WorldWideScience

Sample records for begets high-frequency magnetism

  1. High-frequency magnetic components

    CERN Document Server

    Kazimierczuk, Marian K

    2013-01-01

    A unique text on the theory and design fundaments of inductors and transformers, updated with more coverage on the optimization of magnetic devices and many new design examples The first edition is popular among a very broad audience of readers in different areas of engineering and science. This book covers the theory and design techniques of the major types of high-frequency power inductors and transformers for a variety of applications, including switching-mode power supplies (SMPS) and resonant dc-to-ac power inverters and dc-to-dc power converters. It describes eddy-current phenomena (su

  2. Ultra-high frequency magnetic resonance imaging

    OpenAIRE

    Magill, Arthur W.

    2007-01-01

    This thesis addresses the problem of radiofrequency probe design for Ultra High Frequency Magnetic Resonance Imaging (7T). The signal-to-noise ratio available in Magnetic Resonance Imaging (MRI) is determined by the static magnetic field strength, causing a continued drive toward higher fields to enable faster image acquisition at finer spatial resolution. The resonant frequency increases linearly with static field strength. At 7T the proton resonant frequency is 300MHz, with a wavelength...

  3. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  4. Motion behavior of non-metallic particles under high frequency magnetic field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhong-tao; GUO Qing-tao; YU Feng-yun; LI Jie; ZHANG Jian; LI Ting-ju

    2009-01-01

    Non-metallic particles, especially alumina, are the main inclusions in aluminum and its alloys. Numerical simulation and the corresponding experiments were carried out to study the motion behavior of alumina particles in commercial pure aluminum under high frequency magnetic field. At the meantime, multi-pipe experiment was also done to discuss the prospect of continuous elimination of non-metallic particles under high frequency magnetic field. It is shown that: 1) results of numerical simulation are in good agreement with the experimental results, which certificates the rationality of the simulation model; 2) when the intensity of high frequency magnetic field is 0.06 T, the 30 μm alumina particles in melt inner could migrate to the edge and be removed within 2 s; 3) multi-pipe elimination of alumina particles under high frequency magnetic field is also effective and has a good prospect in industrial application.

  5. High frequency electromagnetic interference shielding magnetic polymer nanocomposites

    Science.gov (United States)

    He, Qingliang

    Electromagnetic interference is one of the most concerned pollution and problem right now since more and more electronic devices have been extensively utilized in our daily lives. Besides the interference, long time exposure to electromagnetic radiation may also result in severe damage to human body. In order to mitigate the undesirable part of the electromagnetic wave energy and maintain the long term sustainable development of our modern civilized society, new technology development based researches have been made to solve this problem. However, one of the major challenges facing to the electromagnetic interference shielding is the relatively low shielding efficiency and the high cost as well as the complicated shielding material manufacture. From the materials science point of view, the key solutions to these challenges are strongly depended on the breakthrough of the current limit of shielding material design and manufacture (such as hierarchical material design with controllable and predictable arrangement in nanoscale particle configuration via an easy in-situ manner). From the chemical engineering point of view, the upgrading of advanced material shielding performance and the enlarged production scale for shielding materials (for example, configure the effective components in the shielding material in order to lower their usage, eliminate the "rate-limiting" step to enlarge the production scale) are of great importance. In this dissertation, the design and preparation of morphology controlled magnetic nanoparticles and their reinforced polypropylene polymer nanocomposites will be covered first. Then, the functionalities of these polymer nanocomposites will be demonstrated. Based on the innovative materials design and synergistic effect on the performance advancement, the magnetic polypropylene polymer nanocomposites with desired multifunctionalities are designed and produced targeting to the electromagnetic interference shielding application. In addition

  6. High-frequency magnetic characteristics of Fe-Co-based nanocrystalline alloy films

    Institute of Scientific and Technical Information of China (English)

    HIHARA; Takehiko; SUMIYAMA; Kenji

    2010-01-01

    Magnetically soft Fe-Co-based nanocrystalline alloy films were produced by two preparation methods:One using a new energetic cluster deposition technique and another using a conventional magnetron sputtering technique.Their structural,static magnetic properties and high-frequency magnetic characteristics were investigated.In the energetic cluster deposition method,by applying a high-bias voltage to a substrate,positively charged clusters in a cluster beam were accelerated electrically and deposited onto a negatively biased substrate together with neutral clusters from the same cluster source,to form a high-density Fe-Co alloy cluster-assembled film with good high-frequency magnetic characteristics.In the conventional magnetron sputtering method,only by rotating substrate holder and without applying a static inducing magnetic field on the substrates,we produced Fe-Co-based nanocrystalline alloy films with a remarkable in-plane uniaxial magnetic anisotropy and a good soft magnetic property.The obtained Fe-Co-O,Fe-Co-Ti-N,and Fe-Co-Cr-N films all revealed a high real permeability exceeding 500 at a frequency up to 1.2 GHz.This makes Fe-Co-based nanocrystalline alloy films potential candidates as soft magnetic thin film materials for the high-frequency applications.

  7. Influence on cell death of high frequency motion of magnetic nanoparticles during magnetic hyperthermia experiments

    Science.gov (United States)

    Hallali, N.; Clerc, P.; Fourmy, D.; Gigoux, V.; Carrey, J.

    2016-07-01

    Studies with transplanted tumors in animals and clinical trials have provided the proof-of-concept of magnetic hyperthermia (MH) therapy of cancers using iron oxide nanoparticles. Interestingly, in several studies, the application of an alternating magnetic field (AMF) to tumor cells having internalized and accumulated magnetic nanoparticles (MNPs) into their lysosomes can induce cell death without detectable temperature increase. To explain these results, among other hypotheses, it was proposed that cell death could be due to the high-frequency translational motion of MNPs under the influence of the AMF gradient generated involuntarily by most inductors. Such mechanical actions of MNPs might cause cellular damages and participate in the induction of cell death under MH conditions. To test this hypothesis, we developed a setup maximizing this effect. It is composed of an anti-Helmholtz coil and two permanent magnets, which produce an AMF gradient and a superimposed static MF. We have measured the MNP heating power and treated tumor cells by a standard AMF and by an AMF gradient, on which was added or not a static magnetic field. We showed that the presence of a static magnetic field prevents MNP heating and cell death in standard MH conditions. The heating power of MNPs in an AMF gradient is weak, position-dependent, and related to the presence of a non-zero AMF. Under an AMF gradient and a static field, no MNP heating and cell death were measured. Consequently, the hypothesis that translational motions could be involved in cell death during MH experiments is ruled out by our experiments.

  8. High frequency repetitive transcranial magnetic stimulation to the cerebellum and implicit processing of happy facial expressions

    NARCIS (Netherlands)

    Schutter, D.J.L.G.; Enter, D.; Hoppenbrouwers, S.S.

    2009-01-01

    Background Previous research has demonstrated that the cerebellum is involved in emotive and cognitive processes. Furthermore, recent findings suggest high-frequency repetitive transcranial magnetic stimulation (rTMS) to the cerebellum has mood-improving properties. We sought to further explore the

  9. Determination of the High Frequency Inductance Profile of Surface Mounted Permanent Magnet Synchronous Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2008-01-01

    Accurate knowledge of the high frequency inductance profile plays an important role in many designs of sensorless controllers for Surface inductance. A special algorithm is used to decouple the cross-coupling effects between the d-axis and the q-axis, which allows Mounted Permanent Magnet (SMPM......) synchronous motors. This paper presents an AC+DC measurement method for determination of the d-axis and q-axis high frequency inductance profiles of SMPM synchronous motors. This method uses DC currents to set a desired magnetic working point on the motor laminations, and then superimpose balanced small AC...... signals to measure the incremental a separate determination of the d, q inductance profiles as functions of the d, q currents. Experimental results on a commercial SMPM motor using the proposed method are presented in this paper....

  10. Wide Temperature Magnetization Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    Science.gov (United States)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. Basic exciting winding current and induced voltage data were taken on bare toroidal cores, in a standard type measurement setup. A linear permeability model, which represents the core by a parallel L-R circuit, is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials are reviewed. The 100 kHz permeability thus derived decreases with increasing temperature for the Fe-based, nanocrystalline material, but increases roughly linearly with temperature for the two Co-based materials, as long as B(sub peak) is sufficiently low to avoid saturation effects. Due to the high permeabilities, rather low values of the 'quality factor' Q, from about 20 to below unity, were obtained over the frequency range of 50 kHz to 1 MHz (50 C, B(sub peak) = 0.1 T). Therefore these cores must be gapped in order to make up high Q or high current inductors. However, being rugged, low core loss materials with flat B-H loop characteristics, they may provide new solutions to specialty inductor applications.

  11. Study on technology of high-frequency pulsed magnetic field strength measurement.

    Science.gov (United States)

    Chen, Yi-Mei; Liu, Zhi-Peng; Yin, Tao

    2012-01-01

    High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately, this paper designs a measurement and calibration method for pulsed magnetic-field. In this paper, a device made of Nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator, collecting the induced electromotive force of the detector, the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that, under good stability and consistency, accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved, with frequency at 0.5, 1, 1.5 MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2.5%.

  12. Investigation of Plasma Interaction with a High-Frequency Magnetic Field Increasing Toward the Periphery

    International Nuclear Information System (INIS)

    Experimental investigation of the method of stabilizing a straight plasma column with a current by a high-frequency magnetic multipole field has demonstrated that a stabilized pinch may be observed only with a sufficiently high rate of increase in the current through the plasma. The rapid increase in current leads to the fact that the stable pinch exists for only a short time (up to 10 microsec ). Further investigations have basically been aimed at discovering the conditions of formation of the pinch in a high-frequency field and the cause for its decay. The observed stabilization effect was studied both in systems with a self excited oscillator and in systems with an impulse excited oscillator. In both cases experience indicates essential dependence of the observed effect on the highfrequency discharge stage with which the discharge forming the plasma column begins. Obviously, the processes which take place in the high-frequency discharge excited by the currents in the stabilizing rods also have a noticeable effect on constriction of the plasma and on confining the plasma column. The research which has been performed has been partially devoted to probe type measurements of the magnetic field and spectral measurements of the density of the high-frequency discharge plasma. It has been demonstrated that in the absence of a discharge current in sufficiently powerful high-frequency discharge the plasma is concentrated near the axis. A longitudinal quasistationary magnetic field also appears in the high-frequency discharge. In the previous research the results of the observations were quantitatively compared with the theory of the dynamic stabilization technique under the assumption that the most dangerous deformation of the plasma column is the deformation with the wavelength, which is the maximum possible in the device; that is, it is twice the electrode spacing ℓe. The investigations have demonstrated that the observed stabilization effect does not depend on

  13. Magnetic properties and high frequency characteristics of FeCoAlON alloy films

    International Nuclear Information System (INIS)

    In this work, we report the magnetic properties, domain structures and high frequency properties of FeCoAlON alloy films prepared by reactive magnetron sputtering. With increasing N addition content, the films transfer from in-plane anisotropic properties to isotropic behavior. The obvious stripe domain structure is observed in the films with high N content, and the domain parameters depend on the thickness of the films. The XRD analysis indicates that the stripe domain may origin from the stress-induced perpendicular anisotropy by Al, O and N addition. Meanwhile, a double-peak resonance behavior is observed in the permeability spectra of the films with stripe domain structure

  14. Determination of High-Frequency d- and q-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Vetuschi, M.; Rasmussen, Peter Omand;

    2010-01-01

    This paper presents a reliable method for the experimental determination of high-frequency d- and q -axis inductances for surface-mounted permanent-magnet synchronous machines (SMPMSMs). Knowledge of the high-frequency d- and q-axis inductances plays an important role in the efficient design of...

  15. In vitro cytotoxicity of Fe–Cr–Nb–B magnetic nanoparticles under high frequency electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, Horia, E-mail: hchiriac@phys-iasi.ro [National Institute of Research and Development for Technical Physics, Iasi (Romania); Petreus, Tudor; Carasevici, Eugen [“Gr.T. Popa” University of Medicine and Pharmacy, Iasi (Romania); Labusca, Luminita; Herea, Dumitru-Daniel; Danceanu, Camelia; Lupu, Nicoleta [National Institute of Research and Development for Technical Physics, Iasi (Romania)

    2015-04-15

    The heating potential, cytotoxicity, and efficiency of Fe{sub 68.2}Cr{sub 11.5}Nb{sub 0.3}B{sub 20} magnetic nanoparticles (MNPs), as such or coated with a chitosan layer, to decrease the cell viability in a cancer cell culture model by using high frequency alternating magnetic fields (AMF) have been studied. The specific absorption rate varied from 215 W/g for chitosan-free MNPs to about 190 W/g for chitosan-coated ones, and an equilibrium temperature of 46 °C was reached when chitosan-coated MNPs were subjected to AMF. The chitosan-free Fe{sub 68.2}Cr{sub 11.5}Nb{sub 0.3}B{sub 20} MNPs proved a good biocompatibility and low cytotoxicity in all testing conditions, while the chitosan-coated ones induced strong tumoricidal effects when a cell–particle simultaneous co-incubation approach was used. In high frequency AMF, the particle-mediated heat treatment has proved to be a critical cause for decreasing in vitro the viability of a cancer cell line.

  16. Complex high-frequency magnetization dynamics and magnetoimpedance in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Silva, R.B. da [Departamento de Fisica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)]. E-mail: rbarreto1975@gmail.com; Viegas, A.D.C. [Departamento de Fisica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Correa, M.A. [Departamento de Fisica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Andrade, A.M.H. de [Departamento de Fisica, CCNE, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Sommer, R.L. [Centro Brasileiro de Pesquisas Fisicas-CBPF, Rua Dr. Xavier Sigaud 150, Urca, 22290-180, Rio de Janeiro, RJ (Brazil)

    2006-10-01

    High-frequency differential magnetic permeability and magnetoimpedance measurements were performed in Fe{sub 73.5}Cu{sub 1}Nb{sub 3}Si{sub 13.5}B{sub 9} as-made and annealed thin films at frequencies up to 1.8 GHz. The results show complex dynamical properties characterized by multiple ferromagnetic resonance modes at relatively low frequencies for the amorphous as-made sample. After the thermal treatments, the resonance frequencies increase drastically exceeding the upper limit of 1.8 GHz for our equipment. This increase can possibly associated to higher local magnetic fields that are, in turn, associated to the formation of nanocrystalline grains randomly oriented.

  17. Magnetic properties and high frequency characteristics of FeCoN thin films

    Directory of Open Access Journals (Sweden)

    Tae-Jong Hwang

    2016-05-01

    Full Text Available (Fe65Co35N soft magnetic thin films were prepared by reactive RF magnetron sputtering with the sputtering power of 100 W on thermally oxidized Si substrate in various nitrogen partial pressures (PN2. A strong uniaxial in-plane magnetic anisotropy with the easy-axis coercive field as low as 1∼2 Oe was observed in films grown at PN2 in the range from 3.3% to 5.5%. The saturation magnetizations for those films were about 20 KG. Outside this range, almost isotropic magnetization curves were observed. Vector network analyzer and grounded coplanar waveguide were used to measure the ferromagnetic resonance (FMR signals up to 25 GHz. The FMR signals were detected only in anisotropic films and their FMR frequencies were well fit to the Kittel formula. The obtained g-values and damping parameters at magnetic fields >20 kOe for films grown at PN2 of 3.3%, 4.8% and 5.5% were 1.96, 1.86, 1.92 and 0.0055, 0.0047, 0.0046, respectively. This low damping factor qualifies FeCoN thin films for high-frequency applications.

  18. Magnetic properties and high frequency characteristics of FeCoN thin films

    Science.gov (United States)

    Hwang, Tae-Jong; Lee, Joonsik; Kim, Ki Hyeon; Kim, Dong Ho

    2016-05-01

    (Fe65Co35)N soft magnetic thin films were prepared by reactive RF magnetron sputtering with the sputtering power of 100 W on thermally oxidized Si substrate in various nitrogen partial pressures (PN2). A strong uniaxial in-plane magnetic anisotropy with the easy-axis coercive field as low as 1˜2 Oe was observed in films grown at PN2 in the range from 3.3% to 5.5%. The saturation magnetizations for those films were about 20 KG. Outside this range, almost isotropic magnetization curves were observed. Vector network analyzer and grounded coplanar waveguide were used to measure the ferromagnetic resonance (FMR) signals up to 25 GHz. The FMR signals were detected only in anisotropic films and their FMR frequencies were well fit to the Kittel formula. The obtained g-values and damping parameters at magnetic fields >20 kOe for films grown at PN2 of 3.3%, 4.8% and 5.5% were 1.96, 1.86, 1.92 and 0.0055, 0.0047, 0.0046, respectively. This low damping factor qualifies FeCoN thin films for high-frequency applications.

  19. Effect of Additives on Magnetic Properties of High Frequency MnZn Power Ferrite

    Institute of Scientific and Technical Information of China (English)

    YU Zhong; LAN Zhongwen; WANG Jingmei; ZHANG Yidong; WANG Haocai

    2004-01-01

    The effect of additives,such as CaO and V2O5 on the magnetic properties of high frequency MnZn power ferrite is studied by the conventional ceramic process.As a result,the grain boundary resistivity increases and the power loss declines with the addition of CaO enriched at the grain boundary.By adding an optimum amount of V2O5 which acts indirectly via liquid phase formation and influences the microstructural development during sintering,the crystalline grain of ferrite was refined,the porosity decreases,the amount of grain boundary and the grain boundary resistivity increased,so the power loss is suppressed.

  20. Effect of sintering process on microstructure and magnetic properties of high frequency power ferrite

    Institute of Scientific and Technical Information of China (English)

    SUN Ke; LAN Zhongwen; CHEN Shengming; SUN Yueming; YU Zhong

    2006-01-01

    An oxide ceramic process was adopted to prepare high frequency manganese-zinc (MnZn) power ferrite. In combination with the microstructure analysis of material, the influences of sintering process on initial permeability (μi) and high frequency loss in unit volume (Pcv) of MnZn power ferrite were investigated. The results show that in order to obtain fine microstructure and high frequency properties, the preferable sintering temperature and atmosphere are 1230 ℃ and oxygen partial pressure ( PO2) of 4%, respectively.

  1. High-frequency magnetic stimulation attenuates beta-amyloid protein 1-42 neurotoxicity in organotypic hippocampal slices

    Institute of Scientific and Technical Information of China (English)

    Don-Kyu Kim; Young Chul Yoon; Soo Ahn Chae; Kyung Mook Seo; Tai Ryoon Han; Si-Hyun Kang

    2010-01-01

    Repetitive transcranial magnetic stimulation(rTMS)has been utilized as a therapeutic tool for neurodegenerative disorders including Alzheimer's disease.However,the precise mechanisms of its clinical effects remain unknown.β-amyloid(Aβ)exhibits direct neurotoxic effects and is closely related to neuronal degeneration in Alzheimer's disease.Therefore,it has been hypothesized that the neuroprotective effects of rTMS are related to the mechanisms of protection against Aβneurotoxicity.Organotypic hippocampal slices were prepared from 8-day old,Sprague Dawley rats.The tissue slices were exposed to 100 μmol/L Aβ1-42 since day 12 in vitro with and without high-frequency(20 Hz)magnetic stimulation.Magnetic stimulation efficacy was evaluated by measuring neuronal nuclei(NeuN)protein expression and by observing cultures following propidium iodide fluorescence staining and bromodeoxyuridine(BrdU)immunohistochemistry.Lactate dehydrogenase activity was detected in the culture media to evaluate hippocampal neuronal damage.Our results demonstrated that high-frequency magnetic stimulation significantly reversed the reduction of NeuN protein expression because of Aβ1-42 exposure(P < 0.05)and significantly reduced the number of damaged cells in the hippocampal slices(P < 0.05).However,lactate dehydrogenase levels and anti-BrdU staining results did not reveal any statistical differences.These findings indicate that high-frequency magnetic stimulation might have protective effect on hippocampal neurons from Aβ1-42 neurotoxicity.

  2. High frequency magnetic field technique: mathematical modelling and development of a full scale water fraction meter

    Energy Technology Data Exchange (ETDEWEB)

    Cimpan, Emil

    2004-09-15

    This work is concerned with the development of a new on-line measuring technique to be used in measurements of the water concentration in a two component oil/water or three component (i.e. multiphase) oil/water/gas flow. The technique is based on using non-intrusive coil detectors and experiments were performed both statically (medium at rest) and dynamically (medium flowing through a flow rig). The various coil detectors were constructed with either one or two coils and specially designed electronics were used. The medium was composed by air, machine oil, and water having different conductivity values, i.e. seawater and salt water with various conductivities (salt concentrations) such as 1 S/m, 4.9 S/m and 9.3 S/m. The experimental measurements done with the different mixtures were further used to mathematically model the physical principle used in the technique. This new technique is based on measuring the coil impedance and signal frequency at the self-resonance frequency of the coil to determine the water concentration in the mix. By using numerous coils it was found, experimentally, that generally both the coil impedance and the self-resonance frequency of the coil decreased as the medium conductivity increased. Both the impedance and the self-resonance frequency of the coil depended on the medium loss due to the induced eddy currents within the conductive media in the mixture, i.e. water. In order to detect relatively low values of the medium loss, the self-resonance frequency of the coil and also of the magnetic field penetrating the media should be relatively high (within the MHz range and higher). Therefore, the technique was called and referred to throughout the entire work as the high frequency magnetic field technique (HFMFT). To practically use the HFMFT, it was necessary to circumscribe an analytical frame to this technique. This was done by working out a mathematical model that relates the impedance and the self-resonance frequency of the coil to the

  3. On the influence of a high-frequency electric field on the exchange interaction in magnetic crystals

    Science.gov (United States)

    Gladkov, S. O.

    1992-03-01

    It is shown that the presence of a high-frequency electric field E( t) strongly influences the exchange interaction magnitude Jex. It is noted that due to this circumstance the liquid crystallization temperature or the phase transition temperature in magnetic substances can be changed, by varying the frequency ω and the amplitude of the external electric field E0. The dependence Jex(ω, E0) is determined.

  4. High Frequency Coils for Clinical Nuclear Magnetic Resonance Imaging and Spectroscopy.

    Science.gov (United States)

    Vaughan, John Thomas, Jr.

    To extend the inherent signal-to-noise (S/N) advantage of high field (4T+) NMR to clinical imaging and spectroscopy, a new approach to designing RF surface and volume coils is required. As coils approach wavelength dimensions, the performance of conventional lumped element (L,C) designs succumbs to: (1) non uniform current distributions resulting in decreased homogeneity, fill factor, and increased electric field losses, (2) decreased conductor skin depths resulting in increased ohmic losses, and (3) high inductance resulting in self resonance near or below the desired frequency of operation. At lower frequencies the phase change due to finite propagation velocity of transmit and receive signals on coil conductors is negligible. Therefore, the conventional design approach considers a DC (Biot-Savart) field only, for an unloaded (free-space) RF coil. This study recognizes and solves the problems of high field, clinical coil design. At higher radiofrequencies, the distributed nature of the coil and patient structure is considered in both circuit design and theory. Lumped elements are replaced by transmission line and cavity elements. Lumped element circuit theory is replaced by transmission line or transverse electromagnetic (TEM) theory. DC field analysis is replaced with fully time-dependent AC analysis for the coil and the human load. AC field losses and resultant heating in living tissues are investigated with regard to safety assurance for high frequency clinical coil design and application. By designing high frequency coils with the high frequency methods presented herein, desired B1 field characteristics are optimized, coil and patient losses are minimized, and self resonance is maximized. Clinical results obtained with these coils have verified for the first time the clear advantages of human NMR imaging and spectroscopy at 4 Tesla and above.

  5. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian R.H.;

    2014-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at the Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of gad...

  6. High frequency characteristics of FeCoAlO thin films combined the effects of stress and magnetic field

    International Nuclear Information System (INIS)

    The soft magnetic FeCoAlO thin films with different response at high frequency were prepared by using RF magnetron sputtering. Two different configurations of the sputtering targets were used: the Al2O3 chips were placed on Fe70Co30 disk either uniformly dispersed on the sputtering area (Target-A) or dispersed on the half side of the sputtering area (Target-B). It was found that, although, the films deposited from both of Target A and B possessed good soft magnetic properties and in-plane uniaxial magnetic anisotropy, they showed different behaviors at high frequency. The films deposited by using Target-A have mean permeability of 500 and a cut-off frequency (fr) of around 780 MHz, while the films deposited by using Target-B have mean permeability of 200 and a fr of 3.4 GHz. The higher fr of the later corresponds to the higher uniaxial anisotropic field in the films deposited by using the Target-B, which due to an extra anisotropy induced by the stress resulted from gradient of the Al-O composition. By adjusting the configuration of Target-B, the permeability and fr can be tuned to satisfy the different requirements for certain industrial applications.

  7. Continuous Separation of Inclusions from Aluminum Melt Flowing in a Circular Pipe using a High Frequency Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The continuous separation of inclusions from aluminum melt flowing in a circular pipe using a high frequency magneticfield was investigated both theoretically and experimentally. The separation efficiency was calculated based on thetrajectory method and compared with experimental results. lt is found that the separation efficiency is a function ofnondimensional parameters ti @ d2B2/μfμea2 and a /δ The effective way to improve the separation efficiency is to increasethe effective magnetic flux density and decrease the pipe radius, and the value of a/δ should be kept about 2 in orderto obtain the optimum separation efficiency.

  8. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    OpenAIRE

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian; Nielsen, Kaspar Kirstein; Barbosa Jr., J.R.; Prata, A. T.; Pryds, Nini

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of commercial grade gadolinium (Gd) was employed. With operating frequencies up to 10 Hz and volumetric flow rates up to 600 L/h, the prototype has shown high performance and the results are consistent with...

  9. Experimental and numerical results of a high frequency rotating active magnetic refrigerator

    DEFF Research Database (Denmark)

    Lozano, Jaime; Engelbrecht, Kurt; Bahl, Christian;

    2012-01-01

    Experimental results for a recently developed prototype magnetic refrigeration device at The Technical University of Denmark (DTU) were obtained and compared with numerical simulation results. A continuously rotating active magnetic regenerator (AMR) using 2.8 kg packed sphere regenerators of...... function of cycle frequency was determined. It was found that thermal losses increase as the frequency increases. Therefore, a detailed study of these parasitic losses was carried out experimentally and numerically....

  10. High frequency magnetic fluctuations correlated with the inter-ELM pedestal evolution in ASDEX Upgrade

    Science.gov (United States)

    Laggner, F. M.; Wolfrum, E.; Cavedon, M.; Mink, F.; Viezzer, E.; Dunne, M. G.; Manz, P.; Doerk, H.; Birkenmeier, G.; Fischer, R.; Fietz, S.; Maraschek, M.; Willensdorfer, M.; Aumayr, F.; the EUROfusion MST1 Team; the ASDEX Upgrade Team

    2016-06-01

    In order to understand the mechanisms that determine the structure of the high confinement mode (H-mode) pedestal, the evolution of the plasma edge electron density and temperature profiles between edge localised modes (ELMs) is investigated. The onset of radial magnetic fluctuations with frequencies above 200 kHz is found to correlate with the stagnation of the electron temperature pedestal gradient. During the presence of these magnetic fluctuations the gradients of the edge electron density and temperature are clamped and stable against the ELM onset. The detected magnetic fluctuation frequency is analysed for a variety of plasma discharges with different electron pressure pedestals. It is shown that the magnetic fluctuation frequency scales with the neoclassically estimated \\text{E} × \\text{B} velocity at the plasma edge. This points to a location of the underlying instability in the gradient region. Furthermore, the magnetic signature of these fluctuations indicates a global mode structure with toroidal mode numbers of approximately 10. The fluctuations are also observed on the high field side with significant amplitude, indicating a mode structure that is symmetric on the low field side and high field side. The associated fluctuations in the current on the high field side might be attributed to either a strong peeling part or the presence of non-adiabatic electron response.

  11. Polymer Magnetic Composite Core Based Microcoils and Microtransformers for Very High Frequency Power Applications

    Directory of Open Access Journals (Sweden)

    Saravana Guru Mariappan

    2016-04-01

    Full Text Available We present a rapid prototyping and a cost effective fabrication process on batch fabricated wafer-level micro inductive components with polymer magnetic composite (PMC cores. The new PMC cores provide a possibility to bridge the gap between the non-magnetic and magnetic core inductive devices in terms of both the operating frequency and electrical performance. An optimized fabrication process of molding, casting, and demolding which uses teflon for the molding tool is presented. High permeability NiFeZn powder was mixed with Araldite epoxy to form high resistive PMC cores. Cylindrical PMC cores having a footprint of 0.79 mm 2 were fabricated with varying percentage of the magnetic powder on FR4 substrates. The core influence on the electrical performance of the inductive elements is discussed. Inductor chips having a solenoidal coil as well as transformer chips with primary and secondary coils wound around each other have been fabricated and evaluated. A core with 65% powder equipped with a solenoid made out of 25 µm thick insulated Au wire having 30 turns, yielded a constant inductance value of 2 µH up to the frequency of 50 MHz and a peak quality factor of 13. A 1:1 transformer with similar PMC core and solenoidal coils having 10 turns yielded a maximum efficiency of 84% and a coupling factor of 96%. In order to protect the solenoids and to increase the mechanical robustness and handling of the chips, a novel process was developed to encapsulate the components with an epoxy based magnetic composite. The effect on the electrical performance through the magnetic composite encapsulation is reported as well.

  12. Measurement, comparison, and transformation of dynamic magnetization in pulse field and high-frequency alternating field

    Science.gov (United States)

    Kodama, K.

    2015-12-01

    Dynamic magnetizations of selected natural samples (sediments and volcanic rocks) were measured in time domain as well as in frequency domain. The time domain measurements were performed in pulse fields with variable lengths (10 μs to 10 ms) and amplitudes (0.5 mT to 0.7 T). To measure hysteresis parameters for small loops, one cycle of positive and negative pulses with different rate of field variation were generated. In the frequency domain, low-field magnetic susceptibility was measured over the frequency rage (1 kHz to 500 kHz) corresponding to the pulse lengths in the time domain measurements. Results in the time domain were characterized by the transient magnetization-field curves that were broadly comparable to the corresponding portions of the hysteresis loops measured by a quasi-static method using a VSM. The dynamic coercivity that is defined as the intersect with the abscissa in the negative regime increased as the pulse length reduced and the pulse peak increased. In strong pulse fields (> 0.5 T), irrespective of the kinds of samples, the magnetization remained at the end of a pulse and decayed exponentially within a few ms, suggesting rapid magnetic relaxations. In weak pulse fields, no such relaxation was observed except for the sediments rich in superparamagnetic (SP) particles. These field dependencies suggest that the relaxations in the strong fields could be due to the dynamics of the domain walls in the MD particles, while those of the sediments in weak fields may be ascribed to the relaxation of the SP particles. Results in the frequency domain were obtained in terms of the frequency spectrum of the real and imaginary components of complex susceptibility. Comparisons and interpretations of the data in these different domains were made in terms of the distribution of relaxation times. Discussions on the numerical conversion and transformation of these data as well as their rock magnetic applications will be provided.

  13. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ying [Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China); Zhan, Qingfeng, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Wang, Baomin; Li, Run-Wei, E-mail: zhanqf@nimte.ac.cn, E-mail: runweili@nimte.ac.cn [Key Laboratory of Magnetic Materials and Devices and Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wei, Jinwu; Wang, Jianbo [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Xie, Shuhong [Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2015-04-20

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.

  14. Static and high frequency magnetic properties of FeGa thin films deposited on convex flexible substrates

    Science.gov (United States)

    Yu, Ying; Zhan, Qingfeng; Wei, Jinwu; Wang, Jianbo; Dai, Guohong; Zuo, Zhenghu; Zhang, Xiaoshan; Liu, Yiwei; Yang, Huali; Zhang, Yao; Xie, Shuhong; Wang, Baomin; Li, Run-Wei

    2015-04-01

    Magnetostrictive FeGa thin films were deposited on the bowed flexible polyethylene terephthalate (PET) substrates, which were fixed on the convex mold. A compressive stress was induced in FeGa films when the PET substrates were shaped from convex to flat. Due to the effect of magnetostriction, FeGa films exhibit an obvious in-plane uniaxial magnetic anisotropy which could be enhanced by increasing the applied pre-strains on the substrates during growth. Consequently, the ferromagnetic resonance frequency of the films was significantly increased, but the corresponding initial permeability was decreased. Moreover, the films with pre-strains less than 0.78% exhibit a working bandwidth of microwave absorption about 2 GHz. Our investigations demonstrated a convenient method via the pre-strained substrates to tune the high frequency properties of magnetic thin films which could be applied in flexible microwave devices.

  15. Diffusion and Radiation in Magnetized Collisionless Plasmas with High-Frequency Small-Scale Turbulence

    CERN Document Server

    Keenan, Brett D

    2015-01-01

    Magnetized high-energy-density plasmas can often have strong electromagnetic fluctuations whose correlation scale is smaller than the electron Larmor radius. Radiation from the electrons in such plasmas, which markedly differs from both synchrotron and cyclotron radiation, and their energy and pitch-angle diffusion are tightly related. In this paper, we present a comprehensive theoretical and numerical study of the particles' transport in both cold, "small-scale" Langmuir and Whistler-mode turbulence and its relation to the spectra of radiation simultaneously produced by these particles. We emphasize that this relation is a superb diagnostic tool of laboratory, astrophysical, interplanetary, and solar plasmas with a mean magnetic field and strong small-scale turbulence.

  16. Soft Magnetic Thin Films FeCoHfO for High-Frequency Noise Suppression Applications

    Institute of Scientific and Technical Information of China (English)

    LU Guang-Duo; ZHANG Huai-Wu; TANG Xiao-Li

    2010-01-01

    @@ A series of FeCoHfO films were fabricated by dc magnetron reactive sputtering at varying partial pressure of oxygen(Po2)from 0 to 11.7%,and the electrical and magnetic properties of films have been studied.It is shown that optimal Fe43.29 Co19.51 Hf7.49O29.71 films with desired properties can be obtained when the films were prepared under Po2 = 5.1%.

  17. High-Frequency Waves in a Random Distribution of Metallic Nanoparticles in an External Magnetic Field

    Science.gov (United States)

    Moradi, Afshin

    2016-09-01

    Propagation of magnetoplasma waves at an angle to a static magnetic field is studied for a random distribution of spherical metallic nanoparticles. A general analytical expression for dispersion relation of the system is derived and useful expressions are obtained in the limiting cases. It is found that the interaction between longitudinal and transverse modes leads to coupled modes in the vicinity of the frequency √ {f + ξ } {ω _p}, where ξ is the ratio of the volume occupied by all the nanoparticles to the entire volume, ωp the plasma frequency of electrons inside a nanoparticle, and f a geometrical factor of order unity (1/3 for spherical nanoparticles).

  18. Improved high-frequency soft magnetic properties of FeCo films on organic ferroelectric PVDF substrate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dong; Wang, Zhen; Han, Xuemeng; Li, Yue; Guo, Xiaobin; Zuo, Yalu; Xi, Li, E-mail: xili@lzu.edu.cn

    2015-02-01

    FeCo films with various thicknesses were fabricated by direct-current magnetron sputtering on corning glass and organic ferroelectric PVDF substrates at the same time with 5 nm Ru seed layer and 5 nm Ta protective layer. The in-plane uniaxial anisotropy field of FeCo on glass substrate increases from 24 to 36 Oe with the increase of FeCo film thickness from 5 to 100 nm. However, a large in-plane anisotropy field of FeCo on PVDF substrate increases with FeCo thickness from 5 to 20 nm and gradually decreases with the FeCo thickness further increasing. Atomic force microscope images of FeCo on glass show quite smooth surface with root-mean-square roughness around 0.5 nm and have none visible granules on the surface for all samples. While, AFM images of FeCo on PVDF show quite rough surface with RMS roughness around 25 nm and have visible granules with the smallest granules appearing at the FeCo thickness of 20 nm. The permeability spectra show the typical ferromagnetic resonance phenomenon and can be well fitted by the LLG equation with the obtained experimental parameters. The ferromagnetic resonance frequency can reach 7.0 GHz for the 20 nm FeCo film on PVDF. Moreover, the quality factor of this sample can respectively reach 26, 12 and 7 at 1.0, 2.0, and 3.0 GHz, indicating the potential real 3G application for high-frequency devices. - Highlights: 1.Magnetic and morphological properties of FeCo films on PVDF substrates are studied. 2.The large anisotropy field of FeCo films on PVDF is obtained. 3.Improved high frequency properties of FeCo films on flexible substrates are obtained. 4.The origin of improved high frequency properties of FeCo films on PVDF is studied.

  19. Magnetic and mechanical characterizations of ultra-high frequency nanoelectromechanical systems (NEMS)

    Science.gov (United States)

    Losby, Joe; Liu, N.; Holt, C.; Mitlin, D.; Fraser, A. E.; Sauer, V.; Hiebert, W. K.; Freeman, M. R.

    2009-03-01

    Recent efforts in our group involve time-domain studies of the motion of silicon NEMS^1 and spin dynamics in nanometer-scale permalloy elements^2. Transduction of microwave frequency (> 1 GHz) cantilevers, and time domain coherent control (``unringing'') of nanoscale resonators have been demonstrated. For the next stage of this work, we have fabricated permalloy NEMS cantilevers and doubly clamped beams in order to begin exploration of magnetomechanical dynamics in ferromagnetic nanostructures. The magnetization of these resonators is probed using time-resolved magneto-optical Kerr effect microscopy, while stroboscopic optical interferometry is used for the detection of vibrational modes. [0pt] 1. N. Liu, F. Giesen, M. Belov, J. Losby, J. Moroz, A. E. Fraser, G. McKinnon, T. J. Clement, V. Sauer, W. K. Hiebert & M. R. Freeman, Nature Nanotechnology, In Press (2008).2. Z. Liu, R.D. Sydora, and M.R. Freeman, Phys. Rev. B. 77. 174410 (2008).

  20. Modulation of the Left Prefrontal Cortex with High Frequency Repetitive Transcranial Magnetic Stimulation Facilitates Gait in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Amer M. Burhan

    2015-01-01

    Full Text Available Multiple Sclerosis (MS is a chronic central nervous system (CNS demyelinating disease. Gait abnormalities are common and disabling in patients with MS with limited treatment options available. Emerging evidence suggests a role of prefrontal attention networks in modulating gait. High-frequency repetitive transcranial magnetic stimulation (rTMS is known to enhance cortical excitability in stimulated cortex and its correlates. We investigated the effect of high-frequency left prefrontal rTMS on gait parameters in a 51-year-old Caucasian male with chronic relapsing/remitting MS with residual disabling attention and gait symptoms. Patient received 6 Hz, rTMS at 90% motor threshold using figure of eight coil centered on F3 location (using 10-20 electroencephalography (EEG lead localization system. GAITRite gait analysis system was used to collect objective gait measures before and after one session and in another occasion three consecutive daily sessions of rTMS. Two-tailed within subject repeated measure t-test showed significant enhancement in ambulation time, gait velocity, and cadence after three consecutive daily sessions of rTMS. Modulating left prefrontal cortex excitability using rTMS resulted in significant change in gait parameters after three sessions. To our knowledge, this is the first report that demonstrates the effect of rTMS applied to the prefrontal cortex on gait in MS patients.

  1. Tunable in-plane uniaxial anisotropy and the magnetization reversal mechanism of patterned high-frequency soft magnetic FeTa strips

    International Nuclear Information System (INIS)

    FeTa films with thickness of 110 nm are fabricated on glass substrates by magnetron sputtering, and then a series of strips is designed on the FeTa films by conventional optical lithography and the ion beam etching method. Patterned FeTa strips show a tunable in-plane uniaxial magnetic anisotropy property in contrast with the magnetic isotropic property of as-deposited FeTa thin films. The magnetization reversal mechanism of the patterned FeTa strips is investigated via the in-plane angular dependences of magnetization and coercivity. The angular dependence of coercivity (ADC) is explained well in terms of the two-phase model, giving good quantitative agreement with the experimentally measured M-shaped ADC curve. The domain structure and spatial resolution magneto-optical Kerr effect measurement indicate that the smaller the strip width, the stronger will be the anisotropy field. Regarding the dynamic magnetic properties, a transformation from Debye dispersion spectrum for strips with weak anisotropy to natural resonance spectrum for strips with strong anisotropy is finally obtained. The tunable in-plane anisotropy fields of the FeTa strips result in tunable high-frequency soft magnetic properties by altering the strip width, indicating that patterned FeTa strips have great potential in high-frequency soft magnetic application fields. (paper)

  2. Soft magnetic properties of (Ni50Fe50)SiO2 granular thin films for high frequency application

    Institute of Scientific and Technical Information of China (English)

    YANG Xiaolin; GE Shihui; RUAN Chengli

    2006-01-01

    series of (Ni50Fe50)x(SiO2)(1-x) films with different volume fraction x was fabricated by magnetron co-sputtering technique. The microstructure, magnetic and electrical properties were investigated systematically by using X-ray diffraction, transmission electronic microscope, vibrating sample magnetometer and the traditional four point measurement method of resistivity. The results show that the samples consist of nano-scaled Ni50Fe50metallic particles with fcc structure uniformly embedded in amorphous insulating SiO2 matrix, and the particle size decreases with the decrease of x . The rapid change of coercivity with x is observed, and a minimum value 160 A·m-1 of Hc was obtained for the sample of x =0.83 with film thickness of 180 nm, which can be contributed to the exchange coupling between nano-scaled Ni50Fe50 particles. At the frequency lower than 1 GHz, the real part μ' of complex permeability keeps about 110 and the image part μ" is less than 15. Besides, this film exhibits high resistivity ρ=263 μΩ·cm, high saturation magnetization 4π Ms=1.25 T, high in-plane magnetic anisotropy field Hk=6.37 kA·m-1 , and the ferromagnetic resonance (FMR) frequency is estimated to be 2.8 GHz. Therefore, this film can be used in high frequency devices operating over 2 GHz.

  3. Unusual dc electric fields induced by a high frequency alternating current in superconducting Nb films under a perpendicular magnetic field

    Science.gov (United States)

    Aliev, F. G.; Levanyuk, A. P.; Villar, R.; Sierra, J. F.; Pryadun, V. V.; Awad, A.; Moshchalkov, V. V.

    2009-06-01

    We report a systematic study of dc electric fields produced by sinusoidal high frequency ac currents in Nb superconducting films subject to a constant magnetic field perpendicular to the film plane. At frequencies in the 100 kHz to MHz range appears a new rectification effect which has not been previously observed at lower frequencies. We have observed the dc electric field generated in this regime in films without intentionally created anisotropic pinning centres, i.e. plain films, both in strip geometry as in cross-shape geometry, and also in films with symmetric periodic pinning centres. The electric field appears in both directions along and transverse to the alternating current and is essentially different at opposite film sides. It depends strongly on the intensity of the magnetic field and may exceed by nearly an order of magnitude the rectified electric fields recently reported at lower frequencies (few kHz) in systems with artificially induced anisotropic vortex pinning. The effect has a non-monotonic dependence on the drive current frequency, being maximum around a few 100 kHz to MHz, and shows a complicated temperature dependence. It is found to be different in long strips and cross shape samples. In the case of films with symmetric periodic pinning centres the rectified voltage shows a lower magnitude than in plain films, and shows an interesting structure when the applied magnetic field crosses the matching fields. We are only able to put forward tentative ideas to explain this phenomenon, which irrespective of its explanation should be taken into account in experimental studies of rectification effects in superconductors.

  4. Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study.

    Directory of Open Access Journals (Sweden)

    Marcello Mancini

    Full Text Available To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20 MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4 T or 7 T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1 the petrosquamous sinus, draining into the posterior facial vein, 2 the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3 the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra-cranial veins.

  5. Head and Neck Veins of the Mouse. A Magnetic Resonance, Micro Computed Tomography and High Frequency Color Doppler Ultrasound Study.

    Science.gov (United States)

    Mancini, Marcello; Greco, Adelaide; Tedeschi, Enrico; Palma, Giuseppe; Ragucci, Monica; Bruzzone, Maria Grazia; Coda, Anna Rita Daniela; Torino, Enza; Scotti, Alessandro; Zucca, Ileana; Salvatore, Marco

    2015-01-01

    To characterize the anatomy of the venous outflow of the mouse brain using different imaging techniques. Ten C57/black male mice (age range: 7-8 weeks) were imaged with high-frequency Ultrasound, Magnetic Resonance Angiography and ex-vivo Microcomputed tomography of the head and neck. Under general anesthesia, Ultrasound of neck veins was performed with a 20 MHz transducer; head and neck Magnetic Resonance Angiography data were collected on 9.4 T or 7 T scanners, and ex-vivo Microcomputed tomography angiography was obtained by filling the vessels with a radiopaque inert silicone rubber compound. All procedures were approved by the local ethical committee. The dorsal intracranial venous system is quite similar in mice and humans. Instead, the mouse Internal Jugular Veins are tiny vessels receiving the sigmoid sinuses and tributaries from cerebellum, occipital lobe and midbrain, while the majority of the cerebral blood, i.e. from the olfactory bulbs and fronto-parietal lobes, is apparently drained through skull base connections into the External Jugular Vein. Three main intra-extracranial anastomoses, absent in humans, are: 1) the petrosquamous sinus, draining into the posterior facial vein, 2) the veins of the olfactory bulb, draining into the superficial temporal vein through a foramen of the frontal bone 3) the cavernous sinus, draining in the External Jugular Vein through a foramen of the sphenoid bone. The anatomical structure of the mouse cranial venous outflow as depicted by Ultrasound, Microcomputed tomography and Magnetic Resonance Angiography is different from humans, with multiple connections between intra- and extra-cranial veins. PMID:26067061

  6. Increasing the high-frequency magnetic permeability of MnZn ferrite in polyaniline composites by incorporating silver

    Science.gov (United States)

    Babayan, V.; Kazantseva, N. E.; Sapurina, I.; Moučka, R.; Stejskal, J.; Sáha, P.

    2013-05-01

    A hybrid composite containing 73 vol% of MnZn ferrite, 21 vol% of polyaniline, and 6 vol% of silver is obtained by oxidative polymerization of aniline with silver nitrate in the presence of ferrite powder. The hybrid composite contains ferrite particles with a size of 40-80 μm coated by an inhomogeneous layer of polyaniline in the conducting emeraldine form. Silver in the form of nano- and submicrometre -size particles is localized both on the surface of ferrite particles and in the bulk of polyaniline coating. The electrical and magnetic properties of the hybrid composite are investigated and compared with the properties of a composite with 71 vol% of MnZn ferrite coated by a conducting polyaniline layer (29 vol%). The hybrid composite containing silver exhibits an increase in the real and imaginary parts of the complex permeability in the radio-frequency band by more than one and a half times compared with those of the MnZn ferrite-polyaniline composite. The high-frequency permittivity of both composites is determined by the properties of core-shell structure: electric properties of shell as well as its composition and uniformity.

  7. Low- vs high- frequency Repetitive Transcranial Magnetic Stimulation as an add-on treatment for refractory depression

    Directory of Open Access Journals (Sweden)

    julien eeche

    2012-03-01

    Full Text Available Objectives: Repetitive transcranial magnetic stimulation (rTMS seems to be effective as an antidepressant treatment, however, some confusion remain about the best parameters to apply and the efficacy of its association with pharmacological antidepressant treatments.Method: In a single blind randomized study14 patients with unipolar resistant depression to one antidepressant treatment were enrolled to received, in combination with venlafaxine (150 mg, either 20 sessions of 10Hz rTMS (2 000 pulses per session applied over le left dorsolateral prefrontal cortex (DLPFC or 20 sessions of 1 Hz rTMS (120 stimulations per sessions applied over the right DLPFC. Results: A similar antidepressant effect was observed in both groups with a comparable antidepressant delay of action (2 weeks and a comparable number of patients in remission after 4 weeks of daily rTMS sessions (66 vs 50 %.Conclusion: Low- and high- frequency rTMS seem to be effective as an add-on treatment to venlafaxine in pharmacological refractory major depression. Due to its short duration and its safety, low frequency rTMS may be a useful alternative treatment for patients with refractory depression.

  8. Structural, dielectric and magnetic properties of Cr-Zn doped strontium hexa-ferrites for high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Asghar, G. [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Anis-ur-Rehman, M., E-mail: rehmananis@hotmail.com [Applied Thermal Physics Laboratory, Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2012-06-15

    M-type strontium hexa-ferrite nano particles with composition SrFe{sub 12-2x}Cr{sub x}Zn{sub x}O{sub 19} (X = 0.0, 0.2, 0.4, 0.6, 0.8) were prepared by co-precipitation method and are reported for the first time. X-ray diffraction analysis confirmed the successful substitution of Cr and Zn ions in the strontium hexa-ferrite lattice. Structural morphology studied by scanning electron micrographs revealed that Cr-Zn doping inhabits the grain growth. Dielectric measurements were taken as a function of frequency in the range (10 kHz to 3 MHz). Both dielectric constants and dielectric losses were found to be decreasing with the increase in Cr-Zn concentration. As Cr-Zn doping favored the decrease in dielectric losses to a large extent (0.32-0.02) so the strontium hexa-ferrite with these dopants is very useful for high frequency applications. The frequency dependent ac conductivity increases sharply at higher frequencies due to increase in hopping frequency of electrons and decrease with the increase in doping concentration and this is due to decrease in Fe{sup 2+} ions. Temperature dependent dc electrical resistivity measurements showed a decreasing trend with the increase in Cr-Zn concentration. The M-H loop indicated that both coercivity and saturation magnetization were decreased with the increase in doping concentration. The former was decreased due to increase in grain size and later was decreased due to weak and non-magnetic cations distribution on interstitial sites.

  9. Antidepressant efficacy of high-frequency transcranial magnetic stimulation over the left dorsolateral prefrontal cortex in double-blind sham-controlled designs: a meta-analysis

    NARCIS (Netherlands)

    Schutter, D.J.L.G.

    2009-01-01

    Background For more than a decade high-frequency repetitive transcranial magnetic stimulation (rTMS) has been applied to the left dorsolateral prefrontal cortex (DLPFC) in search of an alternative treatment for depression. The aim of this study was to provide an update on its clinical efficacy by pe

  10. Ferrimagnetism and magnetic phase separation in Nd1−xYxMnO3 studied by magnetization and high frequency electron paramagnetic resonance

    International Nuclear Information System (INIS)

    Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd1−xYxMnO3, for x=0.1–0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO3. Magnetization studies reveal a phase transition of the Mn-sublattice below TNMn≈80K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x<0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd1−xYxMnO3 can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation

  11. Efficacy of Adjunctive High Frequency Repetitive Transcranial Magnetic Stimulation of Right Prefrontal Cortex in Adolescent Mania: A Randomized Sham-Controlled Study

    OpenAIRE

    Pathak, Vijay; Sinha, Vinod Kumar; Praharaj, Samir Kumar

    2015-01-01

    Objective To examine the efficacy of adjunctive right prefrontal high-frequency repetitive transcranial magnetic stimulation (rTMS) treatment in adolescent mania patients as compared to sham stimulation. Methods Twenty six right handed patients aged 12–17 years diagnosed with bipolar mania were randomized to receive daily sessions of active or sham rTMS (20 Hz, 110% of motor threshold, 20 trains, 10 s intertrain interval) over the right dorsolateral prefrontal cortex for 10 days. Mania was ra...

  12. Effect of bending stresses on the high-frequency magnetic properties and their time stability in a cobalt-based amorphous alloy with an extremely low magnetostriction

    Science.gov (United States)

    Kekalo, I. B.; Mogil'nikov, P. S.

    2015-12-01

    An unusual effect of the stresses of bending (toroidal sample diameter D) on the hysteretic magnetic properties ( H c , μ5) of an amorphous Co69Fe3.7Cr3.8Si12B11 alloy with an extremely low magnetostriction (|λ s | ≤ 10-7) is revealed. These properties are measured in a dynamic regime at a magnetic-field frequency f = 0.1-20 kHz. The coercive force of the alloy H c weakly depends on D at low frequencies ( f fact that magnetization reversal via the displacement of rigid domain walls is predominant at low frequencies and during static measurements and magnetization reversal via the displacement of flexible domain walls is predominant at high frequencies.

  13. High-frequency electromagnetic properties of soft magnetic Nd2Co17 micron flakes fractured along c crystal plane with natural resonance frequency exceeding 10 GHz

    Science.gov (United States)

    Zhang, Yongbo; Wang, Peng; Ma, Tianyong; Wang, Ying; Qiao, Liang; Wang, Tao

    2016-02-01

    Planar anisotropy Nd2Co17 flakes fractured along c crystal plane were fabricated by surfactant-assisted high-energy ball milling technique. The magnetic flakes have a diameter range of 5-20 μm and a typical thickness of approximately 120 nm. The frequency dependence of complex permeability of Nd2Co17 epoxy resin composite has been investigated in the frequency range of 0.1-18 GHz. The measurement results show that the natural resonance frequency reaches 12.5 GHz while the initial permeability survives up to 2.26. The superior high frequency properties come from the large out-of-plane anisotropy field and the flake structure fractured along the c crystal plane of Nd2Co17. The planar anisotropic Nd2Co17 flakes have significant potential applications in the high-frequency devices working in the frequency beyond 10 GHz.

  14. High frequency variations of the main magnetic field: convergence of observations and theory (Petrus Peregrinus Medal Lecture)

    Science.gov (United States)

    Jault, Dominique

    2013-04-01

    Understanding the main magnetic field variations has been hindered by the discrepancy between the periods (from months to years) of the simplest linear wave phenomena and the relatively long time intervals (10 to 100 years) over which magnetic field changes can be confidently monitored. A theoretical description of short-period waves within the Earth's fluid core is at hand. Quasi-geostrophic inertial waves (akin to Rossby waves in the atmosphere) are slightly modified in the presence of magnetic fields and torsional oscillations consist of differential motion between coaxial rigid cylindrical annuli. Torsional oscillations are sensitive to the whole magnetic field that they shear in the course of their propagation. From their modelling, we have thus gained an estimate for the magnetic field strength in the core interior. There is now ongoing work to extend the theoretical framework to longer times. Furthermore, data collected from the Swarm constellation of three satellites to be launched this year by ESA will permit to better separate the internal and external magnetic signals. We may thus dream to detect quasi-geostrophic inertial waves. As the spectral ranges of theoretical models and observations begin to overlap, we can now go beyond the understanding of the magnetic field variations as the juxtaposition of partial models, arranged as a set of nested Matryoshka dolls. This talk will give illustrations for this statement, among which the question of induction in the lower mantle.

