WorldWideScience

Sample records for beetles

  1. Asparagus Beetle and Spotted Asparagus Beetle

    OpenAIRE

    Erin W Hodgson; Drost, Dan

    2007-01-01

    Asparagus beetle, Crioceris asparagi, and spotted asparagus beetle, C. duodecimpunctata are leaf beetles in the family Chrysomelidae. These beetles feed exclusively on asparagus and are native to Europe. Asparagus beetle is the more economically injurious of the two species.

  2. The Spruce Beetle

    OpenAIRE

    Holsten, E H; Their, R W; Munson, A. S.; Gibson, K.E.

    1999-01-01

    The spruce beetle, Dendroctonus rufipennis (Kirby), is the most significant natural mortality agent of mature spruce. Outbreaks of this beetle have caused extensive spruce mortality from Alaska to Arizona and have occurred in every forest with substantial spruce stands. Spruce beetle damage results in the loss of 333 to 500 million board feet of spruce saw timber annually. More than 2.3 million acres of spruce forests have been infested in Alaska in the last 7 years with an estimated 30 milli...

  3. What do dung beetles eat?

    DEFF Research Database (Denmark)

    Holter, Peter; Scholtz, Clarke H.

    2007-01-01

    Most adult coprophagous beetles feed on fresh dung of mammalian herbivores, confining ingestion to small particles with measured maximum diameters from 2-5 to 130 µm, according to body size and kind of beetle. This study explores benefits and costs of selective feeding in a ‘typical' dung beetle ...

  4. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  5. Genetics of Ophraella leaf beetles

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This proposal is to collect samples of each species of Ophraella leaf beetle encountered, not to exceed 50 specimens per species, for genetic analysis using DNA...

  6. Biological pest control in beetle agriculture.

    Science.gov (United States)

    Aanen, Duur K; Slippers, Bernard; Wingfield, Michael J

    2009-05-01

    Bark beetles are among the most destructive tree pests on the planet. Their symbiosis with fungi has consequently been studied extensively for more than a century. A recent study has identified actinomycete bacteria that are associated with the southern pine beetle and produce specific antibiotics against an antagonist of the beetles' mutualistic fungus. In addition to highlighting the ecological complexity of bark-beetle-microbial symbioses, this work reveals a potential source of novel antibiotics.

  7. A dynamical model for bark beetle outbreaks.

    Science.gov (United States)

    Křivan, Vlastimil; Lewis, Mark; Bentz, Barbara J; Bewick, Sharon; Lenhart, Suzanne M; Liebhold, Andrew

    2016-10-21

    Tree-killing bark beetles are major disturbance agents affecting coniferous forest ecosystems. The role of environmental conditions on driving beetle outbreaks is becoming increasingly important as global climatic change alters environmental factors, such as drought stress, that, in turn, govern tree resistance. Furthermore, dynamics between beetles and trees are highly nonlinear, due to complex aggregation behaviors exhibited by beetles attacking trees. Models have a role to play in helping unravel the effects of variable tree resistance and beetle aggregation on bark beetle outbreaks. In this article we develop a new mathematical model for bark beetle outbreaks using an analogy with epidemiological models. Because the model operates on several distinct time scales, singular perturbation methods are used to simplify the model. The result is a dynamical system that tracks populations of uninfested and infested trees. A limiting case of the model is a discontinuous function of state variables, leading to solutions in the Filippov sense. The model assumes an extensive seed-bank so that tree recruitment is possible even if trees go extinct. Two scenarios are considered for immigration of new beetles. The first is a single tree stand with beetles immigrating from outside while the second considers two forest stands with beetle dispersal between them. For the seed-bank driven recruitment rate, when beetle immigration is low, the forest stand recovers to a beetle-free state. At high beetle immigration rates beetle populations approach an endemic equilibrium state. At intermediate immigration rates, the model predicts bistability as the forest can be in either of the two equilibrium states: a healthy forest, or a forest with an endemic beetle population. The model bistability leads to hysteresis. Interactions between two stands show how a less resistant stand of trees may provide an initial toe-hold for the invasion, which later leads to a regional beetle outbreak in the

  8. The Beetle Reference Manual

    CERN Document Server

    Van Bakel, N; Van den Brand, J F J; Feuerstack-Raible, M; Harnew, N; Hofmann, W; Knöpfle, K-T; Löchner, S; Schmelling, M; Sexauer, E; Smale, N J; Trunk, U; Verkooijen, H

    2001-01-01

    This paper details the port de nitions, electrical speci cations, modes of operation and programming sequences of the 128 channel readout chip Beetle . The chip is developed for the LHCb experiment and ful lls the requirements of the silicon vertex detector, the inner tracker, the pile-up veto trigger and the RICH detector in case of multianode photomultiplier readout. It integrates 128 channels with low-noise charge-sensitive preampli ers and shapers. The risetime of the shaped pulse is 25 ns with a 30% remainder of the peak voltage after 25 ns. A comparator per channel with con gurable polarity provides a binary signal. Four adjacent comparator channels are being ORed and brought o chip via LVDS ports. Either the shaper or comparator output is sampled with the LHC-bunch-crossing frequency of 40 MHz into an analogue pipeline with a programmable latency of max. 160 sampling intervalls and an integrated derandomizing bu er of 16 stages. For analog readout data is multiplexed with up to 40 MHz onto 1 or 4 ports...

  9. Approaches to engineer stability of beetle luciferases

    Directory of Open Access Journals (Sweden)

    Mikhail Koksharov

    2012-09-01

    Full Text Available Luciferase enzymes from fireflies and other beetles have many important applications in molecular biology, biotechnology, analytical chemistry and several other areas. Many novel beetle luciferases with promising properties have been reported in the recent years. However, actual and potential applications of wild-type beetle luciferases are often limited by insufficient stability or decrease in activity of the enzyme at the conditions of a particular assay. Various examples of genetic engineering of the enhanced beetle luciferases have been reported that successfully solve or alleviate many of these limitations. This mini-review summarizes the recent advances in development of mutant luciferases with improved stability and activity characteristics. It discusses the common limitations of wild-type luciferases in different applications and presents the efficient approaches that can be used to address these problems.

  10. US Forest Service Western Bark Beetle Strategy

    Data.gov (United States)

    US Forest Service, Department of Agriculture — A map service on the www depicting Western Bark Beetle Strategy (WBBS) activities reported through the U.S. Forest Service FACTS database. Activities include...

  11. American burying beetle site records : Valentine NWR

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is specific site records of American burying beetle on Valentine Nationl Wildlife Refuge to date. It includes a map of site location. A discussion...

  12. Dosage response mortality of Japanese beetle, masked chafer, and June beetle (Coleoptera: Scarabaeidae) adults when exposed to experimental and commercially available granules containing Metarhizium brunneum

    Science.gov (United States)

    Adult beetles of three different white grub species, Japanese beetle, Popillia japonica, June beetle, Phyllophaga spp., and masked chafer, Cyclocephala spp. were exposed to experimental and commercially available granules containing Metarhizium brunneum (Petch) strain F52, to determine susceptibilit...

  13. Small hive beetles survive in honeybee prisons by behavioural mimicry

    Science.gov (United States)

    Ellis, J. D.; Pirk, C. W. W.; Hepburn, H. R.; Kastberger, G.; Elzen, P. J.

    2002-05-01

    We report the results of a simple experiment to determine whether honeybees feed their small hive beetle nest parasites. Honeybees incarcerate the beetles in cells constructed of plant resins and continually guard them. The longevity of incarcerated beetles greatly exceeds their metabolic reserves. We show that survival of small hive beetles derives from behavioural mimicry by which the beetles induce the bees to feed them trophallactically. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at htpp://dx.doi.org/10.1007/s00114-002-0326-y.

  14. Chirality determines pheromone activity for flour beetles

    Science.gov (United States)

    Levinson, H. Z.; Mori, K.

    1983-04-01

    Olfactory perception and orientation behaviour of female and male flour beetles ( Tribolium castaneum, T. confusum) to single stereoisomers of their aggregation pheromone revealed maximal receptor potentials and optimal attraction in response to 4R,8R-(-)-dimethyldecanal, whereas its optical antipode 4S,8S-(+)-dimethyldecanal was found to be inactive in this respect. Female flour beetles of both species were ≈ 103 times less attracted to 4R,8S-(+)- and 4S,8R-(-)-dimethyldecanal than to 4R,8R-(-)-dimethyldecanal, while male flour beetles failed to respond to the R,S-(+)- and S,R-(-)-stereoisomers. Pheromone extracts of prothoracic femora from unmated male flour beetles elicited higher receptor potentials in the antennae of females than in those of males. The results suggest that the aggregation pheromone emitted by male T. castaneum as well as male T. confusum has the stereochemical structure of 4R,8R-(-)-dimethyl-decanal, which acts as sex attractant for the females and as aggregant for the males of both species.

  15. Tiger beetle's pursuit of prey depends on distance

    Science.gov (United States)

    Noest, Robert; Wang, Jane

    2015-03-01

    Tiger beetles are fast predators capable of chasing prey under closed-loop visual guidance. We investigated their control system using high-speed digital recordings of beetles chasing a moving prey dummy in a laboratory arena. Analysis reveals that the beetle uses a proportional control law in which the angular position of the prey relative to the beetle's body axis drives the beetle's angular velocity with a delay of about 28 ms. The system gain is shown to depend on the beetle-prey distance in a pattern indicating three hunting phases over the observed distance domain. We show that to explain this behavior the tiger beetle must be capable of visually determining the distance to its target and using that to adapt the gain in its proportional control law. We will end with a discussion on the possible methods for distance detection by the tiger beetle and focus on two of them. Motion parallax, using the natural head sway induced by the walking gait of the tiger beetle, is shown to have insufficient distance range. However elevation in the field of vision, using the angle with respect to the horizon at which a target is observed, has a much larger distance range and is a prime candidate for the mechanism of visual distance detection in the tiger beetle.

  16. Confinement of small hive beetles (Aethina tumida) by Cape honeybees (Apis mellifera capensis)

    OpenAIRE

    James D. Ellis Jr.,; Hepburn, Randall; Elzen, Patti

    2004-01-01

    International audience In this study we quantify small hive beetle (Aethina tumida Murray) and Cape honeybee (A.m. capensis Esch., an African subspecies) behaviours that are associated with beetle confinement in an effort to understand why Cape bees can withstand large beetle infestations. Four observation hives were each inoculated with 25 beetles and were observed for 11-17 days. Data collected included guard bee (worker bees who guard beetle confinement sites) and confined beetle behavi...

  17. The bacterial community of entomophilic nematodes and host beetles.

    Science.gov (United States)

    Koneru, Sneha L; Salinas, Heilly; Flores, Gilberto E; Hong, Ray L

    2016-05-01

    Insects form the most species-rich lineage of Eukaryotes and each is a potential host for organisms from multiple phyla, including fungi, protozoa, mites, bacteria and nematodes. In particular, beetles are known to be associated with distinct bacterial communities and entomophilic nematodes. While entomopathogenic nematodes require symbiotic bacteria to kill and reproduce inside their insect hosts, the microbial ecology that facilitates other types of nematode-insect associations is largely unknown. To illuminate detailed patterns of the tritrophic beetle-nematode-bacteria relationship, we surveyed the nematode infestation profiles of scarab beetles in the greater Los Angeles area over a five-year period and found distinct nematode infestation patterns for certain beetle hosts. Over a single season, we characterized the bacterial communities of beetles and their associated nematodes using high-throughput sequencing of the 16S rRNA gene. We found significant differences in bacterial community composition among the five prevalent beetle host species, independent of geographical origin. Anaerobes Synergistaceae and sulphate-reducing Desulfovibrionaceae were most abundant in Amblonoxia beetles, while Enterobacteriaceae and Lachnospiraceae were common in Cyclocephala beetles. Unlike entomopathogenic nematodes that carry bacterial symbionts, insect-associated nematodes do not alter the beetles' native bacterial communities, nor do their microbiomes differ according to nematode or beetle host species. The conservation of Diplogastrid nematodes associations with Melolonthinae beetles and sulphate-reducing bacteria suggests a possible link between beetle-bacterial communities and their associated nematodes. Our results establish a starting point towards understanding the dynamic interactions between soil macroinvertebrates and their microbiota in a highly accessible urban environment. PMID:26992100

  18. Colorado potato beetle toxins revisited: evidence the beetle does not sequester host plant glycoalkaloids.

    Science.gov (United States)

    Armer, Christine A

    2004-04-01

    The Colorado potato beetle feeds only on glycoalkaloid-laden solanaceous plants, appears to be toxic to predators, and has aposematic coloration, suggesting the beetle may sequester alkaloids from its host plants. This study tested 4th instars and adults, as well as isolated hemolymph and excrement, to determine if the beetles sequester, metabolize, or excrete alkaloids ingested from their host plants. HPLC analysis showed: that neither the larvae nor the adults sequestered either solanine or chaconine from potato foliage; that any alkaloids in the beetles were at concentrations well below 1 ppm; and that alkaloids were found in the excrement of larvae at approximately the same concentrations as in foliage. Analysis of alkaloids in the remains of fed-upon leaflet halves plus excreta during 24 hr feeding by 4th instars, as compared to alkaloids in the uneaten halves of the leaflets, showed that equal amounts of alkaloids were excreted as were ingested. The aposematic coloration probably warns of a previously-identified toxic dipeptide instead of a plant-derived alkaloid, as the Colorado potato beetle appears to excrete, rather than sequester or metabolize, the alkaloids from its host plants.

  19. iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Dönitz, Jürgen; Schmitt-Engel, Christian; Grossmann, Daniela; Gerischer, Lizzy; Tech, Maike; Schoppmeier, Michael; Klingler, Martin; Bucher, Gregor

    2015-01-01

    The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes. The iBeetle-Base contains the annotations of phenotypes of several thousands of genes knocked down during embryonic and metamorphic epidermis and muscle development in addition to phenotypes linked to oogenesis and stink gland biology. The phenotypes are described according to the EQM (entity, quality, modifier) system using controlled vocabularies and the Tribolium morphological ontology (TrOn). Furthermore, images linked to the respective annotations are provided. The data are searchable either for specific phenotypes using a complex 'search for morphological defects' or a 'quick search' for gene names and IDs. The red flour beetle Tribolium castaneum has become an important model system for insect functional genetics and is a representative of the most species rich taxon, the Coleoptera, which comprise several devastating pests. It is used for studying insect typical development, the evolution of development and for research on metabolism and pest control. Besides Drosophila, Tribolium is the first insect model organism where large scale unbiased screens have been performed.

  20. Lehr's fields of campaniform sensilla in beetles (Coleoptera): functional morphology. III. Modification of elytral mobility or shape in flying beetles.

    Science.gov (United States)

    Frantsevich, Leonid; Gorb, Stanislav; Radchenko, Vladimir; Gladun, Dmytro

    2015-03-01

    Some flying beetles have peculiar functional properties of their elytra, if compared with the vast majority of beetles. A "typical" beetle covers its pterothorax and the abdomen from above with closed elytra and links closed elytra together along the sutural edges. In the open state during flight, the sutural edges diverge much more than by 90°. Several beetles of unrelated taxa spread wings through lateral incisions on the elytra and turn the elytron during opening about 10-12° (Cetoniini, Scarabaeus, Gymnopleurus) or elevate their elytra without partition (Sisyphus, Tragocerus). The number of campaniform sensilla in their elytral sensory field is diminished in comparison with beetles of closely related taxa lacking that incision. Elytra are very short in rove beetles and in long-horn beetles Necydalini. The abundance of sensilla in brachyelytrous long-horn beetles Necydalini does not decrease in comparison with macroelytrous Cerambycinae. Strong reduction of the sensory field was found in brachyelytrous Staphylinidae. Lastly, there are beetles lacking the linkage of the elytra down the sutural edge (stenoelytry). Effects of stenoelytry were also not uniform: Oedemera and flying Meloidae have the normal amount of sensilla with respect to their body size, whereas the sensory field in the stenoelytrous Eulosia bombyliformis is 5-6 times less than in chafers of the same size but with normally linking broad elytra.

  1. Formulating entompathogens for control of boring beetles in avocado orchards

    Science.gov (United States)

    A foam formulation of Beauveria bassiana was adapted to control boring beetles in avocado orchards. The two geographically independent avocado growing areas in the United States are threatened by emerging diseases vectored by boring beetles. In the California growing region, Fusarium dieback is vect...

  2. Efficacy of plant extracts against the cowpea beetle, Callosobruchus maculatus

    NARCIS (Netherlands)

    Boeke, S.J.; Barnaud, B.; Loon, van J.J.A.; Kossou, D.K.; Huis, van A.; Dicke, M.

    2004-01-01

    Traditionally used African plant powders, with a known effect against the cowpea beetle Callosobruchus maculatus in stored cowpea, were extracted with water. The extracts, 13 volatile oils, 2 non-volatile oils and 8 slurries, were evaluated for their toxic and repellent effects against the beetle. A

  3. Changes in food resources and conservation of scarab beetles

    DEFF Research Database (Denmark)

    Carpaneto, Giuseppe Maria; Mazziotta, Adriano; Piattella, Emanuele

    2005-01-01

    The aim of the research was to show how a change in land use influences the structure of a dung beetle assemblage and affect its conservation. In the Pineto Urban Regional Park (Rome), dog dung is the sole food resource currently available for scarab dung beetles, after the recent removal of wild...

  4. Structure of Phoretic Mite Assemblages Across Subcortical Beetle Species at a Regional Scale.

    Science.gov (United States)

    Pfammatter, Jesse A; Coyle, David R; Gandhi, Kamal J K; Hernandez, Natalie; Hofstetter, Richard W; Moser, John C; Raffa, Kenneth F

    2016-02-01

    Mites associated with subcortical beetles feed and reproduce within habitats transformed by tree-killing herbivores. Mites lack the ability to independently disperse among these habitats, and thus have evolved characteristics that facilitate using insects as transport between resources. Studies on associations between mites and beetles have historically been beetle-centric, where an assemblage of mite species is characterized on a single beetle species. However, available evidence suggests there may be substantial overlap among mite species on various species of beetles utilizing similar host trees. We assessed the mite communities of multiple beetle species attracted to baited funnel traps in Pinus stands in southern Wisconsin, northern Arizona, and northern Georgia to better characterize mite dispersal and the formation of mite-beetle phoretic associations at multiple scales. We identified approximately 21 mite species totaling 10,575 individuals on 36 beetle species totaling 983 beetles. Of the mites collected, 97% were represented by eight species. Many species of mites were common across beetle species, likely owing to these beetles' common association with trees in the genus Pinus. Most mite species were found on at least three beetle species. Histiostoma spp., Iponemus confusus Lindquist, Histiogaster arborsignis Woodring and Trichouropoda australis Hirschmann were each found on at least seven species of beetles. While beetles had largely similar mite membership, the abundances of individual mite species were highly variable among beetle species within each sampling region. Phoretic mite communities also varied within beetle species between regions, notably for Ips pini (Say) and Ips grandicollis (Eichhoff). PMID:26496952

  5. Curcurbita pepo subspecies delineates striped cucumber beetle (Acalymma vittatum) preference

    Science.gov (United States)

    Brzozowski, L; Leckie, B M; Gardner, J; Hoffmann, M P; Mazourek, M

    2016-01-01

    The striped cucumber beetle (Acalymma vittatum (F.)) is a destructive pest of cucurbit crops, and management could be improved by host plant resistance, especially in organic farming systems. However, despite the variation in striped cucumber beetle preference observed within the economically important species, Cucurbita pepo L., plant breeders and entomologists lacked a simple framework to classify and exploit these differences. This study used recent phylogenetic evidence and bioassays to organize striped cucumber beetle preference within C. pepo. Our results indicate preference contrasts between the two agriculturally relevant subspecies: C. pepo subsp. texana and C. pepo subsp. pepo. Plants of C. pepo subsp. pepo were more strongly preferred than C. pepo subsp. texana plants. This structure of beetle preference in C. pepo will allow plant breeders and entomologists to better focus research efforts on host plant non-preference to control striped cucumber beetles. PMID:27347423

  6. Spruce Beetle Biology, Ecology and Management in the Rocky Mountains: An Addendum to Spruce Beetle in the Rockies

    Directory of Open Access Journals (Sweden)

    Michael J. Jenkins

    2014-01-01

    Full Text Available Spruce beetle outbreaks have been reported in the Rocky Mountains of western North America since the late 1800s. In their classic paper, Spruce Beetle in the Rockies, Schmid and Frye reviewed the literature that emerged from the extensive outbreaks in Colorado in the 1940s. A new wave of outbreaks has affected Rocky Mountain subalpine spruce-fir forests beginning in the mid-1980s and continuing to the present. These outbreaks have spurred another surge of basic and applied research in the biology, ecology and management of spruce and spruce beetle populations. This paper is a review of literature on spruce beetle focusing on work published since the late 1970s and is intended as an addendum to Spruce Beetle in the Rockies.

  7. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    Science.gov (United States)

    Hart, Sarah J; Veblen, Thomas T; Mietkiewicz, Nathan; Kulakowski, Dominik

    2015-01-01

    Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1) how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis) infestation of Engelmann spruce (Picea engelmannii) across the Southern Rocky Mountains; and 2) how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height), not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations. PMID:26000906

  8. Negative feedbacks on bark beetle outbreaks: widespread and severe spruce beetle infestation restricts subsequent infestation.

    Directory of Open Access Journals (Sweden)

    Sarah J Hart

    Full Text Available Understanding disturbance interactions and their ecological consequences remains a major challenge for research on the response of forests to a changing climate. When, where, and how one disturbance may alter the severity, extent, or occurrence probability of a subsequent disturbance is encapsulated by the concept of linked disturbances. Here, we evaluated 1 how climate and forest habitat variables, including disturbance history, interact to drive 2000s spruce beetle (Dendroctonus rufipennis infestation of Engelmann spruce (Picea engelmannii across the Southern Rocky Mountains; and 2 how previous spruce beetle infestation affects subsequent infestation across the Flat Tops Wilderness in northwestern Colorado, which experienced a severe landscape-scale spruce beetle infestation in the 1940s. We hypothesized that drought and warm temperatures would promote infestation, whereas small diameter and non-host trees, which may reflect past disturbance by spruce beetles, would inhibit infestation. Across the Southern Rocky Mountains, we found that climate and forest structure interacted to drive the 2000s infestation. Within the Flat Tops study area we found that stands infested in the 1940s were composed of higher proportions of small diameter and non-host trees ca. 60 years later. In this area, the 2000s infestation was constrained by a paucity of large diameter host trees (> 23 cm at diameter breast height, not climate. This suggests that there has not been sufficient time for trees to grow large enough to become susceptible to infestation. Concordantly, we found no overlap between areas affected by the 1940s infestation and the current infestation. These results show a severe spruce beetle infestation, which results in the depletion of susceptible hosts, can create a landscape template reducing the potential for future infestations.

  9. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  10. Origin and Diversification of Dung Beetles in Madagascar

    DEFF Research Database (Denmark)

    Miraldo, Andreia; Wirta, Helena; Hanski, Ilkka

    2011-01-01

    Madagascar has a rich fauna of dung beetles (Scarabaeinae and Aphodiinae) withalmost 300 species described to date. Like most other taxa in Madagascar, dung beetles exhibit an exceptionally high level of endemism (96% of the species). Here,we review the current knowledge of the origin and diversi......Madagascar has a rich fauna of dung beetles (Scarabaeinae and Aphodiinae) withalmost 300 species described to date. Like most other taxa in Madagascar, dung beetles exhibit an exceptionally high level of endemism (96% of the species). Here,we review the current knowledge of the origin...... and diversification of Malagasy dung beetles. Based on molecular phylogenies, the extant dung beetles originate from eight colonizations, of which four have given rise to extensive radiations. These radiations have occurred in wet forests, while the few extant species in the less successfulradiations occur in open...... and semi-open habitats. We discuss the likely mechanisms of speciation and the ecological characteristics of the extant communities, emphasizing the role of adaptation along environmental gradients and allopatric speciation in generating the exceptionally high beta diversity in Malagasy dung beetles...

  11. Phylogeny of world stag beetles (Coleoptera: Lucanidae) reveals a Gondwanan origin of Darwin's stag beetle.

    Science.gov (United States)

    Kim, Sang Il; Farrell, Brian D

    2015-05-01

    Stag beetles (family Lucanidae Latreille, 1804) are one of the earliest branching lineages of scarab beetles that are characterized by the striking development of the male mandibles. Despite stag beetles' popularity among traditional taxonomists and amateur collectors, there has been almost no study of lucanid relationships and evolution. Entomologists, including Jeannel (1942), have long recognized resemblance between the austral stag beetles of the tribes Chiasognathini, Colophonini, Lamprimini, Pholidotini, Rhyssonotini, and Streptocerini, but this hypothesis of their close relationship across the continents has never been tested. To gain further insight into lucanid phylogeny and biogeography, we reconstructed the first molecular phylogeny of world stag beetles using DNA sequences from mitochondrial 16S rDNA, nuclear 18S and 28S rDNA, and the nuclear protein-coding (NPC) gene wingless for 93 lucanid species representing all extant subfamilies and 24 out of the 27 tribes, together with 14 representative samples of other early branching scarabaeoid families and two staphyliniform beetle families as outgroups. Both Bayesian inference (BI) and maximum likelihood inference (MLI) strongly supported the monophyly of Lucanidae sensu lato that includes Diphyllostomatidae. Within Lucanidae sensu stricto, the subfamilies Lucaninae and Lampriminae appeared monophyletic under both methods of phylogenetic inferences; however, Aesalinae and Syndesinae were found to be polyphyletic. A time-calibrated phylogeny based on five fossil data estimated the origin of crown group Lucanidae as circa 160 million years ago (MYA). Divergence between the Neotropical and Australasian groups of the Chiasognathini was estimated to be circa 47MYA, with the South African Colophonini branching off from the ancient Chiasognathini lineage around 87MYA. Another Gondwanan relationship was recovered between the Australasian Eucarteria and the Neotropical Casignetus, which diverged circa 58MYA. Lastly

  12. Photonic nanoarchitectures of biologic origin in butterflies and beetles

    Energy Technology Data Exchange (ETDEWEB)

    Biro, L.P., E-mail: biro@mfa.kfki.h [Research Institute for Technical Physics and Materials Science, H-1525 Budapest, POB 49 (Hungary)

    2010-05-25

    Photonic nanoarchitectures occurring in butterflies and beetles, which produce structural color in the visible range of the electromagnetic spectrum by the selective reflection of light, are investigated under the aspect of being used as possible 'blueprints' for artificial, bioinspired nanoarchitectures. The role of order and disorder and of regularity/irregularity in photonic nanoarchitectures of biologic origin is discussed. Three recent case studies are briefly reviewed for butterflies (Albulina metallica, Cyanophrys remus, Troides magellanus) and three for beetles (Hoeplia coerulea, Chrysochroa vittata, Charidotella egregia). The practical realization of bioinspired artificial structures is discussed for the A. metallica butterfly and for the C. vittata beetle.

  13. Atlas of Iberian water beetles (ESACIB database).

    Science.gov (United States)

    Sánchez-Fernández, David; Millán, Andrés; Abellán, Pedro; Picazo, Félix; Carbonell, José A; Ribera, Ignacio

    2015-01-01

    The ESACIB ('EScarabajos ACuáticos IBéricos') database is provided, including all available distributional data of Iberian and Balearic water beetles from the literature up to 2013, as well as from museum and private collections, PhD theses, and other unpublished sources. The database contains 62,015 records with associated geographic data (10×10 km UTM squares) for 488 species and subspecies of water beetles, 120 of them endemic to the Iberian Peninsula and eight to the Balearic Islands. This database was used for the elaboration of the "Atlas de los Coleópteros Acuáticos de España Peninsular". In this dataset data of 15 additional species has been added: 11 that occur in the Balearic Islands or mainland Portugal but not in peninsular Spain and an other four with mainly terrestrial habits within the genus Helophorus (for taxonomic coherence). The complete dataset is provided in Darwin Core Archive format. PMID:26448717

  14. Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective.

    Science.gov (United States)

    Haack, Robert A; Hérard, Franck; Sun, Jianghua; Turgeon, Jean J

    2010-01-01

    The Asian longhorned beetle (ALB), Anoplophora glabripennis (Motschulsky), and citrus longhorned beetle (CLB), Anoplophora chinensis (Forster) (Coleoptera: Cerambycidae), are polyphagous xylophages native to Asia and are capable of killing healthy trees. ALB outbreaks began in China in the 1980s, following major reforestation programs that used ALB-susceptible tree species. No regional CLB outbreaks have been reported in Asia. ALB was first intercepted in international trade in 1992, mostly in wood packaging material; CLB was first intercepted in 1980, mostly in live plants. ALB is now established in North America, and both species are established in Europe. After each infestation was discovered, quarantines and eradication programs were initiated to protect high-risk tree genera such as Acer, Aesculus, Betula, Populus, Salix, and Ulmus. We discuss taxonomy, diagnostics, native range, bionomics, damage, host plants, pest status in their native range, invasion history and management, recent research, and international efforts to prevent new introductions. PMID:19743916

  15. Comparative resistance of Russian and Italian honey bees (Hymenoptera: Apidae) to small hive beetles (Coleoptera: Nitidulidae).

    Science.gov (United States)

    Frake, Amanda M; De Guzman, Lilia I; Rinderer, Thomas E

    2009-02-01

    To compare resistance to small hive beetles (Coleoptera: Nitidulidae) between Russian and commercial Italian honey bees (Hymenoptera: Apidae), the numbers of invading beetles, their population levels through time and small hive beetle reproduction inside the colonies were monitored. We found that the genotype of queens introduced into nucleus colonies had no immediate effect on small hive beetle invasion. However, the influence of honey bee stock on small hive beetle invasion was pronounced once test bees populated the hives. In colonies deliberately freed from small hive beetle during each observation period, the average number of invading beetles was higher in the Italian colonies (29 +/- 5 beetles) than in the Russian honey bee colonies (16 +/- 3 beetles). A similar trend was observed in colonies that were allowed to be freely colonized by beetles throughout the experimental period (Italian, 11.46 +/- 1.35; Russian, 5.21 +/- 0.66 beetles). A linear regression analysis showed no relationships between the number of beetles in the colonies and adult bee population (r2 = 0.1034, P = 0.297), brood produced (r2 = 0.1488, P = 0.132), or amount of pollen (P = 0.1036, P = 0.295). There were more Italian colonies that supported small hive beetle reproduction than Russian colonies. Regardless of stock, the use of entrance reducers had a significant effect on the average number of small hive beetle (with reducer, 16 +/- 3; without reducer, 27 +/- 5 beetles). However, there was no effect on bee population (with reducer, 13.20 +/- 0.71; without reducer, 14.60 +/- 0.70 frames) or brood production (with reducer, 6.12 +/- 0.30; without reducer, 6.44 +/- 0.34 frames). Overall, Russian honey bees were more resistant to small hive beetle than Italian honey bees as indicated by fewer invading beetles, lower small hive beetle population through time, and lesser reproduction. PMID:19253612

  16. Biologically inspired optics: analog semiconductor model of the beetle exoskeleton

    Science.gov (United States)

    Buhl, Kaia; Roth, Zachary; Srinivasan, Pradeep; Rumpf, Raymond; Johnson, Eric

    2008-08-01

    Evolution in nature has produced through adaptation a wide variety of distinctive optical structures in many life forms. For example, pigment differs greatly from the observed color of most beetles because their exoskeletons contain multilayer coatings. The green beetle is disguised in a surrounding leaf by having a comparable reflection spectrum as the leaves. The Manuka and June beetle have a concave structure where light incident at any angle on the concave structures produce matching reflection spectra. In this work, semiconductor processing methods were used to duplicate the structure of the beetle exoskeleton. This was achieved by combining analog lithography with a multilayer deposition process. The artificial exoskeleton, 3D concave multilayer structure, demonstrates a wide field of view with a unique spectral response. Studying and replicating these biologically inspired nanostructures may lead to new knowledge for fabrication and design of new and novel nano-photonic devices, as well as provide valuable insight to how such phenomenon is exploited.

  17. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  18. The artificial beetle, or a brief manifesto for engineered biomimicry

    Science.gov (United States)

    Bartl, Michael H.; Lakhtakia, Akhlesh

    2015-03-01

    The artificial beetle is possibly the Holy Grail for practitioners of engineered biomimicry. An artificial beetle could gather and relay data and images from compromised environments on earth and other planets to decision makers. It could also be used for surveillance of foes and friends alike, and will require ethical foresight and oversight. What would it take to develop an artificial beetle? Several biotemplating techniques can be harnessed for the replication of external structural features of beetle bodies, and thus preserve functionalities such as coloration of the exoskeleton and the hydrophobicity of wings. The body cavity must host a power supply, motors to move the wings for flight, sensors to capture ambient conditions and images, and data transmitters and receivers to communicate with a remote command center. All of these devices must be very small and reliable.

  19. Juvenile Hormone Regulates Extreme Mandible Growth in Male Stag Beetles

    OpenAIRE

    Gotoh, Hiroki; Cornette, Richard; Koshikawa, Shigeyuki; Okada, Yasukazu; Lavine, Laura Corley; Emlen, Douglas J.; Miura, Toru

    2011-01-01

    The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with o...

  20. Intraguild predation and native lady beetle decline.

    Directory of Open Access Journals (Sweden)

    Mary M Gardiner

    Full Text Available Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows

  1. Intraguild predation and native lady beetle decline.

    Science.gov (United States)

    Gardiner, Mary M; O'Neal, Matthew E; Landis, Douglas A

    2011-01-01

    Coccinellid communities across North America have experienced significant changes in recent decades, with declines in several native species reported. One potential mechanism for these declines is interference competition via intraguild predation; specifically, increased predation of native coccinellid eggs and larvae following the introduction of exotic coccinellids. Our previous studies have shown that agricultural fields in Michigan support a higher diversity and abundance of exotic coccinellids than similar fields in Iowa, and that the landscape surrounding agricultural fields across the north central U.S. influences the abundance and activity of coccinellid species. The goal of this study was to quantify the amount of egg predation experienced by a native coccinellid within Michigan and Iowa soybean fields and explore the influence of local and large-scale landscape structure. Using the native lady beetle Coleomegilla maculata as a model, we found that sentinel egg masses were subject to intense predation within both Michigan and Iowa soybean fields, with 60.7% of egg masses attacked and 43.0% of available eggs consumed within 48 h. In Michigan, the exotic coccinellids Coccinella septempunctata and Harmonia axyridis were the most abundant predators found in soybean fields whereas in Iowa, native species including C. maculata, Hippodamia parenthesis and the soft-winged flower beetle Collops nigriceps dominated the predator community. Predator abundance was greater in soybean fields within diverse landscapes, yet variation in predator numbers did not influence the intensity of egg predation observed. In contrast, the strongest predictor of native coccinellid egg predation was the composition of edge habitats bordering specific fields. Field sites surrounded by semi-natural habitats including forests, restored prairies, old fields, and pasturelands experienced greater egg predation than fields surrounded by other croplands. This study shows that intraguild

  2. Significantly higher Carabid beetle (Coleoptera: Carabidae) catch in conventionally than in organically managed Christmas tree plantations

    DEFF Research Database (Denmark)

    Bagge, Søren; Lund, Malthe; Rønn, Regin;

    2012-01-01

    trapped carabid beetles (Coleoptera, Carabidae) varied between conventionally and organically managed Caucasian Fir (Abies nordmanniana (Stev.)) plantations, in northern Zealand, Denmark. We recorded significantly higher numbers of carabid beetle specimens and species at conventionally than at organically...

  3. Oviposition by small hive beetles elicits hygienic responses from Cape honeybees.

    Science.gov (United States)

    Ellis, J D; Richards, C S; Hepburn, H R; Elzen, P J

    2003-11-01

    Two novel behaviours, both adaptations of small hive beetles ( Aethina tumida Murray) and Cape honeybees ( Apis mellifera capensis Esch.), are described. Beetles puncture the sides of empty cells and oviposit under the pupae in adjoining cells. However, bees detect this ruse and remove infested brood (hygienic behaviour), even under such well-disguised conditions. Indeed, bees removed 91% of treatment brood (brood cells with punctured walls caused by beetles) but only 2% of control brood (brood not exposed to beetles). Only 91% of treatment brood actually contained beetle eggs; the data therefore suggest that bees remove only that brood containing beetle eggs and leave uninfected brood alone, even if beetles have accessed (but not oviposited on) the brood. Although this unique oviposition strategy by beetles appears both elusive and adaptive, Cape honeybees are able to detect and remove virtually all of the infested brood. PMID:14610654

  4. 2004 American Burying Beetle Annual Report - Pond Creek National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Survey efforts for the endangered American Burying Beetle at Pond Creek NWR in 2004 are reported from 14 sampling locations on the refuge. American buring beetle...

  5. Oviposition by small hive beetles elicits hygienic responses from Cape honeybees.

    Science.gov (United States)

    Ellis, J D; Richards, C S; Hepburn, H R; Elzen, P J

    2003-11-01

    Two novel behaviours, both adaptations of small hive beetles ( Aethina tumida Murray) and Cape honeybees ( Apis mellifera capensis Esch.), are described. Beetles puncture the sides of empty cells and oviposit under the pupae in adjoining cells. However, bees detect this ruse and remove infested brood (hygienic behaviour), even under such well-disguised conditions. Indeed, bees removed 91% of treatment brood (brood cells with punctured walls caused by beetles) but only 2% of control brood (brood not exposed to beetles). Only 91% of treatment brood actually contained beetle eggs; the data therefore suggest that bees remove only that brood containing beetle eggs and leave uninfected brood alone, even if beetles have accessed (but not oviposited on) the brood. Although this unique oviposition strategy by beetles appears both elusive and adaptive, Cape honeybees are able to detect and remove virtually all of the infested brood.

  6. Distance and sex determine host plant choice by herbivorous beetles.

    Directory of Open Access Journals (Sweden)

    Daniel J Ballhorn

    Full Text Available BACKGROUND: Plants respond to herbivore damage with the release of volatile organic compounds (VOCs. This indirect defense can cause ecological costs when herbivores themselves use VOCs as cues to localize suitable host plants. Can VOCs reliably indicate food plant quality to herbivores? METHODOLOGY: We determined the choice behavior of herbivorous beetles (Chrysomelidae: Gynandrobrotica guerreroensis and Cerotoma ruficornis when facing lima bean plants (Fabaceae: Phaseolus lunatus with different cyanogenic potential, which is an important constitutive direct defense. Expression of inducible indirect defenses was experimentally manipulated by jasmonic acid treatment at different concentrations. The long-distance responses of male and female beetles to the resulting induced plant volatiles were investigated in olfactometer and free-flight experiments and compared to the short-distance decisions of the same beetles in feeding trials. CONCLUSION: Female beetles of both species were repelled by VOCs released from all induced plants independent of the level of induction. In contrast, male beetles were repelled by strongly induced plants, showed no significant differences in choice behavior towards moderately induced plants, but responded positively to VOCs released from little induced plants. Thus, beetle sex and plant VOCs had a significant effect on host searching behavior. By contrast, feeding behavior of both sexes was strongly determined by the cyanogenic potential of leaves, although females again responded more sensitively than males. Apparently, VOCs mainly provide information to these beetles that are not directly related to food quality. Being induced by herbivory and involved in indirect plant defense, such VOCs might indicate the presence of competitors and predators to herbivores. We conclude that plant quality as a food source and finding a potentially enemy-free space is more important for female than for male insect herbivores

  7. 7 CFR 301.48-6 - Movement of live Japanese beetles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Movement of live Japanese beetles. 301.48-6 Section... INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE DOMESTIC QUARANTINE NOTICES Japanese Beetle Quarantine and Regulations § 301.48-6 Movement of live Japanese beetles. Regulations requiring a permit for and...

  8. Olfaction in the Colorado beetle at the onset of host plant selection

    NARCIS (Netherlands)

    Visser, J.H.

    1979-01-01

    Long-range olfactory orientation of the adult Colorado beetle was studied in a low- speed wind tunnel. The odour of fully grown potato plants elicits an upwind locomotory response in Colorado beetles (odour-conditioned positive anemotaxis), and increases the beetles' speed of locomotion (direct chem

  9. DNA barcoding of Japanese click beetles (Coleoptera, Elateridae).

    Science.gov (United States)

    Oba, Yuichi; Ôhira, Hitoo; Murase, Yukio; Moriyama, Akihiko; Kumazawa, Yoshinori

    2015-01-01

    Click beetles (Coleoptera: Elateridae) represent one of the largest groups of beetle insects. Some click beetles in larval form, known as wireworms, are destructive agricultural pests. Morphological identification of click beetles is generally difficult and requires taxonomic expertise. This study reports on the DNA barcoding of Japanese click beetles to enable their rapid and accurate identification. We collected and assembled 762 cytochrome oxidase subunit I barcode sequences from 275 species, which cover approximately 75% of the common species found on the Japanese main island, Honshu. This barcode library also contains 20 out of the 21 potential pest species recorded in Japan. Our analysis shows that most morphologically identified species form distinct phylogenetic clusters separated from each other by large molecular distances. This supports the general usefulness of the DNA barcoding approach for quick and reliable identification of Japanese elaterid species for environmental impact assessment, agricultural pest control, and biodiversity analysis. On the other hand, the taxonomic boundary in dozens of species did not agree with the boundary of barcode index numbers (a criterion for sequence-based species delimitation). These findings urge taxonomic reinvestigation of these mismatched taxa.

  10. Flow Visualization of Rhinoceros Beetle (Trypoxylus dichotomus) in Free Flight

    Institute of Scientific and Technical Information of China (English)

    Tien Van Truong; Tuyen Quang Le; Hieu Trung Tran; Hoon Cheol Park; Kwang Joon Yoon; Doyoung Byun

    2012-01-01

    Aerodynamic characteristics of the beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and flexible hind wings,are investigated.Visualization experiments were conducted for various flight conditions of a beetle,Trypoxylus dichotomus:free,tethered,hovering,forward and climbing flights.Leading edge,trailing edge and tip vortices on both wings were observed clearly.The leading edge vortex was stable and remained on the top surface of the elytron for a wide interval during the downstroke of free forward flight.Hence,the elytron may have a considerable role in lift force generation of the beetle.In addition,we reveal a suction phenomenon between the gaps of the hind wing and the elytron in upstroke that may improve the positive lift force on the hind wing.We also found the reverse clap-fling mechanism of the T.dichotomus beetle in hovering flight.The hind wings touch together at the beginning of the upstroke.The vortex generation,shedding and interaction give a better understanding of the detailed aerodynamic mechanism of beetle flight.

  11. Dung beetles use the Milky Way for orientation.

    Science.gov (United States)

    Dacke, Marie; Baird, Emily; Byrne, Marcus; Scholtz, Clarke H; Warrant, Eric J

    2013-02-18

    When the moon is absent from the night sky, stars remain as celestial visual cues. Nonetheless, only birds, seals, and humans are known to use stars for orientation. African ball-rolling dung beetles exploit the sun, the moon, and the celestial polarization pattern to move along straight paths, away from the intense competition at the dung pile. Even on clear moonless nights, many beetles still manage to orientate along straight paths. This led us to hypothesize that dung beetles exploit the starry sky for orientation, a feat that has, to our knowledge, never been demonstrated in an insect. Here, we show that dung beetles transport their dung balls along straight paths under a starlit sky but lose this ability under overcast conditions. In a planetarium, the beetles orientate equally well when rolling under a full starlit sky as when only the Milky Way is present. The use of this bidirectional celestial cue for orientation has been proposed for vertebrates, spiders, and insects, but never proven. This finding represents the first convincing demonstration for the use of the starry sky for orientation in insects and provides the first documented use of the Milky Way for orientation in the animal kingdom.

  12. Coarse woody material has value as habitat for saproxylic beetles

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.M.; Spence, J.R. [Alberta Univ., Edmonton, AB (Canada). Dept of Renewable Resources; Langor, D.W. [Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada)

    2010-07-01

    Biomass harvesting practices are expected to alter the abundance and natural range of variation in coarse woody material (CWM), which in turn may change soil productivity as well as the hydrological balance and structure of tree stands and habitats needed to ensure forest biodiversity. Ecosystem sustainability should be a main criterion for the development of biomass energy production schemes. Studies in northern Europe indicate that the hyperdiverse saproxylic fauna is sensitive to changes in CWM. Saproxylic beetles are dependent on decaying wood, and play an important role in forest nutrient cycling. Approximately 11 per cent of European saproxylic beetles are at risk of regional extirpation. This study sampled saproxylic beetle species from CWM in mature trembling aspen stands in Alberta. Over 150 species were collected, including 4 species new to science. The study showed that the beetles use numerous CWM habitats and exhibit high habitat specificity. A diversity of CWM substrates are needed to maintain saproxylic beetle habitats. Further research is needed to minimize the loss of species and their ecosystem functions.

  13. Marking small hive beetles with thoracic notching: effects on longevity, flight ability and fecundity

    OpenAIRE

    De Guzman, Lilia; Frake, Amanda; Rinderer, Thomas

    2012-01-01

    International audience We tested two marking techniques for adult small hive beetles (SHB): dusting and thoracic notching. The use of blue and red chalk dusts to mark beetles was not persistent and caused early death of SHB with an average survival of 52.6 ± 23.8 and 13.9 ± 7.3 days, respectively. In contrast, notched beetles survived longer (mean = 353.6 ± 5.3 days) with the last beetle dying after 383 days. Likewise, notched beetles (presumed to be injured because of oozing hemolymph fro...

  14. Micro-structure and frictional characteristics of beetle's joint

    Institute of Scientific and Technical Information of China (English)

    DAI Zhendong; Stanislav N. Gorb

    2004-01-01

    Geometric and micro-structure design, tribology properties of beetle joints were experimentally studied, which aimed to enlighten ideas for the joint design of MEMS.The observation by using SEM and microscopy suggested that beetle's joints consist of a concave surface matched with a convex surface. The heads of the beetles, rubbing with flat glass, were tested in fresh and dried statuses and compared with sapphire ball with flat glass. Frictional coefficient of the joint material on glass was significantly lower than that of the sapphire sphere on glass. The material of the joint cuticle for convex surface is rather stiff (the elastic modulus 4.5 Gpa) and smooth. The surface is hydrophobic (the contact angle of distilled water was 88.3° ). It is suggested here that the high stiffness of the joint material and hydrophobicity of the joint surface are parts of the mechanism minimizing friction in insect joints.

  15. The alternative Pharaoh approach: stingless bees mummify beetle parasites alive

    Science.gov (United States)

    Greco, Mark K.; Hoffmann, Dorothee; Dollin, Anne; Duncan, Michael; Spooner-Hart, Robert; Neumann, Peter

    2010-03-01

    Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers ( Trigona carbonaria) immediately mummify invading adult small hive beetles ( Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

  16. Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil

    Directory of Open Access Journals (Sweden)

    Philipp Werner Hopp

    2011-06-01

    Full Text Available Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil. To evaluate the reliability of data obtained by Winkler extraction in Atlantic forest sites in southern Brazil, we studied litter beetle assemblages in secondary forests (5 to 55 years after abandonment and old-growth forests at two seasonally different points in time. For all regeneration stages, species density and abundance were lower in April compared to August; but, assemblage composition of the corresponding forest stages was similar in both months. We suggest that sampling of small litter inhabiting beetles at different points in time using the Winkler technique reveals identical ecological patterns, which are more likely to be influenced by sample incompleteness than by differences in their assemblage composition. A strong relationship between litter quantity and beetle occurrences indicates the importance of this variable for the temporal species density pattern. Additionally, the sampled beetle material was compared with beetle data obtained with pitfall traps in one old-growth forest. Over 60% of the focal species captured with pitfall traps were also sampled by Winkler extraction in different forest stages. Few beetles with a body size too large to be sampled by Winkler extraction were only sampled with pitfall traps. This indicates that the local litter beetle fauna is dominated by small species. Hence, being aware of the exclusion of large beetles and beetle species occurring during the wet season, the Winkler method reveals a reliable picture of the local leaf litter beetle community.

  17. Spruce Beetle Biology, Ecology and Management in the Rocky Mountains: An Addendum to Spruce Beetle in the Rockies

    OpenAIRE

    Jenkins, Michael J; Hebertson, Elizabeth G; A. Steven Munson

    2014-01-01

    Spruce beetle outbreaks have been reported in the Rocky Mountains of western North America since the late 1800s. In their classic paper, Spruce Beetle in the Rockies, Schmid and Frye reviewed the literature that emerged from the extensive outbreaks in Colorado in the 1940s. A new wave of outbreaks has affected Rocky Mountain subalpine spruce-fir forests beginning in the mid-1980s and continuing to the present. These outbreaks have spurred another surge of basic and applied research in the bio...

  18. Current status of small hive beetle infestation in the Philippines

    Science.gov (United States)

    The distribution of the small hive beetle (SHB, Aethina tumida) is rapidly expanding. From sub-Saharan Africa where it is considered indigenous, SHB has successfully invaded other continents, is prevalent in Australia and North America, and has recently been introduced into Europe (summarized by FE...

