor information into behaviorally relevant neural codes. No information is available, however, on the coding of odors among OT neurons in behaving animals. In recordings from mice engaged in an odor discrimination task, we report that the firing rate of OT neurons robustly and flexibly encodes the valence of conditioned odors over identity, with rewarded odors evoking greater firing rates. This coding of rewarded odors occurs before behavioral decisions and represents subsequent behavioral responses. We predict that the OT is an essential region whereby odor valence is encoded in the mammalian brain to guide goal-directed behaviors. Copyright © 2015 the authors 0270-6474/15/354515-13$15.00/0.

  14. Net charge fluctuations and local charge compensation

    International Nuclear Information System (INIS)

    Fu Jinghua

    2006-01-01

    We propose net charge fluctuation as a measure of local charge correlation length. It is demonstrated that, in terms of a schematic multiperipheral model, net charge fluctuation satisfies the same Quigg-Thomas relation as satisfied by charge transfer fluctuation. Net charge fluctuations measured in finite rapidity windows depend on both the local charge correlation length and the size of the observation window. When the observation window is larger than the local charge correlation length, the net charge fluctuation only depends on the local charge correlation length, while forward-backward charge fluctuations always have strong dependence on the observation window size. Net charge fluctuations and forward-backward charge fluctuations measured in the present heavy ion experiments show characteristic features similar to those from multiperipheral models. But the data cannot all be understood within this simple model

  15. An alternative approach to exact wave functions for time-dependent coupled oscillator model of charged particle in variable magnetic field

    International Nuclear Information System (INIS)

    Menouar, Salah; Maamache, Mustapha; Choi, Jeong Ryeol

    2010-01-01

    The quantum states of time-dependent coupled oscillator model for charged particles subjected to variable magnetic field are investigated using the invariant operator methods. To do this, we have taken advantage of an alternative method, so-called unitary transformation approach, available in the framework of quantum mechanics, as well as a generalized canonical transformation method in the classical regime. The transformed quantum Hamiltonian is obtained using suitable unitary operators and is represented in terms of two independent harmonic oscillators which have the same frequencies as that of the classically transformed one. Starting from the wave functions in the transformed system, we have derived the full wave functions in the original system with the help of the unitary operators. One can easily take a complete description of how the charged particle behaves under the given Hamiltonian by taking advantage of these analytical wave functions.

  16. Hypothesis: solid tumours behave as systemic metabolic dictators.

    Science.gov (United States)

    Lee, Yang-Ming; Chang, Wei-Chun; Ma, Wen-Lung

    2016-06-01

    Current knowledge regarding mechanisms of carcinogenesis in human beings centres around the accumulation of genetic instability, amplified cellular signalling, disturbed cellular energy metabolism and microenvironmental regulation governed by complicated cell-cell interactions. In this article, we provide an alternative view of cancer biology. We propose that cancer behaves as a systemic dictator that interacts with tissues throughout the body to control their metabolism and eventually homeostasis. The mechanism of development of this endocrine organ-like tumour (EOLT) tissue might be the driving force for cancer progression. Here, we review the literature that led to the development of this hypothesis. The EOLT phenotype can be defined as a tumour that alters systemic homeostasis. The literature indicates that the EOLT phenotype is present throughout cancer progression. The feedback mechanism that governs the interaction between tumours and various organs is unknown. We believe that investigating the mechanism of EOLT development may advance the current knowledge of regulation within the tumour macroenvironment and consequently lead to new diagnostic methods and therapy. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  17. Higher Dimensional Charged Black Hole Solutions in f(R Gravitational Theories

    Directory of Open Access Journals (Sweden)

    G. G. L. Nashed

    2018-01-01

    Full Text Available We present, without any assumption, a class of electric and magnetic flat horizon D-dimension solutions for a specific class of f(R=R+αR2, all of which behave asymptotically as Anti-de-Sitter spacetime. The most interesting property of these solutions is that the higher dimensions black holes, D>4, always have constant electric and magnetic charges in contrast to what is known in the literature. For D=4, we show that the magnetic field participates in the metric on equal foot as the electric field participates. Another interesting result is the fact that the Cauchy horizon is not identical with the event horizon. We use Komar formula to calculate the conserved quantities. We study the singularities and calculate the Hawking temperature and entropy and show that the first law of thermodynamics is always satisfied.

  18. Optimasi Penempatan Menara BTS Menggunakan Quantum-Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Mohamad Fatkhur Rohman

    2016-11-01

    Full Text Available Universal Mobile Telecomunication System (UMTS saat ini dipandang sebagai sebuah sistem impian yang menggantikan Global System for Mobile Communication (GSM dan merupakan salah satu evolusi generasi ketiga (3G dari jaringan mobile. Salah satu komponen pendukung jaringan UMTS adalah Node B, Node B dapat dianalogikan sebagai BTS. Seiring perkembangan kebutuhan pelanggan yang semakin meningkat, kebutuhan akan BTS(Node B semakin bertambah, hal ini menyebabkan banyaknya jumlah menara BTS da menyebabkan pemandangan yang kurang bagus bagi visualisasi kota.oleh karena itu perlu dilakukan optimisasi penempatan menara BTS. Salah satu metode untuk mengoptimasi adalah Quantum-behaved Particle Swarm Optimization. Maka dalam penelitian ini akan dirancang simulasi optimasi penempatan BTS menggunakan QPSO dengan parameter yang akan dioptimasi adalah Coverage Area dan Trafik. Dari hasil penelitian yang dilakukan, Algoritma QPSO mampu mengurangi jumlah BTS dari 55 BTS menjadi 43 BTS.

  19. Asymptotic form of the charge exchange cross section in the three body rearrangement collisions

    Science.gov (United States)

    Omidvar, K.

    1975-01-01

    A three body general rearrangement collision is considered where the initial and final bound states are described by the hydrogen-like wave functions. Mathematical models are developed to establish the relationships of quantum number, the reduced mass, and the nuclear charge of the final state. It is shown that for the low lying levels, the reciprocal of n cubed scaling law at all incident energies is only approximately satisfied. The case of the symmetric collisions is considered and it is shown that for high n and high incident energy, E, the cross section behaves as the reciprocal of E cubed. Zeros and minima in the differential cross sections in the limit of high n for protons on atomic hydrogen and positrons on atomic hydrogen are given.

  20. Solving Bilevel Multiobjective Programming Problem by Elite Quantum Behaved Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2012-01-01

    Full Text Available An elite quantum behaved particle swarm optimization (EQPSO algorithm is proposed, in which an elite strategy is exerted for the global best particle to prevent premature convergence of the swarm. The EQPSO algorithm is employed for solving bilevel multiobjective programming problem (BLMPP in this study, which has never been reported in other literatures. Finally, we use eight different test problems to measure and evaluate the proposed algorithm, including low dimension and high dimension BLMPPs, as well as attempt to solve the BLMPPs whose theoretical Pareto optimal front is not known. The experimental results show that the proposed algorithm is a feasible and efficient method for solving BLMPPs.

  1. Dynamics of Current, Charge and Mass

    Directory of Open Access Journals (Sweden)

    Eisenberg Bob

    2017-10-01

    Full Text Available Electricity plays a special role in our lives and life. The dynamics of electrons allow light to flow through a vacuum. The equations of electron dynamics are nearly exact and apply from nuclear particles to stars. These Maxwell equations include a special term, the displacement current (of a vacuum. The displacement current allows electrical signals to propagate through space. Displacement current guarantees that current is exactly conserved from inside atoms to between stars, as long as current is defined as the entire source of the curl of the magnetic field, as Maxwell did.We show that the Bohm formulation of quantum mechanics allows the easy definition of the total current, and its conservation, without the dificulties implicit in the orthodox quantum theory. The orthodox theory neglects the reality of magnitudes, like the currents, during times that they are not being explicitly measured.We show how conservation of current can be derived without mention of the polarization or dielectric properties of matter. We point out that displacement current is handled correctly in electrical engineering by ‘stray capacitances’, although it is rarely discussed explicitly. Matter does not behave as physicists of the 1800’s thought it did. They could only measure on a time scale of seconds and tried to explain dielectric properties and polarization with a single dielectric constant, a real positive number independent of everything. Matter and thus charge moves in enormously complicated ways that cannot be described by a single dielectric constant,when studied on time scales important today for electronic technology and molecular biology. When classical theories could not explain complex charge movements, constants in equations were allowed to vary in solutions of those equations, in a way not justified by mathematics, with predictable consequences. Life occurs in ionic solutions where charge is moved by forces not mentioned or described in the

  2. Coherent communication with continuous quantum variables

    Science.gov (United States)

    Wilde, Mark M.; Krovi, Hari; Brun, Todd A.

    2007-06-01

    The coherent bit (cobit) channel is a resource intermediate between classical and quantum communication. It produces coherent versions of teleportation and superdense coding. We extend the cobit channel to continuous variables by providing a definition of the coherent nat (conat) channel. We construct several coherent protocols that use both a position-quadrature and a momentum-quadrature conat channel with finite squeezing. Finally, we show that the quality of squeezing diminishes through successive compositions of coherent teleportation and superdense coding.

  3. Rodent scope: a user-configurable digital wireless telemetry system for freely behaving animals.

    Directory of Open Access Journals (Sweden)

    David Ball

    Full Text Available This paper describes the design and implementation of a wireless neural telemetry system that enables new experimental paradigms, such as neural recordings during rodent navigation in large outdoor environments. RoSco, short for Rodent Scope, is a small lightweight user-configurable module suitable for digital wireless recording from freely behaving small animals. Due to the digital transmission technology, RoSco has advantages over most other wireless modules of noise immunity and online user-configurable settings. RoSco digitally transmits entire neural waveforms for 14 of 16 channels at 20 kHz with 8-bit encoding which are streamed to the PC as standard USB audio packets. Up to 31 RoSco wireless modules can coexist in the same environment on non-overlapping independent channels. The design has spatial diversity reception via two antennas, which makes wireless communication resilient to fading and obstacles. In comparison with most existing wireless systems, this system has online user-selectable independent gain control of each channel in 8 factors from 500 to 32,000 times, two selectable ground references from a subset of channels, selectable channel grounding to disable noisy electrodes, and selectable bandwidth suitable for action potentials (300 Hz-3 kHz and low frequency field potentials (4 Hz-3 kHz. Indoor and outdoor recordings taken from freely behaving rodents are shown to be comparable to a commercial wired system in sorting for neural populations. The module has low input referred noise, battery life of 1.5 hours and transmission losses of 0.1% up to a range of 10 m.

  4. A limit for large R-charge correlators in N = 2 theories

    Science.gov (United States)

    Bourget, Antoine; Rodriguez-Gomez, Diego; Russo, Jorge G.

    2018-05-01

    Using supersymmetric localization, we study the sector of chiral primary operators (Tr ϕ 2) n with large R-charge 4 n in N = 2 four-dimensional superconformal theories in the weak coupling regime g → 0, where λ ≡ g 2 n is kept fixed as n → ∞, g representing the gauge theory coupling(s). In this limit, correlation functions G 2 n of these operators behave in a simple way, with an asymptotic behavior of the form {G}_{2n}≈ {F}_{∞}(λ){(λ/2π e)}^{2n} n α , modulo O(1 /n) corrections, with α =1/2 \\dim (g) for a gauge algebra g and a universal function F ∞(λ). As a by-product we find several new formulas both for the partition function as well as for perturbative correlators in N=2 su(N) gauge theory with 2 N fundamental hypermultiplets.

  5. Education based thinking and behaving? Towards an identity perspective for studying education differentials in public opinion and political participation

    NARCIS (Netherlands)

    Spruyt, Bram; Kuppens, Toon

    2015-01-01

    Education based thinking and behaving? Towards and identity perspective for studying education differentials in public opinion and political participation Abstract Ever since scholars started studying public opinion and political behaviour, they have reported substantial educational differences.

  6. Asymmetry of neutrino emission from neutron beta-decay in superdense matter and strong magnetic field

    International Nuclear Information System (INIS)

    Kauts, V.L.; Savochkin, A.M.; Studenikin, A.I.

    2006-01-01

    Exact solution of Dirac equation for charged particles in homogenous magnetic field for computation of probability in presence of degenerate magnetized Fermi-gas consisting of protons, neutrons, and electrons has been used. Angular distribution of antineutrino momenta is investigated. Values of main parameters of medium is realistic for physics of neutron stars. This investigation may be applied for consideration of cooling of neutron stars [ru

  7. Iodide Sorption to Clays and the Relationship to Surface Charge and Clay Texture - 12356

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Andrew; Kruichiak, Jessica; Tellez, Hernesto; Wang, Yifeng [Sandia National Laboratories, Albuquerque, NM 87185 (United States)

    2012-07-01

    Iodine is assumed to behave conservatively in clay barriers around nuclear waste repositories and in natural sediments. Batch experiments tend to show little to no sorption, while in column experiments iodine is often retarded relative to tritiated water. Current surface complexation theory cannot account for negatively charged ion sorption to a negatively charged clay particle. Surface protonation and iodide sorption to clay minerals were examined using surface titrations and batch sorption experiments with a suite of clay minerals. Surface titrations were completed spanning a range of both pH values and ionic strengths. For reference, similar titrations were performed on pure forms of an Al-O powder. The titration curves were deconvoluted to attain the pKa distribution for each material at each ionic strength. The pKa distribution for the Al-O shows two distinct peaks at 4.8 and 7.5, which are invariant with ionic strength. The pKa distribution of clays was highly variable between the different minerals and as a function of ionic strength. Iodide sorption experiments were completed at high solid:solution ratios to exacerbate sorption properties. Palygorskite and kaolinite had the highest amount of iodide sorption and montmorillonite had the least. (authors)

  8. Flexible Coupling of Respiration and Vocalizations with Locomotion and Head Movements in the Freely Behaving Rat

    Directory of Open Access Journals (Sweden)

    Joseph Andrews Alves

    2016-01-01

    Full Text Available Quadrupedal mammals typically synchronize their respiration with body movements during rhythmic locomotion. In the rat, fast respiration is coupled to head movements during sniffing behavior, but whether respiration is entrained by stride dynamics is not known. We recorded intranasal pressure, head acceleration, instantaneous speed, and ultrasonic vocalizations from male and female adult rats while freely behaving in a social environment. We used high-speed video recordings of stride to understand how head acceleration signals relate to locomotion and developed techniques to identify episodes of sniffing, walking, trotting, and galloping from the recorded variables. Quantitative analysis of synchrony between respiration and head acceleration rhythms revealed that respiration and locomotion movements were coordinated but with a weaker coupling than expected from previous work in other mammals. We have recently shown that rats behaving in social settings produce high rates of ultrasonic vocalizations during locomotion bouts. Accordingly, rats emitted vocalizations in over half of the respiratory cycles during fast displacements. We present evidence suggesting that emission of these calls disrupts the entrainment of respiration by stride. The coupling between these two variables is thus flexible, such that it can be overridden by other behavioral demands.

  9. A portable telemetry system for brain stimulation and neuronal activity recording in freely behaving small animals.

    Science.gov (United States)

    Ye, Xuesong; Wang, Peng; Liu, Jun; Zhang, Shaomin; Jiang, Jun; Wang, Qingbo; Chen, Weidong; Zheng, Xiaoxiang

    2008-09-30

    A portable multi-channel telemetry system which can be used for brain stimulation and neuronal activity recording in freely behaving small animals is described here. This system consists of three major components of headstage, backpack and portable Personal Digital Assistant (PDA). The headstage contains high precision instrument amplifiers with high input impedance. The backpack is comprised of two parts: (1) a main board (size: 36 mm x 22 mm x 3.5 mm and weight: 40 g with batteries, 20 g without), with current/voltage stimulator and special circuit suitable for neuronal activity recording and (2) and a bluetooth transceiver, with a high data transmission rate up to 70 kb/s, suitable for downloading stimulation commands and uploading acquired data. We recorded neuronal activities of the primary motor area of a freely behaving rat with 12-bit resolution at 12 k samples/s. The recorded data and analysis results showed that the system was successful by comparing with the commercial equipment Cerebus 128-Channel Data Acquisition System (Cyberkinetics Inc.). Using the PDA, we can control stimulation and recording. It provides a flexible method to do some research work in the circumstances where other approaches would be difficult or impossible.

  10. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits.

    Science.gov (United States)

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M

    2016-01-21

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm.

  11. Charge orders in organic charge-transfer salts

    International Nuclear Information System (INIS)

    Kaneko, Ryui; Valentí, Roser; Tocchio, Luca F; Becca, Federico

    2017-01-01

    Motivated by recent experimental suggestions of charge-order-driven ferroelectricity in organic charge-transfer salts, such as κ -(BEDT-TTF) 2 Cu[N(CN) 2 ]Cl, we investigate magnetic and charge-ordered phases that emerge in an extended two-orbital Hubbard model on the anisotropic triangular lattice at 3/4 filling. This model takes into account the presence of two organic BEDT-TTF molecules, which form a dimer on each site of the lattice, and includes short-range intramolecular and intermolecular interactions and hoppings. By using variational wave functions and quantum Monte Carlo techniques, we find two polar states with charge disproportionation inside the dimer, hinting to ferroelectricity. These charge-ordered insulating phases are stabilized in the strongly correlated limit and their actual charge pattern is determined by the relative strength of intradimer to interdimer couplings. Our results suggest that ferroelectricity is not driven by magnetism, since these polar phases can be stabilized also without antiferromagnetic order and provide a possible microscopic explanation of the experimental observations. In addition, a conventional dimer-Mott state (with uniform density and antiferromagnetic order) and a nonpolar charge-ordered state (with charge-rich and charge-poor dimers forming a checkerboard pattern) can be stabilized in the strong-coupling regime. Finally, when electron–electron interactions are weak, metallic states appear, with either uniform charge distribution or a peculiar 12-site periodicity that generates honeycomb-like charge order. (paper)

  12. Phase transitions in neutron matter and dynamics of neutron stars

    International Nuclear Information System (INIS)

    Migdal, A.B.; Chernoutsan, A.I.; Mishustin, I.N.

    1980-01-01

    The neutron star dynamics during the formation of the superdense core is considered, and the instability conditions with respect to this formation are described. Within the framework of a simple model the equation of motion of the superdense core radius is investigated, its solutions in a simple model are found analytically for some limiting cases, and the results of numerical solution of the equation of motion are presented. The possible ways for the envelope to be blown off are considered

  13. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions at 1. 4 GeV/c incident momentum observed in photographic emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1984-07-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like.

  14. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions at 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1984-01-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum are studied by means of the emulsion technique. A group of short range charged particles is observed. For the events with one short track, a backward and transversal emission is seen, which probably is due to some very fast process. For the events with two short tracks, a back-to-back emission is seen, indicating some two-body decay, where the target nucleus possibly behaves spectator-like. (Auth.)

  15. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  16. Superdense states of materials

    Energy Technology Data Exchange (ETDEWEB)

    Askaryan, G

    1975-04-01

    A concentrated action of powerful laser and electron beams in which a considerable heating and evaporation of matter result induces pressures of the order of 10/sup 12/ of atmospheres. Methods are discussed of attaining such pressures and possible applications are indicated.

  17. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.

    Science.gov (United States)

    Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam

    2016-01-15

    An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm 2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP).

  18. Integration of silicon-based neural probes and micro-drive arrays for chronic recording of large populations of neurons in behaving animals.

    Science.gov (United States)

    Michon, Frédéric; Aarts, Arno; Holzhammer, Tobias; Ruther, Patrick; Borghs, Gustaaf; McNaughton, Bruce; Kloosterman, Fabian

    2016-08-01

    Understanding how neuronal assemblies underlie cognitive function is a fundamental question in system neuroscience. It poses the technical challenge to monitor the activity of populations of neurons, potentially widely separated, in relation to behaviour. In this paper, we present a new system which aims at simultaneously recording from a large population of neurons from multiple separated brain regions in freely behaving animals. The concept of the new device is to combine the benefits of two existing electrophysiological techniques, i.e. the flexibility and modularity of micro-drive arrays and the high sampling ability of electrode-dense silicon probes. Newly engineered long bendable silicon probes were integrated into a micro-drive array. The resulting device can carry up to 16 independently movable silicon probes, each carrying 16 recording sites. Populations of neurons were recorded simultaneously in multiple cortical and/or hippocampal sites in two freely behaving implanted rats. Current approaches to monitor neuronal activity either allow to flexibly record from multiple widely separated brain regions (micro-drive arrays) but with a limited sampling density or to provide denser sampling at the expense of a flexible placement in multiple brain regions (neural probes). By combining these two approaches and their benefits, we present an alternative solution for flexible and simultaneous recordings from widely distributed populations of neurons in freely behaving rats.

  19. Alternate mutation based artificial immune algorithm for step fixed charge transportation problem

    Directory of Open Access Journals (Sweden)

    Mahmoud Moustafa El-Sherbiny

    2012-07-01

    Full Text Available Step fixed charge transportation problem (SFCTP is considered as a special version of the fixed-charge transportation problem (FCTP. In SFCTP, the fixed cost is incurred for every route that is used in the solution and is proportional to the amount shipped. This cost structure causes the value of the objective function to behave like a step function. Both FCTP and SFCTP are considered to be NP-hard problems. While a lot of research has been carried out concerning FCTP, not much has been done concerning SFCTP. This paper introduces an alternate Mutation based Artificial Immune (MAI algorithm for solving SFCTPs. The proposed MAI algorithm solves both balanced and unbalanced SFCTP without introducing a dummy supplier or a dummy customer. In MAI algorithm a coding schema is designed and procedures are developed for decoding such schema and shipping units. MAI algorithm guarantees the feasibility of all the generated solutions. Due to the significant role of mutation function on the MAI algorithm’s quality, 16 mutation functions are presented and their performances are compared to select the best one. For this purpose, forty problems with different sizes have been generated at random and then a robust calibration is applied using the relative percentage deviation (RPD method. Through two illustrative problems of different sizes the performance of the MAI algorithm has been compared with most recent methods.

  20. Q ‑ Φ criticality and microstructure of charged AdS black holes in f(R) gravity

    Science.gov (United States)

    Deng, Gao-Ming; Huang, Yong-Chang

    2017-12-01

    The phase transition and critical behaviors of charged AdS black holes in f(R) gravity with a conformally invariant Maxwell (CIM) source and constant curvature are further investigated. As a highlight, this research is carried out by employing new state parameters (T,Q, Φ) and contributes to deeper understanding of the thermodynamics and phase structure of black holes. Our analyses manifest that the charged f(R)-CIM AdS black hole undergoes a first-order small-large black hole phase transition, and the critical behaviors qualitatively behave like a Van der Waals liquid-vapor system. However, differing from the case in Einstein’s gravity, phase structures of the black holes in f(R) theory exhibit an interesting dependence on gravity modification parameters. Moreover, we adopt the thermodynamic geometry to probe the black hole microscopic properties. The results show that, on the one hand, both the Ruppeiner curvature and heat capacity diverge exactly at the critical point, on the other hand, the f(R)-CIM AdS black hole possesses the property as ideal Fermi gases. Of special interest, we discover a microscopic similarity between the black holes and a Van der Waals liquid-vapor system.

  1. Anisotropic and correlated emissions of short range charged particles in anti pAg/Br reactions of 1.4 GeV/c incident momentum observed in photographic emulsions

    International Nuclear Information System (INIS)

    Breivik, F.O.; Jacobsen, T.; Soerensen, S.O.

    1983-12-01

    Anti pAg/Br reactions at 1.4 GeV/c incident momentum were studied by means of the emulsion technique. A group of short range charged particles was observed. For the events with one short track, a backward and transversal emission was seen, probably due to some very fast process. For the events with two short tracks, a back-to-back emission was seen, indicating some two-body decay where the target nucleus possibly behaves spectator-like. The rates and forward collimations suggest that the same physical process causes the different multiplicities

  2. Charge states of ions, and mechanisms of charge ordering transitions

    Science.gov (United States)

    Pickett, Warren E.; Quan, Yundi; Pardo, Victor

    2014-07-01

    To gain insight into the mechanism of charge ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2Mn+→M(n+1)+ + M(n-1)+, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO2 and the dual charge state insulator AgO, and (3) analyze the cationic occupations of the actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, and hence no charge ordering), and that the experimental data used to support charge ordering can be accounted for within density functional-based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least in many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians isdiscussed.

  3. A simple miniature device for wireless stimulation of neural circuits in small behaving animals.

    Science.gov (United States)

    Zhang, Yisi; Langford, Bruce; Kozhevnikov, Alexay

    2011-10-30

    The use of wireless neural stimulation devices offers significant advantages for neural stimulation experiments in behaving animals. We demonstrate a simple, low-cost and extremely lightweight wireless neural stimulation device which is made from off-the-shelf components. The device has low power consumption and does not require a high-power RF preamplifier. Neural stimulation can be carried out in either a voltage source mode or a current source mode. Using the device, we carry out wireless stimulation in the premotor brain area HVC of a songbird and demonstrate that such stimulation causes rapid perturbations of the acoustic structure of the song. Published by Elsevier B.V.

  4. A novel fiber-free technique for brain activity imaging in multiple freely behaving mice

    Science.gov (United States)

    Inagaki, Shigenori; Agetsuma, Masakazu; Nagai, Takeharu

    2018-02-01

    Brain functions and related psychiatric disorders have been investigated by recording electrophysiological field potential. When recording it, a conventional method requires fiber-based apparatus connected to the brain, which however hampers the simultaneous measurement in multiple animals (e.g. by a tangle of fibers). Here, we propose a fiber-free recording technique in conjunction with a ratiometric bioluminescent voltage indicator. Our method allows investigation of electrophysiological filed potential dynamics in multiple freely behaving animals simultaneously over a long time period. Therefore, this fiber-free technique opens up the way to investigate a new mechanism of brain function that governs social behaviors and animal-to-animal interaction.

  5. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    Science.gov (United States)

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  6. Charge imbalance

    International Nuclear Information System (INIS)

    Clarke, J.

    1981-01-01

    This article provides a long theoretical development of the main ideas of charge imbalance in superconductors. Concepts of charge imbalance and quasiparticle charge are introduced, especially in regards to the use of tunnel injection in producing and detecting charge imbalance. Various mechanisms of charge relaxation are discussed, including inelastic scattering processes, elastic scattering in the presence of energy-gap anisotropy, and various pair-breaking mechanisms. In each case, present theories are reviewed in comparison with experimental data

  7. Chronic monitoring of cortical hemodynamics in behaving, freely-moving rats using a miniaturized head-mounted optical microscope

    Science.gov (United States)

    Sigal, Iliya; Gad, Raanan; Koletar, Margaret; Ringuette, Dene; Stefanovic, Bojana; Levi, Ofer

    2016-03-01

    Growing interest within the neurophysiology community in assessing healthy and pathological brain activity in animals that are awake and freely-behaving has triggered the need for optical systems that are suitable for such longitudinal studies. In this work we report label-free multi-modal imaging of cortical hemodynamics in the somatosensory cortex of awake, freely-behaving rats, using a novel head-mounted miniature optical microscope. The microscope employs vertical cavity surface emitting lasers (VCSELs) at three distinct wavelengths (680 nm, 795 nm, and 850 nm) to provide measurements of four hemodynamic markers: blood flow speeds, HbO, HbR, and total Hb concentration, across a > 2 mm field of view. Blood flow speeds are extracted using Laser Speckle Contrast Imaging (LSCI), while oxygenation measurements are performed using Intrinsic Optical Signal Imaging (IOSI). Longitudinal measurements on the same animal are made possible over the course of > 6 weeks using a chronic window that is surgically implanted into the skull. We use the device to examine changes in blood flow and blood oxygenation in superficial cortical blood vessels and tissue in response to drug-induced absence-like seizures, correlating motor behavior with changes in blood flow and blood oxygenation in the brain.

  8. Charge migration and charge transfer in molecular systems

    Directory of Open Access Journals (Sweden)

    Hans Jakob Wörner

    2017-11-01

    Full Text Available The transfer of charge at the molecular level plays a fundamental role in many areas of chemistry, physics, biology and materials science. Today, more than 60 years after the seminal work of R. A. Marcus, charge transfer is still a very active field of research. An important recent impetus comes from the ability to resolve ever faster temporal events, down to the attosecond time scale. Such a high temporal resolution now offers the possibility to unravel the most elementary quantum dynamics of both electrons and nuclei that participate in the complex process of charge transfer. This review covers recent research that addresses the following questions. Can we reconstruct the migration of charge across a molecule on the atomic length and electronic time scales? Can we use strong laser fields to control charge migration? Can we temporally resolve and understand intramolecular charge transfer in dissociative ionization of small molecules, in transition-metal complexes and in conjugated polymers? Can we tailor molecular systems towards specific charge-transfer processes? What are the time scales of the elementary steps of charge transfer in liquids and nanoparticles? Important new insights into each of these topics, obtained from state-of-the-art ultrafast spectroscopy and/or theoretical methods, are summarized in this review.

  9. Total source charge and charge screening in Yang-Mills theories

    International Nuclear Information System (INIS)

    Campbell, W.B.; Norton, R.E.

    1991-01-01

    New gauge-invariant definitions for the total charge on a static Yang-Mills source are suggested which we argue are better suited for determining when true color screening has occurred. In particular, these new definitions imply that the Abelian Coulomb solution for a simple ''electric'' dipole source made up of two opposite point charges has zero total source charge and therefore no color screening. With the definition of total source charge previously suggested by other authors, such a source would have a total source charge of 2q and therefore a screening charge in the field of -2q, where q is the magnitude of the charge of either point charge. Our definitions for more general solutions are not unique because of the path dependence of the parallel transport of charges. Suggestions for removing this ambiguity are offered, but it is not known if a unique, physically meaningful definition of total source charge in fact exists

  10. Workplace Charging. Charging Up University Campuses

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Carrie [ICF International, Fairfax, VA (United States); Ryder, Carrie [ICF International, Fairfax, VA (United States); Lommele, Stephen [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  11. Charge independence and charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G A [Washington Univ., Seattle, WA (United States). Dept. of Physics; van Oers, W T.H. [Manitoba Univ., Winnipeg, MB (Canada). Dept. of Physics; [TRIUMF, Vancouver, BC (Canada)

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs.

  12. Charge independence and charge symmetry

    International Nuclear Information System (INIS)

    Miller, G.A.

    1994-09-01

    Charge independence and charge symmetry are approximate symmetries of nature, violated by the perturbing effects of the mass difference between up and down quarks and by electromagnetic interactions. The observations of the symmetry breaking effects in nuclear and particle physics and the implications of those effects are reviewed. (author). 145 refs., 3 tabs., 11 figs

  13. Entanglement-Assisted Communication System for NASA's Deep-Space Missions

    Science.gov (United States)

    Kwiat, Paul; Bernstein, Herb; Javadi, Hamid

    2016-01-01

    For this project we have studied various forms of quantum communication, and quantum-enhanced classical communication. In particular, we have performed the first realization of a novel quantum protocol, superdense teleportation. We have also showed that in some cases, the advantages of superdense coding (which enhances classical channel capacity by up to a factor of two) can be realized without the use of entanglement. Finally, we considered some more advanced protocols, with the goal to realize 'superactivation' - two entangled channels have capabilities beyond the sum of the individual channels-and conclude that more study is needed in this area.

  14. Fractional charges

    International Nuclear Information System (INIS)

    Saminadayar, L.

    2001-01-01

    20 years ago fractional charges were imagined to explain values of conductivity in some materials. Recent experiments have proved the existence of charges whose value is the third of the electron charge. This article presents the experimental facts that have led theorists to predict the existence of fractional charges from the motion of quasi-particles in a linear chain of poly-acetylene to the quantum Hall effect. According to the latest theories, fractional charges are neither bosons nor fermions but anyons, they are submitted to an exclusive principle that is less stringent than that for fermions. (A.C.)

  15. Parameters estimation online for Lorenz system by a novel quantum-behaved particle swarm optimization

    International Nuclear Information System (INIS)

    Gao Fei; Tong Hengqing; Li Zhuoqiu

    2008-01-01

    This paper proposes a novel quantum-behaved particle swarm optimization (NQPSO) for the estimation of chaos' unknown parameters by transforming them into nonlinear functions' optimization. By means of the techniques in the following three aspects: contracting the searching space self-adaptively; boundaries restriction strategy; substituting the particles' convex combination for their centre of mass, this paper achieves a quite effective search mechanism with fine equilibrium between exploitation and exploration. Details of applying the proposed method and other methods into Lorenz systems are given, and experiments done show that NQPSO has better adaptability, dependability and robustness. It is a successful approach in unknown parameter estimation online especially in the cases with white noises

  16. Electron-beam-charged dielectrics: Internal charge distribution

    Science.gov (United States)

    Beers, B. L.; Pine, V. W.

    1981-01-01

    Theoretical calculations of an electron transport model of the charging of dielectrics due to electron bombardment are compared to measurements of internal charge distributions. The emphasis is on the distribution of Teflon. The position of the charge centroid as a function of time is not monotonic. It first moves deeper into the material and then moves back near to the surface. In most time regimes of interest, the charge distribution is not unimodal, but instead has two peaks. The location of the centroid near saturation is a function of the incident current density. While the qualitative comparison of theory and experiment are reasonable, quantitative comparison shows discrepancies of as much as a factor of two.

  17. The structure of ions and zwitterionic lipids regulates the charge of dipolar membranes.

    Science.gov (United States)

    Szekely, Or; Steiner, Ariel; Szekely, Pablo; Amit, Einav; Asor, Roi; Tamburu, Carmen; Raviv, Uri

    2011-06-21

    In pure water, zwitterionic lipids form lamellar phases with an equilibrium water gap on the order of 2 to 3 nm as a result of the dominating van der Waals attraction between dipolar bilayers. Monovalent ions can swell those neutral lamellae by a small amount. Divalent ions can adsorb onto dipolar membranes and charge them. Using solution X-ray scattering, we studied how the structure of ions and zwitterionic lipids regulates the charge of dipolar membranes. We found that unlike monovalent ions that weakly interact with all of the examined dipolar membranes, divalent and trivalent ions adsorb onto membranes containing lipids with saturated tails, with an association constant on the order of ∼10 M(-1). One double bond in the lipid tail is sufficient to prevent divalent ion adsorption. We suggest that this behavior is due to the relatively loose packing of lipids with unsaturated tails that increases the area per lipid headgroup, enabling their free rotation. Divalent ion adsorption links two lipids and limits their free rotation. The ion-dipole interaction gained by the adsorption of the ions onto unsaturated membranes is insufficient to compensate for the loss of headgroup free-rotational entropy. The ion-dipole interaction is stronger for cations with a higher valence. Nevertheless, polyamines behave as monovalent ions near dipolar interfaces in the sense that they interact weakly with the membrane surface, whereas in the bulk their behavior is similar to that of multivalent cations. Advanced data analysis and comparison with theory provide insight into the structure and interactions between ion-induced regulated charged interfaces. This study models biologically relevant interactions between cell membranes and various ions and the manner in which the lipid structure governs those interactions. The ability to monitor these interactions creates a tool for probing systems that are more complex and forms the basis for controlling the interactions between dipolar

  18. Measurement of Neutrino Induced, Charged Current, Charged Pion Production

    Energy Technology Data Exchange (ETDEWEB)

    Wilking, Michael Joseph [Univ. of Colorado, Boulder, CO (United States)

    2009-05-01

    Neutrinos are among the least understood particles in the standard model of particle physics. At neutrino energies in the 1 GeV range, neutrino properties are typically determined by observing the outgoing charged lepton produced in a charged current quasi-elastic interactions. The largest charged current background to these measurements comes from charged current pion production interactions, for which there is very little available data.

  19. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-01-01

    An experiment is described to study highly charged recoil ions on-line to the heavy accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy-ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q = 15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q = 4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q = 6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix

  20. Production, transport and charge capture measurements of highly charged recoil ions

    International Nuclear Information System (INIS)

    Trebus, U.E.

    1989-05-01

    An experiment is described to study highly charged recoil ions on-line to the heavy ion accelerator UNILAC at GSI. The highly charged recoil ions are produced by heavy ion bombardment of a gas target. Subsequently the slow highly charged recoil ions are extracted from the ionization volume, and guided through a beam transport line to a Wien filter for charge state selection and to a collision region to study charge transfer processes. Several experiments were carried out to show the efficient charge state separation. Charge states up to q=15 were observed. When using a retarding field analyzer cross sections for single electron capture were determined for different charge states of Xe q+ for q=4 to 11 and He gas. The experiments demonstrated increasing charge transfer cross sections with increasing charge state q and indicated the effect of near resonant charge capture for q=6. The flexible data acquisition system used, is described and other future experiments, such as for instance in flight ion-trapping are indicated in the appendix. (orig.)

  1. Voluntary running enhances glymphatic influx in awake behaving, young mice.

    Science.gov (United States)

    von Holstein-Rathlou, Stephanie; Petersen, Nicolas Caesar; Nedergaard, Maiken

    2018-01-01

    Vascular pathology and protein accumulation contribute to cognitive decline, whereas exercise can slow vascular degeneration and improve cognitive function. Recent investigations suggest that glymphatic clearance measured in aged mice while anesthetized is enhanced following exercise. We predicted that exercise would also stimulate glymphatic activity in awake, young mice with higher baseline glymphatic function. Therefore, we assessed glymphatic function in young female C57BL/6J mice following five weeks voluntary wheel running and in sedentary mice. The active mice ran a mean distance of 6km daily. We injected fluorescent tracers in cisterna magna of awake behaving mice and in ketamine/xylazine anesthetized mice, and later assessed tracer distribution in coronal brain sections. Voluntary exercise consistently increased CSF influx during wakefulness, primarily in the hypothalamus and ventral parts of the cortex, but also in the middle cerebral artery territory. While glymphatic activity was higher under ketamine/xylazine anesthesia, we saw a decrease in glymphatic function during running in awake mice after five weeks of wheel running. In summary, daily running increases CSF flux in widespread areas of the mouse brain, which may contribute to the pro-cognitive effects of exercise. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A Swarm Optimization Genetic Algorithm Based on Quantum-Behaved Particle Swarm Optimization.

    Science.gov (United States)

    Sun, Tao; Xu, Ming-Hai

    2017-01-01

    Quantum-behaved particle swarm optimization (QPSO) algorithm is a variant of the traditional particle swarm optimization (PSO). The QPSO that was originally developed for continuous search spaces outperforms the traditional PSO in search ability. This paper analyzes the main factors that impact the search ability of QPSO and converts the particle movement formula to the mutation condition by introducing the rejection region, thus proposing a new binary algorithm, named swarm optimization genetic algorithm (SOGA), because it is more like genetic algorithm (GA) than PSO in form. SOGA has crossover and mutation operator as GA but does not need to set the crossover and mutation probability, so it has fewer parameters to control. The proposed algorithm was tested with several nonlinear high-dimension functions in the binary search space, and the results were compared with those from BPSO, BQPSO, and GA. The experimental results show that SOGA is distinctly superior to the other three algorithms in terms of solution accuracy and convergence.

  3. Ultrafast Charge Photogeneration in MEH-PPV Charge-Transfer Complexes

    NARCIS (Netherlands)

    Bakulin, Artem A.; Paraschuk, Dmitry Yu; Pshenichnikov, Maxim S.; van Loosdrecht, Paul H. M.; Corkum, P; DeSilvestri, S; Nelson, KA; Riedle, E; Schoenlein, RW

    2009-01-01

    Visible-pump - IR-probe spectroscopy is used to study the ultrafast charge dynamics in MEH-PPV based charge-transfer complexes and donor-acceptor blends. Transient anisotropy of the polymer polaron band provides invaluable insights into excitation localisation and charge-transfer pathways.

  4. Bond charges and electronic charge transfer in ternary semiconductors

    International Nuclear Information System (INIS)

    Pietsch, U.

    1986-01-01

    By means of a simple molecule-theoretic model of 'linear superposition of two-electron molecules' the bond charges between nearest neighbours and the effective charges of ions are calculated for ternary zinc-blende structure alloys as well as chalcopyrite semiconductors. Taking into account both, the charge transfer among the ions caused by the differences of electronegativities of atoms used and between the bonds created by the internal stress of the lattice a nearly unvaried averaged bond charge amount of the alloy is found, but rather dramatically changed local bond charge parameters in comparison with the respective values of binary compounds used. This fact should influence the noncentral force interaction in such semiconductors. (author)

  5. Charging machine

    International Nuclear Information System (INIS)

    Medlin, J.B.