  15. Effects of eddy current and dispersion of magnetic anisotropy on the high-frequency permeability of Fe-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Han, M., E-mail: mangui@gmail.com [State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China); Rozanov, K.N.; Zezyulina, P.A. [Institute for Theoretical and Applied Electromagnetics, Russian Academy of Sciences, Moscow (Russian Federation); Wu, Yan-Hui [State Key Laboratory of Electronic Thin Films & Integrated Devices, University of Electronic Science and Technology of China, Chengdu (China)

    2015-06-01

    Fe–Cu–Nb–Si–B microflakes have been prepared by ball milling. The structural, magnetostatic and microwave permeability of the flakes and flake-filled composites have been studied. Two ferromagnetic phases, nanograins and amorphous matrix, are found in the flakes. The Mössbauer study shows that the nanograins are α-Fe{sub 3}(Si) with D0{sub 3} superlattice structure. High resolution transmission electron microscopy shows that the nanograins are well dispersed in the matrix. The microwave permeability of composites containing the flakes has been measured. The comparison of the intrinsic permeability of the flakes obtained from the permeability measurements and from the anisotropy field distribution reveals a disagreement in the magnetic loss peak location. It is concluded that the low-frequency loss in the composites is not due to the effect of eddy currents. The low-frequency loss may be attributed to other sources, such as domain wall motion or peculiarities of the magnetic structure of the flakes in the composite. - Highlights: • Hyperfine interactions have been studied for the Fe-based nanocomposites. Please see Fig. 3. • The distribution of magnetic anisotropy has been derived from the initial magnetization curve of the composite. Please see Fig. 6. • The magnetic loss peak has been reconstructed from the measured permeability of composites and from the anisotropy field distribution. Please see Fig. 9.

  16. High-frequency dielectric and magnetic anomaly at the phase transition in NaV2O5

    NARCIS (Netherlands)

    Smirnov, A.I.; Popova, M.N.; Sushkov, A.B.; Golubchik, S.A.; Khomskii, D.I.; Mostovoy, M.V.; Vasil’ev, A.N.; Isobe, M.; Ueda, Y.

    1999-01-01

    We found anomalies in the temperature dependence of the dielectric and magnetic susceptibility of NaV2O5 in the microwave and far-infrared frequency ranges. The anomalies occur at the phase transition temperature Tc, at which the spin gap opens. The real parts of the dielectric constants εa and εc d

  17. Brain responses evoked by high-frequency repetitive transcranial magnetic stimulation: an event-related potential study

    NARCIS (Netherlands)

    M. Hamidi; H.A. Slagter; G. Tononi; B.R. Postle

    2010-01-01

    Background Many recent studies have used repetitive transcranial magnetic stimulation (rTMS) to study brain-behavior relationships. However, the pulse-to-pulse neural effects of rapid delivery of multiple TMS pulses are unknown largely because of TMS-evoked electrical artifacts limiting recording of

  18. Oriented nanometric aggregates of partially inverted zinc ferrite: One-step processing and tunable high-frequency magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sai, Ranajit, E-mail: ranajit@ecei.tohoku.ac.jp [Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Sendai (Japan); Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore (India); Endo, Yasushi; Shimada, Yutaka; Yamaguchi, Masahiro [Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Sendai (Japan); Shivashankar, S. A. [Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore (India)

    2015-05-07

    In this work, it is demonstrated that the in situ growth of oriented nanometric aggregates of partially inverted zinc ferrite can potentially pave a way to alter and tune magnetocrystalline anisotropy that, in turn, dictates ferromagnetic resonance frequency (f{sub FMR}) by inducing strain due to aggregation. Furthermore, the influence of interparticle interaction on magnetic properties of the aggregates is investigated. Mono-dispersed zinc ferrite nanoparticles (<5 nm) with various degrees of aggregation were prepared through decomposition of metal-organic compounds of zinc (II) and iron (III) in an alcoholic solution under controlled microwave irradiation, below 200 °C. The nanocrystallites were found to possess high degree of inversion (>0.5). With increasing order of aggregation in the samples, saturation magnetization (at 5 K) is found to decrease from 38 emu/g to 24 emu/g, while coercivity is found to increase gradually by up to 100% (525 Oe to 1040 Oe). Anisotropy-mediated shift of f{sub FMR} has also been measured and discussed. In essence, the result exhibits an easy way to control the magnetic characteristics of nanocrystalline zinc ferrite, boosted with significant degree of inversion, at GHz frequencies.

  19. Comparison of the High-Frequency Magnetic Fluctuations in Insulating and Superconducting La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Hayden, S.M.; Aeppli, G.; Mook, H.A.;

    1996-01-01

    Inelastic neutron scattering performed at a spallation source is used to make absolute measurements of the dynamic susceptibility of insulating La2CuO4 and superconducting La1.86Sr0.14CuO4 over the energy range 15 less than or equal to (h) over bar omega less than or equal to 350 meV. The effect...... of Sr doping on the magnetic excitations is to cause a large broadening in the wave vector and a substantial change in the spectrum of the local spin fluctuations. Comparison of the two compositions reveals a new energy scale (h) over bar Gamma = 22 +/- 5 meV in La1.86Sr0.14CuO4....

  20. High Frequency Characteristic Of Rogowski Coil

    Directory of Open Access Journals (Sweden)

    Ping Li

    2012-12-01

    Full Text Available According to the transfer impedance getting from distributed parameter model,we analyse the influences of magnetic conductivity ,the number of turns ,capacitance to the shield and interturn capacitance on the high frequency characteristic of Rogowski coil through theories and simulations. Simulation shows that there are a series of zeros in high frequency band, but on the whole, the high frequency response does not change with the increase of frequency. The magnetic conductivity, number of turns and capacitance to the shield can influence the frequency at which zero appears, but the high frequency characteristic of Rogowski coil can’t be influenced. Considering the interturn capacitance, the curve of high-frequency response characteristic presents a "V" shape ", and this leads to the reduction of higher cut-off frequency. So we should try to decrease the interturn capacitance to reduce the influence on the high frequency characteristic.

  1. Cortical excitability in patients with focal epilepsy: a study with high frequency repetitive transcranial magnetic stimulation (rTMS

    Directory of Open Access Journals (Sweden)

    Maria Gabriele

    2008-12-01

    Full Text Available Epileptogenesis involves an increase in excitatory synaptic strength in the brain in a manner similar to synaptic potentiation. In the present study we investigated the mechanisms of short-term synaptic potentiation in patients with focal epilepsy by using 5 Hz repetitive transcranial magnetic stimulation (rTMS, a non invasive neurophysiological technique able to investigate the mechanisms of synaptic plasticity in humans. Ten patients with focal idiopathic cortical epilepsy were studied. 5 Hz-rTMS (10 stimuli-trains, 120% of motor threshold, RMT was delivered over the first dorsal interosseus (FDI motor area of both (affected and unaffected hemispheres. Changes in the motor evoked potential (MEP size in the FDI muscle during the trains and the RMT were measured and compared between the hemispheres. 5 Hz-rTMS was also delivered in a group of healthy subjects over both hemispheres. 5 Hz-rTMS in patients elicited a reduced MEP facilitation compared to normal subjects. The reduced MEP amplitude was more evident in the affected hemisphere than in the unaffected hemisphere. RMT in the affected hemisphere was higher than in the unaffected hemisphere and in healthy subjects. Our findings showing a decreased response to 5 Hz-rTMS over the affected hemisphere, differently from the expected results suggest a reduced cortical excitability in epileptic patients. We hypothesize an altered balance between excitatory and inhibitory circuits in epileptic patients under chronic therapy.

  2. A JVLA survey of the high frequency radio emission of the massive magnetic B- and O-type stars

    CERN Document Server

    Kurapati, Sushma; Wade, Gregg; Cohen, David H; David-Uraz, Alexandre; Gagne, Marc; Grunhut, Jason; Oksala, Mary E; Petit, Veronique; Shultz, Matt; Sundqvist, Jon; Townsend, Richard H D; ud-Doula, Asif

    2016-01-01

    We conducted a survey of seven magnetic O and eleven B-type stars with masses above $8M_{\\odot}$ using the Very Large Array in the 1cm, 3cm and 13cm bands. The survey resulted in a detection of two O and two B-type stars. While the detected O-type stars - HD 37742 and HD 47129 - are in binary systems, the detected B-type stars, HD 156424 and ALS 9522, are not known to be in binaries. All four stars were detected at 3cm, whereas three were detected at 1cm and only one star was detected at 13cm. The detected B-type stars are significantly more radio luminous than the non-detected ones, which is not the case for O-type stars. The non-detections at 13cm are interpreted as due to thermal free-free absorption. Mass-loss rates were estimated using 3cm flux densities and were compared with theoretical mass-loss rates, which assume free-free emission. For HD 37742, the two values of the mass-loss rates were in good agreement, possibly suggesting that the radio emission for this star is mainly thermal. For the other th...

  3. Microwave Radiometer - high frequency

    Data.gov (United States)

    Oak Ridge National Laboratory — The Microwave Radiometer-High Frequency (MWRHF) provides time-series measurements of brightness temperatures from two channels centered at 90 and 150 GHz. These two...

  4. High frequency electromagnetic dosimetry

    CERN Document Server

    Sánchez-Hernández, David A

    2009-01-01

    Along with the growth of RF and microwave technology applications, there is a mounting concern about the possible adverse effects over human health from electromagnetic radiation. Addressing this issue and putting it into perspective, this groundbreaking resource provides critical details on the latest advances in high frequency electromagnetic dosimetry.

  5. 高频脉冲弱磁场检测技术的研究%Study on the Measurement of High-Frequency Pulsed Magnetic Field Strength

    Institute of Scientific and Technical Information of China (English)

    陈怡美; 刘志朋; 殷涛

    2012-01-01

    生物医学领域中通常涉及高频瞬态弱磁场的应用,目前通用的磁感应强度探头无法满足MHz脉冲磁场的测量需求,为了准确测量MHz脉冲弱磁场,研究设计了对0.1~1 MHz脉冲磁场进行测量及标定的技术.设计一套由非铁磁性材料制成的脉冲磁场测量与标定装置,通过装置将磁场发生线圈与磁场检测线圈的相对位置精确固定.选用正弦脉冲施加于磁场发生线圈,采集检测线圈产生的感应电动势,根据法拉第电磁感应定律在Matlab平台编写算法,仿真计算得到MHz脉冲磁场强度并标定.实现了频率分别为0.5、1.0、1.5 MHz强度为μT量级磁场的准确测量,测量结果通过标定,与真实值的相对误差约为2.5%,保持较好的稳定性和一致性.%High-frequency transient weak magnetic field is always involved in researches about biomedical engineering field while common magnetic-field sensors cannot work properly at frequencies as high as MHz. To measure the value of MHz-level weak pulsed magnetic-field strength accurately,a measurement and calibration method for pulsed magnetic-field was designed in this paper. A device made of nonferromagnetic material was independently designed and applied to pulsed magnetic field measurement. It held an accurately relative position between the magnetic field generating coil and the detecting coil. By applying a sinusoidal pulse to the generator,collecting the induced electromotive force of the detector,the final magnetic field strength was worked out through algorithms written in Matlab according to Faraday's Law. Experiments were carried out for measurement and calibration. Experiments showed that,under good stability and consistency,accurate measurement of magnetic-field strength of a sinepulse magnetic-field can be achieved,with frequency at 0. S MHz,1 MHz,1. S MHz and strength level at micro-Tesla. Calibration results carried out a measuring relative error about 2. 5%.

  6. High-frequency ventilation.

    Science.gov (United States)

    Crawford, M R

    1986-08-01

    Over the last six years high-frequency ventilation has been extensively evaluated both in the clinical and laboratory settings. It is now no longer the great mystery it once was, and it is now no longer believed (as many had hoped), that it will solve all the problems associated with mechanical pulmonary ventilation. Although the technique is safe and appears to cause no harm even in the long term, it has not yet been shown to offer any major advantages over conventional mechanical ventilation. PMID:3530042

  7. High frequency energy measurements

    International Nuclear Information System (INIS)

    High-frequency (> 100 MHz) energy measurements present special problems to the experimenter. Environment or available electronics often limit the applicability of a given detector type. The physical properties of many detectors are frequency dependent and in some cases, the physical effect employed can be frequency dependent. State-of-the-art measurements generally involve a detection scheme in association with high-speed electronics and a method of data recording. Events can be single or repetitive shot requiring real time, sampling, or digitizing data recording. Potential modification of the pulse by the detector and the associated electronics should not be overlooked. This presentation will review typical applications, methods of choosing a detector, and high-speed detectors. Special considerations and limitations of some applications and devices will be described

  8. Ferrimagnetism and magnetic phase separation in Nd{sub 1−x}Y{sub x}MnO{sub 3} studied by magnetization and high frequency electron paramagnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Nair, Harikrishnan S., E-mail: krishnair1@gmail.com [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Yadav, Ruchika [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Adiga, Shilpa [Jülich Center for Neutron Sciences 2/Peter Grünberg Institute 4, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Rao, S.S. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Tol, Johan van [National High Magnetic Field Laboratory, Centre for Interdisciplinary Magnetic Resonance, Florida State University,1800 E. Paul Dirac Drive, Tallahassee, Florida 32310 (United States); Elizabeth, Suja [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-01-01

    Ferrimagnetism and metamagnetic features tunable by composition are observed in the magnetic response of Nd{sub 1−x}Y{sub x}MnO{sub 3}, for x=0.1–0.5. For all values of x in the series, the compound crystallizes in orthorhombic Pbnm space group similar to NdMnO{sub 3}. Magnetization studies reveal a phase transition of the Mn-sublattice below T{sub N}{sup Mn}≈80K for all compositions, which, decreases up on diluting the Nd-site with Yttrium. For x=0.35, ferrimagnetism is observed. At 5 K, metamagnetic transition is observed for all compositions x<0.4. The evolution of magnetic ground states and appearance of ferrimagnetism in Nd{sub 1−x}Y{sub x}MnO{sub 3} can be accounted for by invoking the scenario of magnetic phase separation. The high frequency electron paramagnetic resonance measurements on x=0.4 sample, which is close to the critical composition for phase separation, revealed complex temperature dependent lineshapes clearly supporting the assumption of magnetic phase separation.

  9. High-frequency ECG

    Science.gov (United States)

    Tragardh, Elin; Schlegel, Todd T.

    2006-01-01

    The standard ECG is by convention limited to 0.05-150 Hz, but higher frequencies are also present in the ECG signal. With high-resolution technology, it is possible to record and analyze these higher frequencies. The highest amplitudes of the high-frequency components are found within the QRS complex. In past years, the term "high frequency", "high fidelity", and "wideband electrocardiography" have been used by several investigators to refer to the process of recording ECGs with an extended bandwidth of up to 1000 Hz. Several investigators have tried to analyze HF-QRS with the hope that additional features seen in the QRS complex would provide information enhancing the diagnostic value of the ECG. The development of computerized ECG-recording devices that made it possible to record ECG signals with high resolution in both time and amplitude, as well as better possibilities to store and process the signals digitally, offered new methods for analysis. Different techniques to extract the HF-QRS have been described. Several bandwidths and filter types have been applied for the extraction as well as different signal-averaging techniques for noise reduction. There is no standard method for acquiring and quantifying HF-QRS. The physiological mechanisms underlying HF-QRS are still not fully understood. One theory is that HF-QRS are related to the conduction velocity and the fragmentation of the depolarization wave in the myocardium. In a three-dimensional model of the ventricles with a fractal conduction system it was shown that high numbers of splitting branches are associated with HF-QRS. In this experiment, it was also shown that the changes seen in HF-QRS in patients with myocardial ischemia might be due to the slowing of the conduction velocity in the region of ischemia. This mechanism has been tested by Watanabe et al by infusing sodium channel blockers into the left anterior descending artery in dogs. In their study, 60 unipolar ECGs were recorded from the entire

  10. Control of high-frequency AC link electronic transformer

    OpenAIRE

    Krishnaswami, H; Ramanarayanan, V.

    2005-01-01

    An isolated high-frequency link AC/AC converter is termed an electronic transformer.The electronic transformer has size and cost advantages over a conventional transformer because of high-frequency operation of the magnetic core. Of the various topologies of electronic transformer, the high-frequency AC link electronic transformer achieves high-frequency AC power transformation without a DC link. The circuit uses the standard H-bridge, one on either side of the high-frequency transformer. A n...

  11. High Frequency Trade Direction Prediction

    OpenAIRE

    Stav, Augustine Dexter

    2015-01-01

    High Frequency Trade Direction PredictionbyAugustine StavAbstract High frequency trading involves large volumes and rapid price changes. The Volume Synchronized Probability of Informed Trading (VPIN) metric characterizes order flow toxicity. This toxicity is the unbalance of order flow between informed traders who possess knowledge of future price directions and market makers who do not have this information. VPIN requires trades to be classified as buys or sells and works with volume as a pr...

  12. Proposal of High-Frequency Magnetic Field Immunity Test for Medical Devices, and Design and Development of Coil for the Test

    Science.gov (United States)

    Yamamoto, Takahiko; Koshiji, Kohji

    Medical devices have been obliged to satisfy electromagnetic compatibility by revision of the pharmaceutical affairs law. However, even if the medical devices satisfy the electromagnetic compatibility based on the law, it is not necessarily safe. Sometimes, malfunctions of cardiac pacemaker are caused by the magnetic field leaked from an induction heating cooker. In this paper, a new method of electromagnetic susceptability (EMS) evaluation is proposed, and a loop coil for the magnetic field immunity test in the frequency range from 10kHz to 3MHz is designed and developed. As a result, the loop coil made on an experimental basis generated uniform magnetic field with a fluctuation within 3.3dB in the loop coil pane and 5.6dB along the coil axis.

  13. Analytical core loss calculations for magnetic materials used in high frequency high power converter applications. Ph.D. Thesis - Toledo Univ.

    Science.gov (United States)

    Triner, J. E.

    1979-01-01

    The basic magnetic properties under various operating conditions encountered in the state-of-the-art DC-AC/DC converters are examined. Using a novel core excitation circuit, the basic B-H and loss characteristics of various core materials may be observed as a function of circuit configuration, frequency of operation, input voltage, and pulse-width modulation conditions. From this empirical data, a mathematical loss characteristics equation is developed to analytically predict the specific core loss of several magnetic materials under various waveform excitation conditions.

  14. The positive effects of high-frequency right dorsolateral prefrontal cortex repetitive transcranial magnetic stimulation on memory, correlated with increases in brain metabolites detected by proton magnetic resonance spectroscopy in recently detoxified alcohol-dependent patients

    Directory of Open Access Journals (Sweden)

    Qiao J

    2016-09-01

    Full Text Available Jun Qiao,1,2 Guixing Jin,1,2 Licun Lei,3 Lan Wang,1,2 Yaqiang Du,3 Xueyi Wang1,2 1Institute of Mental Health, The First Hospital of Hebei Medical University, 2Brain Ageing and Cognitive Neuroscience Laboratory, Hebei Medical University, 3Department of Radiology, The First Hospital of Hebei Medical University, Hebei, People’s Republic of China Objective: To explore the effect of right dorsolateral prefrontal cortex (DLPFC repetitive transcranial magnetic stimulation (rTMS on memory, and its correlation with levels of hippocampal brain metabolites detected by proton magnetic resonance spectroscopy (1H-MRS in recently detoxified alcohol-dependent patients. Materials and methods: In this randomized, double-blind sham-controlled trial, alcohol-dependent patients were enrolled and randomized into two groups: the experimental group (rTMS, 10 Hz, on right DLPFC, 20 sessions and the control group (sham stimulation. Memory function was assessed using Hopkins Verbal Learning Test-Revised (HVLT-R and Brief Visuospatial Memory Test-Revised (BVMT-R before and after treatment. 1H-MRS was used to detect the levels of N-acetyl aspartic acid (NAA, choline (Cho, and creatine (Cr in bilateral hippocampi before and after treatment. Results: Thirty-eight patients (18 in the experimental group and 20 in the control group were included in the analyses. The experimental group showed significantly greater changes in HVLT-R, BVMT-R, NAA/Cr, and Cho/Cr after rTMS from baseline than the control group. The percentage change in BVMT-R and HVLT-R correlated with the percentage change in NAA/Cr and Cho/Cr in the right brain. Conclusion: High-frequency right DLPFC rTMS was associated with improvement in memory dysfunction, which is correlated with levels of hippocampal brain metabolites detected by 1H-MRS in recently detoxified alcohol-dependent patients. Keywords: alcohol dependence, memory, repetitive transcranial magnetic stimulation, MR spectroscopy

  15. High-frequency complex pitch

    DEFF Research Database (Denmark)

    Santurette, Sébastien; Dau, Torsten

    2012-01-01

    Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine-structure ......Harmonics in a complex tone are typically considered unresolved when they interact with neighboring harmonics in the cochlea and cannot be heard out separately. Recent studies have suggested that the low pitch evoked by unresolved high-frequency harmonics may be coded via temporal fine...

  16. Advances in Very High Frequency Power Conversion

    DEFF Research Database (Denmark)

    Kovacevic, Milovan

    . Excellent performance and small size of magnetic components and capacitors at very high frequencies, along with constant advances in performance of power semiconductor devices, suggests a sizable shift in consumer power supplies market into this area in the near future. To operate dc-dc converter power...... devices at very high frequencies, switching loss needs to reduced or eliminated, as it would become prohibitively large. In addition, as the frequency increases, hard-switched gate driving becomes less and less of an option, as it embodies the same loss mechanism. A low-loss gate drive methods may need...... response of VHF converters, on/off control schemes are often used for their output control. The options presented so far demonstrated excellent performance, but with very strict timing constraints on all functional blocks in the feedback loop. Therefore, an on/off control method is proposed which allows...

  17. Geographies of High Frequency Trading

    DEFF Research Database (Denmark)

    Grindsted, Thomas Skou

    2016-01-01

    the valuation of time. As high frequency trading accelerates financial markets, the paper examines the spatio-temporalities of automated trading by the ways in which the speed of knowledge exploitation in financial markets is not only of interest, but also the expansion between different temporalities...

  18. Fuel cells multi-stack power architectures and experimental validation of 1 kW parallel twin stack PEFC generator based on high frequency magnetic coupling dedicated to on board power unit

    International Nuclear Information System (INIS)

    This paper presents a study of a polymer electrolyte fuel cell (PEFC) multi-stack generator and its power electronic interface dedicated to an on board vehicle power unit. A parallel electric architecture has been designed and tested. First, a dynamic model of the PEFC stack, valid for high frequencies and compatible with power converter interactions, has been developed. This model is used for simulations of the global fuel cell and power converter behaviors. Second, an inventory of generic multi-stack fuel cells architectures is presented in order to couple electrically the fuel cell stacks to an on board DC bus (in series, parallel, through magnetic coupling..). This state of the art is completed by an overview of several candidate power converter topologies for fuel cells. Then, among all the possible technical solutions, an original power converter architecture using a high frequency planar transformer is proposed, which allows parallel and series magnetic couplings of two fuel cell stacks. Then, the study focuses on a first step, which is the association of two PEFC stacks. Such a structure, having good efficiency, is well adapted for testing and operation of fuel cells in normal and degraded working modes, which correspond to real constraints on board a vehicle. Finally, experimental validations on a 2 x 500 W twin stack PEFC with power converter interface demonstrate the technological feasibility for the embarked multi-stack fuel cells generator. The 1 kW power level chosen for the experimentation is close to that of a small on board PEFC auxiliary power unit (APU)

  19. High-Frequency Seafloor Acoustics

    CERN Document Server

    Jackson, Darrell R

    2007-01-01

    High-Frequency Seafloor Acoustics is the first book in a new series sponsored by the Office of Naval Research on the latest research in underwater acoustics. This exciting new title provides ready access to experimental data, theory, and models relevant to high-frequency seafloor acoustics and will be of interest to sonar engineers and researchers working in underwater acoustics. The physical characteristics of the seafloor affecting acoustic propagation and scattering are covered, including physical and geoacoustic properties and surface roughness. Current theories for acoustic propagation in sediments are presented along with corresponding models for reflection, scattering, and seafloor penetration. The main text is backed up by an extensive bibliography and technical appendices.

  20. 激磁涌流的高频信号及对应答器干扰分析%Analysis on high frequency signals of magnetizing inrush current and its interference for balise

    Institute of Scientific and Technical Information of China (English)

    刘中田; 罗丽燕; 周果; 赵会兵

    2012-01-01

    在列车自动过分相时,牵引变压器产生的激磁涌流通过母排、轮对和钢轨回流到变电所,而在这个过程中激磁涌流可能会对应答器上行链路信号产生干扰.激磁涌流对应答器上行链路干扰的途径是应答器接收天线的耦合,要清楚了解其干扰,必须了解激磁涌流4.23 MHz附近信号分量,因此对激磁涌流高频信号的分析是非常有必要的.本文用Matlab软件对激磁涌流进行了仿真得到其仿真数据.然后,用LabWindows/CVI软件进行仿真数据加载并且对激磁涌流进行短时傅里叶变换(STFT),得到激磁涌流4.23 MHz附近信号分量.最后,用FEKO软件进行激磁涌流对应答器上行链路信号的干扰仿真.研究结果表明激磁涌流含有4.23 MHz附近信号分量较小,不会对应答器上行链路信号产生干扰.%The magnetizing inrush current generated by auto-passing neutral section goes through busbar, wheel and rail back to substation. The Up-Link balise may be interfered by the magnetizing inrush current in this process. This interference way is receiving antenna coupling. To clearly understand their interference, it is necessary to get signal component near 4.23 MHz of the magnetizing inrush current. So the research on the high frequency signals of magnetizing inrush current is necessary. This paper uses MATLAB to simulate magnetizing inrush current, and data of magnetizing inrush current are acquired. And then this paper loads the simulation data with Labwindows/CVI and does STFT to get the signal component near 4.23 MHz. Finally, using FEKO does interference simulation of magnetizing inrush current to up-link balise. The research results show that the magnetizing inrush current contains small weight signals of 4.23 MHz, and it can not interfere with the Up-Link balise.

  1. High frequency dielectric response and magnetic studies of Zn{sub 1−x}Tb{sub x}Fe{sub 2}O{sub 4} nanocrystalline ferrites synthesized via micro-emulsion technique

    Energy Technology Data Exchange (ETDEWEB)

    Azhar Khan, Muhammad, E-mail: azhar_manais@yahoo.com [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Sabir, Muhammad [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Mahmood, Azhar [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Asghar, M.; Mahmood, K.; Afzal Khan, M. [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ahmad, Iqbal [Department of Chemistry,University of Gujrat, Gujrat 50700 (Pakistan); Sher, Muhammad [Department of Chemistry, The University of Sargodha, Sargodha 40100 (Pakistan); Farooq Warsi, Muhammad, E-mail: farooq.warsi@iub.edu.pk [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)

    2014-06-01

    Tb{sup 3+}-doped nanocrystalline zinc ferrites with a nominal composition of Zn{sub 1−x}Tb{sub x}Fe{sub 2}O{sub 4} (x=0, 0.03, 0.06, 0.09, 0.12 and 0.15) were prepared by micro-emulsion method and were annealed at 600 °C for 8.5 h. The synthesized samples were characterized by thermogravimetry analysis (TGA), differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), fourier transform infrared spectroscopy (FTIR), vibrating sample magnetometer (VSM) and dielectric measurement techniques. The powder XRD patterns confirm the single phase cubic spinel structure, indicated that doping nanoferrites with small concentrations of terbium ions allowed their entrance to the spinel lattice and the crystallite size is found in the range of 16–24 nm. The dielectric constant (ε) and dielectric loss (tanδ) of all the samples were measured in the frequency range 100 MHz–3 GHz at room temperature. The dielectric constant and dielectric loss of the samples are found to decrease with increase in frequency and Tb{sup 3+} content. The reduction in the dielectric parameters is attributed to the obstruction incorporated in electron exchange mechanism caused by the lockup among iron and terbium cations. The magnetic properties revealed that these terbium doped nanocrystalline zinc ferrites exhibit ferrimagnetic behavior. The high saturation magnetization and coercivity along with smaller dielectric parameters having Tb-contents suggests that the materials are suitable for applications in memory devices and high frequency applications. -Graphical Abstract: Nanocrystalline spinel ferrites (Zn{sub 1−x}Tb{sub x}Fe{sub 2}O{sub 4}) prepared by micro-emulsion technique exhibited the reduced dielectric parameters and decreased crystallite size from 24 nm to 16 nm upon the doping of terbium. These ferrites revealed ferrimagnetic behavior. Larger magnetic and smaller dielectric parameters suggest the potential use of these nanomaterials in memory and high frequency devices

  2. Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre

    of technologies for very high frequency switch mode power supplies. At these highly elevated frequencies normal bulky magnetics with heavy cores consisting of rare earth materials, can be replaced by air core inductors embedded in the printed circuit board. This is investigated thoroughly and both spirals...... of 70%, weight reduction of 81%, cost reduction of 56% and efficiency gain of 4.5%-points can be achieved with a very high frequency class DE converter, compared to a commercial product....

  3. Oscillations of the Boundary Layer and High-frequency QPOs

    Directory of Open Access Journals (Sweden)

    Blinova A. A.

    2014-01-01

    Full Text Available We observed persistent high-frequency oscillations of the boundary layer near an accreting, weakly-magnetized star in global 3D MHD simulations. The tilted dipole magnetic field is not strong enough to open a gap between the star and the disk. Instead, it forms a highly-wrapped azimuthal field near the surface of the star which slows down rotation of the disk matter, while a small tilt of the field excites oscillations of the boundary layer with a frequency below the Keplerian frequency. This mechanism may be responsible for the high-frequency oscillations in accreting neutron stars, white dwarfs and classical T Tauri stars.

  4. Econometrics of financial high-frequency data

    CERN Document Server

    Hautsch, Nikolaus

    2011-01-01

    This book covers major approaches in high-frequency econometrics. It discusses implementation details, provides insights into properties of high-frequency data as well as institutional settings and presents applications.

  5. The Impact of Accelerated Right Prefrontal High-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS on Cue-Reactivity: An fMRI Study on Craving in Recently Detoxified Alcohol-Dependent Patients.

    Directory of Open Access Journals (Sweden)

    Sarah C Herremans

    Full Text Available In alcohol-dependent patients craving is a difficult-to-treat phenomenon. It has been suggested that high-frequency (HF repetitive transcranial magnetic stimulation (rTMS may have beneficial effects. However, exactly how this application exerts its effect on the underlying craving neurocircuit is currently unclear. In an effort to induce alcohol craving and to maximize detection of HF-rTMS effects to cue-induced alcohol craving, patients were exposed to a block and event-related alcohol cue-reactivity paradigm while being scanned with fMRI. Hence, we assessed the effect of right dorsolateral prefrontal cortex (DLPFC stimulation on cue-induced and general alcohol craving, and the related craving neurocircuit. Twenty-six recently detoxified alcohol-dependent patients were included. First, we evaluated the impact of one sham-controlled stimulation session. Second, we examined the effect of accelerated right DLPFC HF-rTMS treatment: here patients received 15 sessions in an open label accelerated design, spread over 4 consecutive days. General craving significantly decreased after 15 active HF-rTMS sessions. However, cue-induced alcohol craving was not altered. Our brain imaging results did not show that the cue-exposure affected the underlying craving neurocircuit after both one and fifteen active HF-rTMS sessions. Yet, brain activation changes after one and 15 HF-rTMS sessions, respectively, were observed in regions associated with the extended reward system and the default mode network, but only during the presentation of the event-related paradigm. Our findings indicate that accelerated HF-rTMS applied to the right DLPFC does not manifestly affect the craving neurocircuit during an alcohol-related cue-exposure, but instead it may influence the attentional network.

  6. High Frequency Chandler Wobble Excitation

    Science.gov (United States)

    Seitz, F.; Stuck, J.; Thomas, M.

    2003-04-01

    and OMCT forcing fields give no hint for increased excitation power in the Chandler band. Thus it is assumed, that continuous high frequency excitation due to stochastic weather phenomena is responsible for the perpetuation of the Chandler wobble.

  7. High-frequency magnetic prop erties of planar anisotropy carb onyl-iron particles%取向易面各向异性羰基铁粉体的高频磁性研究

    Institute of Scientific and Technical Information of China (English)

    霍天旭; 乔亮; 王涛; 李发伸

    2014-01-01

    研究了取向度对羰基铁粉体复合材料微波磁性的影响。理论上构造了取向片状磁性颗粒磁矩的高斯分布,并通过Landau-Lifshitz-Gilbert方程得到了有取向度的软磁材料复数磁导率的求解方法,模拟计算了羰基铁样品高频复数磁导率随频率的变化。研究发现:随着样品取向角⟨θ⟩的变大,高斯分布标准偏差σ减小,取向度f增大;随着片状样品取向度的提高,材料初始有效磁导率的实部值增大。为了对照,利用穆斯堡尔谱得到磁体的取向度,并通过网络分析仪测量了磁体的高频磁导率,所获得的实验结果与理论预期值相符。%The effect of orientation degree on high-frequency magnetic properties of planar anisotropy carbonyl-iron particles is studied. We build the samples for planar carbonyl-iron particles, whose magnetic moments obey Gaussian distribution. Meanwhile, we obtain a new method about complex permeability by utilizing Landau-Lifshitz-Gilbert equation. Then the frequency-dependent complex permeability of sample is calculated using our method. The result shows that with the increase of orientation angle⟨θ⟩, the standard deviation of Gaussian distributionσ decreases and the orientation degree f increases. Furthermore, the real part of initial permeability of the planar carbonyl-iron sample becomes higher with the increase of orientation degree f . For comparison, we measured the orientation degree and complex permeability of the sample by Mössbauer spectroscopy and vector network analyzer respectively. It is found that our experimental data accord well with the simulation results.

  8. Effect of high-frequency electric field on the electron magnetotransport in graphene

    International Nuclear Information System (INIS)

    The effective spectrum of electron states in graphene in quantizing magnetic and high-frequency electric fields is calculated. The presence of the high-frequency field is shown to lead to the Landau levels splitting in graphene. The magnitude of this splitting is calculated. The influence of the high-frequency electric field on the magnetic oscillations of graphene conductivity is investigated. The possibility of controlling of conductivity oscillations by change of electric field amplitude is shown.

  9. Magnetoencephalography Detection of High-Frequency Oscillations in the Developing Brain

    Directory of Open Access Journals (Sweden)

    Kimberly eLeiken

    2014-12-01

    Full Text Available Increasing evidence from invasive intracranial recordings suggests that the matured brain generates both physiological and pathological high-frequency signals. The present study was designed to detect high-frequency brain signals in the developing brain using newly developed magnetoencephalography (MEG methods. Twenty healthy children were studied with a high sampling rate MEG system. Functional high-frequency brain signals were evoked by electrical stimulation applied to the index fingers. To determine if the high-frequency neuromagnetic signals are true brain responses in high-frequency range, we analyzed the MEG data using the conventional averaging as well as newly developed time-frequency analysis along with beamforming. The data of healthy children showed that very high-frequency brain signals (> 1000 Hz in the somatosensory cortex in the developing brain could be detected and localized using MEG. The amplitude of very high-frequency brain signals was significantly weaker than that of the low-frequency brain signals. Very high-frequency brain signals showed a much earlier latency than those of a low-frequency. Magnetic source imaging (MSI revealed that a portion of the high-frequency signals was from the somatosensory cortex, another portion of the high-frequency signals was probably from the thalamus. Our results provide evidence that the developing brain generates high-frequency signals that can be detected with the noninvasive technique of MEG. MEG detection of high-frequency brain signals may open a new window for the study of developing brain function.

  10. 78 FR 70567 - Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology; Final...

    Science.gov (United States)

    2013-11-26

    ... SECURITY Coast Guard Nationwide Use of High Frequency and Ultra High Frequency Active SONAR Technology...) and Ultra High Frequency (UHF) Sound Navigation and Ranging (SONAR) Technology and Finding of No Significant Impact (FONSI). The USCG is proposing the nationwide use of active SONAR technologies that...

  11. Non-linear high-frequency waves in the magnetosphere

    Indian Academy of Sciences (India)

    S Moolla; R Bharuthram; S V Singh; G S Lakhina

    2003-12-01

    Using fluid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic field in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric field.

  12. Development of High Frequency Miniature Ultrasound Transducers

    OpenAIRE

    Manh, Tung

    2013-01-01

    Small, high frequency (≥ 10MHz) broadband ultrasound transducers are required in modern medical imaging systems to provide short range, high resolution images for studying of microstructures in soft tissues, such as the composition of small tumors or a vessel wall. The manufacturing of these probes using conventional methods, i.e. lapping and dicing, becomes difficult and expensive for high frequency applications and there is a need to produce small ultrasound transducers with low cost and hi...

  13. Generation of sheet currents by high frequency fast MHD waves

    Science.gov (United States)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  14. Effects of dislocations on small signal high frequency hot electron mobility in n-GaN at low and high temperatures under high magnetic fields including hot phonon effect

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, A., E-mail: juimaha@yahoo.co [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India); Sarkar, C.K. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India)

    2011-04-01

    The small signal high-frequency ac mobility of hot electrons in n-GaN in the extreme quantum limit at low- and high-temperatures has been calculated considering the non-equilibrium phonon distribution as well as the thermal phonon distributions. The energy loss rate has been calculated considering the dominance of the piezo electric coupling scattering and the polar optical phonon scattering while the momentum loss rate has been calculated considering the acoustic phonon scattering via deformation potential and the piezo electric coupling and the dislocation scattering.

  15. Primordial high-frequency perturbations in cosmology

    International Nuclear Information System (INIS)

    The purpose of this thesis is to investigate, with the help of the multiple-scale method, approximate solutions of the Einstein equations which are approximately periodic and can be interpreted as containing high-frequency waves. These primordial high-frequency perturbations will have a significant influence on the background metric (back-reaction) and formation of trapped surfaces. Detection and Fourier analysis of primordial gravitational waves could in principle be used to infer the spectrum of inhomogeneities in the very early epoch of the universe. The high-frequency gravitational waves of all modes are investigated on an anisotropic Bianchi IX background. Their frequencies are related to the eigenvalues of the Hamiltonian of the asymmetric rotor. In the context of the exact solitary wave solutions found on the inhomogeneous Einstein-Rosen metric, a numerical solution is presented of the complete set of equations obtained from the non-linear approximation. (Auth.)

  16. High frequency group pulse electrochemical machining

    Institute of Scientific and Technical Information of China (English)

    WU Gaoyang; ZHANG Zhijing; ZHANG Weimin; TANG Xinglun

    2007-01-01

    In the process of machining ultrathin metal structure parts,the signal composition of high frequency group pulse,the influence of frequency to reverse current,and the design of the cathode in high frequency group pulse electrochemical machining (HGPECM) are discussed.The experiments on process were carried out.Results indicate that HGPECM can greatly improve the characteristics of the inter-electrode gap flow field,reduce electrode passivation,and obtain high machining quality.The machining quality is obviously improved by increasing the main pulse frequency.The dimensional accuracy reaches 30-40 pro and the roughness attained is at 0.30-0.35 μm.High frequency group pulse electrochemical machining can be successfully used in machining micro-parts.

  17. Retrodirective Antenna Array Using High Frequency Offset

    Directory of Open Access Journals (Sweden)

    P. Sindler

    2012-12-01

    Full Text Available The paper deals with the design of a simple retrodirective antenna array exhibiting by high frequency offset between received and transmitted wave. Analysis of the beam pointing error using antenna array model developed in MATLAB is described. The frequencies of transmitted wave and received wave are chosen on the basis of this analysis. Then a suitable structure for further design is determined and particular blocks of complete retrodirective antenna array are briefly described and their measured parameters are presented. Relatively high frequency offset between received and transmitted wave makes it possible to use frequency filters for received and transmitted signal separation which led to significant reduction of the circuit complexity.

  18. High frequency and pulse scattering physical acoustics

    CERN Document Server

    Pierce, Allan D

    1992-01-01

    High Frequency and Pulse Scattering investigates high frequency and pulse scattering, with emphasis on the phenomenon of echoes from objects. Geometrical and catastrophe optics methods in scattering are discussed, along with the scattering of sound pulses and the ringing of target resonances. Caustics and associated diffraction catastrophes are also examined.Comprised of two chapters, this volume begins with a detailed account of geometrically based approximation methods in scattering theory, focusing on waves transmitted through fluid and elastic scatterers and glory scattering; surface ray r

  19. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    CERN Document Server

    Andić, Aleksandra

    2008-01-01

    High-frequency waves (5 mHz to 20mHz) have previously been suggested as a source of energy accounting partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences are taken using the German Vacuum Tower Telescope (VTT), Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analyzed with wavelets. Wavelet phase-difference analysis is performed to determine whether the waves propagate. We observe the propagation of waves in the frequency range 10mHz to 13mHz. We also observe propagation of low-frequency waves in the ranges where they are thought to be evanescent in regions where magnetic structures are present.

  20. Propagation of High Frequency Waves in the Quiet Solar Atmosphere

    Directory of Open Access Journals (Sweden)

    Andić, A.

    2008-12-01

    Full Text Available High-frequency waves (5 mHz to 20 mHz have previously been suggested as a source of energy accounting for partial heating of the quiet solar atmosphere. The dynamics of previously detected high-frequency waves is analysed here. Image sequences were taken by using the German Vacuum Tower Telescope (VTT, Observatorio del Teide, Izana, Tenerife, with a Fabry-Perot spectrometer. The data were speckle reduced and analysed with wavelets. Wavelet phase-difference analysis was performed to determine whether the waves propagate. We observed the propagation of waves in the frequency range 10 mHz to 13 mHz. We also observed propagation of low-frequency waves in the ranges where they are thought to be evanescent in the regions where magnetic structures are present.

  1. High Frequency Trading, Information, and Takeovers

    NARCIS (Netherlands)

    Humphery-Jenner, M.

    2011-01-01

    This paper (1) proposes new variables to detect informed high-frequency trading (HFT), (2) shows that HFT can help to predict takeover targets, and (3) shows that HFT in uences target announcement announcement returns. Prior literature suggests that informed trade may occur before takeovers, but has

  2. Essays on high frequency financial econometrics

    NARCIS (Netherlands)

    X. Yang

    2015-01-01

    It has long been demonstrated that continuous-time methods are powerful tools in financial modeling. Yet only in recent years, their counterparts in empirical analysis—high frequency econometrics—began to emerge with the availability of intra-day data and relevant statistical tools. This dissertatio

  3. High frequency pressure oscillator for microcryocoolers

    NARCIS (Netherlands)

    Vanapalli, S.; Brake, ter H.J.M.; Jansen, H.V.; Zhao, Y.; Holland, H.J.; Burger, J.F.; Elwenspoek, M.C.

    2008-01-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pre

  4. High frequency III–V nanowire MOSFETs

    Science.gov (United States)

    Lind, Erik

    2016-09-01

    III–V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  5. High frequency III-V nanowire MOSFETs

    Science.gov (United States)

    Lind, Erik

    2016-09-01

    III-V nanowire transistors are promising candidates for very high frequency electronics applications. The improved electrostatics originating from the gate-all-around geometry allow for more aggressive scaling as compared with planar field-effect transistors, and this can lead to device operation at very high frequencies. The very high mobility possible with In-rich devices can allow very high device performance at low operating voltages. GaN nanowires can take advantage of the large band gap for high voltage operation. In this paper, we review the basic physics and device performance of nanowire field- effect transistors relevant for high frequency performance. First, the geometry of lateral and vertical nanowire field-effect transistors is introduced, with special emphasis on the parasitic capacitances important for nanowire geometries. The basic important high frequency transistor metrics are introduced. Secondly, the scaling properties of gate-all-around nanowire transistors are introduced, based on geometric length scales, demonstrating the scaling possibilities of nanowire transistors. Thirdly, to model nanowire transistor performance, a two-band non-parabolic ballistic transistor model is used to efficiently calculate the current and transconductance as a function of band gap and nanowire size. The intrinsic RF metrics are also estimated. Finally, experimental state-of-the-art nanowire field-effect transistors are reviewed and benchmarked, lateral and vertical transistor geometries are explored, and different fabrication routes are highlighted. Lateral devices have demonstrated operation up to 350 GHz, and vertical devices up to 155 GHz.

  6. High frequency dynamics in centrifugal compressors

    NARCIS (Netherlands)

    Twerda, A.; Meulendijks, D.; Smeulers, J.P.M.; Handel, R. van den; Lier, L.J. van

    2008-01-01

    Problems with centrifugal compressors relating to high frequency, i.e. Blade passing frequency (BPF) are increasing. Pulsations and vibrations generated in centrifugal compressors can lead to nuisance, due to strong tonal noise, and even breakdown. In several cases the root cause of a failure or a n

  7. Transponder System for High-Frequency Ranging

    Science.gov (United States)

    Lichtenberg, C. L.; Shores, P. W.; Kobayashi, H. S.

    1986-01-01

    Transponder system uses phase difference between transmitted and reflected high-frequency radio waves to measure distance to target. To suppress spurious measurements of reflections from objects near target at transmitted frequency and its harmonics, transponder at target generates return signal at half transmitted frequency. System useful in such applications as surveying, docking of ships, and short-range navigation.

  8. High frequency conductivity in carbon nanotubes

    Directory of Open Access Journals (Sweden)

    S. S. Abukari

    2012-12-01

    Full Text Available We report on theoretical analysis of high frequency conductivity in carbon nanotubes. Using the kinetic equation with constant relaxation time, an analytical expression for the complex conductivity is obtained. The real part of the complex conductivity is initially negative at zero frequency and become more negative with increasing frequency, until it reaches a resonance minimum at ω ∼ ωB for metallic zigzag CNs and ω < ωB for armchair CNs. This resonance enhancement is indicative for terahertz gain without the formation of current instabilities induced by negative dc conductivity. We noted that due to the high density of states of conduction electrons in metallic zigzag carbon nanotubes and the specific dispersion law inherent in hexagonal crystalline structure result in a uniquely high frequency conductivity than the corresponding values for metallic armchair carbon nanotubes. We suggest that this phenomenon can be used to suppress current instabilities that are normally associated with a negative dc differential conductivity.

  9. Interannual modulation of extratropical high frequency variability

    Directory of Open Access Journals (Sweden)

    R. Caballero

    1997-06-01

    Full Text Available A simple explanation is presented for the observed interannual changes in the dominant space and time scales of Northem Hemisphere winter extratropical high frequency variability. It is found that such changes can suc- cessfully be predicted by linearizing a 2-level quasi-geostrophic mode] in spherical geometry around the ob- served zona] mean states. The mechanisms responsible for the selection of the most unstable normal mode are investigated.

  10. Radome structures for high frequency applications

    Science.gov (United States)

    Hager, W.

    The optimization of radome structures for high-frequency applications is examined for the cases of thin-walled radomes, thick-walled radomes, sandwich radomes, and multilayer radomes. Examples of applications are briefly described, including radomes in an ECM-pod of a Tornado aircraft, a radome for a mobile two-dimensional radar installation, and a radome for a millimeter wave search radar.

  11. High frequency impedances in European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Dohlus, Martin; Zagorodnov, Igor; Zagorodnova, Olga

    2010-06-15

    The method of the optical approximation is used to estimate the high frequency impedances of different vacuum chamber transitions of the European XFEL beam line. The approximations of the longitudinal impedances are obtained in terms of simple one-dimensional integrals. The transverse impedances are written in analytical closed form. The analytical results are compared with the results obtained by numerical solution of Maxwell's equations. (orig.)

  12. 高频超声与核磁共振成像在前交叉韧带损伤诊断中的对比研究%A comparative study of high frequency ultrasound and magnetic resonance imaging in diagnosis of anterior cruciate ligament injury

    Institute of Scientific and Technical Information of China (English)

    唐盛斐; 唐基淳; 张素萍

    2015-01-01

    Objective:To investigate the value of high frequency ultrasound in diagnosis of anterior cruciate ligament (Anterior Cruciate Ligament, ACL) damage. Methods: 30 patients clinically diagnosed with ACL injury sequentially were examined with high-frequency ultrasound, magnetic resonance imaging (Magnetic Resonance Imaging, MRI) examination, and then compared with the arthroscopic examination. Results: High frequency ultrasound diagnosed accuracy of 27 cases, 2 cases of false positive and 1 case of false negative in compared with arthroscopy, the accuracy is 90% (27/30), the false positive rate is 6.67% (2/30) and the false negative rate is 3.33% (1 / 30), the accuracy of MRI matched with arthroscopy. Conclusion: High frequency ultrasound makes a high accuracy in diagnosis of ACL injuries, and it can be used as a routine diagnostic method of ACL injury.%目的:探讨高频超声在膝关节前交叉韧带(Anterior Cruciate Ligament,ACL)损伤诊断中的应用价值。方法:对30例临床拟诊为ACL损伤的患者依次行高频超声、核磁共振成像(Magnetic Resonance Imaging,MRI)检查,并与关节镜检查对比。结果:高频超声诊断符合者27例,假阳性2例,假阴性1例,诊断符合率90%(27/30),假阳性率6.67%(2/30),假阴性率3.33%(1/30),MRI诊断率与关节镜相符。结论:高频超声在ACL损伤的诊断中准确率较高,可作为ACL损伤的常规诊断方法。

  13. Extremely high frequency RF effects on electronics.

    Energy Technology Data Exchange (ETDEWEB)

    Loubriel, Guillermo Manuel; Vigliano, David; Coleman, Phillip Dale; Williams, Jeffery Thomas; Wouters, Gregg A.; Bacon, Larry Donald; Mar, Alan

    2012-01-01

    The objective of this work was to understand the fundamental physics of extremely high frequency RF effects on electronics. To accomplish this objective, we produced models, conducted simulations, and performed measurements to identify the mechanisms of effects as frequency increases into the millimeter-wave regime. Our purpose was to answer the questions, 'What are the tradeoffs between coupling, transmission losses, and device responses as frequency increases?', and, 'How high in frequency do effects on electronic systems continue to occur?' Using full wave electromagnetics codes and a transmission-line/circuit code, we investigated how extremely high-frequency RF propagates on wires and printed circuit board traces. We investigated both field-to-wire coupling and direct illumination of printed circuit boards to determine the significant mechanisms for inducing currents at device terminals. We measured coupling to wires and attenuation along wires for comparison to the simulations, looking at plane-wave coupling as it launches modes onto single and multiconductor structures. We simulated the response of discrete and integrated circuit semiconductor devices to those high-frequency currents and voltages, using SGFramework, the open-source General-purpose Semiconductor Simulator (gss), and Sandia's Charon semiconductor device physics codes. This report documents our findings.

  14. Ionospheric modifications in high frequency heating experiments

    International Nuclear Information System (INIS)

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena

  15. Ionospheric modifications in high frequency heating experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Spencer P. [Department of Electrical and Computer Engineering, Polytechnic School of Engineering, New York University, 5 MetroTech Center, Brooklyn, New York 11201 (United States)

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  16. High-Frequency Rayleigh-Wave Method

    Institute of Scientific and Technical Information of China (English)

    Jianghai Xia; Richard D Millerg; Xu Yixian; Luo Yinhe; Chen Chao; Liu Jiangping; Julian Ivanov; Chong Zeng

    2009-01-01

    High-frequency (≥2 Hz) Rayleigh-wave data acquired with a multichannei recording sys-tem have been utilized to determine shear (S)-wave velocities in near-surface geophysics since the early 1980s. This overview article discusses the main research results of high-frequency surface-wave tech-niques achieved by research groups at the Kansas Geological Survey and China University of Geosciences in the last 15 years. The multichannel analysis of surface wave (MASW) method is a nou-iuvasive acoustic approach to estimate near-surface S-wave velocity. The differences between MASW results and direct borehole measurements are approximately 15% or less and random. Studies show that simultaneous inversion with higher modes and the fundamental mode can increase model resolution and an investigation depth. The other important seismic property, quality factor (Q), can also be estimated with the MASW method by inverting attenuation coefficients of Rayleigh waves. An inverted model (S-wave velocity or Q) obtained using a damped least-squares method can be assessed by an optimal damping vector in a vicinity of the inverted model determined by an objective function, which is the trace of a weighted sum of model-resolution and model-covariance matrices. Current developments include modeling high-frequency Rayleigh-waves in near-surface media, which builds a foundation for shallow seismic or Rayleigh-wave inversion in the time-offset domain; imaging dispersive energy with high resolution in the frequency-velocity domain and possibly with data in an arbitrary acquisition geometry, which opens a door for 3D surface-wave techniques; and successfully separating surface-wave modes, which provides a valuable tool to perform S-wave velocity profiling with high-horizontal resolution.

  17. The LASI high-frequency ellipticity system

    Energy Technology Data Exchange (ETDEWEB)

    Sternberg, B.K.; Poulton, M.M. [Univ. of Arizona, Tucson, AZ (United States)

    1995-10-01

    A high-frequency, high-resolution, electromagnetic (EM) imaging system has been developed for environmental geophysics surveys. Some key features of this system include: (1) rapid surveying to allow dense spatial sampling over a large area, (2) high-accuracy measurements which are used to produce a high-resolution image of the subsurface, (3) measurements which have excellent signal-to-noise ratio over a wide bandwidth (31 kHz to 32 MHz), (4) large-scale physical modeling to produce accurate theoretical responses over targets of interest in environmental geophysics surveys, (5) rapid neural network interpretation at the field site, and (6) visualization of complex structures during the survey.

  18. High frequency ultrasonic mitigation of microbial corrosion

    Science.gov (United States)

    Almahamedh, Hussain H.; Meegan, G. Douglas; Mishra, Brajendra; Olson, David L.; Spear, John R.

    2012-05-01

    Microbiologically Influenced Corrosion (MIC) is a major problem in oil industry facilities, and considerable effort has been spent to mitigate this costly issue. More environmentally benign methods are under consideration as alternatives to biocides, among which are ultrasonic techniques. In this study, a high frequency ultrasonic technique (HFUT) was used as a mitigation method for MIC. The killing percentages of the HFUT were higher than 99.8 percent and their corrosivity on steel was reduced by more than 50 percent. The practice and result will be discussed.

  19. Design of high frequency integrated analogue filters

    CERN Document Server

    Sun, Yichuang

    2002-01-01

    This book brings together leading researchers to highlight recent advances and identify promising directions for future development. Motivated by the market for mobile and wireless communications, fully integrated analog filters for high-frequency applications are now receiving great interest world-wide. Chapters are dedicated to MOSFET-C and Gm-C filters, current-mode continuous-time filters, log-domain filters, switched-current filters, adaptive filters and on-chip automatic tuning. The topical nature of the book and caliber of the authors ensures that this book will be of wide interest to t

  20. Prediction of high frequency core loss for electrical steel using the data provided by manufacturer

    Science.gov (United States)

    Roy, Rakesh; Dalal, Ankit; Kumar, Praveen

    2016-07-01

    This paper describes a technique to determine the core loss data, at high frequencies, using the loss data provided by the lamination manufacturer. Steinmetz equation is used in this proposed method to determine core loss at high frequency. This Steinmetz equation consists of static hysteresis and eddy current loss. The presented technique considers the coefficients of Steinmetz equation as variable with frequency and peak magnetic flux density. The high frequency core loss data, predicted using this model is compared with the catalogue data given by manufacturer and very good accuracy has been obtained for a wide range of frequency.