  19. Use of larder beetles (Coleoptera: Dermestidae) to deflesh human jaws.

    Science.gov (United States)

    Charabidze, D; Colard, T; Becart, A; Hedouin, V

    2014-01-01

    We describe new experimental data for the defleshing of human bones using larder beetles (Dermestes haemorrhoidalis) (Küster, 1852). Although the ability of larder beetles to feed on vertebrate remains has been, and still is, used by taxidermists to deflesh skulls and bones, this method has never been documented from a quantitative perspective and has over time become ignored in most forensic anthropology or odontology laboratories. To promote the rational and efficient use of this method, we performed experiments to estimate the quantity of food consumed by larvae. From the 2nd instar to nymphosis, each larva consumed a mean of 0.13±0.03 g of dry beef muscle. We then used 100±50 D. haemorrhoidalis adults and 100±50 larvae to deflesh human maxillae and mandibles sampled within a forensic context (victim identification). Each sample was weighed and photographed before, during and after the experiment. According to our experiments, 20-25 days were sufficient to completely deflesh all of the samples. We concluded that a small number of larder beetles can be used to efficiently deflesh human jaws. According to this result, the use of larder beetles appears to be an inexpensive, simple and efficient way to clean mandibles and maxillae. Furthermore, this method is DNA-safe (compared to usual maceration techniques) and thus allows the samples to be used for subsequent DNA and drug analyses.

  20. Checklist of the Iranian Ground Beetles (Coleoptera; Carabidae).

    Science.gov (United States)

    Azadbakhsh, Saeed; Nozari, Jamasb

    2015-09-30

    An up-to-date checklist of the ground beetles of Iran is presented. Altogether 955 species and subspecies in 155 genera belonging to 26 subfamilies of Carabidae are reported; 25 taxa are recorded for Iran for the fist time. New localities are listed and some previous distributional records are discussed.

  1. The redbay ambrosia beetle, Xyleborus glabratus: A threat to avocado

    Science.gov (United States)

    Laurel wilt (LW) is a disease caused by Raffaelea sp., a fungal symbiont associated with the recently-introduced redbay ambrosia beetle (RAB), Xyleborus glabratus. Impact of RAB as a vector of the disease to avocado is a threat to avocado production in the U.S. Since 2006, we have a) tested suscepti...

  2. Surveying an endangered saproxylic beetle, Osmoderma eremita, in Mediterranean woodlands

    DEFF Research Database (Denmark)

    Chiari, Stefano; Zauli, Agnese; Mazziotta, Adriano;

    2013-01-01

    of this species. Since in the southern part of its distribution range, a single population of O. eremita is widespread in the landscape, and includes beetles from more than one hollow tree, conservation efforts should focus not only on preserving few and isolated monumental hollow trees, but should be extended...

  3. "Sea Turtles" and "Ground Beetles" [Land Turtles] Should Shake Hands

    Science.gov (United States)

    Kan, Da

    2004-01-01

    This article talks about those who come back to China after studies abroad, characterized as "sea turtles" and those scholars who have remained in China to arduously pursue their studies, characterized as "ground beetles". " Sea turtles" are those foreign MBAs and Ph.D.s who are objects of praise, admiration and are naturally more eye-catching…

  4. The Pied Piper: A Parasitic Beetle's Melodies Modulate Ant Behaviours.

    Directory of Open Access Journals (Sweden)

    Andrea Di Giulio

    Full Text Available Ants use various communication channels to regulate their social organisation. The main channel that drives almost all the ants' activities and behaviours is the chemical one, but it is long acknowledged that the acoustic channel also plays an important role. However, very little is known regarding exploitation of the acoustical channel by myrmecophile parasites to infiltrate the ant society. Among social parasites, the ant nest beetles (Paussus are obligate myrmecophiles able to move throughout the colony at will and prey on the ants, surprisingly never eliciting aggression from the colonies. It has been recently postulated that stridulatory organs in Paussus might be evolved as an acoustic mechanism to interact with ants. Here, we survey the role of acoustic signals employed in the Paussus beetle-Pheidole ant system. Ants parasitised by Paussus beetles produce caste-specific stridulations. We found that Paussus can "speak" three different "languages", each similar to sounds produced by different ant castes (workers, soldiers, queen. Playback experiments were used to test how host ants respond to the sounds emitted by Paussus. Our data suggest that, by mimicking the stridulations of the queen, Paussus is able to dupe the workers of its host and to be treated as royalty. This is the first report of acoustic mimicry in a beetle parasite of ants.

  5. Transgenic resistance of eggplants to the Colorado potato beetle

    NARCIS (Netherlands)

    Arpaia, S.

    1999-01-01

    The subject of this thesis is the use of transgenic plant resistance as a method to control the Colorado potato beetle, Leptinotarsa decemlineata Say in eggplant. The gene conferring resistance is coding for a Cry3B toxin and it is a synthetic version of a wild-type gene originally obtained from the

  6. [Co-adaptation between mites (Arachnida: Klinckowstroemiidae) and Passalidae beetles (Insecta: Coleoptera)].

    Science.gov (United States)

    Villegas-Guzmán, Gabriel A; Francke, Oscar F; Pérez, Tila M; Reyes-Castillo, Pedro

    2012-06-01

    Mites of the family Klinckowstroemiidae establish an association with beetles of the family Passalidae known as phoresy. In order to obtain information about this association, we analyzed the relationship between mites of the family Klinckowstroemiidae and beetles of the family Passalidae, as adult mites have been exclusively collected from host beetles. We examined 1 150 beetles collected in seven states of the Mexican Republic, and found 19 species of klinckowstroemiid mites associated with 168 passalids, that belong to 28 different species in 15 genera. Host specificity between species of both groups does not exist, as one species of passalid beetle can have several different symbionts; conversely, a given mite species can associate with passalid beetles of different species and even of different genera. This way, Odontotaenius zodiacus has been found associated with mites of seven species of the genus Klinckowstroemia. Besides, Klinckowstroemia valdezi is associated with five species of passalids. Furthermore, two and even three different species of mites have been found on one host beetle (synhospitality). The lack of congruence between the phylogenies of the mites and that of the beetles indicates that a process of co-adaptation by colonization is going on, because the association is due to the resources that passalid beetles can offer to the mites, like transportation, food and refuge. Since these resources are not host-specific, the klinckowstroemiid mites can climb onto virtually any species of passalid beetles occurring on the same habitat.

  7. Spatio-Temporal Distribution of Bark and Ambrosia Beetles in a Brazilian Tropical Dry Forest.

    Science.gov (United States)

    Macedo-Reis, Luiz Eduardo; Novais, Samuel Matos Antunes de; Monteiro, Graziela França; Flechtmann, Carlos Alberto Hector; Faria, Maurício Lopes de; Neves, Frederico de Siqueira

    2016-01-01

    Bark and the ambrosia beetles dig into host plants and live most of their lives in concealed tunnels. We assessed beetle community dynamics in tropical dry forest sites in early, intermediate, and late successional stages, evaluating the influence of resource availability and seasonal variations in guild structure. We collected a total of 763 beetles from 23 species, including 14 bark beetle species, and 9 ambrosia beetle species. Local richness of bark and ambrosia beetles was estimated at 31 species. Bark and ambrosia composition was similar over the successional stages gradient, and beta diversity among sites was primarily determined by species turnover, mainly in the bark beetle community. Bark beetle richness and abundance were higher at intermediate stages; availability of wood was the main spatial mechanism. Climate factors were effectively non-seasonal. Ambrosia beetles were not influenced by successional stages, however the increase in wood resulted in increased abundance. We found higher richness at the end of the dry and wet seasons, and abundance increased with air moisture and decreased with higher temperatures and greater rainfall. In summary, bark beetle species accumulation was higher at sites with better wood production, while the needs of fungi (host and air moisture), resulted in a favorable conditions for species accumulation of ambrosia. The overall biological pattern among guilds differed from tropical rain forests, showing patterns similar to dry forest areas. PMID:27271969

  8. Interactions between imidacloprid and Metarhizium brunneum on adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Russell, Calum W; Ugine, Todd A; Hajek, Ann E

    2010-11-01

    Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae), a longhorned beetle species native to Asia, has been introduced into several North American and European cities. Currently eradication and preventive measures are limited to identifying and destroying infested trees and protecting uninfested trees with trunk or soil-injections of the systemic insecticide imidacloprid. Because entomopathogenic fungi like Metarhizium brunneum Petch have been identified as virulent against these beetles we conducted several tests to determine the compatibility of the two agents in combination. Radial hyphal growth and the sporulation capacity of M. brunneum on Sabouraud dextrose agar with yeast were not significantly affected by the presence of imidacloprid. In a 2×3 factorial experiment investigating interactions between exposure to imidacloprid and M. brunneum we observed no effect of imidacloprid alone on beetle survival when beetles were given a single dose of 10 or 100 ppm compared to control insects. We observed a significant effect of exposure to M. brunneum, and a significant interaction between imidacloprid and M. brunneum representing a synergistic effect of dual treatment. Beetles exposed to the fungus alone lived significantly longer compared to insects treated with a single dose of 100 ppm imidacloprid (9.5 vs. 6.5d). Consumption of striped maple twigs by beetles exposed to imidacloprid, across concentrations, was reduced 48% compared to control insects, where as consumption by M. brunneum-exposed beetles was reduced by 16% over the first 6-days of the test period. Beetles fed 100 ppm imidacloprid consumed 32% less over the first 3d compared to beetles not exposed to imidacloprid and thereafter consumed as much as beetles not fed 100 ppm imidacloprid. M. brunneum-exposed beetles consumed significantly less food than control insects throughout the test period, and beetles treated with imidacloprid produced significantly fewer conidia compared to beetles

  9. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (fire) spruce beetle infestation affected fire severity. Contrary to the expectation that bark beetle infestation alters subsequent fire severity, correlation and multivariate generalized linear regression analysis revealed no influence of pre-fire spruce beetle severity on nearly all field or remotely sensed measurements of fire severity. Findings were consistent across moderate and extreme burning conditions. In comparison to severity of the pre-fire beetle outbreak, we found that topography, pre-outbreak basal area, and weather conditions exerted a stronger effect on fire severity. Our finding that beetle infestation did not alter fire severity is consistent with previous retrospective studies examining fire activity following other bark beetle outbreaks and reiterates the overriding influence of climate that creates conditions conducive to large, high-severity fires in the subalpine zone of Colorado. Both bark beetle outbreaks and

  10. Juvenile hormone regulates extreme mandible growth in male stag beetles.

    Science.gov (United States)

    Gotoh, Hiroki; Cornette, Richard; Koshikawa, Shigeyuki; Okada, Yasukazu; Lavine, Laura Corley; Emlen, Douglas J; Miura, Toru

    2011-01-01

    The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure) remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer), juvenile hormone (JH) titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects. PMID:21731659

  11. Juvenile hormone regulates extreme mandible growth in male stag beetles.

    Directory of Open Access Journals (Sweden)

    Hiroki Gotoh

    Full Text Available The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer, juvenile hormone (JH titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects.

  12. Dock leaf beetle, Gastrophysa viridula Deg., herbivory on Mossy Sorrel, Rumex confertus Willd: Induced plant volatiles and beetle orientation responses

    Science.gov (United States)

    The invasive weed Rumex confertus Willd. (mossy sorrel) is fed upon and severely defoliated by Gastrophysa viridula Deg. (dock leaf beetle), a highly promising biological control agent for this weed. We report volatile organic compound (VOC) induction when one leaf on R. confertus was damaged by G. ...

  13. Population structure of mountain pine beetle symbiont Leptographium longiclavatum and the implication on the multipartite beetle-fungi relationships.

    Science.gov (United States)

    Tsui, Clement Kin-Ming; Farfan, Lina; Roe, Amanda D; Rice, Adrianne V; Cooke, Janice E K; El-Kassaby, Yousry A; Hamelin, Richard C

    2014-01-01

    Over 18 million ha of forests have been destroyed in the past decade in Canada by the mountain pine beetle (MPB) and its fungal symbionts. Understanding their population dynamics is critical to improving modeling of beetle epidemics and providing potential clues to predict population expansion. Leptographium longiclavatum and Grosmannia clavigera are fungal symbionts of MPB that aid the beetle to colonize and kill their pine hosts. We investigated the genetic structure and demographic expansion of L. longiclavatum in populations established within the historic distribution range and in the newly colonized regions. We identified three genetic clusters/populations that coincide with independent geographic locations. The genetic profiles of the recently established populations in northern British Columbia (BC) and Alberta suggest that they originated from central and southern BC. Approximate Bayesian Computation supports the scenario that this recent expansion represents an admixture of individuals originating from BC and the Rocky Mountains. Highly significant correlations were found among genetic distance matrices of L. longiclavatum, G. clavigera, and MPB. This highlights the concordance of demographic processes in these interacting organisms sharing a highly specialized niche and supports the hypothesis of long-term multipartite beetle-fungus co-evolutionary history and mutualistic relationships. PMID:25153489

  14. Population structure of mountain pine beetle symbiont Leptographium longiclavatum and the implication on the multipartite beetle-fungi relationships.

    Directory of Open Access Journals (Sweden)

    Clement Kin-Ming Tsui

    Full Text Available Over 18 million ha of forests have been destroyed in the past decade in Canada by the mountain pine beetle (MPB and its fungal symbionts. Understanding their population dynamics is critical to improving modeling of beetle epidemics and providing potential clues to predict population expansion. Leptographium longiclavatum and Grosmannia clavigera are fungal symbionts of MPB that aid the beetle to colonize and kill their pine hosts. We investigated the genetic structure and demographic expansion of L. longiclavatum in populations established within the historic distribution range and in the newly colonized regions. We identified three genetic clusters/populations that coincide with independent geographic locations. The genetic profiles of the recently established populations in northern British Columbia (BC and Alberta suggest that they originated from central and southern BC. Approximate Bayesian Computation supports the scenario that this recent expansion represents an admixture of individuals originating from BC and the Rocky Mountains. Highly significant correlations were found among genetic distance matrices of L. longiclavatum, G. clavigera, and MPB. This highlights the concordance of demographic processes in these interacting organisms sharing a highly specialized niche and supports the hypothesis of long-term multipartite beetle-fungus co-evolutionary history and mutualistic relationships.

  15. Population structure of mountain pine beetle symbiont Leptographium longiclavatum and the implication on the multipartite beetle-fungi relationships.

    Science.gov (United States)

    Tsui, Clement Kin-Ming; Farfan, Lina; Roe, Amanda D; Rice, Adrianne V; Cooke, Janice E K; El-Kassaby, Yousry A; Hamelin, Richard C

    2014-01-01

    Over 18 million ha of forests have been destroyed in the past decade in Canada by the mountain pine beetle (MPB) and its fungal symbionts. Understanding their population dynamics is critical to improving modeling of beetle epidemics and providing potential clues to predict population expansion. Leptographium longiclavatum and Grosmannia clavigera are fungal symbionts of MPB that aid the beetle to colonize and kill their pine hosts. We investigated the genetic structure and demographic expansion of L. longiclavatum in populations established within the historic distribution range and in the newly colonized regions. We identified three genetic clusters/populations that coincide with independent geographic locations. The genetic profiles of the recently established populations in northern British Columbia (BC) and Alberta suggest that they originated from central and southern BC. Approximate Bayesian Computation supports the scenario that this recent expansion represents an admixture of individuals originating from BC and the Rocky Mountains. Highly significant correlations were found among genetic distance matrices of L. longiclavatum, G. clavigera, and MPB. This highlights the concordance of demographic processes in these interacting organisms sharing a highly specialized niche and supports the hypothesis of long-term multipartite beetle-fungus co-evolutionary history and mutualistic relationships.

  16. Ground beetle (Coleoptera: Carabidae) assemblages in narrow hedgerows in a Danish agricultural landscape

    DEFF Research Database (Denmark)

    Lövei, G. L.; Magura, T.

    2015-01-01

    beetle assemblages. The number of ground beetle individuals and species were significantly the highest in the hawthorn hedges and significantly decreased from the hedges with rowan toward the spruce hedges. The elevated number of ground beetle individuals and species in the hawthorn hedges were due......The role of hedgerows in supporting ground beetles (Coleoptera: Carabidae) in a Danish agricultural landscape was examined. Nine old, well established single-row hedges were selected for the study, three each of a native species (hawthorn, Crataegus monogyna), a non-native deciduous one (rowan...... to the forest specialist species, as the number of forest specialist ground beetle individuals and species were significantly higher in the hawthorn hedges compared to the hedges with rowan and spruce. Differences in the number of the grassland and the cropland specialist ground beetle individuals and species...

  17. Dung beetle assemblages (Coleoptera, Scarabaeinae) in Atlantic forest fragments in southern Brazil

    OpenAIRE

    Renata C. Campos; Malva I. Medina Hernández

    2013-01-01

    Dung beetle assemblages (Coleoptera, Scarabaeinae) in Atlantic forest fragments in southern Brazil. The beetles of the subfamily Scarabaeinae are important organisms that participate in the cycle of decomposition, especially in tropical ecosystems. Most species feed on feces (dung) or carcasses (carrion) and are associated with animals that produce their food resources. Dung beetles are divided into three functional groups: rollers, tunnelers and dwellers. This present work aims to study the ...

  18. Induced terpene accumulation in Norway spruce inhibits bark beetle colonization in a dose-dependent manner.

    Directory of Open Access Journals (Sweden)

    Tao Zhao

    Full Text Available BACKGROUND: Tree-killing bark beetles (Coleoptera, Scolytinae are among the most economically and ecologically important forest pests in the northern hemisphere. Induction of terpenoid-based oleoresin has long been considered important in conifer defense against bark beetles, but it has been difficult to demonstrate a direct correlation between terpene levels and resistance to bark beetle colonization. METHODS: To test for inhibitory effects of induced terpenes on colonization by the spruce bark beetle Ips typographus (L. we inoculated 20 mature Norway spruce Picea abies (L. Karsten trees with a virulent fungus associated with the beetle, Ceratocystis polonica (Siem. C. Moreau, and investigated induced terpene levels and beetle colonization in the bark. RESULTS: Fungal inoculation induced very strong and highly variable terpene accumulation 35 days after inoculation. Trees with high induced terpene levels (n = 7 had only 4.9% as many beetle attacks (5.1 vs. 103.5 attacks m(-2 and 2.6% as much gallery length (0.029 m m(-2 vs. 1.11 m m(-2 as trees with low terpene levels (n = 6. There was a highly significant rank correlation between terpene levels at day 35 and beetle colonization in individual trees. The relationship between induced terpene levels and beetle colonization was not linear but thresholded: above a low threshold concentration of ∼100 mg terpene g(-1 dry phloem trees suffered only moderate beetle colonization, and above a high threshold of ∼200 mg terpene g(-1 dry phloem trees were virtually unattacked. CONCLUSION/SIGNIFICANCE: This is the first study demonstrating a dose-dependent relationship between induced terpenes and tree resistance to bark beetle colonization under field conditions, indicating that terpene induction may be instrumental in tree resistance. This knowledge could be useful for developing management strategies that decrease the impact of tree-killing bark beetles.

  19. Tracking an invasive honey bee pest: mitochondrial DNA variation in North American small hive beetles

    OpenAIRE

    Jay. D. Evans,; Jeff. S. Pettis,; Michael Hood, W.; Shimanuki, Hachiro

    2003-01-01

    International audience We describe the current and past distributions of North American small hive beetles (Aethina tumida) having two distinct mitochondrial DNA haplotypes. A collection of 539 hive beetles showed irregular distributions of these haplotypes across the southeastern US. Beetles from the first collections made in coastal South Carolina showed haplotype NA1, exclusively. This haplotype is less common in Georgia and was not observed in North Carolina. Later collections from thi...

  20. Multitrophic interaction facilitates parasite–host relationship between an invasive beetle and the honey bee

    OpenAIRE

    Torto, Baldwyn; Boucias, Drion G.; Arbogast, Richard T.; Tumlinson, James H.; Teal, Peter E. A.

    2007-01-01

    Colony defense by honey bees, Apis mellifera, is associated with stinging and mass attack, fueled by the release of alarm pheromones. Thus, alarm pheromones are critically important to survival of honey bee colonies. Here we report that in the parasitic relationship between the European honey bee and the small hive beetle, Aethina tumida, the honey bee's alarm pheromones serve a negative function because they are potent attractants for the beetle. Furthermore, we discovered that the beetles f...

  1. Predaceous diving beetles in Maine: Faunal list and keys to subfamilies

    Science.gov (United States)

    Boobar, L.R.; Spangler, P.J.; Gibbs, K.E.; Longcore, J.R.; Hopkins, K.M.

    1998-01-01

    Records of predaceous diving beetles (Coleoptera: Dytiscidae) collected in Maine are summarized. These records are augmented by field surveys of beetles in Aroostook Co., Maine during 1993-95. Keys to subfamilies are presented with color plates for selected species. A list of diving beetles that have been collected near Maine (state or province) is presented so that investigators will know what additional species might be expected in Maine. Basic taxonomy is presented to facilitate use of keys.

  2. Spruce Beetle (Dendroctonus rufipennis) Outbreak in Engelmann Spruce (Picea engelmannil) in Central Utah, 1986-1998

    OpenAIRE

    Dymerski, Alan D; Anhold, John A; Munson, Allen S

    2001-01-01

    Extensive Engelmann spruce (Picea engelmannii Parry ex Engelm.) mortality caused by the spruce beetle (Dendroctonus rufipennis Kirby) has been occurring at the southern end of the Wasatch Plateau in central Utah. This spruce beetle outbreak is the largest recorded in Utah history. An extensive ground survey was conducted in 1996 on the Manti-LaSal National Forest, Sanpete and Ferron Ranger Districts, to document mortality and impact of a major spruce beetle outbreak on post-outbreak forest co...

  3. Mountain Pine Beetle Dynamics in Lodgepole Pine Forests, Part 1: Course of an Infectation

    OpenAIRE

    Cole, Walter E; Amman, Gene D

    1980-01-01

    Much of this work is original research by the authors. However, published literature on the mountain pine beetle is reviewed with particular reference to epidemic infestations in lodgepole pine forests. The mountain pine beetle and lodgepole pine have evolved into an intensive and highly compatible relationship. Consequently, stand dynamics of lodgepole pine is a primary factor in the development of beetle epidemics. the diameter-growth relationship and the effects of environmental factors on...

  4. Ethanol injection of ornamental trees facilitates testing insecticide efficacy against ambrosia beetles (Coleoptera: Curculionidae: Scolytinae).

    Science.gov (United States)

    Reding, Michael E; Oliver, Jason B; Schultz, Peter B; Ranger, Christopher M; Youssef, Nadeer N

    2013-02-01

    Exotic ambrosia beetles are damaging pests in ornamental tree nurseries in North America. The species Xylosandrus crassiusculus (Motshulsky) and Xylosandrus germanus (Blandford) are especially problematic. Management of these pests relies on preventive treatments of insecticides. However, field tests of recommended materials on nursery trees have been limited because of unreliable attacks by ambrosia beetles on experimental trees. Ethanol-injection of trees was used to induce colonization by ambrosia beetles to evaluate insecticides and botanical formulations for preventing attacks by ambrosia beetles. Experiments were conducted in Ohio, Tennessee, and Virginia. Experimental trees injected with ethanol had more attacks by ambrosia beetles than uninjected control trees in all but one experiment. Xylosandrus crassiusculus and X. germanus colonized trees injected with ethanol. In most experiments, attack rates declined 8 d after ethanol-injection. Ethanol-injection induced sufficient pressure from ambrosia beetles to evaluate the efficacy of insecticides for preventing attacks. Trunk sprays of permethrin suppressed cumulative total attacks by ambrosia beetles in most tests. Trunk sprays of the botanical formulations Armorex and Veggie Pharm suppressed cumulative total attacks in Ohio. Armorex, Armorex + Permethrin, and Veggie Pharm + Permethrin suppressed attacks in Tennessee. The bifenthrin product Onyx suppressed establishment of X. germanus in one Ohio experiment, and cumulative total ambrosia beetle attacks in Virginia. Substrate drenches and trunk sprays of neonicotinoids, or trunk sprays of anthranilic diamides or tolfenpyrad were not effective. Ethanol-injection is effective for inducing attacks and ensuring pressure by ambrosia beetles for testing insecticide efficacy on ornamental trees.

  5. Social encapsulation of beetle parasites by Cape honeybee colonies (Apis mellifera capensis Esch.)

    Science.gov (United States)

    Neumann, P.; Pirk, C. W. W.; Hepburn, H. R.; Solbrig, A. J.; Ratnieks, F. L. W.; Elzen, P. J.; Baxter, J. R.

    2001-05-01

    Worker honeybees (Apis mellifera capensis) encapsulate the small hive beetle (Aethina tumida), a nest parasite, in propolis (tree resin collected by the bees). The encapsulation process lasts 1-4 days and the bees have a sophisticated guarding strategy for limiting the escape of beetles during encapsulation. Some encapsulated beetles died (4.9%) and a few escaped (1.6%). Encapsulation has probably evolved because the small hive beetle cannot easily be killed by the bees due to its hard exoskeleton and defensive behaviour.

  6. Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus.

    Science.gov (United States)

    Fernández Del Río, Lía; Arwin, Hans; Järrendahl, Kenneth

    2016-07-01

    The optical properties of several scarab beetles have been previously studied but few attempts have been made to compare beetles in the same genus. To determine whether there is any relation between specimens of the same genus, we have studied and classified seven species from the Chrysina genus. The polarization properties were analyzed with Mueller-matrix spectroscopic ellipsometry and the structural characteristics with optical microscopy and scanning electron microscopy. Most of the Chrysina beetles are green colored or have a metallic look (gold or silver). The results show that the green-colored beetles polarize reflected light mainly at off-specular angles. The gold-colored beetles polarize light left-handed near circular at specular reflection. The structure of the exoskeleton is a stack of layers that form a cusplike structure in the green beetles whereas the layers are parallel to the surface in the case of the gold-colored beetles. The beetle C. gloriosa is green with gold-colored stripes along the elytras and exhibits both types of effects. The results indicate that Chrysina beetles can be classified according to these two major polarization properties. PMID:27575166

  7. Polarizing properties and structure of the cuticle of scarab beetles from the Chrysina genus

    Science.gov (United States)

    Fernández del Río, Lía; Arwin, Hans; Järrendahl, Kenneth

    2016-07-01

    The optical properties of several scarab beetles have been previously studied but few attempts have been made to compare beetles in the same genus. To determine whether there is any relation between specimens of the same genus, we have studied and classified seven species from the Chrysina genus. The polarization properties were analyzed with Mueller-matrix spectroscopic ellipsometry and the structural characteristics with optical microscopy and scanning electron microscopy. Most of the Chrysina beetles are green colored or have a metallic look (gold or silver). The results show that the green-colored beetles polarize reflected light mainly at off-specular angles. The gold-colored beetles polarize light left-handed near circular at specular reflection. The structure of the exoskeleton is a stack of layers that form a cusplike structure in the green beetles whereas the layers are parallel to the surface in the case of the gold-colored beetles. The beetle C. gloriosa is green with gold-colored stripes along the elytras and exhibits both types of effects. The results indicate that Chrysina beetles can be classified according to these two major polarization properties.

  8. Population Dynamics of Bean Leaf Beetle, Cerotoma trifurcata (Coleoptera: Chrysomelidae on Edamame Soybean Plants In Nebraska

    Directory of Open Access Journals (Sweden)

    Bamphitlhi Tiroesele

    2013-02-01

    Full Text Available Edamame soybeans are a speciality food item for fresh and processed markets and they are harvested at a physiologically immature (R6 stage. Bean leaf beetle, Cerotoma trifurcata, is a sporadic pest of soybean in Nebraska, however, its pest status and abundance has increased in the recent years due to an increase in soybean acreage. This was a field experiment aimed at determining the population growth rate of bean leaf beetle on two edamame soybean cultivars, ‘Butterbeans’ and ‘Envy,’ at two planting dates during 2004 and 2005 in Nebraska. The population growth of beetles was significantly higher on 'Butterbeans' than on 'Envy' for both the first and second planting periods in both 2004 and 2005 seasons. The beetle infestation differences were noticed on plants at the late reproductive growth stages, R5 and R6. Additionally, the beetle infestation on 'Butterbeans' growth stages in 2004 and 2005 was significantly different for the first and second planting dates. On average, the beetles were higher on plants at the late reproductive stages than the other stages for first and second planting periods. Similarly, ‘Envy’ growth stages showed significant difference in beetle infestation during the first and second planting dates. Significantly high beetle infestations were observed at the vegetative growth stages. The study revealed that population growth of bean leaf beetles on edamame soybeans is affected by the planting date, season and cultivar choice.

  9. Checklist of leaf beetles (Coleoptera: Chrysomelidae) from the state of Morelos, Mexico.

    Science.gov (United States)

    Niño-Maldonado, Santiago; Sánchez-Reyes, Uriel Jeshua; Clark, Shawn M; Toledo-Hernández, Victor Hugo; Corona-López, Angélica María; Jones, Robert W

    2016-03-07

    We record 116 genera and 366 species of Chrysomelidae from the state of Morelos, Mexico. This represents an increase of 9.3% in the species richness of these beetles for the state. Also, Morelos is currently the third most diverse state in leaf beetles within Mexico, with 16.78% of total species recorded for the country. The most diverse genera were Calligrapha, Disonycha, Blepharida, Leptinotarsa, Cryptocephalus, Systena, Alagoasa, Diabrotica and Pachybrachis, each with more than eight species. Most of these genera contain large, showy beetles. When the chrysomelid fauna is more fully understood, some of the genera of tiny beetles will likely prove to be more diverse.

  10. Simulation of light scattering from exoskeletons of scarab beetles.

    Science.gov (United States)

    Valyukh, Sergiy; Arwin, Hans; Järrendahl, Kenneth

    2016-03-21

    An approach for simulation of light scattering from beetles exhibiting structural colors originating from periodic helicoidal structures is presented. Slight irregularities of the periodic structure in the exoskeleton of the beetles are considered as a major cause of light scattering. Two sources of scattering are taken into account: surface roughness and volume non-uniformity. The Kirchhoff approximation is applied to simulate the effect of surface roughness. To describe volume non-uniformity, the whole structure is modeled as a set of domains distributed in space in different orientations. Each domain is modeled as an ideal uniformly twisted uniaxial medium and differs from each other by the pitch. Distributions of the domain parameters are assumed to be Gaussian. The analysis is performed using the Mueller matrix formalism which, in addition to spectral and spatial characteristics, also provides polarization properties of the scattered light. PMID:27136777

  11. Approaches to mimic the metallic sheen in beetles

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Aggerbeck, Martin; Nielsen, Steffen

    2009-01-01

    A range of different beetles exhibits brilliant colours and metallic sheen. One of the most spectacular species is the Plusiotis resplendens from Central America with gold metal appearance. The beetle shells are made from chitin and have a number of unique properties that apart from spectacular...... aesthetic effects include metal sheen from non-metal surfaces combined with electric and thermal insulation. The reflection mechanism has been studied by a number of authors and is well understood. Basically there are 2 different reflection principles. One is the multilayer reflector where alternating...... layers have high and low refractive index. The other is the Bouligand structure where birefringent chiral nanofibres are organised in spiral structures. The paper describes work done to explore different approaches to mimic these structures using polymer based materials and production methods that are...

  12. Using malaise traps to sample ground beetles (Coleoptera. Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, Michael D. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Hanula, James L. [USDA Forest Service, Savannah River, New Ellenton, SC (United States); Horn, Scott [USDA Forest Service, Savannah River, New Ellenton, SC (United States)

    2012-04-02

    Pitfall traps provide an easy and inexpensive way to sample ground-dwelling arthropods (Spence and Niemela 1994; Spence et al. 1997; Abildsnes and Tommeras 2000) and have been used exclusively in many studies of the abundance and diversity of ground beetles (Coleoptera: Carabidae). Despite the popularity of this trapping technique, pitfall traps have many disadvantages. For example, they often fail to collect both small (Spence and Niemela 1994) and trap-shy species (Benest 1989), eventually deplete the local carabid population (Digweed et al. 1995), require a species to be ground-dwelling in order to be captured (Liebherr and Mahar 1979), and produce different results depending on trap diameter and material, type of preservative used, and trap placement (Greenslade 1964; Luff 1975; Work et al. 2002). Further complications arise from seasonal patterns of movement among the beetles themselves (Maelfait and Desender 1990), as well as numerous climatic factors, differences in plant cover, and variable surface conditions (Adis 1979). Because of these limitations, pitfall trap data give an incomplete picture of the carabid community and should be interpreted carefully. Additional methods, such as use of Berlese funnels and litter washing (Spence and Niemela 1994), collection from lights (Usis and MacLean 1998), and deployment of flight intercept devices (Liebherr and Mahar 1979; Paarmann and Stork 1987), should be incorporated in surveys to better ascertain the species composition and relative numbers of ground beetles. Flight intercept devices, like pitfall traps, have the advantage of being easy to use and replicate, but their value to carabid surveys is largely unknown. Here we demonstrate the effectiveness of Malaise traps for sampling ground beetles in a bottomland hardwood forest.

  13. A checklist of stag beetles (Coleoptera: Scarabaeoidea: Lucanidae) from Iran.

    Science.gov (United States)

    Bartolozzi, Luca; Ghahari, Hassan; Sprecher-Uebersax, Eva; Zilioli, Michele

    2014-11-26

    An updated checklist of the Lucanidae (Coleoptera) from Iran is given. New locality records are listed and some dubious distributional records are discussed. Dorcus vavrai Nonfried, 1905 is placed in synonymy with Dorcus peyronis Reiche and Saulcy, 1856 (new synonymy) The female of Lucanus xerxes Král, 2004 is described. A key for the identification of the Iranian stag beetle species is also provided and all the species are figured.

  14. Hit‐and‐run trophallaxis of small hive beetles

    OpenAIRE

    Neumann, Peter; Naef, J.; Crailsheim, K; Crewe, RM; Pirk, CWW

    2015-01-01

    Abstract Some parasites of social insects are able to exploit the exchange of food between nestmates via trophallaxis, because they are chemically disguised as nestmates. However, a few parasites succeed in trophallactic solicitation although they are attacked by workers. The underlying mechanisms are not well understood. The small hive beetle (=SHB), Aethina tumida, is such a parasite of honey bee, Apis mellifera, colonies and is able to induce trophallaxis. Here, we investigate whether SHB ...

  15. Gene discovery in the horned beetle Onthophagus taurus

    Directory of Open Access Journals (Sweden)

    Yang Youngik

    2010-12-01

    Full Text Available Abstract Background Horned beetles, in particular in the genus Onthophagus, are important models for studies on sexual selection, biological radiations, the origin of novel traits, developmental plasticity, biocontrol, conservation, and forensic biology. Despite their growing prominence as models for studying both basic and applied questions in biology, little genomic or transcriptomic data are available for this genus. We used massively parallel pyrosequencing (Roche 454-FLX platform to produce a comprehensive EST dataset for the horned beetle Onthophagus taurus. To maximize sequence diversity, we pooled RNA extracted from a normalized library encompassing diverse developmental stages and both sexes. Results We used 454 pyrosequencing to sequence ESTs from all post-embryonic stages of O. taurus. Approximately 1.36 million reads assembled into 50,080 non-redundant sequences encompassing a total of 26.5 Mbp. The non-redundant sequences match over half of the genes in Tribolium castaneum, the most closely related species with a sequenced genome. Analyses of Gene Ontology annotations and biochemical pathways indicate that the O. taurus sequences reflect a wide and representative sampling of biological functions and biochemical processes. An analysis of sequence polymorphisms revealed that SNP frequency was negatively related to overall expression level and the number of tissue types in which a given gene is expressed. The most variable genes were enriched for a limited number of GO annotations whereas the least variable genes were enriched for a wide range of GO terms directly related to fitness. Conclusions This study provides the first large-scale EST database for horned beetles, a much-needed resource for advancing the study of these organisms. Furthermore, we identified instances of gene duplications and alternative splicing, useful for future study of gene regulation, and a large number of SNP markers that could be used in population

  16. Modeling Phloem Temperatures Relative to Mountain Pine Beetle Phenology

    OpenAIRE

    Lewis, Matthew Jared

    2011-01-01

    We explore a variety of methods to estimate phloem temperatures from ambient air temperatures suitable for the mountain pine beetle, Dendroctonus ponderosae. A model's ability to induce the same phenology generated from observed phloem temperatures measures its effectiveness rather than a simple reconstruction of phloem temperatures. From a model's phenology results we are able to ascertain whether the model produces a similar amount of developmental energy exhibited by observed phloem temper...

  17. Large carrion beetles (Coleoptera, Silphidae) in Western Europe: a review

    OpenAIRE

    Dekeirsschieter, Jessica; Verheggen, François; Lognay, Georges; Haubruge, Eric

    2011-01-01

    This review focuses on carrion beetles (Coleoptera, Silphidae) of the Western Palearctic and their potential use in forensic entomology as bioindicators. Few studies have looked at Silphidae in forensic context and investigations. However, some Silphidae present the desirable characteristics of some Diptera used in postmortem estimates and thus may extend the minimum postmortem interval (PMImin). We review here the taxonomy and distribution of Western Palearctic Silphidae. The anatomical and...

  18. Large carrion beetles (Coleoptera, Silphidae) in Western Europe: a review

    OpenAIRE

    Dekeirsschieter, J.; Verheggen, F.; Lognay, G.; Haubruge, E.

    2011-01-01

    This review focuses on carrion beetles (Coleoptera, Silphidae) of the Western Palearctic and their potential use in forensic entomology as bioindicators. Few studies have looked at Silphidae in forensic context and investigations. However, some Silphidae present the desirable characteristics of some Diptera used in postmortem estimates and thus may extend the minimum postmortem interval (PMImin). We review here the taxonomy and distribution of Western Palearctic Silphidae. The anatomical and ...

  19. Taxonomy Icon Data: red flour beetle [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available red flour beetle Tribolium castaneum Arthropoda Tribolium_castaneum_L.png Tribolium_castaneum_NL.png Triboli...um_castaneum_S.png Tribolium_castaneum_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium...+castaneum&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=N...L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Tribolium+castaneum&t=NS ...

  20. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  1. Bacterial and fungal symbionts of parasitic Dendroctonus bark beetles.

    Science.gov (United States)

    Dohet, Loïc; Grégoire, Jean-Claude; Berasategui, Aileen; Kaltenpoth, Martin; Biedermann, Peter H W

    2016-09-01

    Bark beetles (Curculionidae: Scolytinae) are one of the most species-rich herbivorous insect groups with many shifts in ecology and host-plant use, which may be mediated by their bacterial and fungal symbionts. While symbionts are well studied in economically important, tree-killing species, little is known about parasitic species whose broods develop in living trees. Here, using culture-dependent and independent methods, we provide a comprehensive overview of the associated bacteria, yeasts and filamentous fungi of the parasitic Dendroctonus micans, D. punctatus and D. valens, and compare them to those of other tree-inhabiting insects. Despite inhabiting different geographical regions and/or host trees, the three species showed similar microbial communities. Enterobacteria were the most prevalent bacteria, in particular Rahnella, Pantoea and Ewingella, in addition to Streptomyces Likewise, the yeasts Candida/Cyberlindnera were the most prominent fungi. All these microorganisms are widespread among tree-inhabiting insects with various ecologies, but their high prevalence overall might indicate a beneficial role such as detoxification of tree defenses, diet supplementation or protection against pathogens. As such, our results enable comparisons of symbiont communities of parasitic bark beetles with those of other beetles, and will contribute to our understanding of how microbial symbioses facilitate dietary shifts in insects. PMID:27387908

  2. ROVE BEETLES (COLEOPTERA, STAPHYLINIDAE AND THEIR MEDICAL IMPORTANCE

    Directory of Open Access Journals (Sweden)

    B. Janbakhsh

    1977-06-01

    Full Text Available Rove beetle dermatitis produced by the family Staphylinidae genus Paederus has world- wide distribution some one hundred species of Paederus have been found, but it is believed that only 30 of these produce dermatitis. Up to 1976 three species of paederus have been found in Iran as: P. fusciped Curtis; P. pietschmanni Bershaner , and P. spectabilis Kraatz . Observations on the biology of Paederus SPP have shown that the greatest activity coincides with a high degree of humidity during the hot season. Some species seem to be attracted to artificial light. The most common pathological feature caused by rose beetles is a viscular dermatitis Eye lesions may occur, but they are the result of spread of the irritant with the fingers, after the insect was crushed on the skin, therefore secondary infection. Experiments have shown that dermatitis only develops when a rove beetle is crushed on the haemolymph. The vesicant substance is pederin which is distinct from cantharidin in terns of its biological, physical, and chemical propertics.

  3. Influence of Mountain Pine Beetle on Fuels, Foliar Fuel Moisture Content, and Litter and Volatile Terpenes in Whitebark Pine

    OpenAIRE

    Toone, Chelsea

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has caused extensive tree mortality in whitebark pine (Pinus albicaulis Engelm) forests. Previous studies conducted in various conifer forests have shown that fine surface fuels are significantly altered during a bark beetle outbreak. Bark beetle activity in conifer stands has also been shown to alter foliar fuel moisture content and chemistry over the course of the bark beetle rotation.The objective of this study was to evaluate changes ...

  4. Spatial-temporal modeling of forest gaps generated by colonization from below- and above-ground beetle species

    DEFF Research Database (Denmark)

    Zhu, J.; Rasmussen, Jakob Gulddahl; Møller, Jesper;

    the Great Lakes Region. Here we examine the impact of two bark beetle groups, namely red turpentine beetles and pine engraver bark beetles, on tree mortality and the subsequent gap formation over time in a plantation in Wisconsin. We construct spatial-temporal statistical models that quantify the relations...

  5. Spatial-temporal modeling of forest gaps generated by colonization from below- and above-ground bark beetle species

    DEFF Research Database (Denmark)

    Zhu, Jun; Rasmussen, Jakob Gulddahl; Møller, Jesper;

    2008-01-01

    the Great Lakes region. Here we examine the impact of two bark beetle groups, red turpentine beetles and pine engraver bark beetles, on tree mortality and the subsequent gap formation over time in a plantation in Wisconsin. We construct spatial-temporal statistical models that quantify the relations among...

  6. Assessing meteorological key factors influencing crop invasion by pollen beetle (

    Directory of Open Access Journals (Sweden)

    Jürgen Junk

    2016-09-01

    Full Text Available The pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae, is a severe pest of winter oilseed rape. A phenological model to forecast the first spring invasion of crops in Luxembourg by M. aeneus was developed in order to provide a tool for improving pest management and for assessing the potential effects of climate change on this pest. The model was derived using long-term, multi-site observational datasets of pollen beetle migration and meteorological data, as the timing of crop invasion is determined mainly by meteorological variables. Daily values of mean air and soil temperature, accumulated sunshine duration and precipitation were used to create a threshold-based model to forecast crop invasion. Minimising of the root mean squared error (RMSE of predicted versus observed migration dates was used as the quality criterion for selecting the optimum combination of threshold values for meteorological variables. We identified mean air temperature 8.0 °C, mean soil temperature 4.6 °C, and sunshine duration of 3.4 h as the best threshold values, with a cut-off of 1 mm precipitation and with no need for persistence of those conditions for more than one day (RMSE=9.3days$RMSE=9.3\\,\\text{days}$. Only in six out of 30 cases, differences between observed and predicted immigration dates were >5$>5$ days. In the future, crop invasion by pollen beetles will probably be strongly affected by changes in air temperature and precipitation related to climate change. We used a multi-model ensemble of 15 regional climate models driven by the A1B emission scenario to assess meteorological changes in two 30‑year future periods, near future (2021–2050 and far future (2069–2098 in comparison with the reference period (1971–2000. Air temperature and precipitation were predicted to increase in the first three months of each year, both in the near future and the far future. The pollen beetle migration model indicated that this change would

  7. Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini).

    Science.gov (United States)

    Nadein, Konstantin; Betz, Oliver

    2016-07-01

    The present study analyses the anatomy, mechanics and functional morphology of the jumping apparatus, the performance and the kinematics of the natural jump of flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini). The kinematic parameters of the initial phase of the jump were calculated for five species from five genera (average values from minimum to maximum): acceleration 0.91-2.25 (×10(3)) m s(-2), velocity 1.48-2.80 m s(-1), time to take-off 1.35-2.25 ms, kinetic energy 2.43-16.5 µJ, G: -force 93-230. The jumping apparatus is localized in the hind legs and formed by the femur, tibia, femoro-tibial joint, modified metafemoral extensor tendon, extensor ligament, tibial flexor sclerite, and extensor and flexor muscles. The primary role of the metafemoral extensor tendon is seen in the formation of an increased attachment site for the extensor muscles. The rubber-like protein resilin was detected in the extensor ligament, i.e. a short, elastic element connecting the extensor tendon with the tibial base. The calculated specific joint power (max. 0.714 W g(-1)) of the femoro-tibial joint during the jumping movement and the fast full extension of the hind tibia (1-3 ms) suggest that jumping is performed via a catapult mechanism releasing energy that has beforehand been stored in the extensor ligament during its stretching by the extensor muscles. In addition, the morphology of the femoro-tibial joint suggests that the co-contraction of the flexor and the extensor muscles in the femur of the jumping leg is involved in this process. PMID:27385755

  8. Jumping mechanisms and performance in beetles. I. Flea beetles (Coleoptera: Chrysomelidae: Alticini).

    Science.gov (United States)

    Nadein, Konstantin; Betz, Oliver

    2016-07-01

    The present study analyses the anatomy, mechanics and functional morphology of the jumping apparatus, the performance and the kinematics of the natural jump of flea beetles (Coleoptera: Chrysomelidae: Galerucinae: Alticini). The kinematic parameters of the initial phase of the jump were calculated for five species from five genera (average values from minimum to maximum): acceleration 0.91-2.25 (×10(3)) m s(-2), velocity 1.48-2.80 m s(-1), time to take-off 1.35-2.25 ms, kinetic energy 2.43-16.5 µJ, G: -force 93-230. The jumping apparatus is localized in the hind legs and formed by the femur, tibia, femoro-tibial joint, modified metafemoral extensor tendon, extensor ligament, tibial flexor sclerite, and extensor and flexor muscles. The primary role of the metafemoral extensor tendon is seen in the formation of an increased attachment site for the extensor muscles. The rubber-like protein resilin was detected in the extensor ligament, i.e. a short, elastic element connecting the extensor tendon with the tibial base. The calculated specific joint power (max. 0.714 W g(-1)) of the femoro-tibial joint during the jumping movement and the fast full extension of the hind tibia (1-3 ms) suggest that jumping is performed via a catapult mechanism releasing energy that has beforehand been stored in the extensor ligament during its stretching by the extensor muscles. In addition, the morphology of the femoro-tibial joint suggests that the co-contraction of the flexor and the extensor muscles in the femur of the jumping leg is involved in this process.

  9. Linking Increasing Drought Stress to Scots Pine Mortality and Bark Beetle Infestations

    Directory of Open Access Journals (Sweden)

    Matthias Dobbertin

    2007-01-01

    Full Text Available In the dry Swiss Rhone Valley, Scots pine forests have experienced increased mortality in recent years. It has commonly been assumed that drought events and bark beetles fostered the decline, however, whether bark beetle outbreaks increased in recent years and whether they can be linked to drought stress or increasing temperature has never been studied.

  10. Hilltopping on termitaries by the Indochinese tiger beetle, Heptodonta analis (Cincindelidae)

    Institute of Scientific and Technical Information of China (English)

    WILLIAMH.SCHAEDLA

    2005-01-01

    Spot surveys conducted during the early part of the monsoon season in northeastern Thailand indicated territorial hilltopping on termitaries by the tiger beetle,Heptodonta analis. Such behavior has not been reported for this genus. Unlike other tiger beetles, H. analis may take advantage of termitaries adventitiously, without specializing on them.

  11. Traditional African plant products to protect stored cowpeas against insect damage : the battle against the beetle

    NARCIS (Netherlands)

    Boeke, S.J.

    2002-01-01

    Seeds of the cowpea plant, Vigna unguiculata , a tropical crop, are very susceptible to attack by the cowpea beetle. This specialist beetle needs only the beans to reproduce rapidly.Most farmers in West Africa have few possibilities to treat the beans and they face their stored supply

  12. Effectiveness of hand removal for small-scale management of Japanese beetles (Coleoptera: Scarabaeidae).

    Science.gov (United States)

    Switzer, Paul V; Cumming, Ryan M

    2014-02-01

    Hand removal is often recommended as a method for small-scale control of Japanese beetles (Popillia japonica Newman). In this study, we investigated the effectiveness of daily hand removal for controlling damage by Japanese beetles on grape plants. We also investigated whether the timing of the removal (at 0800, 1400, or 1900 hours, or at all 3 periods) influenced the effectiveness of the technique. We found that hand removal significantly lowered the number of beetles on, and consequently the damage to, grape plants relative to nonremoval controls. Of the single removal treatments, removal of beetles at 1900 hours was most effective, with results similar to removing beetles three times per day. The majority of beetles removed from plants during the experiment were female, a pattern that matches our understanding of aggregation formation behavior in the species, and which may serve to enhance the benefits of hand removal. Hand removal seems to work by decreasing the number of feeding beetles, which in turn reduces the release of aggregation kairomones from the plant, and subsequently decreases the attractiveness of the plant to future beetles.

  13. Significantly Higher Carabid Beetle (Coleoptera: Carabidae) Catch in Conventionally than in Organically Managed Christmas Tree Plantations

    DEFF Research Database (Denmark)

    Bagge, Soren; Lund, Malthe; Ronn, Regin;

    2012-01-01

    Carabid beetles play an important role as consumers of pest organisms in forestry and agriculture. Application of pesticides may negatively affect abundance and activity of carabid beetles, thus reducing their potential beneficial effect. We investigated how abundance and diversity of pitfall tra...

  14. Inquiry-based Investigation in Biology Laboratories: Does Neem Provide Bioprotection against Bean Beetles?

    Science.gov (United States)

    Pearce, Amy R.; Sale, Amanda Lovelace; Srivatsan, Malathi; Beck, Christopher W.; Blumer, Lawrence S.; Grippo, Anne A.