    1976-01-01

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine. 3 claims, 11 drawing figures

  6. Point charges optimally placed to represent the multipole expansion of charge distributions.

    Directory of Open Access Journals (Sweden)

    Ramu Anandakrishnan

    Full Text Available We propose an approach for approximating electrostatic charge distributions with a small number of point charges to optimally represent the original charge distribution. By construction, the proposed optimal point charge approximation (OPCA retains many of the useful properties of point multipole expansion, including the same far-field asymptotic behavior of the approximate potential. A general framework for numerically computing OPCA, for any given number of approximating charges, is described. We then derive a 2-charge practical point charge approximation, PPCA, which approximates the 2-charge OPCA via closed form analytical expressions, and test the PPCA on a set of charge distributions relevant to biomolecular modeling. We measure the accuracy of the new approximations as the RMS error in the electrostatic potential relative to that produced by the original charge distribution, at a distance 2x the extent of the charge distribution--the mid-field. The error for the 2-charge PPCA is found to be on average 23% smaller than that of optimally placed point dipole approximation, and comparable to that of the point quadrupole approximation. The standard deviation in RMS error for the 2-charge PPCA is 53% lower than that of the optimal point dipole approximation, and comparable to that of the point quadrupole approximation. We also calculate the 3-charge OPCA for representing the gas phase quantum mechanical charge distribution of a water molecule. The electrostatic potential calculated by the 3-charge OPCA for water, in the mid-field (2.8 Å from the oxygen atom, is on average 33.3% more accurate than the potential due to the point multipole expansion up to the octupole order. Compared to a 3 point charge approximation in which the charges are placed on the atom centers, the 3-charge OPCA is seven times more accurate, by RMS error. The maximum error at the oxygen-Na distance (2.23 Å is half that of the point multipole expansion up to the octupole

  7. Energetic Nuclei, Superdensity and Biomedicine

    Science.gov (United States)

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  8. Charge Pricing Optimization Model for Private Charging Piles in Beijing

    Directory of Open Access Journals (Sweden)

    Xingping Zhang

    2017-11-01

    Full Text Available This paper develops a charge pricing model for private charging piles (PCPs by considering the environmental and economic effects of private electric vehicle (PEV charging energy sources and the impact of PCP charging load on the total load. This model simulates users’ responses to different combinations of peak-valley prices based on the charging power of PCPs and user charging transfer rate. According to the regional power structure, it calculates the real-time coal consumption, carbon dioxide emissions reduction, and power generation costs of PEVs on the power generation side. The empirical results demonstrate that the proposed peak-valley time-of-use charging price can not only minimize the peak-valley difference of the total load but also improve the environmental effects of PEVs and the economic income of the power system. The sensitivity analysis shows that the load-shifting effect of PCPs will be more obvious when magnifying the number of PEVs by using the proposed charging price. The case study indicates that the proposed peak, average, and valley price in Beijing should be 1.8, 1, and 0.4 yuan/kWh, which can promote the large-scale adoption of PEVs.

  9. Intrinsic space charge resonances and the space charge limit

    International Nuclear Information System (INIS)

    Parzen, G.

    1990-01-01

    A study has been done of the dependence of the space charge limit on the choice of ν-values using a simulation program. This study finds a strong dependence of the space charge limit on the location of the ν-values relative to the intrinsic space charge resonances, which are driven by the space charge forces due to the beam itself. Four accelerators were studied. For some of these accelerators the study suggest that the space charge limit can be increased by about a factor of 2 proper choice of the ν-values. The lower order 1/2 and 1/4 intrinsic resonances appear to be the important resonances. There is some evidence for effects due to the 1/6 and 1/8 intrinsic resonances, particularly for larger synchrotrons. 5 figs

  10. Ion association at discretely-charged dielectric interfaces: Giant charge inversion

    Science.gov (United States)

    Wang, Zhi-Yong; Wu, Jianzhong

    2017-07-01

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  11. Coulombic charge ice

    Science.gov (United States)

    McClarty, P. A.; O'Brien, A.; Pollmann, F.

    2014-05-01

    We consider a classical model of charges ±q on a pyrochlore lattice in the presence of long-range Coulomb interactions. This model first appeared in the early literature on charge order in magnetite [P. W. Anderson, Phys. Rev. 102, 1008 (1956), 10.1103/PhysRev.102.1008]. In the limit where the interactions become short ranged, the model has a ground state with an extensive entropy and dipolar charge-charge correlations. When long-range interactions are introduced, the exact degeneracy is broken. We study the thermodynamics of the model and show the presence of a correlated charge liquid within a temperature window in which the physics is well described as a liquid of screened charged defects. The structure factor in this phase, which has smeared pinch points at the reciprocal lattice points, may be used to detect charge ice experimentally. In addition, the model exhibits fractionally charged excitations ±q/2 which are shown to interact via a 1/r potential. At lower temperatures, the model exhibits a transition to a long-range ordered phase. We are able to treat the Coulombic charge ice model and the dipolar spin ice model on an equal footing by mapping both to a constrained charge model on the diamond lattice. We find that states of the two ice models are related by a staggering field which is reflected in the energetics of these two models. From this perspective, we can understand the origin of the spin ice and charge ice ground states as coming from a dipolar model on a diamond lattice. We study the properties of charge ice in an external electric field, finding that the correlated liquid is robust to the presence of a field in contrast to the case of spin ice in a magnetic field. Finally, we comment on the transport properties of Coulombic charge ice in the correlated liquid phase.

  12. Effects of Macroion Geometry and Charge Discretization in Charge Reversal

    OpenAIRE

    Mukherjee, Arup K.

    2008-01-01

    The effects of discrete macroion surface charge distribution and valences of these surface charges and counterions on charge reversal have been studied for macroions of three different geometries and compared with those of continuous surface charge distributions. The geometry of the macroion has been observed to play an important role in overcharging in these cases. The interplay of valences of discrete microions and counterions have noticeable effects on overcharging efficiency. For some val...

  13. Modeling the Electric Potential and Surface Charge Density near Charged Thunderclouds

    Science.gov (United States)

    Neel, Matthew Stephen

    2018-01-01

    Thundercloud charge separation, or the process by which the bottom portion of a cloud gathers charge and the top portion of the cloud gathers the opposite charge, is still not thoroughly understood. Whatever the mechanism, though, a charge separation definitely exists and can lead to electrostatic discharge via cloud-to-cloud lightning and…

  14. Charge exchange cross-sections for multiply charged ions

    International Nuclear Information System (INIS)

    Midha, J.M.; Gupta, S.C.

    1990-01-01

    A new empirical relation for charge exchange cross-section has been proposed for different charge states of C, N and O colliding with neutral hydrogen. Results are compared with the experimental data. (Author)

  15. Charged particle detector

    International Nuclear Information System (INIS)

    Hagen, R.D.

    1975-01-01

    A device for detecting the emission of charged particles from a specimen is described. The specimen is placed within an accumulator means which statically accumulates any charged particles emitted from the specimen. The accumulator means is pivotally positioned between a first capacitor plate having a positive electrical charge and a second capacitor plate having a negative electrical charge. The accumulator means is attracted to one capacitor plate and repelled from the other capacitor plate by an amount proportional to the amount and intensity of charged particles emitted by the specimen. (auth)

  16. Space Charge Effects

    CERN Document Server

    Ferrario, M.; Palumbo, L.

    2014-12-19

    The space charge forces are those generated directly by the charge distribution, with the inclusion of the image charges and currents due to the interaction of the beam with a perfectly conducting smooth pipe. Space charge forces are responsible for several unwanted phenomena related to beam dynamics, such as energy loss, shift of the synchronous phase and frequency , shift of the betatron frequencies, and instabilities. We will discuss in this lecture the main feature of space charge effects in high-energy storage rings as well as in low-energy linacs and transport lines.

  17. Real-time supervisor system based on trinary logic to control experiments with behaving animals and humans.

    Science.gov (United States)

    Kutz, D F; Marzocchi, N; Fattori, P; Cavalcanti, S; Galletti, C

    2005-06-01

    A new method is presented based on trinary logic able to check the state of different control variables and synchronously record the physiological and behavioral data of behaving animals and humans. The basic information structure of the method is a time interval of defined maximum duration, called time slice, during which the supervisor system periodically checks the status of a specific subset of input channels. An experimental condition is a sequence of time slices subsequently executed according to the final status of the previous time slice. The proposed method implements in its data structure the possibility to branch like an if-else cascade and the possibility to repeat parts of it recursively like the while-loop. Therefore its data structure contains the most basic control structures of programming languages. The method was implemented using a real-time version of LabVIEW programming environment to program and control our experimental setup. Using this supervision system, we synchronously record four analog data channels at 500 Hz (including eye movements) and the time stamps of up to six neurons at 100 kHz. The system reacts with a resolution within 1 ms to changes of state of digital input channels. The system is set to react to changes in eye position with a resolution within 4 ms. The time slices, experimental conditions, and data are handled by relational databases. This facilitates the construction of new experimental conditions and data analysis. The proposed implementation allows continuous recording without an inter-trial gap for data storage or task management. The implementation can be used to drive electrophysiological experiments of behaving animals and psychophysical studies with human subjects.

  18. Optimal Charging Schedule Planning and Economic Analysis for Electric Bus Charging Stations

    Directory of Open Access Journals (Sweden)

    Rong-Ceng Leou

    2017-04-01

    Full Text Available The battery capacity of electric buses (EB used for public transportation is greater than that of electric cars, and the charging power is also several times greater than that used in electric cars; this can result in high energy consumption and negatively impact power distribution networks. This paper proposes a framework to determine the optimal contracted power capacity and charging schedule of an EB charging station in such a way that energy costs can be reduced. A mathematical model of controlled charging, which includes the capacity and energy charges of the station, was developed to minimize costs. The constraints of the model include the charging characteristics of an EB and the operational guidelines of the bus company. A practical EB charging station was used to verify the proposed model. The financial viability of this EB charging station is also studied in this paper. The economic analysis model for this charging station considers investment and operational costs, and the operational revenue. Sensitivity analyses with respect to some key parameters are also performed in this paper. Based on actual operational routes and EB charging schemes, test results indicate that the EB charging station investment is feasible, and the planning model proposed can be used to determine optimal station power capacity and minimize energy costs.

  19. An Elastic Charging Service Fee-Based Load Guiding Strategy for Fast Charging Stations

    Directory of Open Access Journals (Sweden)

    Shu Su

    2017-05-01

    Full Text Available Compared with the traditional slow charging loads, random integration of large scale fast charging loads will exert more serious impacts on the security of power network operation. Besides, to maximize social benefits, effective scheduling strategies guiding fast charging behaviors should be formulated rather than simply increasing infrastructure construction investments on the power grid. This paper first analyzes the charging users’ various responses to an elastic charging service fee, and introduces the index of charging balance degree to a target region by considering the influence of fast charging loads on the power grid. Then, a multi-objective optimization model of the fast charging service fee is constructed, whose service fee can be further optimized by employing a fuzzy programming method. Therefore, both users’ satisfaction degree and the equilibrium of charging loads can be maintained simultaneously by reasonably guiding electric vehicles (EVs to different fast charging stations. The simulation results demonstrate the effectiveness of the proposed dynamic charging service pricing and the corresponding fast charging load guidance strategy.

  20. Photoinduced ultrafast charge-order melting: Charge-order inversion and nonthermal effects

    International Nuclear Information System (INIS)

    Veenendaal, Michel van

    2016-01-01

    The effect of photoexcitation is studied for a system with checkerboard charge order induced by displacements of ligands around a metal site. The motion of the ligands is treated classically and the electronic charges are simplified to two-level molecular bond charges. The calculations are done for a checkerboard charge-ordered system with about 100 000 ligand oscillators coupled to a fixed-temperature bath. The initial photoexcitation is followed by a rapid decrease in the charge-order parameter within 50–100 femtoseconds while leaving the correlation length almost unchanged. Depending on the fluence, a complete melting of the charge order occurs in less than a picosecond. While for low fluences, the system returns to its original state, for full melting, it recovers to its broken-symmetry state leading to an inversion of the charge order. Finally, for small long-range interactions, recovery can be slow due to domain formation.

  1. Coulomb Crystallization of Charged Microspheres Levitated in a Gas Discharge Plasma

    Science.gov (United States)

    Goree, John

    1998-01-01

    The technical topic of the project was the experimental observation of Coulomb crystallization of charged microspheres levitated in a gas discharge plasma. This suspension, sometimes termed a dusty plasma, is closely analogous to a colloidal suspension, except that it has a much faster time response, is more optically thin, and has no buoyancy forces to suspend the particles. The particles are levitated by electric fields. Through their collective Coulomb repulsions, the particles arrange themselves in a lattice with a crystalline symmetry, which undergoes an order-disorder phase transition analogous to melting when the effective temperature of the system is increased. Due to gravitational sedimentation, the particles form a thin layer in the laboratory, so that the experimental system is nearly 2D, whereas in future microgravity experiments they are expected to fill a larger volume and behave like a 3D solid or liquid. The particles are imaged using a video camera by illuminating them with a sheet of laser light. Because the suspension is optically thin, this imaging method will work as well in a 3D microgravity experiment as it does in a 2D laboratory system.

  2. Trap-controlled charge transport in corona-charged Teflon

    International Nuclear Information System (INIS)

    Gross, B.; Giacometti, J.A.; Ferreira, G.F.L.; Moreno A, R.A.

    1980-01-01

    The stability of negatively charged Teflon electrets is discussed. It is stated that it can only be explained by the assumption that the transport of excess charge is trap - controlled rather than mobility - controlled. (I.C.R.) [pt

  3. Charged Massive Particle’s Tunneling from Charged Nonrotating Microblack Hole

    Directory of Open Access Journals (Sweden)

    M. J. Soleimani

    2016-01-01

    Full Text Available In the tunneling framework of Hawking radiation, charged massive particle’s tunneling in charged nonrotating TeV-scale black hole is investigated. To this end, we consider natural cutoffs as a minimal length, a minimal momentum, and a maximal momentum through a generalized uncertainty principle. We focus on the role played by these natural cutoffs on the luminosity of charged nonrotating microblack hole by taking into account the full implications of energy and charge conservation as well as the backscattered radiation.

  4. MOSFET Electric-Charge Sensor

    Science.gov (United States)

    Robinson, Paul A., Jr.

    1988-01-01

    Charged-particle probe compact and consumes little power. Proposed modification enables metal oxide/semiconductor field-effect transistor (MOSFET) to act as detector of static electric charges or energetic charged particles. Thickened gate insulation acts as control structure. During measurements metal gate allowed to "float" to potential of charge accumulated in insulation. Stack of modified MOSFET'S constitutes detector of energetic charged particles. Each gate "floats" to potential induced by charged-particle beam penetrating its layer.

  5. Dosimeter charging apparatus

    International Nuclear Information System (INIS)

    Reuter, F.A.; Moorman, Ch.J.

    1985-01-01

    An apparatus for charging a dosimeter which has a capacitor connected between first and second electrodes and a movable electrode in a chamber electrically connected to the first electrode. The movable electrode deflects varying amounts depending upon the charge present on said capacitor. The charger apparatus includes first and second charger electrodes couplable to the first and second dosimeter electrodes. To charge the dosimeter, it is urged downwardly into a charging socket on the charger apparatus. The second dosimeter electrode, which is the dosimeter housing, is electrically coupled to the second charger electrode through a conductive ring which is urged upwardly by a spring. As the dosimeter is urged into the socket, the ring moves downwardly, in contact with the second charger electrode. As the dosimeter is further urged downwardly, the first dosimeter electrode and first charger electrode contact one another, and an insulator post carrying the first and second charger electrodes is urged downwardly. Downward movement of the post effects the application of a charging potential between the first and second charger electrodes. After the charging potential has been applied, the dosimeter is moved further into the charging socket against the force of a relatively heavy biasing spring until the dosimeter reaches a mechanical stop in the charging socket

  6. Surface charge compensation for a highly charged ion emission microscope

    International Nuclear Information System (INIS)

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-01-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed

  7. Why consumers behave as they do with respect to food safety and risk information

    DEFF Research Database (Denmark)

    Verbeke, Wim; Frewer, Lynn J.; Scholderer, Joachim

    2007-01-01

    rankings. The aim of this contribution is to provide a better understanding to food risk analysts of why consumers behave as they do with respect to food safety and risk information. This paper presents some cases of seemingly irrational and inconsistent consumer behaviour with respect to food safety...... and risk information and provides explanations for these behaviours based on the nature of the risk and individual psychological processes. Potential solutions for rebuilding consumer confidence in food safety and bridging between lay and expert opinions towards food risks are reviewed. These include......In recent years, it seems that consumers are generally uncertain about the safety and quality of their food and their risk perception differs substantially from that of experts. Hormone and veterinary drug residues in meat persist to occupy a high position in European consumers' food concern...

  8. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  9. Internal Charging

    Science.gov (United States)

    Minow, Joseph I.

    2014-01-01

    (1) High energy (>100keV) electrons penetrate spacecraft walls and accumulate in dielectrics or isolated conductors; (2) Threat environment is energetic electrons with sufficient flux to charge circuit boards, cable insulation, and ungrounded metal faster than charge can dissipate; (3) Accumulating charge density generates electric fields in excess of material breakdown strenght resulting in electrostatic discharge; and (4) System impact is material damage, discharge currents inside of spacecraft Faraday cage on or near critical circuitry, and RF noise.

  10. Nickel-hydrogen battery state of charge during low rate trickle charging

    Science.gov (United States)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L.

    1996-01-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  11. Nickel-hydrogen battery state of charge during low rate trickle charging

    Energy Technology Data Exchange (ETDEWEB)

    Lurie, C.; Foroozan, S.; Brewer, J.; Jackson, L. [TRW Space and Electronics Group, Redondo Beach, CA (United States)

    1996-02-01

    The NASA AXAF-I program requires high battery state of charge at launch. Traditional approaches to providing high state of charge, during prelaunch operations, require significant battery cooling. The use of active cooling, in the AXAF-I prelaunch environment, was considered and proved to be difficult to implement and very expensive. Accordingly alternate approaches were considered. An approach utilizing adiabatic charging and low rate trickle charge, was investigated and proved successful.

  12. Electrostatic field and charge distribution in small charged dielectric droplets

    Science.gov (United States)

    Storozhev, V. B.

    2004-08-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm.

  13. Electrostatic field and charge distribution in small charged dielectric droplets

    International Nuclear Information System (INIS)

    Storozhev, V.B.

    2004-01-01

    The charge distribution in small dielectric droplets is calculated on the basis of continuum medium approximation. There are considered charged liquid spherical droplets of methanol in the range of nanometer sizes. The problem is solved by the following way. We find the free energy of some ion in dielectric droplet, which is a function of distribution of other ions in the droplet. The probability of location of the ion in some element of volume in the droplet is a function of its free energy in this element of volume. The same approach can be applied to other ions in the droplet. The obtained charge distribution differs considerably from the surface distribution. The curve of the charge distribution in the droplet as a function of radius has maximum near the surface. Relative concentration of charges in the vicinity of the center of the droplet does not equal to zero, and it is the higher, the less is the total charge of the droplet. According to the estimates the model is applicable if the droplet radius is larger than 10 nm

  14. A hybrid charged-particle guide for studying (n, charged particle) reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; White, R.M.; Zinkle, S.J.

    1983-01-01

    Charged-particle transport systems consisting of magnetic quadrupole lenses have been employed in recent years in the study of (n, charged particle) reactions. A new transport system was completed at the laboratory that is based both on magnetic lenses as well as electrostatic fields. The magnetic focusing of the charged-particle guide is provided by six magnetic quadrupole lenses arranged in a CDCCDC sequence (in the vertical plane). The electrostatic field is produced by a wire at high voltage which stretches the length of the guide and is physically at the centre of the magnetic axis. The magnetic lenses are used for charged particles above 5 MeV; the electrostatic guide is used for lower energies. This hybrid system possesses the excellent focusing and background rejection properties of other magnetic systems. For low energy charged-particles, the electrostatic transport avoids the narrow band-passes in charged-particle energy which are a problem with purely magnetic transport systems. This system is installed at the LLNL Cyclograaff facility for the study of (n, charged particle) reactions at neutron energies up to 35 MeV. (Auth.)

  15. Mechanically, the shoot apical meristem of Arabidopsis behaves like a shell inflated by a pressure of about 1 MPa

    Directory of Open Access Journals (Sweden)

    Léna eBeauzamy

    2015-11-01

    Full Text Available In plants, the shoot apical meristem contains the stem cells and is responsible for the generation of all aerial organs. Mechanistically, organogenesis is associated with an auxin-dependent local softening of the epidermis. This has been proposed to be sufficient to trigger outgrowth, because the epidermis is thought to be under tension and stiffer than internal tissues in all the aerial part of the plant. However, this has not been directly demonstrated in the shoot apical meristem. Here we tested this hypothesis in Arabidopsis using indentation methods and modeling. We considered two possible scenarios: either the epidermis does not have unique properties and the meristem behaves as a homogeneous linearly-elastic tissue, or the epidermis is under tension and the meristem exhibits the response of a shell under pressure. Large indentation depths measurements with a large tip (~size of the meristem were consistent with a shell-like behavior. This also allowed us to deduce a value of turgor pressure, estimated at 0.82 ± 0.16 MPa. Indentation with atomic force microscopy provided local measurements of pressure in the epidermis, further confirming the values obtained from large deformations. Altogether, our data demonstrate that the Arabidopsis shoot apical meristem behaves like a shell under a MPa range pressure and support a key role for the epidermis in shaping the shoot apex.

  16. Electric vehicle battery charging controller

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides an electric vehicle charging controller. The charging controller comprises a first interface connectable to an electric vehicle charge source for receiving a charging current, a second interface connectable to an electric vehicle for providing the charging current...... to a battery management system in the electric vehicle to charge a battery therein, a first communication unit for receiving a charging message via a communication network, and a control unit for controlling a charging current provided from the charge source to the electric vehicle, the controlling at least...... in part being performed in response to a first information associated with a charging message received by the first communication unit...

  17. Robust, highly customizable, and economical multi-channel electrode for chronic multi-unit recording in behaving animals.

    Science.gov (United States)

    Tateyama, Yukina; Oyama, Kei; Shiraishi, Masaru; Iijima, Toshio; Tsutsui, Ken-Ichiro

    2017-12-01

    Multi-unit recording has been one of the most widely used techniques to investigate the correlation between multiple neuronal activities and behavior. However, a common problem of currently used multi-channel electrodes is their physical weakness. In this study, we developed a novel multi-channel electrode with sufficient physical strength to penetrate a thickened dura mater. This electrode consists of low-cost materials and is easily fabricated, and it enables recording without removing dura mater, thereby reducing the risk of inflammation, infection, or brain herniation. The low-cost multi-channel electrode developed in this study would be a useful tool for chronic recording in behaving animals. Copyright © 2017. Published by Elsevier B.V.

  18. Imaging brain activity during seizures in freely behaving rats using a miniature multi-modal imaging system.

    Science.gov (United States)

    Sigal, Iliya; Koletar, Margaret M; Ringuette, Dene; Gad, Raanan; Jeffrey, Melanie; Carlen, Peter L; Stefanovic, Bojana; Levi, Ofer

    2016-09-01

    We report on a miniature label-free imaging system for monitoring brain blood flow and blood oxygenation changes in awake, freely behaving rats. The device, weighing 15 grams, enables imaging in a ∼ 2 × 2 mm field of view with 4.4 μm lateral resolution and 1 - 8 Hz temporal sampling rate. The imaging is performed through a chronically-implanted cranial window that remains optically clear between 2 to > 6 weeks after the craniotomy. This imaging method is well suited for longitudinal studies of chronic models of brain diseases and disorders. In this work, it is applied to monitoring neurovascular coupling during drug-induced absence-like seizures 6 weeks following the craniotomy.

  19. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    Science.gov (United States)

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  20. The charging security study of electric vehicle charging spot based on automatic testing platform

    Science.gov (United States)

    Li, Yulan; Yang, Zhangli; Zhu, Bin; Ran, Shengyi

    2018-03-01

    With the increasing of charging spots, the testing of charging security and interoperability becomes more and more urgent and important. In this paper, an interface simulator for ac charging test is designed, the automatic testing platform for electric vehicle charging spots is set up and used to test and analyze the abnormal state during the charging process. On the platform, the charging security and interoperability of ac charging spots and IC-CPD can be checked efficiently, the test report can be generated automatically with No artificial reading error. From the test results, the main reason why the charging spot is not qualified is that the power supply cannot be cut off in the prescribed time when the charging anomaly occurs.

  1. Threshold-Based Random Charging Scheme for Decentralized PEV Charging Operation in a Smart Grid.

    Science.gov (United States)

    Kwon, Ojin; Kim, Pilkee; Yoon, Yong-Jin

    2016-12-26

    Smart grids have been introduced to replace conventional power distribution systems without real time monitoring for accommodating the future market penetration of plug-in electric vehicles (PEVs). When a large number of PEVs require simultaneous battery charging, charging coordination techniques have become one of the most critical factors to optimize the PEV charging performance and the conventional distribution system. In this case, considerable computational complexity of a central controller and exchange of real time information among PEVs may occur. To alleviate these problems, a novel threshold-based random charging (TBRC) operation for a decentralized charging system is proposed. Using PEV charging thresholds and random access rates, the PEVs themselves can participate in the charging requests. As PEVs with a high battery state do not transmit the charging requests to the central controller, the complexity of the central controller decreases due to the reduction of the charging requests. In addition, both the charging threshold and the random access rate are statistically calculated based on the average of supply power of the PEV charging system that do not require a real time update. By using the proposed TBRC with a tolerable PEV charging degradation, a 51% reduction of the PEV charging requests is achieved.

  2. Future standard and fast charging infrastructure planning: An analysis of electric vehicle charging behaviour

    International Nuclear Information System (INIS)

    Morrissey, Patrick; Weldon, Peter; O’Mahony, Margaret

    2016-01-01

    There has been a concentrated effort by European countries to increase the share of electric vehicles (EVs) and an important factor in the rollout of the associated infrastructure is an understanding of the charging behaviours of existing EV users in terms of location of charging, the quantity of energy they require, charge duration, and their preferred mode of charging. Data were available on the usage of charging infrastructure for the entire island of Ireland since the rollout of infrastructure began. This study provides an extensive analysis of this charge event data for public charging infrastructure, including data from fast charging infrastructure, and additionally a limited quantity of household data. For the household data available, it was found that EV users prefer to carry out the majority of their charging at home in the evening during the period of highest demand on the electrical grid indicating that incentivisation may be required to shift charging away from this peak grid demand period. Car park locations were the most popular location for public charging amongst EV users, and fast chargers recorded the highest usage frequencies, indicating that public fast charging infrastructure is most likely to become commercially viable in the short- to medium-term. - Highlights: • Electric vehicle users prefer to charge at home in the evening at peak demand times. • Incentivisation will be necessary to encourage home charging at other times. • Fast charging most likely to become commercially viable in short to medium term. • Priority should be given to strategic network location of fast chargers. • Of public charge point locations, car park locations were favoured by EV users.

  3. Charge exchange and ionization in atom-multiply-charged ion collisions

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.

    1988-01-01

    This study investigates one-electron transitions to the continuous and discrete spectra induced by a collision of atom A and multiply-charged ion B +Z with nuclear charge Z > 3. An analytical method is developed the charge-exchange reaction; this method is a generalization of the decay model and the approximation of nonadiabatic coupling of two states that are used as limiting cases in the proposed approach

  4. Interactions Between Charged Macroions Mediated by Molecules with Rod-like Charged Structures

    Directory of Open Access Journals (Sweden)

    Bohinc, K.

    2014-03-01

    Full Text Available A short review of recent theoretical advances in studies of the interaction between highly charged systems embedded in a solution of rod-like molecules is presented. The system is theoretically described by the functional density theory, where the correlations within the rod-like molecules are accounted for. We show that for sufficiently long molecules and large surface charge densities, an attractive force between like-charged surfaces arises due to the spatially distributed charges within the molecules. The added salt has an influence on the condition for the attractive force between like-charged surfaces. The theoretical results are compared with Monte Carlo simulations. Many phenomena motivate the study of the interaction between like-charged surfaces (DNA condensation, virus aggregation, yeast flocculation, cohesion of cement paste.

  5. Effect of the source charge on charged-boson interferometry

    International Nuclear Information System (INIS)

    Shoppa, T. D.; Koonin, S. E.; Seki, R.

    2000-01-01

    We investigate quantal perturbations of the interferometric correlations of charged bosons by the Coulomb field of an instantaneous, charged source. The source charge increases the apparent source size by weakening the correlation at nonzero relative momenta. The effect is strongest for pairs with a small total momentum and is stronger for kaons than for pions of the same momenta. The low-energy data currently available are well described by this effect. A simple expression is proposed to account for the effect. (c) 2000 The American Physical Society

  6. Charge Meter

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 4. Charge Meter: Easy Way to Measure Charge and Capacitance: Some Interesting Electrostatic Experiments. M K Raghavendra V Venkataraman. Classroom Volume 19 Issue 4 April 2014 pp 376-390 ...

  7. Controlling charge on levitating drops.

    Science.gov (United States)

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  8. Fast optical signal not detected in awake behaving monkeys.

    Science.gov (United States)

    Radhakrishnan, Harsha; Vanduffel, Wim; Deng, Hong Ping; Ekstrom, Leeland; Boas, David A; Franceschini, Maria Angela

    2009-04-01

    While the ability of near-infrared spectroscopy (NIRS) to measure cerebral hemodynamic evoked responses (slow optical signal) is well established, its ability to measure non-invasively the 'fast optical signal' is still controversial. Here, we aim to determine the feasibility of performing NIRS measurements of the 'fast optical signal' or Event-Related Optical Signals (EROS) under optimal experimental conditions in awake behaving macaque monkeys. These monkeys were implanted with a 'recording well' to expose the dura above the primary visual cortex (V1). A custom-made optical probe was inserted and fixed into the well. The close proximity of the probe to the brain maximized the sensitivity to changes in optical properties in the cortex. Motion artifacts were minimized by physical restraint of the head. Full-field contrast-reversing checkerboard stimuli were presented to monkeys trained to perform a visual fixation task. In separate sessions, two NIRS systems (CW4 and ISS FD oximeter), which previously showed the ability to measure the fast signal in human, were used. In some sessions EEG was acquired simultaneously with the optical signal. The increased sensitivity to cortical optical changes with our experimental setup was quantified with 3D Monte Carlo simulations on a segmented MRI monkey head. Averages of thousands of stimuli in the same animal, or grand averages across the two animals and across repeated sessions, did not lead to detection of the fast optical signal using either amplitude or phase of the optical signal. Hemodynamic responses and visual evoked potentials were instead always detected with single trials or averages of a few stimuli. Based on these negative results, despite the optimal experimental conditions, we doubt the usefulness of non-invasive fast optical signal measurements with NIRS.

  9. Charge preamplifier

    International Nuclear Information System (INIS)

    Chaminade, R.; Passerieux, J.P.

    1961-01-01

    We describe a charge preamplifier having the following properties: - large open loop gain giving both stable gain and large input charge transfer; - stable input grid current with aging and without any adjustment; - fairly fast rise; - nearly optimum noise performance; - industrial material. (authors)

  10. How Do Children Behave Regarding Their Birth Order in Dental Setting?

    Science.gov (United States)

    Ghaderi, Faezeh; Fijan, Soleiman; Hamedani, Shahram

    2015-12-01

    Prediction of child cooperation level in dental setting is an important issue for a dentist to select the proper behavior management method. Many psychological studies have emphasized the effect of birth order on patient behavior and personality; however, only a few researches evaluated the effect of birth order on child's behavior in dental setting. This study was designed to evaluate the influence of children ordinal position on their behavior in dental setting. A total of 158 children with at least one primary mandibular molar needing class I restoration were selected. Children were classified based on the ordinal position; first, middle, or last child as well as single child. A blinded examiner recorded the pain perception of children during injection based on Visual Analogue Scale (VAS) and Sound, Eye and Movement (SEM) scale. To assess the child's anxiety, the questionnaire known as "Dental Subscale of the Children's Fear Survey Schedule" (CFSS-DS) was employed. The results showed that single children were significantly less cooperative and more anxious than the other children (p<0.001). The middle children were significantly more cooperative in comparison with the other child's position (p< 0.001). Single child may behave less cooperatively in dental setting. The order of child birth must also be considered in prediction of child's behavior for behavioral management.

  11. Space-charge compensation of highly charged ion beam from laser ion source

    International Nuclear Information System (INIS)

    Kondrashev, S.A.; Collier, J.; Sherwood, T.R.

    1996-01-01

    The problem of matching an ion beam delivered by a high-intensity ion source with an accelerator is considered. The experimental results of highly charged ion beam transport with space-charge compensation by electrons are presented. A tungsten thermionic cathode is used as a source of electrons for beam compensation. An increase of ion beam current density by a factor of 25 is obtained as a result of space-charge compensation at a distance of 3 m from the extraction system. The process of ion beam space-charge compensation, requirements for a source of electrons, and the influence of recombination losses in a space-charge-compensated ion beam are discussed. (author)

  12. Study of a New Quick-Charging Strategy for Electric Vehicles in Highway Charging Stations

    Directory of Open Access Journals (Sweden)

    Lixing Chen

    2016-09-01

    Full Text Available To solve the problem, because of which conventional quick-charging strategies (CQCS cannot meet the requirements of quick-charging for multiple types of electric vehicles (EV on highways where vehicle inflow is excessive, this paper proposed a new quick-charging strategy (NQCS for EVs: on the premise of not affecting those EVs being charged, the remaining power of the quick-charging pile with multiple power output interfaces is used to provide a synchronous charging service for EVs waiting in the queue. To verify the effectiveness of this strategy, a power distribution model of charging pile and a queuing model of charging station (CS were constructed. In addition, based on an actual highway service area where vehicle inflow is excessive during the simulation period (0:00–24:00, charging situations of CQCS and NQCS were respectively simulated in a charging station (CS, with different number of chargers, by basic queuing algorithm and an improved queuing algorithm. The simulation results showed that when the relative EV inflow is excessive, compared to CQCS, NQCS not only can reduce user waiting time, charging time, and stay time, but also can improve the utilisation rate of charging infrastructure and service capacity of CS and reduce the queue length of CS. At the same time, NQCS can reduce the impact on the power grid. In addition, in NQCS, the on-demand power distribution method is more efficient than the average power distribution method. Therefore, NQCS is more suitable for quick-charging for multiple types of EVs on highways where vehicle inflow is excessive.

  13. Jet Vertex Charge Reconstruction

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    A newly developed algorithm called the jet vertex charge tagger, aimed at identifying the sign of the charge of jets containing $b$-hadrons, referred to as $b$-jets, is presented. In addition to the well established track-based jet charge determination, this algorithm introduces the so-called \\emph{jet vertex charge} reconstruction, which exploits the charge information associated to the displaced vertices within the jet. Furthermore, the charge of a soft muon contained in the jet is taken into account when available. All available information is combined into a multivariate discriminator. The algorithm has been developed on jets matched to generator level $b$-hadrons provided by $t\\bar{t}$ events simulated at $\\sqrt{s}$=13~TeV using the full ATLAS detector simulation and reconstruction.

  14. Charge-pump voltage converter

    Science.gov (United States)

    Brainard, John P [Albuquerque, NM; Christenson, Todd R [Albuquerque, NM

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  15. Dielectric sample with two-layer charge distribution for space charge calibration purposes

    DEFF Research Database (Denmark)

    Holbøll, Joachim; Henriksen, Mogens; Rasmussen, C.

    2002-01-01

    In the present paper is described a dielectric test sample with two very narrow concentrations of bulk charges, achieved by two internal electrodes not affecting the acoustical properties of the sample, a fact important for optimal application of most space charge measuring systems. Space charge...

  16. Fractionally charged particles and one Dirac charge magnetic monopoles: Are they compatible?

    Directory of Open Access Journals (Sweden)

    V.A. Rubakov

    1983-01-01

    Full Text Available The simultaneous existence of fractional electric charges and one Dirac charge magnetic monopoles implies the existence of a long-ranged force different from electromagnetism. This may be either unconfined colour or/and some new gauge interaction. In the latter case, ordinary matter could (and, if colour is unbroken, should carry new charge. This charge, however small the coupling constant be, could be experimentally observed in interactions of monopoles with matter. An experiment for checking this possibility is suggested.

  17. Charge exchange in slow collisions of multiply charged ions with atoms

    International Nuclear Information System (INIS)

    Presnyakov, L.P.; Uskov, D.B.; Janev, R.K.

    1982-01-01

    Single-electron charge exchange between ions having a charge Z>6 and atoms is considered at relative velocities v< Z/sup 1/2/. An analytic method is developed for the solution of a multilevel problem that is a generalization of the decay model and of the approximation of nonadiabatic coupling between two states. Expressions are obtained for the reaction-product distributions in the principal and angular quantum numbers. The calculated total cross sections agree well with the experimental data on charge exchange of hydrogen atoms and molecules with nuclei. The theory describes the oscillations of the total cross section against the background of a monotonic growth as the charge is increased

  18. Quick spacecraft charging primer

    International Nuclear Information System (INIS)

    Larsen, Brian Arthur

    2014-01-01

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  19. Absence of a space-charge-derived enhancement of ionic conductivity in β|γ- heterostructured 7H- and 9R-AgI

    International Nuclear Information System (INIS)

    Morgan, B J; Madden, P A

    2012-01-01

    Extreme room temperature conductivity enhancements have been reported for nanocrystalline AgI of up to × 10 4 relative to bulk β-AgI (Guo et al 2005 Adv. Mater. 17 2815-9). These samples were identified as possessing 7H and 9R polytype structures, which can be considered as heterostructures composed of thin, commensurate layers in the β (wurtzite) and γ (zincblende) phases. It has been proposed that space-charge layer formation at β|γ-interfaces causes near complete disordering of the Ag + sublattice in these polytypes, resulting in a massive intrinsic enhancement of ionic conductivity. We have performed molecular dynamics simulations of β- and γ-AgI and mixed β|γ superlattices, to study the effect of heterostructuring on intrinsic defect populations and Ag + transport. The ionic conductivities and Ag + diffusion coefficients vary as β > 7H ≈ 9R ≈ 10L > γ. The β|γ-heterostructured polytypes show no enhancement in defect populations or Ag + mobilities relative to the β-AgI phase, and instead behave as simple composites of β- and γ-AgI. This contradicts the proposal that the extreme conductivity enhancement observed for 7H and 9R polytypes is explained by extensive space-charge formation. (paper)

  20. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Energy Technology Data Exchange (ETDEWEB)

    Rigit, A.R.H. [University of Sarawak, Faculty of Engineering, Kota Samarahan, Sarawak (Malaysia); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom)

    2009-06-15

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/d{proportional_to}200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested. (orig.)

  1. Estimation of the diameter-charge distribution in polydisperse electrically charged sprays of electrically insulating liquids

    Science.gov (United States)

    Rigit, A. R. H.; Shrimpton, John S.

    2009-06-01

    The majority of scientific and industrial electrical spray applications make use of sprays that contain a range of drop diameters. Indirect evidence suggests the mean drop diameter and the mean drop charge level are usually correlated. In addition, within each drop diameter class there is every reason to suspect a distribution of charge levels exist for a particular drop diameter class. This paper presents an experimental method that uses the joint PDF of drop velocity and diameter, obtained from phase Doppler anemometry measurements, and directly obtained spatially resolved distributions of the mass and charge flux to obtain a drop diameter and charge frequency distribution. The method is demonstrated using several data-sets obtained from experimental measurements of steady poly-disperse sprays of an electrically insulating liquid produced with the charge injection technique. The space charge repulsion in the spray plume produces a hollow cone spray structure. In addition an approximate self-similarity is observed, with the maximum radial mass and charge flow occurring at r/ d ~ 200. The charge flux profile is slightly offset from the mass flux profile, and this gives direct evidence that the spray specific charge increases from approximately 20% of the bulk mean spray specific charge on the spray axis to approximately 200% of the bulk mean specific charge in the periphery of the spray. The results from the drop charge estimation model suggest a complex picture of the correlation between drop charge and drop diameter, with spray specific charge, injection velocity and orifice diameter all contributing to the shape of the drop diameter-charge distribution. Mean drop charge as a function of the Rayleigh limit is approximately 0.2, and is invariant with drop diameter and also across the spray cases tested.