  1. Noise temperature in graphene at high frequencies

    Science.gov (United States)

    Rengel, Raúl; Iglesias, José M.; Pascual, Elena; Martín, María J.

    2016-07-01

    A numerical method for obtaining the frequency-dependent noise temperature in monolayer graphene is presented. From the mobility and diffusion coefficient values provided by Monte Carlo simulation, the noise temperature in graphene is studied up to the THz range, considering also the influence of different substrate types. The influence of the applied electric field is investigated: the noise temperature is found to increase with the applied field, dropping down at high frequencies (in the sub-THz range). The results show that the low-frequency value of the noise temperature in graphene on a substrate tends to be reduced as compared to the case of suspended graphene due to the important effect of remote polar phonon interactions, thus indicating a reduced emitted noise power; however, at very high frequencies the influence of the substrate tends to be significantly reduced, and the differences between the suspended and on-substrate cases tend to be minimized. The values obtained are comparable to those observed in GaAs and semiconductor nitrides.

  2. Complex utilization of snf processing wastes in air plasma of high-frequency torch discharge

    Science.gov (United States)

    Karengin, A. G.; Karengin, A. A.; Podgornaya, O. D.; Shlotgauer, E. E.

    2014-10-01

    We present results of complex spent nuclear fuel wastes utilization process in air plasma of high-frequency torch discharge in form of dispersed water-organic compositions. We demonstrate the possibility to apply magnetic separation for effective extraction of obtained dispersed solid products including magnetic iron oxide from water suspension.

  3. Plasma effects in high frequency radiative transfer

    International Nuclear Information System (INIS)

    This paper is intended as a survey of collective plasma processes which can affect the transfer of high frequency radiation in a hot dense plasma. We are rapidly approaching an era when this subject will become important in the laboratory. For pedagogical reasons we have chosen to examine plasma processes by relating them to a particular reference plasma which will consist of fully ionized carbon at a temperature kT=1 KeV (1070K) and an electron density N = 3 x 1023cm-3, (which corresponds to a mass density rho = 1 gm/cm3 and an ion density N/sub i/ = 5 x 1022 cm-3). We will consider the transport in such a plasma of photons ranging from 1 eV to 1 KeV in energy. Such photons will probably be frequently used as diagnostic probes of hot dense laboratory plasmas

  4. Dry friction damping couple at high frequencies

    Directory of Open Access Journals (Sweden)

    Půst L.

    2014-06-01

    Full Text Available The contribution deals with the application of dry friction couples for noise and vibration damping at high frequency of several kHz what brings new problems connected with the small amplitudes of relative slipping motion of contact surfaces. The most important information from the experimental results is knowledge that the value of evaluated friction coefficient can have different physical sense according to the magnitude of excitation force and to the frequency of applied vibrations. If amplitudes of motion are very small, then the external harmonic force produces only elastic micro-deformations of contacting bodies, where no slip occurs and then the traction contact force is proportional only to elastic deformation of the sample.

  5. Solar coronal observations at high frequencies

    CERN Document Server

    Katsiyannis, A C; Phillips, K J H; Williams, D R; Keenan, F P

    2001-01-01

    The Solar Eclipse Coronal Imaging System (SECIS) is a simple and extremely fast, high-resolution imaging instrument designed for studies of the solar corona. Light from the corona (during, for example, a total solar eclipse) is reflected off a heliostat and passes via a Schmidt-Cassegrain telescope and beam splitter to two CCD cameras capable of imaging at 60 frames a second. The cameras are attached via SCSI connections to a purpose-built PC that acts as the data acquisition and storage system. Each optical channel has a different filter allowing observations of the same events in both white light and in the green line (Fe XIV at 5303 A). Wavelet analysis of the stabilized images has revealed high frequency oscillations which may make a significant contribution on the coronal heating process. In this presentation we give an outline of the instrument and its future development.

  6. High frequency homogenisation for elastic lattices

    CERN Document Server

    Colquitt, D J; Makwana, M

    2014-01-01

    A complete methodology, based on a two-scale asymptotic approach, that enables the homogenisation of elastic lattices at non-zero frequencies is developed. Elastic lattices are distinguished from scalar lattices in that two or more types of coupled waves exist, even at low frequencies. Such a theory enables the determination of effective material properties at both low and high frequencies. The theoretical framework is developed for the propagation of waves through lattices of arbitrary geometry and dimension. The asymptotic approach provides a method through which the dispersive properties of lattices at frequencies near standing waves can be described; the theory accurately describes both the dispersion curves and the response of the lattice near the edges of the Brillouin zone. The leading order solution is expressed as a product between the standing wave solution and long-scale envelope functions that are eigensolutions of the homogenised partial differential equation. The general theory is supplemented b...

  7. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  8. Analysis of Binarized High Frequency Financial Data

    CERN Document Server

    Sazuka, N

    2006-01-01

    A non-trivial probability structure is evident in the binary data extracted from the up/down price movements of very high frequency data such as tick-by-tick data for USD/JPY. In this paper, we analyze the Sony bank USD/JPY rates, ignoring the small deviations from the market price. We then show there is a similar non-trivial probability structure in the Sony bank rate, in spite of the Sony bank rate's having less frequent and larger deviations than tick-by-tick data. However, this probability structure is not found in the data which has been sampled from tick-by-tick data at the same rate as the Sony bank rate. Therefore, the method of generating the Sony bank rate from the market rate has the potential for practical use since the method retains the probability structure as the sampling frequency decreases.

  9. 10 K high frequency pulse tube cryocooler with precooling

    Science.gov (United States)

    Liu, Sixue; Chen, Liubiao; Wu, Xianlin; Zhou, Yuan; Wang, Junjie

    2016-07-01

    A high frequency pulse tube cryocooler with precooling (HPTCP) has been developed and tested to meet the requirement of weak magnetic signals measurement, and the performance characteristics are presented in this article. The HPTCP is a two-stage pulse tube cryocooler with the precooling-stage replaced by liquid nitrogen. Two regenerators completely filled with stainless steel (SS) meshes are used in the cooler. Together with cold inertance tubes and cold gas reservoir, a cold double-inlet configuration is used to control the phase relationship of the HPTCP. The experimental result shows that the cold double-inlet configuration has improved the performance of the cooler obviously. The effects of operation parameters on the performance of the cooler are also studied. With a precooling temperature of 78.5 K, the maximum refrigeration capacity is 0.26 W at 15 K and 0.92 W at 20 K when the input electric power are 174 W and 248 W respectively, and the minimum no-load temperature obtained is 10.3 K, which is a new record on refrigeration temperature for high frequency pulse tube cryocooler reported with SS completely used as regenerative matrix.

  10. Plant Responses to High Frequency Electromagnetic Fields

    Directory of Open Access Journals (Sweden)

    Alain Vian

    2016-01-01

    Full Text Available High frequency nonionizing electromagnetic fields (HF-EMF that are increasingly present in the environment constitute a genuine environmental stimulus able to evoke specific responses in plants that share many similarities with those observed after a stressful treatment. Plants constitute an outstanding model to study such interactions since their architecture (high surface area to volume ratio optimizes their interaction with the environment. In the present review, after identifying the main exposure devices (transverse and gigahertz electromagnetic cells, wave guide, and mode stirred reverberating chamber and general physics laws that govern EMF interactions with plants, we illustrate some of the observed responses after exposure to HF-EMF at the cellular, molecular, and whole plant scale. Indeed, numerous metabolic activities (reactive oxygen species metabolism, α- and β-amylase, Krebs cycle, pentose phosphate pathway, chlorophyll content, terpene emission, etc. are modified, gene expression altered (calmodulin, calcium-dependent protein kinase, and proteinase inhibitor, and growth reduced (stem elongation and dry weight after low power (i.e., nonthermal HF-EMF exposure. These changes occur not only in the tissues directly exposed but also systemically in distant tissues. While the long-term impact of these metabolic changes remains largely unknown, we propose to consider nonionizing HF-EMF radiation as a noninjurious, genuine environmental factor that readily evokes changes in plant metabolism.

  11. High frequency, high power capacitor development

    Science.gov (United States)

    White, C. W.; Hoffman, P. S.

    1983-03-01

    A program to develop a special high energy density, high power transfer capacitor to operate at frequency of 40 kHz, 600 V rms at 125 A rms plus 600 V dc bias for space operation. The program included material evaluation and selection, a capacitor design was prepared, a thermal analysis performed on the design. Fifty capacitors were manufactured for testing at 10 kHz and 40 kHz for 50 hours at Industrial Electric Heating Co. of Columbus, Ohio. The vacuum endurance test used on environmental chamber and temperature plate furnished by Maxwell. The capacitors were energized with a special power conditioning apparatus developed by Industrial Electric Heating Co. Temperature conditions of the capacitors were monitored by IEHCo test equipment. Successful completion of the vacuum endurance test series confirmed achievement of the main goal of producing a capacitor or reliable operation at high frequency in an environment normally not hospitable to electrical and electronic components. The capacitor developed compared to a typical commercial capacitor at the 40 kHz level represents a decrease in size and weight by a factor of seven.

  12. Efficiency studies of high frequency current drive

    International Nuclear Information System (INIS)

    Pulsed high power free-electron-lasers (FELs) offer new possibilities for the current drive in tokamaks. High intensity FELs apply to the excitation of nonlinear wave-wave processes, such as beat-waves (BW) and stimulated Raman scattering (SRS), in which large phase velocity (vph>>ve) electrostatic modes are generated. These can accelerate resonant electrons to high parallel velocities v||∼vph, which produces a slowly decaying current. Furthermore, the fast electrons with v||>>v are not toroidally trapped into banana orbits. The operation at high frequencies provides for the FEL beam an easy access into the plasma centre. This makes possible to suppress sawtooth activity by profile control and to expand the operational limits in parameter space. Raman and beat-wave methods apply particularly well to bootstrap current seeding, which may considerably enhance the overall current drive efficiency. Both Raman forward (SRS-F) and backward (SRS-B) scattering can be applied to current drive. At high, reactor relevant temperatures SRS-F is the dominant process, because SRS-B is suppressed due to heavy damping of the plasma wave. At temperatures of a few keV, SRS-B dominates because of its short gain length. In this report we shall estimate the current drive efficiency at temperatures relevant for MTX and for a tokamak reactor. We shall also consider the dependence of the efficiency on the peak intensity of FEL in these two cases. (author) 8 refs., 2 figs., 1 tab

  13. Calculation of Leakage Inductance for High Frequency Transformers

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Jun, Zhang; Hurley, William Gerard

    2015-01-01

    Frequency dependent leakage inductance is often observed. High frequency eddy current effects cause a reduction in leakage inductance. The proximity effect between adjacent layers is responsible for the reduction of leakage inductance. This paper gives a detailed analysis of high frequency leakage...... inductance and proposes an accurate prediction methodology. High frequency leakage inductances in several interleaved winding configurations are also discussed. Interleaved winding configurations actually give a smaller degree of reduction of leakage induction at high frequency. Finite Element Analysis (FEA...

  14. Performance of annular high frequency thermoacoustic engines

    Science.gov (United States)

    Rodriguez, Ivan A.

    This thesis presents studies of the behavior of miniature annular thermoacoustic prime movers and the imaging of the complex sound fields using PIV inside the small acoustic wave guides when driven by a temperature gradient. Thermoacoustic engines operating in the standing wave mode are limited in their acoustic efficiency by a high degree of irreversibility that is inherent in how they work. Better performance can be achieved by using traveling waves in the thermoacoustic devices. This has led to the development of an annular high frequency thermoacoustic prime mover consisting of a regenerator, which is a random stack in-between a hot and cold heat exchanger, inside an annular waveguide. Miniature devices were developed and studied with operating frequencies in the range of 2-4 kHz. This corresponds to an average ring circumference of 11 cm for the 3 kHz device, the resonator bore being 6 mm. A similar device of 11 mm bore, length of 18 cm was also investigated; its resonant frequency was 2 kHz. Sound intensities as high as 166.8 dB were generated with limited heat input. Sound power was extracted from the annular structure by an impedance-matching side arm. The nature of the acoustic wave generated by heat was investigated using a high speed PIV instrument. Although the acoustic device appears symmetric, its performance is characterized by a broken symmetry and by perturbations that exist in its structure. Effects of these are observed in the PIV imaging; images show axial and radial components. Moreover, PIV studies show effects of streaming and instabilities which affect the devices' acoustic efficiency. The acoustic efficiency is high, being of 40% of Carnot. This type of device shows much promise as a high efficiency energy converter; it can be reduced in size for microcircuit applications.

  15. Designing Magnetic Components for High Frequency DC-DC Converters

    Science.gov (United States)

    McLyman, W. T.

    1993-01-01

    The conversion process in power electronics requires the use of tranformers and inductors, components which frequenly are the heaviest and bulkiest item in the conversion circuits. They also have a significant effect upon the overall performance and efficiency of the system.

  16. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    Science.gov (United States)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  17. Nanocrystalline iron based powder cores for high frequency applications

    Directory of Open Access Journals (Sweden)

    P. Gramatyka

    2006-08-01

    Full Text Available Purpose: The aim of this paper was to develop a various nanocrystalline powder cores with different polymersas a binder and investigate their magnetic properties (especially permeability and power losses at highfrequency range.Design/methodology/approach: Numerous experimental techniques were used to characterize startingpowders: laser particles analysis, scanning electron microscopy (SEM, transmission electron microscopy(TEM, X-ray diffraction (XRD and Mössbauer spectrometry (MS. The dynamic magnetic properties at thefrequency range from 50 Hz up to 100 kHz of nanocrystalline iron based powder cores were measured usingcomputerized hysteresis loop tracer Remacomp C-100 and Ferrometr device.Findings: It was found from the experimental studies, that nanocrystalline powder cores proved to be suitablefor high frequency applications. Their frequency dependences are comparable to that of permalloy or carbonyliron powder cores but shows smaller power losses.Research limitations/implications: Further studies should be undertaken in order to produce high densitycomposites with good soft magnetic properties and to find a good compromise between mechanical andmagnetic properties for power electronics applications.Practical implications: Developed nanocrystalline powder cores with permeability’s below 100 are potentialcandidates for a variety of industrial applications, such as electromagnetic interference filters, radio frequencycoupling devices, filter inductors and radio frequency tuning cores.Originality/value: Soft magnetic materials have recently regained interest as inductive component whichis a result of better raw materials, more developed technologies and a need for the materials from electricalmicromotors and low power motors for automation, robotics and other equipments. The present studycomplements and extends earlier investigations of polymer bonded powders.

  18. EFFECT MECHANISM OF HIGH FREQUENCY ELECTRO-MAGNETIC FIELD ON THE SURFACE QUALITY AND EQUIAXED CRYSTAL RATIO OF 15CrMo BILLET%高频电磁场对15CrMo连铸坯表面质量和等轴晶率的影响机理

    Institute of Scientific and Technical Information of China (English)

    许秀杰; 邓安元; 王恩刚; 张林涛; 张永杰; 赫冀成

    2009-01-01

    An induced coil surrounding a segmented mold used in soft contact electromagnetic casting (soft-contact EMC) was used to produce a high frequency magnetic field for reducing ferrostatic pressure between the mold and melt. The distribution of magnetic field in the mold was examined using a magnetic probe of the induction coil type. Then mathematical model was developed to study the distributions of magnetic field, electromagnetic force and flowing velocity of molten steel in the mold. Finally, continuous casting experiments were conducted with alloy constructional steel 15CrMo in the laboratory caster. The surface morphologies and macrostructure were examined and analyzed. Based on the comprehension of the distributions of magnetic field, electromagnetic force and flowing velocity of molten steel in the mold through measurements and numerical simulation, the effects of electromag-netic field were systematically investigated. The results indicate that when the electromagnetic field was applied in the initially solidified area, the mold flux consumption was increased dramatically. As a result, the surface quality of continuously cast billets is greatly improved, for example, oscillation marks disappeared due to the decrease of flux pressure. Moreover, the growth of columnar grains is suppressed for two main reasons. The first one is that the mold near meniscus is heated by Joule heat generated by the high frequency electromagnetic field. The other one is that the thermal resistance between mold and the solidified shell is increased as the increase of mold flux thickness. Inhomogeneous distributions of magnetic field in the mold along the casting direction were confirmed both by measurement and numerical simulation. And the Lorentz force on the molten steel along the casting direction is uneven likewise. Under the drive of Lorentz force, two counter-rotational vortices are formed below the meniscus. Moreover, the temperature gradient in front of the solid

  19. Design and Measurement of Planar Toroidal Transformers for Very High Frequency Power Applications

    DEFF Research Database (Denmark)

    Knott, Arnold; Pejtersen, Jens

    2012-01-01

    core loss. The drawback of most air-core magnetics is that the magnetic field is not contained within a closed shape, and it is thus prone to cause electro magnetic interference. A toroidal air-core inductor configuration can be used to contain the magnetic field. This work presents a novel air......-core toroidal transformer configuration for use in very high frequency power conversion applications. Two prototype transformers (10:10 and 12:12) have been implemented using conventional four layer printed circuit board technology. The transformers have been characterized by two port Z-parameters, which have...

  20. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  1. Reversible tobramycin-induced bilateral high-frequency vestibular toxicity.

    Science.gov (United States)

    Walsh, R M; Bath, A P; Bance, M L

    2000-01-01

    We report an unusual case of tobramycin-induced bilateral high-frequency vestibular toxicity with subsequent clinical and objective evidence of functional recovery. In those patients with a clinical presentation suggestive of aminoglycoside-induced bilateral vestibular toxicity (ataxia and oscillopsia) and normal low-frequency (ENG-caloric) responses, high-frequency rotation chair testing should be performed to exclude a high-frequency vestibular deficit. PMID:10810261

  2. New considerations concerning the high-frequency focusing of relativistic particles and Panofsky-Wenzel theorem

    Science.gov (United States)

    Melekhin, V. N.

    1997-02-01

    It is shown that the transverse momentum imparted to a relativistic particle, passing through an accelerating cavity near and parallel to its axis ( z-axis), may be presented as a trajectory integral with an integrand being proportional to z-component of high-frequency magnetic field. The x- and y-component of this momentum are equal in value but opposite in sign. The obtained result is compared with Panofsky-Wenzel theorem. This result gives one more procedure to check the accuracy of high-frequency focusing simulation.

  3. High-frequency homogenization of zero frequency stop band photonic and phononic crystals

    CERN Document Server

    Antonakakis, Tryfon; Guenneau, Sebastien

    2013-01-01

    We present an accurate methodology for representing the physics of waves, for periodic structures, through effective properties for a replacement bulk medium: This is valid even for media with zero frequency stop-bands and where high frequency phenomena dominate. Since the work of Lord Rayleigh in 1892, low frequency (or quasi-static) behaviour has been neatly encapsulated in effective anisotropic media. However such classical homogenization theories break down in the high-frequency or stop band regime. Higher frequency phenomena are of significant importance in photonics (transverse magnetic waves propagating in infinite conducting parallel fibers), phononics (anti-plane shear waves propagating in isotropic elastic materials with inclusions), and platonics (flexural waves propagating in thin-elastic plates with holes). Fortunately, the recently proposed high-frequency homogenization (HFH) theory is only constrained by the knowledge of standing waves in order to asymptotically reconstruct dispersion curves an...

  4. Short-interval intracortical inhibition is modulated by high-frequency peripheral mixed nerve stimulation.

    Science.gov (United States)

    Murakami, Takenobu; Sakuma, Kenji; Nomura, Takashi; Nakashima, Kenji

    2007-06-01

    Cortical excitability can be modulated by manipulation of afferent input. We investigated the influence of peripheral mixed nerve stimulation on the excitability of the motor cortex. Motor evoked potentials (MEPs), short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the right abductor pollicis brevis (APB), extensor carpi radialis (ECR) and first dorsal interosseous (FDI) muscles were evaluated using paired-pulse transcranial magnetic stimulation (TMS) before and after high-frequency peripheral mixed nerve stimulation (150 Hz, 30 min) over the right median nerve at the wrist. The MEP amplitude and SICI of the APB muscle decreased transiently 0-10 min after the intervention, whereas the ICF did not change. High-frequency peripheral mixed nerve stimulation reduced the excitability of the motor cortex. The decrement in the SICI, which reflects the function of GABA(A)ergic inhibitory interneurons, might compensate for the reduced motor cortical excitability after high-frequency peripheral mixed nerve stimulation.

  5. High frequency modeling of power transformers. Stresses and diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Bjerkan, Eilert

    2005-05-15

    In this thesis a reliable, versatile and rigorous method for high frequency power transformer modeling is searched and established. The purpose is to apply this model to sensitivity analysis of FRA (Frequency Response Analysis) which is a quite new diagnostic method for assessing the mechanical integrity of power transformer windings on-site. The method should be versatile in terms of being able to estimate internal and external over voltages and resonances. Another important aspect is that the method chosen is suitable for real transformer geometries. In order to verify the suitability of the model for real transformers, a specific test-object is used. This is a 20MVA transformer, and details are given in chapter 1.4. The high frequency power transformer model is established from geometrical and constructional information from the manufacturer, together with available material characteristics. All circuit parameters in the lumped circuit representation are calculated based on these data. No empirical modifications need to be performed. Comparison shows capability of reasonable accuracy in the range from 10 khz to 1 MHz utilizing a disc-to-disc representation. A compromise between accuracy of model due to discretization and complexity of the model in a turn-to-turn representation is inevitable. The importance of the iron core is emphasized through a comparison of representations with/without the core included. Frequency-dependent phenomena are accurately represented using an isotropic equivalent for windings and core, even with a coarse mesh for the FEM-model. This is achieved through a frequency-dependent complex permeability representation of the materials. This permeability is deduced from an analytical solution of the frequency-dependent magnetic field inside the conductors and the core. The importance of dielectric losses in a transformer model is also assessed. Since published data on the high frequency properties of press board are limited, some initial

  6. High frequency behaviours and Mössbauer study of field annealed FeCuNbSiB alloy ribbons

    International Nuclear Information System (INIS)

    This paper investigates the high frequency behaviours and magnetic anisotropy of rapidly solidified FINEMET (Fe73.5Si13.5B9Nb3Cu1) alloy ribbons annealed in an applied magnetic field. It finds that the ribbons annealed with the applied magnetic field show much higher resonance frequencies and have even higher permeability at higher frequencies than the samples annealed without the magnetic field and the non-annealed ribbons. Mössbauer spectroscopy had been employed to study the spatial distribution of the magnetic moments of five selected FINEMET alloy ribbons in different heat-treated conditions. The results show that an easy plane has been established after annealling in the magnetic field, while for the other ribbons this effect is not significant. Hence, the relationship between magnetic field annealing and high frequency property has been bridged by the bianisotropic theory. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  7. 高频磁场下原位合成Al3(Ti0.5Zr0.5)p/6005A复合材料的显微组织与性能%Microstructure and Properties of In-Situ Synthesized Al3(Ti(0.5)Zr(0.5))p/6005A Composites under High-frequency Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    祝晓辉; 赵玉涛; 李桂荣; 陈刚; 佘昌俊; 轩动华; 郑梦

    2011-01-01

    Al3 (Ti0.5 Zr0.5 )p/6005A composites were in-situ synthesized under high-frequency magnetic field by direct melt reaction using K2TiF6, K2ZrF6 and Na3A1F6 as reactants. By means of scanning electron microscopy, Xray diffraction and tensile testing machine, the microstructure and properties of the composites were investigated.The results show that the in-situ synthesized particles under magnetic field were fine Al3 (Ti0. 5 Zr0. 5 )p particles,whose average size was 1-3μm and dispersively distributed in Al substrate. At magnetic frequency of 2 MHz, the yield strength, tensile strength of the composites were 279. 4 and 305. 8 MPa, which increased by 7. 1% and 8.7%compared with that of the substrate. And the elongation was 9. 5%, which decreased by 10. 1%. The fracture characteristics of the composites transformed from ductile fracture of the substrate to mixing fracture.%以K2TiF6、K2ZrF6与Na3AlF6为反应物,在高频磁场下,采用熔体反应法原位合成了A13(Ti(0.5)Zr(0.5))p/6005A复合材料;通过扫描电镜、X射线衍射仪、拉伸试验机等对复合材料的组织与性能进行了研究.结果表明:磁场下原位生成了细小的Al3(Ti(0.5)Zr(0.5))颗粒,平均尺寸为1-3μm,且弥散分布于基体中;在磁场频率为2MHz时复合材料的屈服强度、抗拉强度分别为279.4,305.8MPa,较基体的提高了7.1%和8.7%,伸长率为9.5%,较基体的下降了10.1%;复合材料的断裂特征由基体的韧性断裂转变为混合型断裂.

  8. High-frequency energy in singing and speech

    Science.gov (United States)

    Monson, Brian Bruce

    While human speech and the human voice generate acoustical energy up to (and beyond) 20 kHz, the energy above approximately 5 kHz has been largely neglected. Evidence is accruing that this high-frequency energy contains perceptual information relevant to speech and voice, including percepts of quality, localization, and intelligibility. The present research was an initial step in the long-range goal of characterizing high-frequency energy in singing voice and speech, with particular regard for its perceptual role and its potential for modification during voice and speech production. In this study, a database of high-fidelity recordings of talkers was created and used for a broad acoustical analysis and general characterization of high-frequency energy, as well as specific characterization of phoneme category, voice and speech intensity level, and mode of production (speech versus singing) by high-frequency energy content. Directionality of radiation of high-frequency energy from the mouth was also examined. The recordings were used for perceptual experiments wherein listeners were asked to discriminate between speech and voice samples that differed only in high-frequency energy content. Listeners were also subjected to gender discrimination tasks, mode-of-production discrimination tasks, and transcription tasks with samples of speech and singing that contained only high-frequency content. The combination of these experiments has revealed that (1) human listeners are able to detect very subtle level changes in high-frequency energy, and (2) human listeners are able to extract significant perceptual information from high-frequency energy.

  9. SINGLE PHASE HIGH FREQUENCY AC CONVERTER FOR INDUCTION HEATING APPLICATION

    Directory of Open Access Journals (Sweden)

    M.A INAYATHULLAAH,

    2010-12-01

    Full Text Available The proposed topology reduces the total harmonic distortion (THD of a high frequency AC/AC Converter well below the acceptable limit. This paper deals with a novel single phase AC/DC/AC soft switching utility frequency AC to high frequency AC converter. In this paper a single phase full bridge inverter with Vienna rectifier as front end is used instead of conventional diode bridge rectifier to provide continuous sinusoidal input current with nearly unity power factor at the source side with extremely low distortion.. This power converter is more suitable and acceptable for cost effective high frequency (HF consumer induction heating applications.

  10. High-frequency TRNS reduces BOLD activity during visuomotor learning.

    Directory of Open Access Journals (Sweden)

    Catarina Saiote

    Full Text Available Transcranial direct current stimulation (tDCS and transcranial random noise stimulation (tRNS consist in the application of electrical current of small intensity through the scalp, able to modulate perceptual and motor learning, probably by changing brain excitability. We investigated the effects of these transcranial electrical stimulation techniques in the early and later stages of visuomotor learning, as well as associated brain activity changes using functional magnetic resonance imaging (fMRI. We applied anodal and cathodal tDCS, low-frequency and high-frequency tRNS (lf-tRNS, 0.1-100 Hz; hf-tRNS 101-640 Hz, respectively and sham stimulation over the primary motor cortex (M1 during the first 10 minutes of a visuomotor learning paradigm and measured performance changes for 20 minutes after stimulation ceased. Functional imaging scans were acquired throughout the whole experiment. Cathodal tDCS and hf-tRNS showed a tendency to improve and lf-tRNS to hinder early learning during stimulation, an effect that remained for 20 minutes after cessation of stimulation in the late learning phase. Motor learning-related activity decreased in several regions as reported previously, however, there was no significant modulation of brain activity by tDCS. In opposition to this, hf-tRNS was associated with reduced motor task-related-activity bilaterally in the frontal cortex and precuneous, probably due to interaction with ongoing neuronal oscillations. This result highlights the potential of lf-tRNS and hf-tRNS to differentially modulate visuomotor learning and advances our knowledge on neuroplasticity induction approaches combined with functional imaging methods.

  11. Quantum inductance and high frequency oscillators in graphene nanoribbons.

    Science.gov (United States)

    Begliarbekov, Milan; Strauf, Stefan; Search, Christopher P

    2011-04-22

    Here we investigate high frequency AC transport through narrow graphene nanoribbons with top-gate potentials that form a localized quantum dot. We show that as a consequence of the finite dwell time of an electron inside the quantum dot (QD), the QD behaves like a classical inductor at sufficiently high frequencies ω ≥ GHz. When the geometric capacitance of the top-gate and the quantum capacitance of the nanoribbon are accounted for, the admittance of the device behaves like a classical serial RLC circuit with resonant frequencies ω ∼ 100-900 GHz and Q-factors greater than 10(6). These results indicate that graphene nanoribbons can serve as all-electronic ultra-high frequency oscillators and filters, thereby extending the reach of high frequency electronics into new domains.

  12. Conditions of the Classical Transmission Line Equations at High Frequency

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    New transmission line equations are deduced applying Maxwell's equations in this paper. The conditions of the classical transmission line equations have been discussed, which is important to solve the EM problems in high frequency case.

  13. High frequency jet ventilation in fat embolism syndrome.

    Science.gov (United States)

    Lee, A; Simpson, D

    1986-11-01

    The use of high frequency jet ventilation in the management of a patient with fat embolism syndrome is described. Its principal advantage over conventional intermittent positive pressure ventilation is a reduction in the amount of sedation necessary. PMID:3789371

  14. High Temperature, High Frequency Fuel Metering Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Active Signal Technologies and its subcontractor Moog propose to develop a high-frequency actuator driven valve intended to achieve TRL 6 by the end of Phase II....

  15. High frequency single mode traveling wave structure for particle acceleration

    Science.gov (United States)

    Ivanyan, M. I.; Danielyan, V. A.; Grigoryan, B. A.; Grigoryan, A. H.; Tsakanian, A. V.; Tsakanov, V. M.; Vardanyan, A. S.; Zakaryan, S. V.

    2016-09-01

    The development of the new high frequency slow traveling wave structures is one of the promising directions in accomplishment of charged particles high acceleration gradient. The disc and dielectric loaded structures are the most known structures with slowly propagating modes. In this paper a large aperture high frequency metallic two-layer accelerating structure is studied. The electrodynamical properties of the slowly propagating TM01 mode in a metallic tube with internally coated low conductive thin layer are examined.

  16. Soft Switching SEPP High Frequency Inverter for Induction Heating

    Science.gov (United States)

    Ogiwara, Hiroyuki; Nakaoka, Mutsuo

    This paper presents a novel circuit topology to attain soft switching operation of a high frequency inverter. Its output power is regulated over a wide range using a PWM control technique by connecting an auxiliary resonant circuit to the conventional single ended push pull (SEPP) high frequency inverter for induction heating. All switching devices in the proposed inverter are operated soft switching mode. This paper describes its circuit constitution and obtained experimental results from a practical point of view.

  17. SEPP-ZVS High Frequency Inverter Incorporating Auxiliary Switch

    Science.gov (United States)

    Ogiwara, Hiroyuki; Itoi, Misao; Nakaoka, Mutsuo

    This paper presents a novel circuit topology to attain ZVS operation of a high frequency inverter over a wide range output power regulation using a PWM control technique by connecting an auxiliary switch to the conventional single ended push-pull (SEPP) ZVS high frequency inverter. A switching current is injected into the main switches via the auxiliary switch only during the short period between its turn-on and off times to supply a current required for its ZVS operation.

  18. High frequency components in bottlenose dolphin echolocation signals

    OpenAIRE

    Toland, Ronald W., Jr.

    1998-01-01

    The research described in this thesis is a continuation of work started by the Applied Research Laboratories of the University of Texas at Austin into the analysis of biosonar signals. Experiments conducted in 1997 on two species of small toothed whales found these species to emit significant high frequency signal components, extending to as high as 400 to 500 kHz. To assess the importance of these high frequencies in dolphin echolocation and target identification, experiments were performed ...

  19. High frequency characteristics of medium voltage XLPE power cables

    OpenAIRE

    Mugala, Gavita

    2005-01-01

    The response of a cable can be used to analyze the variation of the material characteristics along its length. For diagnosis of possible ageing, it is necessary to know how cable design, material properties and cable insulation ageing affects the wave propagation. A cable model has therefore been worked out based upon the high frequency properties of the cable insulation and conductor systems. The high frequency characteristics of the semi-conducting screens, new and water-tree aged cross-lin...

  20. High frequency ultrasound with color Doppler in dermatology*

    Science.gov (United States)

    Barcaui, Elisa de Oliveira; Carvalho, Antonio Carlos Pires; Lopes, Flavia Paiva Proença Lobo; Piñeiro-Maceira, Juan; Barcaui, Carlos Baptista

    2016-01-01

    Ultrasonography is a method of imaging that classically is used in dermatology to study changes in the hypoderma, as nodules and infectious and inflammatory processes. The introduction of high frequency and resolution equipments enabled the observation of superficial structures, allowing differentiation between skin layers and providing details for the analysis of the skin and its appendages. This paper aims to review the basic principles of high frequency ultrasound and its applications in different areas of dermatology. PMID:27438191

  1. High frequency ultrasound imaging in pupillary block glaucoma.

    OpenAIRE

    Aslanides, I M; Libre, P E; Silverman, R H; Reinstein, D Z; Lazzaro, D R; Rondeau, M J; Harmon, G K; Coleman, D J

    1995-01-01

    BACKGROUND--The diagnosis of pupillary block glaucoma requires sufficient clarity of the ocular media. This is particularly important for assessment of both the presence and patency of an iridotomy, and the determination of central anterior chamber depth. METHODS--High frequency ultrasonography was used in three patients with suspected pupillary block to determine iris configuration, posterior chamber volume, and ciliary body conformation. RESULTS--All patients demonstrated high frequency ult...

  2. 适用于临床及动物试验的高频重复经颅磁刺激系统设计及其应用%Design and Application of High Frequency Repetitive Transcranial Magnetic Stimulation System for Clinical and Animal Tests

    Institute of Scientific and Technical Information of China (English)

    于阳; 李玥; 张广浩; 白金柱; 吴昌哲; 霍小林

    2013-01-01

    为开展电磁刺激技术在神经调控及神经修复中的应用研究,研制了一种适用于临床及动物试验研究的高频重复经颅磁刺激(rTMS)系统,并利用该系统研究了rTMS对神经递质的影响及对脊髓损伤修复的作用.高频rTMS系统的参数由相关理论分析和仿真计算确定.系统完成后,使用慢性rTMS对SD大鼠进行15 d刺激,考察其对大鼠谷氨酸和r-氨基丁酸能系统的作用.最后,将rTMS系统与踏车训练机同步,研究rTMS对临床脊髓损伤患者康复治疗的作用.测试结果表明:研制的rTMS系统频率为0~15 Hz可调,八字(figure-eight)线圈最高磁感应强度为2.5T.动物试验结果表明:慢性rTMS能选择性地调节不同脑区谷氨酸和γ-氨基丁酸含量.临床试验结果表明,rTMS同步踏车训练治疗6周后,训练组患者的运动评分(ASIA)和脊髓损伤步行指数Ⅱ(WISCIⅡ)相比对照组高,两者具有显著性差异.由上述试验结果可知:1)研制的rTMS系统的刺激频率和磁感应强度满足设计要求;2)慢性低频经颅磁刺激可以在某些神经精神疾病类疾病治疗中发挥作用;3)不完全性胸腰段脊髓损伤患者通过经颅磁刺激同步踏车训练后,运动功能恢复可得到一定程度的促进.%For studying applications of the electromagnetic stimulation technology in neuroregeneration and neural modulation, we designed a high frequency repetitive transcranial magnetic stimulation (rTMS) system which was fit for clinical trial and animal experiments to study the influence of rTMS on neurotransmitter and recoveries of spinal cord injury. Based on theoretical calculations and simulations, parameters of the high frequency rTMS system was determined. After the system was manufactured, chronic rTMS was used to stimulate Sprague-Dawley(SD) rats for 15 d so as to investigate the possible effect of rTMS on amino acid neurotransmitter of the rats. Furthermore, rTMS synchronizing treadmill training

  3. A Simplified High Frequency Model of Interleaved Transformer Winding

    Directory of Open Access Journals (Sweden)

    K. Usha

    2015-08-01

    Full Text Available Disconnector or breaker switching operations generates Very Fast Transient Overvoltages (VFTO in Gas Insulated Substations (GIS. These VFTO have their rise-times in the range of a few nanoseconds and is followed by high frequency oscillations which can endanger the insulation of transformer winding. Hence it is necessary to develop appropriate models to study these transients. In this study, a simplified transformer circuit model capable of simulating the high frequency range from 100 kHz to several MHz is proposed to simulate the high frequency surge over voltages generated in an actual system. A 22 kV interleaved transformer winding is considered for the analysis. Resonant frequencies for different transformer models are obtained in circuit simulation package and compared with measured frequencies obtained from Sweep Frequency Response Analyser (SFRA. The results of the proposed model demonstrate better agreement with the measured values.

  4. Design of matching layers for high-frequency ultrasonic transducers

    Science.gov (United States)

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-09-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its -6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.

  5. High-frequency incremental methods for electromagnetic complex source points

    Science.gov (United States)

    Canta, Stefano Mihai

    This dissertation advances knowledge in field-based High-Frequency (HF) incremental methods for electromagnetic Complex Source Points (CSP), and its most immediate impact is a significantly faster analysis and design of reflector antennas. HF incremental methods overcome many difficulties encountered in other ray-tracing techniques, mostly when crossing shadow boundaries in the electromagnetic (EM) field predictions. The combination of HF methods with CSPs allows to speed up EM computations. CSPs are obtained by locating real electric or magnetic dipole sources in complex space. EM field patterns are derived through analytical continuation of the geometrical quantities associated with the source position; the continuation provides an exact Maxwellian description of a Gaussian Beam. When CSPs are used as basis functions, they can represent any radiated field pattern. Then, by truncating negligible beams in the direction of observation, computations are sped up compared to a plane- or spherical-wave based expansion. Because of these facts, CSPs can be used with Physical Optics (PO) based HF methods for the efficient analysis of electrically large reflectors. However, PO does not always provide accurate field predictions, especially in regions of greatest shadowing or at grazing incidence. Therefore, I developed a HF Incremental Fringe Formulation (IFF) for CSPs to provide a correction term for PO that, when added to the total PO field, recovers an accurate estimate of the scattered field at the first asymptotic order. In addition, since PO does not have caustic problems, the new fringe asymptotic recovery is free of caustics for any geometrical configuration, too. Moreover, I also introduced a double diffraction formulation for CSPs, using the Incremental Theory of Diffraction, yielding simulation results very close to those obtained with a Method of Moments (MoM) approach. Unlike ray-based methods, no tracing in complex space is necessary, and no caustics are

  6. A MEMS-based high frequency x-ray chopper

    Energy Technology Data Exchange (ETDEWEB)

    Siria, A; Schwartz, W; Chevrier, J [Institut Neel, CNRS-Universite Joseph Fourier Grenoble, BP 166, F-38042 Grenoble Cedex 9 (France); Dhez, O; Comin, F [ESRF, 6 rue Jules Horowitz, F-38043 Grenoble Cedex 9 (France); Torricelli, G [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom)

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  7. A MEMS-based high frequency x-ray chopper.

    Science.gov (United States)

    Siria, A; Dhez, O; Schwartz, W; Torricelli, G; Comin, F; Chevrier, J

    2009-04-29

    Time-resolved x-ray experiments require intensity modulation at high frequencies (advanced rotating choppers have nowadays reached the kHz range). We here demonstrate that a silicon microlever oscillating at 13 kHz with nanometric amplitude can be used as a high frequency x-ray chopper. We claim that using micro-and nanoelectromechanical systems (MEMS and NEMS), it will be possible to achieve higher frequencies in excess of hundreds of megahertz. Working at such a frequency can open a wealth of possibilities in chemistry, biology and physics time-resolved experiments.

  8. Electrogravitational Resonance of a Gaussian Beam to a High-Frequency Relic Gravitational Wave

    Institute of Scientific and Technical Information of China (English)

    李芳昱; 唐孟希

    2001-01-01

    We consider the resonant response of a Gaussian beam passing through a static magnetic field to a high-frequency relic gravitational wave (GW). It is found that under the synchroresonance condition, the first-order perturbative electromagnetic energy fluxes will contain a "left circular wave" and a "right circular wave" around the symmetrical axis of the Gaussian beam, but the perturbative effects produced by the + and × polarization of the GW have a different physical behaviour. For the high-frequency relic GW with vg = 1010 Hz, h = l0-30, recently expected by the quintessential inflationary models, the corresponding perturbative photon flux passing through the region 10-2 m2 would be expected to be 104 s-1. This is the largest perturbative photon flux we have recently analysed and estimated using the typical laboratory parameters.

  9. Design, development and analysis of high voltage, high frequency transformer for dc accelerator application

    International Nuclear Information System (INIS)

    This paper covers the design, development and analysis of High Voltage, High Frequency Transformer for DC Accelerator application. Distributed capacitance, leakage inductance, skin effect and HV Insulation are major design challenges for this type of Transformer. A prototype of 30 kV - 0 - 30 kV, 10 kHz, 500 W output power, Ferrite Core Transformer have been designed, fabricated and tested. Spice simulations have been done for estimating transformer parameters. Effect of high frequency and requirement of HV Insulation have been studied and analyzed. The effects of Magnetic Core behaviour and its losses have been studied. Based on study and test result, distributed capacitance, leakage inductance, and Transformer scheme has been optimized for 30 kV - 0 - 30 kV, 10 kHz, 10 kW output power. (author)

  10. Thermo-Mechanical Stress in High-Frequency Vacuum Electron Devices

    Science.gov (United States)

    Gamzina, Diana; Luhmann, Neville C.; Ravani, Bahram

    2016-09-01

    Analysis of the thermo-mechanical performance of high-frequency vacuum electron devices is essential to the advancement of RF sources towards high-power generation. Operation in an ultra-high vacuum environment, space restricting magnetic focusing, and limited material options are just some of the constraints that complicate thermal management in a high-power VED. An analytical method for evaluating temperature, stress, and deformation distribution in thin vacuum-to-cooling walls is presented, accounting for anisotropic material properties. Thin plate geometry is used and analytical expressions are developed for thermo-mechanical analysis that includes the microstructure effects of grain orientations. The method presented evaluates the maximum allowable heat flux that can be used to establish the power-handling limitation of high-frequency VEDs prior to full-scale design, accelerating time-to-manufacture.

  11. Modelling financial high frequency data using point processes

    DEFF Research Database (Denmark)

    Hautsch, Nikolaus; Bauwens, Luc

    In this chapter written for a forthcoming Handbook of Financial Time Series to be published by Springer-Verlag, we review the econometric literature on dynamic duration and intensity processes applied to high frequency financial data, which was boosted by the work of Engle and Russell (1997......) on autoregressive duration models...

  12. Planck 2013 results. VI. High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.;

    2013-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143,217, 353, 545, an...

  13. Planck early results. VI. The High Frequency Instrument data processing

    DEFF Research Database (Denmark)

    Bucher, M.; Castex, G.; Colley, J.-M.;

    2011-01-01

    We describe the processing of the 336 billion raw data samples from the High Frequency Instrument (HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and...

  14. Alveolar pressure during high-frequency jet ventilation

    NARCIS (Netherlands)

    A.J. van Vught (Adrianus); A. Versprille (Adrian); J.R.C. Jansen (Jos)

    1990-01-01

    textabstractWe studied the influence of ventilatory frequency (1-5 Hz), tidal volume, lung volume and body position on the end-expiratory alveolar-to-tracheal pressure difference during high-frequency jet ventilation (HFJV) in Yorkshire piglets. The animals were anesthetized and paralysed. Alveolar

  15. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...

  16. Free-field calibration of measurement microphones at high frequencies

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Torras Rosell, Antoni;

    2011-01-01

    Measurement microphones are typically calibrated in a free field at frequencies up to 50 kHz. This is a sufficiently high frequency for the most of sound measurement applications related with noise assessment. However, other applications such as assessment of the noise emitted by ultrasound clean...

  17. High frequency ground temperature fluctuation in a Convective Boundary Layer

    NARCIS (Netherlands)

    Garai, A.; Kleissl, J.; Lothon, M.; Lohou, F.; Pardyjak, E.; Saïd, F.; Cuxart, J.; Steeneveld, G.J.; Yaguë, C.; Derrien, S.; Alexander, D.; Villagrasa, D.M.

    2012-01-01

    To study influence of the turbulent structures in the convective boundary layer (CBL) on the ground temperature, during the Boundary Layer Late Afternoon and Sunset Turbulence (BLLAST) observational campaign, high frequency ground temperature was recorded through infra-red imagery from 13 June - 8 J

  18. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications.

    Science.gov (United States)

    Zhou, Qifa; Lau, Sienting; Wu, Dawei; Shung, K Kirk

    2011-02-01

    Piezoelectric films have recently attracted considerable attention in the development of various sensor and actuator devices such as nonvolatile memories, tunable microwave circuits and ultrasound transducers. In this paper, an overview of the state of art in piezoelectric films for high frequency transducer applications is presented. Firstly, the basic principles of piezoelectric materials and design considerations for ultrasound transducers will be introduced. Following the review, the current status of the piezoelectric films and recent progress in the development of high frequency ultrasonic transducers will be discussed. Then details for preparation and structure of the materials derived from piezoelectric thick film technologies will be described. Both chemical and physical methods are included in the discussion, namely, the sol-gel approach, aerosol technology and hydrothermal method. The electric and piezoelectric properties of the piezoelectric films, which are very important for transducer applications, such as permittivity and electromechanical coupling factor, are also addressed. Finally, the recent developments in the high frequency transducers and arrays with piezoelectric ZnO and PZT thick film using MEMS technology are presented. In addition, current problems and further direction of the piezoelectric films for very high frequency ultrasound application (up to GHz) are also discussed.

  19. Collocations of High Frequency Noun Keywords in Prescribed Science Textbooks

    Science.gov (United States)

    Menon, Sujatha; Mukundan, Jayakaran

    2012-01-01

    This paper analyses the discourse of science through the study of collocational patterns of high frequency noun keywords in science textbooks used by upper secondary students in Malaysia. Research has shown that one of the areas of difficulty in science discourse concerns lexis, especially that of collocations. This paper describes a corpus-based…

  20. Influence of pore roughness on high-frequency permeability

    NARCIS (Netherlands)

    Cortis, A.; Smeulders, D.M.J.; Guermond, J.L.; Lafarge, D.

    2003-01-01

    The high-frequency behavior of the fluid velocity patterns for smooth and corrugated pore channels is studied. The classical approach of Johnson et al. [J. Fluid Mech. 176, 379 (1987)] for smooth geometries is obtained in different manners, thus clarifying differences with Sheng and Zhou [Phys. Rev.

  1. High frequency ultrasound imaging of a single-species biofilm

    NARCIS (Netherlands)

    Shemesh, H.; Goertz, D. E.; van der Sluis, L. W. M.; de Jong, N.; Wu, M. K.; Wesselink, P. R.

    2007-01-01

    Objective: This study evaluated the feasibility of a high frequency ultrasound scan to examine the 3D morphology of Streptococcus mutans biofilms grown in vitro. Methods: Six 2-day S. mutans biofilms and six 7-day biofilms were grown on tissue culture membranes and on bovine dentine discs. A sterile

  2. Fact or friction: jumps at ultra high frequency

    NARCIS (Netherlands)

    K. Christensen; R. Oomen; M. Podolskij

    2011-01-01

    In this paper, we demonstrate that jumps in financial asset prices are not nearly as common as generally thought, and that they account for only a very small proportion of total return variation. We base our investigation on an extensive set of ultra high-frequency equity and foreign exchange rate d

  3. Pulsating fireballs with high-frequency sheath-plasma instabilities

    Science.gov (United States)

    Stenzel, R. L.; Gruenwald, J.; Ionita, C.; Schrittwieser, R.

    2011-08-01

    High-frequency instabilities are observed in connection with unstable fireballs. Fireballs are discharge phenomena near positively biased electrodes in discharge plasmas. They are bounded by a double layer whose potential is of order of the ionization potential. Fireballs become unstable when plasma losses and plasma production are not in balance, resulting in periodic fireball pulses. High-frequency instabilities in the range of the electron plasma frequency have been observed. These occur between fireball pulses, hence are not due to electron beam-plasma instabilities since there are no beams without double layers. The instability has been identified as a sheath-plasma instability. Electron inertia creates a phase shift between high-frequency current and electric fields which destabilizes the sheath-plasma resonance. High-frequency signals are observed in the current to the electrode and on probes near the sheath of the electrode. Waveforms and spectra are presented, showing bursty emissions, phase shifts, frequency jumps, beat phenomena between two sheaths, and nonlinear effects such as amplitude clipping. These reveal many interesting properties of sheaths with periodic ionization phenomena.

  4. Strange effects of strong high-frequency excitation

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    Three general effects of mechanical high-frequency excitation (HFE) are described: Stiffening - an apparent change in the stiffness associated with an equilibrium; Biasing - a tendency for a system to move towards a particular state which does not exist or is unstable without HFE; and Smoothening...

  5. Articulated pipes conveying fluid pulsating with high frequency

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1999-01-01

    Stability and nonlinear dynamics of two articulated pipes conveying fluid with a high-frequency pulsating component is investigated. The non-autonomous model equations are converted into autonomous equations by approximating the fast excitation terms with slowly varying terms. The downward hanging...

  6. Effects of high-frequency electromagnetic fields emitted from card readers of access control systems on electronic pocket dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Deji, Shizuhiko [Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Nishizawa, Kunihide [Radioisotope Research Center, Nagoya University, Furo-cho, Chlkusa-ku, Nagoya 464-8602 (Japan)]. E-mail: j45616a@nucc.cc.nagoya-u.ac.jp

    2005-06-01

    High-frequency electromagnetic fields in the 120 kHz band emitted from card readers for access control systems caused abnormally high doses on electronic pocket dosimeters (EPDs). All EPDs recovered their normal performance by resetting after the exposure ceased. The electric and magnetic immunity levels of the EPDs were estimated by using the distances needed to prevent electromagnetic interference.

  7. In-situ fabrication of particulate reinforced aluminum matrix composites under high-frequency pulsed electromagnetic field

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pulsed magnetic field is generated when imposing pulse signal on high-frequency magnetic field. Distribution of the inner magnetic intensity in induction coils tends to be uniform. Furthermore oscillation and disturbance phenomena appear in the melt. Insitu Al2O3 and Al3Zr particulate reinforced aluminum matrix composites have been synthesized by direct melt reaction using Al-Zr(CO3)2 components under a foreign field. The size of reinforced particulates is 2-3 μm. They are well distributed in the matrix.Thermodynamic and kinetic analysis show that high-frequency pulsed magnetic field accelerates heat and mass transfer processes and improves the kinetic condition of in-situ fabrication.

  8. Rapidly solidified Fe-6.5%Si alloy powders for high frequency use (abstract)

    Science.gov (United States)

    Duk Choi, Seung; Jin Yang, Choong

    1996-04-01

    Fe-(3˜6.5%) Si alloy powders having a high magnetic induction (Bs) and a low core loss value for high frequency use were obtained by an extractive melt spinning as well as a centrifugal atomization technique. Sintered core rings made by the rapidly solidified Fe-6.5% Si powders exhibited the high frequency electromagnetic properties: saturated induction (B8) of 1.23 T, coercivity (Hc) of 9.5 A/m, relative permeability (μa) of 6321, and core loss (W10/50) of 1.27 W/kg from the rings of 1.1 mm thick. The saturated induction values were found to be almost identical to those of nonoriented Fe-3% Si steel sheet and 6.5% Si sheet prepared by the CVD technique. The high frequency core loss values were measured not to be changed much up to 10 kHz (W1/10k=55 W/kg) in applied ac frequency.

  9. Design of Plasma Generator Driven by High-frequency High-voltage Power Supply

    Directory of Open Access Journals (Sweden)

    C. Yong-Nong

    2013-03-01

    Full Text Available In this research, a high-frequency high-voltage power supply designed for plasma generator is presented. The powersupply mainly consists of a series resonant converter with a high-frequency high-voltage boost transformer. Due to theindispensable high-voltage inheritance in the operation of plasma generator, the analysis of transformer needconsidering not only winding resistance, leakage inductance, magnetizing inductance, and core-loss resistance, butalso parasitic capacitance resulted from the insulation wrappings on the high-voltage side. This research exhibits asimple approach to measuring equivalent circuit parameters of the high-frequency, high-voltage transformer with straycapacitance being introduced into the conventional modeling. The proposed modeling scheme provides not only aprecise measurement procedure but also effective design information for series-load resonant converter. The plasmadischarging plate is designed as part of the electric circuit in the series load-resonant converter and the circuit modelof the plasma discharging plate is also conducted as well. Thus, the overall model of the high-voltage plasmagenerator is built and the designing procedures for appropriate selections of the corresponding resonant-circuitparameters can be established. Finally, a high-voltage plasma generator with 220V, 60Hz, and 1kW input, along witha 22 kHz and over 8kV output, is realized and implemented.

  10. High-Frequency Link Inverter for Fuel Cells Based on Multiple-Carrier PWM

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    HIGH-FREQUENCY (I-IF) ac link inverter topologies, with or without soft switching, have important practical advantages compared to more conventional dc link inverters in terms of isolation, size of magnetics, and other properties. It is possible to obtain these basic advantages directly in a conventional PWM inverter with trans former-coupled output, but only if the transformer can handle the low modulating frequency. HF link topologies have not been common for medium power (1 to 20kW), largely because of the number of power stages and control complexity.

  11. Characteristics of high frequency radio wave propagated in heated ionospheric regions

    Institute of Scientific and Technical Information of China (English)

    Fang HE; Zhengyu ZHAO

    2009-01-01

    A two-dimensional Ohm heating theoretic model in the magnetizing ionosphere and a ray-tracing model in a discrete ionosphere background are used to analyze quantitatively the characteristics (mainly the Doppler shift and the phase shift) of the over-the-horizon radar (OTHR) wave, which propagates through the ionospheric region heated by high frequency radio wave.The simulation results about the Doppler and the phase shift are obtained within two minutes after the heater is on.Preliminary conclusions are given by comparing the numerical results with experimental data.