    2013-01-01

    We developed an inquiry-based biology laboratory exercise in which undergraduate students designed experiments addressing whether material from the neem tree ("Azadirachta indica") altered bean beetle ("Callosobruchus maculatus") movements and oviposition. Students were introduced to the bean beetle life cycle, experimental…

  15. Colonization of Artificially Stressed Black Walnut Trees by Ambrosia Beetle, Bark Beetle, and Other Weevil Species (Coleoptera: Curculionidae) in Indiana and Missouri.

    Science.gov (United States)

    Reed, Sharon E; Juzwik, Jennifer; English, James T; Ginzel, Matthew D

    2015-12-01

    Thousand cankers disease (TCD) is a new disease of black walnut (Juglans nigra L.) in the eastern United States. The disease is caused by the interaction of the aggressive bark beetle Pityophthorus juglandis Blackman and the canker-forming fungus, Geosmithia morbida M. Kolarik, E. Freeland, C. Utley & Tisserat, carried by the beetle. Other insects also colonize TCD-symptomatic trees and may also carry pathogens. A trap tree survey was conducted in Indiana and Missouri to characterize the assemblage of ambrosia beetles, bark beetles, and other weevils attracted to the main stems and crowns of stressed black walnut. More than 100 trees were girdled and treated with glyphosate (Riverdale Razor Pro, Burr Ridge, Illinois) at 27 locations. Nearly 17,000 insects were collected from logs harvested from girdled walnut trees. These insects represented 15 ambrosia beetle, four bark beetle, and seven other weevil species. The most abundant species included Xyleborinus saxeseni Ratzburg, Xylosandrus crassiusculus Motschulsky, Xylosandrus germanus Blandford, Xyleborus affinis Eichhoff, and Stenomimus pallidus Boheman. These species differed in their association with the stems or crowns of stressed trees. Multiple species of insects were collected from individual trees and likely colonized tissues near each other. At least three of the abundant species found (S. pallidus, X. crassiusculus, and X. germanus) are known to carry propagules of canker-causing fungi of black walnut. In summary, a large number of ambrosia beetles, bark beetles, and other weevils are attracted to stressed walnut trees in Indiana and Missouri. Several of these species have the potential to introduce walnut canker pathogens during colonization.

  16. DOSE MORTALITY RESPONCES OF BLISTER BEETLES AGAINST SOME INSECTICIDES

    Directory of Open Access Journals (Sweden)

    SARIKA P. SHENDE

    2013-01-01

    Full Text Available In view of significant damage potential of adult blister beetles, dose mortality response for number of insecticideswas evaluated to find out efficacious alternative for management of blister beetles. The experiments were conductedat Insect Toxicology Laboratory, Department of Agricutural Entomology, Dr. Panjabrao Deshmukh KrishiVidyapeeth, Akola (Maharashtra. The insecticides viz., chlorpyriphos 50 EC + cypermethrin 5 EC (0.1375%,lambda cyhalothrin 2.5 EC (0.00375%, alphamethrin 20 EC (0.05%, cypermethrin 10 EC (0.01%, fenvalerate20 EC (0.02% and deltamethrin 2.8 EC (0.0042% at field dose inflicted 100 per cent mortality, within 24 hours.The data on relative toxicity revealed that lambda cyhalothrin 2.5 EC, deltamethrin 2.8 EC and cypermethrin 10EC were 188.3, 113.0 and 56.5 times more toxic with reference to chlorpyriphos dust, respectively. The order oftoxicity based on LC50 values for insecticides under evaluation was lambda cyhalothrin (0.06 ppm > deltamethrin(0.1 ppm > cypermethrin (0.2 ppm > alphamethrin (0.4 ppm > fenvalerate (0.6 ppm > chlorpyriphos +Cypermethrin (0.8 ppm > methyl parathion dust (1.1 ppm > fenvalerate dust (3.0 ppm > chlorpyriphos dust(11.3 ppm. Lower LT50 values at 103 dilutions was recorded in cypermethrin (10.0h and chorpyriphos +cypermethrin (13.0h. In case of dust formulations, minimum LT50 value was recorded with methyl parathion(83.1h, whereas, fenvalerate dust (109.2h registered highest value. Similar, efficacy trend based on LT50 valueswas recorded at 104 dilutions. Synthetic pyrethroids proved efficient in inflicting mortality quickly and at lowerdose, thus, suggesting their potential in management of blister beetles.

  17. Using dung beetles to evaluate the effects of urbanization on Atlantic Forest biodiversity

    Institute of Scientific and Technical Information of China (English)

    Vanesca Korasaki; José Lopes; George Gardner Brown; Julio Louzada

    2013-01-01

    We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina,Paraná,Brazil.This study provides the first empirical evidence of the impact of urbanization on richness,abundance,composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest.We evaluated the community aspects (abundance,richness,composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat,rotten fish,pig dung and decaying banana).A total of 1719 individuals were collected,belonging to 29 species from 11 genera and six Scarabaeinae tribes.The most urban-immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness.The beetle communities were distinct with respect to the fragments and feeding habits.Except for the dung beetle assemblage in the most urbanized forest fragment,all others exhibited contrasting differences in species composition attracted to each bait type.Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities,even small ones,can provide refuges for Scarabaeinae.

  18. Management of Chinese Rose Beetle (Adoretus sinicus) Adults Feeding on Cacao (Theobroma cacao) Using Insecticides.

    Science.gov (United States)

    Spafford, Helen; Ching, Alexander; Manley, Megan; Hardin, Chelsea; Bittenbender, Harry

    2016-01-01

    The Chinese rose beetle (Adoretus sinicus Burmeister (Coleoptera: Scarabaeidae)) is an introduced, widely-established pest in Hawai'i. The adult beetles feed on the leaves of cacao (Theobroma cacao L.), which can lead to defoliation and even death of young trees. We evaluated the impact of five commercially available products with different active ingredients (imidacloprid, azadirachtin, Beauveria bassiana (Bals.-Criv.) Vuill., kaolin clay, and pyrethrin) and the presence or absence of weed mat cover in reducing adult beetle feeding on sapling cacao in the field. The use of weed mat cover reduced feeding damage compared to the untreated control, as did foliar application of imidacloprid, azadirachtin, and B. bassiana. In the laboratory, field-collected adult beetles were presented cacao leaf samples dipped in one of the five products and compared to a control. Beetles exposed to pyrethrin died rapidly. Among the other treatments, only exposure to imidacloprid significantly reduced survival relative to the control. Beetles fed very little on leaf samples with azadirachtin but their longevity was not significantly reduced. Imidacloprid, azadirachtin, and weed mat application had the most promise for reducing adult Chinese rose beetle feeding damage in young cacao and deserve further investigation for successful management of this significant pest. PMID:27348004

  19. Indirect closing of elytra by the prothorax in beetles (Coleoptera): general observations and exceptions.

    Science.gov (United States)

    Frantsevich, Leonid

    2012-02-01

    Voluntary movements of the prothorax and the elytra in tethered flying beetles and manually induced movements of these parts in fresh dead beetles were recorded in 30 species representing 14 families. Participation of prothoracic elevation in the closing of the elytra was demonstrated in three ways. (i) The elevation was always simultaneous with elytral closing, in contrast to depression and elytral opening; a rare exception occurred in Lucanus cervus, whose elytra sometimes started to close before the cessation of wing strokes and the elevation of the prothorax. (ii) The manipulated elevation always induced closing of the spread elytra; the mechanical interaction between the hind edge of the pronotum and the roots of the elytra is a universal mechanism of closing the elytra in beetles. (iii) The prevention of pronoto-elytral contact in live beetles by the excision of the hind edge of the pronotum in front of the root prevented elytral closing after normal flight. Exceptions to this rule included some beetles that were able to close their elytra after such an excision: tiger beetles and diving beetles (seldomly) and rose chafers (always). This ability in Adephaga may be explained by attachments of the muscle actuating the 4th axillary plate, which differ from the attachments in Polyphaga. Cetoniinae open their elytra only by a small amount. It is proposed that their small direct adductors in combination with the elasticity of the sclerites are enough to achieve elytral closing without additional help from the prothorax.

  20. Attractiveness of native mammal's feces of different trophic guilds to dung beetles (Coleoptera: Scarabaeinae).

    Science.gov (United States)

    Bogoni, Juliano A; Hernández, Malva I M

    2014-01-01

    Mammal feces are the primary food and nesting resource for the majority of dung beetle species, and larval development depends on the quantity and quality of that resource. Physiological necessities, competitive interactions, and resource sharing are common and suggest that dung beetles may show preferences for feces of greater nutritional quality, which may in turn impact beetle assemblages and community structure. This study investigated whether attractiveness of dung beetles to different resource (feces) types varies depending on mammal trophic guild and associated nutritional content. This study was conducted in Atlantic Forest fragments in the Parque Estadual da Serra do Tabuleiro, Santa Catarina, Brazil. To evaluate attractiveness, the feces of the carnivore Puma concolor, the omnivores Cerdocyon thous and Sapajus nigritus, and the herbivore Tapirus terrestris were utilized as bait. Dung was collected from zoo animals fed a standard diet. Sampling was performed in triplicate in five areas in the summer of 2013. Four pitfall traps were established in each area, and each trap was baited with one type of mammal feces. Food preference of the species was analyzed by calculating Rodgers' index for cafeteria-type experiments. In total, 426 individuals from 17 species were collected. Rodgers' index showed that omnivorous mammal feces (C. thous) were most attractive to all dung beetle species, although it is known that dung beetles are commonly opportunistic with respect to search for and allocation of food resources. These results suggest that mammal loss could alter competitive interactions between dung beetles.

  1. Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee.

    Science.gov (United States)

    Torto, Baldwyn; Boucias, Drion G; Arbogast, Richard T; Tumlinson, James H; Teal, Peter E A

    2007-05-15

    Colony defense by honey bees, Apis mellifera, is associated with stinging and mass attack, fueled by the release of alarm pheromones. Thus, alarm pheromones are critically important to survival of honey bee colonies. Here we report that in the parasitic relationship between the European honey bee and the small hive beetle, Aethina tumida, the honey bee's alarm pheromones serve a negative function because they are potent attractants for the beetle. Furthermore, we discovered that the beetles from both Africa and the United States vector a strain of Kodamaea ohmeri yeast, which produces these same honey bee alarm pheromones when grown on pollen in hives. The beetle is not a pest of African honey bees because African bees have evolved effective methods to mitigate beetle infestation. However, European honey bees, faced with disease and pest management stresses different from those experienced by African bees, are unable to effectively inhibit beetle infestation. Therefore, the environment of the European honey bee colony provides optimal conditions to promote the unique bee-beetle-yeast-pollen multitrophic interaction that facilitates effective infestation of hives at the expense of the European honey bee. PMID:17483478

  2. Reflective Polyethylene Mulch Reduces Mexican Bean Beetle (Coleoptera: Coccinellidae) Densities and Damage in Snap Beans.

    Science.gov (United States)

    Nottingham, L B; Kuhar, T P

    2016-08-01

    Mexican bean beetle, Epilachna varivestis Mulsant, is a serious pest of snap beans, Phaseolus vulgaris L., in the eastern United States. These beetles are intolerant to direct sunlight, explaining why individuals are typically found on the undersides of leaves and in the lower portion of the plant canopy. We hypothesized that snap beans grown on reflective, agricultural polyethylene (plastic mulch) would have fewer Mexican bean beetles and less injury than those grown on black plastic or bare soil. In 2014 and 2015, beans were seeded into beds of metallized, white, and black plastic, and bare soil, in field plots near Blacksburg, VA. Mexican bean beetle density, feeding injury, predatory arthropods, and snap bean yield were sampled. Reflected light intensity, temperature, and humidity were monitored using data loggers. Pyranometer readings showed that reflected light intensity was highest over metallized plastic and second highest over white plastic; black plastic and bare soil were similarly low. Temperature and humidity were unaffected by treatments. Significant reductions in Mexican bean beetle densities and feeding injury were observed in both metallized and white plastic plots compared to black plastic and bare soil, with metallized plastic having the fewest Mexican bean beetle life stages and injury. Predatory arthropod densities were not reduced by reflective plastic. Metallized plots produced the highest yields, followed by white. The results of this study suggest that growing snap beans on reflective plastic mulch can suppress the incidence and damage of Mexican bean beetle, and increase yield in snap beans. PMID:27341891

  3. Functional value of elytra under various stresses in the red flour beetle, Tribolium castaneum

    Science.gov (United States)

    Linz, David M.; Hu, Alan W.; Sitvarin, Michael I.; Tomoyasu, Yoshinori

    2016-01-01

    Coleoptera (beetles) is a massively successful order of insects, distinguished by their evolutionarily modified forewings called elytra. These structures are often presumed to have been a major driving force for the successful radiation of this taxon, by providing beetles with protection against a variety of harsh environmental factors. However, few studies have directly demonstrated the functional significance of the elytra against diverse environmental challenges. Here, we sought to empirically test the function of the elytra using Tribolium castaneum (the red flour beetle) as a model. We tested four categories of stress on the beetles: physical damage to hindwings, predation, desiccation, and cold shock. We found that, in all categories, the presence of elytra conferred a significant advantage compared to those beetles with their elytra experimentally removed. This work provides compelling quantitative evidence supporting the importance of beetle forewings in tolerating a variety of environmental stresses, and gives insight into how the evolution of elytra have facilitated the remarkable success of beetle radiation. PMID:27708390

  4. Longevity and viability of Taenia solium eggs in the digestive system of the beetle Ammophorus rubripes.

    Science.gov (United States)

    Gomez-Puerta, Luis Antonio; Lopez-Urbina, Maria Teresa; Garcia, Hector Hugo; Gonzalez, Armando Emiliano

    2014-03-01

    The present study evaluated the capacity of Ammophorus rubripes beetles to carry Taenia solium eggs, in terms of duration and viability of eggs in their digestive system. One hundred beetles were distributed into five polyethylene boxes, and then they were infected with T. solium eggs. Gravid proglottids of T. solium were crushed and then mixed with cattle feces. One gram of this mixture was placed in each box for 24 hours, after which each group of beetles was transferred into a new clean box. Then, five beetles were dissected every three days. Time was strongly associated with viability (r=0.89; PTaenia solium eggs were present in the beetle's digestive system for up to 39 days (13th sampling day out of 20), gradually reducing in numbers and viability, which was 0 on day 36 post-infection. Egg viability was around 40% up to day 24 post-infection, with a median number of eggs of 11 per beetle at this time. Dung beetles may potentially contribute towards dispersing T. solium eggs in endemic areas.

  5. Ophiostoma species (Ascomycetes: Ophiostomatales) associated with bark beetles (Coleoptera: Scolytinae) colonizing Pinus radiata in northern Spain.

    Science.gov (United States)

    Romón, Pedro; Zhou, XuDong; Iturrondobeitia, Juan Carlos; Wingfield, Michael J; Goldarazena, Arturo

    2007-06-01

    Bark beetles (Coleoptera: Scolytinae) are known to be associated with fungi, especially species of Ophiostoma sensu lato and Ceratocystis. However, very little is known about these fungi in Spain. In this study, we examined the fungi associated with 13 bark beetle species and one weevil (Coleoptera: Entiminae) infesting Pinus radiata in the Basque Country of northern Spain. This study included an examination of 1323 bark beetles or their galleries in P. radiata. Isolations yielded a total of 920 cultures, which included 16 species of Ophiostoma sensu lato or their asexual states. These 16 species included 69 associations between fungi and bark beetles and weevils that have not previously been recorded. The most commonly encountered fungal associates of the bark beetles were Ophiostoma ips, Leptographium guttulatum, Ophiostoma stenoceras, and Ophiostoma piceae. In most cases, the niche of colonization had a significant effect on the abundance and composition of colonizing fungi. This confirms that resource overlap between species is reduced by partial spatial segregation. Interaction between niche and time seldom had a significant effect, which suggests that spatial colonization patterns are rarely flexible throughout timber degradation. The differences in common associates among the bark beetle species could be linked to the different niches that these beetles occupy. PMID:17668036

  6. Behavioral niche partitioning in a sympatric tiger beetle assemblage and implications for the endangered Salt Creek tiger beetle

    Directory of Open Access Journals (Sweden)

    Tierney R. Brosius

    2013-09-01

    Full Text Available How behavioral patterns are related to niche partitioning is an important question in understanding how closely related species within ecological communities function. Behavioral niche partitioning associated with thermoregulation is well documented in tiger beetles as a group. Co-occurring species of salt flat tiger beetles have adapted many thermoregulatory behaviors to cope with this harsh ecosystem. On first examination these beetles appear to occur in overlapping microhabitats and therefore compete for resources. To determine if behavioral niche partitioning is allowing multiple species to occur within the same harsh salt flat ecosystem we observed Cicindela nevadica lincolniana, Cicindela circumpicta, Cicindela fulgida, and Cicindela togata between 8:00 h and 21:00 h and recorded all behaviors related to thermoregulation using a digital voice recorder. Results of this study strongly indicate that competition among these species for resources has been reduced by the adaptation of different thermoregulatory behaviors such as spending time in shallow water, avoiding the sun during the hottest parts of the day, and by positioning their body against or away from the soil. The endangered C. n. lincolniana appears to rely most heavily on the shallow water of seeps for their diurnal foraging behavior (potentially limiting their foraging habitat, but with the advantage of allowing foraging during the hottest times of the day when potential competitors are less frequent. Ironically, this association also may help explain C. n. lincolniana’s susceptibility to extinction: beyond the loss of saline wetlands generally, limited seeps and pools even within remaining saline habitat may represent a further habitat limitation within an already limited habitat.

  7. Behavioral niche partitioning in a sympatric tiger beetle assemblage and implications for the endangered Salt Creek tiger beetle.

    Science.gov (United States)

    Brosius, Tierney R; Higley, Leon G

    2013-01-01

    How behavioral patterns are related to niche partitioning is an important question in understanding how closely related species within ecological communities function. Behavioral niche partitioning associated with thermoregulation is well documented in tiger beetles as a group. Co-occurring species of salt flat tiger beetles have adapted many thermoregulatory behaviors to cope with this harsh ecosystem. On first examination these beetles appear to occur in overlapping microhabitats and therefore compete for resources. To determine if behavioral niche partitioning is allowing multiple species to occur within the same harsh salt flat ecosystem we observed Cicindela nevadica lincolniana, Cicindela circumpicta, Cicindela fulgida, and Cicindela togata between 8:00 h and 21:00 h and recorded all behaviors related to thermoregulation using a digital voice recorder. Results of this study strongly indicate that competition among these species for resources has been reduced by the adaptation of different thermoregulatory behaviors such as spending time in shallow water, avoiding the sun during the hottest parts of the day, and by positioning their body against or away from the soil. The endangered C. n. lincolniana appears to rely most heavily on the shallow water of seeps for their diurnal foraging behavior (potentially limiting their foraging habitat), but with the advantage of allowing foraging during the hottest times of the day when potential competitors are less frequent. Ironically, this association also may help explain C. n. lincolniana's susceptibility to extinction: beyond the loss of saline wetlands generally, limited seeps and pools even within remaining saline habitat may represent a further habitat limitation within an already limited habitat.

  8. The saproxylic beetle assemblage associated with different host trees in Southwest China

    Institute of Scientific and Technical Information of China (English)

    Jie Wu; Xiao-Dong Yu; Hong-Zhang Zhou

    2008-01-01

    Dead wood is a habitat for many insects and other small animals,some of which may be rare or endangered and in need of effective protection.In this paper,saproxylic beetle assemblages associated with different host trees in the subtropical forests in southwestern China were investigated.A total of 277 species (1 439 specimens) in 36 beetle families were collected from 117 dead wood samples,of which 101 samples were identified and respectively belonged to 12 tree genera.The number of saproxylic beetle species varied greatly among logs of different tree genera,with the highest diversity on logs of Juglans.Generally,broad-leaved trees had a higher richness and abundance of saproxylic species than coniferous trees.Cluster analysis revealed that assemblages from broad-leaved tree genera were generally similar (except for Betula) and assemblages from coniferous trees formed another distinct cluster.The subsequent indicator analysis proposed that there are different characteristic species for different cluster groups of host tree genera.In our study,log diameter has no positive influence on beetle species density.Conversely,comparisons of individual-based rarefaction curves suggested that beetle species richness was highest in the small diameter class both in coniferous and broad-leaved tree genera.With increased wood decay,proportion of habitat specialists (saproxylic beetles living on one tree genus)decreased,whereas proportion of habitat generalists (living on more than three tree genera)increased.The beetle species density was found to be higher in early stages,and decreased in later stages as well.A negative influence of altitude on saproxylic beetle species richness and abundance was detected.It was indicated that different tree genera and altitudes possibly display cross effects in modulating the altitudinal distribution and host preference of the beetles.

  9. [Histological structure of tripartite mushroom bodies in ground beetles (Insecta, Coleoptera: Carabidae)].

    Science.gov (United States)

    Panov, A A

    2013-01-01

    Contrary to members of the suborder Polyphaga; ground beetles have been found to possess tripartite mushroom bodies, which are poorly developed in members of basal taxa and maximally elaborated in evolutionarily advanced groups. Nevertheless, they do not reach the developmental stage, which has been previously found in particular families of beetles. It has been pointed out that anew formation of the Kenyon cells occurs during at least the first months of adult life, and inactive neuroblasts are found even in one-year-old beetles. It has been suggested that there is a relation between the Kenyon cell number and development of the centers of Kenyon cell new-formation.

  10. Heterorhabditis sp. (Nematoda: Heterorhabditidae): A Nematode Parasite Isolated from the Banded Cucumber Beetle Diabrotica balteata.

    Science.gov (United States)

    Creighton, C S; Fassuliotis, G

    1985-04-01

    A nematode identified as Heterorhabditis sp. was discovered in June 1982 in larval cadavers of the banded cucumber beetle, Diabrotica balteata, in soil on wooded land. Effective beetle control (over 95%) was obtained when larvae were exposed to potted soil containing infective stage nematode juveniles or infected larval cadavers. The nematode was propagated in vivo on larvae of D. balteata, Diaphania nitidalis (the pickleworm), and Galleria mellonella (the greater wax moth). This Heterorhabditis sp. has promising potential as a biocontrol agent for the banded cucumber beetle. PMID:19294074

  11. Hypogean carabid beetles as indicators of global warming?

    International Nuclear Information System (INIS)

    Climate change has been shown to impact the geographical and altitudinal distribution of animals and plants, and to especially affect range-restricted polar and mountaintop species. However, little is known about the impact on the relict lineages of cave animals. Ground beetles (carabids) show a wide variety of evolutionary pathways, from soil-surface (epigean) predatory habits to life in caves and in other subterranean (hypogean) compartments. We reconstructed an unprecedented set of species/time accumulation curves of the largest carabid genera in Europe, selected by their degree of ‘underground’ adaptation, from true epigean predators to eyeless highly specialized hypogean beetles. The data show that in recent periods an unexpectedly large number of new cave species were found lying in well established European hotspots; the first peak of new species, especially in the most evolved underground taxa, occurred in the 1920–30s and a second burst after the 70s. Temperature data show large warming rates in both periods, suggesting that the temperature increase in the past century might have induced cave species to expand their habitats into large well-aired cavities and superficial underground compartments, where they can be easily sampled. An alternative hypothesis, based on increased sampling intensity, is less supported by available datasets. (letter)

  12. Species radiation of carabid beetles (broscini: mecodema in new zealand.

    Directory of Open Access Journals (Sweden)

    Julia Goldberg

    Full Text Available New Zealand biodiversity has often been viewed as Gondwanan in origin and age, but it is increasingly apparent from molecular studies that diversification, and in many cases origination of lineages, postdate the break-up of Gondwanaland. Relatively few studies of New Zealand animal species radiations have as yet been reported, and here we consider the species-rich genus of carabid beetles, Mecodema. Constrained stratigraphic information (emergence of the Chatham Islands and a substitution rate for Coleoptera were separately used to calibrate Bayesian relaxed molecular clock date estimates for diversification of Mecodema. The inferred timings indicate radiation of these beetles no earlier than the mid-Miocene with most divergences being younger, dating to the Plio-Pleistocene. A shallow age for the radiation along with a complex spatial distribution of these taxa involving many instances of sympatry implicates recent ecological speciation rather than a simplistic allopatric model. This emphasises the youthful and dynamic nature of New Zealand evolution that will be further elucidated with detailed ecological and population genetic analyses.

  13. Effects of nitrogen application on beetle communities in tea plantations

    Institute of Scientific and Technical Information of China (English)

    Shao-Bo Chen; Zhi-Juan Wei; Zhao-Hua Zeng; Li-Lin Chen; Hui-Tao Chen; Min-Sheng You

    2009-01-01

    In contrast to grassland and forest ecosystems, little is known about insect response to nitrogen deposition in agricultural ecosystems. This study was carried out to investigate the effects of short-term (1-2 years) nitrogen application (0, 172.5, 345.0, 690.0, families, 89 species of beetles, was obtained from a tea plantation in Wuyishan, China. Among them, herbivores, predators and detritivores had 52, 29, and eight species, respectively. Species richness, effective diversity and abundance (measured as the number of individuals and insect biomass) of the beetle community were not significantly related to the rate of nitrogen application. However, nitrogen application changed the species distribution and weakly increased the evenness of species distribution, while this did not significantly change the species evenness. Species richness and abundance of herbivores and predators were not significantly related to the rate of nitrogen application. However, there were some variations in trophic responses to nitrogen. Species richness and abundance of detritivores increased with increasing nitrogen application.

  14. Larval RNA interference in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Linz, David M; Clark-Hachtel, Courtney M; Borràs-Castells, Ferran; Tomoyasu, Yoshinori

    2014-01-01

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle's body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting. PMID:25350485

  15. Malpighian tubule development in the red flour beetle (Tribolium castaneum).

    Science.gov (United States)

    King, Benedict; Denholm, Barry

    2014-11-01

    Malpighian tubules (MpTs) are the major organ for excretion and osmoregulation in most insects. MpT development is characterised for Drosophila melanogaster, but not other species. We therefore do not know the extent to which the MpT developmental programme is conserved across insects. To redress this we provide a comprehensive description of MpT development in the beetle Tribolium castaneum (Coleoptera), a species separated from Drosophila by >315 million years. We identify similarities with Drosophila MpT development including: 1) the onset of morphological development, beginning when tubules bud from the gut and proliferate to increase organ size. 2) the tubule is shaped by convergent-extension movements and oriented cell divisions. 3) differentiated tip cells activate EGF-signalling in distal MpT cells through the ligand Spitz. 4) MpTs contain two main cell types - principal and stellate cells, differing in morphology and gene expression. We also describe development of the beetle cryptonephridial system, an adaptation for water conservation, which represents a major modification of the MpT ground plan characterised by intimate association between MpTs and rectum. This work establishes a new model to compare MpT development across insects, and provides a framework to help understand how an evolutionary novelty - the cryptonephridial system - arose during organ evolution.

  16. Larval RNA interference in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Linz, David M; Clark-Hachtel, Courtney M; Borràs-Castells, Ferran; Tomoyasu, Yoshinori

    2014-10-13

    The red flour beetle, Tribolium castaneum, offers a repertoire of experimental tools for genetic and developmental studies, including a fully annotated genome sequence, transposon-based transgenesis, and effective RNA interference (RNAi). Among these advantages, RNAi-based gene knockdown techniques are at the core of Tribolium research. T. castaneum show a robust systemic RNAi response, making it possible to perform RNAi at any life stage by simply injecting double-stranded RNA (dsRNA) into the beetle's body cavity. In this report, we provide an overview of our larval RNAi technique in T. castaneum. The protocol includes (i) isolation of the proper stage of T. castaneum larvae for injection, (ii) preparation for the injection setting, and (iii) dsRNA injection. Larval RNAi is a simple, but powerful technique that provides us with quick access to loss-of-function phenotypes, including multiple gene knockdown phenotypes as well as a series of hypomorphic phenotypes. Since virtually all T. castaneum tissues are susceptible to extracellular dsRNA, the larval RNAi technique allows researchers to study a wide variety of tissues in diverse contexts, including the genetic basis of organismal responses to the outside environment. In addition, the simplicity of this technique stimulates more student involvement in research, making T. castaneum an ideal genetic system for use in a classroom setting.

  17. Quantification of motility of carabid beetles in farmland.

    Science.gov (United States)

    Allema, A B; van der Werf, W; Groot, J C J; Hemerik, L; Gort, G; Rossing, W A H; van Lenteren, J C

    2015-04-01

    Quantification of the movement of insects at field and landscape levels helps us to understand their ecology and ecological functions. We conducted a meta-analysis on movement of carabid beetles (Coleoptera: Carabidae), to identify key factors affecting movement and population redistribution. We characterize the rate of redistribution using motility μ (L2 T-1), which is a measure for diffusion of a population in space and time that is consistent with ecological diffusion theory and which can be used for upscaling short-term data to longer time frames. Formulas are provided to calculate motility from literature data on movement distances. A field experiment was conducted to measure the redistribution of mass-released carabid, Pterostichus melanarius in a crop field, and derive motility by fitting a Fokker-Planck diffusion model using inverse modelling. Bias in estimates of motility from literature data is elucidated using the data from the field experiment as a case study. The meta-analysis showed that motility is 5.6 times as high in farmland as in woody habitat. Species associated with forested habitats had greater motility than species associated with open field habitats, both in arable land and woody habitat. The meta-analysis did not identify consistent differences in motility at the species level, or between clusters of larger and smaller beetles. The results presented here provide a basis for calculating time-varying distribution patterns of carabids in farmland and woody habitat. The formulas for calculating motility can be used for other taxa. PMID:25673121

  18. Evaluation of cucurbitacin-based gustatory stimulant to facilitate cucumber beetle (Coleoptera: Chrysomelidae) management with foliar insecticides in melons.

    Science.gov (United States)

    Pedersen, Andrew B; Godfrey, Larry D

    2011-08-01

    The bitter plant-derived compounds cucurbitacins are known to stimulate feeding of adult cucumber beetles (Coleoptera: Chrysomelidae). A cucurbitacin-based gustatory stimulant applied as a flowable bait combined with either spinosad or carbaryl was compared with foliar sprays of spinosad and carbaryl for controlling two cucumber beetle species (Diabrotica undecimpunctata undecimpunctata Mannerheim and Acalymma trivittatum Mannerheim) in honeydew melons (Cucumis melo L.). Field studies were conducted on the University of California-Davis plant pathology farm in 2008 and 2009. Beetle densities after applications and fruit damage from beetle feeding were compared among treatments. In addition, beetle survival was compared within field cages placed over the treated foliage infested with beetles. Using all three measures of efficacy, we determined that the addition of cucurbitacin bait had no effect on the level of cucumber beetle control with carbaryl in either 2008 or 2009. In both years, spinosad did not significantly reduce cucumber beetle densities in either field cages or field plots and did not reduce fruit damage relative to the untreated control. The addition of the bait to spinosad did not improve its efficacy. A laboratory bioassay of the spinosad formulation used in the field showed it had significant lethal effects on adults of both cucumber beetle species. Results indicated that the bait formulation used did not improve cucumber beetle control but may benefit from the addition of floral attractants or using a different type of cucurbitacin.

  19. Diversity of forensic rove beetles (Coleoptera, Staphylinidae) associated with decaying pig carcass in a forest biotope.

    Science.gov (United States)

    Dekeirsschieter, Jessica; Frederick, Christine; Verheggen, Francois J; Drugmand, Didier; Haubruge, Eric

    2013-07-01

    Most forensic studies are focused on Diptera pattern colonization while neglecting Coleoptera succession. So far, little information is available on the postmortem colonization by beetles and the decomposition process they initiate under temperate biogeoclimatic countries. These beetles have, however, been referred to as being part of the entomofaunal colonization of a dead body. Forensic entomologists need increased databases detailing the distribution, ecology, and phenology of necrophagous insects, including staphylinids (Coleoptera, Staphylinidae). While pig carcasses are commonly used in forensic entomology studies to surrogate human decomposition and to investigate the entomofaunal succession, very few works have been conducted in Europe on large carcasses. Our work reports the monitoring of the presence of adult rove beetles (Coleoptera, Staphylinidae) on decaying pig carcasses in a forest biotope during four seasons (spring, summer, fall, and winter). A total of 23 genera comprising 60 species of rove beetles were collected from pig carcasses.

  20. Using lake sediment records to reconstruct bark beetle disturbances in western North America

    Directory of Open Access Journals (Sweden)

    Jesse Lee Morris

    2013-12-01

    Full Text Available The recent outbreak of native bark beetles in western North America is unprecedented in severity and scale, at least during the historical period. The aim of this work is to develop a proxy-based methodology to understand how bark beetle disturbances are recorded in lake sediments. Three hypotheses are tested to determine how the ecological impacts of severe spruce beetle (Dendroctonus rufipennis disturbances are recorded following mortality of Engelmann spruce (Picea engelmannii. Outbreaks are hypothesized to: (1 decrease the ratio of spruce to fir pollen; (2 increase soil erosion and mobilize terrestrial C; and (3 leach foliar N, enhancing algal productivity. To test these hypotheses, sediment cores from spruce beetle-affected basins were analyzed for pollen, insect remains, organic and minerogenic content, and isotopic and elemental concentrations. The dataset was tested statistically using generalized linear mixed models (GLMMs to determine if the response variables differed significantly between outbreak and non-outbreak periods. 

  1. Mechanisms of Odor Coding in Coniferous Bark Beetles: From Neuron to Behavior and Application

    Directory of Open Access Journals (Sweden)

    Martin N. Andersson

    2012-01-01

    Full Text Available Coniferous bark beetles (Coleoptera: Curculionidae: Scolytinae locate their hosts by means of olfactory signals, such as pheromone, host, and nonhost compounds. Behavioral responses to these volatiles are well documented. However, apart from the olfactory receptor neurons (ORNs detecting pheromones, information on the peripheral olfactory physiology has for a long time been limited. Recently, however, comprehensive studies on the ORNs of the spruce bark beetle, Ips typographus, were conducted. Several new classes of ORNs were described and odor encoding mechanisms were investigated. In particular, links between behavioral responses and ORN responses were established, allowing for a more profound understanding of bark beetle olfaction. This paper reviews the physiology of bark beetle ORNs. Special focus is on I. typographus, for which the available physiological data can be put into a behavioral context. In addition, some recent field studies and possible applications, related to the physiological studies, are summarized and discussed.

  2. Target-site resistance to pyrethroids in European populations of pollen beetle, Meligethes aeneus F

    DEFF Research Database (Denmark)

    Nauen, Ralf; Zimmer, Christoph T; Andrews, Melanie;

    2012-01-01

    Pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae) is a major univoltine pest of oilseed rape in many European countries. Winter oilseed rape is cultivated on several million hectares in Europe and the continuous use of pyrethroid insecticides to control pollen beetle populations has...... resulted in high selection pressure and subsequent development of resistance. Resistance to pyrethroid insecticides in this pest is now widespread and the levels of resistance are often sufficient to result in field control failures at recommended application rates. Recently, metabolic resistance mediated...... by cytochrome P450 monooxygenases was implicated in the resistance of several pollen beetle populations from different European regions. Here, we have also investigated the possible occurrence of a target-site mechanism caused by modification of the pollen beetle para-type voltage-gated sodium channel gene. We...

  3. Primary types of longhorned woodboring beetles (Coleoptera: Cerambycidae and Disteniidae) of the Smithsonian Institution

    Science.gov (United States)

    The primary types of longhorned woodboring beetles (Coleoptera: Cerambycidae, Disteniidae) of the National Museum of Natural History (Smithsonian Institution) are catalogued and figured, current through 2012 (but also including some 2013 holotypes). Data on the original combination, current combina...

  4. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae in Cotton

    Directory of Open Access Journals (Sweden)

    P. G. Tillman

    2012-01-01

    Full Text Available Lady beetles (Coleoptera: Coccinellidae prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L., Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas, Coleomegilla maculata (De Geer, Cycloneda munda (Say, and Olla v-nigrum (Mulsant were found in sorghum over both years. Lady beetle compositions in sorghum and cotton and in yellow pyramidal traps were similar. For both years, density of lady beetles generally was higher on cotton with sorghum than on control cotton. Our results indicate that sorghum was a source of lady beetles in cotton, and thus incorporation of a sorghum habitat in farmscapes with cotton has great potential to enhance biocontrol of insect pests in cotton.

  5. Analysis of the Wing Mechanism Movement Parameters of Selected Beetle Species (Coleoptera)

    OpenAIRE

    Geisler T.; Topczewska S.

    2015-01-01

    This study presents a structural and functional analysis of the wing bending and folding mechanism of a selected beetle species. Insect motility studies, with regard to the anatomical structure, were performed. The main inner wing structures were highlighted and their mechanical properties and functions were determined. The structure parameters as mechanisms bodies that allow wings of various beetle species to bend and fold were defined.

  6. Plant-derived visual signals may protect beetle herbivores from bird predators

    OpenAIRE

    Tamar Keasar; Miriam Kishinevsky; Avi Shmida; Yoram Gerchman; Nicka Chinkov; Avi Koplovich; Gadi Katzir

    2013-01-01

    Insect herbivores often use chemical signals obtained from their food plants to deter enemies and/or attract sexual partners. Do plant-based visual signals act similarly, i.e., repel consumers' enemies and appeal to potential mates? We explored this question using the pollen-feeding beetle Pygopleurus israelitus (Glaphyridae), a specialized pollinator of Anemone coronaria's chemically defended red-morph flowers. We presented dead beetles, which had fed either on anemones or on cat-food, to yo...

  7. Contribution of Augosoma centaurus beetle to rural livelihoods in the East region of Cameroon : study report

    OpenAIRE

    F. J. Muafor; Le Gall, Philippe; Levang, Patrice

    2012-01-01

    This report describes the level to which forest dependent people in the East region of Cameroon rely on the consumption of Augosoma centaurus beetle (Dynastidae) for food security and rural livelihood. In total, 14 villages and 2 small towns, comprising of 9 ethnic groups in 10 sub-divisions were surveyed using quantitative and qualitative socioeconomic approaches. From the results of this study, both the larvae and adult individuals of the Augosoma beetle are traditional delic...

  8. Microsatellite loci for the small hive beetle, Aethina tumida, a nest parasite of honey bees.

    Science.gov (United States)

    Evans, J D; Spiewok, S; Teixeira, E W; Neumann, P

    2008-05-01

    Aethina tumida, a beetle parasite of honey bee colonies, has recently and dramatically expanded its range and now parasitizes honey bees on three continents. Polymorphic microsatellite loci for this beetle species will help map this continuing range expansion, and will also prove useful for exploring the mating system and local gene flow patterns for this important parasite. We describe 15 loci that are polymorphic in both the native and introduced ranges of this species, showing from two to 22 alleles. PMID:21585875

  9. The influence of light on small hive beetle (Aethina tumida) behavior and trap capture

    OpenAIRE

    Duehl, Adrian; Arbogast, Richard; Sheridan, Audrey; Teal, Peter

    2012-01-01

    International audience The small hive beetle (Aethina tumida, Murray) is a major pest of honeybee (Apis mellifera) colonies, particularly in the Southeastern USA. We evaluated the small hive beetle's (SHB) response to different wavelengths of the light spectrum and found that SHB larvae and adults were most attracted to the 390 nm wavelength. Early instar larvae were not significantly attracted to light, while wandering larvae and adults exhibited strong positive phototaxis. The light resp...

  10. Laboratory evaluation of some indigenous plant extracts as toxicants against red flour beetle, Tribolium castaneum Herbst

    OpenAIRE

    Mamum, M.S.A; Shahjahan, M.; Ahmad, M.

    2009-01-01

    Experiments were carried out to evaluate the toxicity of six botanicals, Bazna (Zanthoxylum rhetsa), Ghora-neem (Melia sempervirens), Hijal (Barringtonia acutangula), Karanja (Pongamia pinnata), Mahogoni (Swietenia mahagoni) and Neem (Azadirachta indica) against red flour beetle, Tribolium castaneum Herbst. Leaf and seed extracts were prepared by using acetone, methanol and water as solvents. The results showed that extracts of all the six plants had direct toxic effect on red flour beetle. A...

  11. Heterorhabditis sp. (Nematoda: Heterorhabditidae): A Nematode Parasite Isolated from the Banded Cucumber Beetle Diabrotica balteata

    OpenAIRE

    Creighton, C. S.; Fassuliotis, G.

    1985-01-01

    A nematode identified as Heterorhabditis sp. was discovered in June 1982 in larval cadavers of the banded cucumber beetle, Diabrotica balteata, in soil on wooded land. Effective beetle control (over 95%) was obtained when larvae were exposed to potted soil containing infective stage nematode juveniles or infected larval cadavers. The nematode was propagated in vivo on larvae of D. balteata, Diaphania nitidalis (the pickleworm), and Galleria mellonella (the greater wax moth). This Heterorhabdi...

  12. Analysis of the Wing Mechanism Movement Parameters of Selected Beetle Species (Coleoptera

    Directory of Open Access Journals (Sweden)

    Geisler T.

    2015-02-01

    Full Text Available This study presents a structural and functional analysis of the wing bending and folding mechanism of a selected beetle species. Insect motility studies, with regard to the anatomical structure, were performed. The main inner wing structures were highlighted and their mechanical properties and functions were determined. The structure parameters as mechanisms bodies that allow wings of various beetle species to bend and fold were defined.

  13. Saproxylic Beetle Assemblage Selection as Determining Factor of Species Distributional Patterns: Implications for Conservation

    OpenAIRE

    García López, Alejandra; Galante, Eduardo; Micó, Estefanía

    2016-01-01

    The knowledge of the distributional patterns of saproxylic beetles is essential for conservation biology due to the relevance of this fauna in the maintenance of ecological processes and the endangerment of species. The complex community of saproxylic beetles is shaped by different assemblages that are composed of species linked by the microhabitats they use. We evaluate how different the species distribution patterns that are obtained can be, depending on the analyzed assemblage and to what ...

  14. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Directory of Open Access Journals (Sweden)

    Helena I Hanson

    Full Text Available In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities.

  15. Agricultural Land Use Determines the Trait Composition of Ground Beetle Communities.

    Science.gov (United States)

    Hanson, Helena I; Palmu, Erkki; Birkhofer, Klaus; Smith, Henrik G; Hedlund, Katarina

    2016-01-01

    In order to improve biological control of agricultural pests, it is fundamental to understand which factors influence the composition of natural enemies in agricultural landscapes. In this study, we aimed to understand how agricultural land use affects a number of different traits in ground beetle communities to better predict potential consequences of land-use change for ecosystem functioning. We studied ground beetles in fields with different agricultural land use ranging from frequently managed sugar beet fields, winter wheat fields to less intensively managed grasslands. The ground beetles were collected in emergence tents that catch individuals overwintering locally in different life stages and with pitfall traps that catch individuals that could have a local origin or may have dispersed into the field. Community weighted mean values for ground beetle traits such as body size, flight ability and feeding preference were estimated for each land-use type and sampling method. In fields with high land-use intensity the average body length of emerging ground beetle communities was lower than in the grasslands while the average body length of actively moving communities did not differ between the land-use types. The proportion of ground beetles with good flight ability or a carnivorous diet was higher in the crop fields as compared to the grasslands. Our study highlights that increasing management intensity reduces the average body size of emerging ground beetles and the proportion of mixed feeders. Our results also suggest that the dispersal ability of ground beetles enables them to compensate for local management intensities. PMID:26730734

  16. Beetle-Grow: An Effective Intelligent Tutoring System to Support Conceptual Change

    OpenAIRE

    Farrow, Elaine; Moore, Johanna D.

    2016-01-01

    We will demonstrate the Beetle-Grow intelligent tutoring system, which combines active experimentation, self-explanation, and formative feedback using natural language interaction. It runs in a standard web browser and has a fresh, engaging design. The underlying back-end system has previously been shown to be highly effective in teaching basic electricity and electronics concepts.Beetle-Grow has been designed to capture student interaction and indicators of learning in a form suitable for da...

  17. Diagnostic methods of pollen beetle and other winter rape pests resistance to insecticides

    OpenAIRE

    Herman, Jan

    2013-01-01

    The literature review summarizes informations about pests of winter oilseed rape, problem of pest resistance to insecticides, mechanisms of resistance of insects to insecticides and methods, how to evaluate the resistance, and the emergence and development of resistance of pollen beetle to pyrethroids in Europe and in the Czech Republic. In the experimental part of the master‘s thesis, resistance of pollen beetle from 5 locations in the Czech Republic to the three selected pyrethroids (deltam...

  18. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA.

    Directory of Open Access Journals (Sweden)

    Davide Rassati

    Full Text Available Non-native bark and ambrosia beetles represent a threat to forests worldwide. Their invasion patterns are, however, still unclear. Here we investigated first, if the spread of non-native bark and ambrosia beetles is a gradual or a discontinuous process; second, which are the main correlates of their community structure; third, whether those correlates correspond to those of native species. We used data on species distribution of non-native and native scolytines in the continental 48 USA states. These data were analyzed through a beta-diversity index, partitioned into species richness differences and species replacement, using Mantel correlograms and non-metric multidimensional scaling (NMDS ordination for identifying spatial patterns, and regression on distance matrices to test the association of climate (temperature, rainfall, forest (cover area, composition, geographical (distance, and human-related (import variables with β-diversity components. For both non-native bark and ambrosia beetles, β-diversity was mainly composed of species richness difference than species replacement. For non-native bark beetles, a discontinuous invasion process composed of long distance jumps or multiple introduction events was apparent. Species richness differences were primarily correlated with differences in import values while temperature was the main correlate of species replacement. For non-native ambrosia beetles, a more continuous invasion process was apparent, with the pool of non-native species arriving in the coastal areas that tended to be filtered as they spread to interior portions of the continental USA. Species richness differences were mainly correlated with differences in rainfall among states, while rainfall and temperature were the main correlates of species replacement. Our study suggests that the different ecology of bark and ambrosia beetles influences their invasion process in new environments. The lower dependency that bark beetles have

  19. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA.

    Science.gov (United States)

    Rassati, Davide; Faccoli, Massimo; Haack, Robert A; Rabaglia, Robert J; Petrucco Toffolo, Edoardo; Battisti, Andrea; Marini, Lorenzo

    2016-01-01

    Non-native bark and ambrosia beetles represent a threat to forests worldwide. Their invasion patterns are, however, still unclear. Here we investigated first, if the spread of non-native bark and ambrosia beetles is a gradual or a discontinuous process; second, which are the main correlates of their community structure; third, whether those correlates correspond to those of native species. We used data on species distribution of non-native and native scolytines in the continental 48 USA states. These data were analyzed through a beta-diversity index, partitioned into species richness differences and species replacement, using Mantel correlograms and non-metric multidimensional scaling (NMDS) ordination for identifying spatial patterns, and regression on distance matrices to test the association of climate (temperature, rainfall), forest (cover area, composition), geographical (distance), and human-related (import) variables with β-diversity components. For both non-native bark and ambrosia beetles, β-diversity was mainly composed of species richness difference than species replacement. For non-native bark beetles, a discontinuous invasion process composed of long distance jumps or multiple introduction events was apparent. Species richness differences were primarily correlated with differences in import values while temperature was the main correlate of species replacement. For non-native ambrosia beetles, a more continuous invasion process was apparent, with the pool of non-native species arriving in the coastal areas that tended to be filtered as they spread to interior portions of the continental USA. Species richness differences were mainly correlated with differences in rainfall among states, while rainfall and temperature were the main correlates of species replacement. Our study suggests that the different ecology of bark and ambrosia beetles influences their invasion process in new environments. The lower dependency that bark beetles have on climate

  20. Dung beetles in an avian-dominated island ecosystem: feeding and trophic ecology.

    Science.gov (United States)

    Stavert, J R; Gaskett, A C; Scott, D J; Beggs, J R

    2014-09-01

    Globally, dung beetles (Scarabaeidae: Scarabaeinae) are linked to many critical ecosystem processes involving the consumption and breakdown of mammal dung. Endemic New Zealand dung beetles (Canthonini) are an anomaly, occurring at high abundance and low diversity on an island archipelago historically lacking terrestrial mammals, except bats, and instead dominated by birds. Have New Zealand's dung beetles evolved to specialise on bird dung or carrion, or have they become broad generalist feeders? We test dietary preferences by analysing nitrogen isotope ratios of wild dung beetles and by performing feeding behaviour observations of captive specimens. We also use nitrogen and carbon stable isotopes to determine if the dung beetle Saphobius edwardsi will consume marine-derived carrion. Nitrogen isotope ratios indicated trophic generalism in Saphobius dung beetles and this was supported by behavioural observations where a broad range of food resources were utilised. Alternative food resource use was further illustrated experimentally by nitrogen and carbon stable isotope signatures of S. edwardsi, where individuals provided with decomposed squid had δ(15)N and δ(13)C values that had shifted toward values associated with marine diet. Our findings suggest that, in the absence of native mammal dung resources, New Zealand dung beetles have evolved a generalist diet of dung and carrion. This may include marine-derived resources, as provided by the seabird colonies present in New Zealand forests before the arrival of humans. This has probably enabled New Zealand dung beetles to persist in indigenous ecosystems despite the decline of native birds and the introduction of many mammal species. PMID:24974270

  1. Occurrence of cavernicolous ground beetles in Anhui Province, eastern China (Coleoptera, Carabidae, Trechinae

    Directory of Open Access Journals (Sweden)

    Jie Fang

    2016-10-01

    Full Text Available Two new species of anophthalmic ground beetles belonging to the subfamily Trechinae are described: Cimmeritodes (Zhecimmerites parvus Tian & Li, sp. n. and Wanoblemus wui Tian & Fang, gen. n., sp. n. Both were discovered in the limestone caves of Anhui Province in eastern China. C. (Z. parvus was found in caves Ziwei Dong, Xianren Dong and Qingtai Dong, whereas W. wui was discovered in cave Baiyun Dong. This is the first record of cavernicolous ground beetles in Anhui Province, eastern China.