  2. Charge-exchange collisions of multiply charged ions with atoms

    International Nuclear Information System (INIS)

    Grozdanov, T.P.; Janev, R.K.

    1978-01-01

    The problem of electron transfer between neutral atoms and multiply charged ions is considered at low and medium energies. It is assumed that a large number of final states are available for the electron transition so that the electron-capture process is treated as a tunnel effect caused by the strong attractive Coulomb field of the multicharged ions. The electron transition probability is obtained in a closed form using the modified-comparison-equation method to solve the Schroedinger equation. An approximately linear dependence of the one-electron transfer cross section on the charge of multicharged ion is found. Cross-section calculations of a number of charge-exchange reactions are performed

  3. A mathematical model for pressure-based organs behaving as biological pressure vessels.

    Science.gov (United States)

    Casha, Aaron R; Camilleri, Liberato; Gauci, Marilyn; Gatt, Ruben; Sladden, David; Chetcuti, Stanley; Grima, Joseph N

    2018-04-26

    We introduce a mathematical model that describes the allometry of physical characteristics of hollow organs behaving as pressure vessels based on the physics of ideal pressure vessels. The model was validated by studying parameters such as body and organ mass, systolic and diastolic pressures, internal and external dimensions, pressurization energy and organ energy output measurements of pressure-based organs in a wide range of mammals and birds. Seven rules were derived that govern amongst others, lack of size efficiency on scaling to larger organ sizes, matching organ size in the same species, equal relative efficiency in pressurization energy across species and direct size matching between organ mass and mass of contents. The lung, heart and bladder follow these predicted theoretical relationships with a similar relative efficiency across various mammalian and avian species; an exception is cardiac output in mammals with a mass exceeding 10kg. This may limit massive body size in mammals, breaking Cope's rule that populations evolve to increase in body size over time. Such a limit was not found in large flightless birds exceeding 100kg, leading to speculation about unlimited dinosaur size should dinosaurs carry avian-like cardiac characteristics. Copyright © 2018. Published by Elsevier Ltd.

  4. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen

    2013-11-17

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  5. Efficient charge generation by relaxed charge-transfer states at organic interfaces

    KAUST Repository

    Vandewal, Koen; Albrecht, Steve N.; Hoke, Eric T.; Graham, Kenneth; Widmer, Johannes; Douglas, Jessica D.; Schubert, Marcel; Mateker, William R.; Bloking, Jason T.; Burkhard, George F.; Sellinger, Alan; Frechet, Jean; Amassian, Aram; Riede, Moritz Kilian; McGehee, Michael D.; Neher, Dieter; Salleo, Alberto

    2013-01-01

    Interfaces between organic electron-donating (D) and electron-accepting (A) materials have the ability to generate charge carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold via weakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer:fullerene, small-molecule:C60 and polymer:polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90% without the need for excess electronic or vibrational energy. © 2014 Macmillan Publishers Limited.

  6. Characterization of four different bipolar charging devices for nanoparticle charge conditioning

    International Nuclear Information System (INIS)

    Kallinger, Peter; Steiner, Gerhard; Szymanski, Wladyslaw W.

    2012-01-01

    Well-defined charge conditioning of nanoparticles is a prerequisite for a number of particle measuring techniques. We investigated two different soft X-ray devices (custom-built and TSI advanced aerosol neutralizer) an AC-corona discharge device (MSP electrical ionizer) and a radioactivity based Am-241 charger as a reference. Electrical mobility size distributions of positive and negative ions created in all devices were determined and their applicability for particle charging examined. The mobility spectra of the positive ions were found to be quite comparable for all chargers with a mean mobility of 1.50–1.60 cm 2 V −1 s −1 , whereas the spectra of the negative ions show differences in morphology leading to a broader range of mean mobilities (1.68–2.09 cm 2 V −1 s −1 ). However, results confirm that under the selected experimental conditions the charge equilibrium related to bipolar diffusion charging process was obtained in all charging devices.

  7. 5-7 Year Old Children's Conceptions of Behaving Artifacts and the Influence of Constructing Their Behavior on the Development of Theory of Mind (ToM and Theory of Artificial Mind (ToAM

    Directory of Open Access Journals (Sweden)

    Karen Spektor-Precel

    2015-12-01

    Full Text Available Nowadays, we are surrounded by artifacts that are capable of adaptive behavior, such as electric pots, boiler timers, automatic doors, and robots. The literature concerning human beings’ conceptions of “traditional” artifacts is vast, however, little is known about our conceptions of behaving artifacts, nor of the influence of the interaction with such artifacts on cognitive development, especially among children. Since these artifacts are provided with an artificial “mind,” it is of interest to assess whether and how children develop a Theory of Artificial Mind (ToAM which is distinct from their Theory of Mind (ToM. The study examined a new theoretical scheme named ToAM (Theory of Artificial Mind by means of qualitative and quantitative methodology among twenty four 5-7 year old children from central Israel. It also examined the effects of interacting with behaving artifacts (constructing versus observing the robot’s behavior using the “RoboGan” interface on children’s development of ToAM and their ToM and looked for conceptions that evolve among children while interacting with behaving artifacts which are indicative of the acquisition of ToAM. In the quantitative analysis it was found that the interaction with behaving artifacts, whether as observers or constructors and for both age groups, brought into awareness children’s ToM as well as influenced their ability to understand that robots can behave independently and based on external and environmental conditions. In the qualitative analysis it was found that participating in the intervention influenced the children’s ToAM for both constructors and for the younger observer. Engaging in building the robot’s behavior influenced the children’s ability to explain several of the robots’ behaviors, their understanding of the robot’s script-based behavior and rule-based behavior and the children’s metacognitive development. The theoretical and practical importance of

  8. Fractional Charge Definitions and Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Goldhaber, A.S.

    2004-06-04

    Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles.

  9. Fractional Charge Definitions and Conditions

    International Nuclear Information System (INIS)

    Goldhaber, A.S.

    2004-01-01

    Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles

  10. Azimuthal angle dependence of the charge imbalance from charge conservation effects

    Science.gov (United States)

    BoŻek, Piotr

    2018-03-01

    The experimental search for the chiral magnetic effect in heavy-ion collisions is based on charge-dependent correlations between emitted particles. Recently, a sensitive observable comparing event-by-event distributions of the charge splitting projected on the directions along and perpendicular to the direction of the elliptic flow has been proposed. The results of a (3 + 1)-dimensional hydrodynamic model show that the preliminary experimental data of the STAR Collaboration can be explained as due to background effects, such as resonance decays and local charge conservation in the particle production. A related observable based on the third-order harmonic flow is proposed to further investigate such background effects in charge-dependent correlations.

  11. Evidence for Long-Timescale Patterns of Synaptic Inputs in CA1 of Awake Behaving Mice.

    Science.gov (United States)

    Kolb, Ilya; Talei Franzesi, Giovanni; Wang, Michael; Kodandaramaiah, Suhasa B; Forest, Craig R; Boyden, Edward S; Singer, Annabelle C

    2018-02-14

    Repeated sequences of neural activity are a pervasive feature of neural networks in vivo and in vitro In the hippocampus, sequential firing of many neurons over periods of 100-300 ms reoccurs during behavior and during periods of quiescence. However, it is not known whether the hippocampus produces longer sequences of activity or whether such sequences are restricted to specific network states. Furthermore, whether long repeated patterns of activity are transmitted to single cells downstream is unclear. To answer these questions, we recorded intracellularly from hippocampal CA1 of awake, behaving male mice to examine both subthreshold activity and spiking output in single neurons. In eight of nine recordings, we discovered long (900 ms) reoccurring subthreshold fluctuations or "repeats." Repeats generally were high-amplitude, nonoscillatory events reoccurring with 10 ms precision. Using statistical controls, we determined that repeats occurred more often than would be expected from unstructured network activity (e.g., by chance). Most spikes occurred during a repeat, and when a repeat contained a spike, the spike reoccurred with precision on the order of ≤20 ms, showing that long repeated patterns of subthreshold activity are strongly connected to spike output. Unexpectedly, we found that repeats occurred independently of classic hippocampal network states like theta oscillations or sharp-wave ripples. Together, these results reveal surprisingly long patterns of repeated activity in the hippocampal network that occur nonstochastically, are transmitted to single downstream neurons, and strongly shape their output. This suggests that the timescale of information transmission in the hippocampal network is much longer than previously thought. SIGNIFICANCE STATEMENT We found long (≥900 ms), repeated, subthreshold patterns of activity in CA1 of awake, behaving mice. These repeated patterns ("repeats") occurred more often than expected by chance and with 10 ms

  12. The embodiment of tourism among bisexually-behaving Dominican male sex workers.

    Science.gov (United States)

    Padilla, Mark B

    2008-10-01

    While theories of "structure" and social inequality have increasingly informed global health efforts for HIV prevention--with growing recognition of the linkages between large-scale political and economic factors in the distribution and impact of the HIV/AIDS epidemic--there is still little theorization of precisely how structural factors shape the very bodies and sexualities of specific populations and groups. In order to extend the theoretical understanding of these macro-micro linkages, this article examines how the growth of the tourism industry in the Dominican Republic has produced sexual practices and identities that reflect both the influence of large-scale structural processes and the resistant responses of local individuals. Drawing on social science theories of political economy, embodiment, and authenticity, I argue that an understanding of patterns of sexuality and HIV risk in the region requires analysis of how political-economic transformations related to tourism intersect with the individual experiences and practices of sexuality on the ground. The analysis draws on long-term ethnographic research with bisexually behaving male sex workers in two cities in the Dominican Republic, including participant observation, in-depth interviews, focus groups, and surveys. By examining the global and local values placed on these men's bodies and the ways sex workers use their bodies to broker tourists' pleasure, we may better understand how the large-scale structures of the tourism industry are linked to the specific meanings and practices of sexuality.

  13. An Image Enhancement Method Using the Quantum-Behaved Particle Swarm Optimization with an Adaptive Strategy

    Directory of Open Access Journals (Sweden)

    Xiaoping Su

    2013-01-01

    Full Text Available Image enhancement techniques are very important to image processing, which are used to improve image quality or extract the fine details in degraded images. In this paper, two novel objective functions based on the normalized incomplete Beta transform function are proposed to evaluate the effectiveness of grayscale image enhancement and color image enhancement, respectively. Using these objective functions, the parameters of transform functions are estimated by the quantum-behaved particle swarm optimization (QPSO. We also propose an improved QPSO with an adaptive parameter control strategy. The QPSO and the AQPSO algorithms, along with genetic algorithm (GA and particle swarm optimization (PSO, are tested on several benchmark grayscale and color images. The results show that the QPSO and AQPSO perform better than GA and PSO for the enhancement of these images, and the AQPSO has some advantages over QPSO due to its adaptive parameter control strategy.

  14. Ion association at discretely-charged dielectric interfaces: Giant charge inversion [Dielectric response controlled ion association at physically heterogeneous surfaces: Giant charge reversal

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhi -Yong [Chongqing Univ. of Technology, Chongqing (China); Univ. of California, Riverside, CA (United States); Wu, Jianzhong [Univ. of California, Riverside, CA (United States)

    2017-07-11

    Giant charge reversal has been identified for the first time by Monte Carlo simulation for a discretely charged surface in contact with a trivalent electrolyte solution. It takes place regardless of the surface charge density under study and the monovalent salt. In stark contrast to earlier predictions based on the 2-dimensional Wigner crystal model to describe strong correlation of counterions at the macroion surface, we find that giant charge reversal reflects an intricate interplay of ionic volume effects, electrostatic correlations, surface charge heterogeneity, and the dielectric response of the confined fluids. While the novel phenomenon is yet to be confirmed with experiment, the simulation results appear in excellent agreement with a wide range of existing observations in the subregime of charge inversion. Lastly, our findings may have far-reaching implications to understanding complex electrochemical phenomena entailing ionic fluids under dielectric confinements.

  15. Design of Smart Charging Infrastructure Hardware and Firmware Design of the Various Current Multiplexing Charging System

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ching-Yen; Chu, Peter; Gadh, Rajit

    2013-10-07

    Currently, when Electric Vehicles (EVs) are charging, they only have the option to charge at a selected current or not charge. When during the day there is a power shortage, the charging infrastructure should have the options to either shut off the power to the charging stations or to lower the power to the EVs in order to satisfy the needs of the grid. There is a need for technology that controls the current being disbursed to these electric vehicles. This paper proposes a design for a smart charging infrastructure capable of providing power to several EVs from one circuit by multiplexing power and providing charge control. The smart charging infrastructure includes the server and the smart charging station. With this smart charging infrastructure, the shortage of energy in a local grid could be solved by our EV management system

  16. Measuring momentum for charged particle tomography

    Science.gov (United States)

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  17. Fractional charge definitions and conditions

    International Nuclear Information System (INIS)

    Goldhaber, Alfred Scharff

    2003-01-01

    The phenomenon of fractional charge has come to prominence in recent decades through theoretical and experimental discoveries of isolable objects which carry fractions of familiar charge units--electric charge Q, spin S, baryon number B and lepton number L. It is shown here on the basis of a few simple assumptions that all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which many-body correlations can produce familiar adiabatic, continuous renormalization, and in some circumstances nonadiabatic, discrete renormalization. The fractional charges may be carried either by fundamental particles or by fundamental solitons. This excludes nontopological solitons and also skyrmions: The only known fundamental solitons in three or fewer space dimensions d are the kink (d=1), the vortex (d=2), and the magnetic monopole (d=3). Further, for a charge which is not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional local values of B-L for electrically charged elementary particles

  18. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Poehlsen, Thomas

    2010-04-01

    In this work epitaxial n-type silicon diodes with a thickness of 100 μm and 150 μm are investigated. After neutron irradiation with fluences between 10 14 cm -2 and 4 x 10 15 cm -2 annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10 14 cm -2 showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time τ eff . Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time τ eff (E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 μm thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  19. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites

    Science.gov (United States)

    Christidis, G.E.; Blum, A.E.; Eberl, D.D.

    2006-01-01

    The influence of layer charge and charge distribution of dioctahedral smectites on the rheological and swelling properties of bentonites is examined. Layer charge and charge distribution were determined by XRD using the LayerCharge program [Christidis, G.E., Eberl, D.D., 2003. Determination of layer charge characteristics of smectites. Clays Clay Miner. 51, 644-655.]. The rheological properties were determined, after sodium exchange using the optimum amount of Na2CO3, from free swelling tests. Rheological properties were determined using 6.42% suspensions according to industrial practice. In smectites with layer charges of - 0.425 to - 0.470 per half formula unit (phfu), layer charge is inversely correlated with free swelling, viscosity, gel strength, yield strength and thixotropic behaviour. In these smectites, the rheological properties are directly associated with the proportion of low charge layers. By contrast, in low charge and high charge smectites there is no systematic relation between layer charge or the proportion of low charge layers and rheological properties. However, low charge smectites yield more viscous suspensions and swell more than high charge smectites. The rheological properties of bentonites also are affected by the proportion of tetrahedral charge (i.e. beidellitic charge), by the existence of fine-grained minerals having clay size, such as opal-CT and to a lesser degree by the ionic strength and the pH of the suspension. A new method for classification of smectites according to the layer charge based on the XRD characteristics of smecites is proposed, that also is consistent with variations in rheological properties. In this classification scheme the term smectites with intermediate layer charge is proposed. ?? 2006 Elsevier B.V. All rights reserved.

  20. Hospital doctors behave differently, and only by respecting the fundamentals of professional organizations will managers be able to create common goals with professionals.

    Science.gov (United States)

    Van Dijck, H

    2014-08-01

    Hospital doctors behave differently from other hospital workers. The general and specific characteristics of the doctors' behavior are described. As professionals, doctors want to make autonomous decisions and more specifically, they negotiate differently. The best description of their negotiation style is one that features multi-actor, multi-issue characteristics. They behave as actors in a network in never-ending rounds of negotiations with variable issues up for discussion: one time you lose, the next you win. A doctor's career starts with a long residency period in which he or she absorbs professional habits. His or her knowledge and way of organizing are implicit. It is hard for him or her to explicitly describe what he or she is doing. This makes it difficult for managers to discuss quality issues with doctors. Dealing with disruptive behavior is not easy either. The difficult tasks of the chief medical officer, who acts as a go-between, are highlighted. Only when managers respect the fundamentals of the professional organization will they be able to create common goals with the professionals. Common goals bring about better care in hospitals.

  1. Statistical approach to thermal evolution of neutron stars

    International Nuclear Information System (INIS)

    Beznogov, M V; Yakovlev, D G

    2015-01-01

    Studying thermal evolution of neutron stars (NSs) is one of a few ways to investigate the properties of superdense matter in their cores. We study the cooling of isolated NSs (INSs) and deep crustal heating of transiently accreting NSs in X-ray transients (XRTs, binary systems with low-mass companions). Currently, nearly 50 of such NSs are observed, and one can apply statistical methods to analyze the whole dataset. We propose a method for such analysis based on thermal evolution theory for individual stars and on averaging the results over NS mass distributions. We calculate the distributions of INSs and accreting NSs (ANSs) in XRTs over cooling and heating diagrams respectively. Comparing theoretical and observational distributions one can infer information on physical properties of superdense matter and on mass distributions of INSs and ANSs. (paper)

  2. Experiments on Dust Grain Charging

    Science.gov (United States)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  3. Collisional charging of individual submillimeter particles: Using ultrasonic levitation to initiate and track charge transfer

    Science.gov (United States)

    Lee, Victor; James, Nicole M.; Waitukaitis, Scott R.; Jaeger, Heinrich M.

    2018-03-01

    Electrostatic charging of insulating fine particles can be responsible for numerous phenomena ranging from lightning in volcanic plumes to dust explosions. However, even basic aspects of how fine particles become charged are still unclear. Studying particle charging is challenging because it usually involves the complexities associated with many-particle collisions. To address these issues, we introduce a method based on acoustic levitation, which makes it possible to initiate sequences of repeated collisions of a single submillimeter particle with a flat plate, and to precisely measure the particle charge in situ after each collision. We show that collisional charge transfer between insulators is dependent on the hydrophobicity of the contacting surfaces. We use glass, which we modify by attaching nonpolar molecules to the particle, the plate, or both. We find that hydrophilic surfaces develop significant positive charges after contacting hydrophobic surfaces. Moreover, we demonstrate that charging between a hydrophilic and a hydrophobic surface is suppressed in an acidic environment and enhanced in a basic one. Application of an electric field during each collision is found to modify the charge transfer, again depending on surface hydrophobicity. We discuss these results within the context of contact charging due to ion transfer, and we show that they lend strong support to O H- ions as the charge carriers.

  4. Separation of effects of oxide-trapped charge and interface-trapped charge on mobility in irradiated power MOSFETs

    International Nuclear Information System (INIS)

    Zupac, D.; Galloway, K.F.; Khosropour, P.; Anderson, S.R.; Schrimpf, R.D.

    1993-01-01

    An effective approach to separating the effects of oxide-trapped charge and interface-trapped charge on mobility degradation in irradiated MOSFETs is demonstrated. It is based on analyzing mobility data sets which have different functional relationships between the radiation-induced-oxide-trapped charge and interface-trapped charge. Separation of effects of oxide-trapped charge and interface-trapped charge is possible only if these two trapped charge components are not linearly dependent. A significant contribution of oxide-trapped charge to mobility degradation is demonstrated and quantified

  5. Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method

    Energy Technology Data Exchange (ETDEWEB)

    Jun Sun; Wei Fang; Daojun Wang; Wenbo Xu [School of Information Technology, Jiangnan Univ., Wuxi, Jiangsu 214122 (China)

    2009-12-15

    In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems, whose objective is to simultaneously minimize the generation cost rate while satisfying various equality and inequality constraints. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability of the algorithm. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating zones, and nonsmooth cost functions are considered when the proposed method is used in practical generator operation. The feasibility of the QPSO-DM method is demonstrated by three different power systems. It is compared with the QPSO, the differential evolution (DE), the particle swarm optimization (PSO), and the genetic algorithm (GA) in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed QPSO-DM method is able to obtain higher quality solutions stably and efficiently in the ED problem than any other tested optimization algorithm. (author)

  6. Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method

    International Nuclear Information System (INIS)

    Sun Jun; Fang Wei; Wang Daojun; Xu Wenbo

    2009-01-01

    In this paper, a modified quantum-behaved particle swarm optimization (QPSO) method is proposed to solve the economic dispatch (ED) problem in power systems, whose objective is to simultaneously minimize the generation cost rate while satisfying various equality and inequality constraints. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability of the algorithm. Many nonlinear characteristics of the generator, such as ramp rate limits, prohibited operating zones, and nonsmooth cost functions are considered when the proposed method is used in practical generator operation. The feasibility of the QPSO-DM method is demonstrated by three different power systems. It is compared with the QPSO, the differential evolution (DE), the particle swarm optimization (PSO), and the genetic algorithm (GA) in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed QPSO-DM method is able to obtain higher quality solutions stably and efficiently in the ED problem than any other tested optimization algorithm.

  7. Research program in elementary particle theory. Progress report, 1975--1976

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included

  8. Charge gradient microscopy

    Science.gov (United States)

    Roelofs, Andreas; Hong, Seungbum

    2018-02-06

    A method for rapid imaging of a material specimen includes positioning a tip to contact the material specimen, and applying a force to a surface of the material specimen via the tip. In addition, the method includes moving the tip across the surface of the material specimen while removing electrical charge therefrom, generating a signal produced by contact between the tip and the surface, and detecting, based on the data, the removed electrical charge induced through the tip during movement of the tip across the surface. The method further includes measuring the detected electrical charge.

  9. Charge collection and space charge distribution in neutron-irradiated epitaxial silicon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Poehlsen, Thomas

    2010-04-15

    In this work epitaxial n-type silicon diodes with a thickness of 100 {mu}m and 150 {mu}m are investigated. After neutron irradiation with fluences between 10{sup 14} cm{sup -2} and 4 x 10{sup 15} cm{sup -2} annealing studies were performed. CV-IV curves were taken and the depletion voltage was determined for different annealing times. All investigated diodes with neutron fluences greater than 2 x 10{sup 14} cm{sup -2} showed type inversion due to irradiation. Measurements with the transient current technique (TCT) using a pulsed laser were performed to investigate charge collection effects for temperatures of -40 C, -10 C and 20 C. The charge correction method was used to determine the effective trapping time {tau}{sub eff}. Inconsistencies of the results could be explained by assuming field dependent trapping times. A simulation of charge collection could be used to determine the field dependent trapping time {tau}{sub eff}(E) and the space charge distribution in the detector bulk. Assuming a linear field dependence of the trapping times and a linear space charge distribution the data could be described. Indications of charge multiplication were seen in the irradiated 100 {mu}m thick diodes for all investigated fluences at voltages above 800 V. The space charge distribution extracted from TCT measurements was compared to the results of the CV measurements and showed good agreement. (orig.)

  10. Rapid charging of nickel-cadmium accumulators

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, F

    1972-01-01

    Four types of charging of gas-tight Ni-Cd accumulators (a) normal; (b) accelerated; (c) rapid; and (d) ultra-rapid are described. For rapid charging, a built-in temperature sensor cuts off charging current at a prescribed point. In ultra-rapid charging, 50% charge can be attained in 3.5 min. and 25% charge within 50 sec. In the second phase of ultra-rapid charging, a surplus of oxygen is released at the positive electrode and a safety valve is provided for pressure reduction. Characteristic curves are given for various rates of charging and some data on discharge rates is also given.

  11. Angular momentum of an electric charge and magnetically charged black hole

    Energy Technology Data Exchange (ETDEWEB)

    Garfinkle, D. (California Univ., Santa Barbara (USA). Dept. of Physics); Rey, S.J. (California Univ., Santa Barbara (USA). Dept. of Physics Florida Univ., Gainesville, FL (USA). Inst. for Fundamental Theory)

    1991-03-21

    We find the angular momentum L of a point particle with electric charge e held at a fixed position in the presence of a black hole with magnetic charge g. (For a point charge in the presence of an ordinary magnetic monopole, it is known that L=eg.) The angular momentum does depend on the separation distance between the particle and the black hole; however, L->eg for a large separation. Implications for the cosmic censorship hypothesis, the quantum hairs and other physical situations are discussed. (orig.).

  12. Developing waste water charges and water extraction charges into an all-embracing water utilisation charge; Weiterentwicklung von Abwasserabgabe und Wasserentnahmeentgelten zu einer umfassenden Wassernutzungsabgabe

    Energy Technology Data Exchange (ETDEWEB)

    Gawel, Erik; Koeck, Wolfgang; Kern, Katharina; Moeckel, Stefan [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Hollaender, Robert; Faelsch, Marcel; Voelkner, Thomas [Leipzig Univ. (Germany). Inst. fuer Infrastruktur und Ressourcenmanagement

    2011-10-15

    The use of economic instruments in water protection policy in the form of wastewater charges under German federal law and the various water extraction charges levied by individual German federal states has a long history in Germany. The critical accompaniment of these instruments in economics and politics is equally as long. A comprehensive, more recent analysis of experiences with the instruments wastewater charges and water extraction charges in Germany has not yet been conducted. In particular Art. 9 of the EU's Water Framework Directive that requires among other things to take into account the basic cost recovery principle for water services (including environmental and resource costs) gives reason to put these instruments to the test: To what extent do wastewater charges and water extraction charges contribute to the new legally-formulated goals of the European Community in water quality policy? Can effectiveness and efficiency be improved through a change of design and are they even a model for an extension of charge requirements on further water uses? The WFD also offers cause here to think about the extent to which the application of economic control mechanisms should be expanded in terms of claims on aquatic ecosystem services. In a reform and modernisation of these charges as well as in the introduction of new charges, the specifications of European and federal law as well as steering aspects from economics and public economics and altered basic conditions in water management must be considered. Given this background, in an interdisciplinary analysis the report examines the efficiency and reform options of existing charges as well as the introduction of new water use charges in the fields of agriculture, shipping and hydro-power. (orig.)

  13. Charge transport in organic semiconductors.

    Science.gov (United States)

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  14. Charge exchange scattering of charged gauge bosons by 't Hooft-Polyakov monopole

    International Nuclear Information System (INIS)

    Cvetic, G.; Yan, T.M.

    1988-01-01

    We have studied the scattering of a low energy charged gauge boson by a 't Hooft-Polyakov monopole in a spontaneously broken (SU(2) gauge theory. It is found that a charge exchange scattering occurs in the sector of zero total angular momentum. The charge exchange scattering has a nonvanishing finite amplitude when the size of the monopole becomes very small. Implications of our results are discussed. (orig.)

  15. Color and magnetic charge

    International Nuclear Information System (INIS)

    Kim, B.R.

    1976-01-01

    Schwinger's conjecture that the color degree of freedom of a quark is equivalent to its degree of freedom of taking different magnetic charges provides a plausible motivation for extending color to leptons. Leptons are just quarks with zero magnetic charges. It is shown that baryon number and lepton number can be replaced by fermion number and magnetic charge

  16. Irrational Charge from Topological Order

    Science.gov (United States)

    Moessner, R.; Sondhi, S. L.

    2010-10-01

    Topological or deconfined phases of matter exhibit emergent gauge fields and quasiparticles that carry a corresponding gauge charge. In systems with an intrinsic conserved U(1) charge, such as all electronic systems where the Coulombic charge plays this role, these quasiparticles are also characterized by their intrinsic charge. We show that one can take advantage of the topological order fairly generally to produce periodic Hamiltonians which endow the quasiparticles with continuously variable, generically irrational, intrinsic charges. Examples include various topologically ordered lattice models, the three-dimensional resonating valence bond liquid on bipartite lattices as well as water and spin ice. By contrast, the gauge charges of the quasiparticles retain their quantized values.

  17. Charge transfer in astrophysical nebulae

    International Nuclear Information System (INIS)

    Shields, G.A.

    1990-01-01

    Charge transfer has become a standard ingredient in models of ionized nebulae, supernovae remnants and active galactic nuclei. Charge transfer rate coefficients and the physics of ionized nebulae are considered. Charge transfer is applied to the ionization structure and line emission of ionized nebulae. Photoionized nebulae observations are used to test theoretical predictions of charge transfer rates. (author)

  18. Low-charge-state linac

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  19. Unilateral CHARGE association

    NARCIS (Netherlands)

    Trip, J; van Stuijvenberg, M; Dikkers, FG; Pijnenburg, MWH

    A case with a predominantly unilateral CHARGE association is reported. The CHARGE association refers to a combination of congenital malformations. This boy had left-sided anomalies consisting of choanal atresia. coloboma and peripheral facial palsy. The infant had a frontal encephalocele. an anomaly

  20. Charge-transfer modified embedded atom method dynamic charge potential for Li-Co-O system.

    Science.gov (United States)

    Kong, Fantai; Longo, Roberto C; Liang, Chaoping; Nie, Yifan; Zheng, Yongping; Zhang, Chenxi; Cho, Kyeongjae

    2017-11-29

    To overcome the limitation of conventional fixed charge potential methods for the study of Li-ion battery cathode materials, a dynamic charge potential method, charge-transfer modified embedded atom method (CT-MEAM), has been developed and applied to the Li-Co-O ternary system. The accuracy of the potential has been tested and validated by reproducing a variety of structural and electrochemical properties of LiCoO 2 . A detailed analysis on the local charge distribution confirmed the capability of this potential for dynamic charge modeling. The transferability of the potential is also demonstrated by its reliability in describing Li-rich Li 2 CoO 2 and Li-deficient LiCo 2 O 4 compounds, including their phase stability, equilibrium volume, charge states and cathode voltages. These results demonstrate that the CT-MEAM dynamic charge potential could help to overcome the challenge of modeling complex ternary transition metal oxides. This work can promote molecular dynamics studies of Li ion cathode materials and other important transition metal oxides systems that involve complex electrochemical and catalytic reactions.

  1. Angular momentum of an electric charge and magnetically charged black hole

    International Nuclear Information System (INIS)

    Garfinkle, D.; Rey, Soo-Jong

    1990-01-01

    We find the angular momentum L of a point particle with electric charge e held at a fixed position in the presence of a black hole with magnetic charge g. (For a point charge in the presence of an of ordinary magnetic monopole, it is known that L = eg). The angular momentum does depend on the separation distance between the particle and the black hole; however, L → eg for a large separation. Implications for the cosmic censorship hypothesis, the quantum hairs and other physical situations are discussed

  2. Space-Charge Effect

    International Nuclear Information System (INIS)

    Chauvin, N

    2013-01-01

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented. (author)

  3. Space-Charge Effect

    CERN Document Server

    Chauvin, N.

    2013-12-16

    First, this chapter introduces the expressions for the electric and magnetic space-charge internal fields and forces induced by high-intensity beams. Then, the root-mean-square equation with space charge is derived and discussed. In the third section, the one-dimensional Child-Langmuir law, which gives the maximum current density that can be extracted from an ion source, is exposed. Space-charge compensation can occur in the low-energy beam transport lines (located after the ion source). This phenomenon, which counteracts the spacecharge defocusing effect, is explained and its main parameters are presented. The fifth section presents an overview of the principal methods to perform beam dynamics numerical simulations. An example of a particles-in-cells code, SolMaxP, which takes into account space-charge compensation, is given. Finally, beam dynamics simulation results obtained with this code in the case of the IFMIF injector are presented.

  4. Research program in elementary particle theory. Progress report, 1975--1976. [Summaries of research activities

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.; Ne' eman, Y.

    1976-01-01

    Research on particle theory is summarized including field theory models, phenomenological applications of field theory, strong interactions, the algebraic approach to weak and electromagnetic interactions, and superdense matter. A list of reports is also included. (JFP)

  5. Developing waste water charges and water extraction charges into an all-embracing water utilisation charge; Weiterentwicklung von Abwasserabgabe und Wasserentnahmeentgelten zu einer umfassenden Wassernutzungsabgabe

    Energy Technology Data Exchange (ETDEWEB)

    Gawel, Erik; Koeck, Wolfgang; Kern, Katharina; Moeckel, Stefan [Helmholtz-Zentrum fuer Umweltforschung GmbH - UFZ, Leipzig (Germany); Hollaender, Robert; Faelsch, Marcel; Voelkner, Thomas [Leipzig Univ. (Germany). Inst. fuer Infrastruktur und Ressourcenmanagement

    2011-10-15

    The use of economic instruments in water protection policy in the form of wastewater charges under German federal law and the various water extraction charges levied by individual German federal states has a long history in Germany. The critical accompaniment of these instruments in economics and politics is equally as long. A comprehensive, more recent analysis of experiences with the instruments wastewater charges and water extraction charges in Germany has not yet been conducted. In particular Art. 9 of the EU's Water Framework Directive that requires among other things to take into account the basic cost recovery principle for water services (including environmental and resource costs) gives reason to put these instruments to the test: To what extent do wastewater charges and water extraction charges contribute to the new legally-formulated goals of the European Community in water quality policy? Can effectiveness and efficiency be improved through a change of design and are they even a model for an extension of charge requirements on further water uses? The WFD also offers cause here to think about the extent to which the application of economic control mechanisms should be expanded in terms of claims on aquatic ecosystem services. In a reform and modernisation of these charges as well as in the introduction of new charges, the specifications of European and federal law as well as steering aspects from economics and public economics and altered basic conditions in water management must be considered. Given this background, in an interdisciplinary analysis the report examines the efficiency and reform options of existing charges as well as the introduction of new water use charges in the fields of agriculture, shipping and hydro-power. (orig.)

  6. Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers.

    Science.gov (United States)

    Gan, Zecheng; Xing, Xiangjun; Xu, Zhenli

    2012-07-21

    We investigate the effects of image charges, interfacial charge discreteness, and surface roughness on spherical electric double layer structures in electrolyte solutions with divalent counterions in the setting of the primitive model. By using Monte Carlo simulations and the image charge method, the zeta potential profile and the integrated charge distribution function are computed for varying surface charge strengths and salt concentrations. Systematic comparisons were carried out between three distinct models for interfacial charges: (1) SURF1 with uniform surface charges, (2) SURF2 with discrete point charges on the interface, and (3) SURF3 with discrete interfacial charges and finite excluded volume. By comparing the integrated charge distribution function and the zeta potential profile, we argue that the potential at the distance of one ion diameter from the macroion surface is a suitable location to define the zeta potential. In SURF2 model, we find that image charge effects strongly enhance charge inversion for monovalent interfacial charges, and strongly suppress charge inversion for multivalent interfacial charges. For SURF3, the image charge effect becomes much smaller. Finally, with image charges in action, we find that excluded volumes (in SURF3) suppress charge inversion for monovalent interfacial charges and enhance charge inversion for multivalent interfacial charges. Overall, our results demonstrate that all these aspects, i.e., image charges, interfacial charge discreteness, their excluding volumes, have significant impacts on zeta potentials of electric double layers.

  7. Charging equipment. Ladegeraet

    Energy Technology Data Exchange (ETDEWEB)

    Neumann, E

    1981-09-17

    The invention refers to a charging equipment, particularly on board charging equipment for charging traction batteries of an electric vehicle from the AC mains supply, consisting of a DC converter, which contains a controlled power transistor, a switching off unloading circuit and a power transmitter, where the secondary winding is connected in series with a rectifier diode, and a smoothing capacitor is connected in parallel with this series circuit. A converter module is provided, which consists of two DC voltage converters, whose power transistors are controlled by a control circuit in opposition with a phase displacement of 180/sup 0/.

  8. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-10-01

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  9. Cathodic hydrogen charging of zinc

    International Nuclear Information System (INIS)

    Panagopoulos, C.N.; Georgiou, E.P.; Chaliampalias, D.

    2014-01-01

    Highlights: •Incorporation of hydrogen into zinc and formation of zinc hydrides. •Investigation of surface residual stresses due to hydrogen diffusion. •Effect of hydrogen diffusion and hydride formation on mechanical properties of Zn. •Hydrogen embrittlement phenomena in zinc. -- Abstract: The effect of cathodic hydrogen charging on the structural and mechanical characteristics of zinc was investigated. Hardening of the surface layers of zinc, due to hydrogen incorporation and possible formation of ZnH 2 , was observed. In addition, the residual stresses brought about by the incorporation of hydrogen atoms into the metallic matrix, were calculated by analyzing the obtained X-ray diffraction patterns. Tensile testing of the as-received and hydrogen charged specimens revealed that the ductility of zinc decreased significantly with increasing hydrogen charging time, for a constant value of charging current density, and with increasing charging current density, for a constant value of charging time. However, the ultimate tensile strength of this material was slightly affected by the hydrogen charging procedure. The cathodically charged zinc exhibited brittle transgranular fracture at the surface layers and ductile intergranular fracture at the deeper layers of the material

  10. Charged particle in higher dimensional weakly charged rotating black hole spacetime

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Krtous, Pavel

    2011-01-01

    We study charged particle motion in weakly charged higher dimensional black holes. To describe the electromagnetic field we use a test field approximation and the higher dimensional Kerr-NUT-(A)dS metric as a background geometry. It is shown that for a special configuration of the electromagnetic field, the equations of motion of charged particles are completely integrable. The vector potential of such a field is proportional to one of the Killing vectors (called a primary Killing vector) from the 'Killing tower' of symmetry generating objects which exists in the background geometry. A free constant in the definition of the adopted electromagnetic potential is proportional to the electric charge of the higher dimensional black hole. The full set of independent conserved quantities in involution is found. We demonstrate that Hamilton-Jacobi equations are separable, as is the corresponding Klein-Gordon equation and its symmetry operators.

  11. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    Science.gov (United States)

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value.

  12. Charge transport problem

    International Nuclear Information System (INIS)

    Lee, E.P.

    1977-01-01

    In a recent report (UCID 17346, ''Relativistic Particle Beam in a Semi-Infinite Axially Symmetric conducting channel extending from a perfectly conducting plane,'' Dec. 13, 1976) Cooper and Neil demonstrate that the net charge transported by a beam pulse injected into a channel of finite conductivity equals the charge of the beam itself. The channel is taken to be infinite in the positive z direction, has finite radius and is terminated by a conducting ground plane at z =0. This result is not an obvious one, and it is restricted in its applicability by the special model assumed for the channel. It is the purpose to explain the result of Cooper and Neil in more qualitative terms and to make similar calculations using several other channel models. It must be emphasized that these calculations are not concerned with the fate of the transported charge after the pulse has stopped, but rather with how much charge leaves the ground plane assuming the pulse does not stop

  13. Like-charge attraction and opposite-charge decomplexation between polymers and DNA molecules

    OpenAIRE

    Buyukdagli, Sahin

    2016-01-01

    We scrutinize the effect of polyvalent ions on polymer-DNA interactions. We extend a recently developed test charge theory to the case of a stiff polymer interacting with a DNA molecule in an electrolyte mixture. The theory accounts for one-loop level electrostatic correlation effects such as the ionic cloud deformation around the strongly charged DNA molecule as well as image-charge forces induced by the low DNA permittivity. Our model can reproduce and explain various characteristics of the...

  14. Charged black rings at large D

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University,5 Yiheyuan Rd, Beijing 100871 (China); Li, Peng-Cheng; Wang, Zi-zhi [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University,5 Yiheyuan Rd, Beijing 100871 (China)

    2017-04-28

    We study the charged slowly rotating black holes in the Einstein-Maxwell theory in the large dimensions (D). By using the 1/D expansion in the near regions of the black holes we obtain the effective equations for the charged slowly rotating black holes. The effective equations capture the dynamics of various stationary solutions, including the charged black ring, the charged slowly rotating Myers-Perry black hole and the charged slowly boosted black string. Via different embeddings we construct these stationary solutions explicitly. For the charged black ring at large D, we find that the charge lowers the angular momentum due to the regularity condition on the solution. By performing the perturbation analysis of the effective equations, we obtain the quasinormal modes of the charge perturbation and the gravitational perturbation analytically. Like the neutral case the charged thin black ring suffers from the Gregory-Laflamme-like instability under the non-axisymmetric perturbations, but the charge weakens the instability. Besides, we find that the large D analysis always respects the cosmic censorship.