  12. Resonance of Gaussian Electromagnetic Field to the High Frequency Gravitational Waves

    Science.gov (United States)

    Li, Jin; Zhang, Lu; Lin, Kai; Wen, Hao

    2016-08-01

    We consider a Gaussian Beam (GB) resonant system for high frequency gravitational waves (HFGWs) detection. At present, we find the optimal signal strength in theory through setting the magnetic component of GB in a standard gaussian form. Under the synchro-resonance condition, we study the signal strength (i.e., transverse perturbative photon fluxes) from the relic HFGWs (predicted by ordinary inflationary model) and the braneworld HFGWs (from braneworld scenarios). Both of them would generate potentially detectable transverse perturbative photon fluxes (PPFs). Furthermore we find optimal system parameters and the relationship between frequency and effective width of energy fluxes accumulation.

  13. On high frequency Cherenkov-type radiation in pulsar magnetospheric electron-positron plasma

    CERN Document Server

    Machabeli, George

    2014-01-01

    Emission process of a charged particle propagating in a medium with a curved magnetic field is considered. This mechanism combines features of conventional Cherenkov and curvature emission. Thus, presence of a medium with the index of refraction larger than the unity is essential for the emission. In the present paper the generation of high frequency radiation by the mentioned mechanism is considered. The generated waves are vacuum-like electromagnetic waves and may leave the medium directly. Consequently, this emission mechanism may be important for the problem of pulsar X-ray and gamma-ray emission generation.

  14. Gravitational Wave Detection with High Frequency Phonon Trapping Acoustic Cavities

    CERN Document Server

    Goryachev, Maxim

    2014-01-01

    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency ($10^6-10^9$~Hz) Gravitation Waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultra-high quality factor quartz Bulk Acoustic Wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at $20$~mK. We show that spectral strain sensitivities reaching $10^{-22}$ per $\\sqrt{\\text{Hz}}$ per mode is possible, which in principle can cover the frequency range with multiple ($>100$) modes with quality factors varying between $10^6-10^{10}$ allowing wide bandwidth detection. Due to its compactness and well established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.

  15. Inference from high-frequency data: A subsampling approach

    DEFF Research Database (Denmark)

    Christensen, Kim; Podolskij, Mark; Thamrongrat, Nopporn;

    copies of the original statistic based on local stretches of high-frequency data, and then it studies the sampling variation of these. We show that our estimator is consistent both in frictionless markets and models with additive microstructure noise. We derive a rate of convergence for it and are also...... able to determine an optimal rate for its tuning parameters (e.g., the number of subsamples). Subsampling does not require an extra set of estimators to do inference, which renders it trivial to implement. As a variance-covariance matrix estimator, it has the attractive feature that it is positive semi-definite...... assessment of the sampling errors inherent in high-frequency estimation of volatility. We highlight the finite sample properties of the subsampler in a Monte Carlo study, while some initial empirical work demonstrates its use to draw feasible inference about volatility in financial markets....

  16. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2005-01-01

    Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening – an appa......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also...

  17. Slow high-frequency effects in mechanics: problems, solutions, potentials

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening – an appa......Strong high-frequency excitation (HFE) may change the ‘slow’ (i.e. effective or average) properties of mechanical systems, e.g. their stiffness, natural frequencies, equilibriums, equilibrium stability, and bifurcation paths. This tutorial describes three general HFE effects: Stiffening...... and compared: The Method of Direct Separation of Motions, the Method of Averaging, and the Method of Multiple Scales. The tutorial concludes by suggesting that more vibration experts, researchers and students should know about HFE effects, for the benefit not only of general vibration troubleshooting, but also...

  18. Extraction of ULSI Interconnect Resistance at High Frequencies

    Institute of Scientific and Technical Information of China (English)

    XIAO Xia; JIAN Duanduan; YAO Suying; ZHANG Shengcai; RUAN Gang

    2005-01-01

    Correct extraction of the ultra-large-scale integrated (ULSI) interconnect components at hight frequencies is very important for evaluating electrical performances of high-speed ULSI circuits.In this paper, the extraction of the interconnect resistance at high frequencies is derived from the Ohm′s law and verified by the software FastHenry.The results are also compared with those of another resistance formula originated from the effective area of the current flowing. The applicability of these two formulae is discussed.The influence of the interconnect geometry on the resistance at high frequencies is studied.The computation indicates that the effect of frequency on the resistance is weak when the skin depth is larger than half of the short side of the rectangular interconnect cross section.With further increase of frequency, the resistance increases obviously. Results imply that conductor with a square cross section exhibits the largest resistance for rectangular conductors of constant cross section area.

  19. Extended High Frequency Audiometry in Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Cuneyt Kucur

    2013-01-01

    and BMI of PCOS and control groups were comparable. Each subject was tested with low (250–2000 Hz, high (4000–8000 Hz, and extended high frequency audiometry (8000–20000. Hormonal and biochemical values including LH, LH/FSH, testosterone, fasting glucose, fasting insulin, HOMA-I, and CRP were calculated. Results. PCOS patients showed high levels of LH, LH/FSH, testosterone, fasting insulin, glucose, HOMA-I, and CRP levels. The hearing thresholds of the groups were similar at frequencies of 250, 500, 1000, 2000, and 4000 Hz; statistically significant difference was observed in 8000–14000 Hz in PCOS group compared to control group. Conclusion. PCOS patients have hearing impairment especially in extended high frequencies. Further studies are needed to help elucidate the mechanism behind hearing impairment in association with PCOS.

  20. Parametric Study of High Frequency Pulse Detonation Tubes

    Science.gov (United States)

    Cutler, Anderw D.

    2008-01-01

    This paper describes development of high frequency pulse detonation tubes similar to a small pulse detonation engine (PDE). A high-speed valve injects a charge of a mixture of fuel and air at rates of up to 1000 Hz into a constant area tube closed at one end. The reactants detonate in the tube and the products exit as a pulsed jet. High frequency pressure transducers are used to monitor the pressure fluctuations in the device and thrust is measured with a balance. The effects of injection frequency, fuel and air flow rates, tube length, and injection location are considered. Both H2 and C2H4 fuels are considered. Optimum (maximum specific thrust) fuel-air compositions and resonant frequencies are identified. Results are compared to PDE calculations. Design rules are postulated and applications to aerodynamic flow control and propulsion are discussed.

  1. High frequency analyses of coastal meteorological phenomena affecting refractivity

    OpenAIRE

    Martinez, Anthony A.

    1991-01-01

    Approved for public release; distribution is unlimited An eastern Pacific Ocean survey was conducted 7-10 May 1991 along the California coast to determine temporal and spatial variability in refractive conditions. Refractive profiles obtained from high frequency radiosonde measurements at shore sites and a ship plus continuous shipboard surface measurements found a high degree of refractive variability to be present associated with frontal passage. Local and synoptic scale conditions wer...

  2. Machines vs. Machines: High Frequency Trading and Hard Information

    OpenAIRE

    Huh, Yesol

    2014-01-01

    In today's markets where high frequency traders (HFTs) act as both liquidity providers and takers, I argue that information asymmetry induced by liquidity-taking HFTs' use of machine-readable information is important. This particular type of information asymmetry arises because some machines may access the information before other machines or because of randomness in relative speed. Applying a novel statistical approach to measure HFT activity through limit order book data and using a natural...

  3. High-Frequency Chest Compression: A Summary of the Literature

    OpenAIRE

    Dosman, Cara F; Jones, Richard L

    2005-01-01

    The purpose of the present literature summary is to describe high-frequency chest compression (HFCC), summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have...

  4. Clinical Implications High Frequency Chest Wall Oscillation (HFCWO)

    OpenAIRE

    Mantellini E.; Perrero L.; Petrozzino S.; Gatta A.; Bona S.

    2012-01-01

    Purpose: patients with neuromuscular diseases presents an high incidence of respiratory infections favoured by stagnation of deep bronchial secretions and deficit of cough. The aim of the study is to evaluate the correct treatment of this condition and the role of High Frequency Chest Wall Oscillation (HFCWO) in helping the removal of bronchial secretions and reduce the incidence of infections in patients with neuromuscular disease.Methods: analysis of the current bibliography related to resp...

  5. Alveolar pressure during high-frequency jet ventilation

    OpenAIRE

    Vught, Adrianus; Versprille, Adrian; Jansen, Jos

    1990-01-01

    textabstractWe studied the influence of ventilatory frequency (1-5 Hz), tidal volume, lung volume and body position on the end-expiratory alveolar-to-tracheal pressure difference during high-frequency jet ventilation (HFJV) in Yorkshire piglets. The animals were anesthetized and paralysed. Alveolar pressure was estimated with the clamp off method, which was performed by a computer controlled ventilator and which had been extensively tested on its feasibility. The alveolar-to-tracheal pressure...

  6. High Frequency VLBI Studies of Sagittarius A* and NRAO 530

    OpenAIRE

    Lu, Ru-Sen

    2010-01-01

    Compact radio sources (Kellermann & Pauliny-Toth 1981) are widely accepted to be associated with supermassive black holes at the centers of active galaxies. Very long baseline interferometry (VLBI) observations at short millimeter wavelengths offer the unique advantage to look ``deeper" into the central core regions. In this thesis we study two com pact radio sources (Sagittarius A* and NRAO 530) with high frequency VLBI techniques. As a starting point, we give in Chapter 1 a general introduc...

  7. Acoustic characterisation of ultrasound contrast agents at high frequency

    OpenAIRE

    Sun, Chao

    2013-01-01

    This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound in the fields of preclinical, intravascular, ophthalmology and superficial tissue imaging. Although research studying the acoustic response of UCAs at low diagnostic ultrasonic frequencies has been well documented, quantitative information on the acoustical prop...

  8. High-frequency, Algorithmic Spillovers Between NASDAQ and Forex

    OpenAIRE

    Takatoshi Ito; Masahiro Yamada

    2015-01-01

    We empirically examine the order flows spillovers between Nasdaq and the Forex markets in 2008 and 2009. With emphasis on a role of high-frequency traders (HFTs) who aggregate information between the two markets as well as within each market, our results show that HFTs in Nasdaq trade intensively on the market-wide information more rapidly than other market participants, and that their order flows contain more information about the Forex rates than those of the Forex themselves. As a result, ...

  9. Should High-Frequency Ventilation in the Adult Be Abandoned?

    Science.gov (United States)

    Nguyen, Albert P; Schmidt, Ulrich H; MacIntyre, Neil R

    2016-06-01

    High-frequency oscillatory ventilation (HFOV) can improve ventilation-perfusion matching without excessive alveolar tidal stretching or collapse-reopening phenomenon. This is an attractive feature in the ventilation of patients with ARDS. However, two recent large multi-center trials of HFOV failed to show benefits in this patient population. The following review addresses whether, in view of these trails, HFOV should be abandoned in the adult population? PMID:27235314

  10. Ultra high frequency induction welding of powder metal compacts

    Energy Technology Data Exchange (ETDEWEB)

    Cavdar, U.; Gulsahin, I.

    2014-10-01

    The application of the iron based Powder Metal (PM) compacts in Ultra High Frequency Induction Welding (UHFIW) were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined. (Author)

  11. High frequency homogenization for travelling waves in periodic media

    OpenAIRE

    Harutyunyan, Davit; Craster, Richard V.; Milton, Graeme W.

    2016-01-01

    We consider high frequency homogenization in periodic media for travelling waves of several different equations: the wave equation for scalar-valued waves such as acoustics; the wave equation for vector-valued waves such as electromagnetism and elasticity; and a system that encompasses the Schr{\\"o}dinger equation. This homogenization applies when the wavelength is of the order of the size of the medium periodicity cell. The travelling wave is assumed to be the sum of two waves: a modulated B...

  12. High-frequency audibility: benefits for hearing-impaired listeners.

    Science.gov (United States)

    Hogan, C A; Turner, C W

    1998-07-01

    The present study was a systematic investigation of the benefit of providing hearing-impaired listeners with audible high-frequency speech information. Five normal-hearing and nine high-frequency hearing-impaired listeners identified nonsense syllables that were low-pass filtered at a number of cutoff frequencies. As a means of quantifying audibility for each condition, Articulation Index (AI) was calculated for each condition for each listener. Most hearing-impaired listeners demonstrated an improvement in speech recognition as additional audible high-frequency information was provided. In some cases for more severely impaired listeners, increasing the audibility of high-frequency speech information resulted in no further improvement in speech recognition, or even decreases in speech recognition. A new measure of how well hearing-impaired listeners used information within specific frequency bands called "efficiency" was devised. This measure compared the benefit of providing a given increase in speech audibility to a hearing-impaired listener to the benefit observed in normal-hearing listeners for the same increase in speech audibility. Efficiencies were calculated using the old AI method and the new AI method (which takes into account the effects of high speech presentation levels). There was a clear pattern in the results suggesting that as the degree of hearing loss at a given frequency increased beyond 55 dB HL, the efficacy of providing additional audibility to that frequency region was diminished, especially when this degree of hearing loss was present at frequencies of 4000 Hz and above. A comparison of analyses from the "old" and "new" AI procedures suggests that some, but not all, of the deficiencies of speech recognition in these listeners was due to high presentation levels.

  13. High-frequency capillary waves excited by oscillating microbubbles

    CERN Document Server

    Pommella, Angelo; Poulichet, Vincent; Garbin, Valeria

    2013-01-01

    This fluid dynamics video shows high-frequency capillary waves excited by the volumetric oscillations of microbubbles near a free surface. The frequency of the capillary waves is controlled by the oscillation frequency of the microbubbles, which are driven by an ultrasound field. Radial capillary waves produced by single bubbles and interference patterns generated by the superposition of capillary waves from multiple bubbles are shown.

  14. High-Frequency and Model-Free Volatility Estimators

    OpenAIRE

    Robert Ślepaczuk; Grzegorz Zakrzewski

    2009-01-01

    This paper focuses on volatility of financial markets, which is one of the most important issues in finance, especially with regard to modeling high-frequency data. Risk management, asset pricing and option valuation techniques are the areas where the concept of volatility estimators (consistent, unbiased and the most efficient) is of crucial concern. Our intention was to find the best estimator of true volatility taking into account the latest investigations in finance literature. Basing on ...

  15. Clinical Implications High Frequency Chest Wall Oscillation (HFCWO

    Directory of Open Access Journals (Sweden)

    Mantellini E.

    2012-01-01

    Full Text Available Purpose: patients with neuromuscular diseases presents an high incidence of respiratory infections favoured by stagnation of deep bronchial secretions and deficit of cough. The aim of the study is to evaluate the correct treatment of this condition and the role of High Frequency Chest Wall Oscillation (HFCWO in helping the removal of bronchial secretions and reduce the incidence of infections in patients with neuromuscular disease.Methods: analysis of the current bibliography related to respiratory infections and neuromuscular disease. PCEF (Peak Cough Expiratory Flow is used as a standardized indicator of efficiency of cough.Results: the High Frequency Chest Wall Oscillation (HFCWO is useful, in cases of increased production of mucus and impairment of muco-ciliary clearance, to remove the tracheobronchial secretions and reduce the incidence of infections.Conclusions: the correct approach to patients with neuromuscular disease and frequent respiratory infections is focused on treatment of cough ineffective and management of bronchial secretions. High Frequency Chest Wall Oscillation (HFCWO (VEST has a central role in treatment of cough ineffective and management of bronchial secretions reducing respiratory infections.

  16. The Origin of High-Frequency Hearing in Whales.

    Science.gov (United States)

    Churchill, Morgan; Martinez-Caceres, Manuel; de Muizon, Christian; Mnieckowski, Jessica; Geisler, Jonathan H

    2016-08-22

    Odontocetes (toothed whales) rely upon echoes of their own vocalizations to navigate and find prey underwater [1]. This sensory adaptation, known as echolocation, operates most effectively when using high frequencies, and odontocetes are rivaled only by bats in their ability to perceive ultrasonic sound greater than 100 kHz [2]. Although features indicative of ultrasonic hearing are present in the oldest known odontocetes [3], the significance of this finding is limited by the methods employed and taxa sampled. In this report, we describe a new xenorophid whale (Echovenator sandersi, gen. et sp. nov.) from the Oligocene of South Carolina that, as a member of the most basal clade of odontocetes, sheds considerable light on the evolution of ultrasonic hearing. By placing high-resolution CT data from Echovenator sandersi, 2 hippos, and 23 fossil and extant whales in a phylogenetic context, we conclude that ultrasonic hearing, albeit in a less specialized form, evolved at the base of the odontocete radiation. Contrary to the hypothesis that odontocetes evolved from low-frequency specialists [4], we find evidence that stem cetaceans, the archaeocetes, were more sensitive to high-frequency sound than their terrestrial ancestors. This indicates that selection for high-frequency hearing predates the emergence of Odontoceti and the evolution of echolocation. PMID:27498568

  17. Phosphorus geochemical cycling inferences from high frequency lake monitoring

    Science.gov (United States)

    Crockford, Lucy; Jordan, Philip; Taylor, David

    2013-04-01

    Freshwater bodies in Europe are required to return to good water quality status under the Water Framework Directive by 2015. A small inter-drumlin lake in the northeast of Ireland has been susceptible to eutrophic episodes and the presence of algal blooms during summer since annual monitoring began in 2002. While agricultural practice has been controlled by the implementation of the Nitrates Directive in 2006, the lake is failing to recover to good water quality status to meet with the Water Framework Directive objectives. Freshwaters in Ireland are regarded, in the main, as phosphorus (P) limited so identifying the sources of P possibly fuelling the algal blooms may provide an insight into how to improve water quality conditions. In a lake, these sources are divided between external catchment driven loads, as a result of farming and point sources, and P released from sediments made available to photic waters through internal lake mechanisms. High frequency sensors on data-sondes, installed on the lake in three locations, have provided chlorophyll a, redox potential, dissolved oxygen, temperature, pH, conductivity and turbidity data since March 2010. A data-sonde was installed in the hypolimnion to observe the change in lake conditions as P is released from lake sediments as a result of geochemical cycling with iron during anoxic periods. As compact high frequency sampling equipment for P analysis is still in its infancy for freshwaters, a proxy measurement of geochemical cycling in lakes would be useful to determine fully the extent of P contribution from sediments to the overall P load. Phosphorus was analysed once per month along with a number of other parameters and initial analysis of the high frequency data has shown changes in readings when known P release from lake sediments has occurred. Importantly, these data have shown when these P enriched hypolimnetic waters may be re-introduced to shallower waters in the photic zone, by changes in dissolved oxygen

  18. 高频彩色多普勒超声与MRI在早期类风湿关节炎诊断中的价值%Value of high frequency ultrasonography and nucler magnetic resonance imaging in the early diagnosis of rheumatoid arthritis

    Institute of Scientific and Technical Information of China (English)

    王明玉; 王宪斌; 孙雪辉; 刘奉立; 黄生传

    2014-01-01

    目的 探讨高频彩色多普勒超声(HFUS)及MRI在早期类风湿关节炎(RA)患者关节病变检测中的应用价值.方法 回顾性分析2010年1-12月在山东烟台毓璜顶医院确诊的39例RA患者的临床资料,男20例,女19例,平均年龄(51.8±2.2)岁.所有患者双手、双腕均行HFUS、MR检查,重点观察有无骨侵蚀、骨髓水肿、滑膜增殖、滑膜血流、关节积液、肌腱炎等影像表现,并对两种检查方法的结果采用x2检验进行对比分析.结果 共检查关节1 248个,HFUS和MRI在观察骨侵蚀[5.1% (44/858) vs 4.1% (35/858),x2=1.075,P>0.05]、肌腱炎[4.6% (18/390) vs 1.5%(14/390),x2=0.521,P>0.05]、腱鞘水肿[9.5% (37/390) vs 7.7% (30/390),x2=0.800,P>0.05]方面的检出率差异无统计学意义;HFUS在观察关节滑膜增殖[15.4% (132/858) vs 7.7%(66/858),x2=24.870,P<0.01]、关节积液[10.4%(89/858) vs 6.1%(52/858),x2=10.578,P<0.05]方面明显的检出率优于MRI; MRI在观察骨髓水肿方面[0% (0/858)vs 5.5% (47/858),x2=48.324,P<0.05]优于HFUS.结论 HFUS在检测早期RA患者病变关节的骨侵蚀、肌腱炎、腱鞘水肿、滑膜增殖、关节积液等方面,与MRI具有等同、甚至更优异的诊断价值.%Objective To investigate the value of high frequency ultrasonography (HFUS) and nucler magnetic resonance imaging (MRI) in the early diagnosis of rheumatoid arthritis(RA).Methods The data of 39 consecutive patients with RA admitted in Yantai Yuhuangding hospital from January 2010 to December 2010 were retrospectively studied.In 39 cases of patients,males were 20 cases,female were 19 cases,the average age was (51.8 ±2.2) years.Bilateral bilateral wrist and hands jionts were examined by HFUS and MRI.Bone erosion,bone marrow edema,synovial proliferation,synovial blood flow,jiont effusion and tendinitis were received and the differences between the two examination results were compared.Chi-square test was used for statistical analysis

  19. Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites

    Science.gov (United States)

    Yin, Yichao; Zeng, Min; Liu, Jue; Tang, Wukui; Dong, Hangrong; Xia, Ruozhou; Yu, Ronghai

    2016-05-01

    Anisotropic Fe3O4 nanoparticle and a series of its graphene composites have been successfully prepared as high-frequency absorbers. The crystal structure, morphology and magnetic property of the samples were detailed characterized through X-ray diffractometer (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The high-frequency absorbing performance of the composites is evaluated within 2.0–18.0 GHz. Combining reduced graphene oxide (RGO) to Fe3O4 helps to adjust the permittivity and permeability of the composite, balance the dielectric loss and magnetic loss, consequently improve the absorbing performance in view of the impedance matching characteristic. The optimal reflection loss of the pure Fe3O4 sample reaches ‑38.1 dB with a thickness of 1.7 mm, and it increases to ‑65.1 dB for the sample grafted with 3 wt.% RGO. The addition of proper content of RGO both improves the reflection loss and expands the absorbing bandwidth. This work not only opens a new method and an idea for tuning the electromagnetic properties and enhancing the capacity of high-efficient absorbers, but also broadens the application of such kinds of lightweight absorbing materials frameworks.

  20. High Frequency Cut-off and Changing of Radio Emission Mechanism in Pulsars

    CERN Document Server

    Kontorovich, V M

    2012-01-01

    Pulsars are the fast rotating neutron stars with strong magnetic field emitting over a wide frequency range. In spite of the efforts during 40 years after the discovery of pulsars, the mechanism of their radio emission remains to be unknown so far. We propose a new approach to solving this problem. The object of our study is a sample of pulsars with a high-frequency break of the spectrum from Pushchino catalogue. A theoretical explanation of the observed dependence of the high-frequency break from the pulsar period is given. The dependence of the break position from the magnetic field is predicted. This explanation is based on a new mechanism for electron emission in the inner polar gap. Radiation occurs when electrons are accelerated in the electric field rising from zero at the star surface. Acceleration passes through a maximum and tends to zero when the electron velocity approaches the velocity of light. The all radiated power is allocated to the radio band. The averaging over the polar cap, with some nat...

  1. High-Frequency Shear Viscosity of Low-Viscosity Liquids

    Science.gov (United States)

    Kaatze, U.; Behrends, R.

    2014-11-01

    A thickness shear quartz resonator technique is described to measure the shear viscosity of low-viscosity liquids in the frequency range from 6 MHz to 130 MHz. Examples of shear-viscosity spectra in that frequency range are presented to show that various molecular processes are accompanied by shear-viscosity relaxation. Among these processes are conformational variations of alkyl chains, with relaxation times of about 0.3 ns for -pentadecane and -hexadecane at 25 C. These variations can be well represented in terms of a torsional oscillator model. Also featured briefly are shear-viscosity relaxations associated with fluctuations of hydrogen-bonded clusters in alcohols, for which values between 0.3 ns (-hexanol) and 1.5 ns (-dodecanol) have been found at 25 C. In addition, the special suitability of high-frequency shear-viscosity spectroscopy to the study of critically demixing mixtures is demonstrated by some illustrative examples. Due to slowing, critical fluctuations do not contribute to the shear viscosity at sufficiently high frequencies of measurements so that the non-critical background viscosity of critical systems can be directly determined from high-frequency shear-viscosity spectroscopy. Relaxations in appear also in the shear-viscosity spectra with, for example, 2 ns for the critical triethylamine-water binary mixture at temperatures between 10 C and 18 C. Such relaxations noticeably influence the relaxation rate of order parameter fluctuations. They may be also the reason for the need of a special mesoscopic viscosity when mutual diffusion coefficients of critical polymer solutions are discussed in terms of mode-coupling theory.

  2. Design of 1 MHz solid state high frequency power supply

    International Nuclear Information System (INIS)

    A High Voltage High Frequency (HVHF) Power supply is used for various applications, like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources, etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼ 1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50 ohm respectively. This paper describes the conceptual design of a 200 kW power supply and experimental results of the prototype 600 W, 1 MHz source. (author)

  3. Engineering Graphene Conductivity for Flexible and High-Frequency Applications.

    Science.gov (United States)

    Samuels, Alexander J; Carey, J David

    2015-10-14

    Advances in lightweight, flexible, and conformal electronic devices depend on materials that exhibit high electrical conductivity coupled with high mechanical strength. Defect-free graphene is one such material that satisfies both these requirements and which offers a range of attractive and tunable electrical, optoelectronic, and plasmonic characteristics for devices that operate at microwave, terahertz, infrared, or optical frequencies. Essential to the future success of such devices is therefore the ability to control the frequency-dependent conductivity of graphene. Looking to accelerate the development of high-frequency applications of graphene, here we demonstrate how readily accessible and processable organic and organometallic molecules can efficiently dope graphene to carrier densities in excess of 10(13) cm(-2) with conductivities at gigahertz frequencies in excess of 60 mS. In using the molecule 3,6-difluoro-2,5,7,7,8,8-hexacyanoquinodimethane (F2-HCNQ), a high charge transfer (CT) of 0.5 electrons per adsorbed molecule is calculated, resulting in p-type doping of graphene. n-Type doping is achieved using cobaltocene and the sulfur-containing molecule tetrathiafulvalene (TTF) with a CT of 0.41 and 0.24 electrons donated per adsorbed molecule, respectively. Efficient CT is associated with the interaction between the π electrons present in the molecule and in graphene. Calculation of the high-frequency conductivity shows dispersion-less behavior of the real component of the conductivity over a wide range of gigahertz frequencies. Potential high-frequency applications in graphene antennas and communications that can exploit these properties and the broader impacts of using molecular doping to modify functional materials that possess a low-energy Dirac cone are also discussed.

  4. Design of a Quantum Source of High-Frequency Gravitational Waves (HFGW) and Test Methodology

    CERN Document Server

    Fontana, G

    2004-01-01

    The generation of High-Frequency Gravitational Waves (HFGW) has been identified as the required breakthrough that will lead to new forms of space propulsion. Many techniques have been devised to generate HFGW, but most of them exhibit marginal efficiency, therefore the power emitted in form of gravitational waves (GW) is orders of magnitude lower than the input power. The gravitational wave counterpart of the LASER, termed Gravitational-wave LASER or "GASER" is the quantum approach to the efficient generation of gravitational waves. Electrons, protons, muons, etc, all have charge and mass, if accelerated they usually lose energy through the very fast electric and magnetic channels, this causes a negligible emission through the gravitational channel. Quantum systems can be engineered to forbid electric and magnetic transitions, therefore the gravitational spin-2 transitions can take place. A class of active materials, suitable for making a GASER based on electronic transitions in the solid state, is identified...

  5. High Frequency Modulation Method for Measuring of Birefringence

    Directory of Open Access Journals (Sweden)

    Šulc M.

    2013-05-01

    Full Text Available A method of optical birefringence measurement is presented. It uses an el ectro-optic modulator for the high frequency modulation of polarization of the laser beam. The developed optical apparatus exhibits high sensitivity. It is able to measure very small birefringence of samples down to 10-3 rad. The accuracy and sensitivity of the method was checked by measurement of calibrated Sol eil – Babi net compensator. Method can be also used for online and accurate measurement of an optical components birefringence. This application was developed with the aim to measure Cotton-Mouton effect in air and nitrogen.

  6. High frequency chest compression therapy: a case study.

    Science.gov (United States)

    Butler, S; O'Neill, B

    1995-01-01

    A new device, the ThAIRapy Bronchial Drainage System, enables patients with cystic fibrosis to self-administer the technique of high frequency chest compression (HFCC) to assist with mucociliary clearance. We review the literature on HFCC and outline a case study of a patient currently using the ThAIRapy Bronchial Drainage System. While mucociliary clearance and lung function may be enhanced by HFCC therapy, more research is needed to determine its efficacy, cost benefits, and optimum treatment guidelines. Although our initial experience with the patient using this device has been positive, we were unable to accurately evaluate the ThAIRapy Bronchial Drainage System.

  7. A dynamical structure of high frequency currency exchange market

    Science.gov (United States)

    Sazuka, Naoya; Ohira, Toru; Marumo, Kouhei; Shimizu, Tokiko; Takayasu, Misako; Takayasu, Hideki

    2003-06-01

    We analyze tick-by-tick data, the most high frequency data available, of yen-dollar currency exchange rates. We show that a dynamical structure can be observed in binarized data indicating the direction of up and down movement of prices, which is not apparently seen from the price change itself. This result is consistent with our previous study that there exists a conditional probabilistic structure in binarized data. The dynamical and probabilistic structure which we found could indicate that dealers’ decision making is based on a binary strategy, even if they are unconscious of this fact.

  8. Optimizing resistance of round hollow wire at high frequency

    Institute of Scientific and Technical Information of China (English)

    FENG Yong-jian; ZHANG Tao

    2003-01-01

    The results and methods of calculation of resistance of hollow wire in gigahertz range by Bessel function are given. According to the results of computation, it is found that the resistor of conductor can be optimized using hollow wire with specific wall thickness. At high frequency the current distribution across a circular hollow wire is at surface of wire, which is called skin depth. We found that optimum wall thickness is proportional to skin depth and the phase abrupt change point of H field. Theoretical analysis and mechanism optimized round hollow wire will be presented in this paper. The calculation indicates that cylindrical hollow wire can be optimized to decrease resistance above 8%.

  9. External high-frequency control of combustion instability

    Science.gov (United States)

    Larionov, V. M.; Mitrofanov, G. A.; Kozar, A. N.

    2016-01-01

    The article presents the results of experimental studies of combustion instability in the pulse combustor. Propane-air mixture is burned in the chamber with the flame holder. It was experimentally found that feeding high-frequency sound vibrations into the combustion chamber causes the suppression of pulsating combustion. The oscillation frequency ranges in 870 to 1400 Hz. This corresponds to 9-12 resonance frequencies of oscillations in the combustor. The physical mechanism of the observed phenomenon consists in changing the conditions of formation and destruction of fuel jets in the vortex zone behind the flame holder.

  10. A SYNCHRONIZATION ALGORITHM FOR HF (HIGH FREQUENCY) BROADBAND OFDM SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Yang Lei; Zhang You'ai

    2008-01-01

    In this letter, a kind of associated synchronization algorithm which is suitable for HF (High Frequency) broadband OFDM (Orthogonal Frequency Division Multiplexing) system is presented based on describing and constructing the GMW (Gorden, Mills and Welch) sequence. The algorithm is based on the Schmidl and Minn's symbol timing principle, the constructed GMW sequence is transmitted and disposed, and the synchronization is adjudicated using the correlation of GMW sequence. The simulation result indicates that this algorithm has high performance synchronization ability under the low SNR (Signal to Noise Ratio) at two different kinds of channel models.

  11. A 300 Hz high frequency thermoacoustically driven pulse tube cooler

    Institute of Scientific and Technical Information of China (English)

    ZHU ShangLong; YU GuoYao; ZHANG XiaoDong; DAI Wei; LUO ErCang; ZHOU Yuan

    2008-01-01

    This article introduces the latest progress of a 300 Hz thermoacoustically driven pulse tube cooler. Based on the experience of former experiments, improvements have been made in the standing-wave engine, pulse tube cooler and their coupling mechanism. An inlet pressure ratio of 1.248 was obtained with the mean pressure and heating power of 4.13 MPa and 1760 W, respectively. A lowest no-load temperature of 69.5 K has been reached under this condition. This is the first time for thermoacousti-cally driven pulse tube coolers to reach the temperature below 76 K with such a high frequency.

  12. Applications of physical methods in high-frequency futures markets

    OpenAIRE

    Bartolozzi, M.; Mellen, C.; Chan, F; Oliver, David J.; Di Matteo, T.; Aste, Tomaso

    2007-01-01

    In the present work we demonstrate the application of different physical methods to high-frequency or tick-by-tick financial time series data. In particular, we calculate the Hurst exponent and inverse statistics for the price time series taken from a range of futures indices. Additionally, we show that in a limit order book the relaxation times of an imbalanced book state with more demand or supply can be described by stretched exponential laws analogous to those seen in many physical systems.

  13. Phoneme categorization relying solely on high-frequency energy

    Science.gov (United States)

    Vitela, A. Davi; Monson, Brian B.; Lotto, Andrew J.

    2015-01-01

    Speech perception studies generally focus on the acoustic information present in the frequency regions below 6 kHz. Recent evidence suggests that there is perceptually relevant information in the higher frequencies, including information affecting speech intelligibility. This experiment examined whether listeners are able to accurately identify a subset of vowels and consonants in CV-context when only high-frequency (above 5 kHz) acoustic information is available (through high-pass filtering and masking of lower frequency energy). The findings reveal that listeners are capable of extracting information from these higher frequency regions to accurately identify certain consonants and vowels. PMID:25618101

  14. Phoneme categorization relying solely on high-frequency energy.

    Science.gov (United States)

    Vitela, A Davi; Monson, Brian B; Lotto, Andrew J

    2015-01-01

    Speech perception studies generally focus on the acoustic information present in the frequency regions below 6 kHz. Recent evidence suggests that there is perceptually relevant information in the higher frequencies, including information affecting speech intelligibility. This experiment examined whether listeners are able to accurately identify a subset of vowels and consonants in CV-context when only high-frequency (above 5 kHz) acoustic information is available (through high-pass filtering and masking of lower frequency energy). The findings reveal that listeners are capable of extracting information from these higher frequency regions to accurately identify certain consonants and vowels. PMID:25618101

  15. Very High Frequency Half Bridge DC/DC Converter

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents the first, off chip, class DE (resonant half bridge) converter working in the Very High Frequency (VHF) range. The benefits of using half bridge circuits both in the inverter and rectifier part of a VHF resonant dc/dc converter are analyzed and design equations for all...... components in the power stage are given. The circuit has been simulated to verify the accuracy of the presented equations and an efficiency of 89% has been shown. A prototype has been implemented with self-oscillating resonant gate drives driving the switches. The prototype has been used to drive an LED...

  16. Carbon nanotube transistor based high-frequency electronics

    Science.gov (United States)

    Schroter, Michael

    At the nanoscale carbon nanotubes (CNTs) have higher carrier mobility and carrier velocity than most incumbent semiconductors. Thus CNT based field-effect transistors (FETs) are being considered as strong candidates for replacing existing MOSFETs in digital applications. In addition, the predicted high intrinsic transit frequency and the more recent finding of ways to achieve highly linear transfer characteristics have inspired investigations on analog high-frequency (HF) applications. High linearity is extremely valuable for an energy efficient usage of the frequency spectrum, particularly in mobile communications. Compared to digital applications, the much more relaxed constraints for CNT placement and lithography combined with already achieved operating frequencies of at least 10 GHz for fabricated devices make an early entry in the low GHz HF market more feasible than in large-scale digital circuits. Such a market entry would be extremely beneficial for funding the development of production CNTFET based process technology. This talk will provide an overview on the present status and feasibility of HF CNTFET technology will be given from an engineering point of view, including device modeling, experimental results, and existing roadblocks. Carbon nanotube transistor based high-frequency electronics.

  17. Corrosion monitoring using high-frequency guided waves

    Science.gov (United States)

    Fromme, P.

    2016-04-01

    Corrosion can develop due to adverse environmental conditions during the life cycle of a range of industrial structures, e.g., offshore oil platforms, ships, and desalination plants. Generalized corrosion leading to wall thickness loss can cause the reduction of the strength and thus degradation of the structural integrity. The monitoring of corrosion damage in difficult to access areas can be achieved using high frequency guided waves propagating along the structure from accessible areas. Using standard ultrasonic wedge transducers with single sided access to the structure, guided wave modes were selectively generated that penetrate through the complete thickness of the structure. The wave propagation and interference of the different guided wave modes depends on the thickness of the structure. Laboratory experiments were conducted for wall thickness reduction due to milling of the steel structure. From the measured signal changes due to the wave mode interference the reduced wall thickness was monitored. Good agreement with theoretical predictions was achieved. The high frequency guided waves have the potential for corrosion damage monitoring at critical and difficult to access locations from a stand-off distance.

  18. High-frequency ultrasound imaging for breast cancer biopsy guidance.

    Science.gov (United States)

    Cummins, Thomas; Yoon, Changhan; Choi, Hojong; Eliahoo, Payam; Kim, Hyung Ham; Yamashita, Mary W; Hovanessian-Larsen, Linda J; Lang, Julie E; Sener, Stephen F; Vallone, John; Martin, Sue E; Kirk Shung, K

    2015-10-01

    Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning. PMID:26693167

  19. Planck 2013 results. VI. High Frequency Instrument data processing

    CERN Document Server

    Ade, P.A.R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J. -P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J.J.; Bond, J.R.; Borrill, J.; Bouchet, F.R.; Boulanger, F.; Bowyer, J.W.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J. -F.; Catalano, A.; Chamballu, A.; Chary, R. -R.; Chen, X.; Chiang, L. -Y; Chiang, H.C.; Christensen, P.R.; Church, S.; Clements, D.L.; Colombi, S.; Colombo, L.P.L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B.P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R.D.; Davis, R.J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J. -M.; Désert, F. -X.; Dickinson, C.; Diego, J.M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Enßlin, T.A.; Eriksen, H.K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A.A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Girard, D.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K.M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J.E.; Hansen, F.K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herent, O.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S.R.; Hivon, E.; Hobson, M.; Holmes, W.A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huffenberger, K.M.; Hurier, G.; Jaffe, T.R.; Jaffe, A.H.; Jones, W.C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T.S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J. -M.; Lasenby, A.; Laureijs, R.J.; Lawrence, C.R.; Jeune, M. Le; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P.B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P.M.; Macías-Pérez, J.F.; MacTavish, C.J.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D.J.; Martin, P.G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Meinhold, P.R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M. -A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C.B.; Nørgaard-Nielsen, H.U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Orieux, F.; Osborne, S.; Oxborrow, C.A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G.W.; Prézeau, G.; Prunet, S.; Puget, J. -L.; Rachen, J.P.; Racine, B.; Reach, W.T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rusholme, B.; Sanselme, L.; Santos, D.; Sauvé, A.; Savini, G.; Shellard, E.P.S.; Spencer, L.D.; Starck, J. -L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A. -S.; Sygnet, J. -F.; Tauber, J.A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L.A.; Wandelt, B.D.; White, S.D.M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-01-01

    We describe the processing of the 531 billion raw data samples from the High Frequency Instrument (hereafter HFI), which we performed to produce six temperature maps from the first 473 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545, and 857 GHz with an angular resolution ranging from 9.7 to 4.6 arcmin. The detector noise per (effective) beam solid angle is respectively, 10, 6, 12 and 39 microKelvin in HFI four lowest frequency channel (100--353 GHz) and 13 and 14 kJy/sr for the 545 and 857 GHz channels. Using the 143 GHz channel as a reference, these two high frequency channels are intercalibrated within 5% and the 353 GHz relative calibration is at the percent level. The 100 and 217 GHz channels, which together with the 143 GHz channel determine the high-multipole part of the CMB power spectrum (50 < l <2500), are intercalibrated at better than 0.2 %.

  20. Efficient Design of Sierpinski Fractal Antenna for High Frequency Applications

    Directory of Open Access Journals (Sweden)

    Rajdeep Singh

    2014-08-01

    Full Text Available A wideband published slot antenna appropriate for wireless code division multiple access (WCDMA and sustaining the international interoperability for microwave access (WiMAX applications is planned here. The antenna is fractal line fed and its construction is based on fractal geometry where the resonance frequency of antenna is dropped by applying iteration methods. Fractal antennas are the most suited for aerospace and UWB applications because of their low profile, light weight and low power handling capacity. They can be designed in a variety of shapes in order to obtain enhanced gain and bandwidth, dual band and circular polarization to even ultra-wideband operation. For the simulation process ANSOFT HFSS (high frequency structure simulator has been used. The effect of antenna dimensions and substrate parameters on the performance of antenna have been discussed. The antenna has been designed using the Arlon substrate with relative permittivity of 1.3 and a substrate of Sierpinski Carpet shaped placed on it. Feed used is the fractal line feed. The designed antenna is a low profile, small size and multiband antenna since it can be operated at different frequencies within the frequency range of 4.3GHz to 11GHz. It includes the frequencies used for wireless WCDMA application and used to receive and transmit a high-frequency signal.

  1. High-frequency vibrations of sandwich plates and delamination detection

    Science.gov (United States)

    Jensen, Alf E.; Irgens, Fridtjov

    1998-06-01

    In multi-hull marine vehicles assembled by FRP sandwich composite materials problems with delamination and skin/core debonding are reported. High frequency vibrations in foam core sandwich materials are investigated to see if it was possible to apply them, together with bending vibrations, in an early damage warning system for delamination detection in marine vessels. This manuscript presents a theory for high frequency vibration in sandwich plates and beams. The core is modeled as a two parameter foundation with shearing interaction effects as well as normal stress effects in the core included. The skins are modeled as ordinary plates or beams on a foundation. Expressions for both anti-symmetric and symmetric modes are given. In addition to the theoretical development, experiments with a simply supported sandwich beam, using a TV-Holography technic, were performed and good accordance between theory and experiments were achieved. The results indicates that disappearance of symmetric modes may be used a parameter for delamination detection. The anti-symmetric modes may be interchangeable with higher bending modes by an early damage warning system. To avoid this, the theory presented may be applied to determine the anti-symmetric frequency values in forehand.

  2. Features of the high frequency power transformer calculation

    Directory of Open Access Journals (Sweden)

    D.A. Zabarilo

    2013-06-01

    Full Text Available Purpose. The windings of power transformers have low resistance value and a most inductance, which reduces the rate of rise of current in the windings. Therefore, when the estimated amount of current is set one should make sure of the possibility of achieving it. As inductance is characterized by a short-circuit voltage, it is necessary to develop a technique for determining the maximum magnitude of the current in the windings of the transformer according to the short-circuit voltage and operating frequency. Methodology. The classical method of calculation of transient processes to determine the value of the transient current of the transformer windings to achieve purpose is used. Findings. The nature of the transient current in the windings of high-frequency transformer, which is powered by a voltage inverter is investigated and analyzed. Originality. The method for determining the maximum amount of current depending on the short-circuit voltage and frequency of the applied voltage with other set-up parameters was proposed. Practical value. The proposed method allows determining the maximum value of the current in the windings of the high-frequency transformer including its RL-parameters. This will let compare the value of a given current with possible depending on short-circuit voltage and frequency of the applied voltage. Research material may be applied for power transformers design.

  3. About the origin of high-frequency ultrasonic backscattering signals

    International Nuclear Information System (INIS)

    Ultrasonic backscattering measurements allow to make a quick and nondestructive assessment of materials structures. As a qualitative assessment the homogeneity of structural states is determined, but also quantitative measurements are possible, like e.g. the determination of grain sizes in steels. But plottable measuring curves corresponding to the physically described interrelations will only be obtained as a result of a sufficiently large number (approx.= 1024) of averaging operations applied to equidirectional backscattering signals. The individual high-frequency signal is very strongly amplitude modulated. The signals required for averaging are obtained from different acoustic irradiation positions (position averaging), or by means of different center frequencies (frequency averaging). The present paper shows by means of numerical model calculations how the high-frequency backscattering signal is built up by superposition of the backscattering signals from all scattering objects lying in the acoustic beam. The improved understanding of the superposition of individual scattering processes opens up further opportunities of making a local structural analysis by means of ultrasonics. (orig.)

  4. High-frequency modes in solar-like stars

    CERN Document Server

    Karoff, C

    2007-01-01

    p-mode oscillations in solar-like stars are excited by the outer convection zone in these stars and reflected close to the surface. The p-modes are trapped inside an acoustic cavity, but the modes only stay trapped up to a given frequency (known as the acoustic cut-off frequency) as modes with larger frequencies are generally not reflected at the surface. This means that modes with frequency larger than the acoustic cut-off frequency must be traveling waves. The high-frequency modes may provide information about the physics in the outer layers of the stars and the excitation source and are therefore highly interesting as it is the estimation of these two phenomena that causes some of the largest uncertainties when calculating stellar oscillations. High-frequency modes have been detected in the Sun, beta Hydri and in alpha Cen A & B by smoothing the so-called echelle diagram and the large frequency separation as a function of frequency have been estimated. The large frequency separation has been compared w...

  5. Magnetism Materials and Applications

    CERN Document Server

    Trémolet de Lacheisserie, Étienne; Schlenker, Michel

    2005-01-01

    This book treats permanent magnet (hard) materials, magnetically soft materials for low-frequency applications and for high-frequency electronics, magnetostrictive materials, superconductors, magnetic-thin films and multilayers, and ferrofluids. Chapters are dedicated to magnetic recording, the role of magnetism in magnetic resonance imaging (MRI), and instrumentation for magnetic measurements.   

  6. High frequency techniques an introduction to RF and microwave engineering

    CERN Document Server

    White, Joseph F

    2004-01-01

    A practical guide for today's wireless engineerHigh Frequency Techniques: An Introduction to RF and Microwave Engineering is a clearly written classical circuit and field theory text illustrated with modern computer simulation software. The book's ten chapters cover: *The origins and current uses of wireless transmission *A review of AC analysis, Kirchhoff's laws, RLC elements, skin effect, and introduction to the use of computer simulation software*Resonators, Q definitions, and Q-based impedance matching *Transmission lines, waves, VSWR, reflection phenomena, Fano's reflection bandwidth limits, telegrapher, and impedance transformation equations*Development and in-depth use of the Smith Chart *Matrix algebra with Z, Y, ABCD, S, and T matrix applications*An unusually thorough introduction to electromagnetic field theory, step-by-step development of vector calculus, Maxwell's equations, waveguides, propagation, and antennas*Backward wave, branch line, rat race and Wilkinson couplers, impedance measurements, a...

  7. Active Control of High-Frequency Combustor Instability Demonstrated

    Science.gov (United States)

    DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    To reduce the environmental impact of aerospace propulsion systems, extensive research is being done in the development of lean-burning (low fuel-to-air ratio) combustors that can reduce emissions throughout the mission cycle. However, these lean-burning combustors have an increased susceptibility to thermoacoustic instabilities-high-pressure oscillations much like sound waves that can cause severe high-frequency vibrations in the combustor. These pressure waves can fatigue the combustor components and even the downstream turbine blades. This can significantly decrease the combustor and turbine safe operating life. Thus, suppression of the thermoacoustic combustor instabilities is an enabling technology for lean, low-emissions combustors. Under the Propulsion and Power Program, the NASA Glenn Research Center in partnership with Pratt & Whitney, United Technologies Research Center, and Georgia Institute of Technology is developing technologies for the active control of combustion instabilities.

  8. Specimen Design for Fatigue Testing at Very High Frequencies

    Science.gov (United States)

    MATIKAS, T. E.

    2001-11-01

    Components in rotational machinery such as turbine blades used in military aircraft engines are subjected to low-amplitude, high-frequency loads in the kHz range. Under high cycle fatigue (HCF), the initiation state of a crack consumes most of the life of the component. Vibratory stresses may therefore result in unexpected failures of the material. Hence, there is a need for HCF studies to address HCF-related failures of turbine engines and to develop a life prediction methodology. Ultrasonic fatigue provides accelerated HCF testing enabling the simulation of realistic loading conditions for testing materials used in structural components subjected to vibratory stresses. Specimen design is critical for optimum ultrasonic fatigue testing. The objective of this study is therefore to develop analytical modelling necessary for the design of test coupons to be fatigue tested at ultrasonic frequencies.

  9. High frequency nano-optomechanical disk resonators in liquids

    CERN Document Server

    Gil-Santos, E; Nguyen, D T; Hease, W; Lemaître, A; Ducci, S; Leo, G; Favero, I

    2015-01-01

    Vibrating nano- and micromechanical resonators have been the subject of research aiming at ultrasensitive mass sensors for mass spectrometry, chemical analysis and biomedical diagnosis. Unfortunately, their merits diminish dramatically in liquids due to dissipative mechanisms like viscosity and acoustic losses. A push towards faster and lighter miniaturized nanodevices would enable improved performances, provided dissipation was controlled and novel techniques were available to efficiently drive and read-out their minute displacement. Here we report on a nano-optomechanical approach to this problem using miniature semiconductor disks. These devices combine mechanical motion at high frequency above the GHz, ultra-low mass of a few picograms, and moderate dissipation in liquids. We show that high-sensitivity optical measurements allow to direct resolve their thermally driven Brownian vibrations, even in the most dissipative liquids. Thanks to this novel technique, we experimentally, numerically and analytically...

  10. High-Frequency Acoustic Sediment Classification in Shallow Water

    CERN Document Server

    Bentrem, F W; Kalcic, M T; Duncan, M E; Bentrem, Frank W.; Sample, John; Kalcic, Maria T.; Duncan, Michael E.

    2002-01-01

    A geoacoustic inversion technique for high-frequency (12 kHz) multibeam sonar data is presented as a means to classify the seafloor sediment in shallow water (40-300 m). The inversion makes use of backscattered data at a variety of grazing angles to estimate mean grain size. The need for sediment type and the large amounts of multibeam data being collected with the Naval Oceanographic Office's Simrad EM 121A systems, have fostered the development of algorithms to process the EM 121A acoustic backscatter into maps of sediment type. The APL-UW (Applied Physics Laboratory at the University of Washington) backscattering model is used with simulated annealing to invert for six geoacoustic parameters. For the inversion, three of the parameters are constrained according to empirical correlations with mean grain size, which is introduced as an unconstrained parameter. The four unconstrained (free) parameters are mean grain size, sediment volume interaction, and two seafloor roughness parameters. Acoustic sediment cla...

  11. HIGH FREQUENCY INDUCTION WELDING OF HIGH SILICON STEEL TUBES

    Directory of Open Access Journals (Sweden)

    Ricardo Miranda Alé

    2012-06-01

    Full Text Available High-Si steel is a low cost alternative for the fabrication of tubular structures resistant to atmospheric corrosion. However, the literature has often pointed out that steels presenting a higher Si content and/or a lower Mn/Si ratio have higher susceptibility to defects at the weld bond line during HFIW (High Frequency Induction Welding process, which has been widely used for manufacturing small diameter tubes. In this study the effect of the HFIW conditions on the quality of steel tubes with high-Si content and low Mn/Si ratio is investigated. The quality of welded tubes was determined by flare test and the defects in the bond line were identified by SEM. It has been found that higher welding speeds, V-convergence angles and power input should be applied in welding of high-Si steel, when compared to similar strength C-Mn steel.

  12. The wave buoy analogy - estimating high-frequency wave excitations

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Dam

    2008-01-01

    The paper deals with the wave buoy analogy where a ship is considered as a wave buoy, so that measured ship responses are used as a basis to estimate wave spectra and associated sea state parameters. The study presented follows up on a previous paper, Nielsen [Nielsen UD. Response-based estimation...... of sea state parameters — influence of filtering. Ocean Engineering 2007;34:1797–810.], where time series of ship responses were generated from a known wave spectrum for the purpose of the inverse process — the estimation of the underlying wave excitations. Similar response generations and vice versa...... estimated reasonably well, even considering high-frequency wave components of a wind sea wave spectrum....

  13. High frequency ultrasonic characterization of sintered SiC

    Energy Technology Data Exchange (ETDEWEB)

    Baaklini, G.Y.; Generazio, E.R.; Kiser, J.D.

    1987-01-01

    High frequency (60 to 160 MHz) ultrasonic nondestructive evaluation was used to characterize variations in density and microstructural constituents of sintered SiC bars. Ultrasonic characterization methods included longitudinal velocity, reflection coefficient, and precise attenuation measurements. The SiC bars were tailored to provide bulk densities ranging from 90 to 98 percent of theoretical, average grain sizes ranging from 3.0 to 12.0 microns, and average pore sizes ranging from 1.5 to 4.0 microns. Velocity correlated with specimen bulk density irrespective of specimen average grain size, average pore size, and average pore orientation. Attenuation coefficient was found to be sensitive to both density and average pore size variations, but was not affected by large differences in average grain size.

  14. High-Frequency Wave Propagation by the Segment Projection Method

    Science.gov (United States)

    Engquist, Björn; Runborg, Olof; Tornberg, Anna-Karin

    2002-05-01

    Geometrical optics is a standard technique used for the approximation of high-frequency wave propagation. Computational methods based on partial differential equations instead of the traditional ray tracing have recently been applied to geometrical optics. These new methods have a number of advantages but typically exhibit difficulties with linear superposition of waves. In this paper we introduce a new partial differential technique based on the segment projection method in phase space. The superposition problem is perfectly resolved and so is the problem of computing amplitudes in the neighborhood of caustics. The computational complexity is of the same order as that of ray tracing. The new algorithm is described and a number of computational examples are given, including a simulation of waveguides.

  15. Electrostatic Instabilities at High Frequency in a Plasma Shock Front

    Institute of Scientific and Technical Information of China (English)

    LV Jian-Hong; HE Yong; HU Xi-Wei

    2007-01-01

    New electrostatic instabilities in the plasma shock front are reported.These instabilities are driven by the electrostatic field which is caused by charge separation and the parameter gradients in a plasma shock front.The linear analysis to the high frequency branch of electrostatic instabilities has been carried out and the dispersion relations are obtained numerically.There are unstable disturbing waves in both the parallel and perpendicular directions of shock propagation.The real frequencies of both unstable waves are similar to the electron electrostatic wave,and the unstable growth rate in the parallel direction is much greater than the one in the perpendicular direction.The dependence of growth rates on the electric field and parameter gradients is also presented.