  2. Assessment of post-beetle impacts on natural regeneration of Lodgepole Pine

    OpenAIRE

    Egger, Keith N; Arocena, Joselito; Green, Scott; Kennedy, Nabla; Massicotte, Hugues; Scholefield, Scott

    2009-01-01

    The ecological disturbance from wildfire (2004) on ~ 10,000 hectares of forests near the Kenny Dam presented a unique opportunity to study the natural and artificial regeneration in burned mountain pine beetle (Dendroctonus ponderosae Hopkins) infested stands in north-central British Columbia. Mountain pine beetle (MPB) has been documented as a natural disturbance agent that may precede wildfire in lodgepole pine forests (Pinus contorta var. latifolia). The objectives of this study were to i)...

  3. Incorporating a Sorghum Habitat for Enhancing Lady Beetles (Coleoptera: Coccinellidae) in Cotton

    OpenAIRE

    P. G. Tillman; Cottrell, T. E.

    2012-01-01

    Lady beetles (Coleoptera: Coccinellidae) prey on insect pests in cotton. The objective of this 2 yr on-farm study was to document the impact of a grain sorghum trap crop on the density of Coccinellidae on nearby cotton. Scymnus spp., Coccinella septempunctata (L.), Hippodamia convergens Guérin-Méneville, Harmonia axyridis (Pallas), Coleomegilla maculata (De Geer), Cycloneda munda (Say), and Olla v-nigrum (Mulsant) were found in sorghum over both years. Lady beetle compositions in sorghum and ...

  4. Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil

    OpenAIRE

    Philipp Werner Hopp; Edilson Caron; Richard Ottermanns; Martina Roß-Nickoll

    2011-01-01

    Evaluating leaf litter beetle data sampled by Winkler extraction from Atlantic forest sites in southern Brazil. To evaluate the reliability of data obtained by Winkler extraction in Atlantic forest sites in southern Brazil, we studied litter beetle assemblages in secondary forests (5 to 55 years after abandonment) and old-growth forests at two seasonally different points in time. For all regeneration stages, species density and abundance were lower in April compared to August; but, assemblage...

  5. Critical Assessment of Risk Classification Systems for the Mountain Pine Beetle

    OpenAIRE

    Bentz, B J; Amman, G D; J. A. Logan

    1993-01-01

    Hazard/risk systems developed for mountain pine beetle management traditionally have attempted to describe the potential for timber loss in pine stands due to outbreak phase populations. A variety of stand and site characteristics, as well as climatic conditions, have been used. In this study, four hazard/risk systems were evaluated using data from 105 stands in northern Montana. None of the systems evaluated were found to predict adequately mountain pine beetle induced mortality which occurr...

  6. Bark and Ambrosia Beetles Show Different Invasion Patterns in the USA

    Science.gov (United States)

    Rassati, Davide; Faccoli, Massimo; Haack, Robert A.; Rabaglia, Robert J.; Petrucco Toffolo, Edoardo; Battisti, Andrea; Marini, Lorenzo

    2016-01-01

    Non-native bark and ambrosia beetles represent a threat to forests worldwide. Their invasion patterns are, however, still unclear. Here we investigated first, if the spread of non-native bark and ambrosia beetles is a gradual or a discontinuous process; second, which are the main correlates of their community structure; third, whether those correlates correspond to those of native species. We used data on species distribution of non-native and native scolytines in the continental 48 USA states. These data were analyzed through a beta-diversity index, partitioned into species richness differences and species replacement, using Mantel correlograms and non-metric multidimensional scaling (NMDS) ordination for identifying spatial patterns, and regression on distance matrices to test the association of climate (temperature, rainfall), forest (cover area, composition), geographical (distance), and human-related (import) variables with β-diversity components. For both non-native bark and ambrosia beetles, β-diversity was mainly composed of species richness difference than species replacement. For non-native bark beetles, a discontinuous invasion process composed of long distance jumps or multiple introduction events was apparent. Species richness differences were primarily correlated with differences in import values while temperature was the main correlate of species replacement. For non-native ambrosia beetles, a more continuous invasion process was apparent, with the pool of non-native species arriving in the coastal areas that tended to be filtered as they spread to interior portions of the continental USA. Species richness differences were mainly correlated with differences in rainfall among states, while rainfall and temperature were the main correlates of species replacement. Our study suggests that the different ecology of bark and ambrosia beetles influences their invasion process in new environments. The lower dependency that bark beetles have on climate

  7. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle

    Science.gov (United States)

    Zhao, Lilin; Zhang, Xinxing; Wei, Yanan; Zhou, Jiao; Zhang, Wei; Qin, Peijun; Chinta, Satya; Kong, Xiangbo; Liu, Yunpeng; Yu, Haiying; Hu, Songnian; Zou, Zhen; Butcher, Rebecca A.; Sun, Jianghua

    2016-01-01

    Insect vectors are required for the transmission of many species of parasitic nematodes, but the mechanisms by which the vectors and nematodes coordinate their life cycles are poorly understood. Here, we report that ascarosides, an evolutionarily conserved family of nematode pheromones, are produced not only by a plant-parasitic nematode, but also by its vector beetle. The pinewood nematode and its vector beetle cause pine wilt disease, which threatens forest ecosystems world-wide. Ascarosides secreted by the dispersal third-stage nematode LIII larvae promote beetle pupation by inducing ecdysone production in the beetle and up-regulating ecdysone-dependent gene expression. Once the beetle develops into the adult stage, it secretes ascarosides that attract the dispersal fourth-stage nematode LIV larvae, potentially facilitating their movement into the beetle trachea for transport to the next pine tree. These results demonstrate that ascarosides play a key role in the survival and spread of pine wilt disease. PMID:27477780

  8. Ascarosides coordinate the dispersal of a plant-parasitic nematode with the metamorphosis of its vector beetle.

    Science.gov (United States)

    Zhao, Lilin; Zhang, Xinxing; Wei, Yanan; Zhou, Jiao; Zhang, Wei; Qin, Peijun; Chinta, Satya; Kong, Xiangbo; Liu, Yunpeng; Yu, Haiying; Hu, Songnian; Zou, Zhen; Butcher, Rebecca A; Sun, Jianghua

    2016-01-01

    Insect vectors are required for the transmission of many species of parasitic nematodes, but the mechanisms by which the vectors and nematodes coordinate their life cycles are poorly understood. Here, we report that ascarosides, an evolutionarily conserved family of nematode pheromones, are produced not only by a plant-parasitic nematode, but also by its vector beetle. The pinewood nematode and its vector beetle cause pine wilt disease, which threatens forest ecosystems world-wide. Ascarosides secreted by the dispersal third-stage nematode LIII larvae promote beetle pupation by inducing ecdysone production in the beetle and up-regulating ecdysone-dependent gene expression. Once the beetle develops into the adult stage, it secretes ascarosides that attract the dispersal fourth-stage nematode LIV larvae, potentially facilitating their movement into the beetle trachea for transport to the next pine tree. These results demonstrate that ascarosides play a key role in the survival and spread of pine wilt disease. PMID:27477780

  9. Striped Cucumber Beetle (Coleoptera: Chrysomelidae) Aggregation in Response to Cultivar and Flowering.

    Science.gov (United States)

    Gardner, Jeffrey; Hoffmann, Michael P; Mazourek, Michael

    2015-04-01

    The striped cucumber beetle [Acalymma vittatum (F.)] is a specialist pest of cucurbits throughout its range in the United States and Canada. Improved integrated pest management options are needed across the pest's range, especially on organic farms where there are few effective controls. Trap cropping in cucurbits is an option, but there are significant challenges to the technique. Because cucurbit flowers are highly attractive to the beetles, four field experiments tested whether cultivar and phenology interact to preferentially aggregate beetles. The first experiment tested the hypothesis that cucurbit flowers were more attractive to striped cucumber beetles than was foliage. The second experiment tested whether there were differences in beetle aggregation between two relatively attractive cultivars. The third and fourth experiments were factorial designs with two plant cultivars and two levels of flowering to specifically test for an interaction of cultivar and flowering. Results indicated that flowers were more attractive than foliage, beetle aggregation was affected by plant cultivar, and that there was an interaction of cultivar with flowering. We conclude that a single cultivar may be sufficient to serve as a generic trap crop to protect a wide variety of cucurbits. PMID:26313184

  10. Intraspecific and interspecific attraction of three Tomicus beetle species during the shoot-feeding phase.

    Science.gov (United States)

    Wang, J; Zhang, Z; Kong, X; Wang, H; Zhang, S

    2015-04-01

    The shoot beetles Tomicus minor, Tomicus yunnanensis, and Tomicus brevipilosus have been decimating Pinus yunnanensis trees for more than 30 years in Southwestern China. To understand the chemical ecological relationship between pines and Tomicus, and among the three beetle species, we compared the attraction of these beetles to damaged shoots, extracts from damaged shoots, and volatiles from damaged shoots collected by the dynamic headspace sampling method. Experiments were performed using a modified open-arena olfactometer. The male T. minor and both sexes of T. brevipilosus were more strongly attracted to damaged shoots than to undamaged shoots and they showed attraction to shoots damaged by the same species. Female T. minor and both sexes of T. yunnanensis were attracted to shoots damaged by female T. brevipilosus. The three beetle species were attracted to shoot extracts and dynamic headspace volatiles from shoots damaged by the same species and sex. Female T. minor and male T. yunnanensis were also attracted to dynamic headspace volatiles from shoots damaged by both sexes of T. brevipilosus. The results suggested that specific semiochemicals that are induced or produced by T. brevipilosus also attract T. minor and T. yunnanensis. The semiochemicals in damaged shoots affect the attraction of the three beetle species and play an important chemical communication role in weakening the host trees during the beetles' shoot-feeding phase. PMID:25632972

  11. Dung beetles use their dung ball as a mobile thermal refuge.

    Science.gov (United States)

    Smolka, Jochen; Baird, Emily; Byrne, Marcus J; el Jundi, Basil; Warrant, Eric J; Dacke, Marie

    2012-10-23

    At midday, surface temperatures in the desert often exceed 60°C. To be active at this time, animals need extraordinary behavioural or physiological adaptations. Desert ants, for instance, spend up to 75% of their foraging time cooling down on elevated thermal refuges such as grass stalks. Ball-rolling dung beetles work under similar thermal conditions in South African savannahs. After landing at a fresh dung pile, a beetle quickly forms a dung ball and rolls it away in a straight line, head down, walking backwards. Earlier studies have shown that some dung beetles maintain an elevated body temperature to gain a competitive advantage, and that heat shunting may prevent overheating during flight. However, we know little about the behavioural strategies beetles might employ to mitigate heat stress while rolling their dung balls. Using infrared thermography and behavioural experiments, we show here that dung beetles use their dung ball as a mobile thermal refuge onto which they climb to cool down while rolling across hot soil. We further demonstrate that the moist ball functions not only as a portable platform, but also as a heat sink, which effectively cools the beetle as it rolls or climbs onto it. PMID:23098590

  12. Differences in coprophilous beetle communities structure in Sierra de Minas (Uruguay): a mosaic landscape.

    Science.gov (United States)

    González-Vainer, Patricia; Morelli, E; Defeo, O

    2012-10-01

    Coprophilous beetles represent an abundant and rich group with critical importance in the functioning of terrestrial ecosystems. Most coprophagous beetles have a stenotopic distribution in relation to vegetation types. Because of this, they are usually very sensitive to environmental changes and are considered well suited as bioindicator organisms. The aim of this study was to analyze variations in coprophilous beetle assemblages in natural and anthropogenic habitats. Coprophilous beetle communities were sampled monthly for 1 year using pitfall traps baited with cow dung, in native xeric upland forests, 15-years-old plantations of Pinus elliottii and pastures in Sierra de Minas, Lavalleja, Uruguay. A total of 7,436 beetles were caught and identified to species or morphospecies level. The most abundant families were Aphodiidae, Scarabaeidae, and Staphylinidae. Differences in species richness, abundance, Shannon index, evenness, and dominance were detected between habitats. Abundances of most frequent families were significantly higher in both kinds of forests. Species richness and diversity of Aphodiidae and Staphylinidae were higher in forests, while Scarabaeidae showed the highest richness and diversity in pine plantations. Species composition significantly differed between habitats. Uroxys terminalis Waterhouse and Ataenius perforatus Harold typified the assemblages in native forests and pine plantations and also discriminated both communities because of their differential pattern of abundance between habitats. Typifying species in pastures were Onthophagus hirculus, Ateuchus robustus (Harold), and Ataenius platensis Blanchard. Habitat type had a strong effect on the coprophilous beetle community structure and composition. PMID:23950086

  13. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles.

    Science.gov (United States)

    Hammer, Tobin J; Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas

    2016-05-25

    Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal.

  14. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    Science.gov (United States)

    Slade, Eleanor M.; Riutta, Terhi; Roslin, Tomas; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels, dung beetles reduced GHG emissions by up to 7% and 12% respectively, mainly through large reductions in methane (CH4) emissions. However, at the lifecycle level, dung beetles accounted for only a 0.05-0.13% reduction of overall GHG emissions. This mismatch derives from the fact that in intensive production systems, only a limited fraction of all cow pats end up on pastures, offering limited scope for dung beetle mitigation of GHG fluxes. In contrast, we suggest that the effects of dung beetles may be accentuated in tropical countries, where more manure is left on pastures, and dung beetles remove and aerate dung faster, and that this is thus a key area for future research. These considerations give a new perspective on previous results perspective, and suggest that studies of biotic effects on GHG emissions from dung pats on a global scale are a priority for current research.

  15. Treating cattle with antibiotics affects greenhouse gas emissions, and microbiota in dung and dung beetles.

    Science.gov (United States)

    Hammer, Tobin J; Fierer, Noah; Hardwick, Bess; Simojoki, Asko; Slade, Eleanor; Taponen, Juhani; Viljanen, Heidi; Roslin, Tomas

    2016-05-25

    Antibiotics are routinely used to improve livestock health and growth. However, this practice may have unintended environmental impacts mediated by interactions among the wide range of micro- and macroorganisms found in agroecosystems. For example, antibiotics may alter microbial emissions of greenhouse gases by affecting livestock gut microbiota. Furthermore, antibiotics may affect the microbiota of non-target animals that rely on dung, such as dung beetles, and the ecosystem services they provide. To examine these interactions, we treated cattle with a commonly used broad-spectrum antibiotic and assessed downstream effects on microbiota in dung and dung beetles, greenhouse gas fluxes from dung, and beetle size, survival and reproduction. We found that antibiotic treatment restructured microbiota in dung beetles, which harboured a microbial community distinct from those in the dung they were consuming. The antibiotic effect on beetle microbiota was not associated with smaller size or lower numbers. Unexpectedly, antibiotic treatment raised methane fluxes from dung, possibly by altering the interactions between methanogenic archaea and bacteria in rumen and dung environments. Our findings that antibiotics restructure dung beetle microbiota and modify greenhouse gas emissions from dung indicate that antibiotic treatment may have unintended, cascading ecological effects that extend beyond the target animal. PMID:27226475

  16. The biology of the small hive beetle (Aethina tumida, Coleoptera: Nitidulidae): Gaps in our knowledge of an invasive species

    OpenAIRE

    Neumann, Peter; Elzen, Patti

    2004-01-01

    International audience Small hive beetles, Aethina tumida, are honeybee parasites native to Africa, where they are a minor pest only. In contrast, the beetles can be harmful parasites of European honeybee subspecies. Resistance of African subspecies to infestations is probably due to quantitative differences in a series of behaviours such as absconding, aggression, removal of parasite eggs and larvae and social encapsulation. The beetles use counter-resistance tactics such as defence postu...

  17. The complete mitochondrial genome of the flea beetle Agasicles hygrophila.

    Science.gov (United States)

    Li, Na; Wei, Jia-Ning; Jia, Dong; Li, Shuang; Ma, Rui-Yan

    2016-09-01

    To provide molecular markers for population genetic analysis of the flea beetle Agasicles hygrophila, we determined its mitochondrial genome (mitogenome) for the first time. The mitogenome of A. hygrophila was 15 917 bp in length with an AT content of 75.15%. It had the typical set of 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an AT-rich control region. Compared with the ancestral mitogenome of insects, no gene rearrangement occurred in A. hygrophila. Incomplete stop codons were present in PCGs of A. hygrophila. All tRNA genes except for trnS(AGN) could form the typical clover-leaf secondary structures. The phylogenetic analysis indicated that A. hygrophila was close to other species belonging to the same family of Chrysomelidae. PMID:26368047

  18. Elastocapilllarity in insect adhesion: the case of beetle adhesive hair

    Science.gov (United States)

    Gernay, Sophie; Gilet, Tristan; Lambert, Pierre; Federle, Walter

    2014-11-01

    The feet of many insects are covered with dense arrays of hair-like structures called setae. Liquid capillary bridges at the tip of these micrometric structures are responsible for the controlled adhesion of the insect on a large variety of substrates. The resulting adhesion force can exceed several times the body weight of the insect. The high aspect-ratio of setae suggests that flexibility is a key ingredient in this capillary-based adhesion mechanism. There is indeed a strong coupling between their elastic deformation and the shape of the liquid meniscus. In this experimental work, we observe and quantify the local deflection of dock beetle seta tips under perpendicular loading using interference microscopy. Our results are then interpreted in the light of an analytic model of elastocapillarity. This research has been funded by the FRIA/FNRS and the Interuniversity Attraction Poles Programme (IAP 7/38 MicroMAST) initiated by the Belgian Science Policy Office.

  19. Mimicking unfolding motion of a beetle hind wing

    Institute of Scientific and Technical Information of China (English)

    MUHAMMAD Azhar; PARK Hoon C; HWANG Do Y; BYUN Doyoung; GOO Nam S

    2009-01-01

    This paper presents an experimental research aiming to realize an artificial hind wing that can mimic the wing unfolding motion of Allomyrina dichotoma, an insect in coleopteran order. Based on the understanding of working principles of beetle wing folding/unfolding mechanisms, the hind wing unfolding motion is mimicked by a combination of creative ideas and state-of-art artificial muscle actuator. In this work, we devise two types of artificial wings and the successfully demonstrate that they can be unfolded by actuation of shape memory alloy wires to provide actuation force at the wing base and along the leading edge vein. The folding/unfolding mechanisms may provide an insight for portable nano/micro air vehicles with morphing wings.

  20. Confirmation of bean leaf beetle, Cerotoma trifurcata, feeding on cucurbits

    Directory of Open Access Journals (Sweden)

    R.L. Koch

    2004-02-01

    Full Text Available The objective of these studies was to assess the degree to which bean leaf beetle, Cerotoma trifurcata (Forster, will feed on cucurbits. In 2003, we documented an infestation of C. trifurcata in a commercial pumpkin field near Rosemount, MN, USA. To evaluate C. trifurcata feeding on cucurbits, we conducted laboratory no-choice and choice test feeding studies. In the laboratory, C. trifurcata fed most heavily on cotyledon-stage cucumber plants, followed by pumpkin and squash. With soybean plants present, C. trifurcata still fed on cucumber plants. However, C. trifurcata appeared to prefer soybeans until the quality of the soybean plants was diminished through feeding damage. This is the first known report of C. trifurcata feeding on cucurbits. The pest potential of C. trifurcata in cucurbit cropping systems should be further evaluated.

  1. Mountain pine beetle impacts on vegetation and carbon stocks

    Science.gov (United States)

    Hawbaker, Todd J.; Briggs, Jennifer S.; Caldwell, Megan K.; Stitt, Susan

    2013-01-01

    In the Southern Rocky Mountains, an epidemic outbreak of mountain pine beetle (Dendroctonus ponderosae; MPB) has caused levels of tree mortality unprecedented in recorded history. The impacts of this mortality on vegetation composition, forest structure, and carbon stocks have only recently received attention, although the impacts of other disturbances such as fires and land-use/land-cover change are much better known. This study, initiated in 2010, aims to increase our understanding of MPB outbreaks and their impacts. We have integrated field-collected data with vegetation simulation models to assess and quantify how long-term patterns of vegetation and carbon stocks have and may change in response to MPB outbreaks and other disturbances.

  2. Fungal farming in a non-social beetle.

    Directory of Open Access Journals (Sweden)

    Wataru Toki

    Full Text Available Culturing of microbes for food production, called cultivation mutualism, has been well-documented from eusocial and subsocial insects such as ants, termites and ambrosia beetles, but poorly described from solitary, non-social insects. Here we report a fungal farming in a non-social lizard beetle Doubledaya bucculenta (Coleoptera: Erotylidae: Languriinae, which entails development of a special female structure for fungal storage/inoculation, so-called mycangium, and also obligate dependence of the insect on the fungal associate. Adult females of D. bucculenta bore a hole on a recently-dead bamboo culm with their specialized mandibles, lay an egg into the internode cavity, and plug the hole with bamboo fibres. We found that the inner wall of the bamboo internode harboring a larva is always covered with a white fungal layer. A specific Saccharomycetes yeast, Wickerhamomyces anomalus ( = Pichia anomala, was consistently isolated from the inner wall of the bamboo internodes and also from the body surface of the larvae. Histological examination of the ovipositor of adult females revealed an exoskeletal pocket on the eighth abdominal segment. The putative mycangium contained yeast cells, and W. anomalus was repeatedly detected from the symbiotic organ. When first instar larvae were placed on culture media inoculated with W. anomalus, they grew and developed normally to adulthood. By contrast, first instar larvae placed on either sterile culture media or autoclaved strips of bamboo inner wall exhibited arrested growth at the second instar, and addition of W. anomalus to the media resumed growth and development of the larvae. These results strongly suggest a mutualistic nature of the D. bucculenta-W. anomalus association with morphological specialization and physiological dependence. Based on these results, we compare the fungal farming of D. bucculenta with those of social and subsocial insects, and discuss ecological factors relevant to the

  3. First evidence of a volatile sex pheromone in lady beetles.

    Directory of Open Access Journals (Sweden)

    Bérénice Fassotte

    Full Text Available To date, volatile sex pheromones have not been identified in the Coccinellidae family; yet, various studies have suggested that such semiochemicals exist. Here, we collected volatile chemicals released by virgin females of the multicolored Asian lady beetle, Harmonia axyridis (Pallas, which were either allowed or not allowed to feed on aphids. Virgin females in the presence of aphids, exhibited "calling behavior", which is commonly associated with the emission of a sex pheromone in several Coleoptera species. These calling females were found to release a blend of volatile compounds that is involved in the remote attraction (i.e., from a distance of males. Gas Chromatography-Mass Spectrometry (GC-MS analyses revealed that (--β-caryophyllene was the major constituent of the volatile blend (ranging from 80 to 86%, with four other chemical components also being present; β-elemene, methyl-eugenol, α-humulene, and α-bulnesene. In a second set of experiments, the emission of the five constituents identified from the blend was quantified daily over a 9-day period after exposure to aphids. We found that the quantity of all five chemicals significantly increased across the experimental period. Finally, we evaluated the activity of a synthetic blend of these chemicals by performing bioassays which demonstrated the same attractive effect in males only. The results confirm that female H. axyridis produce a volatile sex pheromone. These findings have potential in the development of more specific and efficient biological pest-control management methods aimed at manipulating the behavior of this invasive lady beetle.

  4. Trends in detoxification enzymes and heavy metal accumulation in ground beetles (Coleoptera: Carabidae) inhabiting a gradient of pollution.

    Science.gov (United States)

    Stone, David; Jepson, Paul; Laskowski, Ryszard

    2002-05-01

    Non-specfic carboxylesterase and glutathione S-transferase activity was measured in the ground beetle, Pterosthicus oblongopunctatus (Coleoptera: Carabidae), from five sites along a gradient of heavy metal pollution. A previous study determined that beetles from the two most polluted sites (site codes OLK2 and OLK3) were more susceptible to additional stressors compared with beetles from the reference site (Stone et al., Environ. Pollut. 113, 239-244 2001), suggesting the possibility of physiological impairment. Metal body burdens in ground beetles from five sites along the gradient ranged from 79 to 201 microg/g Zn, 0.174 to 8.66 microg/g Pb and 1.14 to 10.8 microg/g Cd, whereas Cu seemed to be efficiently regulated regardless of metal levels in the soil. Beetle mid- and hindguts were homogenized and the soluble fraction containing glutathione S-transferase (GST) and carboxylesterase (CaE) was assayed using kinetic analyses. Significantly higher levels of GST were found only in female beetles from the most polluted sites (OLK2 and OLK3; P=0.049, P<0.001, respectively) compared with the reference site (OLK7). In addition, OLK3 females had significantly higher levels of CaE compared with the reference beetles (P=0.01). Male beetles did not differ in enzyme activity along the metal gradient. Overall, obvious trends in detoxification enzymes were not detected in ground beetles in association with metal body burdens.

  5. Predisposition to bark beetle attack by root herbivores and associated pathogens: Roles in forest decline, gap formation, and persistence of endemic bark beetle populations

    DEFF Research Database (Denmark)

    Aukema, Brian H.; Zhu, Jun; Møller, Jesper;

    2010-01-01

    , in that the proportion of killed trees that were not first colonized by root organisms increases. This positive feedback is very weak, however, and we propose the slope between beetle population density and reliance on host stress as a quantitative distinction along a gradient from noneruptive through eruptive species...... within the primary stem, root weevils that breed in root collars, and bark beetles that breed in basal stems. We quantify the sequence of events that drive this decline syndrome, with the primary emergent pattern being an interaction between below- and above-ground herbivores and their fungal symbionts...

  6. Impact of Forest Fragmentation on Patterns of Mountain Pine Beetle-Caused Tree Mortality

    Directory of Open Access Journals (Sweden)

    Trisalyn A. Nelson

    2013-04-01

    Full Text Available The current outbreak of mountain pine beetle, Dendroctonus ponderosae Hopkins, has led to extensive tree mortality in British Columbia and the western United States. While the greatest impacts of the outbreak have been in British Columbia, ongoing impacts are expected as the outbreak continues to spread eastward towards Canada’s boreal and eastern pine forests. Successful mitigation of this outbreak is dependent on understanding how the beetle’s host selection behaviour is influenced by the patchwork of tree mortality across the landscape. While several studies have shown that selective mechanisms operate at the individual tree level, less attention has been given to beetles’ preference for variation in spatial forest patterns, namely forest fragmentation, and if such preference changes with changing population conditions. The objective of this study is to explore the influence of fragmentation on the location of mountain pine beetle caused mortality. Using a negative binomial regression model, we tested the significance of a fragmentation measure called the Aggregation Index for predicting beetle-caused tree mortality in the central interior of British Columbia, Canada in 2000 and 2005. The results explain that mountain pine beetle OPEN ACCESS Forests 2013, 4 280 exhibit a density-dependent dynamic behaviour related to forest patterns, with fragmented forests experiencing greater tree mortality when beetle populations are low (2000. Conversely, more contiguous forests are preferred when populations reach epidemic levels (2005. These results reinforce existing findings that bark beetles exhibit a strong host configuration preference at low population levels and that such pressures are relaxed when beetle densities are high.

  7. Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil.

    Science.gov (United States)

    Rodrigues, M M; Uchôa, M A; Ide, S

    2013-02-01

    Dung beetles (Coleoptera: Scarabaeoidea) in three landscapes in Mato Grosso do Sul, Brazil. Dung Beetles are important for biological control of intestinal worms and dipterans of economic importance to cattle, because they feed and breed in dung, killing parasites inside it. They are also very useful as bioindicators of species diversity in agricultural or natural environments. The aims of this paper were to study the species richness, and abundance of dung beetles, helping to answer the question: are there differences in the patterns of dung beetle diversity in three environments (pasture, agriculture and forest) in the municipality of Dourados, in the state of Mato Grosso do Sul. A total of 105 samplings were carried out weekly, from November 2005 to November 2007, using three pitfall traps in each environment. The traps were baited with fresh bovine dung, and 44,355 adult dung beetles from 54 species were captured: two from Hyborosidae and 52 from Scarabaeidae. Five species were constant, very abundant and dominant on the pasture, two in the agricultural environment, and two in the environment of Semideciduous forest. Most of the species were characterised as accessories, common and not-dominant. The species with higher abundance was Ataenius platensis Blanchard, 1844. The indexes of Shannon-Wiener diversity were: 2.90 in the pasture, 2.84 in the agricultural environment and 2.66 in the area of native forest. The medium positive presence of dung beetles in the traps in each environment were: 36.88, 42.73 and 20.18 individuals per trap, in the pasture, agricultural environment and in the native forest, respectively. The pasture environment presented a higher diversity index. The species diversity of dung beetles was superior where there was higher abundance and regularity of resource (bovine dung).

  8. Use of a Digital Image Correlation Technique for Measuring the Material Properties of Beetle Wing

    Institute of Scientific and Technical Information of China (English)

    Tailie Jin; Nam Seo Goo; Sung-Choong Woo; Hoon Cheol Park

    2009-01-01

    Beetle wings are very specialized flight organs consisting of the veins and membranes. Therefore it is necessary from a bionic view to investigate the material properties of a beetle wing experimentally. In the present study, we have used a Digital lmage Correlation (DIC) technique to measure the elastic modulus of a beetle wing membrane. Specimens were prepared by carefully cutting a beetle hind wing into 3.0 mm by 7.0 mm segments (the gage length was 5 mm). We used a scanning electron microscope for a precise measurement of the thickness of the beetle wing membrane. The specimen was attached to a designed fixture to induce a uniform displacement by means of a micromanipulator. We used an ARAMISTM system based on the digital image correlation technique to measure the corresponding displacement of a specimen. The thickness of the beetle wing varied at different points of the membrane. The elastic modulus differed in relation to the membrane arrangement showing a structural anisotropy; the elastic modulus in the chordwise direction is approximately 2.65 GPa, which is three times larger than the elastic modulus in the spanwise direction of 0.84 GPa. As a result, the digital image correlation-based ARAMIS system was suc-cessfully used to measure the elastic modulus of a beetle wing. In addition to membrane's elastic modulus, we considered the Poisson's ratio of the membrane and measured the elastic modulus of a vein using an Instron universal tensile machine. The result reveals the Poisson's ratio is nearly zero and the elastic modulus of a vein is about 11 GPa.

  9. Concept of an active amplification mechanism in the infrared organ of pyrophilous Melanophila beetles

    Directory of Open Access Journals (Sweden)

    Erik S Schneider

    2015-12-01

    Full Text Available Jewel beetles of the genus Melanophila possess a pair of metathoracic infrared (IR organs. These organs are used for forest fire detection because Melanophila larvae can only develop in fire killed trees. Several reports in the literature and a modeling of a historic oil tank fire suggest that beetles may be able to detect large fires by means of their IR organs from distances of more than 100 km. In contrast, the highest sensitivity of the IR organs, so far determined by behavioral and physiological experiments, allows a detection of large fires from distances up to 12 km only. Sensitivity thresholds, however, have always been determined in non-flying beetles. Therefore, the complete micromechanical environment of the IR organs in flying beetles has not been taken into consideration. Because the so-called photomechanic sensilla housed in the IR organs respond bimodally to mechanical as well as to IR stimuli, it is proposed that flying beetles make use of muscular energy coupled out of the flight motor to considerably increase the sensitivity of their IR sensilla during intermittent search flight sequences. In a search flight the beetle performs signal scanning with wing beat frequency while the inputs of the IR organs on both body sides are compared. By this procedure the detection of weak IR signals could be possible even if the signals are hidden in the thermal noise. If this proposed mechanism really exists in Melanophila beetles, their IR organs could even compete with cooled IR quantum detectors. The theoretical concept of an active amplification mechanism in a photon receptor innervated by highly sensitive mechanoreceptors is presented in this article.

  10. Unintended effects of the herbicides 2,4-D and dicamba on lady beetles.

    Science.gov (United States)

    Freydier, Laurène; Lundgren, Jonathan G

    2016-08-01

    Weed resistance to glyphosate and development of new GM crops tolerant to 2,4-dichlorophenoxyacetic acid (2,4-D) and dicamba is expected to lead to increased use of these herbicides in cropland. The lady beetle, Coleomegilla maculata is an important beneficial insect in cropland that is commonly used as an indicator species in safety evaluations of pesticides. Here, we examined the lethal and non-lethal effects of 2,4-D and dicamba active ingredients and commercial formulations to this lady beetle species, and tested for synergistic effects of the herbicides. Second instars of lady beetles were exposed to an experimental treatment, and their mortality, development, weight, sex ratio, fecundity, and mobility was evaluated. Using similar methods, a dose-response study was conducted on 2,4-D with and without dicamba. The commercial formulation of 2,4-D was highly lethal to lady beetle larvae; the LC90 of this herbicide was 13 % of the label rate. In this case, the "inactive" ingredients were a key driver of the toxicity. Dicamba active ingredient significantly increased lady beetle mortality and reduced their body weight. The commercial formulations of both herbicides reduced the proportion of males in the lady beetle population. The herbicides when used together did not act synergistically in their toxicity toward lady beetles versus when the chemistries were used independently. Our work shows that herbicide formulations can cause both lethal and sublethal effects on non-target, beneficial insects, and these effects are sometimes driven by the "inactive" ingredients. The field-level implications of shifts in weed management practices on insect management programs should receive further attention. PMID:27282375

  11. Suitability of California bay laurel and other species as potential hosts for the non-native redbay ambrosia beetle and granulate ambrosia beetle

    Science.gov (United States)

    The redbay ambrosia beetle (Xyleborus glabratus Eichhoff) is a non-native invasive forest pest and vector of the pathogen that causes laurel wilt, a deadly disease of trees in the family Lauraceae in the southeastern United States (U.S.). Concern exists that X. glabratus and its fungal symbiont cou...

  12. Association of the symbiotic fungi Fusarium euwallaceae, Graphium sp. and Acremonium sp., with the ambrosia beetle Euwallacea nr. fornicatus in avocado

    Science.gov (United States)

    The ambrosia beetle, Euwallacea nr. fornicatus (Coleoptera:Scolytinae), is a new invasive species to Israel. To date, the beetle has been recorded from 48 tree species representing 25 plant families. Amongst the most affected are avocado, castor-bean and box elder. Isolations from beetle heads revea...

  13. Alien seed beetles (Coleoptera: Chrysomelidae: Bruchinae) in Europe.

    Science.gov (United States)

    Yus-Ramos, Rafael; Ventura, Daniel; Bensusan, Keith; Coello-García, Pedro; György, Zoltán; Stojanova, Anelia

    2014-07-01

    Under the framework of the DAISIE consortium, whose main mission is to make an inventory of the alien invasive species of Europe and its islands, we review the current state of knowledge and provide an up-to-date catalogue and distributional status for alien seed beetles (Coleoptera: Chrysomelidae: Bruchinae) in Europe. This work is based on studies of the species detected from the last century to the present, but with greater emphasis on the beginning of the 21st century, during which new biological studies have been carried out and findings made in European countries. The main objective of this paper is to focus on this last fact, which has promoted new views on the existing and potential threat of exotic bruchids in relation to climate change. This must now be regarded as a matter of concern for European agricultural and environmental policies. Only species of exotic origin introduced in European regions outside their native range were considered. Therefore, species of European origin spreading to new countries within Europe are not treated. Also, we provide a new approach to classifying alien seed beetle species according to their ability to become established, distinguishing between the well-established and those that may appear in seed stores but are not capable of invading natural and agricultural ecosystems. We present a taxonomic characterization of the alien bruchids found in Europe, providing an illustrated key based on external morphological characters of adults. The key facilitates the identification of the sixteen most frequently recorded genera, which represent 37 of the 42 species of exotic species recorded in Europe up to the present, whether established, not established or occasional. Finally, we provide a summary of the state of knowledge of the taxonomy and biology of the 20 most worrying species as pests, both established and non-established. This includes, where appropriate, an illustrated key for the identification of species. The study

  14. Walking to survive. Searching, feeding and egg production of the carabid beetle Pterostichus coerulescens L. (= Poecilus versicolor Sturm).

    NARCIS (Netherlands)

    Mols, P.J.M.

    1993-01-01

    This study concerns the prey-searching and feeding behaviour of the polyphagous groundbeetle Pterostichus coerulescens L. ( = Poecilus versicolor Sturm), a common species on sandy soils. This ground beetle rarely flies, thus preysearching behaviour involves walking. The beetle is diurnal. As object

  15. Efficacy of imidacloprid, trunk-injected into Acer platanoides, for control of adult Asian longhorned beetles (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Ugine, Todd A; Gardescu, Sana; Lewis, Phillip A; Hajek, Ann E

    2012-12-01

    Feeding experiments with Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) in a quarantine laboratory were used to assess the effectiveness of imidacloprid in reducing adult fecundity and survival. The beetles were fed twigs and leaves cut between June-September 2010 from Norway maples (Acer platanoides L.) in the beetle-infested area of Worcester, MA. Treated trees had been trunk-injected once with imidacloprid in spring 2010 under the U.S. Department of Agriculture-Animal and Plant Health Inspection Service operational eradication program. The 21 d LC50 value for adult beetles feeding on twig bark from imidacloprid-injected trees was 1.3 ppm. Adult reproductive output and survival were significantly reduced when beetles fed on twig bark or leaves from treated trees. However, results varied widely, with many twig samples having no detectable imidacloprid and little effect on the beetles. When twigs with > 1 ppm imidacloprid in the bark were fed to mated beetles, the number of larvae produced was reduced by 94% and median adult survival was reduced to 14 d. For twigs with 1 ppm). When given a choice of control twigs and twigs from injected trees, beetles did not show a strong preference.

  16. Performance of a Beetle 1.2 chip reading out a Micron PR03 R measuring sensor

    CERN Document Server

    Buytaert, J; Eckstein, D; Palacios, J P

    2004-01-01

    The performance of a Beetle 1.2 chip bonded to a Micron PR03 measuring prototype VELO sensor has been studied using test beam data collected by the VELO group. Results concerning the peak signal, signal to noise ratio, signal remainder 25 ns after peaking time, and a scan of the undershoot region for different bias settings of the Beetle are presented.

  17. Draft Genome Sequence of Raffaelea quercivora JCM 11526, a Japanese Oak Wilt Pathogen Associated with the Platypodid Beetle, Platypus quercivorus

    Science.gov (United States)

    Manabe, Ri-ichiroh; Ohkuma, Moriya; Endoh, Rikiya

    2016-01-01

    The Japanese oak wilt pathogen Raffaelea quercivora and the platypodid beetle, Platypus quercivorus, cause serious mass mortality of Quercus spp. in Japan. Here, we present the first draft genome sequence of R. quercivora JCM 11526 to increase our understanding of the mechanism of pathogenicity and symbiosis with the ambrosia beetle. PMID:27469944

  18. Fusarium euwallaceae, a novel species cultivated by a Euwallacea ambrosia beetle that threatens avocado production in Israel and California

    Science.gov (United States)

    Avocado production in Israel and California, USA is facing a serious threat due to damage caused by an invasive Euwallacea ambrosia beetle and a novel Fusarium that it cultivates as a source of food. Adult female beetles possess mandibular mycangia within which they carry the Fusarium symbiont. At l...

  19. Invasive Asian Fusarium – Euwallacea ambrosia beetle mutualists pose a serious threat to forests, urban landscapes and the avocado industry

    Science.gov (United States)

    Several species of the ambrosia beetle Euwallacea (Coleoptera: Curculionidae: Scolytinae) cultivate Ambrosia Fusarium Clade (AFC) species in their galleries as a source of food. Like all other scolytine beetles in the tribe Xyleborini, Euwallacea are thought to be obligate mutualists with their fung...

  20. 甲壳虫是怎么得到颜色的%How Beetle Got Her Colors

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Long ago in the Amazon rain forest Beetle was just plain brown.In this same forest there lived a rat that used to tease other small animals and insects that lived there.Best of all she liked to torment the beetle.Rat had a gang of other small animals who followed her,and laughed at her mean jokes.

  1. Microsatellite analysis of the Genetic Diversity of Asian Longhorned Beetles from an Invasive Population in Ontario, Canada

    Science.gov (United States)

    Asian Longhorned Beetles (Anoplophora glabripennis Motschulsky) were discovered in Ontario, Canada in 2003 at a commercial warehouse site, where they likely arrived on solid wood packing materials from China. Trees in the area were heavily scarred with oviposition sites, and larvae and adult beetle...

  2. Efficacy and longevity of essential oil lures for capture of the redbay ambrosia beetle Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    The redbay ambrosia beetle Xyleborus glabratus Eichhoff is an exotic wood-boring pest native to southeastern Asia. It carries a symbiotic fungus (Raffaelea lauricola) that causes laurel wilt, a lethal vascular disease of trees in the Lauraceae. First detected in Georgia in 2002, the beetle has spre...

  3. Fusarium symbionts of an ambrosia beetle (Euwallacea sp.) in southern Florida are pathogens of avocado, Persea americana

    Science.gov (United States)

    Fusarium dieback, a destructive disease of avocado (Persea americana), was reported in California and Israel in 2012. It is associated with an ambrosia beetle, Euwallacea sp., and damage caused by an unnamed symbiont of the beetle in Clade 3 of the Fusarium solani species complex (FSSC) designated p...

  4. Redbay ambrosia beetle/Laurel wilt: Overview of projects at the USDA-ARS Subtropical Horticulture Research Station

    Science.gov (United States)

    ABSTRACT Laurel wilt, a deadly fungal disease of avocado and other trees in the Lauraceae, is vectored by the redbay ambrosia beetle (Xyleborus glabratus). First detected near Savannah, GA in 2002, the beetle and its obligatory pathogen have since spread to South Carolina and Florida. Currently, t...

  5. Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?

    Directory of Open Access Journals (Sweden)

    Diana L. Six

    2014-01-01

    Full Text Available While the use of timber harvests is generally accepted as an effective approach to controlling bark beetles during outbreaks, in reality there has been a dearth of monitoring to assess outcomes, and failures are often not reported. Additionally, few studies have focused on how these treatments affect forest structure and function over the long term, or our forests’ ability to adapt to climate change. Despite this, there is a widespread belief in the policy arena that timber harvesting is an effective and necessary tool to address beetle infestations. That belief has led to numerous proposals for, and enactment of, significant changes in federal environmental laws to encourage more timber harvests for beetle control. In this review, we use mountain pine beetle as an exemplar to critically evaluate the state of science behind the use of timber harvest treatments for bark beetle suppression during outbreaks. It is our hope that this review will stimulate research to fill important gaps and to help guide the development of policy and management firmly based in science, and thus, more likely to aid in forest conservation, reduce financial waste, and bolster public trust in public agency decision-making and practice.

  6. Seasonal Flight Activity of the Sugarcane Beetle (Coleoptera: Scarabaeidae) in North Carolina Using Black Light Traps.

    Science.gov (United States)

    Billeisen, T L; Brandenburg, R L

    2016-04-01

    Seasonal flight activity, adult beetle sex count, and egg production were examined in sugarcane beetles Euetheola rugiceps (LeConte) caught in light traps in North Carolina from the fall of 2009 through the summer of 2014. A regression model using variable environmental conditions as predictive parameters was developed to examine the impact of these conditions on flight activity. Depending on flight trap location and sampling years, beetles exhibited an inconsistent flight pattern, with the majority of adults flying in the spring (April-June) and intermittently in the fall (September-October). Our model indicated that larger numbers of adults collected from traps coincided with an increase in average soil temperature. Sugarcane beetles also exhibit a synchronous emergence during both periods of flight activity. Eggs were detected in females collected from light traps every week throughout the entire sampling period. The majority of females produced 7-12 eggs, with most egg production occurring between 15 May and 1 August. The findings of this research provide adult sugarcane beetle emergence and flight behavior information necessary to determine optimal pesticide application timing.

  7. Dung beetles eat acorns to increase their ovarian development and thermal tolerance.

    Directory of Open Access Journals (Sweden)

    José R Verdú

    Full Text Available Animals eat different foods in proportions that yield a more favorable balance of nutrients. Despite known examples of these behaviors across different taxa, their ecological and physiological benefits remain unclear. We identified a surprising dietary shift that confers ecophysiological advantages in a dung beetle species. Thorectes lusitanicus, a Mediterranean ecosystem species adapted to eat semi-dry and dry dung (dung-fiber consumers is also actively attracted to oak acorns, consuming and burying them. Acorn consumption appears to confer potential advantages over beetles that do not eat acorns: acorn-fed beetles showed important improvements in the fat body mass, hemolymph composition, and ovary development. During the reproductive period (October-December beetles incorporating acorns into their diets should have greatly improved resistance to low-temperature conditions and improved ovarian development. In addition to enhancing the understanding of the relevance of dietary plasticity to the evolutionary biology of dung beetles, these results open the way to a more general understanding of the ecophysiological implications of differential dietary selection on the ecology and biogeography of these insects.

  8. Novel antennal lobe substructures revealed in the small hive beetle Aethina tumida.

    Science.gov (United States)

    Kollmann, Martin; Rupenthal, Anna Lena; Neumann, Peter; Huetteroth, Wolf; Schachtner, Joachim

    2016-03-01

    The small hive beetle, Aethina tumida, is an emerging pest of social bee colonies. A. tumida shows a specialized life style for which olfaction seems to play a crucial role. To better understand the olfactory system of the beetle, we used immunohistochemistry and 3-D reconstruction to analyze brain structures, especially the paired antennal lobes (AL), which represent the first integration centers for odor information in the insect brain. The basic neuroarchitecture of the A. tumida brain compares well to the typical beetle and insect brain. In comparison to other insects, the AL are relatively large in relationship to other brain areas, suggesting that olfaction is of major importance for the beetle. The AL of both sexes contain about 70 olfactory glomeruli with no obvious size differences of the glomeruli between sexes. Similar to all other insects including beetles, immunostaining with an antiserum against serotonin revealed a large cell that projects from one AL to the contralateral AL to densely innervate all glomeruli. Immunostaining with an antiserum against tachykinin-related peptides (TKRP) revealed hitherto unknown structures in the AL. Small TKRP-immunoreactive spherical substructures are in both sexes evenly distributed within all glomeruli. The source for these immunoreactive islets is very likely a group of about 80 local AL interneurons. We offer two hypotheses on the function of such structures. PMID:26496732

  9. Fire severity unaffected by spruce beetle outbreak in spruce-fir forests in southwestern Colorado.

    Science.gov (United States)

    Andrus, Robert A; Veblen, Thomas T; Harvey, Brian J; Hart, Sarah J

    2016-04-01

    Recent large and severe outbreaks of native bark beetles have raised concern among the general public and land managers about potential for amplified fire activity in western North America. To date, the majority of studies examining bark beetle outbreaks and subsequent fire severity in the U.S. Rocky Mountains have focused on outbreaks of mountain pine beetle (MPB; Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests, but few studies, particularly field studies, have addressed the effects of the severity of spruce beetle (Dendroctonus rufipennis Kirby) infestation on subsequent fire severity in subalpine Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa) forests. In Colorado, the annual area infested by spruce beetle outbreaks is rapidly rising, while MPB outbreaks are subsiding; therefore understanding this relationship is of growing importance. We collected extensive field data in subalpine forests in the eastern San Juan Mountains, southwestern Colorado, USA, to investigate whether a gray-stage (forests will alter fire severity, a result that has important implications for management and policy decisions.

  10. Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut.

    Science.gov (United States)

    Tang, Xiao-Tian; Zheng, Fu-Shan; Qin, Jing; Lu, Ming-Xing; Du, Yu-Zhou

    2016-01-01

    Water chestnut beetle (Galerucella birmanica Jacoby) is a pest of the water chestnut (Trapa natans L.). To analyze the phylogeny and biogeography of the beetle and provide evidence for the origin of T. natans in China, we conducted this by using three mitochondrial genes (COI, COII and Cytb) and nuclear ITS2 ribosomal DNA of G. birmanica. As for mtDNA genes, the beetle could be subdivided into three groups: northeastern China (NEC), central-northern-southern China (CC-NC-SC) and southwestern China (SWC) based on SAMOVA, phylogenetic analyses and haplotype networks. But for ITS2, no obvious lineages were obtained but individuals which were from NEC region clustered into one clade, which might be due to sequence conservation of ITS2. Significant genetic variation was observed among the three groups with infrequent gene flow between groups, which may have been restricted due to natural barriers and events in the Late Pleistocene. Based on our analyses of genetic variation in the CC-NC-SC geographical region, the star-like haplotype networks, approximate Bayesian computation, niche modelling and phylogeographic variation of the beetle, we concluded that the beetle population has been lasting in the lower, central reaches of the Yangtze River Basin with its host plant, water chestnut, which is consistent with archaeological records. Moreover, we speculate that the CC-NC-SC population of G. birmanica may have undergone a period of expansion coincident with domestication of the water chestnut approximately 113,900-126,500 years ago. PMID:27459279

  11. Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut.