  15. The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals?

    Science.gov (United States)

    Apicella, Paul

    2017-09-30

    Cholinergic interneurons provide rich local innervation of the striatum and play an important role in controlling behavior, as evidenced by the variety of movement and psychiatric disorders linked to disrupted striatal cholinergic transmission. Much progress has been made in recent years regarding our understanding of how these interneurons contribute to the processing of information in the striatum. In particular, investigation of the activity of presumed striatal cholinergic interneurons, identified as tonically active neurons or TANs in behaving animals, has pointed to their role in the signaling and learning of the motivational relevance of environmental stimuli. Although the bulk of this work has been conducted in monkeys, several studies have also been carried out in behaving rats, but information remains rather disparate across studies and it is still questionable whether rodent TANs correspond to TANs described in monkeys. Consequently, our current understanding of the function of cholinergic transmission in the striatum is challenged by the rapidly growing, but often confusing literature on the relationship between TAN activity and specific behaviors. As regards the precise nature of the information conveyed by the cholinergic TANs, a recent influential view emphasized that these local circuit neurons may play a special role in the processing of contextual information that is important for reinforcement learning and selection of appropriate actions. This review provides a summary of recent progress in TAN physiology from which it is proposed that striatal cholinergic interneurons are crucial elements for flexible switching of behaviors under changing environmental conditions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  17. Reserving Charging Decision-Making Model and Route Plan for Electric Vehicles Considering Information of Traffic and Charging Station

    Directory of Open Access Journals (Sweden)

    Haoming Liu

    2018-04-01

    Full Text Available With the advance of battery energy technology, electric vehicles (EV are catching more and more attention. One of the influencing factors of electric vehicles large-scale application is the availability of charging stations and convenience of charging. It is important to investigate how to make reserving charging strategies and ensure electric vehicles are charged with shorter time and lower charging expense whenever charging request is proposed. This paper proposes a reserving charging decision-making model for electric vehicles that move to certain destinations and need charging services in consideration of traffic conditions and available charging resources at the charging stations. Besides, the interactive mechanism is described to show how the reserving charging system works, as well as the rolling records-based credit mechanism where extra charges from EV is considered to hedge default behavior. With the objectives of minimizing driving time and minimizing charging expenses, an optimization model with two objective functions is formulated. Then the optimizations are solved by a K shortest paths algorithm based on a weighted directed graph, where the time and distance factors are respectively treated as weights of corresponding edges of transportation networks. Case studies show the effectiveness and validity of the proposed route plan and reserving charging decision-making model.

  18. Bounds on charged lepton mixing with exotic charged leptons Ф

    Indian Academy of Sciences (India)

    imposing the constraints that the amplitude should not exceed the perturbative unitarity limit at high energy (. Ф. × = A), we obtain bounds on light heavy charged lepton mixing parameter sin. 2. (2 a. L) where a. L is the mixing angle of the ordinary charged lepton with its exotic partner. For A = 1 TeV, no bound is obtained on ...

  19. Research program in elementary particle theory. Progress report, 1974--1975

    International Nuclear Information System (INIS)

    Sudarshan, E.C.G.; Ne'eman, Y.

    1975-01-01

    Research on field theory models, phenomenological applications of field theory, strong interaction phenomenology, algebraic approaches to weak interactions, superdense matter, and a few related areas is summarized. Abstracts of AEC reports on this research are included. (U.S.)

  20. Environmental charges in airline markets

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, Fredrik [Goeteborg Univ., Dept. of Economics, Goeteborg (Sweden)

    2002-07-01

    Over the last two decades many airline markets have been deregulated, resulting in increased competition and use of different types of networks. At the same time there has been an intense discussion on environmental taxation of airline traffic. It is likely that an optimal environmental charge and the effects of a charge differ between different types of aviation markets. In this paper, we derive optimal flight (environmental) charges for different types of airline markets. The first type of market is a multiproduct monopoly airline operating either a point-to-point network or a hub-and-spoke network. The optimal charge is shown to be similar in construction to an optimal charge for a monopolist. We also compare the environmental impact of the two types of networks. Given no differences in marginal damages between airports we find that an airline will always choose the network with the highest environmental damages. The second type of market we investigate is a multiproduct duopoly, where two airlines compete in both passengers and flights. The formulation of the optimal charge is similar to the optimal charge of a single product oligopoly. However, we also show that it is, because of strategic effects, difficult to determine the effects of the charge on the number of flights. (Author)

  1. Big break for charge symmetry

    CERN Document Server

    Miller, G A

    2003-01-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of sup i sospin sup , and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while ...

  2. Charge sniffer for electrostatics demonstrations

    Science.gov (United States)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  3. Charge Transport in Spiro-OMeTAD Investigated through Space-Charge-Limited Current Measurements

    Science.gov (United States)

    Röhr, Jason A.; Shi, Xingyuan; Haque, Saif A.; Kirchartz, Thomas; Nelson, Jenny

    2018-04-01

    Extracting charge-carrier mobilities for organic semiconductors from space-charge-limited conduction measurements is complicated in practice by nonideal factors such as trapping in defects and injection barriers. Here, we show that by allowing the bandlike charge-carrier mobility, trap characteristics, injection barrier heights, and the shunt resistance to vary in a multiple-trapping drift-diffusion model, a numerical fit can be obtained to the entire current density-voltage curve from experimental space-charge-limited current measurements on both symmetric and asymmetric 2 ,2',7 ,7' -tetrakis(N ,N -di-4-methoxyphenylamine)-9 ,9' -spirobifluorene (spiro-OMeTAD) single-carrier devices. This approach yields a bandlike mobility that is more than an order of magnitude higher than the effective mobility obtained using analytical approximations, such as the Mott-Gurney law and the moving-electrode equation. It is also shown that where these analytical approximations require a temperature-dependent effective mobility to achieve fits, the numerical model can yield a temperature-, electric-field-, and charge-carrier-density-independent mobility. Finally, we present an analytical model describing trap-limited current flow through a semiconductor in a symmetric single-carrier device. We compare the obtained charge-carrier mobility and trap characteristics from this analytical model to the results from the numerical model, showing excellent agreement. This work shows the importance of accounting for traps and injection barriers explicitly when analyzing current density-voltage curves from space-charge-limited current measurements.

  4. Charge symmetry at the partonic level

    Energy Technology Data Exchange (ETDEWEB)

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  5. Charge-Dipole Acceleration of Polar Gas Molecules towards Charged Nanoparticles: Involvement in Powerful Charge-Induced Catalysis of Heterophase Chemical Reactions and Ball Lightning Phenomenon

    Directory of Open Access Journals (Sweden)

    Oleg Meshcheryakov

    2010-01-01

    Full Text Available In humid air, the substantial charge-dipole attraction and electrostatic acceleration of surrounding water vapour molecules towards charged combustible nanoparticles cause intense electrostatic hydration and preferential oxidation of these nanoparticles by electrostatically accelerated polar water vapour molecules rather than nonaccelerated nonpolar oxygen gas molecules. Intense electrostatic hydration of charged combustible nanoparticles converts the nanoparticle's oxide-based shells into the hydroxide-based electrolyte shells, transforming these nanoparticles into reductant/air core-shell nanobatteries, periodically short-circuited by intraparticle field and thermionic emission. Partially synchronized electron emission breakdowns within trillions of nanoparticles-nanobatteries turn a cloud of charged nanoparticles-nanobatteries into a powerful radiofrequency aerosol generator. Electrostatic oxidative hydration and charge-catalyzed oxidation of charged combustible nanoparticles also contribute to a self-oscillating thermocycling process of evolution and periodic autoignition of inflammable gases near to the nanoparticle's surface. The described effects might be of interest for the improvement of certain nanotechnological heterophase processes and to better understand ball lightning phenomenon.

  6. Space charge effects of CSR

    International Nuclear Information System (INIS)

    Liu Yong; Xia Jiawen; Xu Xiangyang; Lu Xiaowen; Wu Junli

    2000-01-01

    Cooler Storage Ring (CSR), and upgrading program planned at the Heavy Ion Research Facility in Lanzhou (HIRFL), will supply beams with higher quality and intensity. Space charge effects should be considered due to this magnitude of intensity in CSR. The concept and some phenomena of space charge effects are discussed. Space charge intensity limit and space charge tune shift of normal CSR operation are given. It is of significance for the construction and operation of the future facility

  7. Paraxial charge compensator for electron cryomicroscopy

    International Nuclear Information System (INIS)

    Berriman, John A.; Rosenthal, Peter B.

    2012-01-01

    We describe a multi-hole condenser aperture for the production of several electron beams in the transmission electron microscope (TEM) making it possible to simultaneously image and irradiate spatially separated regions of a specimen. When the specimen is a thin film of vitreous ice suspended over a holey carbon film, simultaneous irradiation of the adjacent carbon support with the off-axis beam compensates for some of the effects of charging in the image formed by a beam irradiating only the ice. Because the intervening region is not irradiated, charge-neutralization of frozen-hydrated specimens can occur by a through-space mechanism such as the emission of secondary electrons from a grounded carbon support film. We use paraxial charge compensation (PCC) to control the amount of charge build-up on the specimen and observe the effects of charge on images. The multi-hole aperture thus provides a tool for investigating the mechanism of charging and charge mitigation during the imaging of radiation sensitive biological specimens by cryomicroscopy. -- Highlights: ► A multi-hole condenser aperture produces multiple (paraxial) beams in TEM. ► Paraxial charge compensation is used to study electron-optical effects of charging. ► Emission of secondary electrons controls charging by a through space mechanism. ► Paraxial beams compensate for charging effects in frozen-hydrated specimens.

  8. Paraxial charge compensator for electron cryomicroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berriman, John A. [Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA (United Kingdom); Rosenthal, Peter B., E-mail: peter.rosenthal@nimr.mrc.ac.uk [Division of Physical Biochemistry, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA (United Kingdom)

    2012-05-15

    We describe a multi-hole condenser aperture for the production of several electron beams in the transmission electron microscope (TEM) making it possible to simultaneously image and irradiate spatially separated regions of a specimen. When the specimen is a thin film of vitreous ice suspended over a holey carbon film, simultaneous irradiation of the adjacent carbon support with the off-axis beam compensates for some of the effects of charging in the image formed by a beam irradiating only the ice. Because the intervening region is not irradiated, charge-neutralization of frozen-hydrated specimens can occur by a through-space mechanism such as the emission of secondary electrons from a grounded carbon support film. We use paraxial charge compensation (PCC) to control the amount of charge build-up on the specimen and observe the effects of charge on images. The multi-hole aperture thus provides a tool for investigating the mechanism of charging and charge mitigation during the imaging of radiation sensitive biological specimens by cryomicroscopy. -- Highlights: Black-Right-Pointing-Pointer A multi-hole condenser aperture produces multiple (paraxial) beams in TEM. Black-Right-Pointing-Pointer Paraxial charge compensation is used to study electron-optical effects of charging. Black-Right-Pointing-Pointer Emission of secondary electrons controls charging by a through space mechanism. Black-Right-Pointing-Pointer Paraxial beams compensate for charging effects in frozen-hydrated specimens.

  9. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    International Nuclear Information System (INIS)

    Zhao, Mingtian; Li, Baohui; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai

    2015-01-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG) 5 /(KGKG) 5 , (EEGG) 5 /(KKGG) 5 , and (EEGG) 5 /(KGKG) 5 , in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight

  10. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime

    Science.gov (United States)

    Du, Bujie; Jiang, Xingya; Das, Anindita; Zhou, Qinhan; Yu, Mengxiao; Jin, Rongchao; Zheng, Jie

    2017-11-01

    The glomerular filtration barrier is known as a 'size cutoff' slit, which retains nanoparticles or proteins larger than 6-8 nm in the body and rapidly excretes smaller ones through the kidneys. However, in the sub-nanometre size regime, we have found that this barrier behaves as an atomically precise 'bandpass' filter to significantly slow down renal clearance of few-atom gold nanoclusters (AuNCs) with the same surface ligands but different sizes (Au18, Au15 and Au10-11). Compared to Au25 (∼1.0 nm), just few-atom decreases in size result in four- to ninefold reductions in renal clearance efficiency in the early elimination stage, because the smaller AuNCs are more readily trapped by the glomerular glycocalyx than larger ones. This unique in vivo nano-bio interaction in the sub-nanometre regime also slows down the extravasation of sub-nanometre AuNCs from normal blood vessels and enhances their passive targeting to cancerous tissues through an enhanced permeability and retention effect. This discovery highlights the size precision in the body's response to nanoparticles and opens a new pathway to develop nanomedicines for many diseases associated with glycocalyx dysfunction.

  11. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats

    Science.gov (United States)

    Andino-Pavlovsky, Victoria; Souza, Annie C.; Scheffer-Teixeira, Robson; Tort, Adriano B. L.; Etchenique, Roberto; Ribeiro, Sidarta

    2017-01-01

    Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC. PMID:28536507

  12. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    Science.gov (United States)

    Schaffer, L.; Burns, J. A.

    1994-01-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  13. Charge Islands Through Tunneling

    Science.gov (United States)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  14. Oxidation of water to hydrogen peroxide at the rock-water interface due to stress-activated electric currents in rocks

    NARCIS (Netherlands)

    Balk, M.; Bose, M.; Ertem, G.; Rogoff, D.A.; Rothschild, L.J.; Freund, F.T.

    2009-01-01

    Common igneous and high-grade metamorphic rocks contain dormant defects, which release electronic charge carriers when stressed. Rocks thereby behave like a battery. The charge carriers of interest are defect electrons h¿, e.g. electronic states associated with O¿ in a matrix of O2¿. Known as

  15. Oxidation of water to hydrogen peroxide at the rock–water interface due to stress-activated electric currents in rocks

    NARCIS (Netherlands)

    Balk, M.; Bose, M.; Ertem, G.; Rogoff, D.A.; Rothschild, L.J.; Freund, F.T.

    2009-01-01

    Common igneous and high-grade metamorphic rocks contain dormant defects, which release electronic charge carriers when stressed. Rocks thereby behave like a battery. The charge carriers of interest are defect electrons h•, e.g. electronic states associated with O− in a matrix of O2−. Known as

  16. Exact solutions for rotating charged dust

    International Nuclear Information System (INIS)

    Islam, J.N.

    1984-01-01

    Earlier work by the author on rotating charged dust is summarized. An incomplete class of exact solutions for differentially rotating charged dust in Newton-Maxwell theory for the equal mass and charge case that was found earlier is completed. A new global exact solution for cylindrically symmetric differentially rotating charged dust in Newton-Maxwell theory is presented. Lastly, a new exact solution for cylindrically symmetric rigidly rotating charged dust in general relativity is given. (author)

  17. The charge storage characteristics of ZrO2 nanocrystallite-based charge trap nonvolatile memory

    International Nuclear Information System (INIS)

    Tang Zhen-Jie; Li Rong; Yin Jiang

    2013-01-01

    ZrO 2 nanocrystallite-based charge trap flash memory capacitors incorporating a (ZrO 2 ) 0.6 (SiO 2 ) 0.4 pseudobinary high-k oxide film as the charge trapping layer were prepared and investigated. The precipitation reaction in the charge trapping layer, forming ZrO 2 nanocrystallites during rapid thermal annealing, was investigated by transmission electron microscopy and X-ray diffraction. It was observed that a ZrO 2 nanocrystallite-based memory capacitor after post-annealing at 850 °C for 60 s exhibits a maximum memory window of about 6.8 V, good endurance and a low charge loss of ∼25% over a period of 10 years (determined by extrapolating the charge loss curve measured experimentally), even at 85 °C. Such 850 °C-annealed memory capacitors appear to be candidates for future nonvolatile flash memory device applications

  18. 12 CFR 7.4001 - Charging interest at rates permitted competing institutions; charging interest to corporate...

    Science.gov (United States)

    2010-01-01

    ... institutions; charging interest to corporate borrowers. 7.4001 Section 7.4001 Banks and Banking COMPTROLLER OF... interest at rates permitted competing institutions; charging interest to corporate borrowers. (a... the law of that state. If state law permits different interest charges on specified classes of loans...

  19. Head-mounted LED for optogenetic experiments of freely-behaving animal

    Science.gov (United States)

    Kwon, Ki Yong; Gnade, Andrew G.; Rush, Alexander D.; Patten, Craig D.

    2016-03-01

    Recent developments in optogenetics have demonstrated the ability to target specific types of neurons with sub-millisecond temporal precision via direct optical stimulation of genetically modified neurons in the brain. In most applications, the beam of a laser is coupled to an optical fiber, which guides and delivers the optical power to the region of interest. Light emitting diodes (LEDs) are an alternative light source for optogenetics and they provide many advantages over a laser based system including cost, size, illumination stability, and fast modulation. Their compact size and low power consumption make LEDs suitable light sources for a wireless optogenetic stimulation system. However, the coupling efficiency of an LED's output light into an optical fiber is lower than a laser due to its noncollimated output light. In typical chronic optogenetic experiment, the output of the light source is transmitted to the brain through a patch cable and a fiber stub implant, and this configuration requires two fiber-to-fiber couplings. Attenuation within the patch cable is potential source of optical power loss. In this study, we report and characterize a recently developed light delivery method for freely-behaving animal experiments. We have developed a head-mounted light source that maximizes the coupling efficiency of an LED light source by eliminating the need for a fiber optic cable. This miniaturized LED is designed to couple directly to the fiber stub implant. Depending on the desired optical power output, the head-mounted LED can be controlled by either a tethered (high power) or battery-powered wireless (moderate power) controller. In the tethered system, the LED is controlled through 40 gauge micro coaxial cable which is thinner, more flexible, and more durable than a fiber optic cable. The battery-powered wireless system uses either infrared or radio frequency transmission to achieve real-time control. Optical, electrical, mechanical, and thermal

  20. Draft Tube Baffle (DTB) crystallizers: A study of stationary and dynamically behaving Crystal Size Distributions (CSD)

    Science.gov (United States)

    Deleer, B. G. M.

    1981-11-01

    Based on population balance, CSD behavior as a function of geometrical and operating variables was studied, using a crystallizer. A potash alum-water system, involving a separation technique which uses surface active agents and an apolar, organic liquid to separate potash alum crystals from mother liquid under the influence of gravity was used to check experimental findings against literature data. Results show action of annular settling spaces is strongly influenced by fluid velocities perpendicular to those directed upwards. The well-mixed volume decreases with increasing crystallizer size until a minimum effective volume is reached. As supersaturation is constant throughout the crystallizer volume under stationary operating conditions, the annular settling space behaves like a growth chamber for crystals in its volume. Swirl in the lower part of the annular volume introduces significant back mixing. Crystals within this space either grow and return to the well-mixed part, or withdraw from the annular volume permanently.

  1. In situ measurement of electrostatic charge and charge distribution on flyash particles in power station exhaust stream

    Energy Technology Data Exchange (ETDEWEB)

    Guang, D.

    1992-01-01

    The electrostatic charges and charge distributions on individual flyash particles were experimentally measured in situ at four power stations in New South Wales and in the laboratory with an Electrostatic Charge Classifier. The global charge of these flyashes was also measured. The electrostatic charge on flyash particles of four power stations was found to be globally native. The median charge on the flyash particles varies linearly with particle diameter for all four flyashes. The electrostatic charge on the Tallawarra flyash particles was found to increase after passage through the air heater having huge metal surface areas, suggesting that triboelectrification was the primary charging mechanism for flyash particles. Distinctly different characteristics of the electrostatic charge, particle size and particle shape were found between the Eraring and the Tallawarra flyashes. The spherical Eraring ash has the highest proportion of lines and positively charged particles, but the lowest global charge level among the four flyashes. In contrast, the Tallawarra flyash has just the opposite. It is the distinct characteristics of the flyashes from Eraring and Tallawarra power stations that are responsible for the significant differences in their baghouse performance. The napping feature on the surface of the filter bags used in the Eraring and Tallawarra power stations provides an upstream surface of low fibre density above the fabric bulk. This feature presents and advantage to highly charged particles, like the Tallawarra flyash particles. Highly charged particles tend to deposit on such an upstream surface resulting in a porous dust cake with much less contact areas with the fabric medium than would otherwise be formed. This cake is easy to remove and provides less resistance to the gas flow. After singeing the naps on the filter bag surface at the Eraring power station, the problems of high pressure drop and retention of dust cake on the bas surface have been resolved.

  2. [Probabilistic calculations of biomolecule charge states that generate mass spectra of multiply charged ions].

    Science.gov (United States)

    Raznikova, M O; Raznikov, V V

    2015-01-01

    In this work, information relating to charge states of biomolecule ions in solution obtained using the electrospray ionization mass spectrometry of different biopolymers is analyzed. The data analyses have mainly been carried out by solving an inverse problem of calculating the probabilities of retention of protons and other charge carriers by ionogenic groups of biomolecules with known primary structures. The approach is a new one and has no known to us analogues. A program titled "Decomposition" was developed and used to analyze the charge distribution of ions of native and denatured cytochrome c mass spectra. The possibility of splitting of the charge-state distribution of albumin into normal components, which likely corresponds to various conformational states of the biomolecule, has been demonstrated. The applicability criterion for using previously described method of decomposition of multidimensional charge-state distributions with two charge carriers, e.g., a proton and a sodium ion, to characterize the spatial structure of biopolymers in solution has been formulated. In contrast to known mass-spectrometric approaches, this method does not require the use of enzymatic hydrolysis or collision-induced dissociation of the biopolymers.

  3. Holographic charged Rényi entropies

    Science.gov (United States)

    Belin, Alexandre; Hung, Ling-Yan; Maloney, Alexander; Matsuura, Shunji; Myers, Robert C.; Sierens, Todd

    2013-12-01

    We construct a new class of entanglement measures by extending the usual definition of Rényi entropy to include a chemical potential. These charged Rényi entropies measure the degree of entanglement in different charge sectors of the theory and are given by Euclidean path integrals with the insertion of a Wilson line encircling the entangling surface. We compute these entropies for a spherical entangling surface in CFT's with holographic duals, where they are related to entropies of charged black holes with hyperbolic horizons. We also compute charged Rényi entropies in free field theories.

  4. 10 CFR 904.7 - Base charge.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Base charge. 904.7 Section 904.7 Energy DEPARTMENT OF... Marketing § 904.7 Base charge. (a) The Base Charge shall be developed by the Administrator and promulgated in accordance with appropriate DOE regulations. The Base Charge shall be composed of a capacity...

  5. Repulsion between oppositely charged planar macroions.

    Directory of Open Access Journals (Sweden)

    YongSeok Jho

    Full Text Available The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons.

  6. Charge Screening in a Charged Condensate

    International Nuclear Information System (INIS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2009-01-01

    We consider a highly dense system of helium-4 nuclei and electrons in which the helium-4 nuclei have condensed. We present the condensation mechanism in the framework of low energy effective field theory and discuss the screening of electric charge in the condensate.

  7. Charging Users for Library Service.

    Science.gov (United States)

    Cooper, Michael D.

    1978-01-01

    Examines the question of instituting direct charges for library service, using on-line bibliographic searching as an example, and contrasts this with the current indirect charging system where services are paid for by taxes. Information, as a merit good, should be supplied with or without direct charges, depending upon user status. (CWM)

  8. Discrete stochastic charging of aggregate grains

    Science.gov (United States)

    Matthews, Lorin S.; Shotorban, Babak; Hyde, Truell W.

    2018-05-01

    Dust particles immersed in a plasma environment become charged through the collection of electrons and ions at random times, causing the dust charge to fluctuate about an equilibrium value. Small grains (with radii less than 1 μm) or grains in a tenuous plasma environment are sensitive to single additions of electrons or ions. Here we present a numerical model that allows examination of discrete stochastic charge fluctuations on the surface of aggregate grains and determines the effect of these fluctuations on the dynamics of grain aggregation. We show that the mean and standard deviation of charge on aggregate grains follow the same trends as those predicted for spheres having an equivalent radius, though aggregates exhibit larger variations from the predicted values. In some plasma environments, these charge fluctuations occur on timescales which are relevant for dynamics of aggregate growth. Coupled dynamics and charging models show that charge fluctuations tend to produce aggregates which are much more linear or filamentary than aggregates formed in an environment where the charge is stationary.

  9. You are fair, but I expect you to also behave unfairly: Positive asymmetry in trait-behavior relations for moderate morality information.

    Directory of Open Access Journals (Sweden)

    Patrice Rusconi

    Full Text Available Trait inference in person perception is based on observers' implicit assumptions about the relations between trait adjectives (e.g., fair and the either consistent or inconsistent behaviors (e.g., having double standards that an actor can manifest. This article presents new empirical data and theoretical interpretations on people' behavioral expectations, that is, people's perceived trait-behavior relations along the morality (versus competence dimension. We specifically address the issue of the moderate levels of both traits and behaviors almost neglected by prior research by using a measure of the perceived general frequency of behaviors. A preliminary study identifies a set of competence- and morality-related traits and a subset of traits balanced for valence. Studies 1-2 show that moral target persons are associated with greater behavioral flexibility than immoral ones where abstract categories of behaviors are concerned. For example, participants judge it more likely that a fair person would behave unfairly than an unfair person would behave fairly. Study 3 replicates the results of the first 2 studies using concrete categories of behaviors (e.g., telling the truth/omitting some information. Study 4 shows that the positive asymmetry in morality-related trait-behavior relations holds for both North-American and European (i.e., Italian individuals. A small-scale meta-analysis confirms the existence of a positive asymmetry in trait-behavior relations along both morality and competence dimensions for moderate levels of both traits and behaviors. We discuss these findings in relation to prior models and results on trait-behavior relations and we advance a motivational explanation based on self-protection.

  10. You are fair, but I expect you to also behave unfairly: Positive asymmetry in trait-behavior relations for moderate morality information.

    Science.gov (United States)

    Rusconi, Patrice; Sacchi, Simona; Capellini, Roberta; Brambilla, Marco; Cherubini, Paolo

    2017-01-01

    Trait inference in person perception is based on observers' implicit assumptions about the relations between trait adjectives (e.g., fair) and the either consistent or inconsistent behaviors (e.g., having double standards) that an actor can manifest. This article presents new empirical data and theoretical interpretations on people' behavioral expectations, that is, people's perceived trait-behavior relations along the morality (versus competence) dimension. We specifically address the issue of the moderate levels of both traits and behaviors almost neglected by prior research by using a measure of the perceived general frequency of behaviors. A preliminary study identifies a set of competence- and morality-related traits and a subset of traits balanced for valence. Studies 1-2 show that moral target persons are associated with greater behavioral flexibility than immoral ones where abstract categories of behaviors are concerned. For example, participants judge it more likely that a fair person would behave unfairly than an unfair person would behave fairly. Study 3 replicates the results of the first 2 studies using concrete categories of behaviors (e.g., telling the truth/omitting some information). Study 4 shows that the positive asymmetry in morality-related trait-behavior relations holds for both North-American and European (i.e., Italian) individuals. A small-scale meta-analysis confirms the existence of a positive asymmetry in trait-behavior relations along both morality and competence dimensions for moderate levels of both traits and behaviors. We discuss these findings in relation to prior models and results on trait-behavior relations and we advance a motivational explanation based on self-protection.

  11. On Dust Charging Equation

    OpenAIRE

    Tsintsadze, Nodar L.; Tsintsadze, Levan N.

    2008-01-01

    A general derivation of the charging equation of a dust grain is presented, and indicated where and when it can be used. A problem of linear fluctuations of charges on the surface of the dust grain is discussed.

  12. EV Charging Infrastructure Roadmap

    International Nuclear Information System (INIS)

    Karner, Donald; Garetson, Thomas; Francfort, Jim

    2016-01-01

    As highlighted in the U.S. Department of Energy's EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to ''... produce plug-in electric vehicles that are as affordable and convenient for the average American family as today's gasoline-powered vehicles ...'' [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  13. Greybody factors of massive charged fermionic fields in a charged two-dimensional dilatonic black hole

    Energy Technology Data Exchange (ETDEWEB)

    Becar, Ramon [Universidad Catolica de Temuco, Departamento de Ciencias Matematicas y Fisicas, Temuco (Chile); Gonzalez, P.A. [Universidad Diego Portales, Facultad de Ingenieria, Santiago (Chile); Saavedra, Joel [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Vasquez, Yerko [Universidad de La Serena, Departamento de Fisica, Facultad de Ciencias, La Serena (Chile)

    2015-02-01

    We study massive charged fermionic perturbations in the background of a charged two-dimensional dilatonic black hole, and we solve the Dirac equation analytically. Then we compute the reflection and transmission coefficients and the absorption cross section for massive charged fermionic fields, and we show that the absorption cross section vanishes at the low- and high-frequency limits. However, there is a range of frequencies where the absorption cross section is not null. Furthermore, we study the effect of the mass and electric charge of the fermionic field over the absorption cross section. (orig.)

  14. Quick charge battery

    Energy Technology Data Exchange (ETDEWEB)

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  15. Battery Charge Equalizer with Transformer Array

    Science.gov (United States)

    Davies, Francis

    2013-01-01

    High-power batteries generally consist of a series connection of many cells or cell banks. In order to maintain high performance over battery life, it is desirable to keep the state of charge of all the cell banks equal. A method provides individual charging for battery cells in a large, high-voltage battery array with a minimum number of transformers while maintaining reasonable efficiency. This is designed to augment a simple highcurrent charger that supplies the main charge energy. The innovation will form part of a larger battery charge system. It consists of a transformer array connected to the battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit that allow individual battery cells or cell banks to be charged. The timing circuit and control circuit connect to a charge controller that uses battery instrumentation to determine which battery bank to charge. It is important to note that the innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery. The fact that the battery cell banks are at a non-zero voltage, and that they are all at similar voltages, can be used to allow charging of individual cell banks. A set of transformers can be connected with secondary windings in series to make weighted sums of the voltages on the primaries.

  16. Marginally bound resonances of charged massive scalar fields in the background of a charged reflecting shell

    Energy Technology Data Exchange (ETDEWEB)

    Hod, Shahar, E-mail: shaharhod@gmail.com [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Academic College, Jerusalem 91010 (Israel)

    2017-05-10

    We study analytically the characteristic resonance spectrum of charged massive scalar fields linearly coupled to a spherically symmetric charged reflecting shell. In particular, we use analytical techniques in order to solve the Klein–Gordon wave equation for the composed charged-shell–charged-massive-scalar-field system. Interestingly, it is proved that the resonant oscillation frequencies of this composed physical system are determined by the characteristic zeroes of the confluent hypergeometric function. Following this observation, we derive a remarkably compact analytical formula for the resonant oscillation frequencies which characterize the marginally-bound charged massive scalar field configurations. The analytically derived resonance spectrum is confirmed by numerical computations.

  17. Residual dust charges in discharge afterglow

    International Nuclear Information System (INIS)

    Coueedel, L.; Mikikian, M.; Boufendi, L.; Samarian, A. A.

    2006-01-01

    An on-ground measurement of dust-particle residual charges in the afterglow of a dusty plasma was performed in a rf discharge. An upward thermophoretic force was used to balance the gravitational force. It was found that positively charged, negatively charged, and neutral dust particles coexisted for more than 1 min after the discharge was switched off. The mean residual charge for 200-nm-radius particles was measured. The dust particle mean charge is about -5e at a pressure of 1.2 mbar and about -3e at a pressure of 0.4 mbar

  18. Gravitační zákon - objev tisíciletí

    Czech Academy of Sciences Publication Activity Database

    Křížek, Michal

    2009-01-01

    Roč. 54, č. 2 (2009), s. 164-169 ISSN 0032-2423 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : superdense mass * kepler's law * differential equations Subject RIV: BA - General Mathematics

  19. a Movable Charging Unit for Green Mobility

    Science.gov (United States)

    ElBanhawy, E. Y.; Nassar, K.

    2013-05-01

    Battery swapping of electric vehicles (EVs) matter appears to be the swiftest and most convenient to users. The existence of swapping stations increases the feasibility of distributed energy storage via the electric grid. However, it is a cost-prohibitive way of charging. Early adaptors' preferences of /perceptions about EV system in general, has its inflectional effects on potential users hence the market penetration level. Yet, the charging matter of electric batteries worries the users and puts more pressure on them with the more rigorous planning-ahead they have to make prior to any trip. This paper presents a distinctive way of charging. It aims at making the overall charging process at ease. From a closer look into the literature, most of EVs' populations depend on domestic charge. Domestic charging gives them more confidence and increases the usability factor of the EV system. Nevertheless, they still need to count on the publically available charging points to reach their destination(s). And when it comes to multifamily residences, it becomes a thorny problem as these apartments do not have a room for charging outlets. Having said the irritating charging time needed to fatten the batteries over the day and the minimal average mileage drove daily, hypothetically, home delivery charging (Movable Charging Unit-MCU) would be a stupendous solution. The paper discusses the integration of shortest path algorithm problem with the information about EV users within a metropolitan area, developing an optimal route for a charging unit. This MCU delivers charging till homes whether by swapping batteries or by fast charging facility. Information about users is to be provided by the service provider of the neighbourhood, which includes charging patterns (timing, power capacity). This problem lies under the shortest path algorithms problem. It provides optimal route of charging that in return shall add more reliability and usability values and alleviate the charging

  20. Thunderstorm Charge Structures Producing Negative Gigantic Jets

    Science.gov (United States)

    Boggs, L.; Liu, N.; Riousset, J. A.; Shi, F.; Rassoul, H.

    2016-12-01

    Here we present observational and modeling results that provide insight into thunderstorm charge structures that produce gigantic jet discharges. The observational results include data from four different thunderstorms producing 9 negative gigantic jets from 2010 to 2014. We used radar, very high frequency (VHF) and low frequency (LF) lightning data to analyze the storm characteristics, charge structures, and lightning activity when the gigantic jets emerged from the parent thunderstorms. A detailed investigation of the evolution of one of the charge structures by analyzing the VHF data is also presented. The newly found charge structure obtained from the observations was analyzed with fractal modeling and compared with previous fractal modeling studies [Krehbiel et al., Nat. Geosci., 1, 233-237, 2008; Riousset et al., JGR, 115, A00E10, 2010] of gigantic jet discharges. Our work finds that for normal polarity thunderstorms, gigantic jet charge structures feature a narrow upper positive charge region over a wide middle negative charge region. There also likely exists a `ring' of negative screening charge located around the perimeter of the upper positive charge. This is different from previously thought charge structures of the storms producing gigantic jets, which had a very wide upper positive charge region over a wide middle negative charge region, with a very small negative screening layer covering the cloud top. The newly found charge structure results in leader discharge trees in the fractal simulations that closely match the parent flashes of gigantic jets inside and outside the thundercloud. The previously used charge structures, while vital to the understanding of gigantic jet initiation and the role of charge imbalances inside the cloud, do not produce leader discharge trees that agree with observed gigantic jet discharges.Finally, the newly discovered gigantic jet charge structures are formed near the end of a convective pulse [Meyer et al., JGR, 118

  1. Electrostatic charge characteristics of jet nebulized aerosols.

    Science.gov (United States)

    Kwok, Philip Chi Lip; Trietsch, Sebastiaan J; Kumon, Michiko; Chan, Hak-Kim

    2010-06-01

    Liquid droplets can be spontaneously charged in the absence of applied electric fields by spraying. It has been shown by computational simulation that charges may influence particle deposition in the airways. The electrostatic properties of jet nebulized aerosols and their potential effects on lung deposition have hardly been studied. A modified electrical low pressure impactor (ELPI) was employed to characterize the aerosol charges generated from jet nebulized commercial products. The charge and size measurements were conducted at 50% RH and 22 degrees C with a modified ELPI. Ventolin, Bricanyl, and Atrovent were nebulized using PARI LC Plus jet nebulizers coupled to a DeVilbiss Pulmo-Aide compressor. The aerosols were sampled in 30-sec durations. The drug deposits on the impactor stages were assayed chemically using high-performance liquid chromatography (HPLC). The charges of nebulized deionized water, isotonic saline, and the three commercial products diluted with saline were also measured to analyze the contributions of the major nebule ingredients on charging. No mass assays were performed on these runs. All three commercial nebules generated net negative charges. The magnitude of the charges reduced over the period of nebulization. Ventolin and Bricanyl yielded similar charge profiles. Highly variable charges were produced from deionized water. On the other hand, nebulized saline reproducibly generated net positive charges. Diluted commercial nebules showed charge polarity inversion. The charge profiles of diluted salbutamol and terbutaline solutions resembled those of saline, while the charges from diluted ipratropium solutions fluctuated near neutrality. The charge profiles were shown to be influenced by the concentration and physicochemical properties of the drugs, as well as the history of nebulization. The drugs may have unique isoelectric concentrations in saline at which the nebulized droplets would carry near-zero charges. According to results from

  2. Charge Master: Friend or Foe?

    Science.gov (United States)

    Wan, Wenshuai; Itri, Jason

    2016-01-01

    Prices charged for imaging services can be found in the charge master, a catalog of retail list prices for medical goods and services. This article reviews the evolution of reimbursement in the United States and provides a balanced discussion of the factors that influence charge master prices. Reduced payments to hospitals have pressured hospitals to generate additional revenue by increasing charge master prices. An unfortunate consequence is that those least able to pay for health care, the uninsured, are subjected to the highest charges. Yet, differences in pricing also represent an opportunity for radiology practices, which provide imaging services that are larger in scope or superior in quality to promote product differentiation. Physicians, hospital executives, and policy makers need to work together to improve the existing reimbursement system to promote high-quality, low-cost imaging. Copyright © 2016 Mosby, Inc. All rights reserved.

  3. Neutralization kinetics of charged polymer surface

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India); Mukherjee, M. [Surface Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064 (India)], E-mail: manabendra.mukherjee@saha.ac.in

    2008-04-15

    In case of photoemission spectroscopy of an insulating material the data obtained from the charged surface are normally distorted due to differential charging. Recently, we have developed a controlled surface neutralization technique to study the kinetics of the surface charging. Using this technique and the associated data analysis scheme with an effective charging model, quantitative information from the apparently distorted photoemission data from PTFE surfaces were extracted. The surface charging was controlled by tuning the electron flood current as well as the X-ray intensity. The effective model was found to describe the charging consistently for both the cases. It was shown that the non-linear neutralization response of differential charging around a critical neutralizing electron flux or a critical X-ray emission current was due to percolation of equipotential surface domains. The obtained value of the critical percolation exponent {gamma} close to unity indicates a percolation similar to that of avalanche breakdown or chain reaction.

  4. ChargeOut! : determining machine and capital equipment charge-out rates using discounted cash-flow analysis

    Science.gov (United States)

    E.M. (Ted) Bilek

    2007-01-01

    The model ChargeOut! was developed to determine charge-out rates or rates of return for machines and capital equipment. This paper introduces a costing methodology and applies it to a piece of capital equipment. Although designed for the forest industry, the methodology is readily transferable to other sectors. Based on discounted cash-flow analysis, ChargeOut!...

  5. Dosimeter charging and/or reading apparatus

    International Nuclear Information System (INIS)

    Fine, L.T.; Jackson, T.P.

    1980-01-01

    A device is disclosed for charging and/or reading a capacitor associated with an electrometer incorporated in a radiation dosimeter for the purpose of initializing or ''zeroing'', the dosimeter at the commencement of a radiation measurement cycle or reading it at any time thereafter. The dosimeter electrometer has a movable electrode the position of which is indicative of the charge remaining on the dosimeter capacitor and in turn the amount of radiation incident on the dosimeter since it was zeroed. The charging device also includes means for discharging, immediately upon conclusion of the dosimeter capacitor charging operation, stray capacitance inherent in the dosimeter by reason of its mechanical construction. The charge on the stray capacitance, if not discharged at the conclusion of the dosimeter capacitor charging operation, leaks off during the measurement cycle, introducing measurement errors. A light source and suitable switch means are provided for automatically illuminating the movable electrode of the dosimeter electrometer as an incident to charging the dosimeter capacitor to facilitate reading the initial, or ''zero'', position of the movable electrometer electrode after the dosimeter capacitor has been charged and the stray capacitance discharged. Also included is a manually actuatable switch means, which is operable independently of the aforementioned automatic switch means, to energize the lamp and facilitate reading of the dosimeter without charging

  6. EV Charging Infrastructure Roadmap

    Energy Technology Data Exchange (ETDEWEB)

    Karner, Donald [Electric Transportation Inc., Rogers, AR (United States); Garetson, Thomas [Electric Transportation Inc., Rogers, AR (United States); Francfort, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  7. Dust charging and charge fluctuations in a weakly collisional radio-frequency sheath at low pressure

    International Nuclear Information System (INIS)

    Piel, Alexander; Schmidt, Christian

    2015-01-01

    Models for the charging of dust particles in the bulk plasma and in the sheath region are discussed. A new model is proposed that describes collision-enhanced ion currents in the sheath. The collisions result in a substantial reduction of the negative charge of the dust. Experimental data for the dust charge in the sheath can be described by this model when a Bi-Maxwellian electron distribution is taken into account. Expressions for the dust charging rate for all considered models are presented and their influence on the rise of the kinetic dust temperature is discussed

  8. Smart Electric Vehicle Charging Infrastructure Overview

    Energy Technology Data Exchange (ETDEWEB)

    Chynoweth, Joshua; Chung, Ching-Yen; Qiu, Charlie; Chu, Peter; Gadh, Rajit

    2014-02-19

    WINSmartEV™ is a smart electric vehicle charging system that has been built and is currently in operation. It is a software and network based EV charging system designed and built around the ideas of intelligent charge scheduling, multiplexing (connecting multiple vehicles to each circuit) and flexibility. This paper gives an overview of this smart charging system with an eye toward its unique features and capabilities.