  16. Gravitational-wave astronomy: the high-frequency window

    CERN Document Server

    Andersson, N; Andersson, Nils; Kokkotas, Kostas D

    2004-01-01

    This contribution is divided in two parts. The first part provides a text-book level introduction to gravitational radiation. The key concepts required for a discussion of gravitational-wave physics are introduced. In particular, the quadrupole formula is applied to the anticipated ``bread-and-butter'' source for detectors like LIGO, GEO600, EGO and TAMA300: inspiralling compact binaries. The second part provides a brief review of high frequency gravitational waves. In the frequency range above (say) 100Hz, gravitational collapse, rotational instabilities and oscillations of the remnant compact objects are potentially important sources of gravitational waves. Significant and unique information concerning the various stages of collapse, the evolution of protoneutron stars and the details of the supranuclear equation of state of such objects can be drawn from careful study of the gravitational-wave signal. As the amount of exciting physics one may be able to study via the detections of gravitational waves from ...

  17. Development of high frequency and wide bandwidth Johnson noise thermometry

    International Nuclear Information System (INIS)

    We develop a high frequency, wide bandwidth radiometer operating at room temperature, which augments the traditional technique of Johnson noise thermometry for nanoscale thermal transport studies. Employing low noise amplifiers and an analog multiplier operating at 2 GHz, auto- and cross-correlated Johnson noise measurements are performed in the temperature range of 3 to 300 K, achieving a sensitivity of 5.5 mK (110 ppm) in 1 s of integration time. This setup allows us to measure the thermal conductance of a boron nitride encapsulated monolayer graphene device over a wide temperature range. Our data show a high power law (T ∼ 4) deviation from the Wiedemann-Franz law above T ∼ 100 K

  18. High frequency microphone measurements for transition detection on airfoils

    DEFF Research Database (Denmark)

    Døssing, Mads

    Time series of pressure fluctuations has been obtained using high frequency microphones distributed over the surface of airfoils undergoing wind tunnel tests in the LM Windtunnel, owned by ’LM Glasfiber’, Denmark. The present report describes the dataanalysis, with special attention given...... to transition detection. It is argued that the transition point can be detected by observing the increase in the mean of the Fourier spectre and that thismethod is very stable froma numerical point of view. Other important issues are also discussed, e.g. the variation of pressure standard deviations (sound...... pressure) and Tollmien-Schlichting frequencies. The tests were made at Reynolds and Mach numbers corresponding to the operating conditions of a typical horizontal axis wind turbine (HAWT). The Risø B1-18, Risø C2-18 and NACA0015 profiles were tested and the measured transition points are reported....

  19. High frequency acoustic microscopy with Fresnel zoom lens

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The acoustic field distributions and the convergent beams generated by the planar-structure Fresnel zone transducers on solid surface are investigated. Because only 0 and 180 degree phase transducers are used, an imaging system with the Fresnel zoom lens could work at very high frequency, which overcomes the frequency limit of the traditional phased array acoustic imaging system. Simulation results are given to illustrate the acoustic field distributions along the focal axis and the whole plane as well. Based on the principle of scanning of the focus with the change of frequency for the excited signal, an experimental imaging system is also built. Acoustic Fresnel zone transducers are fabricated at center frequency of 400 MHz. Measurements and detections of the known hole flaws at different depths of the fused quartz sample are presented to show that the imaging system with Fresnel zoom lens could move its focus by only changing the frequency of the excited signal.

  20. High-frequency thermal processes in harmonic crystals

    CERN Document Server

    Kuzkin, Vitaly A

    2016-01-01

    We consider two high-frequency thermal processes in uniformly heated harmonic crystals relaxing towards equilibrium: (i) equilibration of kinetic and potential energies and (ii) redistribution of energy among spatial directions. Equation describing these processes with deterministic initial conditions is derived. Solution of the equation shows that characteristic time of these processes is of the order of ten periods of atomic vibrations. After that time the system practically reaches the stationary state. It is shown analytically that in harmonic crystals temperature tensor is not isotropic even in the stationary state. As an example, harmonic triangular lattice is considered. Simple formula relating the stationary value of the temperature tensor and initial conditions is derived. The function describing equilibration of kinetic and potential energies is obtained. It is shown that the difference between the energies (Lagrangian) oscillates around zero. Amplitude of these oscillations decays inversely proport...

  1. Efficient estimation for ergodic diffusions sampled at high frequency

    DEFF Research Database (Denmark)

    Sørensen, Michael

    of parameters in the drift coefficient, and for efficiency. The conditions turn out to be equal to those implying small Δ-optimality in the sense of Jacobsen and thus gives an interpretation of this concept in terms of classical sta- tistical concepts. Optimal martingale estimating functions in the sense......A general theory of efficient estimation for ergodic diffusions sampled at high fre- quency is presented. High frequency sampling is now possible in many applications, in particular in finance. The theory is formulated in term of approximate martingale estimating functions and covers a large class...... of estimators including most of the pre- viously proposed estimators for diffusion processes, for instance GMM-estimators and the maximum likelihood estimator. Simple conditions are given that ensure rate optimality, where estimators of parameters in the diffusion coefficient converge faster than estimators...

  2. The Influence of High-Frequency Gravitational Waves Upon Muscles

    International Nuclear Information System (INIS)

    The objective of this paper is to present a theory for the possible influence of high-frequency gravitational waves or HFGWs and pulsed micro-current electromagnetic waves or EMs on biological matter specifically on muscle cells and myofibroblasts. The theory involves consideration of the natural frequency of contractions and relaxations of muscles, especially underlying facial skin, and the possible influence of HFGWs on that process. GWs pass without attenuation through all material thus conventional wisdom would dictate that GWs would have no influence on biological matter. On the other hand, GWs can temporarily modify a gravitational field in some locality if they are of high frequency and such a modification might have an influence in changing the skin muscles' natural frequency. Prior to the actual laboratory generation of HFGWs their influence can be emulated by micro-current EM pulses to the skin and some evidence presented here on that effect may predict the influence of HFGWs. We believe that the HFGW pulsations lead to increased muscle activity and may serve to reverse the aging process. A novel theoretical framework concerning these relaxation phenomena is one result of the paper. Another result is the analysis of the possible delivery system of the FBAR-generated HFGWs, the actual power of the generated HFGWs, and the system's application to nanostructural modification of the skin or muscle cells. It is concluded that a series of non-evasive experiments, which are identified, will have the potential to test theory by detecting and analyzing the possible HFGWs change in polarization, refraction, etc. after their interaction with the muscle cells

  3. Material control and surveillance for high frequency access vaults project

    International Nuclear Information System (INIS)

    The 'Material Control and Surveillance for High Frequency Access Vaults' project sponsored by United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) focuses on enhancing nuclear materials control and surveillance in vaults that are frequently accessed. The focus of this effort is to improve materials control and accountability (MC and A) while decreasing the operational impact of these activities. Los Alamos and Y-12 have developed a testbed at the Los Alamos National Laboratory for evaluating and demonstrating integrated technologies for use in enhancing materials control and accountability in active nuclear material storage vaults. An update will be provided on the new systems demonstrated in the test-bed including a 'confirmatory cart' for expediting the performance of inventory and radio-frequency actuated video that demonstrates the concept of automated data entry for materials moving between MBA's. The United States Department of Energy's Office of Security Policy, Policy Integration and Technical Support Program (SO-20.3) has sponsored a project where nuclear material inventory, control and surveillance systems are evaluated, developed, and demonstrated in an effort to provide technologies that reduce risk, increase material assurance, and provide cost-efficient alternatives to manpower-intensive physical inventory and surveillance approaches for working (high-frequency-access) vaults. This Fiscal Year has been largely focused on evaluating and developing components of two sub-systems that could be used either separately in nuclear material vaults or as part of a larger integrated system for nuclear materials accountability, control and surveillance.

  4. Trans-Ionospheric High Frequency Signal Ray Tracing

    Science.gov (United States)

    Wright, S.; Gillespie, R. J.

    2012-09-01

    All electromagnetic radiation undergoes refraction as it propagates through the atmosphere. Tropospheric refraction is largely governed by interaction of the radiation with bounded electrons; ionospheric refraction is primarily governed by free electron interactions. The latter phenomenon is important for propagation and refraction of High Frequency (HF) through Extremely High Frequency (EHF) signals. The degree to which HF to EHF signals are bent is dependent upon the integrated refractive effect of the ionosphere: a result of the signal's angle of incidence with the boundaries between adjacent ionospheric regions, the magnitude of change in electron density between two regions, as well as the frequency of the signal. In the case of HF signals, the ionosphere may bend the signal so much that it is directed back down towards the Earth, making over-the-horizon HF radio communication possible. Ionospheric refraction is a major challenge for space-based geolocation applications, where the ionosphere is typically the biggest contributor to geolocation error. Accurate geolocation requires an algorithm that accurately reflects the physical process of a signal transiting the ionosphere, and an accurate specification of the ionosphere at the time of the signal transit. Currently implemented solutions are limited by both the algorithm chosen to perform the ray trace and by the accuracy of the ionospheric data used in the calculations. This paper describes a technique for adapting a ray tracing algorithm to run on a General-Purpose Graphics Processing Unit (GPGPU or GPU), and using a physics-based model specifying the ionosphere at the time of signal transit. This technique allows simultaneous geolocation of significantly more signals than an equivalently priced Central Processing Unit (CPU) based system. Additionally, because this technique makes use of the most widely accepted numeric algorithm for ionospheric ray tracing and a timely physics-based model of the ionosphere

  5. High Frequency Plant Regeneration of Musa paradisiaca cv. Karibale Monthan

    Directory of Open Access Journals (Sweden)

    R. Shashi Kumar

    2015-06-01

    Full Text Available High frequency plant regeneration protocol has been standardized from banana cultivar Musa paradisiaca cv. Karibale Monthan, an endemic cultivar of Malnad region of Karnataka. The fruits are used as glomerular protective to solve kidney problems. To minimize the microbial contamination and to promote healthy growth, explants were treated with 70 % absolute alcohol for 6 min, 0.1 % Mercuric chloride for 10 min and 0.2 % for 10 min, 1 % Sodium hypochlorite for 15 min, 0.1 % Cefotaxime for 5 min and 0.05 % Gentamicin for 5 min. The high frequency shoot initiation (93.33 % was recorded at 5 mg/l BAP. The synergetic effect of BAP (4 to 6 mg/l, TDZ (0.1 to 1.2 mg/l and coconut water (0.1 to 0.9 ml/l induced multiple shoot buds and it was optimized at the concentration of 5 mg/l BAP, 0.5 mg/l TDZ and 0.5 ml/l coconut water with 15.90 ± 1.66 frequency of shoots per propagule. Supplementation of 1.0 mg/l IBA induced 5.33 ± 1.21 numbers of roots with a mean root length of 7.50 ± 1.87 roots. The 99% of plantlets with distinct roots and shoots were successfully acclimatized in the green house and transferred to the field to evaluate the agro-morphological variations. The weight of the bunch (kg, number of hands in a bunch, number of fingers in a hand, length of the finger (cm, girth of the finger (cm and girth of the pseudostem (cm exhibited by in vitro plants were higher than the in vivo plants.

  6. High frequency spin dynamics in hybrid metallic devices

    NARCIS (Netherlands)

    Costache, Marius Vasile

    2007-01-01

    This thesis describes a series of experiments aimed at the understanding of the physics of magnetization and spin dynamics in the GHz frequencies range (1 - 40 GHz) in hybrid submicron ferromagnet/normal-metal devices. Understanding and control of the interplay between charge, spin and magnetization

  7. Direct current effects on high-frequency properties of patterned permalloy thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.; Hoffmann, A.; Divan, R.; Wang, P.; Clemson Univ.

    2009-12-01

    We have investigated experimentally direct current (dc) effects on high-frequency properties of two different permalloy (Py) submicrometer patterns of 0.24 mum and 0.55 mum width, 10 mum length, and 100 nm thickness. The natural ferromagnetic resonance (FMR) frequencies for the two samples are about 8.5 and 11.5 GHz. A 50 mA dc produces a FMR frequency reduction of about 1 GHz in both samples. We extracted susceptibility spectra for the samples from the measurement data. We studied inductance variations of Py embedded transmission lines for different dc levels. With 50 mA dc, the operational frequencies of the inductances decreased by 9% and 12.5%. We also tested effects of magnetic fields generated by external magnets on the submicrometer patterns for comparison. To obtain the same magnetization rotation angle, the external magnetic field needs to be about five times larger than the Ampere field created by the direct current. This behavior is unique and may be associated with the increased thermal energy from the Joule heating effects.

  8. Microfabricated Thin-Film Inductors for High-Frequency DC-DC Power Conversion

    Science.gov (United States)

    Yao, Di

    2011-12-01

    Microfabricated V-groove inductors targeted to operate above 10 MHz are investigated. Multilayer nano-granular Co-Zr-O/ZrO2 magnetic thin films are used as the core material of the inductors to improve the magnetic performance of the films deposited on the sidewalls of V-grooves and to control eddy-current loss in the core, which goes up very quickly as frequency increases. A loss model is developed to estimate eddy-current loss in multilayer magnetic thin films considering the effect of displacement current at high frequencies, and the model is applied in the design of V-groove inductors. V-groove inductors using multilayer magnetic thin films are co-optimized with power MOSFETs for 7-V to 3.3-V, 1-A DC-DC buck converters to maximize power handling capability per unit substrate area for given efficiencies. Prototype V-groove inductors are fabricated based on the optimization results, and measured and predicted performance of the inductors match well. The prototype inductors are a promising candidate for high-power-density high-efficiency DC-DC converters. The 7-V to 3.3-V, 1-A converters using prototype V-groove inductors are expected to exhibit power density of 2.5 W/mm2 and efficiency of 86% at 100 MHz, and power density of 0.36 W/mm2 and efficiency of 91% at 11 MHz.

  9. Dynamic temperature field in the ferromagnetic plate induced by moving high frequency inductor

    Directory of Open Access Journals (Sweden)

    Milošević-Mitić Vesna

    2014-01-01

    Full Text Available The subject of the paper is the temperature distribution in the thin metallic ferromagnetic plate influenced by moving linear high frequency induction heater. As a result of high frequency electromagnetic field, conducting currents appear in the part of the plate. Distribution of the eddy-current power across the plate thickness is obtained by use of complex analysis. The influences of the heater frequency, magnetic field intensity and plate thickness on the heat power density were discussed. By treating this power as a moving heat source, differential equations governing distribution of the temperature field are formulated. Temperature across the plate thickness is assumed to be in linear form. Differential equations are analytically solved by using integral-transform technique, Fourier finite-sine and finite-cosine transform and Laplace transform. The influence of the heater velocity to the plate temperature is presented on numerical examples based on theoretically obtained results. [Projekat Ministarstva nauke Republike Srbije, br. TR 35040 i br. TR 35011

  10. High-frequency gravitational waves from magnetars and gamma-ray bursts

    CERN Document Server

    Wen, Hao; Li, Jin; Fang, Zhenyun

    2016-01-01

    Extremely powerful astrophysical electromagnetic (EM) system could lead to significant energy-momentum tensor as possible source of high-frequency gravitational waves (HFGWs). Here based on properties of magnetars and gamma-ray bursts (GRBs), we address 'Gamma-HFGWs' caused by ultra-strong EM radiations (in the radiation-dominated phase of GRBs fireball) interacting with super-high magnetar surface magnetic fields (10^{11}Tesla). By certain parameters of distance and power, the Gamma-HFGWs would have amplitude of 10^{-41} at 10^{20}Hz, and such very high frequency effectively compensate their weak amplitude and thus would cause perturbed EM waves of 10^{-20}Watt/m^2 in proposed HFGW detection system based on EM response to GWs. Particularly, predicted Gamma-HFGWs can possess distinctive pulse-like envelopes with characteristic shapes, which could be exclusive features helpful to distinguish them from background noise. Results obtained suggest that magnetars could involve in possible astrophysical EM sources o...

  11. Boosting brain excitability by transcranial high frequency stimulation in the ripple range.

    Science.gov (United States)

    Moliadze, Vera; Antal, Andrea; Paulus, Walter

    2010-12-15

    Alleviating the symptoms of neurological diseases by increasing cortical excitability through transcranial stimulation is an ongoing scientific challenge. Here, we tackle this issue by interfering with high frequency oscillations (80–250 Hz) via external application of transcranial alternating current stimulation (tACS) over the human motor cortex (M1). Twenty-one subjects participated in three different experimental studies and they received on separate days tACS at three frequencies (80 Hz, 140 Hz and 250 Hz) and sham stimulation in a randomized order. tACS with 140 Hz frequency increased M1 excitability as measured by transcranial magnetic stimulation-generated motor evoked potentials (MEPs) during and for up to 1 h after stimulation. Control experiments with sham and 80 Hz stimulation were without any effect, and 250 Hz stimulation was less efficient with a delayed excitability induction and reduced duration. After-effects elicited by 140 Hz stimulation were robust against inversion of test MEP amplitudes seen normally under activation. Stimulation at 140 Hz reduced short interval intracortical inhibition, but left intracortical facilitation, long interval cortical inhibition and cortical silent period unchanged. Implicit motor learning was not facilitated by 140 Hz stimulation. High frequency stimulation in the ripple range is a new promising non-invasive brain stimulation protocol to increase human cortical excitability during and after the end of stimulation.

  12. A Generalized Heterodyne Method Incorporating a High-Frequency Integral-Type PLL for Sensorless Drives of PMSMs

    Science.gov (United States)

    Shinnaka, Shinji

    This paper proposes a new generalized heterodyne method that incorporates a high-frequency integral-type phase-locked loop (PLL) as a versatile rotor-phase estimation method from stator current caused by high-frequency voltage injection for sensorless drive of salient-pole permanent-magnet synchronous motors. The proposed method has the following characteristics that are in direct contrast to those of conventional heterodyne methods. 1) In principle, it can be applied to almost all voltage injection methods. 2) In principle, it can properly estimate the rotor phase over a wide range of speed. 3) It employs a new simple estimation structure based on the high-frequency integral-type PLL method, which does not require any additional filters. 4) An analytical method for designing the components of the structure has been established and no trial and error method is required for selecting the parameters for the components. 5) The stability of the phase-estimation system of the structure is guaranteed. 6) The high-frequency noises generated in the heterodyne process do not appear on the estimated rotor phase.

  13. Funding begets biodiversity

    DEFF Research Database (Denmark)

    Ahrends, Antje; Burgess, Neil David; Gereau, Roy E.;

    2011-01-01

    Aim Effective conservation of biodiversity relies on an unbiased knowledge of its distribution. Conservation priority assessments are typically based on the levels of species richness, endemism and threat. Areas identified as important receive the majority of conservation investments, often...... facilitating further research that results in more species discoveries. Here, we test whether there is circularity between funding and perceived biodiversity, which may reinforce the conservation status of areas already perceived to be important while other areas with less initial funding may remain overlooked......, and variances decomposed in partial regressions. Cross-correlations are used to assess whether perceived biodiversity drives funding or vice versa. Results Funding explained 65% of variation in perceived biodiversity patterns – six times more variation than accounted for by 34 candidate environmental factors...

  14. Electromagnetic Response of High-Frequency Gravitational Waves by Coupling Open Resonant Cavity

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Yu; CHEN Ying; WANG Ping

    2007-01-01

    We present a new detecting scheme of high-frequency gravitational waves(HFGWs) in the GHz band,the scheme consists of a high-quality-factor open microwave cavity,a static magnetic field passing through the cavity and an electromagnetic (EM)normal mode stored in the cavity.It is found that under the resonant condition firstand second-order perturbation EM effects have almost the same detecting sensitivity to the HFGWs in the GHz band (h~10-26,v~5GHz),but the former contains more information from the HFGWs.We akso provide a very brief review for possible improving way of the sensitivity.This scheme would be Highly complementary to other schemes of detecting the HFGWs.

  15. Hydrodynamic description of a vibrofluidized granular bed driven at high frequency

    Science.gov (United States)

    Sheikh, Nadeem A.; Manzoor, Shehryar; Mahabat Khan, Muhammad; Ali, Muzaffar

    2016-08-01

    Results are reported for a dry granular bed vertically excited at high and low frequencies with constant peak base velocity. Previous experimental data sets using Nuclear Magnetic Resonance are used for comparison at low (~38 Hz) and high (~11 kHz) vibration frequencies. Packing fractions and granular temperatures are compared against hydrodynamic and molecular dynamics simulation models. At low frequency hydrodynamic and MD simulations results show the presence of a heat wave. Whilst at high frequencies soft sphere potential based MD simulations highlight the role of finite duration collisions between particles and the vibrating wall. In this region the timescales of vibration and collision duration are not well separated, as observed in experimental results.

  16. Utilization of Electromagnetic Detector for Selection and Detection of High-Frequency Relic Gravitational Waves

    Institute of Scientific and Technical Information of China (English)

    LI Fang-Yu; CHEN Zhen-Ya; YI Ying

    2005-01-01

    @@ It is shown that the coupling system between fractal membranes and a Gaussian beam passing through a static magnetic field has strong selection capability for the stochastic relic gravitational wave (GW) background. The relic G W components propagating along the positive direction of the symmetrical axis of the Gaussian beam might generate an optimal electromagnetic perturbation, while the perturbation produced by the relic GW components propagating along the negative and perpendicular directions to the symmetrical axis will be much less than the former, and the influence of the random fluctuation of the relic GWs to such effect can be neglected. The high-frequency relic GWs satisfying the parameters requirement (h ~ 10-31 or larger), frequency resonance and "direction coupling", in principle, would be selectable and measurable in seconds.

  17. The comparison of three high-frequency chest compression devices.

    Science.gov (United States)

    Lee, Yong W; Lee, Jongwon; Warwick, Warren J

    2008-01-01

    High-frequency chest compression (HFCC) is shown to enhance clearance of pulmonary airway secretions. Several HFCC devices have been designed to provide this therapy. Standard equipment consists of an air pulse generator attached by lengths of tubing to an adjustable, inflatable vest/jacket (V/J) garment. In this study, the V/Js were fitted over a mannequin. The three device air pulse generators produced characteristic waveform patterns. The variations in the frequency and pressure setting of devices were consistent with specific device design features. These studies suggest that a better understanding of the effects of different waveform, frequency, and pressure combinations may improve HFCC therapeutic efficacy of three different HFCC machines. The V/J component of HFCC devices delivers the compressive pulses to the chest wall to produce both airflow through and oscillatory effects in the airways. The V/J pressures of three HFCC machines were measured and analyzed to characterize the frequency, pressure, and waveform patterns generated by each of three device models. The dimensions of all V/Js were adjusted to a circumference of approximately 110% of the chest circumference. The V/J pressures were measured, and maximum, minimum, and mean pressure, pulse pressure, and root mean square of three pulse generators were calculated. Jacket pressures ranged between 2 and 34 mmHg. The 103 and 104 models' pulse pressures increased with the increase in HFCC frequency at constant dial pressure. With the ICS the pulse pressure decreased when the frequency increased. The waveforms of models 103 and 104 were symmetric sine wave and asymmetric sine wave patterns, respectively. The ICS had a triangular waveform. At 20 Hz, both the 103 and 104 were symmetric sine waveform but the ICS remained triangular. Maximum crest factors emerged in low-frequency and high-pressure settings for the ICS and in the high-frequency and low-pressure settings for models 103 and 104. Recognizing the

  18. Black phosphorus nanoelectromechanical resonators vibrating at very high frequencies

    Science.gov (United States)

    Wang, Zenghui; Jia, Hao; Zheng, Xuqian; Yang, Rui; Wang, Zefang; Ye, G. J.; Chen, X. H.; Shan, Jie; Feng, Philip X.-L.

    2014-12-01

    We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ~100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ~200 nm down to ~20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory devices and for semiconductor transducers where high-speed mechanical motions could be coupled to the attractive electronic and optoelectronic properties of black phosphorus.We report on the experimental demonstration of a new type of nanoelectromechanical resonator based on black phosphorus crystals. Facilitated by a highly efficient dry transfer technique, crystalline black phosphorus flakes are harnessed to enable drumhead resonators vibrating at high and very high frequencies (HF and VHF bands, up to ~100 MHz). We investigate the resonant vibrational responses from the black phosphorus crystals by devising both electrical and optical excitation schemes, in addition to measuring the undriven thermomechanical motions in these suspended nanostructures. Flakes with thicknesses from ~200 nm down to ~20 nm clearly exhibit elastic characteristics transitioning from the plate to the membrane regime. Both frequency- and time-domain measurements of the nanomechanical resonances show that very thin black phosphorus crystals hold interesting potential for moveable and vibratory

  19. Novel high frequency devices with graphene and GaN

    Science.gov (United States)

    Zhao, Pei

    This work focuses on exploring new materials and new device structures to develop novel devices that can operate at very high speed. In chapter 2, the high frequency performance limitations of graphene transistor with channel length less than 100 nm are explored. The simulated results predict that intrinsic cutoff frequency fT of graphene transistor can be close to 2 THz at 15 nm channel length. In chapter 3, we explored the possibility of developing a 2D materials based vertical tunneling device. An analytical model to calculate the channel potentials and current-voltage characteristics in a Symmetric tunneling Field-Effect-Transistor (SymFET) is presented. The symmetric resonant peak in SymFET is a good candidate for high-speed analog applications. Rest of the work focuses on Gallium Nitride (GaN), several novel device concepts based on GaN heterostructure have been proposed for high frequency and high power applications. In chapter 4, we compared the performance of GaN Schottky diodes on bulk GaN substrates and GaN-on-sapphire substrates. In addition, we also discussed the lateral GaN Schottky diode between metal/2DEGs. The advantage of lateral GaN Schottky diodes is the intrinsic cutoff frequency is in the THz range. In chapter 5, a GaN Heterostructure barrier diode (HBD) is designed using the polarization charge and band offset at the AlGaN/GaN heterojunction. The polarization charge at AlGaN/GaN interface behaves as a delta-doping which induces a barrier without any chemical doping. The IV characteristics can be explained by the barrier controlled thermionic emission current. GaN HBDs can be directly integrated with GaN HEMTs, and serve as frequency multipliers or mixers for RF applications. In chapter 6, a GaN based negative effective mass oscillator (NEMO) is proposed. The current in NEMO is estimated under the ballistic limits. Negative differential resistances (NDRs) can be observed with more than 50% of the injected electrons occupied the negative

  20. High-Frequency Chest Compression: A Summary of the Literature

    Directory of Open Access Journals (Sweden)

    Cara F Dosman

    2005-01-01

    Full Text Available The purpose of the present literature summary is to describe high-frequency chest compression (HFCC, summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  1. Advances to Dynamic Mechanical Analysis: High Frequencies and Environmental Applications

    Science.gov (United States)

    Foreman, Jonathon

    2002-03-01

    In dynamic mechanical analysis (DMA) the sample is deformed and released sinusoidally providing information about the modulus and damping behaviors with respect to temperature, time, oscillation frequency and amplitude of motion. It offers exceptional sensitivity to glass transitions and secondary relaxations. Recent developments have increased the frequency range up to 1000 Hz, which allow properties measurements under actual end-use conditions. Furthermore high frequencies enhance the ability to determine the kinetics of viscoelastic relaxations. Another recent development allows DMA measurements while samples are immersed in fluids or enveloped in gases. Most significant is the ability to alter the furnace control parameters to account for the thermal properties of the environment used. This configuration allows temperature-controlled measurements (both heating and isothermal profiles) on a wide range of sample shapes and sizes. Environmental DMA is easier to interpret than standard DMA (in air or inert gas) on preconditioned samples because such samples often lose the conditioning solvent or gas during the measurement. easy.com/dma_apps.asp>Examples will show real-time property changes from the interaction of unconditioned materials with conditioning environments and experiments on pre-conditioned materials that are heated while immersed in conditioning environments. -------------------------------------------------------------

  2. Extremely high-frequency micro-Doppler measurements of humans

    Science.gov (United States)

    Hedden, Abigail S.; Silvious, Jerry L.; Dietlein, Charles R.; Green, Jeremy A.; Wikner, David A.

    2014-05-01

    The development of sensors that are capable of penetrating smoke, dust, fog, clouds, and rain is critical for maintaining situational awareness in degraded visual environments and for providing support to the Warfighter. Atmospheric penetration properties, the ability to form high-resolution imagery with modest apertures, and available source power make the extremely high-frequency (EHF) portion of the spectrum promising for the development of radio frequency (RF) sensors capable of penetrating visual obscurants. Comprehensive phenomenology studies including polarization and backscatter properties of relevant targets are lacking at these frequencies. The Army Research Laboratory (ARL) is developing a fully-polarimetric frequency-modulated continuous-wave (FMCW) instrumentation radar to explore polarization and backscatter properties of in-situ rain, scattering from natural and man-made surfaces, and the radar cross section and micro-Doppler signatures of humans at EHF frequencies, specifically, around the 220 GHz atmospheric window. This work presents an overview of the design and construction of the radar system, hardware performance, data acquisition software, and initial results including an analysis of human micro-Doppler signatures.

  3. Scattering of high-frequency surface waves in Scotland

    Science.gov (United States)

    MacBeth, Colin; Snieder, Roel

    1989-02-01

    High-frequency (≤5 Hz) coda waves for velocities of arrival less than 3 km/s, recorded on vertical component instruments and generated from a local earthquake in Scotland, are analyzed to ascertain their cause. The adaption of existing velocity models and scattering from near-surface irregularities in Scotland such as mountains and lochs are considered as possible causes of the observed behavior. The former mechanism is not feasible, as it implies a significant alteration of the velocities in the upper 2 km crust, contradicting previous seismic surveys in the area. An analysis of the effects of scattering is performed using a formalism derived from the Born approximation. The scattered wave field is computed for interactions between first six Rayleigh and Love modes. The general character of the synthetic seismograms for these scattered waves agrees with the observations on a qualitative basis. The apparent absence of the fundamental mode energy from the records is also explained by the synthetic seismograms. The calculations imply that scatterers with a scale length of less than 300 m are applicable to these data from the northernmost stations but around 2 km for the more southern areas. It is thought that the scale length relates to the size of a region on the slopes of the mountains or lochs where there is a sharp gradient. This study emphasises the effectiveness of linear scattering theory in accounting, on a qualitative basis for many of the observed features of the apparently complex coda waves.

  4. High-frequency synthetic ultrasound array incorporating an actuator

    Science.gov (United States)

    Ritter, Timothy A.; Shrout, Thomas R.; Shung, K. Kirk

    2001-05-01

    Ultrasound imaging at frequencies above 20 MHz relies almost exclusively on single-element transducers. IN order to apply array technology at these frequencies, several practical problems must be solved, including spatial scale and fabrication limitations, low device capacitance, and lack of a hardware beamformer. One method of circumventing these problems is to combine an array, an actuator, and a synthetic aperture software beamformer. The array can use relatively wide elements spaced on a coarse pitch. The actuator is used to move the array in short steps (less than the element pitch), and pulse-echo data is acquired at intermediate sample positions. The synthetic aperture beamformer reconstructs the image from the pulse-echo data. A 50 MHz example is analyzed in detail. Estimates of signal-to-noise reveal performance comparable to a standard phased array; furthermore, the actuated array requires half the number of elements, the elements are 8x wider, and only one channel is required. Simulated three-dimensional point spread functions demonstrate side lobe levels approaching - 40dB and main beam widths of 50 to 100 microns. A 50 MHz piezo-composite array design has been tested which displays experimental bandwidth of 70% while maintaining high sensitivity. Individual composite sub-elements are 18 microns wide. Once this array is integrated with a suitable actuator, it is anticipated that a tractable method of imaging with high frequency arrays will result.

  5. HIGH FREQUENCY POWER TRANSMISSION LINE FOR CYCLOTRONS AND THE LIKE

    Science.gov (United States)

    Armstrong, W.J.

    1954-04-20

    High-frequency power transmission systems, particularly a stacked capacitance alternating power current transmission line wherein maximum utilization of the effective conductios skin of the line conductors is achieved while enabling a low impedance to be obtained are reported. The transmission line consists of a number of flat metal strips with interleaved dielectric strips. The metal dielectric strips are coiled spirally with the axis of the spiral extending along the length of the strips, and the alternating metal strips at the output end have outwardly extending aligned lugs which are directly strapped together and connected to the respective terminals on the load. At the input end of the transmission line, similarly, the alternate metal strips are directly strapped together and connected to an altereating current source. With the arrangement described each metal strip conducts on both sides, so that the metal strips are designed to have a thickness corresponding to twice the depth of the "skin effect" conducting lamina of each conductor at the source frequency.

  6. High frequency chest compression effects heart rate variability.

    Science.gov (United States)

    Lee, Jongwon; Lee, Yong W; Warwick, Warren J

    2007-01-01

    High frequency chest compression (HFCC) supplies a sequence of air pulses through a jacket worn by a patient to remove excessive mucus for the treatment or prevention of lung disease patients. The air pulses produced from the pulse generator propagates over the thorax delivering the vibration and compression energy. A number of studies have demonstrated that the HFCC system increases the ability to clear mucus and improves lung function. Few studies have examined the change in instantaneous heart rate (iHR) and heart rate variability (HRV) during the HFCC therapy. The purpose of this study is to measure the change of HRV with four experimental protocols: (a) without HFCC, (b) during Inflated, (c)HFCC at 6Hz, and (d) HFCC at 21Hz. The nonlinearity and regularity of HRV was assessed by approximate entropy (ApEn), a method used to quantify the complexities and randomness. To compute the ApEn, we sectioned with a total of eight epochs and displayed the ApEn over the each epoch. Our results show significant differences in the both the iHR and HRV between the experimental protocols. The iHR was elevated at both the (c) 6Hz and (d) 21Hz condition from without HFCC (10%, 16%, respectively). We also found that the HFCC system tends to increase the HRV. Our study suggests that monitoring iHR and HRV are very important physiological indexes during HFCC therapy.

  7. High-frequency chest compression: a summary of the literature.

    Science.gov (United States)

    Dosman, Cara F; Jones, Richard L

    2005-01-01

    The purpose of the present literature summary is to describe high-frequency chest compression (HFCC), summarize its history and outline study results on its effect on mucolysis, mucus transport, pulmonary function and quality of life. HFCC is a mechanical method of self-administered chest physiotherapy, which induces rapid air movement in and out of the lungs. This mean oscillated volume is an effective method of mucolysis and mucus clearance. HFCC can increase independence. Some studies have shown that HFCC leads to more mucus clearance and better lung function compared with conventional chest physiotherapy. However, HFCC also decreases end-expiratory lung volume, which can lead to increased airway resistance and a decreased oscillated volume. Adding positive end-expiratory pressure to HFCC has been shown to prevent this decrease in end-expiratory lung volume and to increase the oscillated volume. It is possible that the HFCC-induced decrease in end-expiratory lung volume may result in more mucus clearance in airways that remain open by reducing airway size. Adjunctive methods, such as positive end-expiratory pressure, may not always be needed to make HFCC more effective.

  8. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  9. Tecnologia radio cognitiva en la banda ultra high frequency (UHF

    Directory of Open Access Journals (Sweden)

    Hernán Paz Penagos

    2014-01-01

    Full Text Available Mobile cellular communication companies in Colombia require more spectrum resources to expand their portfolio of services. However, additional frequency bands for that particular purpose are scarce, yet it is well known that there are many underutilized licensed bands. Therefore new radio technologies are being studied in order to solve this problem, e.g. Software Defined Radio SDR Cognitive Radio CR and Dynamic Spectrum Access DSA. These strategies recommend mobility across the radio spectrum to meet various needs and achieve greater efficiency when managing such a scarce resource. In this context, a case study is presented in an attempt to examine the require¬ments that must be met for the implementation of cognitive radio networks in Bogota. The case study includes evaluation for the possibility of migration from cellular communications to cognitive radio since the bands assigned to UltraHigh Frequency UHF television offer possible free-of-interference coexistence between the two services (i.e. Cellular and TV. The study shows feasibility to migration; however, the implementations of cognitive radio need availability of hardware, software and flexible radio platforms.

  10. High frequency flow-structural interaction in dense subsonic fluids

    Science.gov (United States)

    Liu, Baw-Lin; Ofarrell, J. M.

    1995-01-01

    Prediction of the detailed dynamic behavior in rocket propellant feed systems and engines and other such high-energy fluid systems requires precise analysis to assure structural performance. Designs sometimes require placement of bluff bodies in a flow passage. Additionally, there are flexibilities in ducts, liners, and piping systems. A design handbook and interactive data base have been developed for assessing flow/structural interactions to be used as a tool in design and development, to evaluate applicable geometries before problems develop, or to eliminate or minimize problems with existing hardware. This is a compilation of analytical/empirical data and techniques to evaluate detailed dynamic characteristics of both the fluid and structures. These techniques have direct applicability to rocket engine internal flow passages, hot gas drive systems, and vehicle propellant feed systems. Organization of the handbook is by basic geometries for estimating Strouhal numbers, added mass effects, mode shapes for various end constraints, critical onset flow conditions, and possible structural response amplitudes. Emphasis is on dense fluids and high structural loading potential for fatigue at low subsonic flow speeds where high-frequency excitations are possible. Avoidance and corrective measure illustrations are presented together with analytical curve fits for predictions compiled from a comprehensive data base.

  11. Transport of pulmonary secretions by asymmetric high frequency oscillation

    International Nuclear Information System (INIS)

    Asymmetric high frequency oscillation (AHFO) was investigated as a mechanism for augmenting the clearance of excess pulmonary secretions from the airways of the lungs. In vitro and in vivo models were developed to test its ability to predictably transport pulmonary secretions. The augmentation of mucus transport by 10 Hz AHFO was investigated in the canine trachea. Ventilation of eight dogs (2 studies each) was performed with three AHFO power settings in random order and conventional mechanical ventilation (CMV) before or after the AHFO trials. Prior to each trial, 35-45 μl of canine muscus mixed with a radiotagged colloid (99Tc/sup m/) was instilled in the distal trachea. As the radiotagged mixture traveled up the trachea, tracheal muscus velocities (TMV) were recorded on six channels with a multidetector probe. CMV mean TMVs before and after AHFO were not significantly different. The mean TMV of 6.3 +/- 2.6 mm/min at 30% power AHFO was faster than the CMV mean TVM of 4.1 +/- 2.1 mm/min (p <0.05)

  12. Resting high frequency heart rate variability selectively predicts cooperative behavior.

    Science.gov (United States)

    Beffara, Brice; Bret, Amélie G; Vermeulen, Nicolas; Mermillod, Martial

    2016-10-01

    This study explores whether the vagal connection between the heart and the brain is involved in prosocial behaviors. The Polyvagal Theory postulates that vagal activity underlies prosocial tendencies. Even if several results suggest that vagal activity is associated with prosocial behaviors, none of them used behavioral measures of prosociality to establish this relationship. We recorded the resting state vagal activity (reflected by High Frequency Heart Rate Variability, HF-HRV) of 48 (42 suitale for analysis) healthy human adults and measured their level of cooperation during a hawk-dove game. We also manipulated the consequence of mutual defection in the hawk-dove game (severe vs. moderate). Results show that HF-HRV is positively and linearly related to cooperation level, but only when the consequence of mutual defection is severe (compared to moderate). This supports that i) prosocial behaviors are likely to be underpinned by vagal functioning ii) physiological disposition to cooperate interacts with environmental context. We discuss these results within the theoretical framework of the Polyvagal Theory. PMID:27343804

  13. Theory of High Frequency Rectification by Silicon Crystals

    Science.gov (United States)

    Bethe, H. A.

    1942-10-29

    The excellent performance of British "red dot" crystals is explained as due to the knife edge contact against a polished surface. High frequency rectification depends critically on the capacity of the rectifying boundary layer of the crystal, C. For high conversion efficiency, the product of this capacity and of the "forward" (bulk) resistance R {sub b} of the crystal must be small. For a knife edge, this product depends primarily on the breadth of the knife edge and very little upon its length. The contact can therefore have a rather large area which prevents burn-out. For a wavelength of 10 cm. the computations show that the breadth of the knife edge should be less than about 10 {sup -3} cm. For a point contact the radius must be less than 1.5 x 10 {sup -3} cm. and the resulting small area is conducive to burn-out. The effect of "tapping" is probably to reduce the area of contact. (auth)

  14. Planck pre-launch status: High Frequency Instrument polarization calibration

    CERN Document Server

    Rosset, C; Ponthieu, N; Ade, P; Catalano, A; Conversi, L; Couchot, F; Crill, B P; Désert, F -X; Ganga, K; Giard, M; Giraud-Héraud, Y; Haïssinski, J; Henrot-Versillé, S; Holmes, W; Jones, W C; Lamarre, J -M; Lange, A; Leroy, C; Macías-Pérez, J; Maffei, B; de Marcillac, P; Miville-Deschênes, M -A; Montier, L; Noviello, F; Pajot, F; Perdereau, O; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Puget, J -L; Ristorcelli, I; Savini, G; Sudiwala, R; Veneziani, M; Yvon, D

    2010-01-01

    The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization ($\\Delta P/T_{\\tiny cmb} \\sim 4\\cdot 10^{-6}$) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the Cosmic Microwave Background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the $E$-mode spectrum (up to $\\ell \\sim 1500$) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of...

  15. High-frequency Ultrasound Imaging of Mouse Cervical Lymph Nodes.

    Science.gov (United States)

    Walk, Elyse L; McLaughlin, Sarah L; Weed, Scott A

    2015-01-01

    High-frequency ultrasound (HFUS) is widely employed as a non-invasive method for imaging internal anatomic structures in experimental small animal systems. HFUS has the ability to detect structures as small as 30 µm, a property that has been utilized for visualizing superficial lymph nodes in rodents in brightness (B)-mode. Combining power Doppler with B-mode imaging allows for measuring circulatory blood flow within lymph nodes and other organs. While HFUS has been utilized for lymph node imaging in a number of mouse  model systems, a detailed protocol describing HFUS imaging and characterization of the cervical lymph nodes in mice has not been reported. Here, we show that HFUS can be adapted to detect and characterize cervical lymph nodes in mice. Combined B-mode and power Doppler imaging can be used to detect increases in blood flow in immunologically-enlarged cervical nodes. We also describe the use of B-mode imaging to conduct fine needle biopsies of cervical lymph nodes to retrieve lymph tissue for histological  analysis. Finally, software-aided steps are described to calculate changes in lymph node volume and to visualize changes in lymph node morphology following image reconstruction. The ability to visually monitor changes in cervical lymph node biology over time provides a simple and powerful technique for the non-invasive monitoring of cervical lymph node alterations in preclinical mouse models of oral cavity disease. PMID:26274059

  16. Why high-frequency pulse tubes can be tipped

    Energy Technology Data Exchange (ETDEWEB)

    Swift, Gregory W092710 [Los Alamos National Laboratory; Backhaus, Scott N [Los Alamos National Laboratory

    2010-01-01

    The typical low-frequency pulse-tube refrigerator loses significant cooling power when it is tipped with the pulse tube's cold end above its hot end, because natural convection in the pulse tube loads the cold heat exchanger. Yet most high-frequency pulse-tube refrigerators work well in any orientation with respect to gravity. In such a refrigerator, natural convection is suppressed by sufficiently fast velocity oscil1ations, via a nonlinear hydrodynamic effect that tends to align the density gradients in the pulse tube parallel to the oscillation direction. Since gravity's tendency to cause convection is only linear in the pulse tube's end-to-end temperature difference while the oscillation's tendency to align density gradients with oscillating velocity is nonlinear, it is easiest to suppress convection when the end-to-end temperature difference is largest. Simple experiments demonstrate this temperature dependence, the strong dependence on the oscillating velocity, and little dependence on the magnitude or phase of the oscillating pressure. In some circumstances in this apparatus, the suppression of convection is a hysteretic function of oscillating velocity. In some other circumstances, a time-dependent convective state seems more difficult to suppress.

  17. The nature of high frequency sister chromatid exchange cells (HFCs).

    Science.gov (United States)

    Ponzanelli, I; Landi, S; Bernacchi, F; Barale, R

    1997-09-01

    We employed the three-way differential staining technique (TWD), which allows SCEs to be distinguished on a per generation basis by scoring third metaphases (M3), in order to study the spontaneous levels of SCEs in normal and high frequency cells (HFCs) that occurred in the first (S1), second (S2) and third (S3) S phases. Fifty one of 900 lymphocytes from 37 healthy donors were defined as HFCs by calculating the 95th percentile of the distribution of SCEs in S1 + S2. 'Normal' cells presented almost the same number of SCEs after the first, second and third cell cycles (SCE averages of 2.43, 2.04 and 3.53 respectively). In contrast, HFCs showed a higher SCE count in S1, which decreased rapidly through the cycles and reached baseline level at S3 (SCE averages of 7.18, 4.29 and 3.45 respectively). This would suggest that the lesions responsible for the higher SCE frequency in HFCs were effectively removed after two cell cycles and strongly support the hypothesis that HFCs are lymphocytes which accumulate higher levels of DNA lesions through time. PMID:9379910

  18. High-frequency ultrasonic imaging of thickly sliced specimens

    Science.gov (United States)

    Miyasaka, Chiaki; Tittmann, Bernhard R.; Chandraratna, Premindra A. N.

    2003-07-01

    It has been reported that a mechanical scanning reflection acoustic microscope (hereinafter called simply "SAM"), using high frequency ultrasonic tone-burst waves, can form a horizontal cross-sectional image (i.e., c-scan image) showing a highly resolved cellular structure of biological tissue. However, the tissue prepared for the SAM has been mostly a thinly sectioned specimen. In this study, the SAM images of specimens thickly sectioned from the tissue were analyzed. Optical and scanning acoustic microscopies were used to evaluate tissues of human small intestine and esophagus. For preparing thin specimens, the tissue was embedded in paraffin, and substantially sectioned at 5-10μm by the microtome. For optical microscopy, the tissue was stained with hematoxylin and eosin, and affixed onto glass substrates. For scanning acoustic microscopy, two types of specimens were prepared: thinly sectioned specimens affixed on the glass substrate, wherein the specimens were deparaffinized in xylene, but not stained, and thickely sectioned specimens. Images of the thick specimens obtained with frequency at 200 MHz revealed cellular structures. The morphology was very similar to that seen in the thinly sectioned specimens with optical and scanning acoustic microscopy. In addition, scanning electron microscopy was used to compare the images of biological tissue. An acoustic lens with frequency at 200 MHz permitted the imaging of surface and/or subsurface of microstructures in the thick sections of small intestine and esophagus.

  19. Ultra high frequency induction welding of powder metal compacts

    Directory of Open Access Journals (Sweden)

    Çavdar, Uǧur

    2014-06-01

    Full Text Available The application of the iron based Powder Metal (PM compacts in Ultra High Frequency Induction Welding (UHFIW were reviewed. These PM compacts are used to produce cogs. This study investigates the methods of joining PM materials enforceability with UHFIW in the industry application. Maximum stress and maximum strain of welded PM compacts were determined by three point bending and strength tests. Microhardness and microstructure of induction welded compacts were determined.Soldadura por inducción de ultra alta frecuencia de polvos de metal compactados. Se ha realizado un estudio de la aplicación de polvos de metal (PM de base hierro compactados por soldadura por inducción de ultra alta frecuencia (UHFIW. Estos polvos de metal compactados se utilizan para producir engranajes. Este estudio investiga los métodos de uni.n de los materiales de PM con UHFIW en su aplicación en la industria. La máxima tensión y la máxima deformación de los polvos de metal compactados soldados fueron determinadas por flexión en tres puntos y prueba de resistencia. Se determinó la microdureza y la microestructura de los polvos compactados por soldadura por inducción.

  20. High-frequency ultrasonic arrays for ocular imaging

    Science.gov (United States)

    Jaeger, M. D.; Kline-Schoder, R. J.; Douville, G. M.; Gagne, J. R.; Morrison, K. T.; Audette, W. E.; Kynor, D. B.

    2007-03-01

    High-resolution ultrasound imaging of the anterior portion of the eye has been shown to provide important information for sizing of intraocular lens implants, diagnosis of pathological conditions, and creation of detailed maps of corneal topography to guide refractive surgery. Current ultrasound imaging systems rely on mechanical scanning of a single acoustic element over the surface of the eye to create the three-dimensional information needed by clinicians. This mechanical scanning process is time-consuming and subject to errors caused by eye movement during the scanning period. This paper describes development of linear ultrasound imaging arrays intended to increase the speed of image acquisition and reduce problems associated with ocular motion. The arrays consist of a linear arrangement of high-frequency transducer elements designed to operate in the 50 - 75 MHz frequency range. The arrays are produced using single-crystal lithium niobate piezoelectric material, thin film electrodes, and epoxy-based acoustic layers. The array elements have been used to image steel test structures and bovine cornea.

  1. Challenges in graphene integration for high-frequency electronics

    Science.gov (United States)

    Giannazzo, F.; Fisichella, G.; Greco, G.; Roccaforte, F.

    2016-06-01

    This paper provides an overview of the state-of-the-art research on graphene (Gr) for high-frequency (RF) devices. After discussing current limitations of lateral Gr RF transistors, novel vertical devices concepts such as the Gr Base Hot Electron Transistor (GBHET) will be introduced and the main challenges in Gr integration within these architectures will be discussed. In particular, a GBHET device based on Gr/AlGaN/GaN heterostructure will be considered. An approach to the fabrication of this heterostructure by transfer of CVD grown Gr on copper to the AlGaN surface will be presented. The morphological and electrical properties of this system have been investigated at nanoscale by atomic force microscopy (AFM) and conductive atomic force microscopy (CAFM). In particular, local current-voltage measurements by the CAFM probe revealed the formation of a Schottky contact with low barrier height (˜0.41 eV) and excellent lateral uniformity between Gr and AlGaN. Basing on the electrical parameters extracted from this characterization, the theoretical performances of a GBHET formed by a metal/Al2O3/Gr/AlGaN/GaN stack have been evaluated.

  2. Planck Early Results: The High Frequency Instrument data processing

    CERN Document Server

    Ade, P A R; Ansari, R; Arnaud, M; Ashdown, M; Aumont, J; Banday, A J; Bartelmann, M; Bartlett, J G; Battaner, E; Benabed, K; Benoît, A; Bernard, J -P; Bersanelli, M; Bock, J J; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Bradshaw, T; Bucher, M; Cardoso, J -F; Castex, G; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, C; Church, S; Clements, D L; Colley, J -M; Colombi, S; Couchot, F; Coulais, A; Cressiot, C; Crill, B P; Crook, M; de Bernardis, P; Delabrouille, J; Delouis, J -M; Désert, F -X; Dolag, K; Dole, H; Doré, O; Douspis, M; Dunkley, J; Efstathiou, G; Filliard, C; Forni, O; Fosalba, P; Ganga, K; Giard, M; Girard, D; Giraud-Héraud, Y; Gispert, R; Górski, K M; Gratton, S; Griffin, M; Guyot, G; Haissinski, J; Harrison, D; Helou, G; Henrot-Versillé, S; Hernández-Monteagudo, C; Hildebrandt, S R; Hills, R; Hivon, E; Hobson, M; Holmes, W A; Huffenberger, K M; Jaffe, A H; Jones, W C; Kaplan, J; Kneissl, R; Knox, L; Kunz, M; Lagache, G; Lamarre, J -M; Lange, A E; Lasenby, A; Lavabre, A; Lawrence, C R; Jeune, M Le; Leroy, C; Lesgourgues, J; Lewis, A; Macías-Pérez, J F; MacTavish, C J; Maffei, B; Mandolesi, N; Mann, R; Marleau, F; Marshall, D J; Masi, S; Matsumura, T; McAuley, I; McGehee, P; Melin, J -B; Mercier, C; Mitra, S; Miville-Deschênes, M -A; Moneti, A; Montier, L; Mortlock, D; Murphy, A; Nati, F; Netterfield, C B; N\\orgaard-Nielsen, H U; North, C; Noviello, F; Novikov, D; Osborne, S; Pajot, F; Patanchon, G; Peacocke, T; Pearson, T J; Perdereau, O; Perotto, L; Piacentini, F; Piat, M; Plaszczynski, S; Pointecouteau, E; Ponthieu, N; Prézeau, G; Prunet, S; Puget, J -L; Reach, W T; Remazeilles, M; Renault, C; Riazuelo, A; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rowan-Robinson, M; Rusholme, B; Saha, R; Santos, D; Savini, G; Schaefer, B M; Shellard, P; Spencer, L; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sutton, D; Sygnet, J -F; Tauber, J A; Thum, C; Torre, J -P; Touze, F; Tristram, M; Van Leeuwen, F; Vibert, L; Vibert, D; Wandelt, B D; White, S D M; Wiesemeyer, H; Woodcraft, A; Yurchenko, V; Yvon, D; Zacchei, A

    2011-01-01

    We describe the processing of the 334 billion raw data samples from the High Frequency Instrument (hereafter HFI) which we performed to produce six temperature maps from the first 295 days of Planck-HFI survey data. These maps provide an accurate rendition of the sky emission at 100, 143, 217, 353, 545 and 857GHz with an angular resolution ranging from 9.9 to 4.4 arcmin. The white noise level is around 1.5 microK.degree or less in the 3 main CMB channels (100-217GHz). The photometric accuracy is better than 2% at frequencies lower or equal to 353GHz, and around 7% at the two highest frequencies. The maps created by the HFI Data Processing Centre reach our goals in terms of sensitivity, resolution, and photometric accuracy. They are already sufficiently accurate and well-characterised to allow scientific analyses which are presented in an accompanying series of early papers. At this stage, HFI data appears to be of high quality and we expect that with further refinements of the data processing we should be abl...

  3. Photodetachment of H- from intense, short, high-frequency pulses

    Science.gov (United States)

    Shao, Hua-Chieh; Robicheaux, F.

    2016-05-01

    We study the photodetachment of an electron from the hydrogen anion due to short, high-frequency laser pulses by numerically solving the time-dependent Schrödinger equation. Simulations are performed to investigate the dependence of the photoelectron spectra on the duration, chirp, and intensity of the pulses. Specifically, we concentrate on the low-energy distributions in the spectra that result from the Raman transitions of the broadband pulses. Contrary to one-photon ionization, the low-energy distribution maintains an almost constant width as the laser bandwidth is expanded by chirping the pulses. In addition, we study the transitions of the ionization dynamics from the perturbative to the strong-field regime. At high intensities, the positions of the net one- and two-photon absorption peaks in the spectrum shift and the peaks split to multiple subpeaks due to multiphoton effects. Moreover, although the one- and two-photon peaks and low-energy distribution exhibit saturation of the ionization yields, the low-energy distribution shows relatively mild saturation.