    Directory of Open Access Journals (Sweden)

    Xiao-Tian Tang

    Full Text Available Water chestnut beetle (Galerucella birmanica Jacoby is a pest of the water chestnut (Trapa natans L.. To analyze the phylogeny and biogeography of the beetle and provide evidence for the origin of T. natans in China, we conducted this by using three mitochondrial genes (COI, COII and Cytb and nuclear ITS2 ribosomal DNA of G. birmanica. As for mtDNA genes, the beetle could be subdivided into three groups: northeastern China (NEC, central-northern-southern China (CC-NC-SC and southwestern China (SWC based on SAMOVA, phylogenetic analyses and haplotype networks. But for ITS2, no obvious lineages were obtained but individuals which were from NEC region clustered into one clade, which might be due to sequence conservation of ITS2. Significant genetic variation was observed among the three groups with infrequent gene flow between groups, which may have been restricted due to natural barriers and events in the Late Pleistocene. Based on our analyses of genetic variation in the CC-NC-SC geographical region, the star-like haplotype networks, approximate Bayesian computation, niche modelling and phylogeographic variation of the beetle, we concluded that the beetle population has been lasting in the lower, central reaches of the Yangtze River Basin with its host plant, water chestnut, which is consistent with archaeological records. Moreover, we speculate that the CC-NC-SC population of G. birmanica may have undergone a period of expansion coincident with domestication of the water chestnut approximately 113,900-126,500 years ago.

  12. Susceptibility of brassicaceous plants to feeding by flea beetles, Phyllotreta spp. (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Soroka, Juliana; Grenkow, Larry

    2013-12-01

    Crucifer-feeding flea beetles, Phyllotreta spp., are chronic insect pests in Canadian prairie canola production. Multiple laboratory and field feeding bioassays were conducted to determine the susceptibility of a wide range of crucifer species, cultivars, and accessions to feeding by flea beetles with the goal of discovering sources of resistant germplasm. In 62 bioassays of 218 entries, no consistent decreased feeding by flea beetles was seen on any entries of Brassica carinata A. Braun, Brassica juncea (L.) Czern., Brassica napus L., or Brassica rapa L. There was reduced feeding on condiment mustard Sinapis alba L. lines but not on canola-quality lines with reduced amounts of glucosinolates, which were fed on at levels equal to B. napus. Analyses of glucosinolate content found decreased quantities of hydroxybenzyl and butyl glucosinolates in preferred canola-quality S. alba lines and increased levels of hydroxybutenyl glucosinolates compared with levels in condiment S. alba lines. Eruca sativa Mill. was an excellent flea beetle host; Camelina sativa (L.) Crantz lines experienced little feeding. Lines of Crambe abyssinica Hochst. ex R. E. Fries and Crambe hispanica L. had reduced feeding levels compared with Brassica entries, but Crambe glabrata DC did not. The results indicate possible sources of resistance to Phyllotreta flea beetles, while highlighting the complicated roles that glucosinolates may play in Phyllotreta host preference.

  13. The tiger beetles (Coleoptera, Carabidae, Cicindelinae) of Israel and adjacent lands.

    Science.gov (United States)

    Matalin, Andrey V; Chikatunov, Vladimir I

    2016-01-01

    Based on field studies, museums collections and literature sources, the current knowledge of the tiger beetle fauna of Israel and adjacent lands is presented. In Israel eight species occur, one of them with two subspecies, while in the Sinai Peninsula nine species of tiger beetles are now known. In the combined regions seven genera from two tribes were found. The Rift Valley with six cicindelids species is the most specious region of Israel. Cylindera contorta valdenbergi and Cicindela javeti azari have localized distributions and should be considered regional endemics. A similarity analysis of the tiger beetles faunas of different regions of Israel and the Sinai Peninsula reveal two clusters of species. The first includes the Great Rift Valley and most parts of the Sinai Peninsula, and the second incorporates most regions of Israel together with Central Sinai Foothills. Five distinct adult phenological groups of tiger beetles can be distinguished in these two clusters: active all-year (three species), spring-fall (five species), summer (two species), spring-summer (one species) and spring (one species). The likely origins of the tiger beetle fauna of this area are presented. An annotated list and illustrated identification key of the Cicindelinae of Israel and adjacent lands are provided.

  14. Behavior of Paussus favieri (Coleoptera, Carabidae, Paussini: A Myrmecophilous Beetle Associated with Pheidole pallidula (Hymenoptera, Formicidae

    Directory of Open Access Journals (Sweden)

    Emanuela Maurizi

    2012-01-01

    Full Text Available Several specimens of the myrmecophilous beetle Paussus favieri were reared in ant nests of Pheidole pallidula. Their interactions were recorded and all behaviors observed are described. Duration and frequency of five behaviors of P. favieri were analyzed with ANOVA and post hoc Tukey tests; these comprised rewarding, antennal shaking, antennation, escape, and “no contact”. Significant differences both in duration and in frequency among behaviors were detected. The main result is that the rewarding behavior, during which the beetle provides attractive substances to the host, is performed significantly more frequently than all others. This result strongly supports the hypothesis that the chemicals provided by the beetles and licked by the ants are of great importance for the acceptance and the full integration of P. favieri in the ant society. This result also suggests that, contrary to previous findings and interpretations, the myrmecophilous strategy of P. favieri is very similar to the symphilous strategy described for P. turcicus. The occasional interactions of some beetle specimens with the P. pallidula queen were recorded, illustrated, and discussed, indicating the possibility of a more complex strategy of P. favieri involving a chemical mimicry with the queen. In addition, the courtship performed by the beetle is described for the first time, together with a peculiar “cleaning” behavior, which we hypothesize functions to spread antennal chemicals over the body surfaces.

  15. Surveying the endomicrobiome and ectomicrobiome of bark beetles: The case of Dendroctonus simplex.

    Science.gov (United States)

    Durand, Audrey-Anne; Bergeron, Amélie; Constant, Philippe; Buffet, Jean-Philippe; Déziel, Eric; Guertin, Claude

    2015-11-26

    Many bark beetles belonging to the Dendroctonus genus carry bacterial and fungal microbiota, forming a symbiotic complex that helps the insect to colonize the subcortical environment of the host tree. However, the biodiversity of those bacteria at the surface of the cuticle or inside the body parts of bark beetles is not well established. The aim of this study was to characterize the bacterial microbiome associated with the eastern larch beetle, Dendroctonus simplex, using bacterial 16S rRNA gene pyrosequencing. The ecto- and endomicrobiome and the subcortical galleries were investigated. Several bacterial genera were identified, among which Pseudomonas, Serratia and Yersinia are associated with the surface of the beetle cuticle, and genera belonging to Enterobacteriaceae and Gammaproteobacteria with the interior of the insect body. The index of dissimilarity indicates that the bacterial microbiome associated with each environment constitutes exclusive groups. These results suggest the presence of distinct bacterial microbiota on the surface of the cuticle and the interior of D. simplex body. Additionally, the bacterial diversity identified in the galleries is substantially different from the ectomicrobiome, which could indicate a selection by the insect. This study reports for the first time the identification of the eastern larch beetle microbiome.

  16. Associations of Conifer-Infesting Bark Beetles and Fungi in Fennoscandia

    Directory of Open Access Journals (Sweden)

    Michael J. Wingfield

    2012-02-01

    Full Text Available Bark beetles (Coleoptera, Scolytinae have a widespread association with fungi, especially with ophiostomatoid fungi (Ascomycota that cause blue staining of wood, and in some cases, serious tree diseases. In Fennoscandia, most studies of these fungi have focused on economically important bark beetle species and this is likely to have led to a biased view of the fungal biodiversity in the region. Recently, the associations between fungi and bark beetles in Fennoscandia have been shown to be more diverse than previously thought. Furthermore, they form complex and dynamic associations that are only now beginning to emerge. This review examines the current knowledge of the rather poorly known interactions between bark beetles, fungi and their conifer host trees in Fennoscandia. The diversity of ophiostomatoid species is discussed and the possible factors that influence the assemblages of fungal associates are considered for all species that are known to occur in the region. For many ophiostomatoid species found in Fennoscandia, little or nothing is known regarding their pathogenicity, particularly if they were to be transferred to new environments. We, therefore, draw attention to the possible threats of timber trade and climate change-induced invasions of new habitats by bark beetles and the fungi that can be moved along with them.

  17. Beetle adhesive hairs differ in stiffness and stickiness: in vivo adhesion measurements on individual setae

    Science.gov (United States)

    Bullock, James M. R.; Federle, Walter

    2011-05-01

    Leaf beetles are able to climb on smooth and rough surfaces using arrays of micron-sized adhesive hairs (setae) of varying morphology. We report the first in vivo adhesive force measurements of individual setae in the beetle Gastrophysa viridula, using a smooth polystyrene substrate attached to a glass capillary micro-cantilever. The beetles possess three distinct adhesive pads on each leg which differ in function and setal morphology. Visualisation of pull-offs allowed forces to be measured for each tarsal hair type. Male discoidal hairs adhered with the highest forces (919 ± 104 nN, mean ± SE), followed by spatulate (582 ± 59 nN) and pointed (127 ± 19 nN) hairs. Discoidal hairs were stiffer in the normal direction (0.693 ± 0.111 N m-1) than spatulate (0.364 ± 0.039 N m-1) or pointed (0.192 ± 0.044 N m-1) hairs. The greater adhesion on smooth surfaces and the higher stability of discoidal hairs help male beetles to achieve strong adhesion on the elytra of females during copulation. A comparison of pull-off forces measured for single setae and whole pads (arrays) revealed comparable levels of adhesive stress. This suggests that beetles are able to achieve equal load sharing across their adhesive pads so that detachment through peeling is prevented.

  18. Recalibrated tree of leaf beetles (Chrysomelidae indicates independent diversification of angiosperms and their insect herbivores.

    Directory of Open Access Journals (Sweden)

    Jesús Gómez-Zurita

    Full Text Available BACKGROUND: The great diversity of the "Phytophaga" (weevils, longhorn beetles and leaf beetles has been attributed to their co-radiation with the angiosperms based on matching age estimates for both groups, but phylogenetic information and molecular clock calibrations remain insufficient for this conclusion. METHODOLOGY: A phylogenetic analysis of the leaf beetles (Chrysomelidae was conducted based on three partial ribosomal gene markers (mitochondrial rrnL, nuclear small and large subunit rRNA including over 3000 bp for 167 taxa representing most major chrysomelid lineages and outgroups. Molecular clock calibrations and confidence intervals were based on paleontological data from the oldest (K-T boundary leaf beetle fossil, ancient feeding traces ascribed to hispoid Cassidinae, and the vicariant split of Nearctic and Palearctic members of the Timarchini. PRINCIPAL FINDINGS: The origin of the Chrysomelidae was dated to 73-79 Mya (confidence interval 63-86 Mya, and most subfamilies were post-Cretaceous, consistent with the ages of all confirmed body fossils. Two major monocot feeding chrysomelid lineages formed widely separated clades, demonstrating independent colonization of this ancient (early Cretaceous angiosperm lineage. CONCLUSIONS: Previous calibrations proposing a much older origin of Chrysomelidae were not supported. Therefore, chrysomelid beetles likely radiated long after the origin of their host lineages and their diversification was driven by repeated radiaton on a pre-existing diverse resource, rather than ancient host associations.

  19. Recent bark beetle outbreaks have little impact on streamflow in the Western United States

    Science.gov (United States)

    Slinski, Kimberly M.; Hogue, Terri S.; Porter, Aaron T.; McCray, John E.

    2016-07-01

    In the Western United States (US), the current mountain pine beetle (MPB; Dendroctonus ponderosae) epidemic has affected more than five million hectares since its start in 1996, including headwater catchments that supply water to much of the Western US. There is widespread concern that the hydrologic consequences of the extensive pine tree die-off will impact water supply across the Western US. While forest disturbance studies have shown that streamflow increases in response to tree harvest, the actual effect of bark beetle infestations on water supply remains widely debated. The current study evaluates watershed-level response following bark beetle outbreak for 33 watersheds in seven western states. Streamflow records were investigated to assess whether the timing and amount of stream discharge during bark beetle outbreak and early recovery periods were significantly different to pre-outbreak conditions. Results show no significant modification in peak flows or average daily streamflow following bark beetle infestation, and that climate variability may be a stronger driver of streamflow patterns and snowmelt timing than chronic forest disturbance.

  20. Copro-necrophagous beetle (Coleoptera: Scarabaeidae) diversity in an agroecosystem in Yucatan, Mexico.

    Science.gov (United States)

    Reyes Novelo, Enrique; Delfín-González, Hugo; Angel Morón, Miguel

    2007-03-01

    Scarabaeinae are sensitive to structural habitat changes caused by disturbance. We compared copronecrophagous beetle (Scarabaeinae) community structure in three differently managed zones within an agroeco-system of the northern Yucatan Peninsula, Mexico. We placed dung and carrion traps once a month from June 2004 through May 2005. The beetle community included 17 species from the genera Canthon, Canthidium, Deltochilum, Pseudocanthon, Malagoniella, Onthophagus, Phanaeus, Copris, Uroxys, Sisyphus and Ateuchus. The secondary vegetation had a higher beetle diversity than the other two zones. Species richness was highest in the Brosimum alicastrum plantation. The pasture had the lowest species diversity and richness, but exhibited the highest abundance of Scarabaeinae in the dry season. The two zones with extensive tree cover were the most diverse. Roller beetles were dominant over burrower species and small-sized species outnumbered large species. Our data show two important issues: beetle species in the pasture extended their activity to the beginning of the dry season, while abundances dropped in the other, unirrigated zones; and the possibility that the Scarabaeinae living in neotropical forests are opportunistic saprophages and have specialized habits for resources other than dung. The B. alicastrum plantation is beneficial to the entire ranch production system because it functions as a dispersion and development area for stenotopic species limited to tree cover.

  1. Colours and metallic sheen in beetle shells - A biomimetic search for material structuring principles causing light interference

    DEFF Research Database (Denmark)

    Lenau, Torben Anker; Barfoed, Michael

    2008-01-01

    that are broken down and recycled when the beetle dies. Beetles also possess another and very attractive property: Their metallic look originates from structures in organic materials which is both electrically and thermal insulating. The industrial perspective is to be able to manufacture products with attractive...... colours, colours tend to fade over time and many of the materials and coating technologies pollute and have other environmental problems. Beetles in nature have many of the desired properties: They have appealing brilliant colours and some even with metallic appearance. It is noticeable that the colours...... are long lasting as some of the beetles we have studied at the zoological museum are more than 200 years old and have colours and brightness as if they were still alive. Furthermore, the beetles in nature are part of sustainable ecosystems, which means that they are made from renewable materials...

  2. A Beetle Flight Muscle Displays Leg Muscle Microstructure.

    Science.gov (United States)

    Shimomura, Toshiki; Iwamoto, Hiroyuki; Vo Doan, Tat Thang; Ishiwata, Shin'ichi; Sato, Hirotaka; Suzuki, Madoka

    2016-09-20

    In contrast to major flight muscles in the Mecynorrhina torquata beetle, the third axillary (3Ax) muscle is a minor flight muscle that uniquely displays a powerful mechanical function despite its considerably small volume, ∼1/50 that of a major flight muscle. The 3Ax muscle contracts relatively slowly, and in flight strongly pulls the beating wing to attenuate the stroke amplitude. This attenuation leads to left-right turning in flight or wing folding to cease flying. What enables this small muscle to be so powerful? To explore this question, we examined the microstructure of the 3Ax muscle using synchrotron x-ray diffraction, optical microscopy, and immunoblotting analysis. We found that the 3Ax muscle has long (∼5 μm) myofilaments and that the ratio of thick (myosin) filaments to thin (actin) filaments is 1:5 or 1:6. These characteristics are not observed in the major flight muscles, which have shorter myofilaments (∼3.5 μm) with a smaller ratio (1:3), and instead are more typical of a leg muscle. Furthermore, the flight-muscle-specific troponin isoform, TnH, is not expressed in the 3Ax muscle. Since such a microstructure is suitable for generating large tension, the 3Ax muscle is appropriately designed to pull the wing strongly despite its small volume.

  3. The Beetle Reference Manual chip version 1.2

    CERN Document Server

    Baumeister, D; Schmelling, M

    2006-01-01

    This paper details the electrical specifications, operating conditions and port definitions of the readout chip Beetle 1.2. The chip is developed for the LHCb experiment and fulfils the requirements of the silicon vertex detector (VELO, VETO), the silicon tracker and the RICH detector in case of multi-anode photomultiplier readout. It integrates 128 channels with low-noise charge-sensitive preamplifiers and shapers. The pulse shape can be chosen such that it complies with LHCb specifications: a peaking time of 25 ns with a remainder of the peak voltage after 25 ns of less than 30%. A comparator per channel with configurable polarity provides a binary signal. Four adjacent comparator channels are being ORed and brought off chip via LVDS ports. Either the shaper or comparator output is sampled with the LHC-bunch-crossing frequency of 40 MHz into an analog pipeline. This ring buffer has a programmable latency of max. 160 sampling intervals and an integrated derandomising buffer of 16 stages. For analog readout d...

  4. Mating behavior and sexual selection in a polygamous beetle

    Institute of Scientific and Technical Information of China (English)

    Wen LU; Qiao WANG; Mingyi TIAN; Jin XU; Jian LV; Aizhi QIN

    2013-01-01

    Mating behavior and sexual selection in relation to morphometric traits in a polygamous beetle,Glenea cantor (F.)(Coleoptera:Cerambycidae),were investigated.Upon encounter,a male approached a female,mounted her,grasped her terminal abdomen with his hind tarsi,and attempted to mate.Successful mating lasted about 3.5 h.Although all traits measured in females and half of traits in males were significantly correlated with mating success,the primary selection on virgin females was the genital trait,the bursa copulatrix length,and that on males was the body length and hind tarsal length.Longer bursa copulatrix accommodated a larger ejaculate,suggesting that this female trait benefits the male that first mates with the female in terms of increasing ejaculate size to beat subsequent males in sperm competition.Under a female-biased sex ratio,more than 20% of matings failed within 20s after the male genitalia had been inserted into hers,suggesting that males assess genital features of the female before insemination and undertake cryptic male mate choice.Larger males were more capable of grasping females and achieving mating.During the premating struggle the male almost always used his hind tarsi to lift the female terminal abdomen to the position for his genitalia to insert,and as a result,males with longer hind tarsi achieved higher mating success.

  5. A Beetle Flight Muscle Displays Leg Muscle Microstructure.

    Science.gov (United States)

    Shimomura, Toshiki; Iwamoto, Hiroyuki; Vo Doan, Tat Thang; Ishiwata, Shin'ichi; Sato, Hirotaka; Suzuki, Madoka

    2016-09-20

    In contrast to major flight muscles in the Mecynorrhina torquata beetle, the third axillary (3Ax) muscle is a minor flight muscle that uniquely displays a powerful mechanical function despite its considerably small volume, ∼1/50 that of a major flight muscle. The 3Ax muscle contracts relatively slowly, and in flight strongly pulls the beating wing to attenuate the stroke amplitude. This attenuation leads to left-right turning in flight or wing folding to cease flying. What enables this small muscle to be so powerful? To explore this question, we examined the microstructure of the 3Ax muscle using synchrotron x-ray diffraction, optical microscopy, and immunoblotting analysis. We found that the 3Ax muscle has long (∼5 μm) myofilaments and that the ratio of thick (myosin) filaments to thin (actin) filaments is 1:5 or 1:6. These characteristics are not observed in the major flight muscles, which have shorter myofilaments (∼3.5 μm) with a smaller ratio (1:3), and instead are more typical of a leg muscle. Furthermore, the flight-muscle-specific troponin isoform, TnH, is not expressed in the 3Ax muscle. Since such a microstructure is suitable for generating large tension, the 3Ax muscle is appropriately designed to pull the wing strongly despite its small volume. PMID:27653488

  6. Modeling mountain pine beetle habitat suitability within Sequoia National Park

    Science.gov (United States)

    Nguyen, Andrew

    Understanding significant changes in climate and their effects on timber resources can help forest managers make better decisions regarding the preservation of natural resources and land management. These changes may to alter natural ecosystems dependent on historical and current climate conditions. Increasing mountain pine beetle (MBP) outbreaks within the southern Sierra Nevada are the result of these alterations. This study better understands MPB behavior within Sequoia National Park (SNP) and model its current and future habitat distribution. Variables contributing to MPB spread are vegetation stress, soil moisture, temperature, precipitation, disturbance, and presence of Ponderosa (Pinus ponderosa) and Lodgepole (Pinus contorta) pine trees. These variables were obtained using various modeled, insitu, and remotely sensed sources. The generalized additive model (GAM) was used to calculate the statistical significance of each variable contributing to MPB spread and also created maps identifying habitat suitability. Results indicate vegetation stress and forest disturbance to be variables most indicative of MPB spread. Additionally, the model was able to detect habitat suitability of MPB with a 45% accuracy concluding that a geospatial driven modeling approach can be used to delineate potential MPB spread within SNP.

  7. Oenocyte development in the red flour beetle Tribolium castaneum.

    Science.gov (United States)

    Burns, Kevin A; Gutzwiller, Lisa M; Tomoyasu, Yoshinori; Gebelein, Brian

    2012-04-01

    Oenocytes are a specialized cell type required for lipid processing, pheromone secretion, and developmental signaling. Their development has been well characterized in Drosophila melanogaster, but it remains unknown whether the developmental program is conserved in other insect species. In this study, we compare and contrast the specification and development of larval oenocytes between Drosophila and the red flour beetle, Tribolium castaneum. First, we identify several useful reagents to label larval oenocytes, including both a Tribolium GFP enhancer trap line and a simple flurophore-conjugated streptavidin staining method that recognizes oenocytes across insect species. Second, we use these tools to describe oenocyte development in Tribolium embryos, and our findings provide evidence for conserved roles of MAP kinase signaling as well as the Spalt, Engrailed, hepatocyte nuclear factor-4, and ventral veins lacking factors in producing abdominal-specific oenocyte cells. However, Tribolium embryos produce four times as many oenocytes per abdominal segment as Drosophila, and unlike in Drosophila, these cells rapidly downregulate the expression of the Spalt transcription factor. Thus, these results provide new insight into the molecular pathways regulating oenocyte specification across insect species.

  8. Changes in the phenology of the ground beetle Pterostichus madidus

    Institute of Scientific and Technical Information of China (English)

    Gabor Pozsgai; Nick A. Littlewood

    2011-01-01

    A growing body ofevidence shows that climate change can alter the phenology of plants and animals.In this study long-term data from the UK Environmental Change Network (ECN) were analyzed to investigate whether there has been a change in the phenology of the ground beetle Pterostichus madidus (Fabricius,1775).Pitfall trap data were available from 12 ECN sites across the United Kingdom,most of which have been in operation for more than 15 years.Weather and vegetation datasets were also utilized.Pitfall trap lines were categorized to eight vegetation types.Trend analysis over time was carried out first using all the available dates of capture events,then the datasets grouped by vegetation type and site.Shifts in high-activity periods were also analyzed.P.madidus appearance dates advanced significantly at seven sites and in five vegetation types.Peak activity advanced at two sites.At one site the timing of activity became significantly later.The last day of activity did not change significantly,supporting the theory that the cessation of the activity period is more likely to be controlled by photoperiod than temperature.The relationships between phenological variables and climatic factors were also investigated.However,no significant correlations were detected.These results demonstrate that between 1992 and 2008,phenology ofP madidus at seven sites from the eight analyzed has changed.Global warming may be driving these changes and future work will investigate underlying processes.

  9. Friction force reduction triggers feet grooming behaviour in beetles.

    Science.gov (United States)

    Hosoda, Naoe; Gorb, Stanislav N

    2011-06-01

    In insects, cleaning (grooming) of tarsal attachment devices is essential for maintaining their adhesive ability, necessary for walking on a complex terrain of plant surfaces. How insects obtain information on the degree of contamination of their feet has remained, until recently, unclear. We carried out friction force measurements on walking beetles Gastrophysa viridula (Coleoptera, Chrysomelidae) and counted grooming occurrence on stiff polymer substrata with different degrees of nanoroughness (root mean square: 28-288 nm). Since nanoscopically, rough surfaces strongly reduced friction and adhesion without contaminating feet, we were able to demonstrate, for the first time to our knowledge, that friction force between tarsal attachment pads and the substrate provides an insect with information on the degree of contamination of its attachment structures. We have shown that foot grooming occurrence correlates not only with the degree of contamination but also with the decrease of friction force. This result indicates that insects obtain information about the degree of contamination, not statically but rather dynamically and, presumably, use mechanoreceptors monitoring either tensile/compressive forces in the cuticle or tensile forces between leg segments.

  10. Restudies on Body Surface of Dung Beetle and Application of Its Bionics Flexible Technique

    Institute of Scientific and Technical Information of China (English)

    Jiurong Sun; Jianqiao Li; Hong Cheng; Zhendong Dai; Luquan Ren

    2004-01-01

    A scanning electron microscope was used to observe the structures of the setae on the surface of a dung beetle Copris ochus, Motschulsky. There are lots of setae on the body surface, especially on the ventral part surface and lateral to the legs which are different in size, arrangement and shape. These setae have different lengths and many thorns on the whole seta. The top ends of these setae stand up without furcations which direct uprightly towards the surface of the touched soil. By the method of removing these setae, getting the insect weight before and after digging into the dung we affirm farther that the setae on the beetle body surface form the anti-stick and non-adherent gentle interface. The soil machines and components made by imitating the gentle body surface of beetles have favorable non-adherent results.

  11. On the laboratory rearing of green dock leaf beetles Gastrophysa viridula (Coleoptera: Chrysomelidae)

    Institute of Scientific and Technical Information of China (English)

    Dagmar Voigt; Naoe Hosoda; Jan Schuppert; Stanislav Gorb

    2011-01-01

    Leaf beetles Gastrophysa viridula have attracted recently increased research interest from various points of view, since they are: (i) pest insects in rhubarb crops; (ii) potential biocontrol agents of dock plants Rumex spp. in grasslands; and (iii) a model species in ecological studies on insect population dynamics, biochemistry, behavior, biomechanics and biomimetics. The continuous rearing of beetles at standardized conditions may help to unify the fitness state of different individuals, allowing a better comparison of experimental results. The present communication suggests a modular space- and time-saving rearing method of G. viridula in stackable faunariums under laboratory conditions, which has been successfully established and continuously used over the last 5 years. Several developmental stages were kept in separate boxes, and multiple generations were kept simultaneously, depending on the required number of beetles.

  12. Efficacy of Different Insecticides in Controlling Pollen Beetle (Meligethes aeneus F. in Rapeseed Crop

    Directory of Open Access Journals (Sweden)

    Predrag Milovanović

    2013-12-01

    Full Text Available Since pollen beetle, M. aeneus, is usually controlled by insecticides, the efficacy of several compounds with different modes of action against adult beetles was studied in a threeyear field study. The selected insecticides were: three pyrethroids (lambda-cyhalothrin, alpha-cypermethrin and bifenthrin, an oganophosphate (pirimiphos-methyl, a combination of an organophosphate and a pyrethroid (chlorpyrifos + cypermethrin and a neonicotinoid (thiacloprid. The insecticides were applied at label rates to winter rapeseed crops at the moment of visible but still closed flower buds (BBCH 55-57. In all experiments, the efficacy of pyrethroids and the organophosphate ranged from 90-100%, while the efficacy of the neonicotinoid was 85-95%. Therefore, they can be recommended for control of pollen beetle in Serbia.

  13. Acetylcholinesterase inhibition and altered locomotor behavior in the carabid beetle pterostichus

    DEFF Research Database (Denmark)

    Jensen, Charlotte S.; Krause-Jensen, Lone; Baatrup, Erik

    1997-01-01

    the time in locomotion, average velocity, and path length and by increasing the turning rate and frequency of stops. Females responded similarly at the two highest doses, whereas their locomotor behavior was not significantly different from the control group at the lowest dimethoate dose, suggesting a sex...... to locomotor behavior, representing a general effect biomarker at the organismal level. Both sexes of the carabid beetle Pterostichus cupreus were intoxicated with three doses of the organophosphorous insecticide dimethoate. Five elements of their locomotor behavior were measured for 4 h employing computer......-aided video tracking, whereupon the whole body AChE activity was measured in the individual beetle. AChE inhibition was strongly correlated with dimethoate dose in both sexes. Alterations in the locomotor behavior were directly correlated with AChE inhibition in male beetles, which responded by reducing...

  14. Preferential host switching and codivergence shaped radiation of bark beetle symbionts, nematodes of Micoletzkya (Nematoda: Diplogastridae).

    Science.gov (United States)

    Susoy, V; Herrmann, M

    2014-05-01

    Host-symbiont systems are of particular interest to evolutionary biology because they allow testable inferences of diversification processes while also providing both a historical basis and an ecological context for studies of adaptation. Our investigations of bark beetle symbionts, predatory nematodes of the genus Micoletzkya, have revealed remarkable diversity of the group along with a high level of host specificity. Cophylogenetic analyses suggest that evolution of the nematodes was largely influenced by the evolutionary history of beetles. The diversification of the symbionts, however, could not be attributed to parallel divergence alone; our results indicate that adaptive radiation of the nematodes was shaped by preferential host shifts among closely related beetles along with codivergence. Whereas ecological and geographic isolation have played a major role in the diversification of Micoletzkya at shallow phylogenetic depths, adaptations towards related hosts have played a role in shaping cophylogenetic structure at a larger evolutionary scale.

  15. How unique is the tiger beetle fauna (Coleoptera, Cicindelidae of the Balkan Peninsula?

    Directory of Open Access Journals (Sweden)

    Radomir Jaskula

    2011-05-01

    Full Text Available The tiger beetle fauna of the Balkan Peninsula is one of the richest in Europe and includes 19 species or 41% of the European tiger beetle fauna. Assembled by their biogeographical origins, the Balkan tiger beetle species fall into 14 different groups that include, Mediterranean, Middle Oriental, Central Asiatic, Euro-Siberian, South and East European, Pannonian-Sarmatian, West Palaearctic, Turano-European and Afrotropico Indo-Mediterranean species. The Mediterranean Sclerophyl and the Pontian Steppe are the Balkan biogeographical provinces with the highest species richness, while the Balkan Highlands has the lowest Cicindelidae diversity. Most species are restricted to single habitat types in lowland areas of the Balkan Peninsula and only Calomera aulica aulica and Calomera littoralis nemoralis occur in respectively 3 and 4 different types of habitat. About 60% of all Balkan Cicindelidae species are found in habitats potentially endangered by human activity.

  16. Efficacy of botanical pesticide multi-neem against red pumpkin beetle (Aulacophora foveicollis management on cucurbit

    Directory of Open Access Journals (Sweden)

    Bishnu Prasad Neupane

    2016-07-01

    Full Text Available An experiment was conducted to evaluate the efficacy of different concentration of botanical pesticide neem against the red pumpkin beetle (Aulacophora foveicollis in Khajura, Banke of Nepal in May 2016. The treatment consisted of five different concentrations of multineem i.e.2ml/litre, 3ml/litre, 4ml/litre, 5ml/litre, and control (water replicated four times in randomized complete block design. There were altogether three sprays (beginning 15 day of sowing at ten days interval and total number of beetle population were counted in leaf whorl before spray, after four, seven and ten days in each succeeding spray. The results showed that 5ml/litre concentration of multineem gave the highest reduction of beetle population (100% followed by 4ml/litre (91.5%, 3ml/litre (63% and 2 ml/litre (37.9%, respectively.

  17. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera).

    Science.gov (United States)

    Seago, Ainsley E; Brady, Parrish; Vigneron, Jean-Pol; Schultz, Tom D

    2009-04-01

    Members of the order Coleoptera are sometimes referred to as 'living jewels', in allusion to the strikingly diverse array of iridescence mechanisms and optical effects that have arisen in beetles. A number of novel and sophisticated reflectance mechanisms have been discovered in recent years, including three-dimensional photonic crystals and quasi-ordered coherent scattering arrays. However, the literature on beetle structural coloration is often redundant and lacks synthesis, with little interchange between the entomological and optical research communities. Here, an overview is provided for all iridescence mechanisms observed in Coleoptera. Types of iridescence are illustrated and classified into three mechanistic groups: multilayer reflectors, three-dimensional photonic crystals and diffraction gratings. Taxonomic and phylogenetic distributions are provided, along with discussion of the putative functions and evolutionary pathways by which iridescence has repeatedly arisen in beetles.

  18. BIOACTIVITY OF 1,8-CINEOLE AGAINST RED FLOUR BEETLE TRIBOLIUM CASTANEUM (HERBST

    Directory of Open Access Journals (Sweden)

    Anita Liška

    2011-06-01

    Full Text Available Red flour beetle Tribolium castaneum (Herbst is a major pest of stored products. The aim of this study was to assess the potential fumigant effects of 1,8-cineole, essential oil component, on the T. castaneum pupae. The compound was tested in 6 doses; in two treatments (fumigation without grain and with wheat grain, exposed for 48 h, in 4 repetitions, for each gender. The compound 1,8-cineole had lethal effect on the treated pupae at both genders and in the both treatments. Total proportion of the normally developed beetles was decreased. In addition, 1,8-cineole had also a growth regulator effect, producing adultoids and deformed units, with males more susceptible. In the treatment with the grain there were significant lower dead pupae, normally developed live male beetles and also deformed female units in the stage 2. In general, compound 1,8-cineole has multiple effect against T. castaneum in pupal stage.

  19. Development of red-shifted mutants derived from luciferase of Brazilian click beetle Pyrearinus termitilluminans

    Science.gov (United States)

    Nishiguchi, Tomoki; Yamada, Toshimichi; Nasu, Yusuke; Ito, Mashiho; Yoshimura, Hideaki; Ozawa, Takeaki

    2015-10-01

    Luciferase, a bioluminescent protein, has been used as an analytical tool to visualize intracellular phenomena. Luciferase with red light emission is particularly useful for bioluminescence imaging because of its high transmittance in mammalian tissues. However, the luminescence intensity of existing luciferases with their emission over 600 nm is insufficient for imaging studies because of their weak intensities. We developed mutants of Emerald luciferase (Eluc) from Brazilian click beetle (Pyrearinus termitilluminans), which emits the strongest bioluminescence among beetle luciferases. We successively introduced four amino acid mutations into the luciferase based on a predicted structure of Eluc using homology modeling. Results showed that quadruple mutations R214K/H241K/S246H/H347A into the beetle luciferase emit luminescence with emission maximum at 626 nm, 88-nm red-shift from the wild-type luciferase. This mutant luciferase is anticipated for application in in vivo multicolor imaging in living samples.

  20. Age and aggregation trigger mating behaviour in the small hive beetle, Aethina tumida (Nitidulidae)

    Science.gov (United States)

    Mustafa, Sandra G.; Spooner-Hart, Robert; Duncan, Michael; Pettis, Jeffery S.; Steidle, Johannes L. M.; Rosenkranz, Peter

    2015-10-01

    This study aimed to investigate the poorly documented reproductive behaviour of the small hive beetle, Aethina tumida (Nitidulidae), a honey bee ( Apis mellifera) parasite. We described the mating behaviour in detail and tested the hypothesis that beetle aggregation plays a vital role in mating in this species. Gender preference was examined in the context of age-dependency and possible chemical communication. Beetles started mating at a high frequency 18 days after emergence from the soil but only if they were aggregated ( p social contact with the opposite sex ( p support mass reproduction in this parasitic species, enabling A. tumida to overcome its honey bee host colony, and are probably triggered by chemotactic cues.

  1. Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes.

    Directory of Open Access Journals (Sweden)

    Johannes Bergsten

    Full Text Available BACKGROUND: Darwin illustrated his sexual selection theory with male and female morphology of diving beetles, but maintained a cooperative view of their interaction. Present theory suggests that instead sexual conflict should be a widespread evolutionary force driving both intersexual coevolutionary arms races and speciation. METHODOLOGY/PRINCIPAL FINDINGS: We combined Bayesian phylogenetics, complete taxon sampling and a multi-gene approach to test the arms race scenario on a robust diving beetle phylogeny. As predicted, suction cups in males and modified dorsal surfaces in females showed a pronounced coevolutionary pattern. The female dorsal modifications impair the attachment ability of male suction cups, but each antagonistic novelty in females corresponds to counter-differentiation of suction cups in males. CONCLUSIONS: A recently diverged sibling species pair in Japan is possibly one consequence of this arms race and we suggest that future studies on hypoxia might reveal the key to the extraordinary selection for female counter-adaptations in diving beetles.

  2. A System for Harvesting Eggs from the Pink-Spotted Lady Beetle

    Directory of Open Access Journals (Sweden)

    Margaret L. Allen

    2012-01-01

    Full Text Available We describe a system for harvesting eggs from a predatory insect, the pink-spotted lady beetle, Coleomegilla maculata De Geer (Coleoptera: Coccinellidae. Adult beetles placed in square, transparent containers that included oviposition substrates hanging from the top of the cage deposited eggs on the materials provided. We harvested eggs from these substrates in quantities sufficient for either destructive sampling or synchronous development of larvae. We evaluated effects of crowding inside cages; effects of a chemical attractant on oviposition behavior; egg cannibalism. Females preferred a textured surface rather than a smooth, waxy one for laying eggs. Crowding inhibited oviposition of beetles. Presence of a chemical attractant (methyl salicylate did not significantly improve oviposition. This paper describes an inexpensive system for harvesting eggs from C. maculata. Refinement of this system should improve oviposition and reduce cannibalism.

  3. A comparison of trap type and height for capturing cerambycid beetles (Coleoptera).

    Science.gov (United States)

    Graham, Elizabeth E; Poland, Therese M; McCullough, Deborah G; Millar, Jocelyn G

    2012-06-01

    Wood-boring beetles in the family Cerambycidae (Coleoptera) play important roles in many forest ecosystems. However, increasing numbers of invasive cerambycid species are transported to new countries by global commerce and threaten forest health in the United States and worldwide. Our goal was to identify effective detection tools for a broad array of cerambycid species by testing some known cerambycid attractants and a pheromone in different trap designs placed across a range of habitats. We compared numbers and species richness of cerambycid beetles captured with cross-vane panel traps and 12-unit Lindgren multiple-funnel traps, placed either at ground level (1.5 m high) or canopy level (approximately 3-10 m high), at eight sites classified as either residential, industrial, deciduous forest, or conifer forest. We captured 3,723 beetles representing 72 cerambycid species from 10 June to 15 July 2010. Species richness was highest for the subfamilies Cerambycinae and Lamiinae, which accounted for 33 and 46% of all species captured, respectively. Overall, the cross-vane panel traps captured approximately 1.5 times more beetles than funnel traps. Twenty-one species were captured exclusively in traps at one height, either in the canopy or at ground level. More species were captured in hardwood sites (59 species) where a greater diversity of host material was available than in conifer (34 species), residential (41 species), or industrial (49) sites. Low numbers of beetles (n < 5) were recorded for 28 of the beetle species. The number of species captured per week ranged from 49 species on 21 June to 37 species on 12 July. Cross-vane panel traps installed across a vertical gradient should maximize the number of cerambycid species captured.

  4. Optimising bait for pitfall trapping of Amazonian dung beetles (Coleoptera: Scarabaeinae).

    Science.gov (United States)

    Marsh, Charles J; Louzada, Julio; Beiroz, Wallace; Ewers, Robert M

    2013-01-01

    The accurate sampling of communities is vital to any investigation of ecological processes and biodiversity. Dung beetles have emerged as a widely used focal taxon in environmental studies and can be sampled quickly and inexpensively using baited pitfalls. Although there is now a wealth of available data on dung beetle communities from around the world, there is a lack of standardisation between sampling protocols for accurately sampling dung beetle communities. In particular, bait choice is often led by the idiosyncrasies of the researcher, logistic problems and the dung sources available, which leads to difficulties for inter-study comparisons. In general, human dung is the preferred choice, however, it is often in short supply, which can severely limit sampling effort. By contrast, pigs may produce up to 20 times the volume. We tested the ability of human and pig dung to attract a primary forest dung beetle assemblage, as well as three mixes of the two baits in different proportions. Analyses focussed on the comparability of sampling with pig or human-pig dung mixes with studies that have sampled using human dung. There were no significant differences between richness and abundance sampled by each bait. The assemblages sampled were remarkably consistent across baits, and ordination analyses showed that the assemblages sampled by mixed dung baits were not significantly different from that captured by pure human dung, with the assemblages sampled by 10% and 90% pig mixes structurally most similar to assemblages sampled by human dung. We suggest that a 10:90 human:pig ratio, or similar, is an ideal compromise between sampling efficiency, inter-study comparability and the availability of large quantities of bait for sampling Amazonian dung beetles. Assessing the comparability of assemblage samples collected using different baits represents an important step to facilitating large-scale meta-analyses of dung beetle assemblages collected using non-standard methodology.

  5. Diversity and abundance of dung beetles (Coleoptera: Scaraebidae) at several different ecosystem functions in Peninsular Malaysia

    Science.gov (United States)

    Din, Abdullah Muhaimin Mohammad; Yaakop, Salmah; Hazmi, Izfa Riza

    2015-09-01

    Dung beetles has known for its bioindicator characteristic. Sensitive towards forest disturbance, dung beetles population and diversity will be less in disturbed and modified area. The objective of this study is to evaluate the diversity and distribution of dung beetles in different type of ecosystems in Peninsular Malaysia. Fifteen baited pitfall traps aligned in three transects were used in this study. Samples were collected after 24 h and repeated three time collections and identified afterwards. Two ecosystem types were selected, which are forested and agricultural ecosystem (livestock and plantation). A total of 4249 individuals, 47 species, in 11 genera was successfully collected from all localities. The H' index for Fraser Hill, Langkawi, Bangi Reserve Forest, Selangor (HSB), Sungkai Reserve Forest, Perak (SRF), Chini Lake, Bera Lake, chicken farm, goat farm, Longan plantation, and palm oil plantation were 1.58, 1.74, 2.17, 2.63, 1.80, 1.52, 1.63, 0.46, 0.00 and 1.98 respectively.Forest ecosystem, SRF shows the highest abundance (1486 individuals) and diversity, while for agricultural ecosystem,palm oil plantation shows the highest with 273 individuals and 16 species. Based onDetrended Correspondence Analysis (DCA) shows two groups that separate forest ecosystem with the agricultural ecosystem, with palm oil is the nearest to the forest. Palm oil ecosystem can sustain a dung beetles population due to the area can provide the requirements for the dung beetles to survive, such as food which comes from local domestic cows, shade from sunlight provide by the palm oil trees, and ground cover from small plants and shrubs.Even though modified ecosystem should have lower diversity of dung beetles, but some factors must be measured as well in order to have a better point of view.

  6. Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae.

    Directory of Open Access Journals (Sweden)

    Anne M Estes

    Full Text Available Insects feeding on plant sap, blood, and other nutritionally incomplete diets are typically associated with mutualistic bacteria that supplement missing nutrients. Herbivorous mammal dung contains more than 86% cellulose and lacks amino acids essential for insect development and reproduction. Yet one of the most ecologically necessary and evolutionarily successful groups of beetles, the dung beetles (Scarabaeinae feeds primarily, or exclusively, on dung. These associations suggest that dung beetles may benefit from mutualistic bacteria that provide nutrients missing from dung. The nesting behaviors of the female parent and the feeding behaviors of the larvae suggest that a microbiome could be vertically transmitted from the parental female to her offspring through the brood ball. Using sterile rearing and a combination of molecular and culture-based techniques, we examine transmission of the microbiome in the bull-headed dung beetle, Onthophagus taurus. Beetles were reared on autoclaved dung and the microbiome was characterized across development. A ~1425 bp region of the 16S rRNA identified Pseudomonadaceae, Enterobacteriaceae, and Comamonadaceae as the most common bacterial families across all life stages and populations, including cultured isolates from the 3(rd instar digestive system. Finer level phylotyping analyses based on lepA and gyrB amplicons of cultured isolates placed the isolates closest to Enterobacter cloacae, Providencia stuartii, Pusillimonas sp., Pedobacter heparinus, and Lysinibacillus sphaericus. Scanning electron micrographs of brood balls constructed from sterile dung reveals secretions and microbes only in the chamber the female prepares for the egg. The use of autoclaved dung for rearing, the presence of microbes in the brood ball and offspring, and identical 16S rRNA sequences in both parent and offspring suggests that the O. taurus female parent transmits specific microbiome members to her offspring through the brood

  7. Quantifying beetle-mediated effects on gas fluxes from dung pats.

    Directory of Open Access Journals (Sweden)

    Atte Penttilä

    Full Text Available Agriculture is one of the largest contributors of the anthropogenic greenhouse gases (GHGs responsible for global warming. Measurements of gas fluxes from dung pats suggest that dung is a source of GHGs, but whether these emissions are modified by arthropods has not been studied. A closed chamber system was used to measure the fluxes of carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O from dung pats with and without dung beetles on a grass sward. The presence of dung beetles significantly affected the fluxes of GHGs from dung pats. Most importantly, fresh dung pats emitted higher amounts of CO2 and lower amounts of CH4 per day in the presence than absence of beetles. Emissions of N2O showed a distinct peak three weeks after the start of the experiment--a pattern detected only in the presence of beetles. When summed over the main grazing season (June-July, total emissions of CH4 proved significantly lower, and total emissions of N2O significantly higher in the presence than absence of beetles. While clearly conditional on the experimental conditions, the patterns observed here reveal a potential impact of dung beetles on gas fluxes realized at a small spatial scale, and thereby suggest that arthropods may have an overall effect on gas fluxes from agriculture. Dissecting the exact mechanisms behind these effects, mapping out the range of conditions under which they occur, and quantifying effect sizes under variable environmental conditions emerge as key priorities for further research.

  8. Carbon stocks of trees killed by bark beetles and wildfire in the western United States

    Science.gov (United States)

    Hicke, Jeffrey A.; Meddens, Arjan J.H.; Allen, Craig D.; Kolden, Crystal A.

    2013-01-01

    Forests are major components of the carbon cycle, and disturbances are important influences of forest carbon. Our objective was to contribute to the understanding of forest carbon cycling by quantifying the amount of carbon in trees killed by two disturbance types, fires and bark beetles, in the western United States in recent decades. We combined existing spatial data sets of forest biomass, burn severity, and beetle-caused tree mortality to estimate the amount of aboveground and belowground carbon in killed trees across the region. We found that during 1984-2010, fires killed trees that contained 5-11 Tg C year-1 and during 1997-2010, beetles killed trees that contained 2-24 Tg C year-1, with more trees killed since 2000 than in earlier periods. Over their periods of record, amounts of carbon in trees killed by fires and by beetle outbreaks were similar, and together these disturbances killed trees representing 9% of the total tree carbon in western forests, a similar amount to harvesting. Fires killed more trees in lower-elevation forest types such as Douglas-fir than higher-elevation forest types, whereas bark beetle outbreaks also killed trees in higher-elevation forest types such as lodgepole pine and Engelmann spruce. Over 15% of the carbon in lodgepole pine and spruce/fir forest types was in trees killed by beetle outbreaks; other forest types had 5-10% of the carbon in killed trees. Our results document the importance of these natural disturbances in the carbon budget of the western United States.

  9. [Behavioral mechanisms of spatial competition between red wood ants (Formica aquilonia) and ground beetles (Carabidae)].

    Science.gov (United States)

    Dorosheva, E A; Reznikova, Zh I

    2006-01-01

    Behavioral aspects of spatial competition between red wood ants (Formica aquilonia) and six mass species of Carabidae were studied in field and laboratory experiments. We showed that red wood ants essentially influence spatial distribution of ground beetles on their common territories. Transplantation experiments suggest that in newly established ants' settlements stronger forms of interrelations arise than in old stable colony. To examine the ability of beetles to avoid collisions with ants we used two experimental techniques. In laboratory, we tested carabids ability to avoid a clash in a Y-shaped labyrinth containing an active tethered ant in one section. In field experiments we compared quantitative characteristics of movements (such as crookedness of individual trajectories, speed of movement, the time spent on stops) for beetles placed close to ants foraging routes and on ant-free plots. All beetles studied displayed a clear tendency to learn, that is, to modity their behavior in order to avoid collisions with ants. Species that exhibited best parameters of learning were closer to ants by their size and characteristic movement, namely, Pterostichus oblogopunctatus and P. magus. Beetles' stereotyped behavioral tactics can be considered universal for avoiding collisions with any subject (for instance, with an ant) of a certain size and speed of movements. A set of tactics in the labyrinth included: (1) attempts to round the ant; (2) turns away after touching the ant with antennae; (3) turns away without a contact; (4) avoidances of a dangerous section; (5) stops near the ant with the antennae hidden. Comparing pairwise difference between four species shows that beetles use species-specific preference for definite combinations of tactics. Effective learning allows carabids to penetrate into ant foraging territory and partly avoide interference competition. It seems that red wood ants are not inclined to learn to avoid collisions with competing carabid species

  10. [Comparative histology of mushroom bodies in carnivorous beetles of the suborder polyphaga (Insecta, Coleoptera)].

    Science.gov (United States)

    Panov, A A

    2013-01-01

    Mushroom bodies in beetles of the families Histeridae, Staphylinidae, Cantharidae, Trogossitidae, Peltidae, Cleridae, Malachiidae, and Coccinellidae are shown to be rather poorly developed. The calyx region of the mushroom bodies in these beetles never forms two separate cups, and the peduncular apparatus includes a unified shaft almost over its entire length. Only the pedunculus contains two separate shafts in a few cases. Two proliferative centers consisting of one to three neuroblasts are often found in each Kenyon cell group. The shift from carnivorous to feeding on pollen or leaves, which has taken place in some taxa, does not visibly affect the degree of mushroom body development.