  9. Semi-classical derivation of charge-quantization through charge-field self-interaction

    International Nuclear Information System (INIS)

    Kosok, M.; Madhyastha, V.L.

    1990-01-01

    A semi-classical synthesis of classical mechanics, wave mechanics, and special relativity yields a unique nonlinear energy-wave structure of relations (velocity triad uv = c 2 ) fundamental to modern physics. Through the above vehicle, using Maxwell's equations, charge quantization and the fine structure constant are derived. It is shown that the numerical value of the nonlinear charge-field self-interaction range for the electron is of the order of 10 -13 m, which is greater than the classical electron radius but less than the Compton wavelength of the electron. Finally, it is suggested that the structure of the electron-in-space is expressed by a self-extending nonlinear ''fractal geometry'' based on derived numerical values obtained from our model, thus opening this presentation of charge-field structure to experimental testing for possible verification

  10. Electron Charged Graphite-based Hydrogen Storage Material

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chinbay Q. Fan; D Manager

    2012-03-14

    The electron-charge effects have been demonstrated to enhance hydrogen storage capacity using materials which have inherent hydrogen storage capacities. A charge control agent (CCA) or a charge transfer agent (CTA) was applied to the hydrogen storage material to reduce internal discharge between particles in a Sievert volumetric test device. GTI has tested the device under (1) electrostatic charge mode; (2) ultra-capacitor mode; and (3) metal-hydride mode. GTI has also analyzed the charge distribution on storage materials. The charge control agent and charge transfer agent are needed to prevent internal charge leaks so that the hydrogen atoms can stay on the storage material. GTI has analyzed the hydrogen fueling tank structure, which contains an air or liquid heat exchange framework. The cooling structure is needed for hydrogen fueling/releasing. We found that the cooling structure could be used as electron-charged electrodes, which will exhibit a very uniform charge distribution (because the cooling system needs to remove heat uniformly). Therefore, the electron-charge concept does not have any burden of cost and weight for the hydrogen storage tank system. The energy consumption for the electron-charge enhancement method is quite low or omitted for electrostatic mode and ultra-capacitor mode in comparison of other hydrogen storage methods; however, it could be high for the battery mode.

  11. Charge-scaling effect in ionic liquids from the charge-density analysis of N,N'-dimethylimidazolium methylsulfate.

    Science.gov (United States)

    Beichel, Witali; Trapp, Nils; Hauf, Christoph; Kohler, Oliver; Eickerling, Georg; Scherer, Wolfgang; Krossing, Ingo

    2014-03-17

    The charge scaling effect in ionic liquids was explored on the basis of experimental and theoretical chargedensity analyses of [C1MIM][C1SO4] employing the quantum theory of atoms in molecules (QTAIM) approach. Integrated QTAIM charges of the experimental (calculated) charge density of the cation and anion resulted in non-integer values of ±0.90 (±0.87) e. Efficient charge transfer along the bond paths of the hydrogen bonds between the imidazolium ring and the anion was considered as the origin of these reduced charges. In addition, a detailed QTAIM analysis of the bonding situation in the [C1SO4]- anion revealed the presence of negative πO→σ*S-O hyperconjugation.

  12. Interactions between charged spherical macroions

    International Nuclear Information System (INIS)

    Stevens, M.J.; Falk, M.L.; Robbins, M.O.

    1996-01-01

    Monte Carlo (MC) simulations were used to study the screened interactions between charged spherical macroions surrounded by discrete counterions, and to test previous theories of screening. The simulations were performed in the primitive cell of the bcc lattice, and in the spherical Wigner endash Seitz cell that is commonly used in approximate calculations. We found that the Wigner endash Seitz approximation is valid even at high volume fractions φ and large macroion charges Z, because the macroion charge becomes strongly screened. Pressures calculated from Poisson endash Boltzmann theory and local density functional theory deviate from MC values as φ and Z increase, but continue to provide upper and lower bounds for the MC results. While Debye endash Hueckel (DH) theory fails badly when the bare charge is used, MC pressures can be fit with an effective DH charge, Z DH , that is nearly independent of volume fraction. As Z diverges, Z DH saturates at zψ max R m /λ, where z is the counterion charge, R m is the macroion radius, λ is the Bjerrum length, and ψ max is a constant of order 10. copyright 1996 American Institute of Physics

  13. A Novel Methodology for Charging Station Deployment

    Science.gov (United States)

    Sun, Zhonghao; Zhao, Yunwei; He, Yueying; Li, Mingzhe

    2018-02-01

    Lack of charging stations has been a main obstacle to the promotion of electric vehicles. This paper studies deploying charging stations in traffic networks considering grid constraints to balance the charging demand and grid stability. First, we propose a statistical model for charging demand. Then we combine the charging demand model with power grid constraints and give the formulation of the charging station deployment problem. Finally, we propose a theoretical solution for the problem by transforming it to a Markov Decision Process.

  14. Charge-transport simulations in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    May, Falk

    2012-07-06

    In this thesis we have extended the methods for microscopic charge-transport simulations for organic semiconductors, where weak intermolecular interactions lead to spatially localized charge carriers, and the charge transport occurs as an activated hopping process between diabatic states. In addition to weak electronic couplings between these states, different electrostatic environments in the organic material lead to a broadening of the density of states for the charge energies which limits carrier mobilities. The contributions to the method development include (i) the derivation of a bimolecular charge-transfer rate, (ii) the efficient evaluation of intermolecular (outer-sphere) reorganization energies, (iii) the investigation of effects of conformational disorder on intramolecular reorganization energies or internal site energies and (iv) the inclusion of self-consistent polarization interactions for calculation of charge energies. These methods were applied to study charge transport in amorphous phases of small molecules used in the emission layer of organic light emitting diodes (OLED). When bulky substituents are attached to an aromatic core in order to adjust energy levels or prevent crystallization, a small amount of delocalization of the frontier orbital to the substituents can increase electronic couplings between neighboring molecules. This leads to improved charge-transfer rates and, hence, larger charge-mobility. We therefore suggest using the mesomeric effect (as opposed to the inductive effect) when attaching substituents to aromatic cores, which is necessary for example in deep blue OLEDs, where the energy levels of a host molecule have to be adjusted to those of the emitter. Furthermore, the energy landscape for charges in an amorphous phase cannot be predicted by mesoscopic models because they approximate the realistic morphology by a lattice and represent molecular charge distributions in a multipole expansion. The microscopic approach shows that

  15. Search for free fractional charge

    International Nuclear Information System (INIS)

    Heilig, S.J.

    1985-01-01

    Recent results of searches for free fractional charge have been null with the exception of the experiment at Stanford under the leadership of W. Fairbank. His experiment, while claiming the observation of free fractional charge, has yet to show that this observation was not spurious. The need for a confirming experiment with a different physical system is the motivation for the current work. A torsional pendulum has been constructed of a fused silica fiber with an attached fused silica crossbar. A transverse electric field is applied to the end of the crossbar, and the resulting deflection of the crossbar is used to measure the torque applied by the field. To date the limit of measurement for the charge on the crossbar (without sample) is 0 +/- 24 electronic charges. The history of this experiment is discussed, along with plans for pushing the limits of measurement to below the single-charge level

  16. Charge splitters and charge transport junctions based on guanine quadruplexes

    Science.gov (United States)

    Sha, Ruojie; Xiang, Limin; Liu, Chaoren; Balaeff, Alexander; Zhang, Yuqi; Zhang, Peng; Li, Yueqi; Beratan, David N.; Tao, Nongjian; Seeman, Nadrian C.

    2018-04-01

    Self-assembling circuit elements, such as current splitters or combiners at the molecular scale, require the design of building blocks with three or more terminals. A promising material for such building blocks is DNA, wherein multiple strands can self-assemble into multi-ended junctions, and nucleobase stacks can transport charge over long distances. However, nucleobase stacking is often disrupted at junction points, hindering electric charge transport between the two terminals of the junction. Here, we show that a guanine-quadruplex (G4) motif can be used as a connector element for a multi-ended DNA junction. By attaching specific terminal groups to the motif, we demonstrate that charges can enter the structure from one terminal at one end of a three-way G4 motif, and can exit from one of two terminals at the other end with minimal carrier transport attenuation. Moreover, we study four-way G4 junction structures by performing theoretical calculations to assist in the design and optimization of these connectors.

  17. Model improvements to simulate charging in SEM

    Science.gov (United States)

    Arat, K. T.; Klimpel, T.; Hagen, C. W.

    2018-03-01

    Charging of insulators is a complex phenomenon to simulate since the accuracy of the simulations is very sensitive to the interaction of electrons with matter and electric fields. In this study, we report model improvements for a previously developed Monte-Carlo simulator to more accurately simulate samples that charge. The improvements include both modelling of low energy electron scattering and charging of insulators. The new first-principle scattering models provide a more realistic charge distribution cloud in the material, and a better match between non-charging simulations and experimental results. Improvements on charging models mainly focus on redistribution of the charge carriers in the material with an induced conductivity (EBIC) and a breakdown model, leading to a smoother distribution of the charges. Combined with a more accurate tracing of low energy electrons in the electric field, we managed to reproduce the dynamically changing charging contrast due to an induced positive surface potential.

  18. Charge state distributions from highly charged ions channeled at a metal surface

    International Nuclear Information System (INIS)

    Folkerts, L.; Meyer, F.W.; Schippers, S.

    1994-01-01

    The vast majority of the experimental work in the field of multicharged ion-surface interactions, to date, has focused on x-ray and particularly on electron emission. These experiments include measurements of the total electron yield, the emission statistics of the electrons, and, most of all, the electron energy distributions. So far, little attention has been paid to the fate of the multicharged projectile ions after the scattering. To our knowledge, the only measurement of the charge state distribution of the scattered ions is the pioneering experiment of de Zwart et al., who measured the total yield of scattered 1+, 2+, and 3+ ions as a function of the primary charge state q (q = 1--11) for 20 key Ne, Ar, and Kr ions after reflection from a polycrystalline tungsten target. Their main finding is the sudden onset of scattered 3+ ions when inner-shell vacancies are present in the primary particles. This suggests that a certain fraction of the inner-shell vacancies survives the entire collision event, and decays via autoionization on the outgoing path. Since the projectiles scattered in the neutral charge state could not be detected in the experiment of de Zwart et al., they were not able to provide absolute charge state fractions. In our present experiment, we focus on the scattered projectiles, measuring both the final charge state and the total scattering angle with a single 2D position sensitive detector (PSD). This method gives us the number of positive, as well as neutral and negative, scattered ions, thus allowing us to extract absolute charge state fractions. Using a well-prepared single Au(110) crystal and a grazing incidence geometry, we were able to observe surface channeling along the [001] channels

  19. Tools for charged Higgs bosons

    International Nuclear Information System (INIS)

    Staal, Oscar

    2010-12-01

    We review the status of publicly available software tools applicable to charged Higgs physics. A selection of codes are highlighted in more detail, focusing on new developments that have taken place since the previous charged Higgs workshop in 2008. We conclude that phenomenologists now have the tools ready to face the LHC data. A new web page collecting charged Higgs resources is presented. (orig.)

  20. The effect of polymer charge density and charge distribution on the formation of multilayers

    CERN Document Server

    Voigt, U; Tauer, K; Hahn, M; Jäger, W; Klitzing, K V

    2003-01-01

    Polyelectrolyte multilayers which are built up by alternating adsorption of polyanions and polycations from aqueous solutions at a solid interface are investigated by reflectometry and ellipsometry. Below a degree of charge of about 70% the adsorption stops after a certain number of dipping cycles and no multilayer formation occurs. This indicates an electrostatically driven adsorption process. Below a charge density of 70% an adsorption can take place if the charged segments are combined as a block of the polymer.

  1. Charge imbalance: its relaxation, diffusion and oscillation

    International Nuclear Information System (INIS)

    Pethick, C.J.

    1981-01-01

    In this article, the authors use a model for charge density based on two charge components: the normal quasiparticle component and the superfluid/condensate component. Based on the quasiparticle Boltzmann equation, this two-component model, when used in nonequilibrium contexts, is fruitful in describing a variety of charge-imbalance phenomena in superconductors. The authors discuss various methods of generating charge-imbalances, charge-imbalance relaxation processes (such as phonons, impurity scattering and magnetic impurities) and applications of the two-component model of charge imbalance to spatially inhomogeneous conditions

  2. Nondissipative optimum charge regulator

    Science.gov (United States)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  3. Exploring Demand Charge Savings from Commercial Solar

    Energy Technology Data Exchange (ETDEWEB)

    Darghouth, Naim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barbose, Galen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mills, Andrew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wiser, Ryan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gagnon, Pieter [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-07-31

    Commercial retail electricity rates commonly include a demand charge component, based on some measure of the customer’s peak demand. Customer-sited solar PV can potentially reduce demand charges, but the magnitude of these savings can be difficult to predict, given variations in demand charge designs, customer loads, and PV generation profiles. Moreover, depending on the circumstances, demand charges from solar may or may not align well with associated utility cost savings. Lawrence Berkeley National Laboratory (Berkeley Lab) and the National Renewable Energy Laboratory (NREL) are collaborating in a series of studies to understand how solar PV can reduce demand charge levels for a variety of customer types and demand charges designs. Previous work focused on residential customs with solar. This study, instead, focuses on commercial customers and seeks to understand the extent and conditions under which rooftop can solar reduce commercial demand charges. To answer these questions, we simulate demand charge savings for a broad range of commercial customer types, demand charge designs, locations, and PV system characteristics. This particular analysis does not include storage, but a subsequent analysis in this series will evaluate demand charge savings for commercial customers with solar and storage.

  4. Charge breeding of intense radioactive beams

    CERN Document Server

    Kester, O

    2001-01-01

    The efficient transformation of radioactive beams by charge breeding devices will critically influence the lay-out of the post accelerator of presently built first generation radioactive ion beam (RIB) facilities as well as new second generation facilities. The size of the post-accelerator needed to bring the unstable nuclei to the energies required to study nuclear reactions depends on the charge state of the radioactive ions. The capability to raise that charge state from 1+ to n+, where n may correspond to a charge-to- mass ratio of 0.15 or higher, will therefore produce an enormous reduction in cost as well as the possibility to accelerate heavier masses. Thus the efficiency of the charge breeding scheme in comparison to the stripping scheme will be explored in the frame of the EU-network charge breeding. The two possible charge breeding schemes using either an Electron Beam Ion Source (EBIS) or an Electron Cyclotron Resonance Ion Source (ECRIS), the demands to the sources and the present status of existi...

  5. Review of Variable Generation Integration Charges

    Energy Technology Data Exchange (ETDEWEB)

    Porter, K.; Fink, S.; Buckley, M.; Rogers, J.; Hodge, B. M.

    2013-03-01

    The growth of wind and solar generation in the United States, and the expectation of continued growth of these technologies, dictates that the future power system will be operated in a somewhat different manner because of increased variability and uncertainty. A small number of balancing authorities have attempted to determine an 'integration cost' to account for these changes to their current operating practices. Some balancing authorities directly charge wind and solar generators for integration charges, whereas others add integration charges to projected costs of wind and solar in integrated resource plans or in competitive solicitations for generation. This report reviews the balancing authorities that have calculated variable generation integration charges and broadly compares and contrasts the methodologies they used to determine their specific integration charges. The report also profiles each balancing authority and how they derived wind and solar integration charges.

  6. Charge-state correlated cross sections for the production of low-velocity highly charged Ne ions by heavy-ion bombardment

    International Nuclear Information System (INIS)

    Gray, T.J.; Cocke, C.L.; Justiniano, E.

    1980-01-01

    We report measured cross sections for the collisional production of highly charged low-velocity Ne recoil ions resulting from the bombardment of a thin Ne gas target by highly charged 1-MeV/amu C, N, O, and F projectiles. The measurements were made using time-of-flight techniques which allowed the simultaneous identification of the final charge state of both the low-velocity recoil ion and the high-velocity projectile for each collision event. For a given incident-projectile charge state, the recoil charge-state distribution is very dependent upon the final charge state of the projectile. Single- and double-electron capture events by incident bare nuclei and projectile K-shell ionization during the collision cause large shifts in the recoil charge-state distributions toward higher charge states. A previously proposed energy-deposition model is modified to include the effects of projectile charge-changing collisions during the collision for bare and hydrogenlike projectiles and is used to discuss the present experimental results

  7. Impact of charge-transfer excitons in regioregular polythiophene on the charge separation at polythiophene-fullerene heterojunctions

    Science.gov (United States)

    Polkehn, M.; Tamura, H.; Burghardt, I.

    2018-01-01

    This study addresses the mechanism of ultrafast charge separation in regioregular oligothiophene-fullerene assemblies representative of poly-3-hexylthiophene (P3HT)-[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) heterojunctions, with special emphasis on the inclusion of charge transfer excitons in the oligothiophene phase. The formation of polaronic inter-chain charge separated species in highly ordered oligothiophene has been demonstrated in recent experiments and could have a significant impact on the net charge transfer to the fullerene acceptor. The present approach combines a first-principles parametrized multi-site Hamiltonian, based on time-dependent density functional theory calculations, with accurate quantum dynamics simulations using the multi-layer multi-configuration time-dependent Hartree method. Quantum dynamical studies are carried out for up to 182 electronic states and 112 phonon modes. The present analysis follows up on our previous study of (Huix-Rotllant et al 2015 J. Phys. Chem. Lett. 6 1702) and significantly expands the scope of this analysis by including the dynamical role of charge transfer excitons. Our investigation highlights the pronounced mixing of photogenerated Frenkel excitons with charge transfer excitons in the oligothiophene domain, and the opening of new transfer channels due the creation of such charge-separated species. As a result, it turns out that the interfacial donor/acceptor charge transfer state can be largely circumvented due to the presence of charge transfer excitons. However, the latter states in turn act as a trap, such that the free carrier yield observed on ultrafast time scales is tangibly reduced. The present analysis underscores the complexity of the transfer pathways at P3HT-PCBM type junctions.

  8. Proposal to Search for Magnetically Charged Particles with Magnetic Charge 1e

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Michael K. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Fryberger, David [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-11-02

    A model for composite elementary Standard Model (SM) particles based upon magnetically bound vorton pairs, we briefly introduce here, predicts the existence of a complete family of magnetically charged particles, as well as their neutral isotopic partners (all counterparts to the SM elementary particles), in which the lowest mass (charged) particle would be an electrically neutral stable lepton, but which carries a magnetic charge equivalent to 1e. This new particle, which we call a magneticon (a counterpart to the electron) would be pair produced at all e+e- colliders at an Ecm above twice its mass. In addition, PP and PPbar colliders should also be able to produce these new particles through the Drell-Yan process. To our knowledge, no monopole search experiment has been sensitive to such a low-charged magnetic monopole above a particle mass of about 5 GeV/c2. Hence, we propose that a search for such a stable particle of magnetic charge 1e should be undertaken. We have taken the ATLAS detector at the LHC as an example in which this search might be done. To this end, we modeled the magnetic fields and muon trigger chambers of this detector. We show results from a simple Monte Carlo simulation program to indicate how these particles might look in the detector and describe how one might search for these new particles in the ATLAS data stream.

  9. Multiplicity distributions of charged hadrons in vp and charged current interactions

    Science.gov (United States)

    Jones, G. T.; Jones, R. W. L.; Kennedy, B. W.; Morrison, D. R. O.; Mobayyen, M. M.; Wainstein, S.; Aderholz, M.; Hantke, D.; Katz, U. F.; Kern, J.; Schmitz, N.; Wittek, W.; Borner, H. P.; Myatt, G.; Radojicic, D.; Burke, S.

    1992-03-01

    Using data on vp andbar vp charged current interactions from a bubble chamber experiment with BEBC at CERN, the multiplicity distributions of charged hadrons are investigated. The analysis is based on ˜20000 events with incident v and ˜10000 events with incidentbar v. The invariant mass W of the total hadronic system ranges from 3 GeV to ˜14 GeV. The experimental multiplicity distributions are fitted by the binomial function (for different intervals of W and in different intervals of the rapidity y), by the Levy function and the lognormal function. All three parametrizations give acceptable values for X 2. For fixed W, forward and backward multiplicities are found to be uncorrelated. The normalized moments of the charged multiplicity distributions are measured as a function of W. They show a violation of KNO scaling.

  10. Central depression of nuclear charge density distribution

    International Nuclear Information System (INIS)

    Chu Yanyun; Ren Zhongzhou; Wang Zaijun; Dong Tiekuang

    2010-01-01

    The center-depressed nuclear charge distributions are investigated with the parametrized distribution and the relativistic mean-field theory, and their corresponding charge form factors are worked out with the phase shift analysis method. The central depression of nuclear charge distribution of 46 Ar and 44 S is supported by the relativistic mean-field calculation. According to the calculation, the valence protons in 46 Ar and 44 S prefer to occupy the 1d 3/2 state rather than the 2s 1/2 state, which is different from that in the less neutron-rich argon and sulfur isotopes. As a result, the central proton densities of 46 Ar and 44 S are highly depressed, and so are their central charge densities. The charge form factors of some argon and sulfur isotopes are presented, and the minima of the charge form factors shift upward and inward when the central nuclear charge distributions are more depressed. Besides, the effect of the central depression on the charge form factors is studied with a parametrized distribution, when the root-mean-square charge radii remain constant.

  11. You are fair, but I expect you to also behave unfairly: Positive asymmetry in trait-behavior relations for moderate morality information

    Science.gov (United States)

    Rusconi, Patrice; Sacchi, Simona; Capellini, Roberta; Brambilla, Marco; Cherubini, Paolo

    2017-01-01

    Trait inference in person perception is based on observers’ implicit assumptions about the relations between trait adjectives (e.g., fair) and the either consistent or inconsistent behaviors (e.g., having double standards) that an actor can manifest. This article presents new empirical data and theoretical interpretations on people’ behavioral expectations, that is, people’s perceived trait-behavior relations along the morality (versus competence) dimension. We specifically address the issue of the moderate levels of both traits and behaviors almost neglected by prior research by using a measure of the perceived general frequency of behaviors. A preliminary study identifies a set of competence- and morality-related traits and a subset of traits balanced for valence. Studies 1–2 show that moral target persons are associated with greater behavioral flexibility than immoral ones where abstract categories of behaviors are concerned. For example, participants judge it more likely that a fair person would behave unfairly than an unfair person would behave fairly. Study 3 replicates the results of the first 2 studies using concrete categories of behaviors (e.g., telling the truth/omitting some information). Study 4 shows that the positive asymmetry in morality-related trait-behavior relations holds for both North-American and European (i.e., Italian) individuals. A small-scale meta-analysis confirms the existence of a positive asymmetry in trait-behavior relations along both morality and competence dimensions for moderate levels of both traits and behaviors. We discuss these findings in relation to prior models and results on trait-behavior relations and we advance a motivational explanation based on self-protection. PMID:28700702

  12. On the forces acting on radiating charge

    International Nuclear Information System (INIS)

    Khachatrian, B.V.

    2001-01-01

    It is shown that the force acting on a radiating charge is stipulated by two reasons- owing to exchange of a momentum between the radiating charge and electromagnetic field of radiation, and also between the charge and field accompanying the charge. 7 refs

  13. High speed auto-charging system for condenser bank

    International Nuclear Information System (INIS)

    Mizuno, Yasunori; Bito, Fumio; Fujita, Kazuhiko; Sometani, Taro

    1987-01-01

    A current-control type high-speed charging system, which is intended for auto-charging of the condenser bank, is developed. Moreover, the system can also serve to compensate the current leakage from the condenser bank so that the charged voltage can be kept constant. The system consists of a sequence circuit, a charging current control circuit (or auto-charging circuit) and a charging circuit. The auto-charging circuit is characterized by the use of a triac to control the current. The current, controlled by the circuit, is supplied to the condenser bank through a step-up transformer and voltage doubler rectifier circuit. It is demonstrated that the use of the high-speed auto-charging circuit can largely decrease the required charging time, compared to constant voltage charging. In addition, the compensation function is shown to serve effectively for maintaining a constant voltage after the completion of charging. The required charging time is decreases as the charging current increases. The maximum charging current is decided by the rating of the traic and the current rating of the rectifier diode in the secondary circuit. Major components of these circuits have decreased impedances to minimize the effect of noise, so that the possibility of an accident can be eliminated. Other various improvements are made in the grounding circuit and the charging protection circuit in order to ensure safety. (Nogami, K.)

  14. Enabling fast charging - Vehicle considerations

    Science.gov (United States)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to increase the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharge rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and the vehicle's electrical architecture that must be resolved. This work focuses on vehicle system design and total recharge time to meet the goals of implementing improved charge rates and the impacts of these expected increases on system voltage and vehicle components.

  15. Cosmology of a charged universe

    International Nuclear Information System (INIS)

    Barnes, A.

    1979-01-01

    The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A charged intergalactic (and intragalactic) medium of this kind could contain enough energy to be of cosmological importance. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the decleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been much more rapid than in conventional ''big bang'' cosmologies, too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3 K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe, a condition of special significance in certain cosmological theories

  16. "How much will I get charged for this?" Patient charges for top ten diagnoses in the emergency department.

    Directory of Open Access Journals (Sweden)

    Nolan Caldwell

    Full Text Available We examined the charges, their variability, and respective payer group for diagnosis and treatment of the ten most common outpatient conditions presenting to the Emergency department (ED.We conducted a cross-sectional study of the 2006-2008 Medical Expenditure Panel Survey. Analysis was limited to outpatient visits with non-elderly, adult (years 18-64 patients with a single discharge diagnosis.We studied 8,303 ED encounters, representing 76.6 million visits. Median charges ranged from $740 (95% CI $651-$817 for an upper respiratory infection to $3437 (95% CI $2917-$3877 for a kidney stone. The median charge for all ten outpatient conditions in the ED was $1233 (95% CI $1199- $1268, with a high degree of charge variability. All diagnoses had an interquartile range (IQR greater than $800 with 60% of IQRs greater than $1550.Emergency department charges for common conditions are expensive with high charge variability. Greater acute care charge transparency will at least allow patients and providers to be aware of the emergency department charges patients may face in the current health care system.

  17. An Improved Wireless Battery Charging System

    OpenAIRE

    Woo-Seok Lee; Jin-Hak Kim; Shin-Young Cho; Il-Oun Lee

    2018-01-01

    This paper presents a direct wireless battery charging system. The output current of the series-series compensated wireless power transfer (SS-WPT) system is used as a current source, and the output voltage of AC-DC converter controls the current source. Therefore, the proposed wireless battery charging system needs no battery charging circuit to carry out charging profiles, and can solve space constraints and thermal problems in many battery applications. In addition, the proposed wireless b...

  18. Charge Transport Along Phenylenevinylene Molecular Wires

    OpenAIRE

    2006-01-01

    Abstract A model to calculate the mobility of charges along molecular wires is presented. The model is based on the tight-binding approximation and combines a quantum mechanical description of the charge with a classical description of the structural degrees of freedom. It is demonstrated that the average mobility of charge carriers along molecular wires can be obtained by time-propagation of states which are initially localised. The model is used to calculate the mobility of charg...

  19. The dynamics of a charged particle

    OpenAIRE

    Rohrlich, Fritz

    2008-01-01

    Using physical arguments, I derive the physically correct equations of motion for a classical charged particle from the Lorentz-Abraham-Dirac equations (LAD) which are well known to be physically incorrect. Since a charged particle can classically not be a point particle because of the Coulomb field divergence, my derivation accounts for that by imposing a basic condition on the external force. That condition ensures that the particle's finite size charge distribution looks like a point charg...

  20. Charged and Neutral Particle Interactions on Aerospace Materials

    International Nuclear Information System (INIS)

    Singleterry, R.C. Jr.; Thibeault, Sheila A.; Wilkins, Richard; Huff, Harold

    2002-01-01

    Various candidate aircraft and spacecraft materials were analyzed and compared in a neutron environment using the Monte Carlo N-Particle (MCNP) transport code and in Galactic Cosmic Ray (GCR) and Trapped environments using the HZETRN code. These candidate materials are being used in aerospace vehicles, have been tested in particle beams, or seemed reasonable to analyze in this manner before deciding to manufacture and test them. This analysis shows that hydrogen bearing materials are better than the metal alloys for reducing the number of reflected and transmitted particles. It also shows that neutrons above 1 MeV are reflected out of the face of the slab better when larger quantities of carbon are present in the material. If a neutron absorber is added to the material, fewer neutrons are transmitted through and reflected from the material. This analysis focused on combinations of scatterers and absorbers to optimize these reaction channels on the higher energy neutron component. The absorber addition did not substantially change the charged particle transmission from the value obtained for polyethylene. The ultimate goal of this type of analysis is the selection of a layered material or material type that will optimize dose, dose equivalent, and electronic error rates inside the vehicle (and outside the vehicle if necessary for the mission). This analysis focuses on how the different material types and additives behave in the atmospheric and space related particle fields. As a secondary issue, as the amount of hydrogen bearing materials increase, larger fluxes of thermal neutrons are expected. It has been observed experimentally that large thicknesses of hydrogen bearing materials increase the error rates per neutron that occurs in SRAM memory chips. This effect is still being investigated, but it has been narrowed down to the larger mean neutron energy produced by the hydrogen bearing material. (authors)

  1. A new technique for the study of charge transfer in multiply charged ion-ion collisions

    International Nuclear Information System (INIS)

    Shinpaugh, J.L.; Meyer, F.W.; Datz, S.

    1994-01-01

    While large cross sections (>10 -16 cm 2 ) have been predicted for resonant charge transfer in ion-ion collisions, no experimental data exist for multiply charged systems. A novel technique is being developed at the ORNL ECR facility to allow study of symmetric charge exchange in multiply charged ion-ion collisions using a single ion source. Specific intra-beam charge transfer collisions occurring in a well-defined interaction region labeled by negative high voltage are identified and analyzed by electrostatic analysis in combination with ion time-of-flight coincidence detection of the collision products. Center-of-mass collision energies from 400 to 1000 eV are obtained by varying source and labeling-cell voltages. In addition, by the introduction of a target gas into the high-voltage cell, this labeling-voltage method allows measurement of electron-capture and -loss cross sections for ion-atom collisions. Consequently, higher collision energies can be investigated without the requirement of placing the ECR source on a high-voltage platform

  2. 75 FR 7411 - Schedule of Water Charges

    Science.gov (United States)

    2010-02-19

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Schedule of Water Charges AGENCY: Delaware River... Administrative Manual--Part III--Basin Regulations--Water Supply Charges to revise the schedule of water charges... commenter and the subject line ``Schedule of Water Charges.'' FOR FURTHER INFORMATION, CONTACT: Please...

  3. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Maolong Xi

    2016-01-01

    Full Text Available This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO for cancer feature gene selection, coupling support vector machine (SVM for cancer classification. First, the proposed BQPSO algorithm is described, which is a discretized version of original QPSO for binary 0-1 optimization problems. Then, we present the principle and procedure for cancer feature gene selection and cancer classification based on BQPSO and SVM with leave-one-out cross validation (LOOCV. Finally, the BQPSO coupling SVM (BQPSO/SVM, binary PSO coupling SVM (BPSO/SVM, and genetic algorithm coupling SVM (GA/SVM are tested for feature gene selection and cancer classification on five microarray data sets, namely, Leukemia, Prostate, Colon, Lung, and Lymphoma. The experimental results show that BQPSO/SVM has significant advantages in accuracy, robustness, and the number of feature genes selected compared with the other two algorithms.

  4. Cancer Feature Selection and Classification Using a Binary Quantum-Behaved Particle Swarm Optimization and Support Vector Machine

    Science.gov (United States)

    Sun, Jun; Liu, Li; Fan, Fangyun; Wu, Xiaojun

    2016-01-01

    This paper focuses on the feature gene selection for cancer classification, which employs an optimization algorithm to select a subset of the genes. We propose a binary quantum-behaved particle swarm optimization (BQPSO) for cancer feature gene selection, coupling support vector machine (SVM) for cancer classification. First, the proposed BQPSO algorithm is described, which is a discretized version of original QPSO for binary 0-1 optimization problems. Then, we present the principle and procedure for cancer feature gene selection and cancer classification based on BQPSO and SVM with leave-one-out cross validation (LOOCV). Finally, the BQPSO coupling SVM (BQPSO/SVM), binary PSO coupling SVM (BPSO/SVM), and genetic algorithm coupling SVM (GA/SVM) are tested for feature gene selection and cancer classification on five microarray data sets, namely, Leukemia, Prostate, Colon, Lung, and Lymphoma. The experimental results show that BQPSO/SVM has significant advantages in accuracy, robustness, and the number of feature genes selected compared with the other two algorithms. PMID:27642363

  5. On cracking of charged anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M. [Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan); Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com [Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore-54590 (Pakistan)

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.

  6. Conservation of Charge and Conservation of Current

    OpenAIRE

    Eisenberg, Bob

    2016-01-01

    Conservation of current and conservation of charge are nearly the same thing: when enough is known about charge movement, conservation of current can be derived from conservation of charge, in ideal dielectrics, for example. Conservation of current is enforced implicitly in ideal dielectrics by theories that conserve charge. But charge movement in real materials like semiconductors or ionic solutions is never ideal. We present an apparently universal derivation of conservation of current and ...

  7. Longitudinal charge nurse leadership development and evaluation.

    Science.gov (United States)

    Krugman, Mary; Heggem, Laura; Kinney, Lisa Judd; Frueh, Margaret

    2013-09-01

    The study's aim was to examine longitudinal outcomes of a leadership program for permanent and relief charge nurse from 1996 to 2012 using action research and Kouzes and Posner's The Leadership Challenge conceptual frameworks. Charge nurses hold significant oversight of patient safety, quality, and team functioning. This study contributes knowledge regarding charge nurse leadership and organization outcomes associated with these essential roles over time. Data were collected over 6 time periods using Kouzes and Posner's The Leadership Practices Inventory (LPI) and internally developed action research tools. Surveys were aligned with leadership and work environment changes to examine outcomes. Charge nurse leadership LPI mean ratings improved. Relief charge nurses reached similar LPI outcomes by 2012, with no statistical differences in mean or domain scores. Action research methods facilitated executive decision making during change processes. Demographics shifted with younger charge nurses with less practice experience serving as charge nurses in the most recent years. Charge nurse leadership reported significant gains despite institutional changes and uneven delivery of educational interventions.

  8. Considerations on 'Harmonic balancing approach to nonlinear oscillations of a punctual charge in the electric field of charged ring'

    International Nuclear Information System (INIS)

    Belendez, A.; Fernandez, E.; Rodes, J.J.; Fuentes, R.; Pascual, I.

    2009-01-01

    In a previous short communication [A. Belendez, E. Fernandez, J.J. Rodes, R. Fuentes, I. Pascual, Phys. Lett. A 373 (2009) 735] the nonlinear oscillations of a punctual charge in the electric field of a charged ring were analyzed. Approximate frequency-amplitude relations and periodic solutions were obtained using the harmonic balance method. Now we clarify an important aspect about of this oscillation charge. Taking into account Earnshaw's theorem, this punctual charge cannot be a free charge and so it must be confined, for example, on a finite conducting wire placed along the axis of the ring. Then, the oscillatory system may consist of a punctual charge on a conducting wire placed along the axis of the uniformly charged ring.

  9. Charged weak currents

    International Nuclear Information System (INIS)

    Turlay, R.

    1979-01-01

    In this review of charged weak currents I shall concentrate on inclusive high energy neutrino physics. There are surely still things to learn from the low energy weak interaction but I will not discuss it here. Furthermore B. Tallini will discuss the hadronic final state of neutrino interactions. Since the Tokyo conference a few experimental results have appeared on charged current interaction, I will present them and will also comment on important topics which have been published during the last past year. (orig.)

  10. Organic n-type materials for charge transport and charge storage applications.

    Science.gov (United States)

    Stolar, Monika; Baumgartner, Thomas

    2013-06-21

    Conjugated materials have attracted much attention toward applications in organic electronics in recent years. These organic species offer many advantages as potential replacement for conventional materials (i.e., silicon and metals) in terms of cheap fabrication and environmentally benign devices. While p-type (electron-donating or hole-conducting) materials have been extensively reviewed and researched, their counterpart n-type (electron-accepting or electron-conducting) materials have seen much less popularity despite the greater need for improvement. In addition to developing efficient charge transport materials, it is equally important to provide a means of charge storage, where energy can be used on an on-demand basis. This perspective is focused on discussing a selection of representative n-type materials and the efforts toward improving their charge-transport efficiencies. Additionally, this perspective will also highlight recent organic materials for battery components and the efforts that have been made to improve their environmental appeal.

  11. Measurements of W Charge Asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Holzbauer, J. L. [Mississippi U.

    2015-10-06

    We discuss W boson and lepton charge asymmetry measurements from W decays in the electron channel, which were made using 9.7 fb$^{-1}$ of RunII data collected by the D0 detector at the Fermilab Tevatron Collider. The electron charge asymmetry is presented as a function of pseudo-rapidity out to |$\\eta$| $\\le$ 3.2, in five symmetric and asymmetric kinematic bins of electron transverse momentum and the missing transverse energy of the event. We also give the W charge asymmetry as a function of W boson rapidity. The asymmetries are compared with next-to-leading order perturbative quantum chromodynamics calculations. These charge asymmetry measurements will allow more accurate determinations of the proton parton distribution functions and are the most precise to date.

  12. Investigation of electron-beam charging for inertial-confinement-fusion targets. Charged Particle Research Laboratory report No. 3-82

    International Nuclear Information System (INIS)

    Kim, K.; Elsayed-Ali, H.E.

    1982-04-01

    Techniques for charging inertial confinement fusion targets using electron beam are investigated. A brief review of the various possible charging techniques is presented, along with a discussion of the advantages and disadvantages of each. The reasons for selecting the electron beam charging and a physical picture of the charging mechanism are described. Experimental results are presented and compared with the theoretical predictions

  13. Temperature Dependence of Charge Localization in High-Mobility, Solution-Crystallized Small Molecule Semiconductors Studied by Charge Modulation Spectroscopy

    DEFF Research Database (Denmark)

    Meneau, Aurélie Y. B.; Olivier, Yoann; Backlund, Tomas

    2016-01-01

    In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld-effect tran......In solution-processable small molecule semiconductors, the extent of charge carrier wavefunction localization induced by dynamic disorder can be probed spectroscopically as a function of temperature using charge modulation spectroscopy (CMS). Here, it is shown based on combined fi eld......-effect transistor and CMS measurements as a function of temperature that in certain molecular semiconductors, such as solution-processible pentacene, charge carriers become trapped at low temperatures in environments in which the charges become highly localized on individual molecules, while in some other molecules...