  4. Ionospheric heating with oblique high-frequency waves

    International Nuclear Information System (INIS)

    This paper presents calculations of ionospheric electron temperature and density perturbations and ground-level signal changes produced by intense oblique high-frequency (HF) radio waves. The analysis takes into account focusing at caustics, the consequent Joule heating of the surrounding plasma, heat conduction, diffusion, and recombination processes, these being the effects of a powerful oblique modifying wave. It neglects whatever plasma instabilities might occur. The authors then seek effects on a secondary test wave that is propagated along the same path as the first. The calculations predict ground-level field strength reductions of several decibels in the test wave for modifying waves having effective radiated power (ERP) in the 85- to 90-dBW range. These field strength changes are similar in sign, magnitude, and location to ones measured in Soviet experiments. The location of the signal change is sensitive to the frequency and the model ionosphere assumed; so future experiments should employ the widest possible range of frequencies and propagation conditions. An ERP of 90 dBW seems to be a sort of threshold that, if exceeded, might result in substantial rather than small signal changes. The conclusions are based solely on Joule heating and subsequent refraction of waves passing through caustic regions

  5. Identifying High Frequency Peakers using the Korean VLBI Network

    Science.gov (United States)

    Jeong, Y.; Sohn, B. W.; Chung, A.; Park, S.; Park, P.

    2016-02-01

    High Frequency Peakers (HFPs) are known to be promising targets to study the AGN properties at their very early evolutionary stage. To date, HFP classification has been usually relied on the spectral shape with the relatively sparse or short time range monitoring. However, HFP samples are often contaminated by blazars which are compact and highly variable, and hence may behave in similar ways to HFPs. In this work, we challenge to identify genuine young AGNs by long-term monitoring of HFP candidates at high radio frequencies. We performed single-dish monitoring of 19 candidates in 18 epochs over 2.5 years at 22 and 43 GHz simultaneously, using the Korean VLBI Network (KVN). Also, using the KVN and VERA array (KaVA), we carried out 22 and 43 GHz VLBI observations of seven candidates from our sample, and investigated their parsec-scale (milli-arcsecond scale) morphology. We discuss the results of the source classification from our long-term single dish monitoring observation and the preliminary results of follow-up VLBI observation.

  6. Status of the JET high frequency pellet injector

    Energy Technology Data Exchange (ETDEWEB)

    Géraud, A., E-mail: alain.geraud@cea.fr [CEA, IRFM, 13108 Saint Paul-Lez-Durance (France); Lennholm, M. [JET-EFDA CSU, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Alarcon, T. [CEA, IRFM, 13108 Saint Paul-Lez-Durance (France); Bennett, P. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Frigione, D. [ENEA, CP 65, Frascati, Rome (Italy); Garnier, D. [CEA, IRFM, 13108 Saint Paul-Lez-Durance (France); Lang, P.T. [MPI für Plasmaphysik, 85748 Garching (Germany); Lukin, A. [PELIN LLC, 27 Gzhatskaya St., Saint-Petersburg 195220 (Russian Federation); Mooney, R. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Vinyar, I. [PELIN LLC, 27 Gzhatskaya St., Saint-Petersburg 195220 (Russian Federation)

    2013-10-15

    Highlights: ► JET pellet injection system operational for plasma fuelling and ELM pacing. ► Good reliability of the system for Low Field Side injection of fuelling size pellets. ► ELM triggered by small pellets at up to 4.5 times the intrinsic ELM frequency. ► Pellet parameters range leading to a high probability to trigger ELM identified. -- Abstract: A new high frequency pellet injector, part of the JET programme in support of ITER, has been installed on JET at the end of 2007. Its main objective is the mitigation of the Edge Localized Modes (ELMs), responsible for unacceptable thermal loads on the wall when their amplitude is too high. The injector was also required to have the capability to inject pellets for plasma fuelling. To reach this double goal, the injector has to be capable to produce and accelerate either small pellets to trigger ELMs (pace making), allowing to control their frequency and thus their amplitude, or large pellets to fuel the plasma. Operational since the beginning of the 2009 JET experimental campaign, the injector, based on the screw extruder technology, suffered from a general degradation of its performance linked to extrusion instability. After modifications of the nozzle assembly, re-commissioning on plasma has been undertaken during the first half of 2012 and successful pellet ELM pacing was achieved, rising the intrinsic ELM frequency up to 4.5 times.

  7. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    Energy Technology Data Exchange (ETDEWEB)

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  8. Very high frequency plasma reactant for atomic layer deposition

    Science.gov (United States)

    Oh, Il-Kwon; Yoo, Gilsang; Yoon, Chang Mo; Kim, Tae Hyung; Yeom, Geun Young; Kim, Kangsik; Lee, Zonghoon; Jung, Hanearl; Lee, Chang Wan; Kim, Hyungjun; Lee, Han-Bo-Ram

    2016-11-01

    Although plasma-enhanced atomic layer deposition (PE-ALD) results in several benefits in the formation of high-k dielectrics, including a low processing temperature and improved film properties compared to conventional thermal ALD, energetic radicals and ions in the plasma cause damage to layer stacks, leading to the deterioration of electrical properties. In this study, the growth characteristics and film properties of PE-ALD Al2O3 were investigated using a very-high-frequency (VHF) plasma reactant. Because VHF plasma features a lower electron temperature and higher plasma density than conventional radio frequency (RF) plasma, it has a larger number of less energetic reaction species, such as radicals and ions. VHF PE-ALD Al2O3 shows superior physical and electrical properties over RF PE-ALD Al2O3, including high growth per cycle, excellent conformality, low roughness, high dielectric constant, low leakage current, and low interface trap density. In addition, interlayer-free Al2O3 on Si was achieved in VHF PE-ALD via a significant reduction in plasma damage. VHF PE-ALD will be an essential process to realize nanoscale devices that require precise control of interfaces and electrical properties.

  9. Three-Dimensional Electromagnetic High Frequency Axisymmetric Cavity Scars.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Jorgenson, Roy Eberhardt

    2014-10-01

    This report examines the localization of high frequency electromagnetic fi elds in three-dimensional axisymmetric cavities along periodic paths between opposing sides of the cavity. The cases where these orbits lead to unstable localized modes are known as scars. This report treats both the case where the opposing sides, or mirrors, are convex, where there are no interior foci, and the case where they are concave, leading to interior foci. The scalar problem is treated fi rst but the approximations required to treat the vector fi eld components are also examined. Particular att ention is focused on the normalization through the electromagnetic energy theorem. Both projections of the fi eld along the scarred orbit as well as point statistics are examined. Statistical comparisons are m ade with a numerical calculation of the scars run with an axisymmetric simulation. This axisymmetric cas eformstheoppositeextreme(wherethetwomirror radii at each end of the ray orbit are equal) from the two -dimensional solution examined previously (where one mirror radius is vastly di ff erent from the other). The enhancement of the fi eldontheorbitaxiscanbe larger here than in the two-dimensional case. Intentionally Left Blank

  10. Contributions to modeling functionality of a high frequency damper system

    Science.gov (United States)

    Sirbu, E. A.; Horga, S.; Vrabioiu, G.

    2016-08-01

    Due to the necessity of improving the handling performances of a motor vehicle, it is imperative to understand the suspensions properties that affects ride and directional respons.The construction of a fero-magnetic shock absorber is based on two bellows interconnected by a pipe-line. Through this pipe-line the fero-magnetic fluid is carried between the two bellows. The damping characteristic of the shock absorber is affected by the viscosity of the fero-magnetic fluid. The viscosity of the fluid, is controlled through a electric coil mounted on the bellows connecting pipe-line. Modifying the electrical field of the coil, the viscosity of the fluid will change, finally affecting the damping characteristic of the shock absorber. A recent system called „CCD Pothole Suspension” is implemented on Ford vehicles. By modifying the dampning characteristic of the shock absorbers, vehicle daynamics can be improved; also the risk of damaging the suspension will be decreased. The approach of this paper is to analyze the behaviour of the fero magnetic damper, thus determining how it will affect the performances of the vehicle suspensions. The experimental research will provide a better understanding of the behavior of the fero-magnetic shock absorber, and the possible advantages of using this system.

  11. Achieving High-Frequency Optical Control of Synaptic Transmission

    Science.gov (United States)

    Jackman, Skyler L.; Beneduce, Brandon M.; Drew, Iain R.

    2014-01-01

    The optogenetic tool channelrhodopsin-2 (ChR2) is widely used to excite neurons to study neural circuits. Previous optogenetic studies of synapses suggest that light-evoked synaptic responses often exhibit artificial synaptic depression, which has been attributed to either the inability of ChR2 to reliably fire presynaptic axons or to ChR2 elevating the probability of release by depolarizing presynaptic boutons. Here, we compare light-evoked and electrically evoked synaptic responses for high-frequency stimulation at three synapses in the mouse brain. At synapses from Purkinje cells to deep cerebellar nuclei neurons (PC→DCN), light- and electrically evoked synaptic currents were remarkably similar for ChR2 expressed transgenically or with adeno-associated virus (AAV) expression vectors. For hippocampal CA3→CA1 synapses, AAV expression vectors of serotype 1, 5, and 8 led to light-evoked synaptic currents that depressed much more than electrically evoked currents, even though ChR2 could fire axons reliably at up to 50 Hz. The disparity between optical and electrical stimulation was eliminated when ChR2 was expressed transgenically or with AAV9. For cerebellar granule cell to stellate cell (grc→SC) synapses, AAV1 also led to artificial synaptic depression and AAV9 provided superior performance. Artificial synaptic depression also occurred when stimulating over presynaptic boutons, rather than axons, at CA3→CA1 synapses, but not at PC→DCN synapses. These findings indicate that ChR2 expression methods and light stimulation techniques influence synaptic responses in a neuron-specific manner. They also identify pitfalls associated with using ChR2 to study synapses and suggest an approach that allows optogenetics to be applied in a manner that helps to avoid potential complications. PMID:24872574

  12. Catchment Very-High Frequency Hydrochemistry: the Critex Chemical House

    Science.gov (United States)

    Floury, P.; Gaillardet, J.; Tallec, G.; Blanchouin, A.; Ansart, P.

    2015-12-01

    Exploring the variations of river quality at very high frequency is still a big challenge that has fundamental implications both for understanding catchment ecosystems and for water quality monitoring. Within the French Critical Zone program CRITEX, we have proposed to develop a prototype called "Chemical House", applying the "lab on field" concept to one of the stream of the Orgeval Critical Zone Observatory. The Orgeval catchment (45 km2) is part of the Critical Zone RBV ("Réseau des bassins versants") network. It is a typical temperate agricultural catchment that has been intensively monitored for the last 50 years for hydrology and nutrient chemistry. Agricultural inputs and land use are also finely monitored making Orgeval an ideal basin to test the response of the Critical Zone to agricultural forcing. Geology consists of a typical sedimentary basin of Cenozoic age with horizontal layers of limestones, silcrete and marls, covered by a thin loamy layer. Two main aquifers are present within the catchment: the Brie and the Champigny aquifers. Mean runoff is 780 mm/yr. The Chemical House is a fully automated lab and installed directly along the river, which performs measurement of all major dissolved elements such as Na, Cl, Mg, Ca, NO3, SO4 and K every half hour. It also records all physical parameters (Temperature, pH, conductivity, O2 dissolved, Turbidity) of the water every minute. Orgeval Chemical House started to measure river chemistry on June 12, 2015 and has successfully now recorded several months of data. We will present the architecture of the Chemical House and the first reproducibility and accuracy tests made during the summer drought 2015 period. Preliminary results show that the chemical house is recoding significant nychtemeral (day/night) cycles for each element. We also observe that each element has its own behaviour along a day. First results open great prospects.

  13. High frequency noise studies at the Hartousov mofette area (CZE)

    Science.gov (United States)

    Schmidt, Andreas; Flores-Estrella, Hortencia; Pommerencke, Julia; Umlauft, Josefine

    2014-05-01

    Ambient noise analysis has been used as a reliable tool to investigate sub-surface structures at seismological quiet regions with none or less specific seismic events. Here, we consider the acoustic signals from a single mofette at the Hartoušov area (CZE) as a noise-like high frequency source caused by multiple near surface degassing processes in a restricted location. From this assumption we have used different array geometries for recording at least one hour of continuous noise. We installed triangular arrays with 3 component geophones: the first deployment consisted on two co-centric triangles with side length of 30 and 50 m with the mofette in the center; the second deployment consisted on two triangular arrays, both with side length of 30 m, co-directional to the mofette. Furthermore, we also installed profiles with 24 channels and vertical geophones locating them in different positions with respect to the mofette. In this work, we present preliminary results from the data analysis dependent on the geometry, to show the characteristics of the noise wave-field referring to frequency content and propagation features, such as directionality and surface wave velocity. The spectral analysis shows that the energy is concentrated in a frequency band among 10 and 40 Hz. However, in this interval there is no evidence of any exclusive fundamental frequencies. From this, man-induced influences can be identified as intermittent signal peaks in narrow frequency bands and can be separated to receive the revised mofette wave-field record. The inversion of dispersive surface waves, that were detected by interferometric methods, provides a velocity model down to 12 m with an S-wave velocity between 160 and 180 m/s on the uppermost layer. Furthermore, the interferometric signal properties indicate that it is not possible to characterize the mofette as a punctual source, but rather as a conglomerate of multiple sources with time and location variations.

  14. Cyclokinetic models and simulations for high-frequency turbulence in fusion plasmas

    Science.gov (United States)

    Deng, Zhao; Waltz, R. E.; Wang, Xiaogang

    2016-10-01

    Gyrokinetics is widely applied in plasma physics. However, this framework is limited to weak turbulence levels and low drift-wave frequencies because high-frequency gyro-motion is reduced by the gyro-phase averaging. In order to test where gyrokinetics breaks down, Waltz and Zhao developed a new theory, called cyclokinetics [R. E. Waltz and Zhao Deng, Phys. Plasmas 20, 012507 (2013)]. Cyclokinetics dynamically follows the high-frequency ion gyro-motion which is nonlinearly coupled to the low-frequency drift-waves interrupting and suppressing gyro-averaging. Cyclokinetics is valid in the high-frequency (ion cyclotron frequency) regime or for high turbulence levels. The ratio of the cyclokinetic perturbed distribution function over equilibrium distribution function δf/ F can approach 1. This work presents, for the first time, a numerical simulation of nonlinear cyclokinetic theory for ions, and describes the first attempt to completely solve the ion gyro-phase motion in a nonlinear turbulence system. Simulations are performed [Zhao Deng and R. E. Waltz, Phys. Plasmas 22(5), 056101 (2015)] in a local flux-tube geometry with the parallel motion and variation suppressed by using a newly developed code named rCYCLO, which is executed in parallel by using an implicit time-advanced Eulerian (or continuum) scheme [Zhao Deng and R. E. Waltz, Comp. Phys. Comm. 195, 23 (2015)]. A novel numerical treatment of the magnetic moment velocity space derivative operator guarantee saccurate conservation of incremental entropy. By comparing the more fundamental cyclokinetic simulations with the corresponding gyrokinetic simulations, the gyrokinetics breakdown condition is quantitatively tested. Gyrokinetic transport and turbulence level recover those of cyclokinetics at high relative ion cyclotron frequencies and low turbulence levels, as required. Cyclokinetic transport and turbulence level are found to be lower than those of gyrokinetics at high turbulence levels and low- Ω* values

  15. High-frequency toroidal sensor of superconducting quantum magnetometer

    International Nuclear Information System (INIS)

    The toroidal sensor consists of a superconducting induction loop electrically closed with a superconducting weak junction. The sensor features a cylindrical body. The body is integral and is made of superconducting material. It is provided with tow O-shape cavities in which cylindrical signal and exciting coils are installed. The precise cavity geometry and coil fitting is described on an example and shown in figures. The advantages of the configuration include suppression of spurious signals and improvement of the internal sensor shielding against external electromagnetic fields. The device is used for measuring low intensity magnetic fields, e.g., in the measurement of nuclear magnetic resonance, in particle detection, thermometry, geology, medicine, etc. (E.J.). 5 figs

  16. High Frequency VLBI Studies of Sagittarius A* and NRAO 530

    Science.gov (United States)

    Lu, Ru-Sen

    2010-10-01

    Compact radio sources (Kellermann & Pauliny-Toth 1981) are widely accepted to be associated with supermassive black holes at the centers of active galaxies. Very long baseline interferometry (VLBI) observations at short millimeter wavelengths offer the unique advantage to look "deeper" into the central core regions. In this thesis we study two com pact radio sources (Sagittarius A* and NRAO 530) with high frequency VLBI techniques. As a starting point, we give in Chapter 1 a general introduction to observational properties of Active galactic nuclei (AGNs) and a theoretical basis. In Chapter 2, the compact radio source at the center of the Milky Way, Sagittarius A*, is reviewed. In Chapter 3, the technical basis of VLBI is outlined and then the difficulties of VLBI (and therefore the ways to improve) at short millimeter wavelengths are discussed. Due to its proximity, Sagittarius A* has the largest apparent event horizon of any black hole candidate and therefore it provides a unique opportunity for testing the SMBH paradigm. However, direct imaging of the nucleus is only accessible at short millimeter wavelengths due to the scatter broadening. In Chapter 4, we present results of an inter-day VLBI monitoring of Sagittarius A* at wavelengths of 13, 7, and 3 mm during a global observing campaign in 2007. We measure the flux density and source structure and study their variability on daily time scales. In addition to the VLBI monitoring of the Galactic Center, we present in Chapter 5 results of multi-epoch multi-frequency VLBI observations of the blazar nrao 530. NRAO 530 is an optically violent variable (OVV) source and was observed as a VLBI calibrator in our observations of Sagittarius A*. We investigate the spectral properties of jet components, their frequency-dependent position shifts, and variability of flux density and structure on daily time scales. Analysis of archival data over the last ten years allows us to study the detailed jet kinematics. Finally, a

  17. Variable Temperature High-Frequency Response of Heterostructure Transistors

    Science.gov (United States)

    Laskar, Joy

    1992-01-01

    The development of high performance heterostructure transistors is essential for emerging opto-electronic integrated circuits (OEICs) and monolithic microwave integrated circuits (MMICs). Applications for OEICs and MMICs include the rapidly growing telecommunications and personal communications markets. The key to successful OEIC and MMIC chip sets is the development of high performance, cost-effective technologies. In this work, several different transistor structures are investigated to determine the potential for high speed performance and the physical mechanisms controlling the ultimate device operation. A cryogenic vacuum microwave measurement system has been developed to study the high speed operation of modulation doped field-effect transistors (MODFETs), doped channel metal insulator field-effect transistors (MISFETs), and metal semiconductor field-effect transistors (MESFETs). This study has concluded that the high field velocity and not the low field mobility is what controls high frequency operation of GaAs based field-effect transistors. Both Al_{rm x} Ga_{rm 1-x}As/GaAs and InP/In_{rm y}Ga _{rm 1-y}As heterostructure bipolar transistors (HBTs) have also been studied at reduced lattice temperatures to understand the role of diffusive transport in the Al_{rm x} Ga_{rm 1-x}As/GaAs HBT and nonequilibrium transport in the InP/In _{rm y}Ga_ {rm 1-y}As HBT. It is shown that drift/diffusion formulation must be modified to accurately estimate the base delay time in the conventional Al _{rm x}Ga_ {rm 1-x}As/GaAs HBT. The reduced lattice temperature operation of the InP/In_ {rm y}Ga_{rm 1-y}As HBT demonstrates extreme nonequilibrium transport in the neutral base and collector space charge region with current gain cut-off frequency exceeding 300 GHz, which is the fastest reported transistor to date. Finally, the MODFET has been investigated as a three-terminal negative differential resistance (NDR) transistor. The existence of real space transfer is confirmed by

  18. High frequency electromagnetic reflection loss performance of substituted Sr-hexaferrite nanoparticles/SWCNTs/epoxy nanocomposite

    International Nuclear Information System (INIS)

    In this study, the electromagnetic properties of a novel nanocomposite material made of substituted Sr-hexaferrite nanoparticles and different percentage of single walled carbon nanotube have been studied. The structural, magnetic and electromagnetic properties of samples were studied as a function of volume percentage of SWCNTs by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer and vector network analysis. Well suitable crystallinity of hexaferrite nanoparticles was confirmed by XRD patterns. TEM and FESEM micrographs were shown the good homogenity and high level of dispersivity of SWCNTs and Sr-hexaferrite nanoparticles in nanocomposite samples. The VSM results shown that with increasing in amount of CNTs (0–6 vol%), the saturation of magnetization decreased up to 11 emu/g for nanocomposite sample contains of 6 vol% of SWCNTs. The vector network analysis results show that the maximum value of reflection loss was −36.4 dB at the frequency of 11 GHz with an absorption bandwidth of more than 4 GHz (<−20 dB). The results indicate that, this nanocomposite material with appropriate amount of SWCNTs hold great promise for microwave device applications. - Highlights: • We investigate the high frequency properties of Sr-hexaferrite/SWCNTs composite. • Saturation magnetization of nanocomposites is decreased with presence of SWCNTs. • The ferrite/CNTs nanocomposite sample covers whole X-band frequencies (8–12 GHz). • The ferrite/CNTs nanocomposite can be used as a potential magnetic loss material. • Nanocomposite contain 4 vol% of CNTs have shown greater than 99% of reflection loss

  19. High frequency electromagnetic reflection loss performance of substituted Sr-hexaferrite nanoparticles/SWCNTs/epoxy nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Gordani, Gholam Reza, E-mail: gordani@gmail.com [Materials Engineering Department, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Ghasemi, Ali [Materials Engineering Department, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Saidi, Ali [Department of Materials Science and Engineering, Isfahan University of Technology, Isfahan (Iran, Islamic Republic of)

    2015-10-01

    In this study, the electromagnetic properties of a novel nanocomposite material made of substituted Sr-hexaferrite nanoparticles and different percentage of single walled carbon nanotube have been studied. The structural, magnetic and electromagnetic properties of samples were studied as a function of volume percentage of SWCNTs by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, vibrating sample magnetometer and vector network analysis. Well suitable crystallinity of hexaferrite nanoparticles was confirmed by XRD patterns. TEM and FESEM micrographs were shown the good homogenity and high level of dispersivity of SWCNTs and Sr-hexaferrite nanoparticles in nanocomposite samples. The VSM results shown that with increasing in amount of CNTs (0–6 vol%), the saturation of magnetization decreased up to 11 emu/g for nanocomposite sample contains of 6 vol% of SWCNTs. The vector network analysis results show that the maximum value of reflection loss was −36.4 dB at the frequency of 11 GHz with an absorption bandwidth of more than 4 GHz (<−20 dB). The results indicate that, this nanocomposite material with appropriate amount of SWCNTs hold great promise for microwave device applications. - Highlights: • We investigate the high frequency properties of Sr-hexaferrite/SWCNTs composite. • Saturation magnetization of nanocomposites is decreased with presence of SWCNTs. • The ferrite/CNTs nanocomposite sample covers whole X-band frequencies (8–12 GHz). • The ferrite/CNTs nanocomposite can be used as a potential magnetic loss material. • Nanocomposite contain 4 vol% of CNTs have shown greater than 99% of reflection loss.

  20. A Resonantly-Excited Disk-Oscillation Model of High-Frequency QPOs of Microquasars

    CERN Document Server

    Kato, Shoji

    2012-01-01

    A possible model of twin high-frequency QPOs (HF QPOs) of microquasars is examined. The disk is assumed to have global magnetic fields and to be deformed with a two-armed pattern. In this deformed disk, set of a two-armed ($m=2$) vertical p-mode oscillation and an axisymmetric ($m=0$) g-mode oscillation are considered. They resonantly interact through the disk deformation when their frequencies are the same. This resonant interaction amplifies the set of the above oscillations in the case where these two oscillations have wave energies of opposite signs. These oscillations are assumed to be excited most efficiently in the case where the radial group velocities of these two waves vanish at the same place. The above set of oscillations is not unique, depending on the node number, $n$, of oscillations in the vertical direction. We consider that the basic two sets of oscillations correspond to the twin QPOs. The frequencies of these oscillations depend on disk parameters such as strength of magnetic fields. For o...

  1. High-frequency behavior of FeN thin films fabricated by using reactive sputtering

    Science.gov (United States)

    Hwang, Tae-Jong; Lee, Joonsik; Kim, Ki Hyeon; Kim, Dong Ho

    2016-08-01

    We used ferromagnetic resonance (FMR) and its relationship with the static magnetic properties to investigate the high-frequency behavior of FeN thin films prepared by using reactive sputtering. The FMR was observed in the frequency range from 2 to 18 GHz in the FeN films fabricated at a proper nitrogen flow rate (NFR). In those FeN thin films, a decrease in the saturation magnetization and a corresponding decrease of the FMR frequency were observed as the NFR was increased during the deposition. The external field dependences of the FMR frequencies fit the Kittel formula well, and the Landé g-factors determined from the fit were found to be very close to the free electron value. The high-field damping parameters were almost insensitive to the NFR. However, the lowfield damping parameters exhibited a high sensitivity to the NFR very similar to the dependence of the hard-axis coercivity on the NFR, suggesting that extrinsic material properties, such as impurities and defect structures, could be important in deciding the low-field damping behavior.

  2. Artificial ionospheric layers driven by high-frequency radiowaves: An assessment

    Science.gov (United States)

    Mishin, Evgeny; Watkins, Brenton; Lehtinen, Nikolai; Eliasson, Bengt; Pedersen, Todd; Grach, Savely

    2016-04-01

    High-power ordinary mode radio waves produce artificial ionization in the F region ionosphere at the European Incoherent Scatter (Tromsø, Norway) and High Frequency Active Auroral Research Program (Gakona, Alaska, USA) facilities. We have summarized the features of the excited plasma turbulence and descending layers of freshly ionized ("artificial") plasma. The concept of an ionizing wavefront created by accelerated suprathermal electrons appears to be in accordance with the data. The strong Langmuir turbulence (SLT) regime is revealed by the specific spectral features of incoherent radar backscatter and stimulated electromagnetic emissions. Theory predicts that the SLT acceleration is facilitated in the presence of photoelectrons. This agrees with the intensified artificial plasma production and the greater speeds of descent but weaker incoherent radar backscatter in the sunlit ionosphere. Numerical investigation of propagation of O-mode waves and the development of SLT and descending layers have been performed. The greater extent of the SLT region at the magnetic zenith than that at vertical appears to make magnetic zenith injections more efficient for electron acceleration and descending layers. At high powers, anomalous absorption is suppressed, leading to the Langmuir and upper hybrid processes during the whole heater on period. The data suggest that parametric upper hybrid interactions mitigate anomalous absorption at heating frequencies far from electron gyroharmonics and also generate SLT in the upper hybrid layer. The persistence of artificial plasma at the terminal altitude depends on how close the heating frequency is to the local gyroharmonic.

  3. High-frequency hopping conductivity in the quantum Hall effect regime: Acoustical studies

    Science.gov (United States)

    Drichko, I. L.; Diakonov, A. M.; Smirnov, I. Yu.; Galperin, Yu. M.; Toropov, A. I.

    2000-09-01

    The high-frequency conductivity of Si δ-doped GaAs/AlGaAs heterostructures is studied in the integer quantum Hall effect (QHE) regime, using acoustic methods. Both the real and the imaginary parts of the complex conductivity are determined from the experimentally observed magnetic field and temperature dependencies of the velocity and the attenuation of a surface acoustic wave. It is demonstrated that in structures with carrier density (1.3-2.8)×1011 cm-2 and mobility (1-2)×105 cm2/V s the mechanism of low-temperature conductance near the QHE plateau centers is hopping. It is also shown that at magnetic fields corresponding to filling factors 2 and 4, the doped Si δ layer efficiently shunts the conductance in the two-dimensional electron gas (2DEG) channel. A method to separate the two contributions to the real part of the conductivity is developed, and the localization length in the 2DEG channel is estimated within the context of a nearest-neighbor hopping model.

  4. Excitation and Ionisation dynamics in high-frequency plasmas

    Science.gov (United States)

    O'Connell, D.

    2008-07-01

    excitation and sustainment of the discharge. As the pressure decreases the discharge operates in so-called 'alpha-mode' where the sheath expansion is responsible for discharge sustainment. Decreasing the pressure towards the limit of operation (below 1 Pa) the discharge operates in a regime where kinetic effects dominate plasma sustainment. Wave particle interactions resulting from the flux of highly energetic electrons interacting with thermal bulk electrons give rise to a series of oscillations in the electron excitation phase space at the sheath edge. This instability is responsible for a significant energy deposit in the plasma when so-called 'ohmic heating' is no longer efficient. In addition to this an interesting electron acceleration mechanism occurs during the sheath collapse. The large sheath width, due to low plasma densities at the lower pressure, and electron inertia allows the build up of a local electric field accelerating electrons towards the electrode. Multi-frequency plasmas, provide additional process control for technological applications, and through investigating the excitation dynamics in such discharges the limitations of functional separation is observed. Non-linear frequency coupling is observed in plasma boundary sheaths governed by two frequencies simultaneously. In an alpha-operated discharge the sheath edge velocity governs the excitation and ionisation within the plasma, and it will be shown that this is determined by the time varying sheath width. The nature of the coupling effects strongly depends on the ratio of the applied voltages. Under technologically relevant conditions (low frequency voltage >> high frequency voltage) interesting phenomena depending on the phase relation of the voltages are also observed and will be discussed.

  5. High Frequency FMR spectroscopy of Thin MnAs Epilayers grown on (111) and (100) GaAs

    Science.gov (United States)

    Cubukcu, M.; von Bardeleben, H. J.; Cantin, J. L.; Wilson, M. J.; Rench, D.; Schiffer, P.; Samarth, N.

    2010-03-01

    The magnetic anisotropies of thin ferromagnetic epilayers can be conveniently studied by ferromagnetic resonance spectroscopy [1] with 9 or 35 GHz spectrometers. The case of α-MnAs -- a metallic ferromagnet of interest for hybrid semiconductor spintronics -- presents technical challenges because the large structure-related anisotropy field limits such measurements to close to easy axis orientation. We have overcome this difficulty by applying high frequency FMR at 115 GHz with magnetic fields up to 11 T. This allows us to map out complete angular variation patterns and to thus deduce the corresponding anisotropy constants. We report on a systematic investigation of the influence of epilayer thickness and temperature on the magnetic anisotropy.[4pt] [1] Kh.Khazen et al, Phys.Rev.B bf 77, 165204 (2008).

  6. Development of Ti-Coated Ferromagnetic Needle, Adaptable for Ablation Cancer Therapy by High-Frequency Induction Heating

    Directory of Open Access Journals (Sweden)

    Shinya Matsutomo

    2012-03-01

    Full Text Available To develop a novel ablation therapy for human solid cancer, the heating properties of a ferromagnetic carbon steel rod and a prototype Ti-coated needle using this carbon steel rod, were investigated in several high-frequency outputs at 300 kHz. In the former, the heating property was drastically different among the three inclination angles (θ = 0°, 45° and 90° relative to the magnetic flux direction as a result of the shape magnetic anisotropy. However, the effect of the inclination angles was completely eliminated in the latter. It is considered that the complete non-oriented heating property relative to the magnetic flux direction allows the precise control of the ablation temperature during minimally invasive thermotherapy without a lead-wire connected to a fiber-optic thermometer. This newly designed Ti-coated device will be suitable for clinical use combined with its superior biocompatibility for ablation treatments using high-frequency induction heating.

  7. Design of High Frequency Power Oscillator Board Based on Rotary Encoder Control

    Directory of Open Access Journals (Sweden)

    Jiang Shifen

    2013-06-01

    Full Text Available Accurate and stable high frequency pulse power supply is studied to improve high-speed wedm machine tool's efficiency. Regarding to the shortcomings of traditional digital circuit high frequency oscillator board, we design a high frequency power oscillator board based on rotary encoder control, control accuracy and high-frequency waveform by programming, adjusting the frequency and display. It has six brakes of processing function, it also includes feedback function of emulsification oil. The high frequency will be shutdown and the emulsification oil will be changed if there is too much metal dust in emulsification. It has been proved by practice that high-frequency circuit board is simple and reliable and can greatly increase efficiency of wire cutting.

  8. 高频重复经颅磁刺激治疗精神分裂症难治性阴性症状的随机双盲对照试验%Effects of high frequency repetitive transcranial magnetic stimulation on refractory negative symptom of schizophrenia: A double blind, randomized controlled trial

    Institute of Scientific and Technical Information of China (English)

    任艳萍; 周东丰; 蔡焯基; 黄青; 卢芩; 陈琦

    2011-01-01

    目的:探讨双背侧前额叶高频重复经颅磁刺激(repetitive transcranial magnetic stimulation,rTMS)治疗精神分裂症难治性阴性症状的疗效和安全性,并观察不良反应.方法:本研究为双盲随机对照临床试验.研究对象来源于2002年11月1日至2003年12月31日期间就诊于北京大学第六医院和北京安定医院的门诊和住院患者,符合美国精神疾病诊断与统计手册第4版(Diagnostic and Statistical Manual of Mental Disorders,Fourth Edition,DSM.IV)中精神分裂症诊断标准.23例以难治性阴性症状为主的精神分裂症患者随机分为rTMS治疗组(n=12)和对照组(n=11),分别给予10次20Hz rTMS真刺激和伪刺激治疗,治疗期间维持原有抗精神病药种类及剂量不变.采用阳性和阴性症状量表(Positive and Negative Syndrome Scale,PANSS)评估临床症状,采用治疗中需处理的不良反应症状量表(Treatment Emergent Symptom scale,TESS)及其他检查评估不良反应.结果:23例患者均完成治疗.治疗组有效率高于对照组(34%vs.17%,P<0.05).未观察到明显不良反应.结论:抗精神病药合并20 Hz双背侧前额叶重复经颅磁刺激治疗精神分裂症难治性阴性症状有效、安全.%Objective: To examine the therapeutic effects of dual dorsolateral prefrontal repetitive transcranial magnetic stimulation ( rTMS ) on refractory negative symptom experienced by patients with schizophrenia. Methods: A double-blind, randomized controlled study was conducted. Totally 23 schizophrenic patients met the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for schizophrenia were recruited. Subjects were grouped into active treatment subgroup and sham subgroup randomly. Clinical symptom was measured with the Positive and Negative Symptom Scale (PANSS) . Side effects were valuated with the Treatment Emergent Symptom Scale (TESS). Results: Totally 23 subjects completed the trial. The treatment efficiency of

  9. Temporal evolution of pump beam self-focusing at the High-Frequency Active Auroral Research Program

    OpenAIRE

    Kosch, Mike J.; Pedersen, T.; Mishin, E.; Starks, M; Gerken-Kendall, E.; D. Sentman; Oyama, S.; Watkins, B.

    2007-01-01

    On 4 February 2005 the High-Frequency Active Auroral Research Program (HAARP) facility was operated at 2.85 MHz to produce artificial optical emissions in the ionosphere while passing through the second electron gyroharmonic. All-sky optical recordings were performed with 15 s integration, alternating between 557.7 and 630 nm. We report the first optical observations showing the temporal evolution of large-scale pump wave self-focusing in the magnetic zenith, observed in the 557.7 nm images. ...

  10. Analysis of Energy Overshoot of High Frequency Waves with Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    WEN Fan

    2000-01-01

    A study is made on the overshoot phenomena in wind-generated waves. The surface displace ments of time-growing waves are measured at four fetches in a wind wave channel. The evolution of high frequency waves is displayed with wavelet transform. The results are compared with Sutherland's. It is found that high frequency wave components experience much stronger energy overshoot in the evolution.The energy of high frequency waves decreases greatly after overshoot

  11. Effect of High-frequency Laser Radiation on the Graphene Current-voltage Characteristic

    Directory of Open Access Journals (Sweden)

    S.V. Kryuchkov

    2014-11-01

    Full Text Available The effective spectrum of electron states of graphene taking into account the action of high-frequency laser radiation with elliptical polarization was calculated. Band gap was shown to arise in the graphene spectrum in conditions of high-frequency electromagnetic wave. The current-voltage characteristic of the graphene exposed to such radiation was studied. Effect of high-frequency electric field on the electron magnetotransport in graphene was discussed.

  12. A Cold Adhesion for Self-fused Alloy Coat by High Frequency Induction

    Institute of Scientific and Technical Information of China (English)

    ZHANGZeng-zhi; AIBo

    2004-01-01

    In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstnlcture and anitwear ability of the coat. The workpiece was precoated with Ni60 powder through an adhesion agent. The oven-dried precoat was then heated by a high frequency induction generated by 100kw power with a frequency of 250kHz. The technological parameters of the method were determined through analysis of tbe thermal magnetism, thermal resislivity, and anti-induction mechanism. By comparing the microsLrUclures and properties of the coat produced by cold adhesion, thermal spraying and laser refusing, it is concluded that: (1) One side of the workpiece should be preheated to 200℃ before induction fusion, and the range of induction frequency should be 200-250kHz. (2) The microstructure of the coat by cold adhesion is superior to that by themal spraying, but the particle size range should be 0.047-0.044mm (200-320 meshes) (3) The corrosion resistance of Ni60 coat by cold adhesion is better than that by thermal spraying, and the cold adhesion is the best method to prepare the antiwear coat.

  13. A Cold Adhesion for Self-fused Alloy Coat by High Frequency Induction

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zeng-zhi; AI Bo

    2004-01-01

    In this study, a method to prepare self-fused alloy coat, which started with a cold adhesion precoating and then induction fusing plus, is presented. It also intended to analyze the mechanism, microstructure and anitwear ability of the coat. The workpiece was precoated with Ni60 powder through an adhesion agent. The oven-dried precoat was then heated by a high frequency induction generated by 100kw power with a frequency of 250kHz. The technological parameters of the method were determined through analysis of the thermal magnetism, thermal resistivity and anti-induction mechanism. By comparing the microstrucrures and properties of the coat produced by cold adhesion, thermal spraying and laser refusing, it is concluded that: (1) One side of the workpiece should be preheated to 200℃ before induction fusion, and the range of induction frequency should be 200~250kHz. (2) The microstrucrure of the coat by cold adhesion is superior to that by thermal spraying, but the particle size range should be 0.047~0.044mm (200~320 meshes) (3) The corrosion resistance of Ni60 coat by cold adhesion is better than that by thermal spraying, and the cold adhesion is the best method to prepare the antiwear coat.

  14. MEMS based fabrication of high-frequency integrated inductors on Ni-Cu-Zn ferrite substrates

    Science.gov (United States)

    Anthony, Ricky; Wang, Ningning; Casey, Declan P.; Ó Mathúna, Cian; Rohan, James F.

    2016-05-01

    A surface micro-machining process is described to realize planar inductors on ferrite (Ni0.49Zn0.33Cu0.18 Fe2O4) for high-frequency applications (seed layer and eliminates the need for a dielectric layer to isolate the windings from the bottom magnetic core. Measured inductances~367 nH (DC resistance~1.16 Ω and Q-value>14 at 30 MHz) and ~244 nH (DC resistance~0.86 Ω and Q-value~18 at 30 MHz) at 1 MHz for elongated racetrack (10.75 nH/mm2) and racetrack inductors (12.5 nH/mm2), respectively show good agreement with simulated finite element method analysis. This device can be integrated with power management ICs PMICs for cost-effective, high-performance realization of power-supply in package (PSiP) or on-chip (PSoC). This simple process lays the foundation for fabricating closed core ferrite nano-crystalline core micro-inductors.

  15. Coil design considerations for a high-frequency electromagnetic induction sensing instrument

    Science.gov (United States)

    Sigman, John B.; Barrowes, Benjamin E.; Wang, Yinlin; Bennett, Hollis J.; Simms, Janet E.; Yule, Donald E.; O'Neill, Kevin; Shubitidze, Fridon

    2016-05-01

    Intermediate electrical conductivity (IEC) materials (101S/m improvised explosive devices (IED) can be produced with low conducting materials (10-4S/m < σ < 1S/m), such as Ammonium Nitrate (AN). To collect unexploded ordnance (UXO) from military training ranges and thwart deadly IEDs, the US military has urgent need for technology capable of detection and identification of subsurface IEC objects. Recent analytical and numerical studies have showed that these targets exhibit characteristic quadrature response peaks at high induction frequencies (100kHz - 15MHz, the High Frequency Electromagnetic Induction (HFEMI) band), and they are not detectable with traditional ultra wideband (UWB) electromagnetic induction (EMI) metal detectors operating between 100Hz - 100kHz. Using the HFEMI band for induction sensing is not so simple as driving existing instruments at higher frequencies, though. At low frequency, EMI systems use more wire turns in transmit and receive coils to boost signal-to-noise ratios (SNR), but at higher frequencies, the transmitter current has non-uniform distribution along the coil length. These non-uniform currents change the spatial distribution of the primary magnetic field and disturb axial symmetry and thwart established approaches for inferring subsurface metallic object properties. This paper discusses engineering tradeoffs for sensing with a broader band of frequencies ever used for EMI sensing, with particular focus on coil geometries.

  16. Analysis of high-frequency deflectors based on the traveling and standing waves

    International Nuclear Information System (INIS)

    The main definitions of the electrodynamic characteristics of high-frequency deflecting structures used to manipulate the position of particles of an accelerated beam in six-dimensional phase space have been presented. Techniques for the design and adjustment of high-frequency deflectors based on the standing (resonance) and traveling waves using modern three-dimensional numerical simulation codes have been described

  17. Financial correlations at ultra-high frequency: theoretical models and empirical estimation

    OpenAIRE

    Iacopo Mastromatteo; Matteo Marsili; Patrick Zoi

    2010-01-01

    A detailed analysis of correlation between stock returns at high frequency is compared with simple models of random walks. We focus in particular on the dependence of correlations on time scales - the so-called Epps effect. This provides a characterization of stochastic models of stock price returns which is appropriate at very high frequency.

  18. A New High Frequency Injection Method Based on Duty Cycle Shifting without Maximum Voltage Magnitude Loss

    DEFF Research Database (Denmark)

    Wang, Dong; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    injection method, in which high frequency signal is generated by shifting the duty cycle between two neighboring switching periods, is proposed. This method allows injecting a high frequency signal at half of the switching frequency without the necessity to sacrifice the machine fundamental voltage...

  19. A high-frequency electron paramagnetic resonance spectrometer for multi-dimensional, -frequency and -phase pulsed measurements

    CERN Document Server

    Cho, Franklin H; Takahashi, Susumu

    2014-01-01

    We describe instrumentation for a high-frequency electron paramagnetic resonance (EPR) and pulsed electron-electron double resonance (PELDOR) spectroscopy. The instrumentation is operated in the frequency range of 107$-$120 GHz and 215$-$240 GHz and in the magnetic field range of 0$-$12.1 Tesla. The spectrometer consisting of a high-frequency high-power solid-state source, a quasioptical system, a phase-sensitive detection system, a cryogenic-free superconducting magnet and a $^4$He cryostat enables multi-frequency continuous-wave EPR spectroscopy as well as pulsed EPR measurements with a few hundred nanosecond pulses. Here we discuss the details of the design and the pulsed EPR sensitivity of the instrumentation. We also present performance of the instrumentation in unique experiments including PELDOR spectroscopy to probe correlations in an insulating electronic spin system and application of dynamical decoupling techniques to extend spin coherence of electron spins in an insulating solid-state system.

  20. Development of Numerical Codes for Modeling Electromagnetic Behavior at High Frequencies Near Large Objects

    Science.gov (United States)

    Joshi, R. P.; Deshpande, M. D. (Technical Monitor)

    2003-01-01

    A study into the problem of determining electromagnetic solutions at high frequencies for problems involving complex geometries, large sizes and multiple sources (e.g. antennas) has been initiated. Typical applications include the behavior of antennas (and radiators) installed on complex conducting structures (e.g. ships, aircrafts, etc..) with strong interactions between antennas, the radiation patterns, and electromagnetic signals is of great interest for electromagnetic compatibility control. This includes the overall performance evaluation and control of all on-board radiating systems, electromagnetic interference, and personnel radiation hazards. Electromagnetic computational capability exists at NASA LaRC, and many of the codes developed are based on the Moment Method (MM). However, the MM is computationally intensive, and this places a limit on the size of objects and structures that can be modeled. Here, two approaches are proposed: (i) a current-based hybrid scheme that combines the MM with Physical optics, and (ii) an Alternating Direction Implicit-Finite Difference Time Domain (ADI-FDTD) method. The essence of a hybrid technique is to split the overall scattering surface(s) into two regions: (a) a MM zone (MMZ) which can be used over any part of the given geometry, but is most essential over irregular and "non-smooth" geometries, and (b) a PO sub-region (POSR). Currents induced on the scattering and reflecting surfaces can then be computed in two ways depending on whether the region belonged to the MMZ or was part of the POSR. For the MMZ, the current calculations proceed in terms of basis functions with undetermined coefficients (as in the usual MM method), and the answer obtained by solving a system of linear equations. Over the POSR, conduction is obtained as a superposition of two contributions: (i) currents due to the incident magnetic field, and (ii) currents produced by the mutual induction from conduction within the MMZ. This effectively leads to

  1. High-Frequency EMI Noise Suppression by Polymer-Based Composite Magnetic Materials

    Directory of Open Access Journals (Sweden)

    Rastislav Dosoudil

    2008-01-01

    Full Text Available The complex permeability and EM-wave absorption properties of hybrid polymer-based composite magneticmaterials (with MnZn and LiZn ferrite fillers and PVC matrix prepared with constant total filler content (65 vol% andparticle size (0-250 mm have been investigated in the 1-1000 MHz frequency range. Within this filler concentrationthe permeability of composites changed continuously with the change of ferrite filler content ratio between two types offerrite fillers. The observed relaxation type of permeability dispersion was due to the domain wall and natural ferromagneticresonance phenomena and was also attributed to the high damping of spin motion. Measured values of permeability wereused to determine the EM-wave absorption properties (return loss RL, matching frequency fm, matching thickness dm andbandwidth Df for RL £ -20 dB. The calculation of these properties was based on a model of single-layered absorber backedby a perfect conductor using transmission-line and EM-field theory. The composite with the volume fraction ratio of hybridMnZn:LiZn ferrite filler set to 0.5:0.5 has shown a return loss of -57 dB (> 99 % power absorption at fm = 714 MHz with the-20 dB bandwidth of Df = 232 MHz for an absorber thickness of 7.79 mm.

  2. The studies of high-frequency magnetic properties and absorption characteristics for amorphous-filler composites

    Science.gov (United States)

    Li, Z. W.; Yang, Z. H.

    2015-10-01

    Pure amorphous flake fillers and amorphous flakes coated by ferrite nanoparticles with core-shell-like structure were fabricated using mechanical ball-milling. The later with core-shell-like structure can greatly decrease permittivity and improve the absorption properties, as compared to the former. The absorption of all amorphous-filler composites has its origin in a quarter-wavelength resonator. Based on the resonator model, absorption frequency fA and the corresponding return loss RL are calculated, which are well consistent with observed values. It is also found that the resonance frequency is proportional to effective resistivity, based on William-Shockley-Kittel's eddy model.

  3. High-Frequency Resonant Matrix Converter using IGBT-Based Bidirectional Switches for Induction Heating

    Directory of Open Access Journals (Sweden)

    Jami Rajesh

    2014-02-01

    Full Text Available This paper deals with a novel type soft switching utility frequency AC- high frequency AC converter using asymmetrical PWM bidirectional active switches which can be defined as high frequency resonant matrix converter.This power frequency changer can directly convert utility frequency AC power to high frequency AC power ranging more than 20kHz up to 100kHz. Only one active edge resonant capacitor-assisted soft switching high frequency load resonant cyclo-converter is based on asymmetrical duty cycle PWM strategy. This high frequency cyclo-converter uses bidirectional IGBTs composed of anti-parallel one-chip reverse blocking IGBTs. This high frequency cycloconverter has some remarkable features as electrolytic capacitorless DC busline link, unity power factor correction and sinewave line current shaping, simple configuration with minimum circuit components and low cost, high efficiency and downsizing. This series load resonant cycloconverter incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances. Its operating principle is described by using equivalent circuits. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are discussed on the basis of simulation and experimental results.

  4. Unprecedentedly Strong and Narrow Electromagnetic Emissions Stimulated by High-Frequency Radio Waves in the Ionosphere

    International Nuclear Information System (INIS)

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA

  5. A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications

    Science.gov (United States)

    Wang, B.; Gan, Z. H.

    2013-08-01

    The importance of liquid helium temperature cooling technology in the aerospace field is discussed, and the results indicate that improving the efficiency of liquid helium cooling technologies, especially the liquid helium high frequency pulse tube cryocoolers, is the principal difficulty to be solved. The state of the art and recent developments of liquid helium high frequency pulse tube cryocoolers are summarized. The main scientific challenges for high frequency pulse tube cryocoolers to efficiently reach liquid helium temperatures are outlined, and the research progress addressing those challenges are reviewed. Additionally some possible solutions to the challenges are pointed out and discussed.

  6. A novel variable polarity welding power based on high-frequency pulse modulation

    Institute of Scientific and Technical Information of China (English)

    Qiu Ling; Yang Chunli; Fan Chenglei; Lin Sanbao; Wu Yun

    2006-01-01

    A new type of variable polarity welding power modulated with high-frequency pulse current is developed.Series of high-frequency pulse current is superimposed on direct-current-electrode-negative (DCEN), which can improve the crystallization process in the weld bead as a result of the electromagnetic force generated by pulse current.Digital signal processor (DSP) is used to realize the closed-loop control of the first inverter, variable polarity output of the second inverter and high-frequency pulse current superposition.

  7. Industrial mastering the use of tube fining by high-frequency welding for gasproof boilers

    International Nuclear Information System (INIS)

    Results of introduction of 20 and 12Kh1MF steel tube fining by high-frequency welding are presented. Heat treatment effect on properties of joints is studied, mechanical tests, metallographical and electron-microscopic investigations are carried out. It is shown that weld method of fins to tubes with the help of high-frequency currents is characterized by universality that permits to produce fined tubes of practically any diameter with fins of any width, control of smooth tubes before the fins welding to them being provided. Studies of properties of fined tubes has shown high quality of welded joints carried out by high-frequency current heating

  8. Econometric analysis of realized covariation: high frequency based covariance, regression, and correlation in financial economics

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole Eiler; Shephard, N.

    2004-01-01

    This paper analyses multivariate high frequency financial data using realized covariation. We provide a new asymptotic distribution theory for standard methods such as regression, correlation analysis, and covariance. It will be based on a fixed interval of time (e.g., a day or week), allowing...... the number of high frequency returns during this period to go to infinity. Our analysis allows us to study how high frequency correlations, regressions, and covariances change through time. In particular we provide confidence intervals for each of these quantities....

  9. Complete WKB asymptotics of high frequency vibrations in a stiff problem

    CERN Document Server

    Babych, N

    2008-01-01

    Asymptotic behaviour of eigenvalues and eigenfunctions of a stiff problem is described in the case of the fourth-order ordinary differential operator. Considering the stiffness coefficient that depends on a small parameter epsilon and vanishes as epsilon tends to zero on a subinterval, we prove the existence of low and high frequency resonance vibrations. The low frequency vibrations admit the power series expansions on epsilon but this method is not applicable to the description of high frequency vibrations. However, the nonclassical asymptotics on epsilon of the high frequency vibrations were constructed using the WKB method.

  10. Unprecedentedly strong and narrow electromagnetic emissions stimulated by high-frequency radio waves in the ionosphere.

    Science.gov (United States)

    Norin, L; Leyser, T B; Nordblad, E; Thidé, B; McCarrick, M

    2009-02-13

    Experimental results of secondary electromagnetic radiation, stimulated by high-frequency radio waves irradiating the ionosphere, are reported. We have observed emission peaks, shifted in frequency up to a few tens of Hertz from radio waves transmitted at several megahertz. These emission peaks are by far the strongest spectral features of secondary radiation that have been reported. The emissions are attributed to stimulated Brillouin scattering, long predicted but hitherto never unambiguously identified in high-frequency ionospheric interaction experiments. The experiments were performed at the High-Frequency Active Auroral Research Program (HAARP), Alaska, USA. PMID:19257596

  11. Changes in somatosensory-evoked potentials and high-frequency oscillations after paired-associative stimulation.

    Science.gov (United States)

    Murakami, Takenobu; Sakuma, Kenji; Nomura, Takashi; Uemura, Yusuke; Hashimoto, Isao; Nakashima, Kenji

    2008-01-01

    Paired-associative stimulation (PAS), combining electrical median nerve stimulation with transcranial magnetic stimulation (TMS) with a variable delay, causes long-term potentiation or depression (LTP/LTD)-like cortical plasticity. In the present study, we examined how PAS over the motor cortex affected a distant site, the somatosensory cortex. Furthermore, the influences of PAS on high-frequency oscillations (HFOs) were investigated to clarify the origin of HFOs. Interstimulus intervals between median nerve stimulation and TMS were 25 ms (PAS(25)) and 10 ms (PAS(10)). PAS was performed over the motor and somatosensory cortices. SEPs following median nerve stimulation were recorded before and after PAS. HFOs were isolated by 400-800 Hz band-pass filtering. PAS(25) over the motor cortex increased the N20-P25 and P25-N33 amplitudes and the HFOs significantly. The enhancement of the P25-N33 amplitude and the late HFOs lasted more than 60 min. After PAS(10) over the motor cortex, the N20-P25 and P25-N33 amplitudes decreased for 40 min, and the HFOs decreased for 60 min. Frontal SEPs were not affected after PAS over the motor cortex. PAS(25/10) over the somatosensory cortex did not affect SEPs and HFOs. PAS(25/10) over the motor cortex caused the LTP/LTD-like phenomena in a distant site, the somatosensory cortex. The PAS paradigms over the motor cortex can modify both the neural generators of SEPs and HFOs. HFOs may reflect the activation of GABAergic inhibitory interneurons regulating pyramidal neurons in the somatosensory cortex. PMID:17724581

  12. High-frequency susceptibility of a multilayered ferromagnetic system with two-dimensional inhomogeneities

    Science.gov (United States)

    Mankov, Yu. I.; Tsikalov, D. S.

    2010-03-01

    This paper reports on the results of the investigation of the high-frequency susceptibility of a layered ferromagnetic structure in which, apart from a periodic change in the magnetic anisotropy parameter from layer to layer, this parameter varies along layers according to a random law (the superlattice with two-dimensional phase inhomogeneities). The evolution of the frequency dependence of the imaginary part of the averaged Green’s function in the range of the energy gap (band gap) in the spectrum of waves propagating along the superlattice axis due to the change in the relative root-mean-square fluctuations of the phase γ2 has been studied at the boundaries of the odd Brillouin zones. It has been found that, for all odd Brillouin zones, the imaginary part of the Green’s function exhibits a universal behavior: the peak corresponding to the edge of the band gap with a lower frequency remains unchanged, and the peak corresponding to the edge of the band gap with a higher frequency is smoothed with an increase in the quantity γ2. These effects, which were initially revealed at the boundary of the first Brillouin zone of the sinusoidal superlattice, have been explained, as before, by the specific features of the energy conservation laws for the incident and scattered waves in the lattice with two-dimensional inhomogeneities. It has been demonstrated that an increase in the Brillouin zone number leads to a decrease in the value of γ2 at which the peak at the edge of the band gap with a higher frequency disappears.