  11. Susceptibility of the small hive beetle, Aethina tumida (Coleoptera: Nitidulidae), to insecticides and insect growth regulators

    OpenAIRE

    Kanga, Lambert; Somorin, Abisoye

    2011-01-01

    International audience The small hive beetle, Aethina tumida Murray, has become an important pest of the honeybee, Apis mellifera L., in the USA. In this study, we assessed the susceptibility of this pest to 14 selected insecticides and four insect growth regulators (IGRs). The results indicated that the small hive beetle (SHB) was selectively susceptible to several classes of insecticides. The lethal concentration for 50% mortality (LC50) to adult SHBs was 0.53, 0.53, and 0.54 μg/vial for...

  12. The small hive beetle Aethina tumida: A review of its biology and control measures

    OpenAIRE

    Andrew G. S. CUTHBERTSON et al

    2013-01-01

    The small hive beetle Aethina tumida is an endemic parasitic pest and scavenger of colonies of social bees indigenous to sub-Saharan Africa. In this region this species rarely inflicts severe damage on strong colonies since the bees have develo­­ped strategies to combat them. However, A. tumida has since ‘escaped’ from its native home and has recently invaded areas such as North America and Australia where its economic impact on the apiculture industry has been significant. Small hive beetle,...

  13. Dung beetles use their dung ball as a mobile thermal refuge

    OpenAIRE

    Smolka, Jochen; Baird, Emily; Byrne, Marcus; el Jundi, Basil; Warrant, Eric; Dacke, Marie

    2012-01-01

    At midday, surface temperatures in the desert often exceed 60°C. To be active at this time, animals need extraordinary behavioural or physiological adaptations. Desert ants, for instance, spend up to 75% of their foraging time cooling down on elevated thermal refuges such as grass stalks [1]. Ball-rolling dung beetles work under similar thermal conditions in South African savannahs. After landing at a fresh dung pile, a beetle quickly forms a dung ball and rolls it away in a straight line, he...

  14. Beetle species diversity in the Lesser Antilles islands: How many species are really there?

    OpenAIRE

    Peck, Stewart B.

    2009-01-01

    Recent extensive and intensive field work by the team of M. A. Ivie on the Lesser Antillean island of Montserrat suggests that a mean of 827 beetle species may be expected on that island. This datum makes possible the generation of hypotheses of the probable beetle species diversity on other islands of the Lesser Antilles as a function of the areas of the islands. Figures are given for the presently known, estimated total, and estimated number of unknown species for each principal island. Thi...

  15. Urwald relict species – Saproxylic beetles indicating structural qualities and habitat tradition

    OpenAIRE

    Müller, Jörg; Bußler, Heinz; Bense, Ulrich; Brustel, Hervé; Flechtner, Günther

    2005-01-01

    On the basis of the list of saproxylic beetles of Germany, the authors present a definition and list of “Urwald relict species”, comprising 115 beetles that are considered to be associated with primeval forest (“Urwald”) structures and features. We use the term “habitat tradition” to describe a continuity in supply of old growth dead wood and forest structures. The selection of species is made on behalf of the following criteria: relict records in Central Europe; attachment to continuity of d...

  16. A Red List of Italian Saproxylic Beetles: taxonomic overview, ecological features and conservation issues (Coleoptera

    Directory of Open Access Journals (Sweden)

    Giuseppe Maria Carpaneto

    2015-12-01

    Full Text Available The main objectives of this review are: 1 the compilation and updating of a reference database for Italian saproxylic beetles, useful to assess the trend of their populations and communities in the next decades; 2 the identification of the major threats involving the known Italian species of saproxylic beetles; 3 the evaluation of the extinction risk for all known Italian species of saproxylic beetles; 4 the or- ganization of an expert network for studying and continuous updating of all known species of saproxylic beetle species in Italy; 5 the creation of a baseline for future evaluations of the trends in biodiversity conservation in Italy; 6 the assignment of ecological categories to all the Italian saproxylic beetles, useful for the aims of future researches on their communities and on forest environments. The assess- ments of extinction risk are based on the IUCN Red List Categories and Criteria and the most updated guidelines. The assessments have been carried out by experts covering different regions of Italy, and have been evaluated according to the IUCN standards. All the beetles whose larval biology is sufficiently well known as to be considered saproxylic have been included in the Red List, either the autochtho- nous species (native or possibly native to Italy or a few allochthonous species recently introduced or probably introduced to Italy in his- toric times. The entire national range of each saproxylic beetle species was evaluated, including large and small islands; for most species, the main parameters considered for evaluation were the extent of their geographical occurrence in Italy, and the number of known sites of presence. 2049 saproxylic beetle species (belonging to 66 families have been listed, assigned to a trophic category (Table 3 and 97% of them have been assessed. On the whole, threatened species (VU + EN + CR are 421 (Fig. 6, corresponding to 21 % of the 1988 as- sessed species; only two species are formally

  17. The Influence of Weather and Lunar Phases on the Flight Activity of Paederus Rove Beetles (Coleoptera: Staphylinidae).

    Science.gov (United States)

    Silva, F S; Lobo, S E P D; Lima, D C B; Brito, J M; Costa-Neta, B M

    2015-06-01

    Despite the medical importance of Paederus beetles, no studies have studied the influence of the abiotic factors on the flight activity and nighttime dispersal of these insects in Brazil. Therefore, the influence of both climatic factors and moon phase on black-light catches of Paederus rove beetles was investigated. Paederus beetles were attracted to a black light source hourly from 1800 to 0600 hours, and data on weather conditions as well as moon phase data were taken for every sampling date. Overall, 543 individuals of Paederus beetles belonging to four species were captured: P. protensus, P. columbinus, P. brasiliensis, and P. mutans. Paederus beetles were mostly active in the warmest parts of the studied nights. Variations in nighttime temperature, relative humidity, wind speed, cloud cover, and moon phases appear not to affect Paederus flight. The diurnal temperature was observed to affect the night hourly dispersal of Paederus rove beetles as well as their distribution pattern during the entire period of study. The true environmental condition responsible for Paederus beetles seasonal pattern and daily night dispersal in northeastern Brazil were the annual moisture and drought cycles and the diurnal maximum temperatures, respectively. Significant trap catches were observed in the earliest hours after sunset (1800-2100), and people must be aware of this fact, as it can notably increase the risk of acquiring linearis dermatitis from the contact with large numbers of active Paederus.

  18. Field-scale dispersal of Aphodius dung beetles (Coleoptera: Scarabaeidae) in response to avermectin treatments on pastured cattle.

    Science.gov (United States)

    Webb, L; Beaumont, D J; Nager, R G; McCracken, D I

    2010-04-01

    Very few studies have examined, at the field scale, the potential for faecal residues in the dung of avermectin-treated cattle to affect dung-breeding insects. The current study examined populations of dung beetles (Scarabaeidae: Aphodius) using pitfall traps baited with dung from untreated cattle on 26 fields across eight farms in southwest Scotland. The fields were grazed either by untreated cattle or by cattle treated with an avermectin product, i.e. doramectin or ivermectin. During the two-year study, significantly more beetles were trapped in fields grazed by treated cattle (n=9377 beetles) than in fields where cattle remained untreated (n=2483 beetles). Additional trials showed that beetles preferentially colonised dung of untreated versus doramectin-treated cattle. This may explain the higher captures of beetles in traps baited with dung of untreated cattle, which were located in fields of treated cattle. Given that Aphodius beetles avoided dung of treated cattle in the current study, the potential harmful effects of avermectin residues in cattle dung could be reduced through livestock management practices that maximise the availability of dung from untreated livestock in areas where avermectins are being used.

  19. The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia.

    Science.gov (United States)

    Ramle, M; Wahid, M B; Norman, K; Glare, T R; Jackson, T A

    2005-05-01

    The rhinoceros beetle, Oryctes rhinoceros, has emerged as a serious pest of oil palm since the prohibition of burning as a method for maintaining estate hygiene in the 1990s. The abundance of beetles is surprising given that the Malay peninsula was the site of first discovery of the Oryctes virus, which has been used to effect good as a biological control agent in other regions. A survey of adult beetles was carried out throughout Malaysia using pheromone traps. Captured beetles were examined for presence of virus using both visual/microscopic examination and PCR detection methods. The survey indicated that Oryctes virus was common in Malaysia among the adult beetles. Viral DNA analysis was carried out after restriction with HindIII enzyme and indicated at least three distinct viral genotypes. Bioassays were used to compare the viral strains and demonstrate that one strain (type B) is the most virulent against both larvae and adults of the beetle. Virus type B has been cultured and released into healthy populations where another strain (type A) forms the natural background. Capture and examination of beetles from the release site and surrounding area has shown that the spread and persistence of the applied virus strain is accompanied by a reduction in palm frond damage. PMID:16039309

  20. Functional roles affect diversity-succession relationships for boreal beetles.

    Directory of Open Access Journals (Sweden)

    Heloise Gibb

    Full Text Available Species diversity commonly increases with succession and this relationship is an important justification for conserving large areas of old-growth habitats. However, species with different ecological roles respond differently to succession. We examined the relationship between a range of diversity measures and time since disturbance for boreal forest beetles collected over a 285 year forest chronosequence. We compared responses of "functional" groups related to threat status, dependence on dead wood habitats, diet and the type of trap in which they were collected (indicative of the breadth of ecologies of species. We examined fits of commonly used rank-abundance models for each age class and traditional and derived diversity indices. Rank abundance distributions were closest to the Zipf-Mandelbrot distribution, suggesting little role for competition in structuring most assemblages. Diversity measures for most functional groups increased with succession, but differences in slopes were common. Evenness declined with succession; more so for red-listed species than common species. Saproxylic species increased in diversity with succession while non-saproxylic species did not. Slopes for fungivores were steeper than other diet groups, while detritivores were not strongly affected by succession. Species trapped using emergence traps (log specialists responded more weakly to succession than those trapped using flight intercept traps (representing a broader set of ecologies. Species associated with microhabitats that accumulate with succession (fungi and dead wood thus showed the strongest diversity responses to succession. These clear differences between functional group responses to forest succession should be considered in planning landscapes for optimum conservation value, particularly functional resilience.

  1. Molecular phylogeny of the burying beetles (Coleoptera: Silphidae: Nicrophorinae).

    Science.gov (United States)

    Sikes, Derek S; Venables, Chandra

    2013-12-01

    Burying beetles (Silphidae: Nicrophorus) are well-known for their monopolization of small vertebrate carcasses in subterranean crypts and complex biparental care behaviors. They have been the focus of intense behavioral, ecological, and conservation research since the 1980s yet no thorough phylogenetic estimate for the group exists. Herein, we infer relationships, test past hypotheses of relationships, and test biogeographic scenarios among 55 of the subfamily Nicrophorinae's currently valid and extant 72 species. Two mitochondrial genes, COI and COII, and two nuclear genes, the D2 region of 28S, and the protein coding gene CAD, provided 3,971 nucleotides for 58 nicrophorine and 5 outgroup specimens. Ten partitions, with each modeled by GTR+I+G, were used for a 100 M generation MrBayes analysis and maximum likelihood bootstrapping with Garli. The inferred Bayesian phylogeny was mostly well-resolved with only three weak branches of biogeographic relevance. The common ancestor of the subfamily and of the genus Nicrophorus was reconstructed as Old World with four separate transitions to the New World and four reverse colonizations of the Old World from the New. Divergence dating from analysis with BEAST indicate the genus Nicrophorus originated in the Cretaceous, 127-99 Ma. Most prior, pre-cladistic hypotheses of relationships were strongly rejected while most modern hypotheses were largely congruent with monophyletic groups in our estimated phylogeny. Our results reject a recent hypothesis that Nicrophorus morio Gebler, 1817 (NEW STATUS as valid species) is a subspecies of N. germanicus (L., 1758). Two subgenera of Nicrophorus are recognized: NecroxenusSemenov-Tian-Shanskij, 1933, and NicrophorusFabricius, 1775.

  2. Hit-and-run trophallaxis of small hive beetles.

    Science.gov (United States)

    Neumann, Peter; Naef, Jan; Crailsheim, Karl; Crewe, Robin M; Pirk, Christian W W

    2015-12-01

    Some parasites of social insects are able to exploit the exchange of food between nestmates via trophallaxis, because they are chemically disguised as nestmates. However, a few parasites succeed in trophallactic solicitation although they are attacked by workers. The underlying mechanisms are not well understood. The small hive beetle (=SHB), Aethina tumida, is such a parasite of honey bee, Apis mellifera, colonies and is able to induce trophallaxis. Here, we investigate whether SHB trophallactic solicitation is innate and affected by sex and experience. We quantified characteristics of the trophallactic solicitation in SHBs from laboratory-reared individuals that were either bee-naïve or had 5 days experience. The data clearly show that SHB trophallactic solicitation is innate and further suggest that it can be influenced by both experience and sex. Inexperienced SHB males begged more often than any of the other groups had longer breaks than their experienced counterparts and a longer soliciting duration than both experienced SHB males and females, suggesting that they start rather slowly and gain more from experience. Successful experienced females and males were not significantly different from each other in relation to successful trophallactic interactions, but had a significantly shorter soliciting duration compared to all other groups, except successful inexperienced females. Trophallactic solicitation success, feeding duration and begging duration were not significantly affected by either SHB sex or experience, supporting the notion that these behaviors are important for survival in host colonies. Overall, success seems to be governed by quality rather than quantity of interactions, thereby probably limiting both SHB energy investment and chance of injury (<1%). Trophallactic solicitation by SHBs is a singular example for an alternative strategy to exploit insect societies without requiring chemical disguise. Hit-and-run trophallaxis is an attractive test

  3. Functional morphology of the copulatory organs of a reed beetle and a shining leaf beetle (Coleoptera: Chrysomelidae: Donaciinae, Criocerinae) using X-ray micro-computed tomography.

    Science.gov (United States)

    Schmitt, Michael; Uhl, Gabriele

    2015-01-01

    For more than 100 years it has been known that the sclerotised median lobe of beetles harbours a membranous structure (the "internal sac" or "endophallus") which is everted during copula inside the female genital tract. In order to explore the functional role of this structure and those associated with it, we cryofixed copulating pairs of Donacia semicuprea and Lilioceris lilii and studied the relative position of the elements of the copulatory apparatus of males and females by micro-computer-tomography. We found that the everted endophallus fills the lumen of the bursa copulatrix completely. Our data suggest that in Lilioceris lilii the tip of the sclerotised distal part of the ejaculatory duct, the flagellum, is positioned exactly over the opening of the spermathecal duct inside the bursa copulatrix. The mouth of the bursa copulatrix in Donacia semicuprea is armed with a strong muscle ring, and the whole wall of the bursa is covered externally with a layer of muscle fibres. These morphological differences correspond with differences in mating behaviour: In reed beetles (Donaciinae), females seemingly can control mating to a higher degree than in lily beetles (Lilioceris spp.). PMID:26798321

  4. Temporal Dynamics of Corn Flea Beetle Populations Infested with Pantoea stewartii, Causal Agent of Stewart's Disease of Corn.

    Science.gov (United States)

    Esker, P D; Nutter, F W

    2003-02-01

    ABSTRACT In order to better understand the epidemiology of the Stewart's disease of corn pathosystem, quantitative information concerning the temporal dynamics of the amount of pathogen inoculum present in the form of Pantoea stewartii-infested corn flea beetles (Chaetocnema pulicaria) is needed. Temporal changes in the proportion of P. stewartii-infested corn flea beetle populations were monitored by testing individual corn flea beetles for the presence of P. stewartii using a peroxidase-labeled, enzyme-linked immunosorbent assay. Approximately 90 corn flea beetles were collected each week from seven locations in Iowa from September 1998 through October 2000 using sweep nets. The proportion of P. stewartii-infested beetles at the end of the 1998 growing season ranged from 0.04 to 0.19. In spring 1999, the proportion of overwintering adult corn flea beetles infested with P. stewartii ranged from 0.10 to 0.11 and did not differ significantly from the previous fall based on chi(2). During the 1999 corn-growing season, the proportion of infested corn flea beetles ranged from 0.04 to 0.86, with the highest proportions occurring in August. In fall 1999, the proportion of beetles infested with P. stewartii ranged from 0.20 to 0.77. In spring 2000, the proportion of overwintering adult corn flea beetles infested with P. stewartii ranged from 0.08 to 0.30; these proportions were significantly lower than the proportions observed in fall 1999 at Ames, Chariton, and Nashua. During the 2000 corn-growing season, the proportion of P. stewartii-infested corn flea beetles ranged from 0.08 to 0.53, and the highest observed proportions again occurred in August. Corn flea beetle populations sampled in late fall 2000 had proportions of infested beetles ranging from 0.08 to 0.20. This is the first study to quantify the temporal population dynamics of P. stewartii-infested C. pulicaria populations in hybrid corn and provides new quantitative information that should be useful in

  5. Entomopathogenic fungi in predatory beetles (Col: Carabidae and Staphylinidae) from agricultural fields

    DEFF Research Database (Denmark)

    Steenberg, T; Langer, V; Esbjerg, P

    1995-01-01

    beetles were low (Carabidae: max. 7.6%, Staphylinidae: max. 7.0%). in comparison, prevalence of entomopathogenic fungi in carabid larvae was high (19-50%). At one study site an epizootic of Beauveria bassiana was observed, infecting 67% of staphylinid Anotylus rugosus and 37% of the staphylinid Gyrohypnus...... angustatus. Beauveria bassiana was the predominant fungus isolated from ground beetles and rove beetles from all studied sites. Other fungal species included the hyphomycetes Metarhizium anisopliae, Paecilomyces farinosus and Verticillium lecanii as well as Zoophthora radicans and Zoophthora philonthi...... (Zygomycetes: Entomophthorales). Two individuals of Anotylus rugosus were found to have a dual infection of Zoophthora philonthi and Beauveria bassiana...

  6. Ecological study of the larger black flour beetle in cotton gin trash.

    Science.gov (United States)

    Nansen, Christian; James, Jacob; Bowling, David; Parajulee, Megha N; Porter, Patrick

    2008-12-01

    The larger black flour beetle Cynaeus angustus (Leconte) thrives in cotton gin trash piles on the Southern High Plains of Texas and sometimes becomes a nuisance after invading public and private structures. For better understanding of the basic larger black flour beetle ecology in gin trash piles, we conducted a series of laboratory and semirealistic field trials. We showed (1) in naturally infested gin trash piles, that similar trap captures were obtained in three cardinal directions; (2) in a laboratory study, late-instar larvae stayed longer in larval stage in moist soil compared with drier soil; (3) in both horizontal and vertical choice experiments, late instars preferred soil with low moisture content; and (4) specifically larger black flour beetle adults, but most larvae as well, responded negatively to high moisture content in gin trash. The results presented are consistent with reports of larger black flour beetle living in decaying yucca palms in deserts and suggest that maintaining gin trash piles with high moisture content may be an important component in an integrated control strategy. PMID:19161678

  7. Guided-Inquiry Labs Using Bean Beetles for Teaching the Scientific Method & Experimental Design

    Science.gov (United States)

    Schlueter, Mark A.; D'Costa, Allison R.

    2013-01-01

    Guided-inquiry lab activities with bean beetles ("Callosobruchus maculatus") teach students how to develop hypotheses, design experiments, identify experimental variables, collect and interpret data, and formulate conclusions. These activities provide students with real hands-on experiences and skills that reinforce their understanding of the…

  8. Management of Yellowmargined Leaf Beetle Microtheca ochroloma (Coleoptera: Chrysomelidae) Using Turnip as a Trap Crop.

    Science.gov (United States)

    Balusu, Rammohan; Rhodes, Elena; Liburd, Oscar; Fadamiro, Henry

    2015-12-01

    The yellowmargined leaf beetle, Microtheca ochroloma Stål, is a major pest of cruciferous vegetable crops in organic production systems. Very few organically acceptable management options are currently available for this pest. Field studies were conducted at a research station in Alabama and at a commercial organic vegetable farm in Florida to investigate the effectiveness of turnip, Brassica rapa rapa, as a trap crop for M. ochroloma. In the research station trial with cabbage planted as the cash crop, perimeter planting of turnip as a trap crop effectively reduced beetle numbers and crop damage below levels recorded in the control. During the first season of our on-farm trial, with napa cabbage and mustard as the cash crops, using turnip as a trap crop effectively reduced both beetle numbers and cash crop damage below levels found in the control plots, but economic damage was still high. In the second season, beetle populations were too low for significant differences in damage levels to occur between the trap crop and control plots. Together, these results suggest that turnip planted as a trap crop can be an effective control tactic for cruciferous crops, like cabbage, that are much less attractive to M. ochroloma than turnip. In crops, like mustard and napa cabbage, that are equally or only slightly less attractive than turnip, planting turnip as a trap crop would have to be used in combination with other tactics to manage M. ochroloma. PMID:26470380

  9. Contribution to the knowledge of seed-beetles (Coleoptera, Chrysomelidae, Bruchinae) in Xinjiang, China

    Science.gov (United States)

    Li, You; Wang, Zhiliang; Guo, Jianjun; Nápoles, Jesús Romero; Ji, Yingchao; Jiang, Chunyan; Zhang, Runzhi

    2014-01-01

    Abstract Nineteen species of seed-beetles belonging to the subfamily Bruchinae (Coleoptera, Chrysomelidae) were collected in Xinjiang, China. Of these, the following four were new records for China: Bruchus affinis Frolich, 1799, Bruchus atomarius L., 1761, Bruchus loti Paykull, 1800 and Kytorhinus kergoati Delobel & Legalov, 2009. We provide an annotated checklist, illustrations and a key to the 19 species. PMID:25610333

  10. Volatiles emissions from the flea beetle Altica litigata (Coleoptera: Chrysomelidae) associated with invasive Ludwigia hexapetala

    Science.gov (United States)

    The water primrose flea beetle Altica litigata (family Chrysomelidae) is a known insect pest to several nursery plants due to its aggressive feeding behavior – typically carried out in significant numbers. This aggregate feeding usually results in severe defoliation of their host plant. However, bec...

  11. A protecting group-free synthesis of the Colorado potato beetle pheromone

    NARCIS (Netherlands)

    Wu, Zhongtao; Buter, Jeffrey; Minnaard, Adriaan J.; Jäger, Manuel; Dickschat, J.S.

    2013-01-01

    A novel synthesis of the aggregation pheromone of the Colorado potato beetle, Leptinotarsa decemlineata, has been developed based on a Sharpless asymmetric epoxidation in combination with a chemoselective alcohol oxidation using catalytic [(neocuproine)PdOAc](2)OTf2. Employing this approach, the phe

  12. 78 FR 46312 - Spruce Beetle Epidemic and Aspen Decline Management Response; Grand Mesa, Uncompahgre and...

    Science.gov (United States)

    2013-07-31

    ... Forest Service Spruce Beetle Epidemic and Aspen Decline Management Response; Grand Mesa, Uncompahgre and...,000 acres of aspen forests have experienced substantial mortality from insects and diseases over the..., juniper and ponderosa pine to Engelmann spruce, subalpine fir, and quaking aspen. Tree ring records...

  13. Characterization of a Pantoea stewartii TTSS gene required for persistence in its flea beetle vector

    Science.gov (United States)

    Stewart's bacterial wilt of maize is caused by Pantoea stewartii subsp. stewartii (Pnss), a bacterium that is transmitted by the flea beetle, Chaetocnema pulicaria. Few studies have focused on the molecular basis of the interactions of Pnss with its vector. Genome analyses indicated that Pnss carri...

  14. Treatment outcome of Paederus dermatitis due to rove beetles (Coleoptera: Staphylinidae) on guinea pigs.

    Science.gov (United States)

    Fakoorziba, M R; Eghbal, F; Azizi, K; Moemenbellah-Fard, M D

    2011-08-01

    Linear dermatitis (or dermatitis linearis, DL) is a skin blistering inflammatory lesion caused by exposure to the pederin toxin from rove beetles. Although it is prevalent in many countries of the Middle East region, this is not a notifiable disease. In recent years, a number of clinical symptoms outbreaks of DL has been reported from a few neighboring countries of Iran, but no report of experimental treatment among small laboratory rodents is known. This is a prerequisite to ascertain the nature of the best treatment strategy in cases of infestation with these beetles, as it occurs among local settlers during hot seasons in certain parts of the southern Iranian province of Fars. Live Paederus beetles were collected, identified to species level, sexed apart and partly processed to obtain their hemolymph toxin pederin in ethanol for dermal application on guinea pigs. Two Paederus species were found. Paederus ilsae (Bernhauer) (Coleoptera: Staphylinidae) was more abundant than P. iliensis (Coiffait). Recovery from DL due to live P. ilsae beetles was quicker and less complex than that of pederin in ethanol on guinea pigs. The application of potassium permanganate with calamine to heal DL was also more effective than fluocinolone treatment. This topical corticosteroid is thus considered less able to avert the cytotoxic action of pederin on the skin of guinea pigs than the antipruritic and cleansing agents. It seems likely that fluocinolone has certain effects which delays the recovery period for the treated skin.

  15. Efficacy of current lures for detection of redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Since its introduction into the USA in 2002, the exotic redbay ambrosia beetle, Xyleborus glabratus Eichhoff, has become a serious invasive pest, currently established in eight southeastern states. Females are the primary vectors of a pathogenic fungus, Raffaelea lauricola, that causes laurel wilt....

  16. Stenusine, an antimicrobial agent in the rove beetle genus Stenus (Coleoptera, Staphylinidae)

    Science.gov (United States)

    Lusebrink, Inka; Dettner, Konrad; Seifert, Karlheinz

    2008-08-01

    Stenusine is well known as the alkaloid, discharged by the rove beetle, genus Stenus Latreille (Coleoptera, Staphylinidae). The Stenus beetles employ the alkaloid as an escape mechanism when on water surfaces. In the case of danger, they lower their abdomen and emit stenusine from their pygidial glands. Stenusine shows a low surface tension and therefore a high spreading pressure; these properties propel the beetle quickly over the water. Many Steninae do not live in habitats with open waters, but in detritus, leaf litter, mosses, etc. This raises the possibility that stenusine might also have another function, e.g., as antibiotic or fungicide. Stenus beetles show an intense grooming behaviour. With gas chromatography mass spectrometry analyses we could prove that they cover themselves with their secretion. To tests its antimicrobial properties we conducted agar diffusion tests with stenusine and norstenusine, another substance that is abundant in most Stenus species. Both compounds have an antimicrobial effect on entomopathogenic bacteria and fungi. Stenusine not only allows for an extraordinary method of locomotion on water surfaces, it also protects the Steninae from being infested with microorganisms.

  17. Survival of Campylobacter spp. in Darkling Beetles (Alphitobius diaperinus) and Their Larvae in Australia▿

    OpenAIRE

    Templeton, Jillian M.; De Jong, Amanda J.; Blackall, P. J.; Miflin, Jeanette K.

    2006-01-01

    Campylobacter infection is the most frequently reported notifiable food-borne disease in humans in Australia. Our studies investigated the persistence of Campylobacter spp. in or on darkling beetles (Alphitobius diaperinus) and their larvae. Our results in analyses with chickens confirm that, unless very short turnaround times are used (

  18. New record of predatory ladybird beetle (Coleoptera, Coccinellidae feeding on extrafloral nectaries

    Directory of Open Access Journals (Sweden)

    Lúcia M. Almeida

    2011-09-01

    Full Text Available New record of predatory ladybird beetle (Coleoptera, Coccinellidae feeding on extrafloral nectaries. Feeding by Exoplectra miniata (Germar on extrafloral nectaries of Inga edulis Mart. was observed in Nova Friburgo, Rio de Janeiro, Brazil. This is the first record of this behavior for Exoplectrini.

  19. Comparison of ambrosia beetle communities in two hosts with laurel wilt: swampbay vs. avocado

    Science.gov (United States)

    The invasive redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), is an exotic wood-boring pest first detected in 2002 near Savannah, Georgia. The beetle’s dominant fungal symbiont, Raffaelea lauricola, is the pathogen that causes laurel wilt, a lethal disease of tre...

  20. A New foodweb based on microbes in calcitic caves: The Cansiliella (Beetles) case in Northern Italy

    OpenAIRE

    Paoletti Maurizio G.; Beggio Mattia; Dreon Angelo Leandro; Pamio Alberto; Gomiero Tiziano; Brilli Mauro; Dorigo Luca; Concheri Giuseppe; Squartini Andrea; Summers Engel Annette

    2011-01-01

    The troglobitic beetle, Cansiliella servadeii (Leptodirini), has specialized mouthparts modified for browsing and feeding under percolating water on moonmilk, a speleothem formation in Grotta della Foos, Italy. Results from analyses of stable isotopes of carbon and nitrogen suggest thatacquires and assimilates dissolved allochthonous organic carbon, inorganic nitrogen, and possibly phosphorus and other nutrients from the microbial fauna associated with moonmilk.

  1. Seasonal activity of the small hive beetle, Aethina tumida, as estimated by baited flight traps

    Science.gov (United States)

    Seasonal variation in flight activity of the small hive beetle was monitored at two sites in north-central Florida, one near colonies of the European honeybee and the other far removed from bee colonies. Activity was monitored by flight traps baited with fermenting pollen dough that had been inocul...

  2. Insect-machine Hybrid System: Remote Radio Control of a Freely Flying Beetle (Mercynorrhina torquata).

    Science.gov (United States)

    Vo Doan, T Thang; Sato, Hirotaka

    2016-01-01

    The rise of radio-enabled digital electronic devices has prompted the use of small wireless neuromuscular recorders and stimulators for studying in-flight insect behavior. This technology enables the development of an insect-machine hybrid system using a living insect platform described in this protocol. Moreover, this protocol presents the system configuration and free flight experimental procedures for evaluating the function of the flight muscles in an untethered insect. For demonstration, we targeted the third axillary sclerite (3Ax) muscle to control and achieve left or right turning of a flying beetle. A thin silver wire electrode was implanted on the 3Ax muscle on each side of the beetle. These were connected to the outputs of a wireless backpack (i.e., a neuromuscular electrical stimulator) mounted on the pronotum of the beetle. The muscle was stimulated in free flight by alternating the stimulation side (left or right) or varying the stimulation frequency. The beetle turned to the ipsilateral side when the muscle was stimulated and exhibited a graded response to an increasing frequency. The implantation process and volume calibration of the 3 dimensional motion capture camera system need to be carried out with care to avoid damaging the muscle and losing track of the marker, respectively. This method is highly beneficial to study insect flight, as it helps to reveal the functions of the flight muscle of interest in free flight. PMID:27684525

  3. Are bark beetles chewing up our forests? What about our coffee?

    Science.gov (United States)

    A write-up for the Elsevier SciTech Connect blog on the recently published book entitled "Bark Beetles: Biology and Ecology of Native and Invasive Species," edited by Fernando E. Vega and Richard W. Hofstetter. The book was published by Academic Press in January 2015....

  4. 75 FR 81832 - Asian Longhorned Beetle; Quarantined Area and Regulated Articles

    Science.gov (United States)

    2010-12-29

    ..., 2010, we are adopting as a final rule the interim rule published at 75 FR 34320-34322 on June 17, 2010... (75 FR 34320-34322, Docket No. APHIS-2010- 0004), we amended the Asian longhorned beetle regulations... that was published at 75 FR 34320-34322 on June 17, 2010. Done in Washington, DC on December 22,...

  5. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    Science.gov (United States)

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  6. Direct and indirect genetic effects in life-history traits of flour beetles (Tribolium castaneum)

    NARCIS (Netherlands)

    Ellen, Esther D.; Peeters, Katrijn; Verhoeven, Merel; Gols, Rieta; Harvey, Jeffrey A.; Wade, Michael J.; Dicke, Marcel; Bijma, Piter

    2016-01-01

    Indirect genetic effects (IGEs) are the basis of social interactions among conspecifics, and can affect genetic variation of nonsocial and social traits. We used flour beetles (Tribolium castaneum) of two phenotypically distinguishable populations to estimate genetic (co)variances and the effect of

  7. Direct and indirect genetic effects in life-history traits of flour beetles (Tribolium castaneum)

    NARCIS (Netherlands)

    Ellen, E.D.; Peeters, Katrijn; Verhoeven, Merel; Gols, Rieta; Harvey, J.A.; Wade, M.J.; Dicke, Marcel; Bijma, Piter

    2016-01-01

    Indirect genetic effects (IGEs) are the basis of social interactions among conspecifics, and can affect genetic variation of nonsocial and social traits. We used flour beetles (Tribolium castaneum) of two phenotypically distinguishable populations to estimate genetic (co)variances and the effect

  8. White Spruce Regeneration Following a Major Spruce Beetle Outbreak in Forests on the Kenai Peninsula, Alaska

    Science.gov (United States)

    Between 1987 and 2000, a spruce beetle (Dendroctonus rufipennis) epidemic infested 1.19 million hectares of spruce (Picea spp.) forests in Alaska, killing most of the large diameter trees. We evaluated whether these forests would recover to their pre-outbreak density, and determined the site conditi...

  9. A Rare Excitatory Amino Acid from Flowers of Zonal Geranium responsible for Paralyzing the Japanese Beetle

    Science.gov (United States)

    e Japanese beetle (Popillia japonica) exhibits rapid paralysis after consuming flowers from zonal geranium (Pelargonium × hortorum). Activity-guided fractionations were conducted with polar flower petal extracts from Pelargonium × hortorum cv. Nittany Lion Red, which led to the isolation of a paraly...

  10. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines.

    Science.gov (United States)

    Ferrenberg, Scott; Kane, Jeffrey M; Mitton, Jeffry B

    2014-04-01

    Bark beetles have recently killed billions of trees, yet conifer defenses are formidable and some trees resist attack. A primary anti-insect defense of pines is oleoresin from a system of resin ducts throughout the tree. Resin defense traits are heritable, and evidence suggests that resin duct characteristics are associated with resistance to insects. However, comparisons of resin ducts in trees killed by bark beetles to trees that resisted attack are unavailable. We compared vertical resin duct characteristics (number, density, and size) and growth rates from trees that were "resistant" (survived mass attack) versus "susceptible" (killed by attack) to bark beetles in lodgepole (Pinus contorta) and limber (Pinus flexilis) pines. Resistant trees of both species had significantly more resin ducts in recent growth than susceptible trees. Discriminant analysis (DA) correctly categorized 84% of lodgepole and 92% of limber pines as susceptible/resistant based on combinations of resin duct and growth characteristics from recent 5- through 20-year growth intervals. DA models using measures from only the most recent 5 years of growth correctly categorized 72 and 81% of lodgepole and limber pines, respectively. Comparing resistant to susceptible trees independent of species identity led to the correct categorization of 82% of trees based on factors from 5- to 20-year intervals, and 73% of trees using only resin duct counts from the most recent 5 years. We conclude that resin duct characteristics can be used to assess tree resistance to bark beetles across pine species, and offer a metric for management to enhance pest resistance.

  11. Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles.

    Science.gov (United States)

    Zhu, Hai; Guo, Zhiguang

    2016-05-21

    Inspired by Namib Desert beetles, a hybrid superhydrophobic surface was fabricated, showing highly efficient fog harvesting with a water collection rate (WCR) of 1309.9 mg h(-1) cm(-2). And, the surface possessed an excellent robustness and self-cleaning property. PMID:27125658

  12. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    Science.gov (United States)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  13. Atomic force microscopy study of nano-physiological response of ladybird beetles to photostimuli.

    Directory of Open Access Journals (Sweden)

    Natalia V Guz

    Full Text Available BACKGROUND: Insects are of interest not only as the most numerous and diverse group of animals but also as highly efficient bio-machines varying greatly in size. They are the main human competitors for crop, can transmit various diseases, etc. However, little study of insects with modern nanotechnology tools has been done. METHODOLOGY/PRINCIPAL FINDINGS: Here we applied an atomic force microscopy (AFM method to study stimulation of ladybird beetles with light. This method allows for measuring of the internal physiological responses of insects by recording surface oscillations in different parts of the insect at sub-nanometer amplitude level and sub-millisecond time. Specifically, we studied the sensitivity of ladybird beetles to light of different wavelengths. We demonstrated previously unknown blindness of ladybird beetles to emerald color (∼500nm light, while being able to see UV-blue and green light. Furthermore, we showed how one could study the speed of the beetle adaptation to repetitive flashing light and its relaxation back to the initial stage. CONCLUSIONS: The results show the potential of the method in studying insects. We see this research as a part of what might be a new emerging area of "nanophysiology" of insects.

  14. Side effects of kaolin particle films on apple orchard bug, beetle and spider communities

    NARCIS (Netherlands)

    Marko, V.; Bogya, S.; Kondorosy, E.; Blommers, L.H.M.

    2010-01-01

    The effects of multiple applications of hydrophobic kaolin particle film on apple orchard bug (Heteroptera), beetle (Coleoptera) and spider (Araneae) assemblages were studied in the Netherlands. Insecticide-free orchard plots served as a control. The kaolin applications significantly reduced the abu

  15. Mechanical and Frictional Properties of the Elytra of Five Species of Beetles

    Institute of Scientific and Technical Information of China (English)

    Min Yu; Ilja Hermann; Zhendong Dai; Norm Gitis

    2013-01-01

    The mechanical and frictional properties of different parts of the elytra of five species of beetle were measured using a nano-indenter and a micro-tribometer.The surface microstructures of the elytra were observed by optical microscopy and scanning white light interferometry.The surface microstructures of the elytra of all five species are characterized as non-smooth concavo-convex although specific morphological differences demonstrate the diversity of beetle elytra.Young's modulus and the hardness of the elytral materials vary with the species of beetle and the sampling locations,ranging from 1.80 GPa to 12.44 GPa,and from 0.24 GPa to 0.75 GPa,respectively.In general,both the Young's modulus and the hardness are lower in samples taken from the center of the elytra than those taken from other regions,which reflects the functional heterogeneity of biological material in the process of biological evolution.The elytra have very low friction coefficient,ranging from 0.037 to 0.079,which is related to their composition and morphology.Our measurements indicate that the surface texture and its microstructural size of beetle elytra contribute to anti-friction effects.

  16. Ice age climate, evolutionary constraints and diversity patterns of European dung beetles

    DEFF Research Database (Denmark)

    Hortal, Joaquín; Diniz-Filho, José Alexandre F.; Bini, Luis Mauricio;

    2011-01-01

    Current climate and Pleistocene climatic changes are both known to be associated with geographical patterns of diversity. We assess their associations with the European Scarabaeinae dung beetles, a group with high dispersal ability and well-known adaptations to warm environments. By assessing spa...

  17. Dominance of the multicoloured Asian lady beetle Harmonia axyridis in an undisturbed wild meadow ecosystem

    Directory of Open Access Journals (Sweden)

    Élise Bélanger

    2011-12-01

    Full Text Available Fifteen years after its arrival in Quebec (Canada, the multicoloured Asian lady beetle Harmonia axyridis (Pallas 1773 (Coleoptera: Coccinellidae has become one of the dominant coccinellid species in agricultural, forested and urban areas. Several studies conducted in North American agricultural ecosystems show that the arrival of H. axyridis and other exotic coccinellid species was followed by decreases in the populations of native coccinellid species. In this study, the abundances of H. axyridis and other native and exotic species were determined in an undisturbed wild meadow located in a protected area. In 2009 and 2010, mainly Solidago canadensis L. (Asteraceae and Asclepias syriaca L. (Asclepiadaceae infested with aphids were surveyed. A total of 1522 individuals, belonging to seven different species, were recorded. In 2009, on all the plants monitored, H. axyridis was clearly the dominant species (69% of the coccinellid assemblage. In addition, this exotic species constituted 84% of the coccinellid assemblage, including Propylea quatuordecimpunctata (L. and Coccinella septempunctata (L. It is likely the dominance of the eurytopic Asian lady beetle in agricultural, forested, urban and undisturbed open ecosystems, poses a threat to native lady beetles. These results also provide evidence that undisturbed wild meadow ecosystems will not constitute a natural refuge from Harmonia axyridis for native species of lady beetles.

  18. Phenotypic plasticity of elytron length in wingless two-spot ladybird beetles Adalia bipunctata (Coleoptera: Coccinellidae)

    NARCIS (Netherlands)

    Lommen, S.T.E.; Jong, de P.W.; Brakefield, P.M.

    2005-01-01

    Winglessness in the two-spot ladybird beetle Adalia bipunctata (L.) is determined by a single locus with the wingless allele recessive to the winged wildtype allele. The expression of the wingless trait is highly variable, with individuals missing a variable part of elytra and flight wings; the elyt

  19. Genetic linkage between melanism and winglessness in the ladybird beetle Adalia bipunctata

    NARCIS (Netherlands)

    Lommen, S.T.E.; Jong, de P.W.; Koops, K.G.; Brakefield, P.M.

    2012-01-01

    We report a case of genetic linkage between the two major loci underlying different wing traits in the two-spot ladybird beetle, Adalia bipunctata (L.) (Coleoptera: Coccinellidae): melanism and winglessness. The loci are estimated to be 38.8 cM apart on one of the nine autosomes. This linkage is lik

  20. Conifer stored resources and resistance to a fungus associated with the spruce bark beetle Ips typographus.

    Directory of Open Access Journals (Sweden)

    Eleanor C Lahr

    Full Text Available Bark beetles and associated fungi are among the greatest natural threats to conifers worldwide. Conifers have potent defenses, but resistance to beetles and fungal pathogens may be reduced if tree stored resources are consumed by fungi rather than used for tree defense. Here, we assessed the relationship between tree stored resources and resistance to Ceratocystis polonica, a phytopathogenic fungus vectored by the spruce bark beetle Ips typographus. We measured phloem and sapwood nitrogen, non-structural carbohydrates (NSC, and lipids before and after trees were attacked by I. typographus (vectoring C. polonica or artificially inoculated with C. polonica alone. Tree resistance was assessed by measuring phloem lesions and the proportion of necrotic phloem around the tree's circumference following attack or inoculation. While initial resource concentrations were unrelated to tree resistance to C. polonica, over time, phloem NSC and sapwood lipids declined in the trees inoculated with C. polonica. Greater resource declines correlated with less resistant trees (trees with larger lesions or more necrotic phloem, suggesting that resource depletion may be caused by fungal consumption rather than tree resistance. Ips typographus may then benefit indirectly from reduced tree defenses caused by fungal resource uptake. Our research on tree stored resources represents a novel way of understanding bark beetle-fungal-conifer interactions.

  1. Aphid and ladybird beetle abundance depend on the interaction of spatial effects and genotypic diversity.

    Science.gov (United States)

    Genung, Mark A; Crutsinger, Gregory M; Bailey, Joseph K; Schweitzer, Jennifer A; Sanders, Nathan J

    2012-01-01

    Intraspecific variation and genotypic diversity of host-plants can affect the structure of associated arthropod communities and the dynamics of populations. Similarly, neighboring plants can also affect interactions between host-plants and their associated arthropods. However, most studies on the effects of host-plant genotypes have largely ignored the potential effects of neighboring host-plants on arthropod communities. In this study, we used a common garden experiment to ask how spatial effects of neighboring patches, along with genotype identity and genotypic diversity in tall goldenrod (Solidago altissima), affect the abundances of a common goldenrod herbivore (Uroleucon nigrotuberculatum) and their dominant predator (Harmonia axyridis, a ladybird beetle). Aphid abundance varied 80-fold among genotypes, while ladybird beetle abundance was not affected by genotype identity. Additionally, there were strong effects of neighboring plots: aphid abundance in a focal plot was positively correlated to aphid abundance in nearby plots, suggesting strong spatial patterning in the abundance of aphids. Neither aphid nor ladybird beetle abundance was affected by genotypic diversity. However, focal plot genotypic diversity mediated the strength of the neighborhood effect (i.e., strong effects for genotype polyculture focal plots and weak effects for genotype monoculture focal plots). Our results show that aphids were directly influenced by host-plant genotype identity while ladybird beetles responded mainly to prey abundance, and suggest that genotypic diversity can influence the effects of spatial processes on the plant-herbivore interactions. PMID:21805301

  2. Aquatic beetles (Coleoptera in springs of a small lowland river: habitat factors vs. landscape factors

    Directory of Open Access Journals (Sweden)

    Pakulnicka J.

    2016-01-01

    Full Text Available We identified the beetle fauna of springs of a small lowland river and attempted to determine the direction and magnitude of beetle migration between the springs and neighboring water bodies in the river valley, as well as the local environmental factors and landscape parameters that most influence the character of aquatic beetle assemblages in the springs. We studied springs of three limnological types, along the entire length of the river valley, and identified 42 beetle species. All types of springs were dominated by stagnobiontic species, which enter springs from other aquatic environments, mainly via dispersion by air. We also found a small proportion of crenophiles and a substantial proportion of rheophiles and tyrphophiles, which was linked to the close proximity of the river and dystrophic water bodies. The fauna of the springs was affected to a similar degree by local environmental factors and by landscape factors acting on a broader scale. This indicates the need for broader consideration of landscape factors, which are often neglected in ecological studies.

  3. Biology of 11-Spotted Beetle Coccinella undicimpunctata L. (Coccinellidae: Coleoptera) on Mustard Aphid Lipaphis erysimi Kalt.

    Science.gov (United States)

    Solangi, Bhai Khan; Ghani Lanjar, Abdul; Lohar, Mohammad Khan

    A laboratory experiment was conducted to study the biology of 11-spotted beetle Coccinella undecimpunctata L. on mustard aphid during the year 2006. The oviposition, fecundity, adult emergence, fertility percentage, sex ratio, longevity and mortality were studied in the laboratory on 10 separately reared pairs of beetles. The results indicated that average pre-copulation period was 4.1±1.28 days post copulation period 3.6±1.26 days, oviposition period, 37.7±6.88 days and post oviposition period 4.0±1.63 days. The mean fecundity was 593.4±86.5 eggs, fertile eggs were 531.80±76.16 with the fertility percentage of 89.63±3.44. the incubation was 3.1±1.19 and 3.1±0.94 days while 1st and 2nd instar larva period was 3.1±1.19 and 3.1±0.87 days and for 3rd and 4th instar larvae averaged 3.5±1.26 and 3.3±0.94 days, respectively whereas the total larval period was 12.9±1.28 days and pupal period 5.6±0.96 days. The average number of pupae observed were 19.9±6.69, while the male emergence was 7.4±2.63 (38.50±13.12%) and the female emergence was 8.9±3.66 (43.48±8.24%). The sex ratio (male: female) averaged 1:1.25±1: 0.45. thus the total male + female emergence was 81.99±13.37 per beetle pair. The mortality recorded was 3.7±3.43 beetles showing an averaged mortality of 17.57±14.51%. Longevity of the male was 36.5±4.17 days and the female longevity of 46.0±9.14 days. It was recorded that longevity period was significantly greater in case of female ladybird beetles as compared to their males. Adult emergence was greater in females of 11-spotted beetles as compared to males and thus the sex ratio was higher in females as compared to males. The longevity was comparably higher in case of females than in male beetles.

  4. Nesting ecology of boreal forest birds following a massive outbreak of spruce beetles

    Science.gov (United States)

    Matsuoka, S.M.; Handel, C.M.

    2007-01-01

    We studied breeding dark-eyed juncos (Junco hyemalis), yellow-rumped warblers (Dendroica coronata), and spruce-nesting birds from 1997 to 1998 among forests with different levels of spruce (Picea spp.) mortality following an outbreak of spruce beetles (Dendroctonus rufipennis) in Alaska, USA. We identified species using live and beetle-killed spruce for nest sites and monitored nests to determine how the outbreak influenced avian habitat selection and reproduction. We tested predictions that 1) nesting success of ground-nesting juncos would increase with spruce mortality due to proliferation of understory vegetation available to conceal nests from predators, 2) nesting success of canopy-nesting warblers would decrease with spruce mortality due to fewer live spruce in which to conceal nests, and 3) both species would alter nest-site selection in response to disturbance. Juncos did not benefit from changes in understory vegetation; nesting success in highly disturbed stands (46%) was comparable to that in undisturbed habitats throughout their range. In stands with low spruce mortality, nesting success of juncos was low (5%) and corresponded with high densities of red squirrels (Tamiasciurus hudsonicus). Yellow-rumped warblers nested exclusively in spruce, but success did not vary with spruce mortality. As disturbance increased, nesting warblers switched from selecting forest patches with high densities of live white spruce (Picea glauca) to patches with beetle-killed spruce. Warblers also placed nests in large-diameter live or beetle-killed spruce, depending on which was more abundant in the stand, with no differences in nesting success. Five of the 12 other species of spruce-nesting birds also used beetle-killed spruce as nest sites. Because beetle-killed spruce can remain standing for >50 years, even highly disturbed stands provide an important breeding resource for boreal forest birds. We recommend that boreal forest managers preserve uncut blocks of infested

  5. Effects of knowledge of an endangered species on recreationists' attitudes and stated behaviors and the significance of management compliance for ohlone tiger beetle conservation.