  14. Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs

    International Nuclear Information System (INIS)

    Lunz, Benedikt; Yan, Zexiong; Gerschler, Jochen Bernhard; Sauer, Dirk Uwe

    2012-01-01

    The profitability of plug-in hybrid electric vehicles (PHEVs) is significantly influenced by battery aging and electricity costs. Therefore a simulation model for PHEVs in the distribution grid is presented which allows to compare the influence of different charging strategies on these costs. The simulation is based on real-world driving behavior and European Energy Exchange (EEX) intraday prices for obtaining representative results. The analysis of comprehensive lithium-ion battery aging tests performed within this study shows that especially high battery states of charge (SOCs) decrease battery lifetime, whereas the cycling of batteries at medium SOCs only has a minor contribution to aging. Charging strategies that take into account the previously mentioned effects are introduced, and the SOC distributions and cycle loads of the vehicle battery are investigated. It can be shown that appropriate charging strategies significantly increase battery lifetime and reduce charging costs at the same time. Possible savings due to lifetime extension of the vehicle battery are approximately two times higher than revenues due to energy trading. The findings of this work indicate that car manufacturers and energy/mobility providers have to make efforts for developing intelligent charging strategies to reduce mobility costs and thus foster the introduction of electric mobility. - Highlights: ► Modeling of PHEVs based on real-world driving behavior and electricity prices. ► Consideration of battery degradation for the calculation of mobility costs. ► Smart charging decreases battery degradation and electricity costs simultaneously. ► Reduction of battery degradation costs is around two times higher than reduction of electricity costs.

  15. 20 CFR 410.692 - Hearing on charges.

    Science.gov (United States)

    2010-04-01

    ..., Finality of Decisions, and Representation of Parties § 410.692 Hearing on charges. (a) Hearing officer... the hearing shall be made and transcribed in all cases. (k) Representation. The individual charged may... dismiss the charges in the event of the death of the individual charged. (n) Cost of transcript. On the...

  16. Summary of classical general relativity workshop

    Indian Academy of Sciences (India)

    In the classical general relativity workshop, ten lectures were presented on various topics. The topics included aspects of black-hole physics, gravitational collapse and the formation of black holes, specific stellar models like a superdense star, method of extracting solutions by exploiting Noether symmetry, brane world and.

  17. Nuclear fuel pellet charging device

    International Nuclear Information System (INIS)

    Komuro, Kojiro.

    1990-01-01

    The present invention concerns a nuclear fuel pellet loading device, in which nuclear fuel pellets are successively charged from an open end of a fuel can while rotating the can. That is, a fuel can sealed at one end with an end plug and opened at the other end is rotated around its pipe axis as the center on a rotationally diriving table. During rotation of the fuel can, nuclear fuel pellets are successively charged by means of a feed rod of a feeding device to the inside of the fuel can. The fuel can is rotated while being supported horizontally and the fuel pellets are charged from the open end thereof. Alternatively, the fuel can is rotated while being supported obliquely and the fuel pellets are charged gravitationally into the fuel can. In this way, the damages to the barrier of the fuel can can be reduce. Further, since the fuel pellets can be charged gravitationally by rotating the fuel can while being supported obliquely, the damages to the barrier can be reduced remarkably. (I.S.)

  18. Electrostatics with Computer-Interfaced Charge Sensors

    Science.gov (United States)

    Morse, Robert A.

    2006-01-01

    Computer interfaced electrostatic charge sensors allow both qualitative and quantitative measurements of electrostatic charge but are quite sensitive to charges accumulating on modern synthetic materials. They need to be used with care so that students can correctly interpret their measurements. This paper describes the operation of the sensors,…

  19. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  20. Gravitational field of charged gyratons

    Energy Technology Data Exchange (ETDEWEB)

    Frolov, Valeri P [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2J1 (Canada); Zelnikov, Andrei [Theoretical Physics Institute, University of Alberta, Edmonton, Alberta, T6G 2J1 (Canada); Lebedev Physics Institute, Leninsky prospect 53, 119 991, Moscow (Russian Federation)

    2006-03-21

    We study relativistic gyratons which carry an electric charge. The Einstein-Maxwell equations in arbitrary dimensions are solved exactly in the case of a charged gyraton propagating in an asymptotically flat metric.

  1. Simulating charge transport to understand the spectral response of Swept Charge Devices

    Science.gov (United States)

    Athiray, P. S.; Sreekumar, P.; Narendranath, S.; Gow, J. P. D.

    2015-11-01

    Context. Swept Charge Devices (SCD) are novel X-ray detectors optimized for improved spectral performance without any demand for active cooling. The Chandrayaan-1 X-ray Spectrometer (C1XS) experiment onboard the Chandrayaan-1 spacecraft used an array of SCDs to map the global surface elemental abundances on the Moon using the X-ray fluorescence (XRF) technique. The successful demonstration of SCDs in C1XS spurred an enhanced version of the spectrometer on Chandrayaan-2 using the next-generation SCD sensors. Aims: The objective of this paper is to demonstrate validation of a physical model developed to simulate X-ray photon interaction and charge transportation in a SCD. The model helps to understand and identify the origin of individual components that collectively contribute to the energy-dependent spectral response of the SCD. Furthermore, the model provides completeness to various calibration tasks, such as generating spectral matrices (RMFs - redistribution matrix files), estimating efficiency, optimizing event selection logic, and maximizing event recovery to improve photon-collection efficiency in SCDs. Methods: Charge generation and transportation in the SCD at different layers related to channel stops, field zones, and field-free zones due to photon interaction were computed using standard drift and diffusion equations. Charge collected in the buried channel due to photon interaction in different volumes of the detector was computed by assuming a Gaussian radial profile of the charge cloud. The collected charge was processed further to simulate both diagonal clocking read-out, which is a novel design exclusive for SCDs, and event selection logic to construct the energy spectrum. Results: We compare simulation results of the SCD CCD54 with measurements obtained during the ground calibration of C1XS and clearly demonstrate that our model reproduces all the major spectral features seen in calibration data. We also describe our understanding of interactions at

  2. Decentralized Electric Vehicle Charging Strategies for Reduced Load Variation and Guaranteed Charge Completion in Regional Distribution Grids

    Directory of Open Access Journals (Sweden)

    Weige Zhang

    2017-01-01

    Full Text Available A novel, fully decentralized strategy to coordinate charge operation of electric vehicles is proposed in this paper. Based on stochastic switching control of on-board chargers, this strategy ensures high-efficiency charging, reduces load variations to the grid during charging periods, achieves charge completion with high probability, and accomplishes approximate “valley-filling”. Further improvements on the core strategy, including individualized power management, adaptive strategies, and battery support systems, are introduced to further reduce power fluctuation variances and to guarantee charge completion. Stochastic analysis is performed to establish the main properties of the strategies and to quantitatively show the performance improvements. Compared with the existing decentralized charging strategies, the strategies proposed in this paper can be implemented without any information exchange between grid operators and electric vehicles (EVs, resulting in a communications cost reduction. Additionally, it is shown that by using stochastic charging rules, a grid-supporting battery system with a very small energy capacity can achieve substantial reduction of EV load fluctuations with high confidence. An extensive set of simulations and case studies with real-world data are used to demonstrate the benefits of the proposed strategies.

  3. Journal of Astrophysics and Astronomy | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2016-01-27

    Jan 27, 2016 ... We present a charged analogue of Pant et al. (2010, Astrophys.Space Sci., 330, 353) solution of the general relativistic field equations in isotropic coordinates by using simple form of electric intensity E that involve charge parameter K . Our solution is well behaved in all respects for all values of X lying in ...

  4. Charging electric vehicles from solar energy : Power converter, charging algorithm and system design

    NARCIS (Netherlands)

    Chandra Mouli, G.R.

    2018-01-01

    Electric vehicles are only sustainable if the electricity used to charge them comes from renewable sources and not from fossil fuel based power plants. The goal of this PhD thesis is to develop a highly efficient, V2G-enabled smart charging system for electric vehicles at

  5. Structure and stability of charged colloid-nanoparticle mixtures

    Science.gov (United States)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  6. Spacecraft Surface Charging Handbook

    Science.gov (United States)

    1992-11-01

    Charging of Large Spwc Structure• . in Polut Otbil.’" Prweedings of thre Air For’e Grespykirs fitrano, W4r4 nop em Natural Charging of large Space Stru, ures...3, p. 1433- 1440, 1991. Bowman, C., Bogorad, A., Brucker, G., Seehra, S., and Lloyd, T., "ITO-Coated RF Transparent Materials for Antenna Sunscreen

  7. Event-driven charge-coupled device design and applications therefor

    Science.gov (United States)

    Doty, John P. (Inventor); Ricker, Jr., George R. (Inventor); Burke, Barry E. (Inventor); Prigozhin, Gregory Y. (Inventor)

    2005-01-01

    An event-driven X-ray CCD imager device uses a floating-gate amplifier or other non-destructive readout device to non-destructively sense a charge level in a charge packet associated with a pixel. The output of the floating-gate amplifier is used to identify each pixel that has a charge level above a predetermined threshold. If the charge level is above a predetermined threshold the charge in the triggering charge packet and in the charge packets from neighboring pixels need to be measured accurately. A charge delay register is included in the event-driven X-ray CCD imager device to enable recovery of the charge packets from neighboring pixels for accurate measurement. When a charge packet reaches the end of the charge delay register, control logic either dumps the charge packet, or steers the charge packet to a charge FIFO to preserve it if the charge packet is determined to be a packet that needs accurate measurement. A floating-diffusion amplifier or other low-noise output stage device, which converts charge level to a voltage level with high precision, provides final measurement of the charge packets. The voltage level is eventually digitized by a high linearity ADC.

  8. Programmable multi-node quantum network design and simulation

    Science.gov (United States)

    Dasari, Venkat R.; Sadlier, Ronald J.; Prout, Ryan; Williams, Brian P.; Humble, Travis S.

    2016-05-01

    Software-defined networking offers a device-agnostic programmable framework to encode new network functions. Externally centralized control plane intelligence allows programmers to write network applications and to build functional network designs. OpenFlow is a key protocol widely adopted to build programmable networks because of its programmability, flexibility and ability to interconnect heterogeneous network devices. We simulate the functional topology of a multi-node quantum network that uses programmable network principles to manage quantum metadata for protocols such as teleportation, superdense coding, and quantum key distribution. We first show how the OpenFlow protocol can manage the quantum metadata needed to control the quantum channel. We then use numerical simulation to demonstrate robust programmability of a quantum switch via the OpenFlow network controller while executing an application of superdense coding. We describe the software framework implemented to carry out these simulations and we discuss near-term efforts to realize these applications.

  9. Solar Charged Stand Alone Inverter

    OpenAIRE

    M.Vasugi; Prof R.Jayaraman

    2014-01-01

    This paper deals with solar powered stand alone inverter which converts the variable dc output of a photovoltaic solar panel into ac that can be fed to loads. Stand alone inverters are used in systems where the inverter get its energy from batteries charged by photo voltaic arrays. A charge controller limits the rate at which electric current is added to or drawn from electric batteries. This charge discharge controller is needed to prevent the battery from being overcharged o...

  10. 7 CFR 1767.23 - Interest charges.

    Science.gov (United States)

    2010-01-01

    ... charges. The interest charges accounts identified in this section shall be used by all RUS borrowers... Charges 427Interest on Long-Term Debt A. This account shall include the amount of interest on outstanding long-term debt issued or assumed by the utility, the liability for which included in Account 221, Bonds...

  11. Determination of charged particle beam parameters with taking into account of space charge

    International Nuclear Information System (INIS)

    Ishkhanov, B.S.; Poseryaev, A.V.; Shvedunov, V.I.

    2005-01-01

    One describes a procedure to determine the basic parameters of a paraxial axially-symmetric beam of charged particles taking account of space charge contribution. The described procedure is based on application of the general equation for beam envelope. Paper presents data on its convergence and resistance to measurement errors. The position determination error of crossover (stretching) and radius of beam in crossover is maximum 15% , while the emittance determination error depends on emittance and space charge correlation. The introduced procedure was used to determine parameters of the available electron gun 20 keV energy beam with 0.64 A current. The derived results turned to agree closely with the design parameters [ru

  12. Afferent input selects NMDA receptor subtype to determine the persistency of hippocampal LTP in freely behaving mice

    Directory of Open Access Journals (Sweden)

    Jesús Javier Ballesteros

    2016-10-01

    Full Text Available The glutamatergic N-methyl-D-aspartate receptor (NMDAR is critically involved in many forms of hippocampus-dependent memory that may be enabled by synaptic plasticity. Behavioral studies with NMDAR antagonists and NMDAR subunit (GluN2 mutants revealed distinct contributions from GluN2A- and GluN2B-containing NMDARs to rapidly and slowly acquired memory performance. Furthermore, studies of synaptic plasticity, in genetically modified mice in vitro, suggest that GluN2A and GluN2B may contribute in different ways to the induction and longevity of synaptic plasticity. In contrast to the hippocampal slice preparation, in behaving mice, the afferent frequencies that induce synaptic plasticity are very restricted and specific. In fact, it is the stimulus pattern, and not variations in afferent frequency that determine the longevity of long-term potentiation (LTP. Here, we explored the contribution of GluN2A and GluN2B to LTP of differing magnitudes and persistencies in freely behaving mice. We applied differing high-frequency stimulation (HFS patterns at 100 Hz to the hippocampal CA1 region, to induce NMDAR-dependent LTP in wild-type (WT mice, that endured for 24h (late (L-LTP. In GluN2A-KO mice, E-LTP (HFS, 50 pulses was significantly reduced in magnitude and duration, whereas LTP (HFS, 2 x 50 pulses and L-LTP (HFS, 4 x 50 pulses were unaffected compared to responses in WT animals. By contrast, pharmacological antagonism of GluN2B in WT had no effect on E-LTP but significantly prevented LTP. E- LTP and LTP were significantly impaired by GluN2B antagonism in GluN2A-KO mice. These data indicate that the pattern of afferent stimulation is decisive for the recruitment of distinct GluN2A and GluN2B signaling pathways that in turn determine the persistency of hippocampal LTP. Whereas brief bursts of patterned stimulation preferentially recruit GluN2A and lead to weak and short-lived forms of LTP, prolonged, more intense, afferent activation recruits GluN2B

  13. Laying hens behave differently in artificially and naturally sourced ammoniated environments.

    Science.gov (United States)

    Pokharel, B B; Dos Santos, V M; Wood, D; Van Heyst, B; Harlander-Matauschek, A

    2017-12-01

    Laying hens are chronically exposed to high levels of ammonia (NH3), one of the most abundant aerial pollutants in poultry houses. Tests for aversion to NH3 in laying hens have used artificially sourced NH3/air mixtures (i.e., from a gas cylinder) showing that birds prefer fresh air to NH3. However, artificially sourced NH3/air mixtures may not accurately reflect barn air conditions, where manure emits a variety of gases. Herein, we investigated whether laying hens differentiate between artificially and naturally sourced NH3/air mixtures and how exposure to NH3 affects foraging and aversive behavior. A total of 20 laying hens was exposed to artificially sourced [A] (from an anhydrous NH3 cylinder) and naturally sourced [N] (from conspecific laying hen excreta) gas mixtures. Hens were exposed to A and N mixtures with NH3 concentrations of 25 and 45 ppm, as well as fresh air [FA]. During the experiment, all birds were exposed to each treatment 3 times using a custom-built polycarbonate chamber, containing a foraging area (containing raisins, mealworms, and feed mix) and a gas delivery system. All testing sessions were video recorded, analyzed with INTERACT® software, and subjected to a GLIMMIX procedure in SAS. Our results showed that the laying hens spent less time foraging overall (P hens were more likely to forage for a longer time (with fewer interruptions) in N than in A treatments (P hens also reacted with greater aversion towards treatment A compared to treatment N (P hens of our study preferred fresh to ammoniated air and that they behaved differently in artificially and naturally sourced NH3/air mixtures, possibly due to the presence of familiar stimuli from the excreta. These findings have implications for new developments in methodological approaches for behavioral testing and for recommendations regarding NH3 levels inside poultry barns. © 2017 Poultry Science Association Inc.

  14. Correction of the deterministic part of space–charge interaction in momentum microscopy of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Schönhense, G., E-mail: schoenhense@uni-mainz.de [Institut für Physik, Johannes Gutenberg-Universität, 55128 Mainz (Germany); Medjanik, K. [Institut für Physik, Johannes Gutenberg-Universität, 55128 Mainz (Germany); Tusche, C. [Max-Planck-Institut für Mikrostrukturphysik, 06120 Halle (Germany); Loos, M. de; Geer, B. van der [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Scholz, M.; Hieke, F.; Gerken, N. [Physics Department and Center for Free-Electron Laser Science, Univ. Hamburg, 22761 Hamburg (Germany); Kirschner, J. [Max-Planck-Institut für Mikrostrukturphysik, 06120 Halle (Germany); Wurth, W. [Physics Department and Center for Free-Electron Laser Science, Univ. Hamburg, 22761 Hamburg (Germany); DESY Photon Science, 22607 Hamburg (Germany)

    2015-12-15

    Ultrahigh spectral brightness femtosecond XUV and X-ray sources like free electron lasers (FEL) and table-top high harmonics sources (HHG) offer fascinating experimental possibilities for analysis of transient states and ultrafast electron dynamics. For electron spectroscopy experiments using illumination from such sources, the ultrashort high-charge electron bunches experience strong space–charge interactions. The Coulomb interactions between emitted electrons results in large energy shifts and severe broadening of photoemission signals. We propose a method for a substantial reduction of the effect by exploiting the deterministic nature of space–charge interaction. The interaction of a given electron with the average charge density of all surrounding electrons leads to a rotation of the electron distribution in 6D phase space. Momentum microscopy gives direct access to the three momentum coordinates, opening a path for a correction of an essential part of space–charge interaction. In a first experiment with a time-of-flight momentum microscope using synchrotron radiation at BESSY, the rotation in phase space became directly visible. In a separate experiment conducted at FLASH (DESY), the energy shift and broadening of the photoemission signals were quantified. Finally, simulations of a realistic photoemission experiment including space–charge interaction reveals that a gain of an order of magnitude in resolution is possible using the correction technique presented here. - Highlights: • Photoemission spectromicroscopy with high-brightness pulsed sources is examined. • Deterministic interaction of an electron with the average charge density can be corrected. • Requires a cathode-lens type microscope optimized for best k-resolution in reciprocal plane. • Extractor field effectively separates pencil beam of secondary electrons from true signal. • Simulations reveal one order of magnitude gain in resolution.

  15. 22 CFR 901.17 - Charged employee.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Charged employee. 901.17 Section 901.17 Foreign Relations FOREIGN SERVICE GRIEVANCE BOARD GENERAL Meanings of Terms As Used in This Chapter § 901.17 Charged employee. Charged employee means a member of the Senior Foreign Service or a member of the Service assigned...

  16. Electrostatic charges generated on aerosolisation of dispersions

    International Nuclear Information System (INIS)

    Wang, Yanyang

    2001-01-01

    In responding to the international community's agreement of phasing out chlorofluorocarbon (CFC) propellants by the year 2000, hydrofluoroalkane (HFA) has been chosen to replace CFCs. Intensive investigations related to the new propellant products have been carried out. Aerosol electrostatics is one of the topics investigated. To understand and subsequently control the charging processes is the motive of the research reported here. To help elucidate the complex charging process occurring naturally during atomization of liquids from pressurised Metered Dose Inhalers (pMDIs), it has been broken down into a sequence of related, simpler sub processes-drop charging, streaming current charging (coarse spray), splashing charging and fine spray charging. Our initial studies are of single drops forming at and breaking away from the tips of capillary tubes. The drop forming processes are so slow that any hydrodynamic effect can be dismissed. Then the charge on the drop is measured. It is found that the charge on water drops is always negative (∼ 10 -14 C) at field-free condition and the magnitude of the charge increases as the drop size increases and the surrounding tube diameter decreases. With salt solutions, the charge on drops is negative at dilute solutions, decreases in magnitude as the concentration of electrolytes increases and finally reverses the sign of charge at approximately 1 M - drop charge becomes positive. All these experimental results can be explained in terms of contact potential between liquid and the inner wall of the capillary, which sets up an electric field between the pendant drop and the surrounding tube. Then computational simulation work is carried out and the data are compared with experimental results. It is found that the computer simulation data are in accord with experimental observations. This is a potential method to measure absolute potential difference between a liquid and a solid. Secondly, the hydrodynamic processes are investigated

  17. Search milli-charged particles at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Langeveld, W.G.J. [Stanford Univ., CA (United States)

    1997-01-01

    Particles with electric charge q {triple_bond} Qe {le} 10{sup -3} e and masses in the range 1-1000 MeV/c{sup 2} are not excluded by present experiments or by astrophysical or cosmological arguments. A beam dump experiment uniquely suited to the detection of such {open_quotes}milli-charged{close_quotes} particles has been carried out at SLAC, utilizing the short-duration pulses of the SLC electron beam to establish a tight coincidence window for the signal. The detector, a large scintillation counter sensitive to very small energy depositions, provided much greater sensitivity than previous searches. Analysis of the data leads to the exclusion of a substantial portion of the charge-mass plane. In this report, a preliminary mass-dependent upper limit is presented for the charge of milli-charged particles, ranging from Q = 1.7 x 10{sup -5} at milli-charged particle mass 0.1 MeV/c{sup 2} to Q = 9.5 x 10{sup -4} at 100 MeV/c{sup 2}.

  18. Nonextensive electron and ion dust charging currents

    International Nuclear Information System (INIS)

    Amour, Rabia; Tribeche, Mouloud

    2011-01-01

    The correct nonextensive electron and ion charging currents are presented for the first time based on the orbit motion limited approach. For -1< q<1, where q measures the amount of plasma nonextensivity, the nonextensive electron charging current is expressed in terms of the hypergeometric function. The variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to investigate succinctly the effects of nonextensive charge carriers. The obtained formulas bring a possibility to build theories on nonlinear collective process in variable charge nonextensive dusty plasmas.

  19. Charge pulse preamplifier

    International Nuclear Information System (INIS)

    Libs, Gerard.

    1973-01-01

    A charge pulse preamplifier with very low background noise is described. The inlet stage of that preamplifier comprises a cooled field-effect transistor receiving the signal to be amplified at its gate input. Preferably, the charge resistor of said transistor is a field effect transistor, the source inlet of which is connected to the drain inlet of the former transistor through a self-induction coil and a resistor mounted in series. This can be applied to the treatment of the signals delivered by a particle detector in the form of a semi-conductor [fr

  20. Charge Splitting In Situ Recorder (CSIR) for Real-Time Examination of Plasma Charging Effect in FinFET BEOL Processes

    Science.gov (United States)

    Tsai, Yi-Pei; Hsieh, Ting-Huan; Lin, Chrong Jung; King, Ya-Chin

    2017-09-01

    A novel device for monitoring plasma-induced damage in the back-end-of-line (BEOL) process with charge splitting capability is first-time proposed and demonstrated. This novel charge splitting in situ recorder (CSIR) can independently trace the amount and polarity of plasma charging effects during the manufacturing process of advanced fin field-effect transistor (FinFET) circuits. Not only does it reveal the real-time and in situ plasma charging levels on the antennas, but it also separates positive and negative charging effect and provides two independent readings. As CMOS technologies push for finer metal lines in the future, the new charge separation scheme provides a powerful tool for BEOL process optimization and further device reliability improvements.

  1. Surface Charging and Points of Zero Charge

    CERN Document Server

    Kosmulski, Marek

    2009-01-01

    Presents Points of Zero Charge data on well-defined specimen of materials sorted by trademark, manufacturer, and location. This text emphasizes the comparison between particular results obtained for different portions of the same or very similar material and synthesizes the information published in research reports over the past few decades

  2. Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type

    Energy Technology Data Exchange (ETDEWEB)

    McLaren, Joyce [National Renewable Energy Lab. (NREL), Golden, CO (United States); Miller, John [National Renewable Energy Lab. (NREL), Golden, CO (United States); O' Shaughnessy, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wood, Eric [National Renewable Energy Lab. (NREL), Golden, CO (United States); Shapiro, Evan [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-11

    With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.

  3. An induced charge readout scheme incorporating image charge splitting on discrete pixels

    International Nuclear Information System (INIS)

    Kataria, D.O.; Lapington, J.S.

    2003-01-01

    Top hat electrostatic analysers used in space plasma instruments typically use microchannel plates (MCPs) followed by discrete pixel anode readout for the angular definition of the incoming particles. Better angular definition requires more pixels/readout electronics channels but with stringent mass and power budgets common in space applications, the number of channels is restricted. We describe here a technique that improves the angular definition using induced charge and an interleaved anode pattern. The technique adopts the readout philosophy used on the CRRES and CLUSTER I instruments but has the advantages of the induced charge scheme and significantly reduced capacitance. Charge from the MCP collected by an anode pixel is inductively split onto discrete pixels whose geometry can be tailored to suit the scientific requirements of the instrument. For our application, the charge is induced over two pixels. One of them is used for a coarse angular definition but is read out by a single channel of electronics, allowing a higher rate handling. The other provides a finer angular definition but is interleaved and hence carries the expense of lower rate handling. Using the technique and adding four channels of electronics, a four-fold increase in the angular resolution is obtained. Details of the scheme and performance results are presented

  4. The electric charge of neutrinos and plasmon decay

    CERN Document Server

    Altherr, Tanguy

    1994-01-01

    By using both thermal field theory and a somewhat more intuitive method, we define the electric charge as well as the charge radius of neutrinos propagating inside a plasma. We show that electron neutrinos acquire a charge radius of order $\\sim 6.5 \\times 10^{-16}$ cm, regardless of the properties of the medium. Then, we compute the rate of plasmon decay which such an electric charge or a charge radius implies. Taking into account the relativistic effects of the degenerate electron gas, we compare our results to various approximations as well as to recent calculations and determine the regimes where the electric charge or the charge radius does mediate the decay of plasmons. Finally, we discuss the stellar limits on any anomalous charge radius of neutrinos.

  5. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry.

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J; Elwakil, Ahmed S; Maundy, Brent J

    2016-12-09

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal R s C behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics [corrected]. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance R s in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (R s , Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical R s C model. We validate our formulae with the experimental measurements of different EDLCs.

  6. Reevaluation of Performance of Electric Double-layer Capacitors from Constant-current Charge/Discharge and Cyclic Voltammetry

    Science.gov (United States)

    Allagui, Anis; Freeborn, Todd J.; Elwakil, Ahmed S.; Maundy, Brent J.

    2016-12-01

    The electric characteristics of electric-double layer capacitors (EDLCs) are determined by their capacitance which is usually measured in the time domain from constant-current charging/discharging and cyclic voltammetry tests, and from the frequency domain using nonlinear least-squares fitting of spectral impedance. The time-voltage and current-voltage profiles from the first two techniques are commonly treated by assuming ideal SsC behavior in spite of the nonlinear response of the device, which in turn provides inaccurate values for its characteristic metrics. In this paper we revisit the calculation of capacitance, power and energy of EDLCs from the time domain constant-current step response and linear voltage waveform, under the assumption that the device behaves as an equivalent fractional-order circuit consisting of a resistance Rs in series with a constant phase element (CPE(Q, α), with Q being a pseudocapacitance and α a dispersion coefficient). In particular, we show with the derived (Rs, Q, α)-based expressions, that the corresponding nonlinear effects in voltage-time and current-voltage can be encompassed through nonlinear terms function of the coefficient α, which is not possible with the classical RsC model. We validate our formulae with the experimental measurements of different EDLCs.

  7. Tokamak rotation and charge exchange

    International Nuclear Information System (INIS)

    Hazeltine, R.D.; Rowan, W.L.; Solano, E.R.; Valanju, P.M.

    1991-01-01

    In the absence of momentum input, tokamak toroidal rotation rates are typically small - no larger in particular than poloidal rotation - even when the radial electric field is strong, as near the plasma edge. This circumstance, contradicting conventional neoclassical theory, is commonly attributed to the rotation damping effect of charge exchange, although a detailed comparison between charge-exchange damping theory and experiment is apparently unavailable. Such a comparison is attempted here in the context of recent TEXT experiments, which compare rotation rates, both poloidal and toroidal, in helium and hydrogen discharges. The helium discharges provide useful data because they are nearly free of ion-neutral charge exchange; they have been found to rotate toroidally in reasonable agreement with neoclassical predictions. The hydrogen experiments show much smaller toroidal motion as usual. The theoretical calculation uses the full charge-exchange operator and assumes plateau collisionality, roughly consistent with the experimental conditions. The authors calculate the ion flow as a function of v cx /v c , where v cx is the charge exchange rate and v c the Coulomb collision frequency. The results are in reasonable accord with the observations. 1 ref

  8. F + centre generation in MgO crystals at high density of excitation by accelerated electrons of subthreshold energy

    Science.gov (United States)

    Annenkov, Y. M.; Surzhikov, A. P.; Surzhikov, V. P.; Pogrebnjak, A. D.

    1981-07-01

    Optical absorption spectra and the angular distribution of annihilated positrons in MgO crystals irradiated by subtreshold superdense electron pulses are measured. The experimental results obtained show the effective contribution of the creation mechanism of non-impact radiation defects in MgO crystals at the highest electron irradiation densities.

  9. Charge-imbalance fluctuations in superconductors

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1981-01-01

    We calculate that the mean-square amplitude of the fluctuations of the condensate chemical potential μ/sub s/ due to charge-imbalance fluctuations in the limit Δ/k/sub B/T 2 > = 2(k/sub B/T) 2 /πdeltaΩN(0) in a volume Ω of superconductor. We relate these fluctuations via Nyquist's theorem to measured values of the contribution of self-injected charge imbalance to the dc resistance of SIN tunnel junctions. In this relation the dynamic charge-imbalance relaxation rate is 1/tau/sub E/, the electron-phonon scattering rate

  10. Charge density waves in solids

    CERN Document Server

    Gor'kov, LP

    2012-01-01

    The latest addition to this series covers a field which is commonly referred to as charge density wave dynamics.The most thoroughly investigated materials are inorganic linear chain compounds with highly anisotropic electronic properties. The volume opens with an examination of their structural properties and the essential features which allow charge density waves to develop.The behaviour of the charge density waves, where interesting phenomena are observed, is treated both from a theoretical and an experimental standpoint. The role of impurities in statics and dynamics is considered and an

  11. The net charge at interfaces between insulators

    International Nuclear Information System (INIS)

    Bristowe, N C; Littlewood, P B; Artacho, Emilio

    2011-01-01

    The issue of the net charge at insulating oxide interfaces is briefly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge at such interfaces is defined by the counting of discrete electrons and core ion charges, and by the definition of the reference polarization of the separate, unperturbed bulk materials. The arguments are illustrated for the case of a thin film of LaAlO 3 over SrTiO 3 in the absence of free carriers, for which the net charge is exactly 0.5e per interface formula unit, if the polarization response in both materials is referred to zero bulk values. Further consequences of the argument are extracted for structural and chemical alterations of such interfaces, in which internal rearrangements are distinguished from extrinsic alterations (changes of stoichiometry, redox processes), only the latter affecting the interfacial net charge. The arguments are reviewed alongside the proposal of Stengel and Vanderbilt (2009 Phys. Rev. B 80 241103) of using formal polarization values instead of net interfacial charges, based on the interface theorem of Vanderbilt and King-Smith (1993 Phys. Rev. B 48 4442-55). Implications for non-centrosymmetric materials are discussed, as well as for interfaces for which the charge mismatch is an integer number of polarization quanta. (viewpoint)

  12. Factors affecting the electrostatic charge of ceramic powders

    International Nuclear Information System (INIS)

    Lorite, I.; Romero, J.; Fernandez, J. F.

    2011-01-01

    The phenomenon of electrostatic charge in ceramic powders takes place when the particle surfaces enter in contact between them or with the containers. The accumulation of electrostatic charge is of relevance in ceramic powders in view of their insulating character and the risk of explosions during the material handling. In this work the main factors that affect the appearance of intrinsic charge and tribo-charge in ceramic powder have been studied. In ceramic powders of alumina it has been verified that the smallest particle sizes present an increase of the electrostatic charge of negative polarity. A correlation has been observed between the nature of the OH -surface groups and the electrostatic charge. The intrinsic charge and the tribocharge in ceramic powders can be diminished by compensating the surface groups that support the charge. The dry dispersion of nanoparticles on microparticles allows surface charge compensation with a noticeable modification of the powder agglomeration. (Author) 19 refs.

  13. Economic Analysis of Different Electric Vehicle Charging Scenarios

    Science.gov (United States)

    Ying, Li; Haiming, Zhou; Xiufan, Ma; Hao, Wang

    2017-05-01

    Influence of electric vehicles (EV) to grid cannot be ignored. Research on the economy analysis of different charging scenarios is helpful to guide the user to charge or discharge orderly. EV charging models are built such as disordered charging, valley charging, intelligent charging, and V2G (Vehicle to Grid), by which changes of charging load in different scenarios can be seen to analyze the influence to initial load curve, and comparison can be done about user’s average cost. Monte Carlo method is used to simulate the electric vehicle charging behavior, cost in different charging scenarios are compared, social cost is introduced in V2G scene, and the relationship between user’s average cost and social cost is analyzed. By test, it is proved that user’s cost is the lowest in V2G scenario, and the larger the scale of vehicles is, the more the social cost can save.

  14. Charged Particle Radiography

    International Nuclear Information System (INIS)

    Morris, Chris

    2004-01-01

    The Coulomb multiple scattering of charged particles as they pass through material allows them to be used as a radiographic probe. This forms the basis for a new kind of radiography that is finding application where conventional x-ray radiography is limited by flux or backgrounds. Charged-particle radiography is providing a versatile new probe that has advantages over conventional x-ray radiography for some unique application. Proton radiography has been used to make quantitative motion pictures of high explosive driven experiments and proves to be of great value for radiographing experiments that mock up nuclear weapon primaries for stockpile certification. By taking advantage of magnetic lens to magnify images and by using the very bright beams that can be made with electrons, charged-particle radiography may be useful for studying the fine spatial detail and very fast motion in laser driven implosion experiments at the National Ignition Facility. Finally, radiographs can be made using cosmic-ray muons for searching vehicles and cargo containers for surreptitious cargo of high z materials such as uranium or plutonium.

  15. Space charge effects: tune shifts and resonances

    International Nuclear Information System (INIS)

    Weng, W.T.

    1986-08-01

    The effects of space charge and beam-beam interactions on single particle motion in the transverse degree of freedom are considered. The space charge force and the resulting incoherent tune shift are described, and examples are given from the AGS and CERN's PSB. Equations of motion are given for resonances in the presence of the space charge force, and particle behavior is examined under resonance and space charge conditions. Resonance phase space structure is described with and without space charge. Uniform and bunched beams are compared. Beam-beam forces and resonances and beam-beam detuning are described. 18 refs., 15 figs

  16. 12 CFR 226.4 - Finance charge.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Finance charge. 226.4 Section 226.4 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE SYSTEM TRUTH IN LENDING (REGULATION Z) General § 226.4 Finance charge. (a) Definition. The finance charge is the cost of consumer credit as a dollar amount. It...

  17. The charged black-hole bomb: A lower bound on the charge-to-mass ratio of the explosive scalar field

    Science.gov (United States)

    Hod, Shahar

    2016-04-01

    The well-known superradiant amplification mechanism allows a charged scalar field of proper mass μ and electric charge q to extract the Coulomb energy of a charged Reissner-Nordström black hole. The rate of energy extraction can grow exponentially in time if the system is placed inside a reflecting cavity which prevents the charged scalar field from escaping to infinity. This composed black-hole-charged-scalar-field-mirror system is known as the charged black-hole bomb. Previous numerical studies of this composed physical system have shown that, in the linearized regime, the inequality q / μ > 1 provides a necessary condition for the development of the superradiant instability. In the present paper we use analytical techniques to study the instability properties of the charged black-hole bomb in the regime of linearized scalar fields. In particular, we prove that the lower bound q/μ>√{rm /r- - 1/ rm /r+ - 1 } provides a necessary condition for the development of the superradiant instability in this composed physical system (here r± are the horizon radii of the charged Reissner-Nordström black hole and rm is the radius of the confining mirror). This analytically derived lower bound on the superradiant instability regime of the composed black-hole-charged-scalar-field-mirror system is shown to agree with direct numerical computations of the instability spectrum.

  18. The Effect of Ketone Defects on the Charge Transport and Charge Recombination in Polyfluorenes

    NARCIS (Netherlands)

    Kuik, Martijn; Wetzelaer, Gert-Jan A. H.; Ladde, Jurre G.; Nicolai, Herman T.; Wildeman, Jurjen; Sweelssen, Jorgen; Blom, Paul W. M.; Sweelssen, Jörgen

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  19. The effect of ketone defects on the charge transport and charge recombination in polyfluorenes

    NARCIS (Netherlands)

    Kuik, M.; Wetzelaer, G.-J.A.H.; Laddé, J.G.; Nicolai, H.T.; Wildeman, J.; Sweelssen, J.; Blom, P.W.M.

    2011-01-01

    The effect of on-chain ketone defects on the charge transport of the polyfluorene derivative poly(9,9-dioctylfluorene) (PFO) is investigated. Using MoO3 as ohmic hole contact, the hole transport in a pristine PFO diode is observed to be limited by space-charge, whereas fluorenone contaminated PFO

  20. Lie n-algebras of BPS charges

    Energy Technology Data Exchange (ETDEWEB)

    Sati, Hisham [University of Pittsburgh,Pittsburgh, PA, 15260 (United States); Mathematics Program, Division of Science and Mathematics, New York University Abu Dhabi,Saadiyat Island, Abu Dhabi (United Arab Emirates); Schreiber, Urs [Mathematics Institute of the Academy,Žitna 25, Praha 1, 115 67 (Czech Republic)

    2017-03-16

    We uncover higher algebraic structures on Noether currents and BPS charges. It is known that equivalence classes of conserved currents form a Lie algebra. We show that at least for target space symmetries of higher parameterized WZW-type sigma-models this naturally lifts to a Lie (p+1)-algebra structure on the Noether currents themselves. Applied to the Green-Schwarz-type action functionals for super p-brane sigma-models this yields super Lie (p+1)-algebra refinements of the traditional BPS brane charge extensions of supersymmetry algebras. We discuss this in the generality of higher differential geometry, where it applies also to branes with (higher) gauge fields on their worldvolume. Applied to the M5-brane sigma-model we recover and properly globalize the M-theory super Lie algebra extension of 11-dimensional superisometries by 2-brane and 5-brane charges. Passing beyond the infinitesimal Lie theory we find cohomological corrections to these charges in higher analogy to the familiar corrections for D-brane charges as they are lifted from ordinary cohomology to twisted K-theory. This supports the proposal that M-brane charges live in a twisted cohomology theory.

  1. Nuclear charge radius of $^{12}$Be

    CERN Document Server

    Krieger, Andreas; Bissell, Mark L; Frömmgen, Nadja; Geppert, Christopher; Hammen, Michael; Kreim, Kim; Kowalska, Magdalena; Krämer, Jörg; Neff, Thomas; Neugart, Rainer; Neyens, Gerda; Nörtershäuser, Wilfried; Novotny, Christian; Sanchez, Rodolfo; Yordanov, Deyan T

    2012-01-01

    The nuclear charge radius of $^{12}$Be was precisely determined using the technique of collinear laser spectroscopy on the $2s_{1/2}\\rightarrow 2p_{1/2, 3/2}$ transition in the Be$^{+}$ ion. The mean square charge radius increases from $^{10}$Be to $^{12}$Be by $\\delta ^{10,12} = 0.69(5)$ fm$^{2}$ compared to $\\delta ^{10,11} = 0.49(5)$ fm$^{2}$ for the one-neutron halo isotope $^{11}$Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}$Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.

  2. The influence of charge and the distribution of charge in the polar region of phospholipids on the activity of UDP-glucuronosyltransferase.