  13. Computational modeling of a single microdischarge and its interactions with high frequency electromagnetic waves

    Science.gov (United States)

    PanneerChelvam, Premkumar; Raja, Laxminarayan L.; Upadhyay, Rochan R.

    2016-09-01

    We discuss the computational modeling of a single microplasma and its interaction with high frequency electromagnetic waves in a microwave regime. The work is motivated by a strong recent interest in the area of reconfigurable plasma-based metamaterials (MM) and photonic crystals (PC) where the interaction of electromagnetic waves with plasma elements (e.g. microdischarges) forms the basis for the MM/PC operation. In this work the microplasma is assumed to be driven by a 1 GHz microwave source in a parallel plate electrode configuration. Its structure and properties are described using a fluid plasma model. The interaction of the microplasma with a 100 GHz transverse magnetic (TM) and transverse electric (TE) polarized microwave propagating in a rectangular waveguide is studied. Two operational regimes of the plasma discharge are considered. One in which the peak electron density is less than the critical density (under-dense) for the interacting wave and the other in which it is higher (over-dense). The under-dense plasma with positive less than unity dielectric constant has sufficient dielectric contrast from the surrounding medium that a slight perturbation of the incident wave and bending of wave path lines through the discharge is realized. The over-dense plasma interacts strongly with the TM polarized wave because of epsilon-zero resonance at the critical density locations and the wave path lines are observed to reverse their direction near the regions of critical plasma density. The transverse electric (TE) polarized wave does not exhibit epsilon-zero resonance and the interactions are weaker than the TM wave.

  14. Piezoelectric-Crystal-Resonator High-Frequency Gravitational Wave Generation and Synchro-Resonance Detection

    Science.gov (United States)

    Baker, Robert M. L.; Woods, R. Clive; Li, Fangyu

    2006-01-01

    Here we show the generation of high-frequency-gravitational-waves (HFGWs) utilizing piezoelectric elements such as the ubiquitous Film-Bulk-Acoustic-Resonators (FBARs), found in cell phones, as energized by inexpensive magnetrons, found in microwave ovens, generating GWs having a frequency of about 4.9GHz and their detection by means of new synchro-resonance techniques developed in China. In the 1960s Weber suggested piezoelectric crystals for gravitational-wave (GW) generation. Since then researchers have proposed specific designs. The major obstacle has been the cost of procuring, installing, and energizing a sufficient number of such resonators to generate sufficiently powerful GWs to allow for detection. Recent mass-production techniques, spurred on by the production of cell phones, have driven the cost of resonators down. The new Chinese detector for detecting the 4.9×109Hz HFGW is a coupling-system of fractal membranes-beam-splitters and a narrow, 6.1 cm-radius, pulsed-Gaussian-laser or continuous-Gaussian detection beam passing through a static 15T-magnetic field. The detector is sensitive to GW amplitudes of ~10-30 to be generated with signal-to-noise ratios greater than one. It is concluded that a cost-effective HFGW generation and detection apparatus can now be fabricated and operated in the laboratory. If the two groups or clusters of magnetrons and FBARs were space borne and at lunar distance (e.g., at the Moon and at the lunar L3 libration point) and the quadrupole formalism approximately holds for GW radiators (the FBAR clusters) many GW wavelengths apart, then the HFGW power would be about 420 W and the flux about 2×105 Wm-2 (or more than one hundred times greater than the solar radiation flux at the Earth) focused at the focal spot, or remote-HFGW-emitter, anywhere in the Earth's environs - on or below the Earth's surface.

  15. High frequency wide-band transformer uses coax to achieve high turn ratio and flat response

    Science.gov (United States)

    De Parry, T.

    1966-01-01

    Center-tap push-pull transformer with toroidal core helically wound with a single coaxial cable creates a high frequency wideband transformer. This transformer has a high-turn ratio, a high coupling coefficient, and a flat broadband response.

  16. High-frequency Oscillations and the Seizure Onset Zones in Neocortical Epilepsy

    Directory of Open Access Journals (Sweden)

    Yan-Ping Sun

    2015-01-01

    Conclusions: High-frequency oscillations are linked to SOZ in neocortical epilepsy. Our study demonstrates the prevalent occurrence of HFOs in SOZ. More and more burst of HFOs, especially FRs, means the onset of seizures.

  17. High Frequency Radar Locations in the United States as of February 2016.

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset show the point locations of High Frequency (HF) radar systems across the US. HF radars measure the speed and direction of ocean surface currents in...

  18. Real-time, high frequency QRS electrocardiograph with reduced amplitude zone detection

    Science.gov (United States)

    Schlegel, Todd T. (Inventor); DePalma, Jude L. (Inventor); Moradi, Saeed (Inventor)

    2009-01-01

    Real time cardiac electrical data are received from a patient, manipulated to determine various useful aspects of the ECG signal, and displayed in real time in a useful form on a computer screen or monitor. The monitor displays the high frequency data from the QRS complex in units of microvolts, juxtaposed with a display of conventional ECG data in units of millivolts or microvolts. The high frequency data are analyzed for their root mean square (RMS) voltage values and the discrete RMS values and related parameters are displayed in real time. The high frequency data from the QRS complex are analyzed with imbedded algorithms to determine the presence or absence of reduced amplitude zones, referred to herein as ''RAZs''. RAZs are displayed as ''go, no-go'' signals on the computer monitor. The RMS and related values of the high frequency components are displayed as time varying signals, and the presence or absence of RAZs may be similarly displayed over time.

  19. VISUALIZATION OF LIP AND BASAL-CELL SKIN CANCER IN HIGH-FREQUENCY ELECTRICAL FIELD

    OpenAIRE

    Zabunyan G. A.; Ovsiyenko P. G.

    2015-01-01

    In patients, there has been registered luminescence of skin sites affected by basal cell skin cancer at stage III in high-frequency electric field. The diagnosis was confirmed by histological analysis of excised cancer sites

  20. Stability Analysis of an Inverted Pendulum Subjected to Combined High Frequency Harmonics and Stochastic Excitations

    Institute of Scientific and Technical Information of China (English)

    HUANG Zhi-Long; JIN Xiao-Ling; ZHU Zi-Qi

    2008-01-01

    Stability of vertical upright position of an inverted pendulum with its suspension point subjected to high frequency harmonics and stochastic excitations is investigated. Two classes of excitations, i.e., combined high frequency harmonic excitation and Gaussian white noise excitation, and high frequency bounded noise excitation, respectively,are considered. Firstly, the terms of high frequency harmonic excitations in the equation of motion of the system can be set equivalent to nonlinear stiffness terms by using the method of direct separation of motions. Then the stochastic averaging method of energy envelope is used to derive the averaged It(o) stochastic differential equation for system energy. Finally, the stability with probability 1 of the system is studied by using the largest Lyapunov exponent obtained from the averaged It(o) stochastic differential equation. The effects of system parameters on the stability of the system are discussed, and some examples are given to illustrate the efficiency of the proposed procedure.

  1. Dumb Holes and the Effects of High Frequencies on Black Hole Evaporation

    OpenAIRE

    Unruh, W. G.

    1994-01-01

    The naive calculation of black hole evaporation makes the thermal emission depend on the arbitrary high frequency behaviour of the theory where the theory is certainly wrong. Using the sonic analog to black holes-- dumb holes-- I show numerically that a change in the dispersion relation at high frequencies does not seem to alter the evaporation process, lending weight to the reality of the black hole evaporation process. I also suggest a reason for the insensitivity of the process to high fre...

  2. Information Asymmetry and Information Dissemination in High-Frequency Capital Markets

    OpenAIRE

    Pöppe, Thomas

    2016-01-01

    This dissertation is concerned with information asymmetry and information dissemination in high-frequency capital markets. At the intersection of information dissemination and asymmetry with market microstructure, this dissertation pursues three major goals. We propose enhancements to market microstructure methodology to be able to empirically conduct research on information dissemination and asymmetry on recent, high-frequency trading data. Second, we empirically evaluate related microstruct...

  3. Allowing for spontaneous breathing during high-frequency oscillation: the key for final success?

    OpenAIRE

    Rimensberger, Peter

    2006-01-01

    In the present issue of Critical Care, van Heerde and colleagues describe a new technical development (a flow-demand system during high-frequency oscillation) that may have an important impact on the future use of high-frequency ventilation in children and adults. Flow compensation on patient demand seems to reduce the imposed work of breathing, may therefore increase patient comfort, and should theoretically allow for maintaining spontaneous breathing while heavy sedation and muscular paraly...

  4. Bypass ZVS-PWM High-Frequency Inverter for Induction Heating

    Science.gov (United States)

    Shoji, Hiroyuki; Uruno, Junpei; Isogai, Masayuki

    In this paper, we present a novel circuit topology for achieving thezero-voltage switching (ZVS) operation in a high-frequency inverter. The output power of the inverter is regulated over a wide range using a pulse widthmodulation (PWM) technique and by connecting a bypass circuit to a conventional single-ended push-pull (SEPP) high-frequency inverter for induction heating. All the switching devices of the proposed inverter are operated in the ZVS mode.

  5. High frequency oscillatory ventilation as the most appropriate treatment for life threatening thoracic trauma

    OpenAIRE

    2012-01-01

    Acute respiratory failure is common in trauma patients and can be a threat to life in severe thoracic injury. We represent a case of severe respiratory failure after blunt thoracic injury with uncontrollable bleeding and massive air leak which was successfully managed with high frequency oscillatory ventilation. In our opinion high frequency oscillatory ventilation represent a safe and effective treatment of life threatening acute respiratory failure in trauma patients.

  6. Deriving animal behaviour from high-frequency GPS: tracking cows in open and forested habitat

    OpenAIRE

    Weerd, van, M.; Langevelde, van, R Ronald; Oeveren, van, W.; Nolet, B.A.; Kölzsch, A.; Prins, H.H.T.; Boer, de, J.W.

    2015-01-01

    The increasing spatiotemporal accuracy of Global Navigation Satellite Systems (GNSS) tracking systems opens the possibility to infer animal behaviour from tracking data. We studied the relationship between high-frequency GNSS data and behaviour, aimed at developing an easily interpretable classification method to infer behaviour from location data. Behavioural observations were carried out during tracking of cows (Bos Taurus) fitted with high-frequency GPS (Global Positioning System) receiver...

  7. Regional respiratory time constants during lung recruitment in high-frequency oscillatory ventilated preterm infants

    OpenAIRE

    Miedema, M; Jongh, de, A.; Frerichs, I; Veenendaal, van, M.B.; Kaam, van, J.B.C.H.M.

    2012-01-01

    Purpose To assess the regional respiratory time constants of lung volume changes during stepwise lung recruitment before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. Methods A stepwise oxygenation-guided recruitment procedure was performed before and after surfactant treatment in high-frequency oscillatory ventilated preterm infants. Electrical impedance tomography was used to continuously record changes in lung volume during the recruitment maneuve...

  8. High frequency graphene transistors: can a beauty become a cash cow?

    Science.gov (United States)

    Neumaier, Daniel; Zirath, Herbert

    2015-09-01

    This is a specially commissioned editorial from the Graphene Flagship Work Package on High Frequency Electronics. This editorial is part of the 2D Materials focus collection on ‘Progress on the science and applications of two-dimensional materials’, published in association with the Graphene Flagship. It provides an overview of key, recent advances from the ‘High Frequency Electronics’ work package and is not intended as a comprehensive review of this field.

  9. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    OpenAIRE

    Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.

    2014-01-01

    Humans routinely produce acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward high-definition (HD) voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender ...

  10. Gender and vocal production mode discrimination using the high frequencies for speech and singing

    OpenAIRE

    Monson, Brian B.; Lotto, Andrew J.; Brad Hudson Story

    2014-01-01

    Humans routinely create acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward HD voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender discrimination and ...

  11. Optimization of Power MOSFET for High-Frequency Synchronous Buck Converter

    OpenAIRE

    Bai, Yuming

    2003-01-01

    Evolutions in microprocessor technology require the use of a high-frequency synchronous buck converter (SBC) in order to achieve low cost, low profile, fast transient response and high power density. However, high frequency also causes more power loss on MOSFETs. Optimization of the MOSFETs plays an important role in the system performance. Circuit and device modeling is important in understanding the relationship between the device parameters and the power loss. The gate-to-drain charge ...

  12. High frequency permeability and permittivity spectra of BiFeO{sub 3}/(CoTi)-BaM ferrite composites

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yun; Wu, Xiaohan; Li, Qifan; Yu, Ting; Feng, Zekun, E-mail: fengzekun@hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Zhongyan [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Jiangmen Magsource New Material CO., LTD., 529000 Guangdong (China); Su, Zhijuan; Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2015-05-07

    Low magnetic loss ferrite composites consisting of Ba(CoTi){sub 1.2}Fe{sub 9.6}O{sub 19} and BiFeO{sub 3} (BFO) ferrite were investigated for permeability, permittivity, and high frequency losses at 10 MHz–1 GHz. The phase fraction of BiFeO{sub 3} was quantitatively analyzed by X-ray diffraction measurements. An effective medium approach was employed to predict the effective permeability and permittivity for the ferrite composites, which was found to be in good agreement with experimental data. The experiment demonstrated low magnetic losses (<0.128), modified by BFO phase fraction, while retaining high permeability (∼10.86) at 300 MHz. More importantly, the BFO phase resulted in a reduction of magnetic loss by 32%, as BFO phase increased from 2.7 vol. % to 12.6 vol. %. The effect of BFO phase on magnetic and dielectric properties revealed great potential for use in the miniaturization of high efficiency antennas.

  13. Study on the dynamic characteristics of a high frequency brake based on giant magnetostrictive material

    Science.gov (United States)

    Xu, Ai Qun

    2016-06-01

    In order to meet the requirements of rapid and smooth braking, high-frequency braking using a giant magnetostrictive actuator is proposed, which can solve the problems in hydraulic braking, such as, it leaks easily, catches fire easily, is difficult to find failures, high cost on maintenance and repairing, etc. The main factors affecting the force of a high-frequency braking actuator are emphatically analyzed, the brakes dynamic model is established and a performance testing device for high frequency braking is constructed based on LabVIEW. The output force of the actuator increases with the excitation current of the driving coil increasing, and the increased multiple of the output force is greater than that of the excitation current; the range of the actuator force amplitude is 121.63 N ∼ 158.14 N, which changes little, while excitation frequency changes between 200 Hz ∼ 1000 Hz. In a minor range of pre-stress, the output force decreases with an increase in the axial pre-stress of the giant magnetostrictive rod, but is not obvious. It is known by finite element simulation analysis that high-frequency braking shortens the braking displacement and time effectively, which proves the feasibility and effectiveness of high frequency braking. Theoretical analysis and experimental results indicate that the output force of the actuator changes at the same frequency with excitation current; it is controllable and its mechanical properties meet the requirements of high frequency braking.

  14. High-Frequency Transcranial Random Noise Stimulation Enhances Perception of Facial Identity.

    Science.gov (United States)

    Romanska, Aleksandra; Rezlescu, Constantin; Susilo, Tirta; Duchaine, Bradley; Banissy, Michael J

    2015-11-01

    Recently, a number of studies have demonstrated the utility of transcranial current stimulation as a tool to facilitate a variety of cognitive and perceptual abilities. Few studies, though, have examined the utility of this approach for the processing of social information. Here, we conducted 2 experiments to explore whether a single session of high-frequency transcranial random noise stimulation (tRNS) targeted at lateral occipitotemporal cortices would enhance facial identity perception. In Experiment 1, participants received 20 min of active high-frequency tRNS or sham stimulation prior to completing the tasks examining facial identity perception or trustworthiness perception. Active high-frequency tRNS facilitated facial identity perception, but not trustworthiness perception. Experiment 2 assessed the spatial specificity of this effect by delivering 20 min of active high-frequency tRNS to lateral occipitotemporal cortices or sensorimotor cortices prior to participants completing the same facial identity perception task used in Experiment 1. High-frequency tRNS targeted at lateral occipitotemporal cortices enhanced performance relative to motor cortex stimulation. These findings show that high-frequency tRNS to lateral occipitotemporal cortices produces task-specific and site-specific enhancements in face perception. PMID:25662714

  15. High-Frequency Transcranial Random Noise Stimulation Enhances Perception of Facial Identity.

    Science.gov (United States)

    Romanska, Aleksandra; Rezlescu, Constantin; Susilo, Tirta; Duchaine, Bradley; Banissy, Michael J

    2015-11-01

    Recently, a number of studies have demonstrated the utility of transcranial current stimulation as a tool to facilitate a variety of cognitive and perceptual abilities. Few studies, though, have examined the utility of this approach for the processing of social information. Here, we conducted 2 experiments to explore whether a single session of high-frequency transcranial random noise stimulation (tRNS) targeted at lateral occipitotemporal cortices would enhance facial identity perception. In Experiment 1, participants received 20 min of active high-frequency tRNS or sham stimulation prior to completing the tasks examining facial identity perception or trustworthiness perception. Active high-frequency tRNS facilitated facial identity perception, but not trustworthiness perception. Experiment 2 assessed the spatial specificity of this effect by delivering 20 min of active high-frequency tRNS to lateral occipitotemporal cortices or sensorimotor cortices prior to participants completing the same facial identity perception task used in Experiment 1. High-frequency tRNS targeted at lateral occipitotemporal cortices enhanced performance relative to motor cortex stimulation. These findings show that high-frequency tRNS to lateral occipitotemporal cortices produces task-specific and site-specific enhancements in face perception.

  16. High-frequency vibration energy harvesting from impulsive excitation utilizing intentional dynamic instability caused by strong nonlinearity

    Science.gov (United States)

    Remick, Kevin; Dane Quinn, D.; Michael McFarland, D.; Bergman, Lawrence; Vakakis, Alexander

    2016-05-01

    The authors investigate a vibration-based energy harvesting system utilizing essential (nonlinearizable) nonlinearities and electromagnetic coupling elements. The system consists of a grounded, weakly damped linear oscillator (primary system) subjected to a single impulsive load. This primary system is coupled to a lightweight, damped oscillating attachment (denoted as nonlinear energy sink, NES) via a neodymium magnet and an inductance coil, and a piano wire, which generates an essential geometric cubic stiffness nonlinearity. Under impulsive input, the transient damped dynamics of this system exhibit transient resonance captures (TRCs) causing intentional large-amplitude and high-frequency instabilities in the response of the NES. These TRCs result in strong energy transfer from the directly excited primary system to the light-weight attachment. The energy is harvested by the electromagnetic elements in the coupling and, in the present case, dissipated in a resistive element in the electrical circuit. The primary goal of this work is to numerically, analytically, and experimentally demonstrate the efficacy of employing this type of intentional high-frequency dynamic instability to achieve enhanced vibration energy harvesting under impulsive excitation.

  17. Connection Between Screw-Instability in Black Hole Magnetosphere and Pairs of High-Frequency Quasi-Periodic Oscillations

    Institute of Scientific and Technical Information of China (English)

    YAO Guo-Zheng; WANG Ding-Xiong

    2004-01-01

    The correlation of screw-instability in black hole magnetosphere with pairs of high-frequency quasi-periodic oscillations (HFQPOs) is discussed in the coexistence of the Blandford-Znajek (BZ) and magnetic coupling (MC)processes. It turns out that screw-instability can result in HFQPOs. Such an HFQPO can be regarded as the transient process in an equivalent circuit with resistor and inductor in series (R-L circuit), and its period can be estimated by the relaxation time of this process. When the BZ process and the MC process coexist, the screwinstability can occur both in the BZ region and in the MC region, and the pairs of HFQPOs can be generated.Calculations show that such pairs of HFQPOs are likely to show frequencies in a 3:2 ratio. The frequencies of pairs of HFQPOs in our model scale inversely with the mass of central black hole, which is consistent with the observations.

  18. The high frequency fatigue behavior of continuous-fiber-reinforced ceramic matrix composites

    Science.gov (United States)

    Chawla, Nikhilesh

    Many potential applications for continuous fiber ceramic matrix composites (CFCMCs), such as gas turbines and heat exchangers, will involve high frequency cyclic loading (75 Hz or higher). While most of the work in the area of fatigue of CFCMCs has concentrated on low frequency behavior, it has been shown that fatigue at high frequencies can exacerbate the accumulation of microstructural damage and significantly decrease fatigue life. "Soft" matrix composites with strong interface bonding provided superior resistance to high frequency fatigue damage. Nicalon/SiCON composites with strong interfacial bonding between the fibers and matrix exhibited very little internal heating during high frequency fatigue loading. This composite system exhibited excellent fatigue life, with fatigue runout at 10sp7 cycles occurring for stresses close to 80% of the ultimate strength (at a loading frequency of 100 Hz). Thick fiber coatings may be more effective in reducing the amount of fiber wear and damage which occur during high frequency fatigue. More effective lubrication at the fiber/matrix interface was achieved with thicker carbon coatings in Nicalon/C/SiC composites subjected to high frequency fatigue loading. Composites with thicker coatings exhibited substantially lower frictional heating and had much higher fatigue lives. The effect of laminate stacking sequence had a significant effect on the high frequency fatigue behavior of CFCMCs. In SCS-6/Sisb3Nsb4 composites, frictional heating in angle-ply laminates (±45) was substantially higher than that in cross-ply laminates (0/90). Since the angle-ply had a lower stiffness, matrix microcracking in this composite was more predominant. Finally, preliminary fatigue damage mechanism maps for CFCMCs were developed. These maps provided a means to identify which fatigue mechanisms were operating at a given stress level and number of cycles.

  19. Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex.

    Science.gov (United States)

    Quartarone, Angelo; Bagnato, Sergio; Rizzo, Vincenzo; Morgante, Francesca; Sant'angelo, Antonio; Battaglia, Fortunato; Messina, Corrado; Siebner, Hartwig Roman; Girlanda, Paolo

    2005-02-01

    It has been shown that high-frequency repetitive transcranial magnetic stimulation (rTMS) to the human primary motor hand area (M1-HAND) can induce a lasting increase in corticospinal excitability. Here we recorded motor evoked potentials (MEPs) from the right first dorsal interosseus muscle to investigate how sub-threshold high-frequency rTMS to the M1-HAND modulates cortical and spinal excitability. In a first experiment, we gave 1500 stimuli of 5 Hz rTMS. At an intensity of 90% of active motor threshold, rTMS produced no effect on MEP amplitude at rest. Increasing the intensity to 90% of resting motor threshold (RMT), rTMS produced an increase in MEP amplitude. This facilitatory effect gradually built up during the course of rTMS, reaching significance after the administration of 900 stimuli. In a second experiment, MEPs were elicited during tonic contraction using weak anodal electrical or magnetic test stimuli. 1500 (but not 600) conditioning stimuli at 90% of RMT induced a facilitation of MEPs in the contracting FDI muscle. In a third experiment, 600 conditioning stimuli were given at 90% of RMT to the M1-HAND. Using two well-established conditioning-test paradigms, we found a decrease in short-latency intracortical inhibition (SICI), and a facilitation of the first peak of facilitatory I-waves interaction (SICF). There was no correlation between the relative changes in SICI and SICF. These results demonstrate that subthreshold 5 Hz rTMS can induce lasting changes in specific neuronal subpopulations in the human corticospinal motor system, depending on the intensity and duration of rTMS. Short 5 Hz rTMS (600 stimuli) at 90% of RMT can selectively shape the excitability of distinct intracortical circuits, whereas prolonged 5 Hz rTMS (> or =900 stimuli) provokes an overall increase in excitability of the corticospinal output system, including spinal motoneurones.

  20. High-frequency profile in adolescents and its relationship with the use of personal stereo devices

    Directory of Open Access Journals (Sweden)

    Renata Almeida Araújo Silvestre

    2016-04-01

    Full Text Available Abstract Objective: To analyze and correlate the audiometric findings of high frequencies (9–16 kHz in adolescents with their hearing habits and attitudes, in order to prevent noise-induced hearing loss. Method: This was a descriptive cross-sectional study, which included 125 adolescents in a sample of normal-hearing students, at a state school. The subjects performed high-frequency audiometry testing and answered a self-administered questionnaire addressing information on sound habits concerning the use of personal stereo devices. The sample was divided according to the exposure characteristics (time, duration, intensity, etc. and the results were compared with the observed thresholds, through the difference in proportions test, chi-squared, Student's t-test, and ANOVA, all at a significance level of 0.05. Results: Average high-frequency thresholds were registered below 15 dB HL and no significant correlation was found between high frequency audiometric findings and the degree of exposure. Conclusion: The prevalence of harmful sound habits due to the use of personal stereo devices is high in the adolescent population, but there was no correlation between exposure to high sound pressure levels through personal stereos and the high-frequency thresholds in this population.

  1. The high frequency characteristics of laser reflection and visible light during solid state disk laser welding

    Science.gov (United States)

    Gao, Xiangdong; You, Deyong; Katayama, Seiji

    2015-07-01

    Optical properties are related to weld quality during laser welding. Visible light radiation generated from optical-induced plasma and laser reflection is considered a key element reflecting weld quality. An in-depth analysis of the high-frequency component of optical signals is conducted. A combination of a photoelectric sensor and an optical filter helped to obtain visible light reflection and laser reflection in the welding process. Two groups of optical signals were sampled at a high sampling rate (250 kHz) using an oscilloscope. Frequencies in the ranges 1-10 kHz and 10-125 kHz were investigated respectively. Experimental results showed that there was an obvious correlation between the high-frequency signal and the laser power, while the high-frequency signal was not sensitive to changes in welding speed. In particular, when the defocus position was changed, only a high frequency of the visible light signal was observed, while the high frequency of the laser reflection signal remained unchanged. The basic correlation between optical features and welding status during the laser welding process is specified, which helps to provide a new research focus for investigating the stability of welding status.

  2. High Frequency Tan Delta Measurement Method for 132kV Transmission Underground Cables

    Directory of Open Access Journals (Sweden)

    A.R. Avinash

    2015-07-01

    Full Text Available Tangent Delta is a measurement technique to investigate cables insulation strength. Current techniques utilize Very Low Frequency (VLF at 0.1 Hz and power frequency at 50 Hz. However, high voltages are required, thus requiring larger space and cost. Proposed method of tangent delta testing utilizes High frequency Low voltage diagnoses. The phase between the current and the voltage is utilized to determine the tangent delta (tan δ. The aim of this study is to develop a low voltage high frequency tangent delta measurement method and test if it can discriminate manufactured 132 kV good conditioned cable sample from defect induced cables with void, scotched and contamination in its insulation. Impurities are clearly discriminated using this method. Comparison of Tangent Delta of cables manufactured simultaneously in good condition and defect induced is performed using High Frequency Tangent Delta method and in 50 Hz conventional method to validate the effectiveness of the measurement technique. The High Frequency AC setup utilizes a small testing environment which can sample small lengths with minimum 1 m length of cable. The small lengths will result in the reduction of total capacitance of the cable but using High Frequency induces high electric stress on XLPE layer thus resulting in measureable dielectric current.

  3. Research for the jamming mechanism of high-frequency laser to the laser seeker

    Science.gov (United States)

    Zheng, Xingyuan; Zhang, Haiyang; Wang, Yunping; Feng, Shuang; Zhao, Changming

    2013-08-01

    High-frequency laser will be able to enter the enemy laser signal processing systems without encoded identification and a copy. That makes it one of the research directions of new interference sources. In order to study the interference mechanism of high-frequency laser to laser guided weapons. According to the principle of high-frequency laser interference, a series of related theoretical models such as a semi-active laser seeker coded identification model, a time door model, multi-signal processing model and a interference signal modulation processing model are established. Then seeker interfere with effective 3σ criterion is proposed. Based on this, the study of the effect of multi-source interference and signal characteristics of the effect of high repetition frequency laser interference are key research. According to the simulation system testing, the results show that the multi-source interference and interference signal frequency modulation can effectively enhance the interference effect. While the interference effect of the interference signal amplitude modulation is not obvious. The research results will provide the evaluation of high-frequency laser interference effect and provide theoretical references for high-frequency laser interference system application.

  4. Theory and application study on attenuation behaviors in heterogeneous medium about high frequency impulses electromagnetic wave

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H. [China Coal Research Institute, Beijing (China). Beijing Research Institute of Coal Mining

    2001-12-01

    From Maxwell's equations, the attenuation behaviours of high frequency impulse electromagnetic wave during its propagation in underground heterogeneous medium are studied and analysed. Fairly good results are obtained when it is applied to the engineering surveying of weak foundation. By introducing Cole-Cole formula to describe the attenuation behaviours of the complex dielectric constant and character factor in heterogeneous medium, the attenuation behaviours of the high frequency impulse electromagnetic wave in underground heterogeneous medium can be theoretically described. The engineering applications demonstrate the use of attenuation behaviours of GPR high frequency impulse electromagnetic wave to study fault belts, underground fissures, weak foundations above underground space etc. This makes further explanation and assessment of weak foundation feasible, and the evaluation is characterised by low investment, quick result, high precision and non-destructive detection. 6 refs., 3 figs., 1 tab.

  5. Influence of high frequency pulse on electrode wear in micro-EDM

    Directory of Open Access Journals (Sweden)

    Xiao-peng Li

    2014-09-01

    Full Text Available An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix Ni–TiN cylindrical coating electrode, copper electrode and Cu50W electrode. The wear mechanism of Ni–TiN/Cu composite electrode in the case of high-frequency pulse current is studied, and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out. Compared with the electrode made from homogeneous material, the high frequency electromagnetic properties of Ni–TiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.

  6. Influence of high frequency pulse on electrode wear in micro-EDM

    Institute of Scientific and Technical Information of China (English)

    Xiao-peng LI; Yuan-gang WANG; Fu-ling ZHAO; Meng-hua WU; Yu LIU

    2014-01-01

    An electromagnetic coupling mathematical model is established by finite element method and is verified by the contrastive experiments of copper matrix NieTiN cylindrical coating electrode, copper electrode and Cu50W electrode. The wear mechanism of NieTiN/Cu composite electrode in the case of high-frequency pulse current is studied, and the influence of the fluctuation frequency of discharge current on electrode wear in micro-EDM is found out. Compared with the electrode made from homogeneous material, the high frequency electromagnetic properties of NieTiN composite layer can be used effectively to inhibit the effect of high frequency pulse on the electrode and improve the distribution trend of current density.

  7. Advanced waveforms and frequency with spinal cord stimulation: burst and high-frequency energy delivery.

    Science.gov (United States)

    Pope, Jason E; Falowski, Steven; Deer, Tim R

    2015-07-01

    In recent years, software development has been key to the next generation of neuromodulation devices. In this review, we will describe the new strategies for electrical waveform delivery for spinal cord stimulation. A systematic literature review was performed using bibliographic databases, limited to the English language and human data, between 2010 and 2014. The literature search yielded three articles on burst stimulation and four articles on high-frequency stimulation. High-frequency and burst stimulation may offer advantages over tonic stimulation, as data suggest improved patient tolerance, comparable increase in function and possible success with a subset of patients refractory to tonic spinal cord stimulation. High-frequency and burst stimulation are new ways to deliver energy to the spinal cord that may offer advantages over tonic stimulation. These may offer new salvage strategies to mitigate spinal cord stimulation failure and improve cost-effectiveness by reducing explant rate.

  8. Applications of High-Frequency Gravitational Waves to the Global War on Terror

    Science.gov (United States)

    Baker, Robert M. L.

    2010-01-01

    Applications of high-frequency gravitational waves or HFGWs to the global war on terror are now realistic because technology developed by GravWave® LLC and other institutions overseas can lead to devices, some already constructed, that can generate and detect HFGWs. In fact, three HFGW detectors have been built outside the United States and an ultra high-sensitive Li-Baker HFGW Detector has been proposed. HFGW generators have been proposed theoretically by the Russians, Germans, Italians and Chinese. Because of their unique characteristics, such as their ability to pass through all material without attenuation, HFGWs could be utilized for uninterruptible, very low-probability-of-intercept (LPI), high-bandwidth communications among and between anti-terrorist assets. One such communications system, which can be constructed from off-the-shelf elements, is discussed. The HFGW generation device or transmitter alternative selected is based upon bands of piezoelectric crystal, film-bulk acoustic resonators or FBARs energized by conventional Magnetrons. The system is theoretically capable of transmitting and detecting, through use of the Li-Baker HFGW detector, a signal generated on the opposite side of the Earth. Although HFGWs do not interact with and are not absorbed by ordinary matter, their presence can be detected by their distortion of spacetime as measured by the Laser Interferometer Gravitational Observatory (LIGO), Virgo, GEO600, et al., by detection photons generated from electromagnetic beams having the same frequency, direction and phase as the HFGWs in a superimposed magnetic field (Li-Baker HFGW Detector), by the change in polarization HFGWs produce in a microwave guide (Birmingham University Detector) and by other such instruments. Potential theoretical applications, which may or may not be practical yet theoretically possible, are propulsion, including "moving" space objects such as missiles, anti-missiles and warheads in flight; surveillance through

  9. High frequency hearing thresholds and product distortion otoacoustic emissions in cystic fibrosis patients,

    Directory of Open Access Journals (Sweden)

    Lucia Bencke Geyer

    2015-12-01

    Full Text Available ABSTRACT INTRODUCTION: The treatment of patients with cystic fibrosis involves the use of ototoxic drugs, mainly aminoglycoside antibiotics. Due to the use of these drugs, fibrocystic patients are at risk of developing hearing loss. OBJECTIVE: To evaluate the hearing of patients with cystic fibrosis by High Frequency Audiometry and Distortion Product Otoacoustic Emissions. METHODS: Cross-sectional study. The study group consisted of 39 patients (7-20 years of age with cystic fibrosis and a control group of 36 individuals in the same age group without otologic complaints, with normal audiometric thresholds and type A tympanometric curves. High Frequency Audiometry and Distortion Product Otoacoustic Emissions tests were conducted. RESULTS: The study group had significantly higher thresholds at 250, 1000, 8000, 9000, 10,000, 12,500, and 16,000 Hz (p = 0.004 as well as higher prevalence of otoacoustic emission alterations at 1000 and 6000 Hz (p = 0.001, with significantly lower amplitudes at 1000, 1400, and 6000 Hz. There was a significant association between alterations in hearing thresholds in High Frequency Audiometry with the number of courses of aminoglycosides administered (p = 0.005. Eighty-three percent of patients who completed more than ten courses of aminoglycosides had hearing loss in High Frequency Audiometry. CONCLUSION: A significant number of patients with cystic fibrosis who received repeated courses of aminoglycosides showed alterations in High Frequency Audiometry and Distortion Product Otoacoustic Emissions. The implementation of ten or more aminoglycoside cycles was associated with alterations in High Frequency Audiometry.

  10. A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data

    DEFF Research Database (Denmark)

    Hansen, Peter Reinhard; Lunde, Asger

    2005-01-01

    We consider the problem of deriving an empirical measure of daily integrated variance (IV) in the situation where high-frequency price data are unavailable for part of the day. We study three estimators in this context and characterize the assumptions that justify their use. We show that the opti......We consider the problem of deriving an empirical measure of daily integrated variance (IV) in the situation where high-frequency price data are unavailable for part of the day. We study three estimators in this context and characterize the assumptions that justify their use. We show...

  11. Effect of high-frequency excitation on natural frequencies of spinning discs

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2000-01-01

    The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural frequenc......The effect of high-frequency, non-resonant parametric excitation on the low-frequency response of spinning discs is considered. The parametric excitation is obtained through a non-constant rotation speed, where the frequency of the pulsating overlay is much higher than the lowest natural...

  12. Investigation of the induced gate noise of nanoscale MOSFETs in the very high frequency region

    International Nuclear Information System (INIS)

    In this paper, we investigated the induced gate current noise of nanoscale N/PMOS devices. To analyze the induced gate noise, the induced gate current noise source model was analytically derived. By using the proposed model, the induced gate noise source was compared with other noise sources, and its impact on noise parameters was also analyzed in long-channel and nanoscale N/PMOS devices in the very high frequency region (>100 GHz). The results showed that the induced gate noise of sub-40 nm CMOS technology is negligible, even in the design of very high frequency circuits. (paper)

  13. Noninvasive Diagnosis of Coronary Artery Disease Using 12-Lead High-Frequency Electrocardiograms

    Science.gov (United States)

    Schlegel, Todd T.; Arenare, Brian

    2006-01-01

    A noninvasive, sensitive method of diagnosing certain pathological conditions of the human heart involves computational processing of digitized electrocardiographic (ECG) signals acquired from a patient at all 12 conventional ECG electrode positions. In the processing, attention is focused on low-amplitude, high-frequency components of those portions of the ECG signals known in the art as QRS complexes. The unique contribution of this method lies in the utilization of signal features and combinations of signal features from various combinations of electrode positions, not reported previously, that have been found to be helpful in diagnosing coronary artery disease and such related pathological conditions as myocardial ischemia, myocardial infarction, and congestive heart failure. The electronic hardware and software used to acquire the QRS complexes and perform some preliminary analyses of their high-frequency components were summarized in Real-Time, High-Frequency QRS Electrocardiograph (MSC- 23154), NASA Tech Briefs, Vol. 27, No. 7 (July 2003), pp. 26-28. To recapitulate, signals from standard electrocardiograph electrodes are preamplified, then digitized at a sampling rate of 1,000 Hz, then analyzed by the software that detects R waves and QRS complexes and analyzes them from several perspectives. The software includes provisions for averaging signals over multiple beats and for special-purpose nonrecursive digital filters with specific low- and high-frequency cutoffs. These filters, applied to the averaged signal, effect a band-pass operation in the frequency range from 150 to 250 Hz. The output of the bandpass filter is the desired high-frequency QRS signal. Further processing is then performed in real time to obtain the beat-to-beat root mean square (RMS) voltage amplitude of the filtered signal, certain variations of the RMS voltage, and such standard measures as the heart rate and R-R interval at any given time. A key signal feature analyzed in the present

  14. Hydrogen negative ion in an intense high-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Effect of the intense electromagnetic field on quantum system is considered in high-frequency approximation. By means of averaging-out by field fast oscillations the problem is reduced to the solution of Schroedinger stationary equation with effective potential. Problem concerning shift of hydrogen negative ion level in high-frequency field is solved and effect of bound state disappearance in the intense field is considered in addition. Values of field parameters where this effect may occur are estimated. 12 refs.; 1 fig

  15. Effectiveness of treatment with high-frequency chest wall oscillation in patients with bronchiectasis

    OpenAIRE

    Nicolini, Antonello; Cardini, Federica; Landucci, Norma; Lanata, Sergio; Ferrari-Bravo, Maura; Barlascini, Cornelius

    2013-01-01

    Background High-frequency airway clearance (HFCWC) assist devices generate either positive or negative trans-respiratory pressure excursions to produce high-frequency, small-volume oscillations in the airways. HFCWC can lead to changes in volume of 15–57 ml and in flow up to 1.6 L/s, which generate minimal coughing to mobilize secretions. The typical treatment lasts 20–30 minutes, and consists of short periods of compression at different frequencies, separated by coughing. The aim of this stu...

  16. Interference Dynamics of Hydrogen Atoms in High-Frequency Dichromatic Laser Fields

    Institute of Scientific and Technical Information of China (English)

    程太旺; 李晓峰; 傅盘铭; 陈式刚

    2002-01-01

    We investigate the ionization and high-order harmonic generation of a hydrogen atom in high-frequency (several atomic units) super strong (up to several tens of atomic units) dichromatic laser fields. An effective iterative method in the framework of high-frequency Floquet theory is used in the calculations. We have considered two kinds of dichromatic laser field, i.e. 1ω - 2ω and lω - 3ω. We find that, in both the cases, the ionization and high-order harmonic generation show evident dependence on the relative phase and strength of the additional harmonic field. The dynamical origin of these interference effects is also discussed.

  17. Planning the most suitable travel speed for high frequency railway lines

    DEFF Research Database (Denmark)

    Landex, Alex; Kaas, Anders H.

    2005-01-01

    This paper presents a new method to calculate the most suitable travel speed for high frequency railway lines to achieve as much capacity as possible for congested railway lines. The method calculates the most suitable travel speed based on the braking distance and information about the interlock......This paper presents a new method to calculate the most suitable travel speed for high frequency railway lines to achieve as much capacity as possible for congested railway lines. The method calculates the most suitable travel speed based on the braking distance and information about...

  18. Chinese Short-Text Classification Based on Topic Model with High-Frequency Feature Expansion

    Directory of Open Access Journals (Sweden)

    Hu Y. Jun

    2013-08-01

    Full Text Available Short text differs from traditional documents in its shortness and sparseness. Feature extension can ease the problem of high sparseness in the vector space model, but it inevitably introduces noise. To resolve this problem, this paper proposes a high-frequency feature expansion method based on a latent Dirichlet allocation (LDA topic model. High-frequency features are extracted from each category as the feature space, using LDA to derive latent topics from the corpus, and topic words are extended to the short text. Extensive experiments are conducted on Chinese short messages and news titles. The proposed method for classifying Chinese short texts outperforms conventional classification methods.

  19. Fast control technique for high frequency (5MHz) DC/DC integrated converter

    OpenAIRE

    Viejo de Frutos, Miriam del; Alou Cervera, Pedro; Oliver Ramírez, Jesús Angel; García Suárez, Oscar; Cobos Márquez, José Antonio

    2010-01-01

    A switching frequency of 5 MHz allows the integration in a chip of a low power (10W) DC/DC converter. Although this switching frequency would make feasible a voltage mode control with 1MHz bandwidth, the parasitics and robustness don't allow such a high frequency bandwidth. This paper proposes a fast control technique that helps to optimize the dynamic response of high frequency DC/DC converter. The control proposed and analyzed in this paper is based on the peak current mode control of the o...

  20. Adaptive control of linear multivariable systems with high frequency gain matrix hurwitz

    Institute of Scientific and Technical Information of China (English)

    Ying ZHOU; Yuqiang WU; Shumin FEI

    2005-01-01

    A new adaptive control scheme is proposed for multivariable model reference adaptive control(MRAC) systems based on the nonlinear backstepping approach with vector form.The assumption on a priori knowledge of the high frequency gain matrix in existing results is relaxed and the new required condition for the high frequency gain matrix can be easily checked for certain plants so that the proposed method is widely applicable.This control scheme guarantees the global stability of the closed-loop systems and the tracking error can be arbitrary small.The simulation result for an application example shows the validity of the proposed nonlinear adaptive scheme.

  1. Required changes in emission standards for high-frequency noise in power systems

    Energy Technology Data Exchange (ETDEWEB)

    Lundmark, C.M.; Larsson, E.O.A. [Lulea Univ. of Technology, Skelleftea (Sweden); Bollen, M.H.J. [STRI AB, Ludvika (Sweden)

    2006-07-01

    This paper discusses some recent developments that make the existing standards on the emission of high-frequency noise in power systems due for reconsideration. It is shown that it is possible for an equipment to remain below the emission limits while at the same time the disturbance level increases beyond what was intended by the standard document. Further, the change from analog to digital communication and the use of communication via the power system, make that the permitted disturbance levels need to be reconsidered. This paper also contains an example of measured high-frequency noise and proposes a framework for re-coordination of emission and immunity levels. (Author)

  2. Investigation of the induced gate noise of nanoscale MOSFETs in the very high frequency region

    Science.gov (United States)

    Jeon, Jongwook; Kim, Yoon; Kang, Myounggon

    2016-06-01

    In this paper, we investigated the induced gate current noise of nanoscale N/PMOS devices. To analyze the induced gate noise, the induced gate current noise source model was analytically derived. By using the proposed model, the induced gate noise source was compared with other noise sources, and its impact on noise parameters was also analyzed in long-channel and nanoscale N/PMOS devices in the very high frequency region (>100 GHz). The results showed that the induced gate noise of sub-40 nm CMOS technology is negligible, even in the design of very high frequency circuits.

  3. Implementation of Low Frequency Ac to High Frequency Ac with Single Stage Zvs-Pwm Inverter

    Directory of Open Access Journals (Sweden)

    S. Arumugam S. Ramareddy M. Sridhar

    2011-12-01

    Full Text Available This paper presents a novel soft-switching pulse width modulation (PWM utility frequency AC to high frequency (HF AC power conversion circuit incorporating boost-active clamp single stage inverter topology. This power converter is more suitable and acceptable for cost effective HF consumer induction heating applications. Its operating principle is presented. The operating performances of this high frequency inverter using the latest insulated gate bipolar transistors are illustrated, which includes HFAC power regulation ranges and actual efficiency characteristics based on zero voltage soft switching operation ranges.. The simulation circuits are models are developed and they are simulated using ORCAD.

  4. Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.

    Science.gov (United States)

    Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent

    2014-06-01

    Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.

  5. Casimir force between $\\delta-\\delta^{\\prime}$ mirrors transparent at high frequencies

    CERN Document Server

    Braga, Alessandra N; Alves, Danilo T

    2016-01-01

    We investigate, in the context of a real massless scalar field in $1+1$ dimensions, models of partially reflecting mirrors simulated by Dirac $\\delta-\\delta^{\\prime}$ point interactions. In the literature, these models do not exhibit full transparency at high frequencies. In order to provide a more realistic feature for these models, we propose a modified $\\delta-\\delta^{\\prime}$ point interaction that enables to achieve full transparency in the limit of high frequencies. Taking this modified $\\delta-\\delta^{\\prime}$ model into account, we investigate the Casimir force, comparing our results with those found in the literature.

  6. Designing All-Pole Filters for High-Frequency Phase-Locked Loops

    Directory of Open Access Journals (Sweden)

    Ricardo Bressan Pinheiro

    2014-01-01

    signals exchanged between the nodes of the networks and detected by PLLs. The necessity to improve clock precision that follows the bandwidth increase provoked the improvement of the filter component of the PLLs, avoiding instability and high-frequency components in the reference signals. Here, a technique of designing this kind of filter is presented, considering second-order filters, implying third-order PLLs. Simulations show that following this technique produces very fast tracking processes, enabling precise operation even for very high frequencies.

  7. Design of a piezoelectrically driven hydraulic amplification microvalve for high-pressure high-frequency applications

    Science.gov (United States)

    Roberts, David C.; Hagood, Nesbitt W.; Su, Yu-Hsuan; Li, Hanqing; Carretero, Jorge A.

    2000-06-01

    This paper reports the design of a piezoelectrically-driven microfabricated valve for high frequency control of large pressure fluid flows. The enabling concept of the valve is the ability to convert the small displacement of a piezoelectric element into a large valve cap stroke through the use of a hydraulic fluid, while maintaining high force capability. The current valve design, with operating frequency of 24 kHz and valve stroke of 40 micrometer, has been tailored for use in microhydraulic actuation and energy-harvesting devices, which require high-frequency regulation of approximately 1 ml/sec fluid flows across pressure differentials of 1-2 MPa.

  8. Single phase AC-DC power factor corrected converter with high frequency isolation using buck converter

    Directory of Open Access Journals (Sweden)

    R. Ramesh,

    2014-03-01

    Full Text Available Single phase ac-dc converters having high frequency isolation are implemented in buck, boost, buck-boost configuration with improving the power quality in terms of reducing the harmonics of input current. The paperpropose the circuit configuration, control mechanism, and simulation result for the single phase ac-dc converter.

  9. High Frequency Discharge Plasma Induced Grafting of Polystyrene onto Titanium Dioxide Powder

    Institute of Scientific and Technical Information of China (English)

    ZHONG Shaofeng; OU Qiongrong; MENG Yuedong

    2007-01-01

    Grafting of polystyrene (PS) onto titanium dioxide powder was investigated. The graft polymerization reaction was induced by high frequency discharge produced N2 plasma treatment of the surfaces of titanium dioxide. IR , XPS and TGA results show that PS was grafted on the titanium dioxide powder. And the crystal structure of the titanium dioxide powder observed by XRD was unchanged after plasma treatment.

  10. New technique for fabrication of high frequency piezoelectric Micromachined Ultrasound Transducers

    DEFF Research Database (Denmark)

    Pedersen, T; Thomsen, Erik Vilain; Zawada, T;

    2008-01-01

    A novel technique for fabrication of linear arrays of high frequency piezoelectric Micromachined Ultrasound Transducers (pMUT) on silicon substrates is presented. Piezoelectric elements are formed by deposition of PZT ((PbZrxTi1-x)O3) into etched features of the silicon substrate...

  11. Computing effective properties of nonlinear structures exposed to strong high-frequency loading at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2006-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  12. Effective properties of mechanical systems under high-frequency excitation at multiple frequencies

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2008-01-01

    Effects of strong high-frequency excitation at multiple frequencies (multi-HFE) are analyzed for a class of generally nonlinear systems. The effects are illustrated for a simple pendulum system with a vibrating support, and for a parametrically excited flexible beam. For the latter, theoretical...

  13. Planck early results. IV. First assessment of the High Frequency Instrument in-flight performance

    DEFF Research Database (Denmark)

    Bréelle, E.; Bucher, M.; Cressiot, C.;

    2011-01-01

    The Planck High Frequency Instrument (HFI) is designed to measure the temperature and polarization anisotropies of the cosmic microwave background and Galactic foregrounds in six ~30% bands centered at 100, 143, 217, 353, 545, and 857 GHz at an angular resolution of 10′ (100 GHz), 7′ (143 GHz), a...

  14. High Frequency AC Inductor Analysis and Design for Dual Active Bridge (DAB) Converters

    DEFF Research Database (Denmark)

    Zhang, Zhe; Andersen, Michael A. E.

    2016-01-01

    The dual active bridge (DAB) converter is an isolated bidirectional dc-dc topology which is the most critical part for the power conversion systems such as solid-state transformers (SST). This paper focuses on analysis and design of high frequency ac inductors which are the power interfacing...

  15. Ventilation strategies and outcome in randomised trials of high frequency ventilation

    OpenAIRE

    Thome, U; Carlo, W; Pohlandt, F

    2005-01-01

    Objective: Randomised controlled trials comparing elective use of high frequency ventilation (HFV) with conventional mechanical ventilation (CMV) in preterm infants have yielded conflicting results. We hypothesised that the variability of results may be explained by differences in study design, ventilation strategies, delay in initiation of HFV, and use of permissive hypercapnia.

  16. Very High Frequency Resonant DC/DC Converters for LED Lighting

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents a very high frequency DC/DC converter for LED lighting. Several resonant topologies are compared and their usability discussed. At the end the resonant SEPIC converter is chosen based on the achievable power density and total bill of material. Simulations of a 51 MHz converter...

  17. Self-oscillating Galvanic Isolated Bidirectional Very High Frequency DC-DC Converter

    DEFF Research Database (Denmark)

    Pedersen, Jeppe Arnsdorf; Madsen, Mickey Pierre; Knott, Arnold;

    2015-01-01

    This paper describes a galvanic isolated bidirectional Very High Frequency (VHF = 30 MHz - 300MHz) ClassE converter. The reason for increasing the switching frequency is to minimize the passive components in the converter. To make the converter topology bidirectional the rectifier has to be synch...

  18. Spontaneous breathing during high-frequency oscillatory ventilation improves regional lung characteristics in experimental lung injury

    NARCIS (Netherlands)

    van Heerde, M.; Roubik, K.; Kopelent, V.; Kneyber, M. C. J.; Markhorst, D. G.

    2010-01-01

    Background Maintenance of spontaneous breathing is advocated in mechanical ventilation. This study evaluates the effect of spontaneous breathing on regional lung characteristics during high-frequency oscillatory (HFO) ventilation in an animal model of mild lung injury. Methods Lung injury was induce

  19. Respiratory Control in Stuttering Speakers: Evidence from Respiratory High-Frequency Oscillations.

    Science.gov (United States)

    Denny, Margaret; Smith, Anne

    2000-01-01

    This study examined whether stuttering speakers (N=10) differed from fluent speakers in relations between the neural control systems for speech and life support. It concluded that in some stuttering speakers the relations between respiratory controllers are atypical, but that high participation by the high frequency oscillation-producing circuitry…

  20. High-frequency ultrasound for monitoring changes in liver tissue during preservation

    International Nuclear Information System (INIS)

    Currently the only method to assess liver preservation injury is based on liver appearance and donor medical history. Previous work has shown that high-frequency ultrasound could detect ischemic cell death due to changes in cell morphology. In this study, we use high-frequency ultrasound integrated backscatter to assess liver damage in experimental models of liver ischemia. Ultimately, our goal is to predict organ suitability for transplantation using high-frequency imaging and spectral analysis techniques. To examine the effects of liver ischemia at different temperatures, livers from Wistar rats were surgically excised, immersed in phosphate buffer saline and stored at 4 and 20 deg. C for 24 h. To mimic organ preservation, livers were excised, flushed with University of Wisconsin (UW) solution and stored at 4 deg. C for 24 h. Preservation injury was simulated by either not flushing livers with UW solution or, before scanning, allowing livers to reach room temperature. Ultrasound images and corresponding radiofrequency data were collected over the ischemic period. No significant increase in integrated backscatter (∼2.5 dBr) was measured for the livers prepared using standard preservation conditions. For all other ischemia models, the integrated backscatter increased by 4-9 dBr demonstrating kinetics dependent on storage conditions. The results provide a possible framework for using high-frequency imaging to non-invasively assess liver preservation injury

  1. High-frequency ultrasound for monitoring changes in liver tissue during preservation

    Science.gov (United States)

    Vlad, Roxana M.; Czarnota, Gregory J.; Giles, Anoja; Sherar, Michael D.; Hunt, John W.; Kolios, Michael C.

    2005-01-01

    Currently the only method to assess liver preservation injury is based on liver appearance and donor medical history. Previous work has shown that high-frequency ultrasound could detect ischemic cell death due to changes in cell morphology. In this study, we use high-frequency ultrasound integrated backscatter to assess liver damage in experimental models of liver ischemia. Ultimately, our goal is to predict organ suitability for transplantation using high-frequency imaging and spectral analysis techniques. To examine the effects of liver ischemia at different temperatures, livers from Wistar rats were surgically excised, immersed in phosphate buffer saline and stored at 4 and 20 °C for 24 h. To mimic organ preservation, livers were excised, flushed with University of Wisconsin (UW) solution and stored at 4 °C for 24 h. Preservation injury was simulated by either not flushing livers with UW solution or, before scanning, allowing livers to reach room temperature. Ultrasound images and corresponding radiofrequency data were collected over the ischemic period. No significant increase in integrated backscatter (~2.5 dBr) was measured for the livers prepared using standard preservation conditions. For all other ischemia models, the integrated backscatter increased by 4-9 dBr demonstrating kinetics dependent on storage conditions. The results provide a possible framework for using high-frequency imaging to non-invasively assess liver preservation injury.