    Science.gov (United States)

    Cornelisse, Tara M; Duane, Timothy P

    2013-12-01

    Recreation is a leading cause of species decline on public lands, yet sometimes it can be used as a tool for conservation. Engagement in recreational activities, such as hiking and biking, in endangered species habitats may even enhance public support for conservation efforts. We used the case of the endangered Ohlone tiger beetle (Cicindela ohlone) to investigate the effect of biking and hiking on the beetle's behavior and the role of recreationists' knowledge of and attitudes toward Ohlone tiger beetle in conservation of the species. In Inclusion Area A on the University of California Santa Cruz (U.S.A.) campus, adult Ohlone tiger beetles mate and forage in areas with bare ground, particularly on recreational trails; however, recreation disrupts these activities. We tested the effect of recreation on Ohlone tiger beetles by observing beetle behavior on trails as people walked and road bikes at slow and fast speed and on trails with no recreation. We also surveyed recreationists to investigate how their knowledge of the beetle affected their attitudes toward conservation of the beetle and stated compliance with regulations aimed at beetle conservation. Fast cycling caused the beetles to fly off the trail more often and to fly farther than slow cycling or hiking. Slow cycling and hiking did not differ in their effect on the number of times and distance the beetles flew off the trail. Recreationists' knowledge of the beetle led to increased stated compliance with regulations, and this stated compliance is likely to have tangible conservation outcomes for the beetle. Our results suggest management and education can mitigate the negative effect of recreation and promote conservation of endangered species. Efectos del Conocimiento de una Especie en Peligro sobre las Actitudes y Comportamientos Declarados de los Recreacionistas y el Significado del Manejo de la Conformidad para la Conservación del Escarabajo Tigre de Ohlone. PMID:23869997

  6. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    Science.gov (United States)

    Tabata, Jun; De Moraes, Consuelo M; Mescher, Mark C

    2011-01-01

    Powdery mildews (Erysiphales) are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae) feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata) infected by powdery mildew (Podosphaera sp.) and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata) to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  7. Modeling a historical mountain pine beetle outbreak using Landsat MSS and multiple lines of evidence

    Science.gov (United States)

    Assal, Timothy J.; Sibold, Jason; Reich, Robin M.

    2014-01-01

    Mountain pine beetles are significant forest disturbance agents, capable of inducing widespread mortality in coniferous forests in western North America. Various remote sensing approaches have assessed the impacts of beetle outbreaks over the last two decades. However, few studies have addressed the impacts of historical mountain pine beetle outbreaks, including the 1970s event that impacted Glacier National Park. The lack of spatially explicit data on this disturbance represents both a major data gap and a critical research challenge in that wildfire has removed some of the evidence from the landscape. We utilized multiple lines of evidence to model forest canopy mortality as a proxy for outbreak severity. We incorporate historical aerial and landscape photos, aerial detection survey data, a nine-year collection of satellite imagery and abiotic data. This study presents a remote sensing based framework to (1) relate measurements of canopy mortality from fine-scale aerial photography to coarse-scale multispectral imagery and (2) classify the severity of mountain pine beetle affected areas using a temporal sequence of Landsat data and other landscape variables. We sampled canopy mortality in 261 plots from aerial photos and found that insect effects on mortality were evident in changes to the Normalized Difference Vegetation Index (NDVI) over time. We tested multiple spectral indices and found that a combination of NDVI and the green band resulted in the strongest model. We report a two-step process where we utilize a generalized least squares model to account for the large-scale variability in the data and a binary regression tree to describe the small-scale variability. The final model had a root mean square error estimate of 9.8% canopy mortality, a mean absolute error of 7.6% and an R2 of 0.82. The results demonstrate that a model of percent canopy mortality as a continuous variable can be developed to identify a gradient of mountain pine beetle severity on the

  8. Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (Coleoptera: Gyrinidae).

    Science.gov (United States)

    Xu, Zhonghua; Lenaghan, Scott C; Reese, Benjamin E; Jia, Xinghua; Zhang, Mingjun

    2012-01-01

    Whirligig beetles (Coleoptera, Gyrinidae) can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle's legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots.

  9. Hydrogen Isotopes as a Sentinel of Biological Invasion by the Japanese Beetle, Popillia japonica (Newman.

    Directory of Open Access Journals (Sweden)

    Bruce A Hungate

    Full Text Available Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman captured near the Portland International Airport (Oregon, U.S.A.. The δ2H of Japanese beetle specimens collected from sites across the contiguous U.S.A. reflected the δ2H of local precipitation, a relationship similar to that documented for other organisms, and one confirming the utility of δ2H as a geographic fingerprint. Within weeks after experimental relocation to a new isotopic environment, the δ2H of beetles changed linearly with time, demonstrating the potential for δ2H to also mark the timing of arrival to a new location. We used a hierarchical Bayesian model to estimate the recent geographical origin and timing of arrival of each specimen based on its δ2H value. The geographic resolution was broad, with values consistent with multiple regions of origin in the eastern U.S.A., slightly favoring the southeastern U.S.A. as the more likely source. Beetles trapped from 2007-2010 had arrived 30 or more days prior to trapping, whereas the median time since arrival declined to 3-7 days for beetles trapped from 2012-2014. This reduction in the time between arrival and trapping at the Portland International Airport supports the efficacy of trapping and spraying to prevent establishment. More generally, our analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure.

  10. Hydrogen Isotopes as a Sentinel of Biological Invasion by the Japanese Beetle, Popillia japonica (Newman).

    Science.gov (United States)

    Hungate, Bruce A; Kearns, Diana N; Ogle, Kiona; Caron, Melanie; Marks, Jane C; Rogg, Helmuth W

    2016-01-01

    Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H) records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman) captured near the Portland International Airport (Oregon, U.S.A.). The δ2H of Japanese beetle specimens collected from sites across the contiguous U.S.A. reflected the δ2H of local precipitation, a relationship similar to that documented for other organisms, and one confirming the utility of δ2H as a geographic fingerprint. Within weeks after experimental relocation to a new isotopic environment, the δ2H of beetles changed linearly with time, demonstrating the potential for δ2H to also mark the timing of arrival to a new location. We used a hierarchical Bayesian model to estimate the recent geographical origin and timing of arrival of each specimen based on its δ2H value. The geographic resolution was broad, with values consistent with multiple regions of origin in the eastern U.S.A., slightly favoring the southeastern U.S.A. as the more likely source. Beetles trapped from 2007-2010 had arrived 30 or more days prior to trapping, whereas the median time since arrival declined to 3-7 days for beetles trapped from 2012-2014. This reduction in the time between arrival and trapping at the Portland International Airport supports the efficacy of trapping and spraying to prevent establishment. More generally, our analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure. PMID:26959686

  11. Hydrogen Isotopes as a Sentinel of Biological Invasion by the Japanese Beetle, Popillia japonica (Newman)

    Science.gov (United States)

    Ogle, Kiona; Caron, Melanie; Marks, Jane C.; Rogg, Helmuth W.

    2016-01-01

    Invasive species alter ecosystems, threaten native and endangered species, and have negative economic impacts. Knowing where invading individuals are from and when they arrive to a new site can guide management. Here, we evaluated how well the stable hydrogen isotope composition (δ2H) records the recent origin and time since arrival of specimens of the invasive Japanese beetle (Popillia japonica Newman) captured near the Portland International Airport (Oregon, U.S.A.). The δ2H of Japanese beetle specimens collected from sites across the contiguous U.S.A. reflected the δ2H of local precipitation, a relationship similar to that documented for other organisms, and one confirming the utility of δ2H as a geographic fingerprint. Within weeks after experimental relocation to a new isotopic environment, the δ2H of beetles changed linearly with time, demonstrating the potential for δ2H to also mark the timing of arrival to a new location. We used a hierarchical Bayesian model to estimate the recent geographical origin and timing of arrival of each specimen based on its δ2H value. The geographic resolution was broad, with values consistent with multiple regions of origin in the eastern U.S.A., slightly favoring the southeastern U.S.A. as the more likely source. Beetles trapped from 2007–2010 had arrived 30 or more days prior to trapping, whereas the median time since arrival declined to 3–7 days for beetles trapped from 2012–2014. This reduction in the time between arrival and trapping at the Portland International Airport supports the efficacy of trapping and spraying to prevent establishment. More generally, our analysis shows how stable isotopes can serve as sentinels of biological invasions, verifying the efficacy of control measures, or, alternatively, indicating when those measures show signs of failure. PMID:26959686

  12. Pupal remodeling and the evolution and development of alternative male morphologies in horned beetles

    Directory of Open Access Journals (Sweden)

    Moczek Armin P

    2007-08-01

    Full Text Available Abstract Background How novel morphological traits originate and diversify represents a major frontier in evolutionary biology. Horned beetles are emerging as an increasingly popular model system to explore the genetic, developmental, and ecological mechanisms, as well as the interplay between them, in the genesis of novelty and diversity. The horns of beetles originate during a rapid growth phase during the prepupal stage of larval development. Differential growth during this period is either implicitly or explicitly assumed to be the sole mechanism underlying differences in horn expression within and between species. Here I focus on male horn dimorphisms, a phenomenon at the center of many studies in behavioral ecology and evolutionary development, and quantify the relative contributions of a previously ignored developmental process, pupal remodeling, to the expression of male dimorphism in three horned beetle species. Results Prepupal growth is not the only determinant of differences in male horn expression. Instead, following their initial prepupal growth phase, beetles may be extensively remodeled during the subsequent pupal stage in a sex and size-dependent manner. Specifically, male dimorphism in the three Onthophagus species studied here was shaped not at all, partly or entirely by such pupal remodeling rather than differential growth, suggesting that pupal remodeling is phylogenetically widespread, evolutionarily labile, and developmentally flexible. Conclusion This study is the first to document that male dimorphism in horned beetles is the product of two developmentaly dissociated processes: prepupal growth and pupal remodeling. More generally, adult morphology alone appears to provide few clues, if any, as to the relative contributions of both processes to the expression of alternative male morphs, underscoring the importance of developmental studies in efforts aimed at understanding the evolution of adult diversity patterns.

  13. Spatial and temporal patterns of beetles associated with coarse woody debris in managed bottomland hardwood forests.

    Energy Technology Data Exchange (ETDEWEB)

    Ulyshen, M., D.; Hanula, J., L.; Horn, S.; Kilgo, J., C.; Moorman, C., E.

    2004-05-13

    For. Ecol. and Mgt. 199:259-272. Malaise traps were used to sample beetles in artificial canopy gaps of different size (0.13 ha, 0.26 ha, and0.50 ha) and age in a South Carolina bottomland hardwood forest. Traps were placed at the center, edge, and in the surrounding forest of each gap. Young gaps (ý 1 year) had large amounts of coarse woody debris compared to the surrounding forest, while older gaps (ý 6 years) had virtually none. The total abundance and diversity of wood-dwelling beetles (Buprestidae, Cerambycidae, Brentidae, Bostrichidae, and Curculionidae (Scolytinae and Platypodinae)) was higher in the center of young gaps than in the center of old gaps. The abundance was higher in the center of young gaps than in the surrounding forest, while the forest surrounding old gaps and the edge of old gaps had a higher abundance and diversity of wood-dwelling beetles than did the center of old gaps. There was no difference in wood-dwelling beetle abundance between gaps of different size, but diversity was lower in 0.13 ha old gaps than in 0.26 ha or 0.50 ha old gaps. We suspect that gap size has more of an effect on woodborer abundance than indicated here because malaise traps sample a limited area. The predaceous beetle family Cleridae showed a very similar trend to that of the woodborers. Coarse woody debris is an important resource for many organisms, and our results lend further support to forest management practices that preserve coarse woody debris created during timber removal.

  14. Metal fate and partitioning in soils under bark beetle-killed trees.

    Science.gov (United States)

    Bearup, Lindsay A; Mikkelson, Kristin M; Wiley, Joseph F; Navarre-Sitchler, Alexis K; Maxwell, Reed M; Sharp, Jonathan O; McCray, John E

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid-liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of water

  15. Dung Beetles along a Tropical Altitudinal Gradient: Environmental Filtering on Taxonomic and Functional Diversity

    Science.gov (United States)

    Nunes, Cássio Alencar; Braga, Rodrigo Fagundes; Figueira, José Eugênio Cortes; Neves, Frederico de Siqueira; Fernandes, G. Wilson

    2016-01-01

    Mountains provide an interesting context in which to study the many facets of biodiversity in response to macroclimate, since environmental conditions change rapidly due to elevation. Although the decrease in biodiversity with increasing elevation is generally accepted, our understanding of the variation of functional diversity along altitudinal gradients is still poorly known. The partitioning of diversity into spatial components can help to understand the processes that influence the distribution of species, and these studies are urgently needed in face of the increasing threats to mountain environments throughout the world. We describe the distribution of dung beetle diversity along an altitudinal gradient on a tropical mountain in southeastern Brazil, including the spatial partitioning of taxonomic and functional diversities. The altitudinal gradient ranged from 800 up to 1400 m a.s.l. and we collected dung beetles at every 100 m of altitude. We used the Rao Index to calculate γ, α and β diversity for taxonomic and functional diversity of dung beetles. Climatic, soil and vegetation variables were used to explain variation in community attributes along the altitudinal gradient. Dung beetle richness declined with altitude and was related to climatic and vegetation variables, but functional diversity did not follow the same pattern. Over 50% of γ taxonomic diversity was caused by among altitudes diversity (β), while almost 100% of functional diversity was due to the α component. Contrasting β taxonomic with β functional diversity, we suggest that there is ecological redundancy among communities and that the environment is filtering species in terms of the Grinnellian niche, rather than the Eltonian niche. β taxonomic diversity is caused mainly by the turnover component, reinforcing the hypothesis of environmental filtering. Global warming may have strong effects on mountain communities due to upslope range shifts and extinctions, and these events will

  16. Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (Coleoptera: Gyrinidae.

    Directory of Open Access Journals (Sweden)

    Zhonghua Xu

    Full Text Available Whirligig beetles (Coleoptera, Gyrinidae can fly through the air, swiftly swim on the surface of water, and quickly dive across the air-water interface. The propulsive efficiency of the species is believed to be one of the highest measured for a thrust generating apparatus within the animal kingdom. The goals of this research were to understand the distinctive biological mechanisms that allow the beetles to swim and dive, while searching for potential bio-inspired robotics applications. Through static and dynamic measurements obtained using a combination of microscopy and high-speed imaging, parameters associated with the morphology and beating kinematics of the whirligig beetle's legs in swimming and diving were obtained. Using data obtained from these experiments, dynamics models of both swimming and diving were developed. Through analysis of simulations conducted using these models it was possible to determine several key principles associated with the swimming and diving processes. First, we determined that curved swimming trajectories were more energy efficient than linear trajectories, which explains why they are more often observed in nature. Second, we concluded that the hind legs were able to propel the beetle farther than the middle legs, and also that the hind legs were able to generate a larger angular velocity than the middle legs. However, analysis of circular swimming trajectories showed that the middle legs were important in maintaining stable trajectories, and thus were necessary for steering. Finally, we discovered that in order for the beetle to transition from swimming to diving, the legs must change the plane in which they beat, which provides the force required to alter the tilt angle of the body necessary to break the surface tension of water. We have further examined how the principles learned from this study may be applied to the design of bio-inspired swimming/diving robots.

  17. Genetic Structure of Water Chestnut Beetle: Providing Evidence for Origin of Water Chestnut

    Science.gov (United States)

    Qin, Jing; Lu, Ming-Xing; Du, Yu-Zhou

    2016-01-01

    Water chestnut beetle (Galerucella birmanica Jacoby) is a pest of the water chestnut (Trapa natans L.). To analyze the phylogeny and biogeography of the beetle and provide evidence for the origin of T. natans in China, we conducted this by using three mitochondrial genes (COI, COII and Cytb) and nuclear ITS2 ribosomal DNA of G. birmanica. As for mtDNA genes, the beetle could be subdivided into three groups: northeastern China (NEC), central-northern-southern China (CC-NC-SC) and southwestern China (SWC) based on SAMOVA, phylogenetic analyses and haplotype networks. But for ITS2, no obvious lineages were obtained but individuals which were from NEC region clustered into one clade, which might be due to sequence conservation of ITS2. Significant genetic variation was observed among the three groups with infrequent gene flow between groups, which may have been restricted due to natural barriers and events in the Late Pleistocene. Based on our analyses of genetic variation in the CC-NC-SC geographical region, the star-like haplotype networks, approximate Bayesian computation, niche modelling and phylogeographic variation of the beetle, we concluded that the beetle population has been lasting in the lower, central reaches of the Yangtze River Basin with its host plant, water chestnut, which is consistent with archaeological records. Moreover, we speculate that the CC-NC-SC population of G. birmanica may have undergone a period of expansion coincident with domestication of the water chestnut approximately 113,900–126,500 years ago. PMID:27459279

  18. TrOn: an anatomical ontology for the beetle Tribolium castaneum.

    Science.gov (United States)

    Dönitz, Jürgen; Grossmann, Daniela; Schild, Inga; Schmitt-Engel, Christian; Bradler, Sven; Prpic, Nikola-Michael; Bucher, Gregor

    2013-01-01

    In a morphological ontology the expert's knowledge is represented in terms, which describe morphological structures and how these structures relate to each other. With the assistance of ontologies this expert knowledge is made processable by machines, through a formal and standardized representation of terms and their relations to each other. The red flour beetle Tribolium castaneum, a representative of the most species rich animal taxon on earth (the Coleoptera), is an emerging model organism for development, evolution, physiology, and pest control. In order to foster Tribolium research, we have initiated the Tribolium Ontology (TrOn), which describes the morphology of the red flour beetle. The content of this ontology comprises so far most external morphological structures as well as some internal ones. All modeled structures are consistently annotated for the developmental stages larva, pupa and adult. In TrOn all terms are grouped into three categories: Generic terms represent morphological structures, which are independent of a developmental stage. In contrast, downstream of such terms are concrete terms which stand for a dissectible structure of a beetle at a specific life stage. Finally, there are mixed terms describing structures that are only found at one developmental stage. These terms combine the characteristics of generic and concrete terms with features of both. These annotation principles take into account the changing morphology of the beetle during development and provide generic terms to be used in applications or for cross linking with other ontologies and data resources. We use the ontology for implementing an intuitive search function at the electronic iBeetle-Base, which stores morphological defects found in a genome wide RNA interference (RNAi) screen. The ontology is available for download at http://ibeetle-base.uni-goettingen.de.

  19. Metal fate and partitioning in soils under bark beetle-killed trees.

    Science.gov (United States)

    Bearup, Lindsay A; Mikkelson, Kristin M; Wiley, Joseph F; Navarre-Sitchler, Alexis K; Maxwell, Reed M; Sharp, Jonathan O; McCray, John E

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid-liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of water

  20. Erwinia typographi sp. nov., isolated from bark beetle (Ips typographus) gut.

    Science.gov (United States)

    Skrodenyte-Arbaciauskiene, V; Radziute, S; Stunzenas, V; Būda, V

    2012-04-01

    Gram-negative-staining bacteria that were resistant to monoterpene myrcene (7-methyl-3-methylene-1.6-octadiene, C10H16, at concentrations of up to 10 µl ml(-1) in TSB) were isolated from the gut contents of adult bark beetles Ips typographus (Coleoptera, Scolytidae). The beetles were collected from the bark of Norway spruce (Picea abies) in Lithuania. Bark beetles feed on conifers, which produce myrcene among many other defensive compounds. It has been suggested that the micro-organisms present within the beetles' guts could be involved in their resistance towards this plant defensive compound. The most resistant bacterial strains were isolated and characterized by phenotypic assays as well as fatty acid analysis, 16S rRNA gene sequencing, multilocus sequence analyses (MLSA) based on the rpoB, atpD and infB genes and DNA-DNA hybridization. Biochemical characterization indicated that the bacteria belonged to the family Enterobacteriaceae. Phylogenetic analyses of the 16S rRNA gene sequences and MLSA of the novel strains revealed that they belonged to the genus Erwinia, but represented a novel species. The dominant cellular fatty acids were C16:0 and C17:0 cyclo. The DNA G+C content was 49.1 mol%. The results obtained in this study indicated that these bacteria from the bark beetle gut represented a novel species, for which the name Erwinia typographi sp. nov. is proposed, with the type strain DSM 22678T (=Y1T=LMG 25347T).

  1. Olfactory cues from plants infected by powdery mildew guide foraging by a mycophagous ladybird beetle.

    Directory of Open Access Journals (Sweden)

    Jun Tabata

    Full Text Available Powdery mildews (Erysiphales are economically important plant pathogens that attack many agricultural crops. Conventional management strategies involving fungicide application face challenges, including the evolution of resistance and concerns over impacts on non-target organisms, that call for investigation of more sustainable alternatives. Mycophagous ladybird beetles (Coleoptera: Coccinellidae feed on powdery mildew and have considerable potential as biological control agents; however, the foraging ecology and behavior of these beetles is not well understood. Here we document the olfactory cues presented by squash plants (Cucurbita moschata infected by powdery mildew (Podosphaera sp. and the behavioral responses of twenty-spotted ladybird beetles (Psyllobora vigintimaculata to these cues. Volatile analyses through gas chromatography revealed a number of volatile compounds characteristic of infected plants, including 3-octanol and its analogues 1-octen-3-ol and 3-octanone. These compounds are typical "moldy" odorants previously reported in volatiles collected from other fungi. In addition, infected plants exhibited elevated emissions of several compounds also observed in collections from healthy leaves, including linalool and benzyl alcohol, which are reported to have anti-fungal properties. In Y-tube choice assays, P. vigintimaculata beetles displayed a significant preference for the odors of infected plants compared to those of healthy plants. Moreover, beetles exhibited strong attraction to one individual compound, 1-octen-3-ol, which was the most abundant of the characteristic fungal compounds identified. These results enhance our understanding of the olfactory cues that guide foraging by mycophagous insects and may facilitate the development of integrated disease-management strategies informed by an understanding of underlying ecological mechanisms.

  2. Mountain Pine Beetle Impact on Stand-level Water Balance

    Science.gov (United States)

    Reilly, J. A.; Woods, S.

    2012-12-01

    The recent mountain pine beetle (MPB) epidemic has disturbed millions of hectares throughout the Rocky Mountain West. The most persistent effects of MPB infestation on the stand-level water balance are likely concomitant with the grey stage of the disturbance cycle. The grey stage occurs within 3 to 5 years of the initial infestation after the needles of an infected tree have turned red and fallen off due to tree death. Large numbers of grey-stage trees in a stand may remain on the landscape for up to 20 years, until windthrow or another disturbance sends them to the forest floor. The greater temporal persistence of the grey stage over antecedent stages suggested that an examination of the grey stage would best capture long-term effects of MPB disturbance on the forest water balance. In this study we hypothesized that changes to the forest canopy associated with MPB disturbance may affect the stand-level water balance. The needle loss and windthrow that follows MPB disturbance is expected to increase the amount of precipitation reaching the forest floor. Additionally, overstory evapotranspiration (ET) demand is expected to decrease as MPB-induced tree mortality increases within disturbed stands. The expected cumulative effect of MPB disturbance on the stand-level water balance is an increase in soil moisture due to increased precipitation inputs and reduced overstory ET. This study was conducted in Lubrecht Experimental Forest and adjacent Bureau of Land Management areas near Missoula, Montana. Sub-canopy measurements of soil moisture, precipitation (rain and snow water equivalent), overstory transpiration and micro-meteorological data (net radiation, temperature, wind speed, etc.) were collected in three 50 x 50 meter plots. The plots consisted of a uniform stand of grey-stage lodgepole pine, a uniform stand of non-infested lodgepole pine, and a recent clear-cut stand, which served as a control unit. Water balances for each stand were constructed using a mass

  3. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): a nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Nansen, Christian; Stokes, Bryan; James, Jacob; Porter, Patrick; Shields, Eilson J; Wheeler, Terry; Meikle, William G

    2013-04-01

    The larger black flour beetles, Cynaeus angustus (LeConte) (Coleoptera: Tenebrionidae), feeds on saprophytic fungi found in gin trash piles and occasionally becomes a nuisance pest in adjacent homes and businesses. The potential of Steinernema carpocapsae 'NY 001,' as a potential control agent of larger black flour beetle under experimental conditions was examined with particular reference to the importance of soil moisture content. Without prospects of insecticides being labeled for control of larger black flour beetle in gin trash, the data presented here support further research into applications of entomopathogenic nematodes underneath gin trash piles as a way to minimize risk of larger black flour beetle populations causing nuisance to nearby homes and businesses.

  4. Biological control agent of larger black flour beetles (Coleoptera: Tenebrionidae): a nuisance pest developing in cotton gin trash piles.

    Science.gov (United States)

    Nansen, Christian; Stokes, Bryan; James, Jacob; Porter, Patrick; Shields, Eilson J; Wheeler, Terry; Meikle, William G

    2013-04-01

    The larger black flour beetles, Cynaeus angustus (LeConte) (Coleoptera: Tenebrionidae), feeds on saprophytic fungi found in gin trash piles and occasionally becomes a nuisance pest in adjacent homes and businesses. The potential of Steinernema carpocapsae 'NY 001,' as a potential control agent of larger black flour beetle under experimental conditions was examined with particular reference to the importance of soil moisture content. Without prospects of insecticides being labeled for control of larger black flour beetle in gin trash, the data presented here support further research into applications of entomopathogenic nematodes underneath gin trash piles as a way to minimize risk of larger black flour beetle populations causing nuisance to nearby homes and businesses. PMID:23786050

  5. Residual effect of two insecticides and neem oil against epilachna beetle, Epilachna vigintioctopunctata (Fab.) on bitter gourd

    OpenAIRE

    Mala, M.; Islam, M.M.U.; Islam, K.S.

    2012-01-01

    Experiments were conducted in the Laboratory and Entomology Field Laboratory to determine the residual effect of two insecticides (viz. Siperin 10EC, Malathion 57EC) and a botanical (Neem oil) against Epilachna beetle, Epilachna vigintioctopunctata (Fab.) during the period from February to May 2009. To evaluate the residual effect of one synthetic and one organophosphors pesticides and one botanical pesticide on the mortality of Epilachna beetle, different concentrations of the insecticides (...

  6. Comparative repellency effect of three plant extracts on Paederus beetles (Coleoptera: Staphylinidae), the cause of linear dermatitis in Iran

    OpenAIRE

    Dariush Gaffari; Maryam Hakimi Parizi; Abbas Aghaei Afshar; Siavosh Tirgari

    2016-01-01

    Objective: To investigate the repellent effect of neem, juniper and eucalyptus extracts as a form of protection against Paederus beetles, which are a cause of linear dermatitis in Iran. Methods: After collecting and extracting plant samples, the extracts were tested on Paederus beetles in three concentrations (2.5%, 5.0% and 10.0%) with direct method under laboratory conditions. The data were analyzed using SPSS software (version 20). Results: The results indicated that there was a sign...

  7. A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system

    Energy Technology Data Exchange (ETDEWEB)

    Truong, Q T; Nguyen, Q V; Park, H C; Goo, N S [Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701 (Korea, Republic of); Truong, V T; Byun, D Y, E-mail: hcpark@konkuk.ac.kr [National Research Laboratory for Biomimetics and Intelligent Microsystems, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2011-09-15

    We present an unsteady blade element theory (BET) model to estimate the aerodynamic forces produced by a freely flying beetle and a beetle-mimicking flapping wing system. Added mass and rotational forces are included to accommodate the unsteady force. In addition to the aerodynamic forces needed to accurately estimate the time history of the forces, the inertial forces of the wings are also calculated. All of the force components are considered based on the full three-dimensional (3D) motion of the wing. The result obtained by the present BET model is validated with the data which were presented in a reference paper. The difference between the averages of the estimated forces (lift and drag) and the measured forces in the reference is about 5.7%. The BET model is also used to estimate the force produced by a freely flying beetle and a beetle-mimicking flapping wing system. The wing kinematics used in the BET calculation of a real beetle and the flapping wing system are captured using high-speed cameras. The results show that the average estimated vertical force of the beetle is reasonably close to the weight of the beetle, and the average estimated thrust of the beetle-mimicking flapping wing system is in good agreement with the measured value. Our results show that the unsteady lift and drag coefficients measured by Dickinson et al are still useful for relatively higher Reynolds number cases, and the proposed BET can be a good way to estimate the force produced by a flapping wing system.

  8. Pastoral practices to reverse shrub encroachment of sub-alpine grasslands: dung beetles (coleoptera, scarabaeoidea) respond more quickly than vegetation.

    Science.gov (United States)

    Tocco, Claudia; Probo, Massimiliano; Lonati, Michele; Lombardi, Giampiero; Negro, Matteo; Nervo, Beatrice; Rolando, Antonio; Palestrini, Claudia

    2013-01-01

    In recent decades, pastoral abandonment has produced profound ecological changes in the Alps. In particular, the reduction in grazing has led to extensive shrub encroachment of semi-natural grasslands, which may represent a threat to open habitat biodiversity. To reverse shrub encroachment, we assessed short-term effects of two different pastoral practices on vegetation and dung beetles (Coleoptera, Scarabaeoidea). Strategic placement of mineral mix supplements (MMS) and arrangement of temporary night camp areas (TNCA) for cattle were carried out during summer 2011 in the Val Troncea Natural Park, north-western Italian Alps. In 2012, one year after treatment, a reduction in shrub cover and an increase in bare ground cover around MMS sites was detected. A more intense effect was detected within TNCA through increases in forage pastoral value, and in the cover and height of the herbaceous layer. Immediately after treatment, changes in dung beetle diversity (total abundance, species richness, Shannon diversity, taxonomic and functional diversity) showed a limited disturbance effect caused by high cattle density. In contrast, dung beetle diversity significantly increased one year later both at MMS and TNCA sites, with a stronger effect within TNCA. Multivariate Regression Trees and associated Indicator Value analyses showed that some ecologically relevant dung beetle species preferred areas deprived of shrub vegetation. Our main conclusions are: i) TNCA are more effective than MMS in terms of changes to vegetation and dung beetles, ii) dung beetles respond more quickly than vegetation to pastoral practices, and iii) the main driver of the rapid response by dung beetles is the removal of shrubs. The resulting increase in dung beetle abundance and diversity, which are largely responsible for grassland ecosystem functioning, may have a positive effect on meso-eutrophic grassland restoration. Shrub encroachment in the Alps may therefore be reversed, and restoration of

  9. First measurement of the performance of a Beetle1.2 chip reading out a VELO sensor

    CERN Document Server

    Buytaert, J; Eckstein, D; Facius, K; Palacios, J

    2003-01-01

    First results of an analysis of test beam data taken with a Beetle1.2 chip reading out a PR03 VELO prototype sensor are presented. Beetle bias settings were scanned in order to find the optimum setting which meets the requirement of the VELO concerning noise, signal and signal to noise ratio. The analysis steps are described and the results are summarised in this note.

  10. Aiming for the management of the small hive beetle, Aethina tumida, using relative humidity and diatomaceous earth

    OpenAIRE

    Cribb, Bronwen; Rice, Steven; Leemon, Diana

    2013-01-01

    International audience Small hive beetles (SHBs) are a global pest of European honeybee colonies. In the laboratory, the survival of adult SHBs was evaluated in relation to relative humidity (RH = 56, 64, 73, 82 and 96 %) and treatment with diatomaceous earth (DE) across 4 days. Low RH reduced survival. The application of DE reduced survival in addition to RH. Adults treated with corn flour (control) showed no difference in survival from untreated beetles. Scanning electron microscopy imag...

  11. Removal of small hive beetle (Aethina tumida) eggs and larvae by African honeybee colonies (Apis mellifera scutellata)

    OpenAIRE

    Neumann, Peter; Härtel, Stephan

    2004-01-01

    International audience The removal of small hive beetle [SHB] eggs and larvae was studied in seven Apis mellifera scutellata colonies. Because female beetles can protect their eggs by oviposition in small cracks we introduced unprotected eggs and protected eggs into these colonies. Whereas all unprotected eggs were removed within 24 hours, $66 \\pm 12$% of the protected eggs remained, showing that SHB eggs are likely to hatch in infested colonies. However, all larvae introduced into the sam...

  12. Metagenomic Profiling Reveals Lignocellulose Degrading System in a Microbial Community Associated with a Wood-Feeding Beetle

    OpenAIRE

    Scully, Erin D.; Scott M Geib; Kelli Hoover; Ming Tien; Tringe, Susannah G; Barry, Kerrie W.; Tijana Glavina del Rio; Mansi Chovatia; Herr, Joshua R.; Carlson, John E

    2013-01-01

    The Asian longhorned beetle ( Anoplophora glabripennis ) is an invasive, wood-boring pest that thrives in the heartwood of deciduous tree species. A large impediment faced by A . glabripennis as it feeds on woody tissue is lignin, a highly recalcitrant biopolymer that reduces access to sugars and other nutrients locked in cellulose and hemicellulose. We previously demonstrated that lignin, cellulose, and hemicellulose are actively deconstructed in the beetle gut and that the gut harbors an as...

  13. Indirect effects of emerald ash borer-induced ash mortality and canopy gap formation on epigaeic beetles.

    Science.gov (United States)

    Gandhi, Kamal J K; Smith, Annemarie; Hartzler, Diane M; Herms, Daniel A

    2014-06-01

    Exotic herbivorous insects have drastically and irreversibly altered forest structure and composition of North American forests. For example, emerald ash borer (Agrilus planipennis Fairmaire) from Asia has caused wide-scale mortality of ash trees (Fraxinus spp.) in eastern United States and Canada. We studied the effects of forest changes resulting from emerald ash borer invasion on epigaeic or ground beetles (Coleoptera: Carabidae) along a gradient of ash dieback and gap sizes in southeastern Michigan. Ground beetles were sampled in hydric, mesic, and xeric habitats in which black (Fraxinus nigra Marshall), green (Fraxinus pennsylvanica Marshall), and white (Fraxinus americana L.) ash were the most common species, respectively. During 2006-2007, we trapped 2,545 adult ground beetles comprising 52 species. There was a negative correlation between percent ash tree mortality in 2006 and catches of all beetles. Catches of Agonum melanarium Dejean (in 2006) and Pterostichus mutus (Say) (in 2006-2007) were negatively correlated with tree mortality and gap size, respectively. However, catches of Pterostichus corvinus Dejean were positively correlated with gap size in 2006. As ash mortality and average gap size increased from 2006 to 2007, catches of all beetles as well as P. mutus and Pterostichus stygicus (Say) increased (1.3-3.9 times), while species diversity decreased, especially in mesic and xeric stands. Cluster analysis revealed that beetle assemblages in hydric and mesic stand diverged (25 and 40%, respectively) in their composition from 2006 to 2007, and that hydric stands had the most unique beetle assemblages. Overall, epigaeic beetle assemblages were altered in ash stands impacted by emerald ash borer; however, these impacts may dissipate as canopy gaps close. PMID:24690169

  14. Field trial of diatomaceous earth in cotton gin trash against the larger black flour beetle, Cynaeus angustus (Coleoptera: Tenebrionidae).

    Science.gov (United States)

    McIntyre, N E; Porter, P

    2004-04-01

    The larger black flour beetle, Cynaeus angustus (LeConte) (Coleoptera: Tenebrionidae), is an agricultural and home nuisance pest in North America. In the Southern High Plains of Texas, the larger black flour beetle is associated with cotton gin trash, by-products of cotton ginning that are field stored in large piles for economic reasons. Larger black flour beetle overwinter in gin trash piles but may disperse by the millions in summer and autumn, entering houses as far as 2 km away where they cause distress to homeowners. Because > 1.2 billion kg of gin trash is produced annually in Texas alone, the potential consequences of the larger black flour beetle are enormous. We conducted a field experiment that evaluated the efficacy of diatomaceous earth (DE) on the abundance of the larger black flour beetle in gin trash. There were no significant differences in numbers of larger black flour beetle among treatments and controls (mean number of adults summed over time: controls = 115.41, layered treatment = 87.60, top and bottom treatment = 96.50, bottom treatment = 115.16). There were sufficient numbers of beetles in treated piles to still pose a potential home nuisance problem, likely because the moisture content of field-stored gin trash is too high for DE to work effectively. Therefore, treating cotton gin trash with diatomaceous earth will probably be unable to prevent home infestations of larger black flour beetle. Location within a gin trash pile and season influenced pest numbers, which has implications for long-term field storage of cotton gin trash. PMID:15154486

  15. Predation of amphibians by carabid beetles of the genus Epomis found in the central coastal plain of Israel

    OpenAIRE

    Gil Wizen; Avital Gasith

    2011-01-01

    Abstract The genus Epomis is represented in Israel by two species: Epomis dejeani and Epomis circumscriptus . In the central coastal plain these species are sympatric but do not occur in the same sites. The objective of this study was to record and describe trophic interactions between the adult beetles and amphibian species occurring in the central coastal plain of Israel. Day and night surveys at three sites, as well as controlled laboratory experiments were conducted for studying beetle-am...

  16. Two newly introduced tropical bark and ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) damaging figs (Ficus carica) in southern Italy.

    Science.gov (United States)

    Faccoli, Massimo; Campo, Giuseppe; Perrotta, Giancarlo; Rassati, Davide

    2016-01-01

    In summer 2014, the bark beetle Hypocryphalus scabricollis (Eichhoff) and the ambrosia beetle Xyleborus bispinatus Eichhoff, species new to Italy and Europe, respectively, were found for the first time in south-eastern Sicily (Italy). Large infestations of the two species were recorded in many plantations of common fig (Ficus carica L.) both in 2014 and 2015. Data concerning insect characteristics, taxonomy, and distribution are briefly reported. PMID:27470760

  17. Genetic variation corroborates subspecific delimitation in the Namib fog-basking beetle, Onymacris unguicularis (Haag) (Tenebrionidae, Coleoptera)

    OpenAIRE

    Trip Lamb; Rachel Pollard; Jason Bond

    2013-01-01

    The fog-basking beetle, Onymacris unguicularis (Haag, 1875), is currently listed as a polytypic form comprising two subspecies. A flightless substrate specialist, the beetle is endemic to vegetationless dunes in the Namib, where southern populations constitute the nominate subspecies, O. u. unguicularis, and populations some 300 km to the north compose O. u. schulzeae Penrith, 1984. Their taxonomic descriptions are based on minor differences in pronotal and prosternal shape, and the phylogene...

  18. Possible living fossil in Bolivia: A new genus of flea beetles with modified hind legs (Coleoptera, Chrysomelidae, Galerucinae, Alticini).

    Science.gov (United States)

    Konstantinov, Alexander S

    2016-01-01

    A new genus (Chanealtica) with three new species (Chanealtica cuevas, Chanealtica ellimon, and Chanealtica maxi) from Bolivia is described and illustrated. It is compared with Aphthonoides Jacoby, 1885, Argopistes Motschulsky, 1860, Metroserrapha Bechyne, 1958, Psylliodes Berthold, 1827 and Psyllototus Nadein, 2010. Remarkably, based on the available characters, among all the flea beetles, Chanealtica is mostly similar to an extinct genus Psyllototus. A discussion of diversity and function of the hind leg in flea beetles is provided.

  19. Rapid Increases in Forest Understory Diversity and Productivity following a Mountain Pine Beetle (Dendroctonus ponderosae) Outbreak in Pine Forests

    OpenAIRE

    Pec, Gregory J.; Justine Karst; Sywenky, Alexandra N.; Cigan, Paul W.; Nadir Erbilgin; Simard, Suzanne W.; Cahill, James F.

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks ar...

  20. Walking to survive. Searching, feeding and egg production of the carabid beetle Pterostichus coerulescens L. (= Poecilus versicolor Sturm).

    OpenAIRE

    Mols, P.J.M.

    1993-01-01

    This study concerns the prey-searching and feeding behaviour of the polyphagous groundbeetle Pterostichus coerulescens L. ( = Poecilus versicolor Sturm), a common species on sandy soils. This ground beetle rarely flies, thus preysearching behaviour involves walking. The beetle is diurnal. As object of research, predators of this kind are very suitable because they can be handled easily, their behaviour can be observed directly or filmed with a video camera. Furthermore they are abundantly ava...

  1. Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize

    OpenAIRE

    Svobodová, Zdeňka

    2016-01-01

    Staphylinid beetles are recommended bioindicators for the pre-market environmental risk assessment of genetically modified (GM) insect protected maize expressing the Cry3Bb1 toxin. Bionomics, food specialization, temperature requirements and size group were assigned for 25 most common staphylinid species. These traits determine the occurrence of staphylinid beetles in the field, the food sources they could utilize and thus also their likely contact with the Cry3Bb1 toxin. The opportunity for ...

  2. Two newly introduced tropical bark and ambrosia beetles (Coleoptera: Curculionidae, Scolytinae) damaging figs (Ficus carica) in southern Italy.

    Science.gov (United States)

    Faccoli, Massimo; Campo, Giuseppe; Perrotta, Giancarlo; Rassati, Davide

    2016-01-01

    In summer 2014, the bark beetle Hypocryphalus scabricollis (Eichhoff) and the ambrosia beetle Xyleborus bispinatus Eichhoff, species new to Italy and Europe, respectively, were found for the first time in south-eastern Sicily (Italy). Large infestations of the two species were recorded in many plantations of common fig (Ficus carica L.) both in 2014 and 2015. Data concerning insect characteristics, taxonomy, and distribution are briefly reported.

  3. Spatial Distibution of Mountain Pine Beetle Outbreaks in Relation to Climate and Stand Characteristics:A Dendroecological Analysis

    Institute of Scientific and Technical Information of China (English)

    Elizabeth M. Campbell; René I. Alfaro; Brad Hawkes

    2007-01-01

    Principal components analysis, followed by K-means cluster analysis, was used to detect variations in the timing and magnitude of Pinus contorta Dougl. ex Loud. growth releases attributed to mountain pine beetle outbreaks in 31 stands of central British Columbia. Four major growth release patterns were identified from 1970 to 2000.Variations in the timing of growth releases among clustered stands corresponded well to aerial survey data indicating the timing of beetle outbreaks in the study area. Redundancy analysis was used to determine how variations in the timing and magnitude of growth releases attributed to beetle outbreaks changed with variations in climate or stand conditions over the study area. The first RDA axis, which accounted for 39% of the variations in growth patterns among stands, was significantly (P<0.05) correlated with gradients in the percentage of pine in stands killed by mountain pine beetle, summer aridity, variation in summer precipitation, distance from initial infestation site, average pine age, and maximum August temperatures. The second RDA axis explained 6% of the variations and was significantly correlated with gradients in the beetle climate suitability index, extreme cold month temperatures, and site index. Comparisons of growth release patterns with aerial survey data and redundancy analyses indicated that dendrochronological techniques are useful for identifying mountain pine beetle outbreaks in central British Columbia, particularly among stands that had a density high enough to produce a growth release signal. Provided future studies account for interannual weather fluctuations, identification of growth increases due to stand thinning caused by beetle outbreaks will be useful for reconstructing the history of beetle outbreaks over much longer time periods.

  4. Response of Coprophagus Beetles (Coleoptera: Scarabaeidae on changes of vegetation structure in various habitat types at Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    CHRISTIAN H. SCHULZE

    2007-01-01

    Full Text Available This study analysed the response of dung beetles − a group of beetles which play a major role in decomposition of dung and animal carcasses − to changes of vegetation structure due to forest conversion to different human-made habitat types at the margin of Lore Lindu National Park. Therefore, dung beetles were sampled at natural forest, cacao agroforestry systems and open area. A total of 28 species of coprophagus beetle species were recorded from the sampled sites. Species richness and abundance of dung beetles, particularly of large species, decreased from forest towards agroforestry systems and open areas. However, more than 80 % of the species recorded in natural forest were found in cacao agroforestry systems Of the measured habitat parameters, particularly the number of tree species, air temperature, and canopy cover had a significant power for explaining changes in dung beetle ensembles along the gradient of land-use intensity.

  5. Diversity and Abundance of Beetle (Coleoptera Functional Groups in a Range of Land Use System in Jambi, Sumatra

    Directory of Open Access Journals (Sweden)

    SURYO HARDIWINOTO

    2009-10-01

    Full Text Available Degradation of tropical rain forest might exert impacts on biodiversity loss and affect the function and stability of the related ecosystems. The objective of this study was to study the impact of land use systems (LUS on the diversity and abundance of beetle functional groups in Jambi area, Sumatra. This research was carried out during the rainy season (May-June of 2004. Inventory and collection of beetles have been conducted using winkler method across six land use systems, i.e. primary forest, secondary forest, Imperata grassland, rubber plantation, oilpalm plantation, and cassava garden. The result showed that a total of 47 families and subfamilies of beetles was found in the study area, and they were classified into four major functional groups, i.e. herbivore, predator, scavenger, and fungivore. There were apparent changes in proportion, diversity, and abundance of beetle functional groups from forests to other land use systems. The bulk of beetle diversity and abundance appeared to converge in primary forest and secondary forest and predatory beetles were the most diverse and the most abundant of the four major functional groups.

  6. Effect of summer fire on cursorial spider (Aranei and beetle (Coleoptera assemblages in meadow steppes of Central European Russia

    Directory of Open Access Journals (Sweden)

    Polchaninova Nina

    2016-12-01

    Full Text Available Fire is an important structuring force for grassland ecosystems. Despite increased incidents of fire in European steppes, their impact on arthropod communities is still poorly studied. We assessed short-term changes in cursorial beetle and spider assemblages after a summer fire in the meadow steppe in Central European Russia. The responses of spider and beetle assemblages to the fire event were different. In the first post-fire year, the same beetle species dominated burnt and unburnt plots, the alpha-diversity of beetle assemblages was similar, and there were no pronounced changes in the proportions of trophic groups. Beetle species richness and activity density increased in the second post-fire year, while that of the spiders decreased. The spider alpha-diversity was lowest in the first post-fire year, and the main dominants were pioneer species. In the second year, the differences in spider species composition and activity density diminished. The main conclusion of our study is that the large-scale intensive summer fire caused no profound changes in cursorial beetle and spider assemblages of this steppe plot. Mitigation of the fire effect is explained by the small plot area, its location at the edge of the fire site and the presence of adjacent undisturbed habitats with herbaceous vegetation.

  7. Effect of bark beetle (Ips typographus L.) attack on bark VOC emissions of Norway spruce (Picea abies Karst.) trees

    Science.gov (United States)

    Ghimire, Rajendra P.; Kivimäenpää, Minna; Blomqvist, Minna; Holopainen, Toini; Lyytikäinen-Saarenmaa, Päivi; Holopainen, Jarmo K.

    2016-02-01

    Climate warming driven storms are evident causes for an outbreak of the European spruce bark beetle (Ips typographus L.) resulting in the serious destruction of mature Norway spruce (Picea abies Karst.) forests in northern Europe. Conifer species are major sources of biogenic volatile organic compounds (BVOCs) in the boreal zone. Climate relevant BVOC emissions are expected to increase when conifer trees defend against bark beetle attack by monoterpene (MT)-rich resin flow. In this study, BVOC emission rates from the bark surface of beetle-attacked and non-attacked spruce trees were measured from two outbreak areas, Iitti and Lahti in southern Finland, and from one control site at Kuopio in central Finland. Beetle attack increased emissions of total MTs 20-fold at Iitti compared to Kuopio, but decreased the emissions of several sesquiterpenes (SQTs) at Iitti. At the Lahti site, the emission rate of α-pinene was positively correlated with mean trap catch of bark beetles. The responsive individual MTs were tricyclene, α-pinene, camphene, myrcene, limonene, 1,8-cineole and bornyl acetate in both of the outbreak areas. Our results suggest that bark beetle outbreaks affect local BVOC emissions from conifer forests dominated by Norway spruce. Therefore, the impacts of insect outbreaks are worth of consideration to global BVOC emission models.

  8. Effect of land use change on ecosystem function of dung beetles: experimental evidence from Wallacea Region in Sulawesi, Indonesia

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2011-07-01

    Full Text Available Shahabuddin (2011 Effect of land use change on ecosystem function of dung beetles: experimental evidence from Wallacea Region in Sulawesi, Indonesia. Biodiversitas 12: 177-181. The deforestation of tropical forests and their subsequent conversion to human-dominated land-use systems is one of the most significant causes of biodiversity loss. However clear understanding of the links between ecological functions and biodiversity is needed to evaluate and predict the true environmental consequences of human activities. This study provided experimental evidence comparing ecosystem function of dung beetles across a land use gradient ranging from natural tropical forest and agroforestry systems to open cultivated areas in Central Sulawesi. Therefore, standardized dung pats were exposed at each land-use type to assess dung removal and parasite suppression activity by dung beetles. The results showed that ecosystem function of dung beetles especially dung burial activity were remarkably disrupted by land use changes from natural forest to open agricultural area. Dung beetles presence enhanced about 53% of the total dung removed and reduced about 83% and 63% of fly population and species number respectively, indicating a pronounce contribution of dung beetles in our ecosystem.

  9. Fungal Volatiles Can Act as Carbon Sources and Semiochemicals to Mediate Interspecific Interactions Among Bark Beetle-Associated Fungal Symbionts.

    Science.gov (United States)

    Cale, Jonathan A; Collignon, R Maxwell; Klutsch, Jennifer G; Kanekar, Sanat S; Hussain, Altaf; Erbilgin, Nadir

    2016-01-01

    Mountain pine beetle (Dendroctonus ponderosae) has killed millions of hectares of pine forests in western North America. Beetle success is dependent upon a community of symbiotic fungi comprised of Grosmannia clavigera, Ophiostoma montium, and Leptographium longiclavatum. Factors regulating the dynamics of this community during pine infection are largely unknown. However, fungal volatile organic compounds (FVOCs) help shape fungal interactions in model and agricultural systems and thus may be important drivers of interactions among bark beetle-associated fungi. We investigated whether FVOCs can mediate interspecific interactions among mountain pine beetle's fungal symbionts by affecting fungal growth and reproduction. Headspace volatiles were collected and identified to determine species-specific volatile profiles. Interspecific effects of volatiles on fungal growth and conidia production were assessed by pairing physically-separated fungal cultures grown either on a carbon-poor or -rich substrate, inside a shared-headspace environment. Fungal VOC profiles differed by species and influenced the growth and/or conidia production of the other species. Further, our results showed that FVOCs can be used as carbon sources for fungi developing on carbon-poor substrates. This is the first report demonstrating that FVOCs can drive interactions among bark beetle fungal symbionts, and thus are important factors in beetle attack success. PMID:27583519

  10. Mountain Pine Beetles Colonizing Historical and Naïve Host Trees Are Associated with a Bacterial Community Highly Enriched in Genes Contributing to Terpene Metabolism

    OpenAIRE

    Adams, Aaron S.; Aylward, Frank O.; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H.; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F.