    Science.gov (United States)

    Zakim, D; Eibl, H

    1992-07-05

    Studies of the mechanism of lipid-induced regulation of the microsomal enzyme UDP-glucuronosyltransferase have been extended by examining the influence of charge within the polar region on the ability of lipids to activate delipidated pure enzyme. The effects of net negative charge, of charge separation in phosphocholine, and of the distribution of charge in the polar region of lipids were studied using the GT2p isoform isolated from pig liver. Prior experiments have shown that lipids with net negative charge inhibit the enzyme (Zakim, D., Cantor, M., and Eibl, H. (1988) J. Biol. Chem. 263, 5164-5169). The current experiments show that the extent of inhibition on a molar basis increases as the net negative charge increases from -1 to -2. The inhibitory effect of negatively charged lipids is on the functional state of the enzyme and is not due to electrostatic repulsion of negatively charged substrates of the enzyme. Although the inhibitory effect of net negative charge is removed when negative charge is balanced by a positive charge due to a quaternary nitrogen, neutrality of the polar region is not a sufficient condition for activation of the enzyme. In addition to a balance of charge between Pi and the quaternary nitrogen, the distance between the negative and positive charges and the orientation of the dipole created by them are critical for activation of GT2p. The negative and positive charges must be separated by the equivalent of three -CH2- groups for optimal activation by a lipid. Shortening this distance by one -CH2- unit leads to a lipid that is ineffective in activating the enzyme. Reversal of the orientation of the dipole in which the negative charge is on the polymethylene side of the lipid-water interface and the positive charge extends into water also produces a lipid that is not effective for activating GT2p. On the other hand, lipids with phosphoserine as the polar region, which has the "normal" P-N distance but carries a net negative charge, do

  3. Nonlinear charge reduction effect in strongly coupled plasmas

    International Nuclear Information System (INIS)

    Sarmah, D; Tessarotto, M; Salimullah, M

    2006-01-01

    The charge reduction effect, produced by the nonlinear Debye screening of high-Z charges occurring in strongly coupled plasmas, is investigated. An analytic asymptotic expression is obtained for the charge reduction factor (f c ) which determines the Debye-Hueckel potential generated by a charged test particle. Its relevant parametric dependencies are analysed and shown to predict a strong charge reduction effect in strongly coupled plasmas

  4. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Songfeng; Sun, Chengfu; Lu, Zhengding [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-03-15

    This paper presents a modified quantum-behaved particle swarm optimization (QPSO) for short-term combined economic emission scheduling (CEES) of hydrothermal power systems with several equality and inequality constraints. The hydrothermal scheduling is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing pollutant emission. The bi-objective problem is converted into a single objective one by price penalty factor. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability. In this study, heuristic strategies are proposed to handle the equality constraints especially water dynamic balance constraints and active power balance constraints. A feasibility-based selection technique is also employed to meet the reservoir storage volumes constraints. To show the efficiency of the proposed method, different case studies are carried out and QPSO-DM is compared with the differential evolution (DE), the particle swarm optimization (PSO) with same heuristic strategies in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed method is capable of yielding higher-quality solutions stably and efficiently in the short-term hydrothermal scheduling than any other tested optimization algorithms. (author)

  5. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling

    Energy Technology Data Exchange (ETDEWEB)

    Lu Songfeng [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Sun Chengfu, E-mail: ajason_369@sina.co [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China); Lu Zhengding [School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2010-03-15

    This paper presents a modified quantum-behaved particle swarm optimization (QPSO) for short-term combined economic emission scheduling (CEES) of hydrothermal power systems with several equality and inequality constraints. The hydrothermal scheduling is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing pollutant emission. The bi-objective problem is converted into a single objective one by price penalty factor. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability. In this study, heuristic strategies are proposed to handle the equality constraints especially water dynamic balance constraints and active power balance constraints. A feasibility-based selection technique is also employed to meet the reservoir storage volumes constraints. To show the efficiency of the proposed method, different case studies are carried out and QPSO-DM is compared with the differential evolution (DE), the particle swarm optimization (PSO) with same heuristic strategies in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed method is capable of yielding higher-quality solutions stably and efficiently in the short-term hydrothermal scheduling than any other tested optimization algorithms.

  6. An improved quantum-behaved particle swarm optimization method for short-term combined economic emission hydrothermal scheduling

    International Nuclear Information System (INIS)

    Lu Songfeng; Sun Chengfu; Lu Zhengding

    2010-01-01

    This paper presents a modified quantum-behaved particle swarm optimization (QPSO) for short-term combined economic emission scheduling (CEES) of hydrothermal power systems with several equality and inequality constraints. The hydrothermal scheduling is formulated as a bi-objective problem: (i) minimizing fuel cost and (ii) minimizing pollutant emission. The bi-objective problem is converted into a single objective one by price penalty factor. The proposed method, denoted as QPSO-DM, combines the QPSO algorithm with differential mutation operation to enhance the global search ability. In this study, heuristic strategies are proposed to handle the equality constraints especially water dynamic balance constraints and active power balance constraints. A feasibility-based selection technique is also employed to meet the reservoir storage volumes constraints. To show the efficiency of the proposed method, different case studies are carried out and QPSO-DM is compared with the differential evolution (DE), the particle swarm optimization (PSO) with same heuristic strategies in terms of the solution quality, robustness and convergence property. The simulation results show that the proposed method is capable of yielding higher-quality solutions stably and efficiently in the short-term hydrothermal scheduling than any other tested optimization algorithms.

  7. Phased charging and discharging in capacitive desalinatio

    Science.gov (United States)

    Stadermann, Michael; Qu, Yatian; Santiago, Juan G.; Hemmatifar, Ali

    2017-09-12

    A system combines complete, ultra-thin cells into a monolithic and robust framework necessary for desalination applications which yields orders of magnitude faster desalination. The electrode pairs are located so that a flow of feed water flows through or around the electrode pairs with the flow perpendicular to sequentially applied electric potentials. The system is controlled to charge the series of electrode pairs sequentially or phased. That means the charging of the second electrode pair is delayed with regard to the charging of the first electrode pair and the charging of a third electrode pair is delayed with respect to the charging of the second electrode pair.

  8. Charging of nonspherical macroparticles in a plasma

    Science.gov (United States)

    Holgate, J. T.; Coppins, M.

    2016-03-01

    The current theories of macroparticle charging in a plasma are limited to spheres, and are unsuitable for the multitude of nonspherical objects existing in astrophysical, atmospheric, laboratory, and fusion plasmas. This paper extends the most widely used spherical charging theory, orbit motion limited theory, to spheroids and, as such, provides a comprehensive study of the charging of nonspherical objects in a plasma. The spherical charging theory is shown to be a reasonable approximation for a considerable range of spheroids. However, the electric potential of highly elongated spheroids can be almost twice the spherical value. Furthermore, the total charge on the spheroids increases by a significantly larger factor than their potential.

  9. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    International Nuclear Information System (INIS)

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V fd ), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V fd *, which is the full depletion voltage traditionally determined by the extrapolation of the fast component amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V fd ) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V fd for highly irradiated detectors

  10. Jet Vertex Charge Reconstruction Poster for LHCP 2015

    CERN Document Server

    Nektarijevic, Snezana; The ATLAS collaboration

    2015-01-01

    B-jet reconstruction algorithms used so far in ATLAS data analyses do not provide the b-jet charge information, which could potentially play a major role in reducing the combinatorial backgrounds in final states with multiple b-jets. This missing point is addressed by the newly developed JetVertexCharge (JVC) algorithm presented in this poster. Inspired by the decay chain of B-hadrons, the JVC algorithm provides a multi-variate b-jet charge estimate relying on tracks, displaced vertices and muons contained in the jet. In this algorithm, the established concept of estimating jet charge as a transverse momentum weighted sum of track charges is used to reconstruct the charge of the jet as whole, as well as the charges of up to two displaced vertices in the jet, using the corresponding sets of associated tracks. The charge of the associated muon is interpreted as the same-sign or opposite-sign relative to the b-jet charge, according to its transverse momentum and geometrical match to vertices. Jets are divided in...

  11. Charge Transfer into Aqueous Droplets via Kilovolt Potentials

    Science.gov (United States)

    Hamlin, B. S.; Rosenberg, E. R.; Ristenpart, W. D.

    2012-11-01

    When an aqueous droplet immersed in an insulating oil contacts an electrified surface, the droplet acquires net charge. For sufficiently large field strengths, the charged droplet is driven back and forth electrophoretically between the electrodes, in essence ``bouncing'' between them. Although it is clear that the droplet acquires charge, the underlying mechanism controlling the charge transfer process has been unclear. Here we demonstrate that the chemical species present in the droplet strongly affect the charge transfer process into the drop. Using two independent charge measurement techniques, high speed video velocimetry and direct current measurement, we show that the charge acquired during contact is strongly influenced by the droplet pH. We also provide physical evidence that the electrodes undergo electroplating or corrosion for droplets with appropriate chemical species present. Together, the observations strongly suggest that electrochemical reactions govern the charge transfer process into the droplet.

  12. Numerical experiments on charging of a spherical body in a plasma with Maxwellian distributions of charged particles

    Science.gov (United States)

    Krasovsky, Victor L.; Kiselyov, Alexander A.

    2017-12-01

    New results of numerical simulation of collisionless plasma perturbation caused by a sphere absorbing electrons and ions are presented. Consideration is given to nonstationary phenomena accompanying the process of charging as well as to plasma steady state reached at long times. Corresponding asymptotic values of charges of the sphere and trapped-ion cloud around it have been found along with self-consistent electric field pattern depending on parameters of the unperturbed plasma. It is established that contribution of the trapped ions to screening of the charged sphere can be quite significant, so that the screening becomes essentially nonlinear in nature. A simple interconnection between the sphere radius, electron and ion Debye lengths has been revealed as the condition for maximum trapped-ion effect. Kinetic structure of the space charge induced in the plasma is discussed with relation to the specific form of the unperturbed charged particle distribution functions.

  13. Entanglement of a nonlinear two two-level atoms interacting with ...

    Indian Academy of Sciences (India)

    S Abdel-Khalek

    2017-12-08

    Dec 8, 2017 ... [4,5], superdense coding [6], quantum cryptography. [7,8] and quantum metrology [9]. These quantum infor- mation tasks cannot be carried out by classical resources and they rely on entangled states. This recognition led to an intensive search for mathematical tools that would enable a proper quantification ...

  14. Big break for charge symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Miller, G.A. [Department of Physics, University of Washington, Seattle (United States); Kolck, U. van [Department of Physics, University of Arizona, Tucson (United States)

    2003-06-01

    Two new experiments have detected charge-symmetry breaking, the mechanism responsible for protons and neutrons having different masses. Symmetry is a crucial concept in the theories that describe the subatomic world because it has an intimate connection with the laws of conservation. The theory of the strong interaction between quarks - quantum chromodynamics - is approximately invariant under what is called charge symmetry. In other words, if we swap an up quark for a down quark, then the strong interaction will look almost the same. This symmetry is related to the concept of {sup i}sospin{sup ,} and is not the same as charge conjugation (in which a particle is replaced by its antiparticle). Charge symmetry is broken by the competition between two different effects. The first is the small difference in mass between up and down quarks, which is about 200 times less than the mass of the proton. The second is their different electric charges. The up quark has a charge of +2/3 in units of the proton charge, while the down quark has a negative charge of -1/3. If charge symmetry was exact, the proton and the neutron would have the same mass and they would both be electrically neutral. This is because the proton is made of two up quarks and a down quark, while the neutron comprises two downs and an up. Replacing up quarks with down quarks, and vice versa, therefore transforms a proton into a neutron. Charge-symmetry breaking causes the neutron to be about 0.1% heavier than the proton because the down quark is slightly heavier than the up quark. Physicists had already elucidated certain aspects of charge-symmetry breaking, but our spirits were raised greatly when we heard of the recent work of Allena Opper of Ohio University in the US and co-workers at the TRIUMF laboratory in British Columbia, Canada. Her team has been trying to observe a small charge-symmetry-breaking effect for several years, using neutron beams at the TRIUMF accelerator. The researchers studied the

  15. Physical stage of photosynthesis charge separation

    Science.gov (United States)

    Yakovlev, A. G.; Shuvalov, V. A.

    2016-06-01

    An analytical review is given concerning the biophysical aspects of light-driven primary charge separation in photosynthesis reaction centers (RCs) which are special pigment-protein complexes residing in a cell membrane. The primary (physical) stage of charge separation occurs in the pico- and femtosecond ranges and consists of transferring an electron along the active A-branch of pigments. The review presents vast factual material on both the general issues of primary photosynthesis and some more specific topics, including (1) the role of the inactive B-branch of pigments, (2) the effect of the protein environment on the charge separation, and (3) the participation of monomeric bacteriochlorophyll BA in primary electron acceptance. It is shown that the electron transfer and stabilization are strongly influenced by crystallographic water and tyrosine M210 molecules from the nearest environment of BA. A linkage between collective nuclear motions and electron transfer upon charge separation is demonstrated. The nature of the high quantum efficiency of primary charge separation reactions is discussed.

  16. JET VELOCITY OF LINEAR SHAPED CHARGES

    Directory of Open Access Journals (Sweden)

    Vječislav Bohanek

    2012-12-01

    Full Text Available Shaped explosive charges with one dimension significantly larger than the other are called linear shaped charges. Linear shaped charges are used in various industries and are applied within specific technologies for metal cutting, such as demolition of steel structures, separating spent rocket fuel tanks, demining, cutting holes in the barriers for fire service, etc. According to existing theories and models efficiency of linear shaped charges depends on the kinetic energy of the jet which is proportional to square of jet velocity. The original method for measuring velocity of linear shaped charge jet is applied in the aforementioned research. Measurements were carried out for two different linear materials, and the results are graphically presented, analysed and compared. Measurement results show a discrepancy in the measured velocity of the jet for different materials with the same ratio between linear and explosive mass (M/C per unit of surface, which is not described by presented models (the paper is published in Croatian.

  17. Charged dopants in neutral supercells through substitutional donor (acceptor): nitrogen donor charging of the nitrogen-vacancy center in diamond

    Science.gov (United States)

    Löfgren, Robin; Pawar, Ravinder; Öberg, Sven; Larsson, J. Andreas

    2018-02-01

    Charged defects are traditionally computed by adding (subtracting) electrons for negative (positive) impurities. When using periodic boundary conditions this results in artificially charged supercells that also require a compensating background charge of the opposite sign, which makes slab supercells problematic because of an arbitrary dependence on the vacuum thickness. In this work, we test the method of using neutral supercells through the use of a substitutional electron donor (acceptor) to describe charged systems. We use density functional theory (DFT) to compare the effects of charging the well-studied NV-center in diamond by a substitutional donor nitrogen. We investigate the influence of the donor-N on the NV-center properties as a function of the distance between them, and find that they converge toward those obtained when adding an electron. We analyze the spin density and conclude that the donor-N has a zero magnetic moment, and thus, will not be seen in electron spin resonance. We validate our DFT energies through comparison to GW simulations. Charging the NV-center with a substitutional donor-N enables accurate calculations of slabs, without the ambiguity of using charged supercells. Implantation of donor-N atoms opens up the possibility to engineer NV-centers with the desired charge state for future ICT and sensor applications.

  18. Filling of charged cylindrical capillaries

    NARCIS (Netherlands)

    Das, Siddhartha; Chanda, Sourayon; Eijkel, J.C.T.; Tas, N.R.; Chakraborty, Suman; Mitra, Sushanta K.

    2014-01-01

    We provide an analytical model to describe the filling dynamics of horizontal cylindrical capillaries having charged walls. The presence of surface charge leads to two distinct effects: It leads to a retarding electrical force on the liquid column and also causes a reduced viscous drag force because

  19. 76 FR 10233 - Schedule of Water Charges

    Science.gov (United States)

    2011-02-24

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 420 Schedule of Water Charges AGENCY: Delaware River..., Part III, Basin Regulations--Water Supply Charges. Accordingly, the Commission's water charging rates..., 2011. Effective Date: February 24, 2011. FOR FURTHER INFORMATION CONTACT: For questions about the water...

  20. On the charge distribution of calcium nuclei

    International Nuclear Information System (INIS)

    Traeger, F.

    1981-01-01

    The mean square charge radii and the quadrupole moments of Ca nuclei are discussed in the light of theoretical predictions. The very peculiar dependence of the charge radii on the mass number between double magic 40 Ca and double magic 48 Ca can be ascribed to changes of the nuclear deformation, whereas the volume of the nuclear charge remains constant for all the Ca isotopes. Furthermore, correlations between nuclear charge radii and binding energies are discussed. (orig.)

  1. Direct convertor based upon space charge effects

    International Nuclear Information System (INIS)

    Gitomer, S.J.

    1977-01-01

    A device capable of converting directly the kinetic energy of charged particles into electrical energy is considered. The device differs from earlier ones (such as Post's periodic focus electrostatic direct convertor) in that it makes use of the space charge repulsion in a high density charged particle beam. The beam is directed into a monotonic decelerating electrostatic field of a several-stage planar-finned structure. The collector fins coincide with vacuum equipotential surfaces. Space charge blowup of the beam directs particles onto various collector fins. The energy efficiency of a 4-stage device has been determined using a numberical simulation approach. We find that efficiencies approaching 75 percent are possible. An approximate scaling law is derived for the space charge based direct converter and a comparison is made to the periodic focus direct convertor. We find the space charge based direct convertor to be superior to a number of ways

  2. Ion induced charge collection in GaAs MESFETs

    International Nuclear Information System (INIS)

    Campbell, A.; Knudson, A.; McMorrow, D.; Anderson, W.; Roussos, J.; Espy, S.; Buchner, S.; Kang, K.; Kerns, D.; Kerns, S.

    1989-01-01

    Charge collection measurements on GaAs MESFET test structures demonstrate that more charge can be collected at the gate than is deposited in the active layer and more charge can be collected at the drain than the total amount of charge produced by the ion. Enhanced charge collection at the gate edge is also observed. The current transients produced by the energetic ions have been measured directly with about 20 picosecond resolution

  3. Charge Management Optimization for Future TOU Rates: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jiucai; Markel, Tony

    2016-07-01

    The effectiveness of future time of use (TOU) rates to enable managed charging for providing demand response depends on the vehicle's flexibility and the benefits to owners. This paper adopts opportunity, delayed, and smart charging methods to quantify these impacts, flexibilities, and benefits. Simulation results show that delayed and smart charging methods can shift most charging events to lower TOU rate periods without compromising the charged energy and individual driver mobility needs.

  4. Bulk-Like Electrical Properties Induced by Contact-Limited Charge Transport in Organic Diodes: Revised Space Charge Limited Current

    KAUST Repository

    Xu, Guangwei

    2018-02-22

    Charge transport governs the operation and performance of organic diodes. Illuminating the charge-transfer/transport processes across the interfaces and the bulk organic semiconductors is at the focus of intensive investigations. Traditionally, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I–V characteristics, still represents a major challenge. Here, the electrical potential distribution in planar organic diodes is investigated by using the scanning Kelvin probe force microscopy technique, a method that can clearly separate the contact and bulk regimes of charge transport. Interestingly, by applying to devices based on novel, high mobility organic materials, the space-charge-limited-current-like I–V curves, which are previously believed to be a result of the bulk transport, are surprisingly but unambiguously demonstrated to be caused by contact-limited conduction. A model accounting is developed for the transport properties of both the two metal/organic interfaces and the bulk. The results indicate that pure interface-dominated transport can indeed give rise to I–V curves similar to those caused by bulk transport. These findings provide a new insight into the charge injection and transport processes in organic diodes.

  5. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem.

    Science.gov (United States)

    Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio

    2012-02-16

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al.

  6. Study of charged hadron multiplicities in charged-current neutrino-lead interactions in the OPERA detector

    Energy Technology Data Exchange (ETDEWEB)

    Agafonova, N.; Malgin, A.; Matveev, V.; Ryazhskaya, O.; Shakirianova, I. [INR - Institute for Nuclear Research, Russian Academy of Sciences, Moscow (Russian Federation); Aleksandrov, A.; Buontempo, S.; Consiglio, L.; Tioukov, V.; Voevodina, E. [INFN Sezione di Napoli, Naples (Italy); Anokhina, A.; Dzhatdoev, T.; Podgrudkov, D.; Roganova, T. [Lomonosov Moscow State University, SINP MSU - Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Aoki, S.; Hara, T.; Mizutani, F.; Ozaki, K.; Shibayama, E.; Takahashi, S. [Kobe University, Kobe (Japan); Ariga, A.; Ereditato, A.; Kreslo, I.; Vuilleumier, J.L. [University of Bern, Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Ariga, T. [University of Bern, Laboratory for High Energy Physics (LHEP), Albert Einstein Center for Fundamental Physics, Bern (Switzerland); Kyushu University, Faculty of Arts and Science, Fukuoka (Japan); Bertolin, A.; Dusini, S.; Kose, U.; Longhin, A.; Pupilli, F.; Stanco, L. [INFN Sezione di Padova, Padua (Italy); Bodnarchuk, I.; Chukanov, A.; Dmitrievski, S.; Gornushkin, Y.; Sotnikov, A.; Vasina, S. [JINR - Joint Institute for Nuclear Research, Dubna (Russian Federation); Bozza, C.; Grella, G.; Stellacci, S.M. [Dipartimento di Fisica, Universita di Salerno (Italy); ' ' Gruppo Collegato' ' INFN, Fisciano, Salerno (Italy); Brugnera, R.; Garfagnini, A.; Laudisio, F.; Medinaceli, E.; Roda, M.; Sirignano, C. [INFN Sezione di Padova, Padua (Italy); Dipartimento di Fisica e Astronomia, Universita di Padova, Padua (Italy); Buonaura, A.; De Lellis, G.; Di Crescenzo, A.; Galati, G.; Hosseini, B.; Lauria, A.; Montesi, M.C.; Strolin, P. [INFN Sezione di Napoli, Naples (Italy); Dipartimento di Fisica, Universita Federico II di Napoli, Naples (Italy); Chernyavskiy, M.; Gorbunov, S.; Okateva, N.; Shchedrina, T.; Starkov, N. [LPI - Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); D' Ambrosio, N.; Di Marco, N.; Schembri, A. [INFN-Laboratori Nazionali del Gran Sasso, Assergi, L' Aquila (Italy); De Serio, M.; Muciaccia, M.T.; Paparella, L.; Pastore, A.; Simone, S. [Dipartimento di Fisica, Universita di Bari, Bari (Italy); INFN Sezione di Bari, Bari (Italy); Amo Sanchez, P. del; Duchesneau, D.; Pessard, H. [LAPP, Universite Savoie Mont Blanc, CNRS/IN2P3, Annecy-le-Vieux (France); Di Ferdinando, D.; Mandrioli, G.; Patrizii, L.; Sirri, G.; Tenti, M. [INFN Sezione di Bologna, Bologna (Italy); Dracos, M.; Jollet, C.; Meregaglia, A. [IPHC, Universite de Strasbourg, CNRS/IN2P3, Strasbourg (France); Ebert, J.; Hagner, C.; Hollnagel, A.; Wonsak, B. [Hamburg University, Hamburg (Germany); Fini, R.A. [INFN Sezione di Bari, Bari (Italy); Fornari, F.; Mauri, N.; Pasqualini, L.; Pozzato, M. [INFN Sezione di Bologna, Bologna (Italy); Dipartimento di Fisica e Astronomia, Universita di Bologna, Bologna (Italy); Fukuda, T.; Hayakawa, T.; Ishiguro, K.; Kitagawa, N.; Komatsu, M.; Miyanishi, M.; Morishima, K.; Naganawa, N.; Naka, T.; Nakamura, M.; Nakano, T.; Niwa, K.; Rokujo, H.; Sato, O.; Shiraishi, T. [Nagoya University, Nagoya (Japan); Gentile, V. [Gran Sasso Science Institute, L' Aquila (Italy); Goldberg, J. [Technion, Department of Physics, Haifa (Israel); Guler, A.M.; Kamiscioglu, M. [METU - Middle East Technical University, Ankara (Turkey); Gustavino, C.; Loverre, P.; Monacelli, P.; Rosa, G. [INFN Sezione di Roma, Rome (Italy); Jakovcic, K.; Ljubicic, A.; Malenica, M. [Rudjer Boskovic Institute, Zagreb (Croatia); Kamiscioglu, C. [METU - Middle East Technical University, Ankara (Turkey); Ankara University, Ankara (Turkey); Kim, S.H.; Park, B.D.; Yoon, C.S. [Gyeongsang National University, Jinju (Korea, Republic of); Klicek, B.; Stipcevic, M. [Center of Excellence for Advanced Materials and Sensing Devices, Ruder Boskovic Institute, Zagreb (Croatia); Kodama, K. [Aichi University of Education, Kariya, Aichi (Japan); Matsuo, T.; Ogawa, S.; Shibuya, H. [Toho University, Funabashi (Japan); Mikado, S. [Nihon University, Narashino, Chiba (Japan); Paoloni, A.; Spinetti, M.; Votano, L. [INFN - Laboratori Nazionali di Frascati, Rome (Italy); Polukhina, N. [LPI - Lebedev Physical Institute, Russian Academy of Sciences, Moscow (Russian Federation); Moscow Engineering Physical Institute Moscow, Moscow (Russian Federation); Terranova, F. [Dipartimento di Fisica, Universita di Milano-Bicocca, Milan (Italy); Vilain, P.; Wilquet, G. [IIHE, Universite Libre de Bruxelles, Brussels (Belgium)

    2018-01-15

    The OPERA experiment was designed to search for ν{sub μ} → ν{sub τ} oscillations in appearance mode through the direct observation of tau neutrinos in the CNGS neutrino beam. In this paper, we report a study of the multiplicity of charged particles produced in charged-current neutrino interactions in lead. We present charged hadron average multiplicities, their dispersion and investigate the KNO scaling in different kinematical regions. The results are presented in detail in the form of tables that can be used in the validation of Monte Carlo generators of neutrino-lead interactions. (orig.)

  7. Charge changing collision cross sections of atomic ions

    International Nuclear Information System (INIS)

    Bliman, S.; Dousson, S.; Geller, R.; Jacquot, B.; Van Houtte, D.

    1980-05-01

    A device has been built to measure charge changing cross sections of atomic ions. It consists of an E.C.R. ion source (Micromafios) that delivers oxygen ions up to charge + 8, argon ions up to charge + 13. The ion source potential may be varied from 1 up to 10 kVolts. A first magnet is used to charge analyze the extracted beam. For a given charge state, the ion beam is passed in a collision cell whose pressure may be varied. The ions undergoing collisions on the target are analyzed by a second magnet and collected. The single collision condition is checked. Different collisions are considered: 1- Charge exchange collisions of argon ions with charge 2<=Z<=12 on argon. Cross sections for capture of 1, 2 and 3 electrons are given. 2- Stripping of argon ions (1<=Z<=4) on argon atoms. 3- Charge exchange of oxygen ions (2<=Z<=8) colliding on deuterium. One and two electron capture cross sections are presented

  8. The effect of solvent relaxation time constants on free energy gap law for ultrafast charge recombination following photoinduced charge separation.

    Science.gov (United States)

    Mikhailova, Valentina A; Malykhin, Roman E; Ivanov, Anatoly I

    2018-05-16

    To elucidate the regularities inherent in the kinetics of ultrafast charge recombination following photoinduced charge separation in donor-acceptor dyads in solutions, the simulations of the kinetics have been performed within the stochastic multichannel point-transition model. Increasing the solvent relaxation time scales has been shown to strongly vary the dependence of the charge recombination rate constant on the free energy gap. In slow relaxing solvents the non-equilibrium charge recombination occurring in parallel with solvent relaxation is very effective so that the charge recombination terminates at the non-equilibrium stage. This results in a crucial difference between the free energy gap laws for the ultrafast charge recombination and the thermal charge transfer. For the thermal reactions the well-known Marcus bell-shaped dependence of the rate constant on the free energy gap is realized while for the ultrafast charge recombination only a descending branch is predicted in the whole area of the free energy gap exceeding 0.2 eV. From the available experimental data on the population kinetics of the second and first excited states for a series of Zn-porphyrin-imide dyads in toluene and tetrahydrofuran solutions, an effective rate constant of the charge recombination into the first excited state has been calculated. The obtained rate constant being very high is nearly invariable in the area of the charge recombination free energy gap from 0.2 to 0.6 eV that supports the theoretical prediction.

  9. Structural Pituitary Abnormalities Associated With CHARGE Syndrome

    Science.gov (United States)

    Gregory, Louise C.; Gevers, Evelien F.; Baker, Joanne; Kasia, Tessa; Chong, Kling; Josifova, Dragana J.; Caimari, Maria; Bilan, Frederic; McCabe, Mark J.

    2013-01-01

    Introduction: CHARGE syndrome is a multisystem disorder that, in addition to Kallmann syndrome/isolated hypogonadotrophic hypogonadism, has been associated with anterior pituitary hypoplasia (APH). However, structural abnormalities such as an ectopic posterior pituitary (EPP) have not yet been described in such patients. Objective: The aims of the study were: 1) to describe the association between CHARGE syndrome and a structurally abnormal pituitary gland; and 2) to investigate whether CHD7 variants, which are identified in 65% of CHARGE patients, are common in septo-optic dysplasia /hypopituitarism. Methods: We describe 2 patients with features of CHARGE and EPP. CHD7 was sequenced in these and other patients with septo-optic dysplasia/hypopituitarism. Results: EPP, APH, and GH, TSH, and probable LH/FSH deficiency were present in 1 patient, and EPP and APH with GH, TSH, LH/FSH, and ACTH deficiency were present in another patient, both of whom had features of CHARGE syndrome. Both had variations in CHD7 that were novel and undetected in control cohorts or in the international database of CHARGE patients, but were also present in their unaffected mothers. No CHD7 variants were detected in the patients with septo-optic dysplasia/hypopituitarism without additional CHARGE features. Conclusion: We report a novel association between CHARGE syndrome and structural abnormalities of the pituitary gland in 2 patients with variations in CHD7 that are of unknown significance. However, CHD7 mutations are an uncommon cause of septo-optic dysplasia or hypopituitarism. Our data suggest the need for evaluation of pituitary function/anatomy in patients with CHARGE syndrome. PMID:23526466

  10. Quantum and classical dissipation of charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra-Sierra, V.G. [Departamento de Física, Universidad Autónoma Metropolitana at Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Kunold, A., E-mail: akb@correo.azc.uam.mx [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico); Roa-Neri, J.A.E. [Área de Física Teórica y Materia Condensada, Universidad Autónoma Metropolitana at Azcapotzalco, Av. San Pablo 180, Col. Reynosa-Tamaulipas, Azcapotzalco, 02200 México D.F. (Mexico)

    2013-08-15

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.

  11. Quantum and classical dissipation of charged particles

    International Nuclear Information System (INIS)

    Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.

    2013-01-01

    A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge

  12. Charged vortices in high-Tc superconductors

    International Nuclear Information System (INIS)

    Matsuda, Y.; Kumagai, K.

    2002-01-01

    It is well known that a vortex in type II superconductors traps a magnetic flux. Recently the possibility that a vortex can accumulate a finite electric charge as well has come to be realized. The sign and magnitude of the vortex charge not only is closely related to the microscopic electronic structure of the vortex, but also strongly affects the dynamical properties of the vortex. In this chapter we demonstrate that a vortex in high-T c superconductors (HTSC) indeed traps a finite electronic charge, using the high resolution measurements of the nuclear quadrupole frequencies. We then discuss the vortex Hall anomaly whose relation with the vortex charging effect has recently received considerable attention. We show that the sign of the trapped charge is opposite to the sign predicted by the conventional BCS theory and deviation of the magnitude of the charge from the theory is also significant. We also show that the electronic structure of underlying system is responsible for the Hall sign in the vortex state and again the Hall sign is opposite to the sign predicted by the BCS theory. It appears that these unexpected features observed in both electrostatics and dynamics of the vortex may be attributed to the novel electronic structure of the vortex in HTSC. (orig.)

  13. Enabling fast charging – Vehicle considerations

    Energy Technology Data Exchange (ETDEWEB)

    Meintz, Andrew; Zhang, Jiucai; Vijayagopal, Ram; Kreutzer, Cory; Ahmed, Shabbir; Bloom, Ira; Burnham, Andrew; Carlson, Richard B.; Dias, Fernando; Dufek, Eric J.; Francfort, James; Hardy, Keith; Jansen, Andrew N.; Keyser, Matthew; Markel, Anthony; Michelbacher, Christopher; Mohanpurkar, Manish; Pesaran, Ahmad; Scoffield, Don; Shirk, Matthew; Stephens, Thomas; Tanim, Tanvir

    2017-11-01

    To achieve a successful increase in the plug-in battery electric vehicle (BEV) market, it is anticipated that a significant improvement in battery performance is required to improve the range that BEVs can travel and the rate at which they can be recharged. While the range that BEVs can travel on a single recharge is improving, the recharging rate is still much slower than the refueling rate of conventional internal combustion engine vehicles. To achieve comparable recharge times, we explore the vehicle considerations of charge rates of at least 400 kW. Faster recharge is expected to significantly mitigate the perceived deficiencies for long-distance transportation, to provide alternative charging in densely populated areas where overnight charging at home may not be possible, and to reduce range anxiety for travel within a city when unplanned charging may be required. This substantial increase in charging rate is expected to create technical issues in the design of the battery system and vehicle’s electrical architecture that must be resolved. This work focuses on battery system thermal design and total recharge time to meet the goals of implementing higher charge rates and the impacts of the expected increase in system voltage on the components of the vehicle.

  14. 31 CFR 206.9 - Charges.

    Science.gov (United States)

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false Charges. 206.9 Section 206.9 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued) FISCAL SERVICE, DEPARTMENT... effective date of the charge or the appeals decision, an agency must submit appropriate accounting...

  15. 42 CFR 7.4 - Schedule of charges.

    Science.gov (United States)

    2010-10-01

    ... REFERENCE BIOLOGICAL STANDARDS AND BIOLOGICAL PREPARATIONS § 7.4 Schedule of charges. The charges imposed in... ingredients. Charges may vary over time and between different biological standards or biological preparations... is available from the Biological Products Branch, Center for Infectious Diseases, Centers for Disease...

  16. Enabling fast charging - Infrastructure and economic considerations

    Science.gov (United States)

    Burnham, Andrew; Dufek, Eric J.; Stephens, Thomas; Francfort, James; Michelbacher, Christopher; Carlson, Richard B.; Zhang, Jiucai; Vijayagopal, Ram; Dias, Fernando; Mohanpurkar, Manish; Scoffield, Don; Hardy, Keith; Shirk, Matthew; Hovsapian, Rob; Ahmed, Shabbir; Bloom, Ira; Jansen, Andrew N.; Keyser, Matthew; Kreuzer, Cory; Markel, Anthony; Meintz, Andrew; Pesaran, Ahmad; Tanim, Tanvir R.

    2017-11-01

    The ability to charge battery electric vehicles (BEVs) on a time scale that is on par with the time to fuel an internal combustion engine vehicle (ICEV) would remove a significant barrier to the adoption of BEVs. However, for viability, fast charging at this time scale needs to also occur at a price that is acceptable to consumers. Therefore, the cost drivers for both BEV owners and charging station providers are analyzed. In addition, key infrastructure considerations are examined, including grid stability and delivery of power, the design of fast charging stations and the design and use of electric vehicle service equipment. Each of these aspects have technical barriers that need to be addressed, and are directly linked to economic impacts to use and implementation. This discussion focuses on both the economic and infrastructure issues which exist and need to be addressed for the effective implementation of fast charging at 400 kW and above. In so doing, it has been found that there is a distinct need to effectively manage the intermittent, high power demand of fast charging, strategically plan infrastructure corridors, and to further understand the cost of operation of charging infrastructure and BEVs.

  17. Charge accumulation in lossy dielectrics: a review

    DEFF Research Database (Denmark)

    Rasmussen, Jørgen Knøster; McAllister, Iain Wilson; Crichton, George C

    1999-01-01

    At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries such that the mat......At present, the phenomenon of charge accumulation in solid dielectrics is under intense experimental study. Using a field theoretical approach, we review the basis for charge accumulation in lossy dielectrics. Thereafter, this macroscopic approach is applied to planar geometries...

  18. Lithium-Ion Cell Charge-Control Unit Developed

    Science.gov (United States)

    Reid, Concha M.; Manzo, Michelle A.; Buton, Robert M.; Gemeiner, Russel

    2005-01-01

    A lithium-ion (Li-ion) cell charge-control unit was developed as part of a Li-ion cell verification program. This unit manages the complex charging scheme that is required when Li-ion cells are charged in series. It enables researchers to test cells together as a pack, while allowing each cell to charge individually. This allows the inherent cell-to-cell variations to be addressed on a series string of cells and reduces test costs substantially in comparison to individual cell testing.

  19. Bosonic instability of charged black holes

    International Nuclear Information System (INIS)

    Gaina, A.B.; Ternov, I.M.

    1986-01-01

    The processes of spontaneous and induced production and accumulation of charged bosons on quasibound superradiant levels in the field of Kerr-Newman black hole is analysed. It is shown that bosonic instability may be caused exclusively by the rotation of the black hole. Particulary, the Reissner-Nordstrom configuration is stable. In the case of rotating and charged black hole the bosonic instability may cause an increase of charge of the black hole

  20. Effective charge versus bare charge: an analytical estimate for colloids in the infinite dilution limit

    International Nuclear Information System (INIS)

    Aubouy, Miguel; Trizac, Emmanuel; Bocquet, Lyderic

    2003-01-01

    We propose an analytical approximation for the dependence of the effective charge on the bare charge for spherical and cylindrical macro-ions as a function of the size of the colloid and salt content, for the situation of a unique colloid immersed in a sea of electrolyte (where the definition of an effective charge is non-ambiguous). Our approach is based on the Poisson-Boltzmann (PB) mean-field theory. Mathematically speaking, our estimate is asymptotically exact in the limit κa >> 1, where a is the radius of the colloid and κ is the inverse screening length. In practice, a careful comparison with effective charge parameters, obtained by numerically solving the full nonlinear PB theory, proves that our estimate is good down to κa ∼ 1. This is precisely the limit appropriate to treat colloidal suspensions. A particular emphasis is put on the range of parameters suitable to describe both single and double strand DNA molecules under physiological conditions

  1. First result of net-charge jet-correlations from STAR

    International Nuclear Information System (INIS)

    Wang, Q.

    2011-01-01

    We presented results on azimuthal correlation of net-charge with high ρ T trigger particles. It is found that the net-charge correlation shape is similar to that of total-charge. On the near-side, the net-charge and total-charge ρ T spectra have similar shape and both are harder than the inclusives. On the away-side, the correlated spectra are not much harder than the inclusives, and the net-charge/total-charge ratio increases with ρ T and is similar to the inclusive ratio. (author)

  2. Summary: Update to ASTM guide E 1523 to charge control and charge referencing techniques in x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Baer, D.R.

    2005-01-01

    An updated version of the American Society for Testing and Materials (ASTM) guide E 1523 to the methods to charge control and charge referencing techniques in x-ray photoelectron spectroscopy has been released by ASTM [Annual Book of ASTM Standards Surface Analysis (American Society for Testing and Materials, West Conshohocken, PA, 2004), Vol. 03.06]. The guide is meant to acquaint x-ray photoelectron spectroscopy (XPS) users with the various charge control and charge referencing techniques that are and have been used in the acquisition and interpretation of XPS data from surfaces of insulating specimens. The current guide has been expanded to include new references as well as recommendations for reporting information on charge control and charge referencing. The previous version of the document had been published in 1997 [D. R. Baer and K. D. Bomben, J. Vac. Sci. Technol. A 16, 754 (1998)

  3. New spectrometer for charged particles

    International Nuclear Information System (INIS)

    Wajsfelner, Rene

    1970-02-01

    This thesis is devoted to the study and development of an electrostatic spectrometer which is not only more accurate for the determination of size distributions of electrically charged radio-active atmospheric aerosols, but which can also be used for measuring the grain-size distribution of any cloud of particles which will previously have been charged according to a known, reproducible law. An experimental study has been made of the development of this precipitator and also of its calibration. The electrical charge on spherical polystyrene latex particles suspended in air by atomization has been studied; a theoretical explanation of these results is put forward. (author) [fr

  4. Flywheel Charge/Discharge Control Developed

    Science.gov (United States)

    Beach, Raymond.F.; Kenny, Barbara H.

    2001-01-01

    A control algorithm developed at the NASA Glenn Research Center will allow a flywheel energy storage system to interface with the electrical bus of a space power system. The controller allows the flywheel to operate in both charge and discharge modes. Charge mode is used to store additional energy generated by the solar arrays on the spacecraft during insolation. During charge mode, the flywheel spins up to store the additional electrical energy as rotational mechanical energy. Discharge mode is used during eclipse when the flywheel provides the power to the spacecraft. During discharge mode, the flywheel spins down to release the stored rotational energy.