  2. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion c

  3. High-frequency ultrasound for monitoring changes in liver tissue during preservation

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, Roxana M [Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Czarnota, Gregory J [Department of Radiation Oncology, University of Toronto, Toronto, Ontario (Canada); Giles, Anoja [Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Sherar, Michael D [Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Hunt, John W [Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada); Kolios, Michael C [Department of Medical Biophysics, University of Toronto, Toronto, Ontario (Canada)

    2005-01-21

    Currently the only method to assess liver preservation injury is based on liver appearance and donor medical history. Previous work has shown that high-frequency ultrasound could detect ischemic cell death due to changes in cell morphology. In this study, we use high-frequency ultrasound integrated backscatter to assess liver damage in experimental models of liver ischemia. Ultimately, our goal is to predict organ suitability for transplantation using high-frequency imaging and spectral analysis techniques. To examine the effects of liver ischemia at different temperatures, livers from Wistar rats were surgically excised, immersed in phosphate buffer saline and stored at 4 and 20 deg. C for 24 h. To mimic organ preservation, livers were excised, flushed with University of Wisconsin (UW) solution and stored at 4 deg. C for 24 h. Preservation injury was simulated by either not flushing livers with UW solution or, before scanning, allowing livers to reach room temperature. Ultrasound images and corresponding radiofrequency data were collected over the ischemic period. No significant increase in integrated backscatter ({approx}2.5 dBr) was measured for the livers prepared using standard preservation conditions. For all other ischemia models, the integrated backscatter increased by 4-9 dBr demonstrating kinetics dependent on storage conditions. The results provide a possible framework for using high-frequency imaging to non-invasively assess liver preservation injury.

  4. Theories and experiments on the stiffening effect of high-frequency excitation for continuous elastic systems

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2003-01-01

    for demonstrating and measuring the stiffening effect in a simple setting, in the form of a horizontal piano string subjected to longitudinal high-frequency excitation at the clamped base and free at the other end. A simplest possible theoretical model is set up and analyzed using a hierarchy of three approximating...

  5. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    Science.gov (United States)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  6. Investigation into high-frequency-vibration assisted micro-blanking of pure copper foils

    Directory of Open Access Journals (Sweden)

    Wang Chunju

    2015-01-01

    Full Text Available The difficulties encountered during the manufacture of microparts are often associated with size effects relating to material, process and tooling. Utilizing acoustoplastic softening, achieved through a high-frequency vibration assisted micro-blanking process, was introduced to improve the surface finish in micro-blanking. A frequency of 1.0 kHz was chosen to activate the longitudinal vibration mode of the horn tip, using a piezoelectric actuator. A square hole with dimensions of 0.5 mm × 0.5 mm was made, successfully, from a commercial rolled T2 copper foil with 100 μm in thickness. It was found that the maximum blanking force could be reduced by 5% through utilizing the high-frequency vibration. Proportion of the smooth, burnished area in the cut cross-section increases with an increase of the plasticity to fracture, under the high-frequency vibration, which suggests that the vibration introduced is helpful for inhibiting evolution of the crack due to its acoustoplastic softening effect. During blanking, roughness of the burnished surface could be reduced by increasing the vibration amplitude of the punch, which played a role as surface polishing. The results obtained suggest that the high-frequency vibration can be adopted in micro-blanking in order to improve quality of the microparts.

  7. High-Frequency Oscillatory Ventilation in Pediatric Acute Lung Injury : A Multicenter International Experience

    NARCIS (Netherlands)

    Rettig, Jordan S; Smallwood, Craig D; Walsh, Brian K; Rimensberger, Peter C; Bachman, Thomas E; Bollen, Casper W.; Duval, Els L; Gebistorf, Fabienne; Markhorst, Dick G; Tinnevelt, Marcel; Todd, Mark; Zurakowski, David; Arnold, John H

    2015-01-01

    OBJECTIVE: We aim to describe current clinical practice, the past decade of experience and factors related to improved outcomes for pediatric patients receiving high-frequency oscillatory ventilation. We have also modeled predictive factors that could help stratify mortality risk and guide future hi

  8. High Frequency Synchrony in the Cerebellar Cortex during Goal Directed Movements

    Directory of Open Access Journals (Sweden)

    Jonathan David Groth

    2015-07-01

    Full Text Available The cerebellum is involved in sensory-motor integration and cognitive functions. The origin and function of the field potential oscillations in the cerebellum, especially in the high frequencies, have not been explored sufficiently. The primary objective of this study was to investigate the spatio-temporal characteristics of high frequency field potentials (150-350Hz in the cerebellar cortex in a behavioral context. To this end, we recorded from the paramedian lobule in rats using micro electro-corticogram (µ-ECoG electrode arrays while the animal performed a lever press task using the forelimb. The phase synchrony analysis shows that the high frequency oscillations recorded at multiple points across the paramedian cortex episodically synchronize immediately before and desynchronize during the lever press. The electrode contacts were grouped according to their temporal course of phase synchrony around the time of lever press. Contact groups presented patches with slightly stronger synchrony values in the medio-lateral direction, and did not appear to form parasagittal zones. The size and location of these patches on the cortical surface are in agreement with the sensory evoked granular layer patches originally reported by Welker’s lab (Shambes, 1978. Spatiotemporal synchrony of high frequency field potentials has not been reported at such large-scales previously in the cerebellar cortex.

  9. Finite-Element Modeling of Viscoelastic Cells During High-Frequency Cyclic Strain

    Directory of Open Access Journals (Sweden)

    David W. Holdsworth

    2012-03-01

    Full Text Available Mechanotransduction refers to the mechanisms by which cells sense and respond to local loads and forces. The process of mechanotransduction plays an important role both in maintaining tissue viability and in remodeling to repair damage; moreover, it may be involved in the initiation and progression of diseases such as osteoarthritis and osteoporosis. An understanding of the mechanisms by which cells respond to surrounding tissue matrices or artificial biomaterials is crucial in regenerative medicine and in influencing cellular differentiation. Recent studies have shown that some cells may be most sensitive to low-amplitude, high-frequency (i.e., 1–100 Hz mechanical stimulation. Advances in finite-element modeling have made it possible to simulate high-frequency mechanical loading of cells. We have developed a viscoelastic finite-element model of an osteoblastic cell (including cytoskeletal actin stress fibers, attached to an elastomeric membrane undergoing cyclic isotropic radial strain with a peak value of 1,000 µstrain. The results indicate that cells experience significant stress and strain amplification when undergoing high-frequency strain, with peak values of cytoplasmic strain five times higher at 45 Hz than at 1 Hz, and peak Von Mises stress in the nucleus increased by a factor of two. Focal stress and strain amplification in cells undergoing high-frequency mechanical stimulation may play an important role in mechanotransduction.

  10. Sensors for High Frequency monitoring of cyanoHABs and cyanotoxin production

    Science.gov (United States)

    The use of sensors in environmental monitoring is an area of constant evolution. As monitoring needs present themselves, technology development follows. Here, the use of high frequency data to monitor and predict HABs is presented illustrating the successful use of technology a...

  11. Negative expectations facilitate mechanical hyperalgesia after high-frequency electrical stimulation of human skin

    NARCIS (Netherlands)

    Broeke, E.N. van den; Geene, N.; Rijn, C.M. van; Wilder-Smith, O.H.G.; Oosterman, J.

    2014-01-01

    BACKGROUND: High-frequency electrical stimulation (HFS) of human skin induces not only an increased pain sensitivity in the conditioning area but also an increased pain sensitivity to mechanical punctate stimuli in the non-conditioned surrounding skin area. The aim of the present study was to invest

  12. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    NARCIS (Netherlands)

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    BACKGROUND: High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is

  13. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    NARCIS (Netherlands)

    Broeke, E.N. van den; Heck, C.H. van; Rijn, C.M. van; Wilder-Smith, O.H.G.

    2011-01-01

    Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is t

  14. Automatic detection of high frequency oscillations during epilepsy surgery predicts seizure outcome

    NARCIS (Netherlands)

    Fedele, Tommaso; van 't Klooster, Maryse; Burnos, Sergey; Zweiphenning, Willemiek; van Klink, Nicole; Leijten, Frans; Zijlmans, Maeike; Sarnthein, Johannes

    2016-01-01

    OBJECTIVE: High frequency oscillations (HFOs) and in particular fast ripples (FRs) in the post-resection electrocorticogram (ECoG) have recently been shown to be highly specific predictors of outcome of epilepsy surgery. FR visual marking is time consuming and prone to observer bias. We validate her

  15. Surfactant nebulization versus instillation during high frequency ventilation in surfactant-deficient rabbits

    NARCIS (Netherlands)

    Dijk, PH; Heikamp, A; Oetomo, SB

    1998-01-01

    Surfactant nebulization improves lung function at low alveolar doses of surfactant. However, efficiency of nebulization is low, and lung deposition seems to depend on lung aeration. High frequency ventilation (HFV) has been shown to improve lung aeration. We hypothesize that the combination of HFV a

  16. Feasibility of weaning and direct extubation from open lung high-frequency ventilation in preterm infants

    NARCIS (Netherlands)

    A. van Velzen; A. de Jaegere; J. van der Lee; A. van Kaam

    2009-01-01

    OBJECTIVE: High-frequency ventilation (HFV) is increasingly used in preterm infants, but data on weaning and extubation are limited. We aimed to establish if weaning the continuous distending pressure (CDP) below 8 cm H2O and the Fio2 below 0.30 is feasible in preterm infants on open lung HFV and if

  17. Strong Orientation Effects in Ionization of H$_2^+$ by Short, Intense, High-Frequency Light Sources

    OpenAIRE

    Selsto, S.; Forre, M.; Hansen, J. P.; Madsen, L. B.

    2005-01-01

    We present three dimensional time-dependent calculations of ionization of arbitrarily spatially oriented H$_2^+$ by attosecond, intense, high-frequency laser fields. The ionization probability shows a strong dependence on both the internuclear distance and the relative orientation between the laser field and the internuclear axis.

  18. A Simplified Analytical Technique for High Frequency Characterization of Resonant Tunneling Diode

    Directory of Open Access Journals (Sweden)

    DESSOUKI, A. A. S.

    2014-11-01

    Full Text Available his paper proposes a simplified analytical technique for high frequency characterization of the resonant tunneling diode (RTD. An equivalent circuit of the RTD that consists of a parallel combination of conductance, G (V, f, and capacitance, C (V, f is formulated. The proposed approach uses the measured DC current versus voltage characteristic of the RTD to extract the equivalent circuit elements parameters in the entire bias range. Using the proposed analytical technique, the frequency response - including the high frequency range - of many characteristic aspects of the RTD is investigated. Also, the maximum oscillation frequency of the RTD is calculated. The results obtained have been compared with those concluded and reported in the literature. The reported results in literature were obtained through simulation of the RTD at high frequency using either a computationally complicated quantum simulator or through difficult RF measurements. A similar pattern of results and highly concordant conclusion are obtained. The proposed analytical technique is simple, correct, and appropriate to investigate the behavior of the RTD at high frequency. In addition, the proposed technique can be easily incorporated into SPICE program to simulate circuits containing RTD.

  19. Cluster observations of high-frequency waves in the exterior cusp

    Directory of Open Access Journals (Sweden)

    Y. Khotyaintsev

    2004-07-01

    Full Text Available We study wave emissions, in the frequency range from above the lower hybrid frequency up to the plasma frequency, observed during one of the Cluster crossings of a high-beta exterior cusp region on 4 March 2003. Waves are localized near narrow current sheets with a thickness a few times the ion inertial length; currents are strong, of the order of 0.1-0.5μA/m2 (0.1-0.5mA/m2 when mapped to ionosphere. The high frequency part of the waves, frequencies above the electron-cyclotron frequency, is analyzed in more detail. These high frequency waves can be broad-band, can have spectral peaks at the plasma frequency or spectral peaks at frequencies below the plasma frequency. The strongest wave emissions usually have a spectral peak near the plasma frequency. The wave emission intensity and spectral character change on a very short time scale, of the order of 1s. The wave emissions with strong spectral peaks near the plasma frequency are usually seen on the edges of the narrow current sheets. The most probable generation mechanism of high frequency waves are electron beams via bump-on-tail or electron two-stream instability. Buneman and ion-acoustic instability can be excluded as a possible generation mechanism of waves. We suggest that high frequency waves are generated by electron beams propagating along the separatrices of the reconnection region.

  20. Mitigation of high-frequency pulsations, using Multi Bore Restriction Orifices

    NARCIS (Netherlands)

    Lier, L.J. van; Korst, H.J.C.

    2007-01-01

    In reciprocating fluid displacement systems, a trend toward high-speed machinery and application of stepless reverse-flow capacity control system is observed. Badly designed compression systems may cause excessive high-frequency noise and vibration levels, which are a risk from a structural integrit

  1. High-frequency EPR and ENDOR spectroscopy on semiconductor quantum dots

    NARCIS (Netherlands)

    Baranov, P.G.; Orlinskii, S.B.; de Mello Donega, C.; Schmidt, J.

    2010-01-01

    It is shown that high-frequency electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) spectroscopy are excellent tools for the investigation of the electronic properties of semiconductor quantum dots (QDs). The great attractions of these techniques are that, in contrast

  2. Effect of ischemia and cooling on the response to high frequency stimulation in rat tail nerves

    DEFF Research Database (Denmark)

    Andersen, Henning; Feldbæk Nielsen, Jørgen; Sørensen, Bodil;

    2000-01-01

    In normal rat tail nerves the effect of temperature and ischemia on the response to long-term high frequency stimulation (HFS) (143 Hz) was studied. The effect of temperature was studied in two consecutive tests at 14 degrees C and 35 degrees C. Prior to the HFS the peak-to-peak amplitude (PP-amp...

  3. Effect of a low voltage with a high frequency electrical stunning on unconsciousness in slaughter pigs

    NARCIS (Netherlands)

    Lambooij, B.; Merkus, G.S.M.; Voorst, van N.; Pieterse, C.

    1996-01-01

    Effects of low voltage and high frequency electrical stunning of slaughter pigs was examined. Forty slaughter pigs were positioned for stunning while lying on a beam in a cage and stunned with 240 V with 800 Hz during 3 s passing the brain and 125 V with 50 Hz during 3 s passing the heart. Before th

  4. Statistical properties of short term price trends in high frequency stock market data

    CERN Document Server

    Sieczka, P; Sieczka, Pawe{\\l}; Ho{\\l}yst, Janusz A.

    2007-01-01

    We investigated distributions of short term price trends for high frequency stock market data. A number of trends as a function of their lengths was measured. We found that such a distribution does not fit to results following from an uncorrelated stochastic process. We proposed a simple model with a memory that gives a qualitative agreement with real data.

  5. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    International Nuclear Information System (INIS)

    A series of single phase spinel ferrites having chemical formula Mg0.5Zn0.5PrxFe2−xO4 (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (Ms) decreases whereas coercivity (Hc) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (Ms) decreases whereas (Hc) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials

  6. Synthesis and properties of Pr-substituted MgZn ferrites for core materials and high frequency applications

    Energy Technology Data Exchange (ETDEWEB)

    Mukhtar, Muhammad Waqas; Irfan, Muhammad [Department of Physics, Federal Urdu University of Arts, Science and Technology, Islamabad 44000 (Pakistan); Ahmad, Ishtiaq; Ali, Ihsan [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Akhtar, Majid Niaz [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Khan, Muhammad Azhar [Department of Physics, Islamia University, Bahawalpur (Pakistan); Abbas, Ghazanfar [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan); Rana, M.U. [Center of Excellence in Solid State Physics, University of the Punjab, Lahore (Pakistan); Ali, Akbar [Department of Basic Sciences, Riphah International University, Islamabad-44000 (Pakistan); Ahmad, Mukhtar, E-mail: ahmadmr25@yahoo.com [Department of Physics, COMSATS Institute of Information Technology, Islamabad 44000 (Pakistan)

    2015-05-01

    A series of single phase spinel ferrites having chemical formula Mg{sub 0.5}Zn{sub 0.5}Pr{sub x}Fe{sub 2−x}O{sub 4} (x=0.00, 0.05, 0.10, 0.15, 0.20, 0.25) were prepared using the sol–gel technique after sintering at 700 °C. The thermal decomposition behavior of an as prepared powder was investigated by means of DTA/TGA analyses. The sintered powders were then characterized by Fourier transform infrared spectroscope, X-ray diffraction, scanning electron microscope, energy dispersive X-ray spectroscope and vibrating sample magnetometer. X-ray diffraction patterns confirm the single phase spinel structure of prepared ferrites without the presence of any impurity phase. The value of lattice parameter (a) increases with the increase of Pr contents (x) into the spinel lattice. The grain size estimated from electron microscope images is in the range of 2.75–5.4 µm which confirms the spinel crystalline nature of the investigated samples. The saturation magnetization (M{sub s}) decreases whereas coercivity (H{sub c}) increases with the increase of Pr contents (x). The measured parameters suggest that these materials are favorable for high frequency applications and as core materials. - Highlights: • Pr-substituted spinel ferrites synthesized by autocombustion route have been investigated. • The average grain size was in the range of 2.75–5.4 µm estimated by SEM technique. • The (M{sub s}) decreases whereas (H{sub c}) increases with the increase of Pr contents (x). • These parameters are favorable for high frequency applications and as core materials.

  7. On the Importance of High Frequency Gravity Waves for Ice Nucleation in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.

    2016-01-01

    Recent investigations of the influence of atmospheric waves on ice nucleation in cirrus have identified a number of key processes and sensitivities: (1) ice concentrations produced by homogeneous freezing are strongly dependent on cooling rates, with gravity waves dominating upper tropospheric cooling rates; (2) rapid cooling driven by high-frequency waves are likely responsible for the rare occurrences of very high ice concentrations in cirrus; (3) sedimentation and entrainment tend to decrease ice concentrations as cirrus age; and (4) in some situations, changes in temperature tendency driven by high-frequency waves can quench ice nucleation events and limit ice concentrations. Here we use parcel-model simulations of ice nucleation driven by long-duration, constant-pressure balloon temperature time series, along with an extensive dataset of cold cirrus microphysical properties from the recent ATTREX high-altitude aircraft campaign, to statistically examine the importance of high-frequency waves as well as the consistency between our theoretical understanding of ice nucleation and observed ice concentrations. The parcel-model simulations indicate common occurrence of peak ice concentrations exceeding several hundred per liter. Sedimentation and entrainment would reduce ice concentrations as clouds age, but 1-D simulations using a wave parameterization (which underestimates rapid cooling events) still produce ice concentrations higher than indicated by observations. We find that quenching of nucleation events by high-frequency waves occurs infrequently and does not prevent occurrences of large ice concentrations in parcel simulations of homogeneous freezing. In fact, the high-frequency variability in the balloon temperature data is entirely responsible for production of these high ice concentrations in the simulations.

  8. How does poverty beget poverty?

    OpenAIRE

    Pagani, Linda S

    2007-01-01

    Although Canadian poverty rates are less than our neighbours to the south, the consequences of growing up poor affects the Canadian economy and its social fabric. As a relatively wealthy nation, Canada is challenged by high rates of single-parent families, the working poor and a budding population of newcomers with fewer resources. Family poverty primarily risks affecting childrens’ achievements and academic attainments. Not performing on a par with their middle-class peer group places these ...

  9. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  10. Energy conservation and high-frequency damping in numerical time-integration

    DEFF Research Database (Denmark)

    Krenk, Steen

    2007-01-01

    Momentum and energy conserving time integration procedures are receiving increased interest due to the central role of conservation properties in relation to the problems under investigation. However, most problems in structural dynamics are based on models that are first discretized in space, en...... this often leads to a fairly large number of high-frequency modes, that are not represented well - and occasionally directly erroneously - by the model. It is desirable to cure this problem by devising algorithms that include the possibility of introducing algorithmic energy dissipation of the high......-frequency modes. The problem is well known from classic collocation based algorithms - notably various forms of the Newmark algorithm where the equation of motion is supplemented by approximate relations between displacement, velocity and acceleration. Here adjustment of the algorithmic parameters can be used...

  11. Energy conservation and high-frequency damping in numerical time integration

    DEFF Research Database (Denmark)

    Krenk, Steen

    2008-01-01

    Momentum and energy conserving time integration procedures are receiving increased interest due to the central role of conservation properties in relation to the problems under investigation. However, most problems in structural dynamics are based on models that are first discretized in space, en...... this often leads to a fairly large number of high-frequency modes, that are not represented well – and occasionally directly erroneously – by the model. It is desirable to cure this problem by devising algorithms that include the possibility of introducing algorithmic energy dissipation of the high......-frequency modes. The problem is well known from classic collocation based algorithms – notably various forms of the Newmark algorithm – where the equation of motion is supplemented by approximate relations between displacement, velocity and acceleration. Here adjustment of the algorithmic parameters can be used...

  12. The system of high frequency triangular waveform generator for mini-cyclotron

    International Nuclear Information System (INIS)

    This generator is designed for a super-sensitive mini-cyclotron mass spectroscope. The main difference in high frequency system design between this and ordinary cyclotron is that this system uses triangular waveform and ordinary cyclotron uses sine wave as Dee voltage. The generator's load is capacitor and it's LC resonance circuit. An electron tube works under switching signal and inductor La is considered as a constant current component in high frequency condition. It generates triangular waveform by alternatively charging and discharging a load capacitor CL with constant current. The output waveform quality depends on the constancy of the charge and discharge current and this current is affected by the shape of switching signal on grid of the electron tube

  13. Investigations of high-frequency induction hardening process for piston rod of shock absorber

    Institute of Scientific and Technical Information of China (English)

    Xianhua Cheng; Qianqian Shangguan

    2005-01-01

    The microhardness of piston rods treated with different induction hardening processes was tested. The experimental results reveal that the depth of the hardened zone is proportional to the ratio of the moving speed of the piston rod to the output power of the induction generator. This result is proved correct through the Finite Element Method (FEM) simulation of the thermal field of induction heating. From tensile and impact tests, an optimized high frequency induction hardening process for piston rods has been obtained, where the output power was 82%×80 kW and the moving speed of workpiece was 5364 mm/min. The piston rods, treated by the optimized high frequency induction hardening process, show the best comprehensive mechanical performance.

  14. Method for detecting moment connection fracture using high-frequency transients in recorded accelerations

    Science.gov (United States)

    Rodgers, J.E.; Elebi, M.

    2011-01-01

    The 1994 Northridge earthquake caused brittle fractures in steel moment frame building connections, despite causing little visible building damage in most cases. Future strong earthquakes are likely to cause similar damage to the many un-retrofitted pre-Northridge buildings in the western US and elsewhere. Without obvious permanent building deformation, costly intrusive inspections are currently the only way to determine if major fracture damage that compromises building safety has occurred. Building instrumentation has the potential to provide engineers and owners with timely information on fracture occurrence. Structural dynamics theory predicts and scale model experiments have demonstrated that sudden, large changes in structure properties caused by moment connection fractures will cause transient dynamic response. A method is proposed for detecting the building-wide level of connection fracture damage, based on observing high-frequency, fracture-induced transient dynamic responses in strong motion accelerograms. High-frequency transients are short (Elsevier B.V. All rights reserved.

  15. Some general effects of strong high-frequency excitation: stiffening, biasing, and smoothening

    DEFF Research Database (Denmark)

    Thomsen, Jon Juel

    2002-01-01

    Mechanical high-frequency (HF) excitation provides a working principle behind many industrial and natural applications and phenomena. This paper concerns three particular effects of HF excitation, that may change the apparent characteristics of mechanical systems: 1) stiffening, by which the appa......Mechanical high-frequency (HF) excitation provides a working principle behind many industrial and natural applications and phenomena. This paper concerns three particular effects of HF excitation, that may change the apparent characteristics of mechanical systems: 1) stiffening, by which...... the apparent linear stiffness associated with an equilibrium is changed, along with derived quantities such as stability and natural frequencies; 2) Biasing, by which the system is biased towards a particular state, static or dynamic, which does not exist or is unstable in the absence of the HF excitation...

  16. Calorimetry at high-pressure using high-frequency Joule-heating

    Science.gov (United States)

    Geballe, Zachary; Struzhkin, Viktor

    2015-03-01

    Calorimetric measurements of materials at 1 to 100 GPa of pressure would provide intriguing tests of condensed matter theories, sensitive probes of chemical reactions during high-pressure synthesis, and useful inputs for models of the Earth's interior. We present the design and first results of quantitative heat capacity measurements at >10 GPa of pressure. High-frequency AC voltage heats a small metal strip pressed between diamond anvils, creating temperature oscillations whose amplitudes are determined from the higher harmonics of voltage. Thermal models show that frequencies >100 kHz are required to contain heat in the ng-mass samples, while electrical models show that frequencies >100 MHz are not practical. Our experimental results show that the heat capacity of iron and nickel can indeed be measured at high frequencies in diamond anvil cells, paving the way for studies of the energetics of a wide-variety of entropy-driven phase changes at high pressure.

  17. Automated calculation of surface energy fluxes with high-frequency lake buoy data

    Science.gov (United States)

    Woolway, R Iestyn; Jones, Ian D; Hamilton, David P.; Maberly, Stephen C; Muroaka, Kohji; Read, Jordan S.; Smyth, Robyn L; Winslow, Luke A.

    2015-01-01

    Lake Heat Flux Analyzer is a program used for calculating the surface energy fluxes in lakes according to established literature methodologies. The program was developed in MATLAB for the rapid analysis of high-frequency data from instrumented lake buoys in support of the emerging field of aquatic sensor network science. To calculate the surface energy fluxes, the program requires a number of input variables, such as air and water temperature, relative humidity, wind speed, and short-wave radiation. Available outputs for Lake Heat Flux Analyzer include the surface fluxes of momentum, sensible heat and latent heat and their corresponding transfer coefficients, incoming and outgoing long-wave radiation. Lake Heat Flux Analyzer is open source and can be used to process data from multiple lakes rapidly. It provides a means of calculating the surface fluxes using a consistent method, thereby facilitating global comparisons of high-frequency data from lake buoys.

  18. High-frequency over-the-horizon radar and ionospheric backscatter studies in China

    Science.gov (United States)

    Li, Le-Wei

    1998-09-01

    China is one of the countries that employs high-frequency over-the-horizon radars for both military and civil applications. The first Chinese high-frequency over-the horizon backscatter radar was developed in the 1970s. This paper briefly introduces the first Chinese over-the-horizon backscatter radar system and reviews ionospheric backscatter and propagation studies in China. The paper discusses the motivation for establishing over-the-horizon radar systems in China, the experimental system, target recognition and detection,and estimation of over-the-horizon radar availability. Observations of aircraft, large-scale traveling ionospheric disturbances, and the effects of a remote nuclear explosion are also presented. Finally, the real-time Chinese ionosonde network and frequency predictions using backscatter ionograms are discussed.

  19. Dependence structure of the Korean stock market in high frequency data

    Science.gov (United States)

    Kim, Min Jae; Kwak, Young Bin; Kim, Soo Yong

    2011-03-01

    This paper analyzes the evolution of the dependence structure for various time window intervals, known as Epps effect, using the Trade and Quote data of 663 actively traded stocks in Korean stock market. It is found that the random matrix theory analysis could not represent the dependence structure of the stock market in the microstructure regime. The Cook-Johnson copula is introduced as a parsimonious alternative method to handle this problem, and the existence of the Epps effect is confirmed for the 663 stocks using high frequency data. It was also found that large capitalization companies tend to have a stronger dependence structure, except for the largest capitalization group, since the phenomenon of price level resistance leads to the weak dependence structure in the largest capitalization group. In addition, grouping the industry as a sub-portfolio is an appropriate approach for hour interval traders, whereas this approach is not a strategy recommended for high frequency traders.

  20. High frequency PMN-PT single crystal focusing transducer fabricated by a mechanical dimpling technique.

    Science.gov (United States)

    Chen, Y; Lam, K H; Zhou, D; Cheng, W F; Dai, J Y; Luo, H S; Chan, H L W

    2013-02-01

    High frequency (∼30MHz and ∼80MHz) focusing ultrasound transducers were fabricated using a PMN-0.28PT single crystal by a mechanical dimpling technique. The dimpled single crystal was used as an active element for the focusing transducer. Compared with a plane transducer, the focusing transducer fabricated with a dimpled active element exhibits much broader bandwidth and higher sensitivity. Besides, a high quality image can be obtained by the 30MHz focusing transducer, in which the -6dB axial and lateral resolution is 27μm and 139μm, respectively. These results prove that the dimpling technique is capable to fabricate the high frequency focusing transducers with excellent performance for imaging applications. PMID:22944074

  1. Detection of a high frequency break in the X-ray power spectrum of Ark 564

    CERN Document Server

    Papadakis, I E; Negoro, H; Gliozzi, M

    2001-01-01

    We present a power spectrum analysis of the long ASCA observation of Ark 564 in June/July 2001. The observed power spectrum covers a frequency range of ~ 3.5 decades. We detect a high frequency break at ~ 0.002 Hz. The power spectrum has an rms of ~30% and a slope of ~ -1 and ~ -2 below and above the break frequency. When combined with the results from a long RXTE observation (Pounds et al. 2001), the observed power spectra of Ark 564 and Cyg X-1 (in the low/hard state) are almost identical, showing a similar shape and rms amplitude. However, the ratio of the high frequency breaks is very small (~ 10e{3-4}), implying that these characteristic frequencies are not indicative of the black hole mass. This result supports the idea of a small black hole mass/high accretion rate in Ark 564.

  2. Evaluation of the high-voltage high-frequency transformer insulating materials for satellites

    International Nuclear Information System (INIS)

    Environment resistance evaluation was made of the insulating materials of impregnated injection type for high-voltage high-frequency transformers mounted in satellites. (1) The stress occurring in the impregnated injection type resin is small in silicon resin and urethane resin and large in epoxy resin. (2) The dielectric characteristic at high frequency is good in silicone resin. In epoxy resin, when the transformer is operated at high temperature, its thermal runaway may take place. (3) The radiation deterioration at 1 Mrad - 10 Mrad is slight in urethane resin. (4) The degassing is not good in silicone resin. (5) The adhesive power is good in urethane resin. (6) From the above results, in silicone resin there is problem in degassing and adhesive power. In epoxy resin there is problem in stress and dielectric characteristic. (Mori, K.)

  3. High-frequency guided ultrasonic waves for hidden defect detection in multi-layer aircraft structures

    Science.gov (United States)

    Masserey, B.; Raemy, C.; Fromme, P.

    2012-05-01

    Aerospace structures contain multi-layer components subjected to cyclic loading conditions; fatigue cracks and disbonds can develop, often at fastener holes. High-frequency guided waves have the potential for non-destructive damage detection at critical and difficult to access locations from a stand-off distance. Using commercially available ultrasonic transducers, high frequency guided waves were generated that penetrate through the complete thickness of a model structure, consisting of two adhesively bonded aluminum plates. The wave propagation along the specimen was measured and quantified using a laser interferometer. The wave propagation and scattering at internal defects was simulated using Finite Element (FE) models and good agreement with the measurement results found. The detection sensitivity using standard pulse-echo measurements was verified and the influence of the stand-off distance predicted from the FE simulation results.

  4. High-frequency gyrotrons and their application to tokamak plasma heating

    International Nuclear Information System (INIS)

    A comprehensive analysis of high frequency (100 to 200 GHz) and high power (> 100 kW) gyrotrons has been conducted. It is shown that high frequencies will be required in order for electron cyclotron radiation to propagate to the center of a compact tokamak power reactor. High power levels will be needed in order to ignite the plasma with a reasonable number of gyrotron units. In the first part of this research, a set of analytic expressions, valid for all TE cavity modes and all harmonics, is derived for the starting current and frequency detuning using the Vlasov-Maxwell equations in the weakly relativistic limit. The use of an optical cavity is also investigated

  5. High frequency A-type pulsators discovered using SuperWASP

    CERN Document Server

    Holdsworth, Daniel L; Gillon, M; Clubb, K I; Southworth, J; Maxted, P F L; Anderson, D R; Barros, S C C; Cameron, A Collier; Delrez, L; Faedi, F; Haswell, C A; Hellier, C; Horne, K; Jehin, E; Norton, A J; Pollacco, D; Skillen, I; Smith, A M S; West, R G; Wheatley, P J

    2014-01-01

    We present the results of a survey using the WASP archive to search for high frequency pulsations in F-, A- and B-type stars. Over 1.5 million targets have been searched for pulsations with amplitudes greater than 0.5 millimagnitude. We identify over 350 stars which pulsate with periods less than 30 min. Spectroscopic follow-up of selected targets has enabled us to confirm 10 new rapidly oscillating Ap stars, 13 pulsating Am stars and the fastest known $\\delta$ Scuti star. We also observe stars which show pulsations in both the high-frequency domain and in the low-frequency $\\delta$ Scuti range. This work shows the power of the WASP photometric survey to find variable stars with amplitudes well below the nominal photometric precision per observation.

  6. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, V.I.; Brown, F.A.; Davie, N.T. [and others

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  7. Research on High Frequency Amplitude Attenuation of Electric Fast Transient Generator

    Directory of Open Access Journals (Sweden)

    Huafu Zhang

    2013-01-01

    Full Text Available In order to solve the amplitude attenuation of electric fast transient (EFT generator operating in high frequency, the charging and discharging process of energy storage capacitor in EFT generator are analyzed, the main circuit voltage variation mathematical model is established, the parameters of main loop circuit and the parameters of switch driving waveform which affect burst amplitude are discussed. Through the simulation, this paper puts forward effective methods to overcome burst amplitude attenuation in high frequency. The simulation results show that when the frequency is low, the duty ratio of drive signal have little effect on energy storage capacitor voltage amplitude attenuation. when the charging resistance is less than 500 Ω, the duty ratio of drive signal is less than 0.125, the repetition frequency of burst reaches 1.2 MHz, the amplitude attenuation of energy storage capacitor voltage is less than 9%, the amplitude of burst satisfies IEC61000-4-4 standards.

  8. Rolling estimations of long range dependence volatility for high frequency S&P500 index

    Science.gov (United States)

    Cheong, Chin Wen; Pei, Tan Pei

    2015-10-01

    This study evaluates the time-varying long range dependence behaviors of the S&P500 volatility index using the modified rescaled adjusted range (R/S) statistic. For better computational result, a high frequency rolling bipower variation realized volatility estimates are used to avoid possible abrupt jump. The empirical analysis findings allow us to understand better the informationally market efficiency before and after the subprime mortgage crisis.

  9. Paternal kin recognition in the high frequency / ultrasonic range in a solitary foraging mammal

    OpenAIRE

    Kessler Sharon E; Scheumann Marina; Nash Leanne T; Zimmermann Elke

    2012-01-01

    Abstract Background Kin selection is a driving force in the evolution of mammalian social complexity. Recognition of paternal kin using vocalizations occurs in taxa with cohesive, complex social groups. This is the first investigation of paternal kin recognition via vocalizations in a small-brained, solitary foraging mammal, the grey mouse lemur (Microcebus murinus), a frequent model for ancestral primates. We analyzed the high frequency/ultrasonic male advertisement (courtship) call and alar...

  10. Which Option Pricing Model is the Best? High Frequency Data for Nikkei225 Index Options

    OpenAIRE

    Ryszard Kokoszczyński; Paweł Sakowski; Robert Ślepaczuk

    2010-01-01

    Option pricing models are the main subject of many research papers prepared both in academia and financial industry. Using high-frequency data for Nikkei225 index options, we check the properties of option pricing models with different assumptions concerning the volatility process (historical, realized, implied, stochastic or based on GARCH model). In order to relax the continuous dividend payout assumption, we use the Black model for pricing options on futures, instead of the Black-Scholes-M...

  11. The phase lags of high-frequency quasi-periodic oscillations in four black hole candidates

    NARCIS (Netherlands)

    Méndez, Mariano; Altamirano, Diego; Belloni, Tomaso; Sanna, Andrea

    2013-01-01

    We measured the phase-lag spectrum of the high-frequency quasi-periodic oscillations (QPO) in the black hole systems (at QPO frequencies) GRS 1915+105 (35 Hz and 67 Hz), GRO J1655-40 (300 Hz and 450 Hz), XTE J1550-564 (180 Hz and 280 Hz) and IGR J17091-3624 (67 Hz). The lag spectra of the 67-Hz QPO

  12. High Frequency Model of Electrified Railway Propulsion System for EMC Analysis

    OpenAIRE

    Jia, Kelin

    2012-01-01

    A model of the electrified railway propulsion system working in a wide frequency range is studied in this thesis. The high frequency modeling is the first stage to study and predict the Electromagnetic compatibility (EMC) problems in the electrified railway propulsion system, which are safety and reliability issues of high concern. Modeling methods and models for the line converter, motor power supply module, and the traction motor are developed. These models can work individually or be combi...

  13. Investigation of non-uniform airflow signal oscillation during high frequency chest compression

    OpenAIRE

    Lee Jongwon; Lee Yong W; Warwick Warren J; Sohn Kiwon; Holte James E

    2005-01-01

    Abstract Background High frequency chest compression (HFCC) is a useful and popular therapy for clearing bronchial airways of excessive or thicker mucus. Our observation of respiratory airflow of a subject during use of HFCC showed the airflow oscillation by HFCC was strongly influenced by the nonlinearity of the respiratory system. We used a computational model-based approach to analyse the respiratory airflow during use of HFCC. Methods The computational model, which is based on previous ph...

  14. Identifying the Effects of Monetary Policy Shocks on Exchange Rates Using High Frequency Data

    OpenAIRE

    Jon Faust; Rogers, John H.; Eric Swanson; Wright, Jonathan H.

    2003-01-01

    This paper proposes a new approach to identifying the effects of monetary policy shocks in an international vector autoregression. Using high-frequency data on the prices of eurodollar contracts, we measure the impact of the surprise component of the FOMC-day Federal Reserve policy decision on financial variables, such as the exchange rate and the foreign interest rate. We show how this information can be used to achieve identification without having to make the usual strong assumption of a r...

  15. Contrast validation test for retrieval method of high frequency ground wave radar

    Institute of Scientific and Technical Information of China (English)

    WANG Hailong; GUO Peifang; HAN Shuzong; XIE Qiang; ZHOU Liangming

    2005-01-01

    In this paper, on the basis of the working principles of high frequency ground wave radar for retrieval of ocean wave and sea wind elements were used to systematically study the data obtained from contrast validation test in Zhoushan sea area of Zhejiang Province on Oct. 2000, to validate the accuracy of OSMAR2000for wave and wind parameters, and to analyze the possible error caused when using OSMAR2000 to retrieve ocean parameters.

  16. Design and Fabrication of Nanoscale IDTs Using Electron Beam Technology for High-Frequency SAW Devices

    Directory of Open Access Journals (Sweden)

    Wei-Che Shih

    2014-01-01

    Full Text Available High-frequency Rayleigh-mode surface acoustic wave (SAW devices were fabricated for 4G mobile telecommunications. The RF magnetron sputtering method was adopted to grow piezoelectric aluminum nitride (AlN thin films on the Si3N4/Si substrates. The influence of sputtering parameters on the crystalline characteristics of AlN thin films was investigated. The interdigital transducer electrodes (IDTs of aluminum (Al were then fabricated onto the AlN surfaces by using the electron beam (e-beam direct write lithography method to form the Al/AlN/Si3N4/Si structured SAW devices. The Al electrodes were adopted owing to its low resistivity, low cost, and low density of the material. For 4G applications in mobile telecommunications, the line widths of 937 nm, 750 nm, 562 nm, and 375 nm of IDTs were designed. Preferred orientation and crystalline properties of AlN thin films were determined by X-ray diffraction using a Siemens XRD-8 with CuKα radiation. Additionally, the cross-sectional images of AlN thin films were obtained by scanning electron microscope. Finally, the frequency responses of high-frequency SAW devices were measured using the E5071C network analyzer. The center frequencies of the high-frequency Rayleigh-mode SAW devices of 1.36 GHz, 1.81 GHz, 2.37 GHz, and 3.74 GHz are obtained. This study demonstrates that the proposed processing method significantly contributes to high-frequency SAW devices for wireless communications.

  17. High Frequency Newswire Textual Sentiment: Evidence from international stock markets during the European Financial Crisis

    OpenAIRE

    Chouliaras, Andreas

    2015-01-01

    Textual analysis is performed in a total of 13145 high frequency (intraday) news: 6536 news from the Dow Jones Newswires and 6609 news from the Thomson Reuters Newswires. Selected news are Euro-periphery (Portugal, Ireland, Italy, Greece, Spain) crisis-related news which contain a number of keywords in their content and their title. News pessimism as a product of textual analysis sentiment significantly and negatively affects stock returns (an increase in news pessimism is associated with low...

  18. High Frequency Soft Switching Of PWM Boost Converter Using Auxiliary Resonant Circuit

    OpenAIRE

    C. P. Sai Kiran; M. Vishnu Vardhan

    2014-01-01

    This thesis presents High frequency Soft Switching DC-DC boost Converter. The circuit consists of a general Boost Converter with an additional resonant circuit which has a switch, inductor, capacitor and a diode.In general Boost Converter circuits have snubber circuits where switching losses are dissipated in external passive resistors; which is known as hard switching. As the switching frequency of PWM converters is increased its switching losses and conduction losses also in...

  19. Selection of strongly immunogenic "tum-" variants from tumors at high frequency using 5-azacytidine

    OpenAIRE

    1984-01-01

    Highly immunogenic "tum-" (non-tumorigenic in normal syngeneic hosts) clonal variants can be selected from a variety of poorly immunogenic and highly tumorigenic mouse cell lines at very high frequencies (e.g., greater than 80%) after treatment in vitro with chemical mutagens such as ethyl methanesulfonate (EMS) or N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We herein demonstrate that the same result can be obtained with the poorly mutagenic cytidine analogue, 5-azacytidine, a strong DNA hyp...

  20. Iloprost drug delivery during infant conventional and high-frequency oscillatory ventilation

    OpenAIRE

    DiBlasi, Robert M.; Crotwell, Dave N.; Shen, Shuijie; Zheng, Jiang; Fink, James B.; Yung, Delphine

    2016-01-01

    Iloprost is a selective pulmonary vasodilator approved for inhalation by the Food and Drug Administration. Iloprost has been increasingly used in the management of critically ill neonates with hypoxic lung disease. This in vitro study was designed to test the hypothesis that aerosol drug delivery could be effectively administered to infants with both conventional ventilation and high-frequency oscillatory ventilation (HFOV). A neonatal test lung model configured with newborn lung mechanics wa...

  1. Personalized setup of high frequency percussive ventilator by estimation of respiratory system viscoelastic parameters

    OpenAIRE

    Ajčević, Miloš

    2015-01-01

    High Frequency Percussive Ventilation (HFPV) is a non-conventional ventilatory modality which has proven highly effective in patients with severe gas exchange impairment. However, at the present time, HFPV ventilator provides only airway pressure measurement. The airway pressure measurements and gas exchange analysis are currently the only parameters that guide the physician during the HFPV ventilator setup and treatment monitoring. The evaluation of respiratory system resistance and complian...

  2. Chest High Frequency Oscillatory Treatment for Severe Atelectasis in a Patient with Toxic Epidermal Necrolysis (TEN)

    OpenAIRE

    Ortiz-Pujols, Shiara; Boschini, Laura P.; Klatt-Cromwell, Cristine; Short, Kathy A.; Hwang, James; Cairns, Bruce A; Jones, Samuel W.

    2013-01-01

    Atelectasis is a significant risk factor for the development of pneumonia, especially in pediatric populations that are more prone to alveolar collapse or those who may have weakened muscular tone. The Metaneb® System is a pneumatic, non-invasive physiotherapy technique that delivers chest high frequency oscillations (CHFO). CHFO has been shown to enhance mucociliary clearance of secretions and help resolve patchy atelectasis. This report describes the case of a 17 year old female who develop...

  3. Abnormal Profit Opportunities and the Informational Advantage of High Frequency Trading

    OpenAIRE

    Robert Jarrow; Hao Li

    2013-01-01

    In a frictionless and competitive economy, where high frequency (HF) traders possess no market power, this paper characterizes necessary and sufficient conditions on the price process and information sets for HF traders to earn abnormal trading profits. Two sufficient conditions shown to generate abnormal returns are that HF trading enables the observation of short-term price momentum/reversals, not otherwise visible, or it enables the observation of signals correlated to future price movemen...

  4. Comparing the Robustness of High-Frequency Traveling-Wave Tube Slow-Wave Circuits

    Science.gov (United States)

    Chevalier, Christine T.; Wilson, Jeffrey D.; Kory, Carol L.

    2007-01-01

    A three-dimensional electromagnetic field simulation software package was used to compute the cold-test parameters, phase velocity, on-axis interaction impedance, and attenuation, for several high-frequency traveling-wave tube slow-wave circuit geometries. This research effort determined the effects of variations in circuit dimensions on cold-test performance. The parameter variations were based on the tolerances of conventional micromachining techniques.

  5. DEVELOPMENT OF ACOUSTIC MODELS FOR HIGH FREQUENCY RESONATORS FOR TURBOCHARGED IC-ENGINES

    OpenAIRE

    Wang, Zheng

    2012-01-01

    Automotive turbo compressors generate high frequency noise in the air intake system. This sound generation is of importance for the perceived sound quality of luxury cars and may need to be controlled by the use of silencers. The silencers usually contain resonators with slits, perforates and cavities. The purpose of the work reported is to develop acoustic models for these resonators where relevant effects such as the effect of realistic mean flow on losses and possibly 3D effects are consid...

  6. A solution to solve the dilemma of high frequencies and LCD screen for SSVEP responses

    OpenAIRE

    Cecotti, Hubert; Rivet, Bertrand

    2010-01-01

    International audience Brain-Computer Interfaces (BCI) based on the detection of Steady-State Visual Evoked Potentials have proven to be highly efficient. Compared to other BCI paradigm, they usually provide the best information transfer rate. However, this type of BCI requires visual stimuli. These stimuli can be on LEDs or on a computer screen. LEDs can allow flickering lights of high frequencies while flickering lights on an LCD screen can be an integrated as a part of the user interfac...

  7. High-frequency cranial electrostimulation (CES) in patients with probable Alzheimer's disease.

    Science.gov (United States)

    Scherder, Erik J A; van Tol, M J; Swaab, D F

    2006-07-01

    In a previous study, low-frequency cranial electrostimulation did not improve cognition and (affective) behavior in patients with probable Alzheimer's disease. In the present study, 21 Alzheimer's disease patients, divided into an experimental (n = 11) and a control group (n = 10), were treated for 30 mins/day, 5 days/wk, for 6 wks with high-frequency cranial electrostimulation. Similar to the previous study, no improvements on cognition and (affective) behavior were found.

  8. Parametric macromodelling of linear high-frequency systems using multiple frequency scaling and sequential sampling

    OpenAIRE

    Chemmangat Manakkal Cheriya, Krishnan; Ferranti, Francesco; Dhaene, Tom; Knockaert, Luc

    2014-01-01

    An enhanced parametric macromodelling scheme is presented for linear high-frequency systems based on the use of multiple frequency scaling coefficients and a sequential sampling algorithm to fully automate the entire modelling process. The proposed method is applied on a ring resonator bandpass filter example and compared with another state-of-the-art macromodelling method to show its improved modelling capability and reduced setup time.

  9. Co-dependence of Extreme Events in High Frequency FX Returns

    OpenAIRE

    Arnold Polanski; Evarist Stoja

    2013-01-01

    In this paper, we investigate extreme events in high frequency, multivariate FX returns within a purposely built framework. We generalize univariate tests and concepts to multidimensional settings and employ these novel techniques for parametric and nonparametric analysis. In particular, we investigate and quantify the co-dependence of cross-sectional and intertemporal extreme events. We find evidence of the cubic law of extreme returns, their increasing and asymmetric dependence and of the s...

  10. Stimulus induced high frequency oscillations are present in neuronal networks on microelectrode arrays.

    Directory of Open Access Journals (Sweden)

    Chadwick M Hales

    2012-05-01

    Full Text Available Pathological high frequency oscillations (250-600Hz are present in the brains of epileptic animals and humans. The etiology of these oscillations and how they contribute to the diseased state remains unclear. This work identifies the presence of microstimulation-evoked high frequency oscillations (250-400Hz in dissociated neuronal networks cultured on microelectrode arrays (MEAs. Oscillations are more apparent with higher stimulus voltages. As with in vivo studies, activity is isolated to a single electrode, however the MEA provides improved spatial resolution with no spread of the oscillation to adjacent electrodes 200µm away. Oscillations develop across 4 weeks in vitro. Oscillations still occur in the presence of tetrodotoxin and synaptic blockers, and they cause no apparent disruption in the ability of oscillation-presenting electrodes to elicit directly evoked action potentials (dAPs or promote the spread of synaptic activity throughout the culture. Chelating calcium with ethylene glycol tetraacetic acid (EGTA causes a temporal prolongation of the oscillation. Finally, carbenoxolone significantly reduces or eliminates the high frequency oscillations. Gap junctions may play a significant role in maintaining the oscillation given the inhibitory effect of carbenoxolone, the propagating effect of reduced calcium conditions and the isolated nature of the activity as demonstrated in previous studies. This is the first demonstration of stimulus evoked high frequency oscillations in dissociated cultures. Unlike current models that rely on complex in vivo recording conditions, this work presents a simple controllable model in neuronal cultures on MEAs to further investigate how the oscillations occur at the molecular level and how they may contribute to the pathophysiology of disease.

  11. The high frequency acoustic radiation from the boundary layer of an axisymmetric body

    Institute of Scientific and Technical Information of China (English)

    LI Fuxin; MA Lin; MA Zhiming

    2001-01-01

    The mechanism of acoustic radiation from the boundary layer of an axisymmetric body is analyzed, and its sound pressure spectrum is predicted. It is shown that the acoustic radiation results from the transition region and the turbulent boundary layer; and that the acoustic radiation from transition region is predominant at low frequencies; while the turbulent boundary layer has the decisive effect on acoustic radiation at high frequencies. The calculated values are in good agreement with the experimental data.

  12. Discerning Non-Stationary Market Microstructure Noise and Time-Varying Liquidity in High Frequency Data

    OpenAIRE

    Chen, Richard Y.; Per A. Mykland

    2015-01-01

    In this paper, we investigate the implication of non-stationary market microstructure noise to integrated volatility estimation, provide statistical tools to test stationarity and non-stationarity in market microstructure noise, and discuss how to measure liquidity risk using high frequency financial data. In particular, we discuss the impact of non-stationary microstructure noise on TSRV (Two-Scale Realized Variance) estimator, and design three test statistics by exploiting the edge effects ...

  13. On the distribution of high-frequency stock market traded volume: a dynamical scenario

    OpenAIRE

    Silvio M. Duarte Queiros

    2005-01-01

    This manuscript reports a stochastic dynamical scenario whose associated stationary probability density function is exactly a previously proposed one to adjust high-frequency traded volume distributions. This dynamical conjecture, physically connected to superstatiscs, which is intimately related with the current nonextensive statistical mechanics framework, is based on the idea of local fluctuations in the mean traded volume associated to financial markets agents herding behaviour. The corro...

  14. High Frequency Resonance Damping of DFIG based Wind Power System under Weak Network

    DEFF Research Database (Denmark)

    Song, Yipeng; Wang, Xiongfei; Blaabjerg, Frede

    2016-01-01

    in the Rotor Side Converter (RSC) or in the Grid Side Converter (GSC), through the introduction of virtual positive capacitor or virtual negative inductor to reshape the DFIG system impedance and mitigate the high frequency resonance. A detailed theoretical explanation on the virtual positive...... capacitor or virtual negative inductor has been given, and their parameters are also optimally designed. The proposed DFIG system damping control strategy has been validated by experimental results....

  15. Neural correlates of heterotopic facilitation induced after high frequency electrical stimulation of nociceptive pathways

    OpenAIRE

    van Rijn Clementina M; van Heck Casper H; van den Broeke Emanuel N; Wilder-Smith Oliver HG

    2011-01-01

    Abstract Background High frequency electrical stimulation (HFS) of primary nociceptive afferents in humans induce a heightened sensitivity in the surrounding non-stimulated skin area. Several studies suggest that this heterotopic effect is the result of central (spinal) plasticity. The aim of this study is to investigate HFS-induced central plasticity of sensory processing at the level of the brain using the electroencephalogram (EEG). To this end we measured evoked potentials in response to ...

  16. Generation of high frequency photons with sub-Poissonian statistics at consecutive interactions

    CERN Document Server

    Chirkin, A S

    2003-01-01

    The process of parametric amplification at high frequency pumping, which is accompanied by optical frequency mixing in the same nonlinear crystal (NC), is considered. It is shown that if a signal wave is in a coherent state at the input of the NC, then the radiation with signal and summary frequencies can have sub-Poissonian photon statistics at the output of the NC in the deamplification regime. The Fano factors as functions of parameters of the problem are studied.

  17. Data mining neocortical high-frequency oscillations in epilepsy and controls.

    Science.gov (United States)

    Blanco, Justin A; Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H; Marsh, Richard; Litt, Brian; Worrell, Gregory A

    2011-10-01

    Transient high-frequency (100-500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100-250 Hz) and fast ripple (250-500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100-500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency

  18. High-Frequency Transcranial Random Noise Stimulation Enhances Perception of Facial Identity

    OpenAIRE

    Romanska, Aleksandra; Rezlescu, Constantin; Susilo, Tirta; Duchaine, Bradley; Banissy, Michael J.

    2015-01-01

    Recently, a number of studies have demonstrated the utility of transcranial current stimulation as a tool to facilitate a variety of cognitive and perceptual abilities. Few studies, though, have examined the utility of this approach for the processing of social information. Here, we conducted 2 experiments to explore whether a single session of high-frequency transcranial random noise stimulation (tRNS) targeted at lateral occipitotemporal cortices would enhance facial identity perception. In...

  19. Enhancement of bichromatic high-harmonic generation with a high-frequency field

    OpenAIRE

    Faria, C. Figueira de Morisson; Du, M. L.

    2000-01-01

    Using a high-frequency field superposed to a linearly polarized bichromatic laser field composed by a wave with frequency $\\omega $ and a wave with frequency $2\\omega $, we show it is possible to enhance the intensity of a group of high harmonics in orders of magnitude. These harmonics have frequencies about 30% higher than the monochromatic-cutoff frequency, and, within the three-step-model framework, correspond to a set of electron trajectories for which tunneling ionization is strongly sup...

  20. Low power very high frequency resonant converter with high step down ratio

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    This paper presents the design of a resonant converter with a switching frequency in the very high frequency range (30-300MHz), a large step down ratio and low output power. This gives the designed converters specifications which are far from previous results. The class E inverter and rectifier...... is with a large input inductor. The power stages are designed with the same specs and efficiencies from 60.7−82.9% are achieved....