  5. The pH dependent surface charging and points of zero charge. VII. Update.

    Science.gov (United States)

    Kosmulski, Marek

    2018-01-01

    The pristine points of zero charge (PZC) and isoelectric points (IEP) of metal oxides and IEP of other materials from the recent literature, and a few older results (overlooked in previous searches) are summarized. This study is an update of the previous compilations by the same author [Surface Charging and Points of Zero Charge, CRC, Boca Raton, 2009; J. Colloid Interface Sci. 337 (2009) 439; 353 (2011) 1; 426 (2014) 209]. The field has been very active, but most PZC and IEP are reported for materials, which are very well-documented already (silica, alumina, titania, iron oxides). IEP of (nominally) Gd 2 O 3 , NaTaO 3 , and SrTiO 3 have been reported in the recent literature. Their IEP were not reported in older studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. In-transit charging lane model

    NARCIS (Netherlands)

    Verkerk, A.; Nijmeijer, H.; Khajepour, A.

    2012-01-01

    The current electric vehicles still have a problem with a short range and long charging time compared to the internal combustion vehicles. A possible solution for this problem is to charge the batteries while driving on the highway. For this, a special traffic lane is needed with an in-transit

  7. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres.

    Science.gov (United States)

    Angelescu, Daniel G; Caragheorgheopol, Dan

    2015-10-14

    The mean-force and the potential of the mean force between two like-charged spherical shells were investigated in the salt-free limit using the primitive model and Monte Carlo simulations. Apart from an angular homogeneous distribution, a discrete charge distribution where point charges localized on the shell outer surface followed an icosahedral arrangement was considered. The electrostatic coupling of the model system was altered by the presence of mono-, trivalent counterions or small dendrimers, each one bearing a net charge of 9 e. We analyzed in detail how the shell thickness and the radial and angular distribution of the shell charges influenced the effective interaction between the shells. We found a sequence of the potential of the mean force similar to the like-charged filled spheres, ranging from long-range purely repulsive to short-range purely attractive as the electrostatic coupling increased. Both types of potentials were attenuated and an attractive-to-repulsive transition occurred in the presence of trivalent counterions as a result of (i) thinning the shell or (ii) shifting the shell charge from the outer towards the inner surface. The potential of the mean force became more attractive with the icosahedrally symmetric charge model, and additionally, at least one shell tended to line up with 5-fold symmetry axis along the longest axis of the simulation box at the maximum attraction. The results provided a basic framework of understanding the non-specific electrostatic origin of the agglomeration and long-range assembly of the viral nanoparticles.

  8. Negative plates for dry-charged lead storage batteries. [higher charging capacity when impregnated with tannin solution

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, V; Malikova, V; Weber, H

    1970-09-15

    Impregnation of negative plates with acid solutions of sulfomethylated tannins was found to improve the charging properties at low temperatures. Methods for synthesizing tannins are described. Charging capacity at 0/sup 0/ was 7.3A. (RWR)

  9. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    Science.gov (United States)

    de Filippo, E.; Lanzanó, G.; Amorini, F.; Cardella, G.; Geraci, E.; Grassi, L.; La Guidara, E.; Lombardo, I.; Politi, G.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-12-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  10. Charging of insulators by multiply-charged-ion impact probed by slowing down of fast binary-encounter electrons

    International Nuclear Information System (INIS)

    De Filippo, E.; Lanzano, G.; Cardella, G.; Amorini, F.; Geraci, E.; Grassi, L.; Politi, G.; La Guidara, E.; Lombardo, I.; Rizzo, F.; Russotto, P.; Volant, C.; Hagmann, S.; Rothard, H.

    2010-01-01

    The interaction of ion beams with insulators leads to charging-up phenomena, which at present are under investigation in connection with guiding phenomena in nanocapillaries with possible application in nanofocused beams. We studied the charging dynamics of insulating foil targets [Mylar, polypropylene (PP)] irradiated with swift ion beams (C, O, Ag, and Xe at 40, 23, 40, and 30 MeV/u, respectively) via the measurement of the slowing down of fast binary-encounter electrons. Also, sandwich targets (Mylar covered with a thin Au layer on both surfaces) and Mylar with Au on only one surface were used. Fast-electron spectra were measured by the time-of-flight method at the superconducting cyclotron of Laboratori Nazionali del Sud (LNS) Catania. The charge buildup leads to target-material-dependent potentials of the order of 6.0 kV for Mylar and 2.8 kV for PP. The sandwich targets, surprisingly, show the same behavior as the insulating targets, whereas a single Au layer on the electron and ion exit side strongly suppresses the charging phenomenon. The accumulated number of projectiles needed for charging up is inversely proportional to electronic energy loss. Thus, the charging up is directly related to emission of secondary electrons.

  11. Diffusive charge transport in graphene

    Science.gov (United States)

    Chen, Jianhao

    The physical mechanisms limiting the mobility of graphene on SiO 2 are studied and printed graphene devices on a flexible substrate are realized. Intentional addition of charged scattering impurities is used to study the effects of charged impurities. Atomic-scale defects are created by noble-gas ions irradiation to study the effect of unitary scatterers. The results show that charged impurities and atomic-scale defects both lead to conductivity linear in density in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates. While charged impurities cause intravalley scattering and induce a small change in the minimum conductivity, defects in graphene scatter electrons between the valleys and suppress the minimum conductivity below the metallic limit. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a small resistivity which is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO2 substrate give rise to an activated, carrier density-dependent resistivity. Graphene is also made into high mobility transparent and flexible field effect device via the transfer-printing method. Together the results paint a complete picture of charge carrier transport in graphene on SiO2 in the diffusive regime, and show the promise of graphene as a novel electronic material that have potential applications not only on conventional inorganic substrates, but also on flexible substrates.

  12. Charge transport in electrically doped amorphous organic semiconductors.

    Science.gov (United States)

    Yoo, Seung-Jun; Kim, Jang-Joo

    2015-06-01

    This article reviews recent progress on charge generation by doping and its influence on the carrier mobility in organic semiconductors (OSs). The doping induced charge generation efficiency is generally low in OSs which was explained by the integer charge transfer model and the hybrid charge transfer model. The ionized dopants formed by charge transfer between hosts and dopants can act as Coulomb traps for mobile charges, and the presence of Coulomb traps in OSs broadens the density of states (DOS) in doped organic films. The Coulomb traps strongly reduce the carrier hopping rate and thereby change the carrier mobility, which was confirmed by experiments in recent years. In order to fully understand the doping mechanism in OSs, further quantitative and systematic analyses of charge transport characteristics must be accomplished. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  14. 20 CFR 416.1565 - Hearing on charges.

    Science.gov (United States)

    2010-04-01

    ... DISABLED Representation of Parties § 416.1565 Hearing on charges. (a) Scheduling the hearing. If the Deputy... complete record of the proceedings at the hearing made. (l) Representation. The representative, as the... of charges. The hearing officer may dismiss the charges in the event of the death of the...

  15. 20 CFR 404.1765 - Hearing on charges.

    Science.gov (United States)

    2010-04-01

    ...- ) Representation of Parties § 404.1765 Hearing on charges. (a) Scheduling the hearing. If the Deputy Commissioner... complete record of the proceedings at the hearing made. (l) Representation. The representative, as the... of charges. The hearing officer may dismiss the charges in the event of the death of the...

  16. Space-charge-limit instabilities in electron beams

    International Nuclear Information System (INIS)

    Coutsias, E.A.; Sullivan, D.J.

    1983-01-01

    The method of characteristics and multiple-scaling perturbation techniques are used to study the space-charge instability of electron beams. It is found that the stable oscillating state (virtual cathode) created when the space-charge limit is exceeded is similar to a collisionless shock wave. The oscillatory solution originates at the bifurcation point of two unstable steady states. Complementary behavior (virtual anode) results when an ion beam exceeds its space-charge limit. The virtual cathode can also exist in the presence of a neutralizing heavy-ion background. The Pierce instability, where the electron and ion charge densities are equal, is a special case of this broader class. Estimates of the nonlinear growth rate of the instability at the space-charge limit are given

  17. Single-Bunch Stability With Direct Space Charge

    CERN Multimedia

    Oeftiger, Adrian

    2017-01-01

    Previous studies have shown the suppressing effect of direct space charge on impedance-driven head-tail instabilities. The present work investigates transverse stability for the HL-LHC scenario based on our macro-particle simulation tool PyHEADTAIL using realistic bunch distributions. The impact of selfconsistent modelling is briefly discussed for non-linear space charge forces. We study how space charge pushes the instability threshold for the transverse mode coupling instability (TMCI) occurring between mode 0 and -1. Next we consider finite chromaticity: in absence of space charge, the impedance model predicts head-tail instabilities. For a selected case below TMCI threshold at Q0 = 5, we demonstrate the stabilising effect of space charge. Finally, we compare simulation results to past LHC measurements.

  18. Charge sharing and charge loss in a cadmium-zinc-telluride fine-pixel detector array

    International Nuclear Information System (INIS)

    Gaskin, J.A.; Sharma, D.P.; Ramsey, B.D.

    2003-01-01

    Because of its high atomic number, room temperature operation, low noise, and high spatial resolution a cadmium-zinc-telluride multi-pixel detector is ideal for hard X-ray astrophysical observation. As part of on-going research at MSFC to develop multi-pixel CdZnTe detectors for this purpose, we have measured charge sharing and charge loss for a 4x4 (750 μm pitch), 1 mm thick pixel array and modeled these results using a Monte-Carlo simulation. This model was then used to predict the amount of charge sharing for a much finer pixel array (with a 300 μm pitch). Future work will enable us to compare the simulated results for the finer array to measured values

  19. Workplace Charging Challenge Mid-Program Review: Employees Plug In

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-12-31

    The EV Everywhere Workplace Charging Challenge aims to have 500 U.S. employers offering workplace charging by 2018. These reports describe the progress made in the Challenge. In 2015, the Workplace Charging Challenge celebrated a major milestone – it reached the halfway point to its goal of 500 Challenge partners committed to installing workplace charging by 2018. More than 250 employers have joined as Challenge partners and the installation of workplace charging as a sustainable business practice is growing across the country. Their efforts have resulted in more than 600 workplaces with over 5,500 charging stations accessible to nearly one million employees. In 2015, more than 9,000 PEV-driving employees charged at these worksites on a regular basis. Our Workplace Charging Challenge Mid-Program Review reports this progress and other statistics related to workplace charging, including employee satisfaction and charger usage.

  20. Modelling of an advanced charging system for electric vehicles

    Science.gov (United States)

    Hassan Jaafar, Abdul; Rahman, Ataur; Mohiuddin, A. K. M.; Rashid, Mahbubur

    2017-03-01

    Climate Change is recognized as one of the greatest environmental problem facing the World today and it has long been appreciated by governments that reducing the impact of the internal combustion (IC) engine powered motor vehicle has an important part to play in addressing this threat. In Malaysia, IC engine powered motor vehicle accounts almost 90% of the national greenhouse gas (GHG) emissions. The need to reduce the emission is paramount, as Malaysia has pledged to reduce 40% of CO2 intensity by 2020 from 2005 level by 25% of improvement in average fuel consumption. The introduction of electric vehicles (EVs) is one of the initiatives. However in terms of percentage, the electric vehicles have not been commonly used by people nowadays and one of the reasons is lack in charging infrastructure especially when cars are on the road. The aim of this study is to simulate and model an advanced charging system for the charging infrastructure of EVs/HEVs all over the nation with slow charging mode with charging current 25 A, medium charging mode with charging current 50 A and fast charging mode with charging current 100 A. The slow charging mode is proposed for residence, medium charging mode for office parking lots, and fast charging mode is called fast charging track for charging station on road. With three modes charger topology, consumers could choose a suitable mode for their car based on their need. The simulation and experiment of advanced charging system has been conducted on a scale down battery pack of nominal voltage of 3.75 V and capacity of 1020 mAh. Result shows that the battery could be charging less than 1 hour with fast charging mode. However, due to limitation of Tenaga Nasional Berhad (TNB) power grid, the maximum 50 A current is considered to be the optimized passive mode for the EV’s battery charging system. The developed advanced charger prototype performance has been compared with the simulation result and conventional charger performance, the

  1. Surface charge effects in protein adsorption on nanodiamonds.

    Science.gov (United States)

    Aramesh, M; Shimoni, O; Ostrikov, K; Prawer, S; Cervenka, J

    2015-03-19

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.

  2. 5-7 Year Old Children's Conceptions of Behaving Artifacts and the Influence of Constructing Their Behavior on the Development of Theory of Mind (ToM) and Theory of Artificial Mind (ToAM)

    Science.gov (United States)

    Spektor-Precel, Karen; Mioduser, David

    2015-01-01

    Nowadays, we are surrounded by artifacts that are capable of adaptive behavior, such as electric pots, boiler timers, automatic doors, and robots. The literature concerning human beings' conceptions of "traditional" artifacts is vast, however, little is known about our conceptions of behaving artifacts, nor of the influence of the…

  3. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  4. Charged thin-shell gravastars in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Oevguen, Ali [Pontificia Universidad Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Eastern Mediterranean University, Physics Department, Famagusta, Northern Cyprus (Turkey); Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of); Institute of Physics, Ss. Cyril and Methodius University, Faculty of Natural Sciences and Mathematics, Skopje (Macedonia, The Former Yugoslav Republic of)

    2017-08-15

    In this paper we construct a charged thin-shell gravastar model within the context of noncommutative geometry. To do so, we choose the interior of the nonsingular de Sitter spacetime with an exterior charged noncommutative solution by cut-and-paste technique and apply the generalized junction conditions. We then investigate the stability of a charged thin-shell gravastar under linear perturbations around the static equilibrium solutions as well as the thermodynamical stability of the charged gravastar. We find the stability regions, by choosing appropriate parameter values, located sufficiently close to the event horizon. (orig.)

  5. Hydrodynamics and Elasticity of Charged Black Branes

    DEFF Research Database (Denmark)

    Gath, Jakob

    We consider long-wavelength perturbations of charged black branes to first order in a uidelastic derivative expansion. At first order the perturbations decouple and we treat the hydrodynamic and elastic perturbations separately. To put the results in a broader perspective, we present the rst...... as a seed solution, we obtain a class of charged black brane geometries carrying smeared Maxwell charge in Einstein-Maxwell-dilaton theory. In the specific case of ten-dimensional space-time we furthermore use T-duality to generate bent black branes with higher-form charge, including smeared D...

  6. A low cost, microprocessor-based battery charge controller

    Energy Technology Data Exchange (ETDEWEB)

    Pulfrey, D L; Hacker, J [Pulfrey Solar Inc., Vancouver, BC (Canada)

    1990-01-01

    This report describes the design, construction, testing, and evaluation of a microprocessor-based battery charge controller that uses charge integration as the method of battery state-of-charge estimation. The controller is intended for use in medium-size (100-1000W) photovoltaic systems that employ 12V lead-acid batteries for charge storage. The controller regulates the charge flow to the battery and operates in three, automatically-determined modes, namely: charge, equalize, and float. The prototype controller is modular in nature and can handle charge/discharge currents of magnitude up to 80A, depending on the number of circuit boards employed. Evaluation tests and field trials have shown the controller to be very accurate and reliable. Based on the cost of the prototype, it appears that an original equipment manufacturer's selling price of $400 for a 40A (500W) unit may be realistic. 18 figs., 2 tabs.

  7. Numerical Comparison of Optimal Charging Schemes for Electric Vehicles

    DEFF Research Database (Denmark)

    You, Shi; Hu, Junjie; Pedersen, Anders Bro

    2012-01-01

    of four different charging schemes, namely night charging, night charging with V2G, 24 hour charging and 24 hour charging with V2G, on the basis of real driving data and electricity price of Denmark in 2003. For all schemes, optimal charging plans with 5 minute resolution are derived through the solving...... of a mixed integer programming problem which aims to minimize the charging cost and meanwhile takes into account the users' driving needs and the practical limitations of the EV battery. In the post processing stage, the rainflow counting algorithm is implemented to assess the lifetime usage of a lithium...

  8. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    Science.gov (United States)

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Price Based Electric Vehicle Charging

    DEFF Research Database (Denmark)

    Mahat, Pukar; Handl, Martin; Kanstrup, Kenneth

    2012-01-01

    It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid. This pa......It is expected that a lot of the new light vehicles in the future will be electrical vehicles (EV). The storage capacity of these EVs has the potential to complement renewable energy resources and mitigate its intermittency. However, EV charging may have negative impact on the power grid...... method where distribution system operator (DSO) optimizes the cost of EV charging while taking substation transformer capacity into account....

  10. Electrodynamics as a theory of interacting complex charges

    International Nuclear Information System (INIS)

    Akeyo Omolo, Joseph

    2003-04-01

    In this paper, we formulate a general theory of electrodynamics which incorporates both electric and magnetic charges. The mathematical origin of a second vector potential and magnetic charge is established. Electrodynamics is then reformulated in complex form as a theory of complex charges moving in a complex force field. This provides the framework for complex charged particle interactions as a generalization of Schwinger's theory of dyon-dyon interactions. The concept of duality transformation relating electric and magnetic charge spaces is developed within the general framework of electrodynamics in complex form. (author)

  11. Experimental validation of calculated atomic charges in ionic liquids

    Science.gov (United States)

    Fogarty, Richard M.; Matthews, Richard P.; Ashworth, Claire R.; Brandt-Talbot, Agnieszka; Palgrave, Robert G.; Bourne, Richard A.; Vander Hoogerstraete, Tom; Hunt, Patricia A.; Lovelock, Kevin R. J.

    2018-05-01

    A combination of X-ray photoelectron spectroscopy and near edge X-ray absorption fine structure spectroscopy has been used to provide an experimental measure of nitrogen atomic charges in nine ionic liquids (ILs). These experimental results are used to validate charges calculated with three computational methods: charges from electrostatic potentials using a grid-based method (ChelpG), natural bond orbital population analysis, and the atoms in molecules approach. By combining these results with those from a previous study on sulfur, we find that ChelpG charges provide the best description of the charge distribution in ILs. However, we find that ChelpG charges can lead to significant conformational dependence and therefore advise that small differences in ChelpG charges (<0.3 e) should be interpreted with care. We use these validated charges to provide physical insight into nitrogen atomic charges for the ILs probed.

  12. Solid state cloaking for electrical charge carrier mobility control

    Science.gov (United States)

    Zebarjadi, Mona; Liao, Bolin; Esfarjani, Keivan; Chen, Gang

    2015-07-07

    An electrical mobility-controlled material includes a solid state host material having a controllable Fermi energy level and electrical charge carriers with a charge carrier mobility. At least one Fermi level energy at which a peak in charge carrier mobility is to occur is prespecified for the host material. A plurality of particles are distributed in the host material, with at least one particle disposed with an effective mass and a radius that minimize scattering of the electrical charge carriers for the at least one prespecified Fermi level energy of peak charge carrier mobility. The minimized scattering of electrical charge carriers produces the peak charge carrier mobility only at the at least one prespecified Fermi level energy, set by the particle effective mass and radius, the charge carrier mobility being less than the peak charge carrier mobility at Fermi level energies other than the at least one prespecified Fermi level energy.

  13. Surface charge effects in protein adsorption on nanodiamonds

    Science.gov (United States)

    Aramesh, M.; Shimoni, O.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins (bovine serum albumin and lysozyme) of different properties (charge, molecular weight and rigidity), the main driving mechanism responsible for the protein binding to the charged nanoparticles was identified. Electrostatic interactions were found to dominate the protein adsorption dynamics, attachment and conformation. We developed a simple electrostatic model that can qualitatively explain the observed adsorption behaviour based on charge-induced pH modifications near the charged nanoparticle surfaces. Under neutral conditions, the local pH around the positively and negatively charged nanodiamonds becomes very high (11-12) and low (1-3) respectively, which has a profound impact on the protein charge, hydration and affinity to the nanodiamonds. Small proteins (lysozyme) were found to form multilayers with significant conformational changes to screen the surface charge, while larger proteins (albumin) formed monolayers with minor conformational changes. The findings of this study provide a step forward toward understanding and eventually predicting nanoparticle interactions with biofluids.Understanding the interaction of proteins with charged diamond nanoparticles is of fundamental importance for diverse biomedical applications. Here we present a thorough study of protein binding, adsorption kinetics and structure on strongly positively (hydrogen-terminated) and negatively (oxygen-terminated) charged nanodiamond particles using a quartz crystal microbalance by dissipation and infrared spectroscopy. By using two model proteins

  14. Charge interaction between particle-laden fluid interfaces.

    Science.gov (United States)

    Xu, Hui; Kirkwood, John; Lask, Mauricio; Fuller, Gerald

    2010-03-02

    Experiments are described where two oil/water interfaces laden with charged particles move at close proximity relative to one another. The particles on one of the interfaces were observed to be attracted toward the point of closest approach, forming a denser particle monolayer, while the particles on the opposite interface were repelled away from this point, forming a particle depletion zone. Such particle attraction/repulsion was observed even if one of the interfaces was free of particles. This phenomenon can be explained by the electrostatic interaction between the two interfaces, which causes surface charges (charged particles and ions) to redistribute in order to satisfy surface electric equipotential at each interface. In a forced particle oscillation experiment, we demonstrated the control of charged particle positions on the interface by manipulating charge interaction between interfaces.

  15. On equilibrium charge distribution above dielectric surface

    Directory of Open Access Journals (Sweden)

    Yu.V. Slyusarenko

    2009-01-01

    Full Text Available The problem of the equilibrium state of the charged many-particle system above dielectric surface is formulated. We consider the case of the presence of the external attractive pressing field and the case of its absence. The equilibrium distributions of charges and the electric field, which is generated by these charges in the system in the case of ideally plane dielectric surface, are obtained. The solution of electrostatic equations of the system under consideration in case of small spatial heterogeneities caused by the dielectric surface, is also obtained. These spatial inhomogeneities can be caused both by the inhomogeneities of the surface and by the inhomogeneous charge distribution upon it. In particular, the case of the "wavy" spatially periodic surface is considered taking into account the possible presence of the surface charges.

  16. Contractor Software Charges

    National Research Council Canada - National Science Library

    Granetto, Paul

    1994-01-01

    .... Examples of computer software costs that contractors charge through indirect rates are material management systems, security systems, labor accounting systems, and computer-aided design and manufacturing...

  17. Minimization of the emittance growth of multi-charge particle beams in the charge stripping section of RAON

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ji-Gwang [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Eun-San, E-mail: eskim1@knu.ac.kr [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Hye-Jin, E-mail: hjkim87@ibs.re.kr [Rare Isotope Science Project, Institute for Basic Science, Jeonmin-dong, Yuseong-gu, Daejeon (Korea, Republic of); Jeon, Dong-O [Rare Isotope Science Project, Institute for Basic Science, Jeonmin-dong, Yuseong-gu, Daejeon (Korea, Republic of)

    2014-12-11

    The charge stripping section of the Rare isotope Accelerator Of Newness (RAON), which is one of the critical components to achieve a high power of 400 kW with a short lianc, is a source of transverse emittance growth. The dominant effects are the angular straggling in the charge stripper required to increase the charge state of the beam and chromatic aberrations in the dispersive section required to separate the selected ion beam from the various ion beams produced in the stripper. Since the main source of transverse emittance growth in the stripper is the angular straggling, it can be compensated for by changing the angle of the phase ellipse. Therefore the emittance growth is minimized by optimizing the Twiss parameters at the stripper. The emittance growth in the charge selection section is also minimized by the correction of high-order aberrations using six sextupole magnets. In this paper, we present a method to minimize the transverse emittance growth in the stripper by changing the Twiss parameters and in the charge selection section by using sextupole magnets.

  18. Kinetic energy and charge distributions of multiply charged ions produced by heavy ions and by synchrotron radiation

    International Nuclear Information System (INIS)

    Levin, J.C.; Biedermann, C.; Cederquist, H.; Liljeby, L.; Short, R.T.; Sellin, I.A.

    1989-01-01

    This paper contrasts two methods of production of multiply charged ions which may have application in future hot-atom chemistry experiments. Interest in extending the study of ion-atom collisions from MeV to keV to eV energies has grown rapidly in the last decade as previously inaccessible astrophysical, fusion, and spectroscopic problems have been addressed. One of these methods involves highly charged secondary beams formed from ions created in dilute gas samples irradiated by fast (MeV), high-charge-state, heavy ions. The measurements show, however, that such ions often have mean recoil energies two orders of magnitude higher than kinetic energies of ions in similar charge states resulting from vacancy cascades of atomic inner shells photoionized by synchrotron x rays. These results may be applicable to development of a cold source of highly charged ions featuring low energy spread and good angular definition. Results from other laboratories (Grandin et al at Ganil, Ullrich et al in Frankfurt, and Watson et al at Texas A ampersand M) will also be discussed

  19. Image charge forces inside conducting boundaries

    International Nuclear Information System (INIS)

    Tinkle, Mark D.; Barlow, S. E.

    2001-01-01

    The common description of the electrostatic force, F(x)=-q∇φ(x), provides an incomplete description of the force on the charge q at a point x when the charge itself induces additional fields, e.g., image charges, polarizations, etc. The equation may be corrected through the introduction of a ''pseudopotential'' formalism. Exploration of some of the elementary properties of the pseudopotential demonstrates its essential simplicity. This simplicity allows it to be incorporated directly into dynamics calculations. We explicitly evaluate the pseudopotential in a number of simple but important cases including the sphere, parallel plates, the rectangular prism, and the cylindrical box. The pseudopotential formalism may be expanded to include extended charge distributions; in this latter form we are able to directly apply the results to experimental measurements

  20. The charge imbalance in ultracold plasmas

    International Nuclear Information System (INIS)

    Chen, Tianxing; Lu, Ronghua; Guo, Li; Han, Shensheng

    2016-01-01

    Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperature are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.

  1. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A.J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W.P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1percent per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm2 and 0.4 pC/ps/mm2, respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within +/-10 percent.

  2. The charge imbalance in ultracold plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianxing; Lu, Ronghua, E-mail: lurh@siom.ac.cn; Guo, Li; Han, Shensheng [Key Laboratory for Quantum Optics and Center for Cold Atom Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-09-15

    Ultracold plasmas are regarded as quasineutral but not strictly neutral. The results of charge imbalance in the expansion of ultracold plasmas are reported. The calculations are performed by a full molecular-dynamics simulation. The details of the electron velocity distributions are calculated without the assumption of electron global thermal equilibrium and Boltzmann distribution. Spontaneous evolutions of the charge imbalance from the initial states with perfect neutrality are given in the simulations. The expansion of outer plasma slows down with the charge imbalance. The influences of plasma size and parameters on the charge imbalance are discussed. The radial profiles of electron temperature are given for the first time, and the self-similar expansion can still occur even if there is no global thermal equilibrium. The electron disorder induced heating is also found in the simulation.

  3. Space Charge Mitigation by Hollow Bunches

    CERN Multimedia

    Oeftiger, AO

    2014-01-01

    To satisfy the requirements of the HL-LHC (High Luminosity Large Hadron Collider), the LHC injector chain will need to supply a higher brightness, i.e. deliver the same transverse beam emittances \\epsilon_{x,y} while providing a higher intensity N. However, a larger number of particles per bunch enhances space charge effects. One approach to mitigate the impact of space charge is to change the longitudinal phase space distribution: hollow bunches feature a depleted bunch centre and a densely populated periphery. Thus, the spatial line density maximum is depressed which ultimately decreases the tune spread imposed by space charge. Therefore, a higher intensity can be accepted while keeping the same overall space charge tune shift. 3 different methods to create hollow bunches in the PSBooster are simulated.

  4. Modeling Charge Collection in Detector Arrays

    Science.gov (United States)

    Hardage, Donna (Technical Monitor); Pickel, J. C.

    2003-01-01

    A detector array charge collection model has been developed for use as an engineering tool to aid in the design of optical sensor missions for operation in the space radiation environment. This model is an enhancement of the prototype array charge collection model that was developed for the Next Generation Space Telescope (NGST) program. The primary enhancements were accounting for drift-assisted diffusion by Monte Carlo modeling techniques and implementing the modeling approaches in a windows-based code. The modeling is concerned with integrated charge collection within discrete pixels in the focal plane array (FPA), with high fidelity spatial resolution. It is applicable to all detector geometries including monolithc charge coupled devices (CCDs), Active Pixel Sensors (APS) and hybrid FPA geometries based on a detector array bump-bonded to a readout integrated circuit (ROIC).

  5. Charge Diagnostics for Laser Plasma Accelerators

    International Nuclear Information System (INIS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Sokollik, T.; Smith, A.; Rodgers, D.; Donahue, R.; Bryne, W.; Leemans, W. P.

    2010-01-01

    The electron energy dependence of a scintillating screen (Lanex Fast) was studied with sub-nanosecond electron beams ranging from 106 MeV to 1522 MeV at the Lawrence Berkeley National Laboratory Advanced Light Source (ALS) synchrotron booster accelerator. The sensitivity of the Lanex Fast decreased by 1% per 100 MeV increase of the energy. The linear response of the screen against the charge was verified with charge density and intensity up to 160 pC/mm 2 and 0.4 pC/ps/mm 2 , respectively. For electron beams from the laser plasma accelerator, a comprehensive study of charge diagnostics has been performed using a Lanex screen, an integrating current transformer, and an activation based measurement. The charge measured by each diagnostic was found to be within ±10%.

  6. Features of the low-power charge controller of lead-acid current sources charged by solar batteries

    International Nuclear Information System (INIS)

    Tukfatullin, O.F.; Yuldoshev, I.A.; Solieva, N.A.

    2008-01-01

    Influence of different factors on exploitations characteristics of solar photoelectric plant is investigated by field-performance data. A construction of charge controller of the lead-acid accumulator battery charging by means of solar battery is analyzed taking into account these factors. (authors)

  7. Low-charge-state RFQ injector

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    Preliminary design work was done for a short, normally-conducting RFQ entrance section for a low-charge-state linac. Early results indicate that a low- frequency (12 MHz) RFQ, operated on a high-voltage platform, and injected with a pre-bunched beam, can provide ATLAS quality beams of ions of charge-to-mass ratio less than 1/132.

  8. Charge exchange in galaxy clusters

    Science.gov (United States)

    Gu, Liyi; Mao, Junjie; de Plaa, Jelle; Raassen, A. J. J.; Shah, Chintan; Kaastra, Jelle S.

    2018-03-01

    Context. Though theoretically expected, the charge exchange emission from galaxy clusters has never been confidently detected. Accumulating hints were reported recently, including a rather marginal detection with the Hitomi data of the Perseus cluster. As previously suggested, a detection of charge exchange line emission from galaxy clusters would not only impact the interpretation of the newly discovered 3.5 keV line, but also open up a new research topic on the interaction between hot and cold matter in clusters. Aim. We aim to perform the most systematic search for the O VIII charge exchange line in cluster spectra using the RGS on board XMM-Newton. Methods: We introduce a sample of 21 clusters observed with the RGS. In order to search for O VIII charge exchange, the sample selection criterion is a >35σ detection of the O VIII Lyα line in the archival RGS spectra. The dominating thermal plasma emission is modeled and subtracted with a two-temperature thermal component, and the residuals are stacked for the line search. The systematic uncertainties in the fits are quantified by refitting the spectra with a varying continuum and line broadening. Results: By the residual stacking, we do find a hint of a line-like feature at 14.82 Å, the characteristic wavelength expected for oxygen charge exchange. This feature has a marginal significance of 2.8σ, and the average equivalent width is 2.5 × 10-4 keV. We further demonstrate that the putative feature can be barely affected by the systematic errors from continuum modeling and instrumental effects, or the atomic uncertainties of the neighboring thermal lines. Conclusions: Assuming a realistic temperature and abundance pattern, the physical model implied by the possible oxygen line agrees well with the theoretical model proposed previously to explain the reported 3.5 keV line. If the charge exchange source indeed exists, we expect that the oxygen abundance could have been overestimated by 8-22% in previous X

  9. Complex fluids with mobile charge-regulating macro-ions

    Science.gov (United States)

    Markovich, Tomer; Andelman, David; Podgornik, Rudi

    2017-10-01

    We generalize the concept of charge regulation of ionic solutions, and apply it to complex fluids with mobile macro-ions having internal non-electrostatic degrees of freedom. The suggested framework provides a convenient tool for investigating systems where mobile macro-ions can self-regulate their charge (e.g., proteins). We show that even within a simplified charge-regulation model, the charge dissociation equilibrium results in different and notable properties. Consequences of the charge regulation include a positional dependence of the effective charge of the macro-ions, a non-monotonic dependence of the effective Debye screening length on the concentration of the monovalent salt, a modification of the electric double-layer structure, and buffering by the macro-ions of the background electrolyte.

  10. Charging system and method for multicell storage batteries

    Science.gov (United States)

    Cox, Jay A.

    1978-01-01

    A battery-charging system includes a first charging circuit connected in series with a plurality of battery cells for controlled current charging. A second charging circuit applies a controlled voltage across each individual cell for equalization of the cells to the fully charged condition. This controlled voltage is determined at a level above the fully charged open-circuit voltage but at a sufficiently low level to prevent corrosion of cell components by electrochemical reaction. In this second circuit for cell equalization, a transformer primary receives closely regulated, square-wave voltage which is coupled to a plurality of equal secondary coil windings. Each secondary winding is connected in parallel to each cell of a series-connected pair of cells through half-wave rectifiers and a shared, intermediate conductor.

  11. Charged particle accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Ress, T I; Nolde, G V

    1974-11-25

    A charged particle accelerator is described. It is made of an enclosure arranged for channeling a stream of charged particles along a predetermined path, and propelling means juxtaposed to the enclosure for generating a magnetic field moving in a predetermined direction with respect to each point of the path, the magnetic flux vector of that field being transverse to that path at every point, which gives the particles, along said path, a velocity connected to that of the mobile field by a predetermined relation. This can be applied to the fast production of chemical compounds, to the emission of neutrons and of thermal energy, and to the production of mechanical energy for propelling space ships.

  12. Charged particle accelerator

    International Nuclear Information System (INIS)

    Ress, T.I.; Nolde, G.V.

    1974-01-01

    A charged particle accelerator is described. It is made of an enclosure arranged for channeling a stream of charged particles along a predetermined path, and propelling means juxtaposed to said enclosure for generating therein a magnetic field moving in a predetermined direction with respect to each point of said path, the magnetic flux vector of that field being transverse to that path at every point, which gives the particles, along said path, a velocity connected to that of the mobile field by a predetermined relation. This can be applied to the fast production of chemical compounds, to the emission of neutrons and of thermal energy, and to the production of mechanical energy for propelling space ships [fr

  13. Ewald Electrostatics for Mixtures of Point and Continuous Line Charges.

    Science.gov (United States)

    Antila, Hanne S; Tassel, Paul R Van; Sammalkorpi, Maria

    2015-10-15

    Many charged macro- or supramolecular systems, such as DNA, are approximately rod-shaped and, to the lowest order, may be treated as continuous line charges. However, the standard method used to calculate electrostatics in molecular simulation, the Ewald summation, is designed to treat systems of point charges. We extend the Ewald concept to a hybrid system containing both point charges and continuous line charges. We find the calculated force between a point charge and (i) a continuous line charge and (ii) a discrete line charge consisting of uniformly spaced point charges to be numerically equivalent when the separation greatly exceeds the discretization length. At shorter separations, discretization induces deviations in the force and energy, and point charge-point charge correlation effects. Because significant computational savings are also possible, the continuous line charge Ewald method presented here offers the possibility of accurate and efficient electrostatic calculations.

  14. Effect of Titanium Dioxide Dopping on Charge Trapping in ...

    African Journals Online (AJOL)

    The charge storage properties of corona charged pure and TiO2 doped polystyrene (PS) films have been studied. Thermally stimulated charge decay and open circuit thermally stimulated charges were measured. A half-value charge decay temperature T1/2 ∼ 140oC is optimum at 3 wt % TiO2 doping. This implies that ...

  15. E-mobility charging infrastructure. Wish and reality

    Energy Technology Data Exchange (ETDEWEB)

    Wunnerlich, Stephan [EnBW Energie Baden-Wuerttemberg AG, Karlsruhe (Germany)

    2013-06-01

    An adequate charging infrastructure for electric vehicles is necessary for the success of electric vehicles. The wishful thinking is, to build up quickly a charging infrastructure to the electric vehicles since they will be launched. The wishful thinking is to build up a cheap and easy to handle infrastructure in order to keep it cheap and simple for the customer. The wishful thinking is that the process of building up such infrastructure is smooth and based on clear rules, regulations and standards. The wishful thinking is that public charging infrastructure operators can earn money with the sales of kWh or with marketing their public charging stations. Reality shows a different picture. Public charging Infrastructure is expensive to install and to manage, public charging infrastructure is difficult to process as well, there are only few electric cars on the street and you cannot earn enough money with selling electricity or marketing. Only a large number of electric vehicles and new and innovative solutions can help to overcome this gap between wish and reality. (orig.)

  16. Charge state of ions scattered by metal surface

    International Nuclear Information System (INIS)

    Kishinevsky, L.M.; Parilis, E.S.; Verleger, V.K.

    1976-01-01

    A model for description of charge distributions for scattering of heavy ions in the keV region, on metal surfaces developing and improving the method of Van der Weg and Bierman, and taking into account the connection between the ion charge state and scattering kinematics, is proposed. It is shown that multiple charged particles come from ions with a vacancy in the inner shell while the outer shell vacancies give only single charged ions and neutrals. The approximately linear increase of degree of ionization with normal velocity, and the non-monotonic charge dependence of the energy spectrum established by Chicherov and Buck et al is explained by considering irreversible neutralization in the depth of the metal, taking into account the connection of the charge state with the shape of trajectory and its location relative to the metal surface. The dependence of charge state on surface structure is discussed. Some new experiments are proposed. (author)

  17. Revisiting conserved charges in higher curvature gravitational theories

    Science.gov (United States)

    Ghodrati, M.; Hajian, K.; Setare, M. R.

    2016-12-01

    Restricting the covariant gravitational phase spaces to the manifold of parametrized families of solutions, the mass, angular momenta, entropies, and electric charges can be calculated by a single and simple method. In this method, which has been called the "solution phase space method," conserved charges are unambiguous and regular. Moreover, assuming the generators of the charges to be exact symmetries, entropies and other conserved charges can be calculated on almost arbitrary surfaces, not necessarily horizons or asymptotics. Hence, the first law of thermodynamics would be a local identity relating the exact symmetries to which the mass, angular momentum, electric charge, and entropy are attributed. In this paper, we apply this powerful method to the f( R) gravitational theories accompanied by the terms quadratic in the Riemann and Ricci tensors. Furthermore, conserved charges and the first law of thermodynamics for some of their black hole solutions are exemplified. The examples include warped AdS_3, charged static BTZ, and 3-dimensional z=3 Lifshitz black holes.

  18. Level 1 Electric Vehicle Charging Stations at the Workplace

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Margaret [Energetics Incorporated, Columbia, MD (United States)

    2016-07-29

    Level 1 charging (110-120 V) can be a good fit for many workplace charging programs. This document highlights the experiences of a selection of Workplace Charging Challenge partners that use Level 1 charging.

  19. Charge densities and charge noise in mesoscopic conductors

    Indian Academy of Sciences (India)

    This generalization leads to a local Wigner–Smith life-time matrix. Keywords. Density ... Of interest is the charge distribution in such a conductor and ..... is the transmission probability of the scattering problem without absorption if .... as a voltage probe which has its potential adjusted in such a way that there is no net current.

  20. Escape of charged particles from a neutron star

    International Nuclear Information System (INIS)

    Pelizzari, M.A.

    1976-01-01

    The theory of particle trajectories in an axisymmetric magnetic field, formulated by C. Stormer, can be extended to cover conservative force fields as well. As such, it is an ideal tool to study the escape of charged particles from a rapidly rotating neutron star, enabling one to determine the maximum range of their trajectories in space. With the aid of this theory, it is shown that a neutron star, rotating in a vacuum with rotation and magnetic axes aligned, will not evolve a perfectly conducting magnetosphere if the neutron star is the only source of charge. The sign of charge accelerated from the equatorial regions will be magnetically trapped to a toroidal region very near the star, and the opposite sign of charge, emerging from the polar regions, will escape from the magnetosphere until a critical stellar charge is reached, after which polar charges will be electrostatically bound to the magnetosphere. This selective magnetic trapping of one sign of charge, which prevents the formation of a stellar wind, is a consequence of the magnetic field's orientation relative to the internal charge density of the neutron star