    2013-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with...

  11. Coupling between elytra of some beetles: Mechanism, forces and effect of surface texture

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Lightweight materials, structures and coupling mechanisms are very important for realizing advanced flight vehicles. Here, we obtained the geometric structures and morphologies of the elytra of beetles and ascertained its coupling zone by using the histological section technique and SEM. We set up a three-dimensional motion observing system to monitor the opening and closing behaviour of elytra in beetles and to determine the motion mechanism. We constructed a force measuring system to measure the coupling forces between elytra. The results show that elytra open and close by rotating about a single axle, where the coupling forces may be as high as 160 times its own bodyweight, the elytra coupling with the tenon and mortise mechanism, surface texture and opening angle between elytra heavily influence the coupling forces. These results may provide insights into the design mechanism and structure for future vehicles of flight.

  12. Development of Beetle-Type Robot with Sub-Micropipette Probe

    Science.gov (United States)

    Takami, Tomohide; Deng, Xiao Long; Son, Jong Wan; Park, Bae Ho; Kawai, Tomoji

    2012-08-01

    We have developed a motion system with tripod piezo tube legs, which is called the beetle-type or Besocke-type system, in order to control the position of a sub-micropipette. The stick-slip lateral motion of the beetle-type robot achieved a minimum step size of 600±200 nm by applying a sawtooth pulse at a voltage of 30 V and a pulse width of 10 ms. The sliding motion for the insertion and extraction of the sub-micropipette was controlled by a piezoactuator, and inverse sawtooth pulses were applied to the actuator to have more precise step motion than the specifications of the actuator, and a minimum step size of 480±80 nm at a pulse width of 0.17 ms was achieved. Nonlinear responses of the step size with sawtooth pulse widths were observed in both lateral motion and pipette insertion/extraction motion.

  13. A Culture Method for Darkling Beetles, Blapstinus spp. (Coleoptera:Tenebrionidae).

    Science.gov (United States)

    Zilkowski, Bruce W; Cossé, Allard A

    2015-06-01

    Darkling beetles, Blapstinus spp., have become a serious pest of Cucurbitaceae crops, especially in California. A culture method was sought to provide large numbers (>500) of adult beetles of known age and sex that could be used for laboratory testing when needed. A method previously developed for Alphitobius diaperinus (Panzer) using a diet of ground chick feed, with apple slices as a moisture source, was modified for use with Blapstinus spp. and then compared with the same method substituting apple slices with zucchini as the moisture source. Rearing boxes set up with apple slices produced significantly more pupae and adults than boxes containing zucchini slices. However, using either zucchini or apples as a moisture source yielded over the target of 500 adults per rearing box. A previous method designed to sex A. diaperinus based on the presence (♀) or absence (♂) of second valvifers in the pupal stage also proved to be effective for sexing the Blapstinus spp.

  14. The tiger beetles (Coleoptera: Carabidae, Cicindelinae) of Angola: a descriptive catalogue and designation of neotypes.

    Science.gov (United States)

    Serrano, Artur R M; Capela, Rúben A

    2013-11-01

    An annotated catalogue of the species and subspecies of tiger beetles (Coleoptera: Carabidae, Cicindelinae) hitherto known from Angola is given. A total of 89 forms (74 species and 15 subspecies) is recorded from this southwestern country of Africa. Within this assemblage there are 31 endemic forms (33.3%). Some species are represented by only the holotype specimen (some without locality) or the type series. Others were recorded based on a single specimen. Records for six species previously unknow from Angola are given: Foveodromica sp. n. 1, Foveodromica sp. n. 2, Ophryodera rufomarginata bradshawi Péringuey, 1888, Elliptica muata parallelestriata (W. Horn, 1923), Lophyra differens (W. Horn, 1892) and Myriochila jucunda (Péringuey, 1892). A historical review, as well as some considerations on the distribution and conservation status of these beetles in Angola are also presented.

  15. Structural characteristics of a novel antifreeze protein from the longhorn beetle Rhagium inquisitor

    DEFF Research Database (Denmark)

    Kristiansen, E; Ramløv, Hans; Højrup, Peter;

    2011-01-01

    Antifreeze proteins (AFPs) are characterized by their capacity to inhibit the growth of ice and are produced by a variety of polar fish, terrestrial arthropods and other organisms inhabiting cold environments. This capacity reflects their role as stabilizers of supercooled body fluids. The longhorn...... beetle Rhagium inquisitor is known to express AFPs in its body fluids. In this work we report on the primary structure and structural characteristics of a 12.8 kDa AFP from this beetle (RiAFP). It has a high capacity to evoke antifreeze activity as compared to other known insect AFPs and it is...... structurally unique in several aspects. In contrast to the high content of disulfide bond-formation observed in other coleopteran AFPs, RiAFP contains only a single such bond. Six internal repeat segments of a thirteen residue repeat pattern is irregularly spaced apart throughout its sequence. The central part...

  16. The small hive beetle Aethina tumida: A review of its biology and control measures

    Directory of Open Access Journals (Sweden)

    Andrew G. S. CUTHBERTSON et al

    2013-10-01

    Full Text Available The small hive beetle Aethina tumida is an endemic parasitic pest and scavenger of colonies of social bees indigenous to sub-Saharan Africa. In this region this species rarely inflicts severe damage on strong colonies since the bees have develo­­ped strategies to combat them. However, A. tumida has since ‘escaped’ from its native home and has recently invaded areas such as North America and Australia where its economic impact on the apiculture industry has been significant. Small hive beetle, should it become established within Europe, represents a real and live threat to the UK bee keeping industry. Here we review the biology and current pest status of A. tumida and up to-date research in terms of both chemical and biological control used against this honey bee pest [Current Zoology 59 (5: 644–653, 2013].

  17. Spray aiming in bombardier beetles: jet deflection by the coanda effect.

    Science.gov (United States)

    Eisner, T; Aneshansley, D J

    1982-01-01

    Bombardier beetles of the carabid subfamily Paussinae have a pair of flanges, diagnostic for the group, that project outward from the sides of the body. Behind each flange is a gland opening, from which the beetles discharge a hot, quinone-containing secretion when disturbed. The flanges are curved and grooved and serve as launching guides for anteriorly aimed ejections of secretion. Jets of fluid, on emergence from the gland openings, follow the curvature of the flanges and are thereby bent sharply in their trajectory and directed forward. The phenomenon is illustrative of the Coanda effect, widely applicable in engineering and responsible for the familiar tendency of liquids to curve around spouts and down the front of containers when being poured. PMID:17790472

  18. Sequestration of plant-derived glycosides by leaf beetles: A model system for evolution and adaptation

    Directory of Open Access Journals (Sweden)

    Wilhelm Boland

    2015-12-01

    Full Text Available Leaf beetles have developed an impressive repertoire of toxins and repellents to defend themselves against predators. Upon attack, the larvae discharge small droplets from glandular reservoirs on their back. The reservoirs are “bioreactors” performing the late reactions of the toxin-production from plant-derived or de novo synthesised glucosides. The import of the glucosides into the bioreactor relies on a complex transport system. Physiological studies revealed a functional network of transporters guiding the glucosides through the larval body into the defensive system. The first of the involved transporters has been identified and characterised concerning selectivity, tissue distribution, and regulation. The development of a well-tuned transport system, perfectly adjusted to the compounds provided by the food plants, provides the functional basis for the leaf beetle defenses and their local adaptation to their host plants.

  19. Fitness consequences of social network position in a wild population of forked fungus beetles (Bolitotherus cornutus).

    Science.gov (United States)

    Formica, Vincent A; Wood, C W; Larsen, W B; Butterfield, R E; Augat, M E; Hougen, H Y; Brodie, E D

    2012-01-01

    Social networks describe the pattern of intraspecific interactions within a population. An individual's position in a social network often is expected to influence its fitness, but only a few studies have examined this relationship in natural populations. We investigated the fitness consequences of network position in a wild beetle population. Copulation success of male beetles positively covaried with strength (a measure of network centrality) and negatively covaried with clustering coefficient (CC) (a measure of cliquishness). Further analysis using mediation path models suggested that the activity level of individuals drove the relationships between strength and fitness almost entirely. In contrast, selection on CC was not explained by individual behaviours. Although our data suggest that social network position can experience strong sexual selection, it is also clear that the relationships between fitness and some network metrics merely reflect variation in individual-level behaviours. PMID:22092581

  20. Prediction of abundance of beetles according to climate warming in South Korea

    Directory of Open Access Journals (Sweden)

    Tae-Sung Kwon

    2015-03-01

    Full Text Available To identify the change in distribution of insects in climate warming, changes in abundance of beetles were predicted using data from 366 survey sites (forests in South Korea. Abundance along temperature gradients showed patterns (linear or hump-shaped of normal distribution for 18 candidate species. Mean abundance in temperature zones of these species was used to predict the change in abundance. Temperature change was based on climate scenario Representative Concentration Pathways (RCP 4.5 and 8.5 and abundance of the two periods from 2011 to 2015 and 2056 to 2065 were predicted. Of the 18 species analyzed, six were predicted to increase in abundance and 12 were predicted to decrease. Using a high relationship between abundance change and temperature of collected sites, a qualitative prediction was conducted on non-candidate species with ≥ 1% occurrence. This prediction also shows that more beetle species in South Korea will decrease rather than increase as climate warms.

  1. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum

    DEFF Research Database (Denmark)

    Hauser, Frank; Cazzamali, Giuseppe; Williamson, Michael;

    2008-01-01

    projects has enabled us to obtain a complete inventory of neurohormone GPCRs in these insects and, by a comparative genomics approach, to analyze the evolution of these proteins. The red flour beetle Tribolium castaneum is the latest addition to the list of insects with a sequenced genome and the first...... consumption. In addition, T. castaneum is a model for insect development. Here, we have investigated the presence of neurohormone GPCRs in Tribolium and compared them with those from the fruit fly Drosophila melanogaster (Diptera) and the honey bee Apis mellifera (Hymenoptera). We found 20 biogenic amine...... coleopteran (beetle) to be sequenced. Coleoptera is the largest insect order and about 30% of all animal species living on earth are coleopterans. Some coleopterans are severe agricultural pests, which is also true for T. castaneum, a global pest for stored grain and other dried commodities for human...

  2. [Longicorn beetles (Coleoptera:Cerambycidae) differ considerably in the degree of their mushroom body development].

    Science.gov (United States)

    Panov, A A

    2011-01-01

    A duality in the general structure of the mushroom body in longicorn beetles is confirmed. This duality is associated with the fact that they are formed by two solitary neuroblasts or two neuroblast clusters on each side of the brain and are manifested as a bipartite structure of both the calyx, which is the main sensory input, and the peduncular apparatus. Within the studied longicorn beetles, modifications in the general structure of mushroom bodies have been found; these modifications are caused by two oppositely directed morphogenetic processes, namely, the concentration of structures and their compartmentalization. The concentration leads to disappearance of the bipartite structure of the peduncular apparatus, whereas compartmentalization leads to a secondary subdivision of these structures into anatomically distinct subsections. This process is most pronounced in the peduncle and lobes. The mushroom bodies are best developed and differentiated in the members of the subfamily Lamiinae.

  3. What do we know about winter active ground beetles (Coleoptera, Carabidae in Central and Northern Europe?

    Directory of Open Access Journals (Sweden)

    Radomir Jaskula

    2011-05-01

    Full Text Available This paper summarizes the current knowledge on winter active Carabidae in Central and Northern Europe. In total 73 winter active species are listed, based on literature and own observations. Ground beetles are among the three most numerous Coleoptera families active during the autumn to spring period. The winter community of Carabidae is composed both of larvae (mainly autumn breeding species and adults, as well as of epigeic species and those inhabiting tree trunks. Supranivean fauna is characterized by lower species diversity than the subnivean fauna. The activity of ground beetles decreases in late autumn, is lowest during mid-winter and increases in early spring. Carabidae are noted as an important food source in the diet of insectivorous mammals. They are also predators, hunting small winter active invertebrates.

  4. Control of corpus allatum activity in the adult Colorado potato beetle

    International Nuclear Information System (INIS)

    Assay conditions for the short-term, radiochemical, in vitro determination of the spontaneous rate of juvenile hormone biosynthesis by isolated corpora allata from Leptinotarsa decemlineata have been further improved permitting the measurement of juvenile hormone biosynthesis by individual pairs of corpora allata. Using the new assay conditions, the activities of adult corpora allata during maturation were found to be significantly higher in reproductive, long-day animals than in pre-diapause, short-day beetles. During diapause no activity was detectable, whereas corpora allata from post-diapause beetles were reactivated totally after 5 days. Simultaneous determination of the in vitro rates of juvenile hormone biosynthesis and corpus allatum volumes revealed no clear correlation. (Auth.)

  5. Elm bark beetle in Holocene peat deposits and the northwest European elm decline

    Science.gov (United States)

    Clark, Sarah H. E.; Edwards, Kevin J.

    2004-09-01

    The elm decline of 5000 14C yr ago has been the most widely discussed phenomenon in post-glacial vegetation history. This pan-European reduction of elm populations, echoed in the decimation of elmwoods in Europe during the twentieth century, has attracted a series of interrelated hypotheses involving climate change, human activity, disease and soil deterioration. The elm bark beetle (Scolytus scolytus L.) is an essential component of disease explanations. We present evidence for the presence of the beetle over a prolonged period (ca. 7950-4910 yr BP [8800-5660 cal. yr BP]) from a lowland raised mire deposit in northeast Scotland, with its final appearance at this site, and the first and only appearance in another mire of a single scolytid find, around the time of the elm decline. The subfossil S. scolytus finds are not only the first from Scotland, but they also represent the most comprehensive sequence of finds anywhere. Copyright

  6. The Progress of Invasion of Insect Pest, the Mexican Been Beetle, Epilachna varivestis in Nagano Prefecture

    OpenAIRE

    NAKAMURA Hiroshi; SHIRATORI, Shin’ya

    2010-01-01

    The investigation on defoliation of Phaseolus vegetables by the Mexican bean beetle Epilachna varivestis Mulsant was carried out at Guatemala high land in September, 2004. E. varivestis density is low and ratio of parasitism was 46.7%. From our survey in Guatemala, is not a serious pest because of natural enemies. From the investigation data of E. varivestis for 8 years, we can make the database of distribution and injury index in Nagano Prefecture. From the analysis of the database, distribu...

  7. Extensive collection of femtoliter pad secretion droplets in beetle Leptinotarsa decemlineata allows nanoliter microrheology

    OpenAIRE

    Abou, Bérengère; Gay, Cyprien; Laurent, Bastien; Cardoso, Olivier; Voigt, Dagmar; Peisker, Henrik; Gorb, Stanislav

    2010-01-01

    Pads of beetles are covered with long, deformable setae, each ending in a micrometric terminal plate coated with secretory fluid. It was recently shown that the layer of the pad secretion covering the terminal plates is responsible for the generation of strong attractive forces. However, less is known about the fluid itself because it is produced in extremely small quantity. We here present a first experimental investigation of the rheological properties of the pad secretion in the Colorado p...

  8. Extensive collection of femtolitre pad secretion droplets in the beetle Leptinotarsa decemlineata allows nanolitre microrheology

    OpenAIRE

    Abou, Bérengère; Gay, Cyprien; Laurent, Bastien; Cardoso, Olivier; Voigt, Dagmar; Peisker, Henrik; Gorb, Stanislav

    2010-01-01

    Pads of beetles are covered with long, deformable setae, each ending in a micrometric terminal plate coated with secretory fluid. It was recently shown that the layer of the pad secretion covering the terminal plates is responsible for the generation of strong attractive forces. However, less is known about the fluid itself because it is produced in an extremely small quantity. We present here the first experimental investigation of the rheological properties of the pad secretion in the Color...

  9. OLFACTOMETER SCREENING OF REPELLENT ESSENTIAL OILS AGAINST THE POLLEN BEETLE (MELIGETHES SPP.)

    OpenAIRE

    Daniel, Claudia

    2014-01-01

    Essential oils can have an impact on pollen beetle (Meligethes spp.) host plant location behaviour. Lavender oil (Lavendula angustifolia) showed the highest repellency value in a previous laboratory study that compared five different essential oils (Mauchline et al., 2005). However, lavender oil is one of the most expensive essential oils – a fact that could seriously hamper on-farm implementation of this strategy. To find a cheaper essential oil with comparable efficacy to lavender oil, we c...

  10. Negative impacts of human land use on dung beetle functional diversity.

    Directory of Open Access Journals (Sweden)

    Felipe Barragán

    Full Text Available The loss of biodiversity caused by human activity is assumed to alter ecosystem functioning. However our understanding of the magnitude of the effect of these changes on functional diversity and their impact on the dynamics of ecological processes is still limited. We analyzed the functional diversity of copro-necrophagous beetles under different conditions of land use in three Mexican biosphere reserves. In Montes Azules pastures, forest fragments and continuous rainforest were analyzed, in Los Tuxtlas rainforest fragments of different sizes were analyzed and in Barranca de Metztitlán two types of xerophile scrub with different degrees of disturbance from grazing were analyzed. We assigned dung beetle species to functional groups based on food relocation, beetle size, daily activity period and food preferences, and as measures of functional diversity we used estimates based on multivariate methods. In Montes Azules functional richness was lower in the pastures than in continuous rainforest and rainforest fragments, but fragments and continuous forest include functionally redundant species. In small rainforest fragments (20 ha. Functional evenness and functional dispersion did not vary among habitat types or fragment size in these reserves. In contrast, in Metztitlán, functional richness and functional dispersion were different among the vegetation types, but differences were not related to the degree of disturbance by grazing. More redundant species were found in submontane than in crassicaule scrub. For the first time, a decrease in the functional diversity in communities of copro-necrophagous beetles resulting from changes in land use is documented, the potential implications for ecosystem functioning are discussed and a series of variables that could improve the evaluation of functional diversity for this biological group is proposed.

  11. Impact of Forest Fragmentation on Patterns of Mountain Pine Beetle-Caused Tree Mortality

    OpenAIRE

    Nelson, Trisalyn A.; Colin Robertson; Michael A. Wulder; Christopher Bone; White, Joanne C.

    2013-01-01

    The current outbreak of mountain pine beetle, Dendroctonus ponderosae Hopkins, has led to extensive tree mortality in British Columbia and the western United States. While the greatest impacts of the outbreak have been in British Columbia, ongoing impacts are expected as the outbreak continues to spread eastward towards Canada’s boreal and eastern pine forests. Successful mitigation of this outbreak is dependent on understanding how the beetle’s host selection behaviour is influenced by the p...

  12. The Leaf-Beetles (Coleoptera, Chrysomelidae) Feed On Some Weeds In Tokat Province

    OpenAIRE

    Çam, Halit; ATAY, Turgut

    2004-01-01

    This study was carried out to determine the leaf-beetles (Coleoptera, Chrysomelidae) which causes extensive damage on weeds in the vicinity of Tokat, Turkey. Total 9 taxa including 4 species of Chrysomelinae, 1 species of Clytrinae, 1 species of Criocerinae, 2 species of Alticinae and 1 species of Cassidinae were found to be destructive on different weed species. These species were; Entomoscelis adonidis (Pall.) on Sinapis arvensis L., Gastrophysa polygoni (L.) on Polygonum convolvulus L. an...

  13. Colorado potato beetle manipulates plant defenses in local and systemic leaves

    OpenAIRE

    Chung, Seung Ho; Rosa, Cristina; Hoover, Kelli; Luthe, Dawn S; Felton, Gary W.

    2013-01-01

    Herbivore microbial associates can affect diverse interactions between plants and insect herbivores. Some insect symbionts enable herbivores to expand host plant range or to facilitate host plant use by modifying plant physiology. However, little attention has been paid to the role of herbivore-associated microbes in manipulating plant defenses. We have recently shown that Colorado potato beetle secrete the symbiotic bacteria to suppress plant defenses. The bacteria in oral secretions from th...

  14. Mountain pine beetle host-range expansion threatens the boreal forest

    OpenAIRE

    Cullingham, Catherine I; Cooke, Janice E.K.; Dang, Sophie; Davis, Corey S.; Cooke, Barry J.; Coltman, David W

    2011-01-01

    The current epidemic of the mountain pine beetle (MPB), an indigenous pest of western North American pine, has resulted in significant losses of lodgepole pine. The leading edge has reached Alberta where forest composition shifts from lodgepole to jack pine through a hybrid zone. The susceptibility of jack pine to MPB is a major concern, but there has been no evidence of host-range expansion, in part due to the difficulty in distinguishing the parentals and their hybrids. We tested the utilit...

  15. A crispy dedicacy : Augosoma beetle as alternative source of protein in East Cameroon

    OpenAIRE

    F. J. Muafor; Levang, Patrice; Le Gall, Philippe

    2014-01-01

    Despite the fact that the exoskeleton of the Augosoma centaurus (Dynastinae) is hard and difficult to chew, this insect is often gathered in Eastern Cameroon for food in periods of availability. Nine ethnic groups in Eastern Cameroon were surveyed to understand the role of this insect in assuring food security, using quantitative and qualitative social science approaches. Both the larvae and adult stages of this beetle are habitually consumed in the areas studied. In total, about 65%...

  16. A Crispy Delicacy: Augosoma Beetle as Alternative Source of Protein in East Cameroon

    OpenAIRE

    F. J. Muafor; Levang, P.; Le Gall, P

    2014-01-01

    Despite the fact that the exoskeleton of the Augosoma centaurus (Dynastinae) is hard and difficult to chew, this insect is often gathered in Eastern Cameroon for food in periods of availability. Nine ethnic groups in Eastern Cameroon were surveyed to understand the role of this insect in assuring food security, using quantitative and qualitative social science approaches. Both the larvae and adult stages of this beetle are habitually consumed in the areas studied. In total, about 65% of consu...

  17. Efficacy of biological insecticides to control the Colorado potato beetle (Leptinotasara decemlineata) in organic farming

    OpenAIRE

    Kühne, Stefan; Reelfs, Torben; Ellmer, Frank; Moll, Eckard; Kleinhenz, Benno; Gemmer, Christine

    2008-01-01

    The Colorado potato beetle (Leptinotasara decemlineata Say) is one of the most important pests on potatoes (Solanum tuberosum). In the present study, we compared the efficacy of three biological insecticides – Neem (NeemAzal-T/S), pyrethrum/rapeseed oil (Spruzit Neu) and Bacillus thuringiensis var. tenebrionis (Novodor FC) – against this pest in field trials conducted from 2005 to 2007. The combined and temporarily shifted application of neem and B.t.t. reduced significantly the number of bee...

  18. Wildfire and Spruce Beetle Outbreak: Simulation of Interacting Disturbances in the Central Rocky Mountains

    OpenAIRE

    DeRose, Justin; Long, James N.

    2009-01-01

    Infrequent large-scale natural disturbance regimes are an integral component of Engelmann spruce (Picea engelmannii) forests of the central Rocky Mountains. Wildfires, bark beetle outbreaks, winds, and avalanches cause relatively drastic changes in community structure, composition, and function. These disturbances may occur independently or interact where the incidence of one may change the potential for another. We assessed potential wildfire behaviour change in the wake of a catastrophic, l...

  19. Hydrolysis of methyl benzoate from Piper arboreum by Naupactus bipes beetle

    Energy Technology Data Exchange (ETDEWEB)

    Ramos, Clecio S.; Kato, Massuo J. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica]. E-mail: majokato@iq.usp.br

    2009-07-01

    A new natural product was isolated from Piper arboreum (Piperaceae) leaves, the methyl 3-geranyl-4-hydroxybenzoate (1). The metabolism of P. arboreum leaves by Naupactus bipes beetle (Germar, 1824 - Coleoptera: Curculionidae) led to the hydrolysis of 1 to 3-geranyl-4-hydroxybenzoic acid (2). The structures of both compounds were determined based on spectroscopic analysis ({sup 1}H and {sup 13}C NMR, MS, and IR). (author)

  20. The oldest micropepline beetle from Cretaceous Burmese amber and its phylogenetic implications (Coleoptera: Staphylinidae)

    Science.gov (United States)

    Cai, Chen-Yang; Huang, Di-Ying

    2014-10-01

    The staphylinid subfamily Micropeplinae includes small strongly sclerotized beetles with truncate elytra leaving the most part of abdomen exposed. Fossil micropeplines are rare and confined to Cenozoic representatives of extant genera. Here, we describe the oldest micropepline, Protopeplus cretaceus gen. and sp. n., from the Upper Cretaceous Burmese amber. Fluorescence microscope and confocal laser scanning microscopy (CLSM) were both used to reveal diagnostic features of Micropeplinae and some primitive traits that place Protopeplus very basally within Micropeplinae.

  1. New Fossil Beetles of the Family Elateridae from the Jehol Biota of China (Coleoptera: Polyphaga)

    Institute of Scientific and Technical Information of China (English)

    CHANG Huali; REN Dong

    2008-01-01

    Two new species of elaterids assigned to two new genera with intriguing fossa on prosternum are described and illustrated: Bilineariselaterfoveatus gen. et sp. nov. and Curtelater wui gen. et sp. nov. from the Upper Jurassic-Lower Cretaceous Yixian Formation of western Liaoning,China. The origin of the clicking mechanism in these beetles and the systematic position of the two genera are briefly discussed.

  2. High individual variation in pheromone production by tree-killing bark beetles (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Pureswaran, Deepa S.; Sullivan, Brian T.; Ayres, Matthew P.

    2008-01-01

    Aggregation via pheromone signalling is essential for tree-killing bark beetles to overcome tree defenses and reproduce within hosts. Pheromone production is a trait that is linked to fitness, so high individual variation is paradoxical. One explanation is that the technique of measuring static pheromone pools overestimates true variation among individuals. An alternative hypothesis is that aggregation behaviour dilutes the contribution of individuals to the trait under selection and reduces the efficacy of natural selection on pheromone production by individuals. We compared pheromone measurements from traditional hindgut extractions of female southern pine beetles with those obtained by aerating individuals till they died. Aerations showed greater total pheromone production than hindgut extractions, but coefficients of variation (CV) remained high (60-182%) regardless of collection technique. This leaves the puzzle of high variation unresolved. A novel but simple explanation emerges from considering bark beetle aggregation behaviour. The phenotype visible to natural selection is the collective pheromone plume from hundreds of colonisers. The influence of a single beetle on this plume is enhanced by high variation among individuals but constrained by large group sizes. We estimated the average contribution of an individual to the pheromone plume across a range of aggregation sizes and showed that large aggregation sizes typical in mass attacks limit the potential of natural selection because each individual has so little effect on the overall plume. Genetic variation in pheromone production could accumulate via mutation and recombination, despite strong effects of the pheromone plume on the fitness of individuals within the aggregation. Thus, aggregation behaviour, by limiting the efficacy of natural selection, can allow the persistence of extreme phenotypes in nature.

  3. Effects of reduced-risk pesticides and plant growth regulators on rove beetle (Coleoptera: Staphylinidae) adults.

    Science.gov (United States)

    Echegaray, Erik R; Cloyd, Raymond A

    2012-12-01

    In many regions, pest management of greenhouse crops relies on the use of biological control agents; however, pesticides are also widely used, especially when dealing with multiple arthropod pests and attempting to maintain high esthetic standards. As such, there is interest in using biological control agents in conjunction with chemical control. However, the prospects of combining natural enemies and pesticides are not well known in many systems. The rove beetle, Atheta coriaria (Kraatz), is a biological control agent mainly used against fungus gnats (Bradysia spp.). This study evaluated the effects of reduced-risk pesticides and plant growth regulators on A. coriaria adult survival, development, and prey consumption under laboratory conditions. Rove beetle survival was consistently higher when adults were released 24 h after rather than before applying pesticides. The pesticides acetamiprid, lambda-cyhalothrin, and cyfluthrin were harmful to rove beetle adults, whereas Beauveria bassiana (Balsamo) Vuillemin, azadirachtin, and organic oils (cinnamon oils, rosemary oil, thyme oil, and clove oil) were nontoxic to A. coriaria adults. Similarly, the plant growth regulators acymidol, paclobutrazol, and uniconazole were not harmful to rove beetle adults. In addition, B. bassiana, azadirachtin, kinoprene, organic oils, and the plant growth regulators did not negatively affect A. coriaria development. However, B. bassiana did negatively affect adult prey consumption. This study demonstrated that A. coriaria may not be used when applying the pesticides, acetamiprid, lambda-cyhalothrin, and cyfluthrin, whereas organic oils, B. bassiana, azadirachtin, and the plant growth regulators evaluated may be used in conjunction with A. coriaria adults. As such, these compounds may be used in combination with A. coriaria in greenhouse production systems.

  4. Variability in Small Hive Beetle (Coleoptera: Nitidulidae) Reproduction in Laboratory and Field Experiments.

    Science.gov (United States)

    Meikle, William G; Holst, Niels; Cook, Steven C; Patt, Joseph M

    2015-06-01

    Experiments were conducted to examine how several key factors affect population growth of the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Laboratory experiments were conducted to examine effects of food quantity and temperature on reproduction of cohorts of young A. tumida adults (1:1 sex ratio) housed in experimental arenas. Daily numbers and total mass of larvae exiting arenas were highly variable within treatment. Either one or two cohorts of larvae were observed exiting the arenas. Food quantity, either 10 g or 20 g, did not significantly affect the number of larvae exiting arenas at 32°C, but did at 28°C; arenas provided 20 g food produced significantly more larvae than arenas provided 10 g. Temperature did not affect the total mass of larvae provided 10 g food, but did affect larval mass provided 20 g; beetles kept at 28°C produced more larval mass than at 32°C. Field experiments were conducted to examine A. tumida reproductive success in full strength bee colonies. Beetles were introduced into hives as egg-infested frames and as adults, and some bee colonies were artificially weakened through removal of sealed brood. Efforts were unsuccessful; no larvae were observed exiting from, or during the inspection of, any hives. Possible reasons for these results are discussed. The variability observed in A. tumida reproduction even in controlled laboratory conditions and the difficulty in causing beetle infestations in field experiments involving full colonies suggest that accurately forecasting the A. tumida severity in such colonies will be difficult. PMID:26470208

  5. Changes in soil biogeochemistry following disturbance by girdling and mountain pine beetles in subalpine forests.

    Science.gov (United States)

    Trahan, Nicole A; Dynes, Emily L; Pugh, Evan; Moore, David J P; Monson, Russell K

    2015-04-01

    A recent unprecedented epidemic of beetle-induced tree mortality has occurred in the lodgepole pine forests of Western North America. Here, we present the results of studies in two subalpine forests in the Rocky Mountains, one that experienced natural pine beetle disturbance and one that experienced simulated disturbance imposed through bole girdling. We assessed changes to soil microclimate and biogeochemical pools in plots representing different post-disturbance chronosequences. High plot tree mortality, whether due to girdling or beetle infestation, caused similar alterations in soil nutrient pools. During the first 4 years after disturbance, sharp declines were observed in the soil dissolved organic carbon (DOC) concentration (45-51 %), microbial biomass carbon concentration (33-39 %), dissolved organic nitrogen (DON) concentration (31-42%), and inorganic phosphorus (PO4(3-)) concentration (53-55%). Five to six years after disturbance, concentrations of DOC, DON, and PO4(3-) recovered to 71-140 % of those measured in undisturbed plots. Recovery was coincident with observed increases in litter depth and the sublitter, soil O-horizon. During the 4 years following disturbance, soil ammonium, but not nitrate, increased to 2-3 times the levels measured in undisturbed plots. Microbial biomass N increased in plots where increased ammonium was available. Our results show that previously observed declines in soil respiration following beetle-induced disturbance are accompanied by losses in key soil nutrients. Recovery of the soil nutrient pool occurs only after several years following disturbance, and is correlated with progressive mineralization of dead tree litter.

  6. Replication of spinodally decomposed structures with structural coloration from scales of the longhorn beetle Sphingnotus mirabilis

    International Nuclear Information System (INIS)

    Scales of the longhorn beetle Sphingnotus mirabilis possess a disordered bicontinuous macroporous structure that resembles a structure formed by a phase-separation process of spinodal decomposition. By using the scales as templates, SiO2 and TiO2 structures were successfully replicated. Structural and optical characterizations show that the fabricated oxide structures are spinodal decomposition structures with only short-range order and display non-iridescent structural colors. (paper)

  7. Mountain Pine Beetles, Salvage Logging, and Hydrologic Change: Predicting Wet Ground Areas

    OpenAIRE

    John Rex; Stéphane Dubé; Vanessa Foord

    2013-01-01

    The mountain pine beetle epidemic in British Columbia has covered 18.1 million hectares of forest land showing the potential for exceptionally large-scale disturbance to influence watershed hydrology. Pine stands killed by the epidemic can experience reduced levels of evapotranspiration and precipitation interception, which can translate into an increase in soil moisture as observed by some forest practitioners during salvage logging in the epicenter of the outbreak. They reported the replace...

  8. Changes in soil biogeochemistry following disturbance by girdling and mountain pine beetles in subalpine forests.

    Science.gov (United States)

    Trahan, Nicole A; Dynes, Emily L; Pugh, Evan; Moore, David J P; Monson, Russell K

    2015-04-01

    A recent unprecedented epidemic of beetle-induced tree mortality has occurred in the lodgepole pine forests of Western North America. Here, we present the results of studies in two subalpine forests in the Rocky Mountains, one that experienced natural pine beetle disturbance and one that experienced simulated disturbance imposed through bole girdling. We assessed changes to soil microclimate and biogeochemical pools in plots representing different post-disturbance chronosequences. High plot tree mortality, whether due to girdling or beetle infestation, caused similar alterations in soil nutrient pools. During the first 4 years after disturbance, sharp declines were observed in the soil dissolved organic carbon (DOC) concentration (45-51 %), microbial biomass carbon concentration (33-39 %), dissolved organic nitrogen (DON) concentration (31-42%), and inorganic phosphorus (PO4(3-)) concentration (53-55%). Five to six years after disturbance, concentrations of DOC, DON, and PO4(3-) recovered to 71-140 % of those measured in undisturbed plots. Recovery was coincident with observed increases in litter depth and the sublitter, soil O-horizon. During the 4 years following disturbance, soil ammonium, but not nitrate, increased to 2-3 times the levels measured in undisturbed plots. Microbial biomass N increased in plots where increased ammonium was available. Our results show that previously observed declines in soil respiration following beetle-induced disturbance are accompanied by losses in key soil nutrients. Recovery of the soil nutrient pool occurs only after several years following disturbance, and is correlated with progressive mineralization of dead tree litter. PMID:25676101

  9. Comparative analysis of Colorado potato beetle (Leptinotarsa decemlineata Say) resistance monitoring methods

    OpenAIRE

    Stanković Slađan; Zabel Anton; Kostić Miodrag; Šestović Milorad

    2003-01-01

    Insecticide efficacy for Colorado potato beetle (Leptinotarsa decemlineata Say) control rapidly decreases due to development of resistance. Resistance causes harmful impact to both, economy and ecology. Resistance monitoring has one of the most important roles in avoiding these problems. Early detection and resistance monitoring could prolong use of insecticides. Standard laboratory methods (impregnated filter papers, insect dipping glass surface spraying and topical application) for Colorado...

  10. Evaluation of Five Methods for Total DNA Extraction from Western Corn Rootworm Beetles

    OpenAIRE

    Hong Chen; Murugesan Rangasamy; Sek Yee Tan; Haichuan Wang; Siegfried, Blair D

    2010-01-01

    Background DNA extraction is a routine step in many insect molecular studies. A variety of methods have been used to isolate DNA molecules from insects, and many commercial kits are available. Extraction methods need to be evaluated for their efficiency, cost, and side effects such as DNA degradation during extraction. Methodology/Principal Findings From individual western corn rootworm beetles, Diabrotica virgifera virgifera, DNA extractions by the SDS method, CTAB method, DNAzol® ...

  11. Reconciling phylogeography and ecological niche models for New Zealand beetles looking beyond glacial refugia

    DEFF Research Database (Denmark)

    Marske, Katharine Ann; Leschen, Richard; Buckley, Thomas

    2011-01-01

    stochastic search variable selection incorporated in BEAST to identify historical dispersal patterns via ancestral state reconstruction. Ecological niche models (ENMs) were incorporated to reconstruct the potential geographic distribution of each species during the Last Glacial Maximum (LGM). Coalescent......Mitochondrial DNA (cox1) sequence data and recently developed coalescent phylogeography models were used to construct geo-spatial histories for the New Zealand fungus beetles Epistranus lawsoni and Pristoderus bakewelli (Zopheridae). These methods utilize continuous-time Markov chains and Bayesian...

  12. Bioefficacy of some plant derivatives that protect grain against the pulse beetle, Callosobruchus maculatus

    OpenAIRE

    Rahman, A.; Talukder, F. A.

    2006-01-01

    Experiments were conducted to study the bioefficacies of different plant/weed derivatives that affect the development of the pulse beetle, Callosobruchus maculates F. (Coleoptera: Bruchidae) fed on black gram, Vigna mungo, seeds. Plant extracts, powder, ash and oil from nishinda (Vitex negundo L.), eucalyptus (Eucalyptus globules Labill.), bankalmi (Ipomoea sepiaria K.), neem (Azadirachta indica L.), safflower (Carthamus tinctorius L.), sesame (Sesamum indicum L.) and bablah (Acacia arabica L...

  13. Use of habitat resources by scarab dung beetles in an Savanna

    DEFF Research Database (Denmark)

    Carpaneto, Giuseppe Maria; Mazziotta, Adriano; Ieradi, Michele

    2010-01-01

    In the Queen Elizabeth National Park, Uganda, we compared the scarab beetle assemblages in the dung of three wild ungulates (African buffalo, a ruminant foregut fermenter; hippopotamus, nonruminant foregut fermenter; and warthog, nonruminant hindgut fermenter). Dung was collected from two sandy-c...... functional groups revealed that slow-burying tunnellers held the major role, both in terms of abundance and biomass, and were mainly found in warthog dung. © 2010 Entomological Society of America....

  14. FLEA BEETLES (CHRYSOMELIDAE: ALTICINAE) SPECIES OCCURRING ON AMARANTHUS spp. IN SLOVAKIA

    OpenAIRE

    Cagán, L.; Vráblová, M; Tóth, P.

    2000-01-01

    ABSTRACT Occurrence and abundance of flea beetle species associated with Amaranthus spp. was studied in Slovakia with the aim to assess their potential as biological control agents. Insects were collected by sweeping/catching at 10 localities three times during the growing season. Together 13 species from the subfamily Alticinae were collected on A. retroflexus L. and A. caudatus L. plants by sweeping net. They were Altica oleracea (L.), Chaetocnema concinna (Marsh.), C. leavicolis Thoms., C....

  15. Composition and Elevation of Spruce Forests Affect Susceptibility to Bark Beetle Attacks: Implications for Forest Management

    OpenAIRE

    Massimo Faccoli; Iris Bernardinelli

    2014-01-01

    The spruce bark beetle, Ips typographus (L.) (Coleoptera: Curculionidae, Scolytinae), is one of the most destructive insects infesting spruce forests in Europe. Data concerning infestations of I. typographus occurring over the last 19 years (1994–2012) on the Southern Alps were analyzed in seven spruce forest types: (1) pure spruce plantations; (2) pure spruce reforestations; (3) pure spruce mountain forests; (4) pure spruce alpine forests; (5) spruce-conifer mixed forests; (6) spruce-broad...

  16. Subspecific Differentiation Events of Montane Stag Beetles (Coleoptera, Lucanidae) Endemic to Formosa Island.

    Science.gov (United States)

    Tsai, Cheng-Lung; Yeh, Wen-Bin

    2016-01-01

    Taxonomic debates have been carrying on for decades over Formosan stag beetles, which consist of a high proportion of endemic species and subspecies featuring morphological variations associated with local adaptation. With the influence of periodical Pleistocene glaciations and the presence of several mountain ranges, the genetic differentiation and taxonomic recognition, within this medium-size island, of two endemic subspecies for each of four montane stag beetles, i.e. Lucanus ogakii, L. kanoi, Prismognathus davidis, and Neolucanus doro, has been an appealing issue. Based on monophyletic lineages and population structure, possible divergent scenarios have been proposed to clarify the subspecific status for each of the above mentioned stag beetles. Phylogenetic inferences based on COI+16S rDNA+28S rDNA of 240 Formosan lucanids have confirmed most species are monophyletic groups; and the intraspecific (2%) genetic distances of the two mitochondrial genes could be applied concordantly for taxonomic identification. On account of Bayesian-based species delimitation, geographic distribution, population structure, and sequence divergences, the subspecific status for L. ogakii, L. kanoi, and Pri. davidis are congruent with their geographic distribution in this island; and the calibration time based on the mitochondrial genes shows the subspecific split events occurred 0.7-1 million years ago. In addition, a more complicated scenario, i.e. genetic differentiation including introgression/hybridization events, might have occurred among L. ogakii, L. kanoi, and L. maculifemoratus. The geological effects of mountain hindrance accompanied by periodical glaciations could have been vital in leading to the geographical subspecific differentiation of these montane stag beetles.

  17. Multimodal Stimulation of Colorado Potato Beetle Reveals Modulation of Pheromone Response by Yellow Light

    OpenAIRE

    Fernando Otálora-Luna; Joseph C. Dickens

    2011-01-01

    Orientation of insects to host plants and conspecifics is the result of detection and integration of chemical and physical cues present in the environment. Sensory organs have evolved to be sensitive to important signals, providing neural input for higher order multimodal processing and behavioral output. Here we report experiments to determine decisions made by Colorado potato beetle (CPB), Leptinotarsa decemlineata, in response to isolated stimuli and multimodal combinations of signals on a...

  18. Dung beetles (Scarabaeidae: Scarabeinae from the Reserva Nacional Tambopata, Madre de Dios, Peru

    Directory of Open Access Journals (Sweden)

    Luis Figueroa

    2011-08-01

    Full Text Available This study reports the species of Scarabaeinae (Coleoptera: Scarabaeidae collected in Tambopata National Reserve in 2009. A total of 38 species and 874 individuals were collected. The tribe Canthonini showed the highest diversity and abundance. Coprophagy is clearly preferred over necrophagy by the dung beetle fauna in the area. A comparison of the species collected during the rainy and dry seasons is presented.

  19. Reliable and non-destructive positioning of larvae of wood-destroying beetles in wood

    International Nuclear Information System (INIS)

    Living larvae of wood-destroying insects (house longhorn beetle, deathwatch) can be determined in wood by both X-ray technique and vibration measurements. For such examinations convenient commercial devices were used and tested under laboratory conditions. The methods complement each other and lead to a rationalization of the tests of wood preservatives against wood-destroying insects. It seems to be promising to apply the test methods also to timber already used for building

  20. Changes in carabid beetle assemblages across an urban-rural gradient in Japan

    OpenAIRE

    Ishitani, M.; Kotze, D.J.; NiemelÀ, J.

    2003-01-01

    As part of the international Globenet project, carabid beetles (Coleoptera, Carabidae) were collected using pitfall traps from four urban, four suburban and four rural sites in Hiroshima City, Japan, during the 2001 summer season. In agreement with expectation, carabid abundance and species richness decreased significantly from rural to urban sites. Furthermore, no large, and only few individuals of medium-sized specialist species were collected from the urban environment, whil...

  1. The role of dung beetles in reducing greenhouse gas emissions from cattle farming

    OpenAIRE

    Slade, Eleanor M.; Terhi Riutta; Tomas Roslin; Tuomisto, Hanna L.

    2016-01-01

    Agriculture is one of the largest anthropogenic sources of greenhouse gases (GHGs), with dairy and beef production accounting for nearly two-thirds of emissions. Several recent papers suggest that dung beetles may affect fluxes of GHGs from cattle farming. Here, we put these previous findings into context. Using Finland as an example, we assessed GHG emissions at three scales: the dung pat, pasture ecosystem, and whole lifecycle of milk or beef production. At the first two levels,...

  2. Laboratory Evaluation of Five Chitin Synthesis Inhibitors Against the Colorado Potato Beetle, Leptinotarsa decemlineata

    OpenAIRE

    Karimzadeh, R.; Hejazi, M. J.; Rahimzadeh Khoei, F.; Moghaddam, M.

    2007-01-01

    Results of laboratory experiments are reported that tested the effects of five chitin synthesis inhibitors, diflubenzuron, cyromazine, lufenuron, hexaflumuron and triflumuron. on second instars of the Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Crysomelidae), originally collected from potato fields of Bostanabaad, a town 66 km southeast of Tabriz, Iran. In bioassays, the larvae were fed potato leaves dipped in aqueous solutions containing chitin synthesis inhibitors. ...

  3. Prediction of abundance of beetles according to climate warming in South Korea

    OpenAIRE

    Tae-Sung Kwon; Cheol Min Lee; Sung-Soo Kim

    2015-01-01

    To identify the change in distribution of insects in climate warming, changes in abundance of beetles were predicted using data from 366 survey sites (forests) in South Korea. Abundance along temperature gradients showed patterns (linear or hump-shaped) of normal distribution for 18 candidate species. Mean abundance in temperature zones of these species was used to predict the change in abundance. Temperature change was based on climate scenario Representative Concentration Pathways (RCP) 4.5...

  4. Cost of reproduction in a seed beetle : a quantitative genetic perspective

    OpenAIRE

    Paukku, Satu

    2006-01-01

    Life-history theory predicts a trade-off between traits that have an influence on fitness; an example of such trade-off is between reproduction and longevity. In order for the trade-off between reproduction and other life-history traits to evolve, there must be variation in how individuals tolerate the cost of reproduction. In this thesis, I examined whether female reproductive decisions affect offspring fitness in Callosobruchus maculatus seed beetles. It seemed that females tend to lay thei...

  5. Feeding Preferences of the Endangered Diving Beetle Cybister tripunctatus orientalis Gschwendtner (Coleoptera: Dytiscidae)

    OpenAIRE

    Shin-ya Ohba; Yoshinori Inatani

    2012-01-01

    The numbers of Cybister tripunctatus orientalis Gschwendtner diving beetles are declining in most regions of Japan, and it is included in the Red Data List of species in 34 of 47 prefectures of Japan. However, basic ecological information about C. tripunctatus orientalis, such as its feeding habits, remains unknown. In order to elucidate the feeding habits of C. tripunctatus orientalis larvae, feeding preference experiments were carried out in 2nd and 3rd instar larvae. The number of Odonata ...

  6. Carbon Cycling Dynamics in Response to Pine Beetle Infection and Climate Variation

    Energy Technology Data Exchange (ETDEWEB)

    Monson, Russell K.

    2015-01-26

    We originally proposed to study and discover the changes that have occurred in soil carbon pools, as a result of tree mortality due to beetle infection, and the ease by which those pools release CO2 to the atmosphere in mountain forests in the Western US. We studied forest plots at two sites – the Niwot Ridge AmeriFlux site and the Fraser Experimental Forest site, both in Colorado.

  7. Winklerites serbicus, a new endogean species of ground beetles (Coleoptera: Carabidae: Bembidiini) from southeastern Serbia

    OpenAIRE

    Ćurčić S.; Antić D.; Rađa T.; Makarov S.; Ćurčić B.; Ćurčić Nina; Lučić L.

    2013-01-01

    A new endogean bembidiine ground beetle species, Winklerites serbicus sp. n., from a cave in the southeastern part of Serbia is both described and diagnosed. Male and female genital structures and other taxonomically important characters are illustrated. The new species is clearly distinct from its closest congeners. Fifteen species of the genus so far known are arranged in six groups. The new species is both endemic and relict, inhabiting southeastern Serbia only. [Projekat Ministarstv...

  8. Underwater attachment using hairs: the functioning of spatula and sucker setae from male diving beetles

    OpenAIRE

    Chen, Ying; Shih, Ming-Chih; Wu, Ming-Huang; Yang, En-Cheng; Chi, Kai-Jung

    2014-01-01

    Males of Dytiscinae beetles use specialized adhesive setae to adhere to female elytra during underwater courtship. This coevolution of male setae and female elytra has attracted much attention since Darwin. However, there has been little examination of their biomechanical functioning despite increasing knowledge on biofibrillar adhesion. Here, we report and compare, for the first time, the mechanisms of underwater attachment using two hair types, the primitive spatula and derived ‘passive’ su...

  9. Biological activities of Allium sativum essential oil against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae)

    OpenAIRE

    Chaubey Mukesh Kumar

    2014-01-01

    Essential oil from Allium sativum was isolated and investigated for its repellent, insecticidal, ovipositional and egg hatching inhibition activities against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). A. sativum essential oil repelled bruchid adults at a very low concentration in choice oviposition assay. A. sativum essential oil caused both fumigant and contact toxicity in C. chinensis adults in a concentration dependent manner. Oviposition potency of C. chinensis adults...

  10. Fumigant, Contact, and Repellent Activities of Essential Oils Against the Darkling Beetle, Alphitobius diaperinus

    OpenAIRE

    Wang, Xuegui; Li, Qian; Shen, Litao; Yang, Jizhi; Cheng, Huabao; Jiang, Surong; Jiang, Chunxian; Wang, Haijian

    2014-01-01

    The fumigant, contact, and repellent activities of four essential oils extracted from Citrus limonum (Sapindales: Rutaceae), Litsea cubeba (Laurales: Lauraceae), Cinnamomum cassia, and Allium sativum L. (Asparagales: Alliaceae) against 6th instars and adults of the darkling beetle, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), one of the main pests of materials and products of Juncus effuses L. (Poales: Juncaceae) during the storage period, were assayed, and chemical ingredient...

  11. Two-and Three-Dimensional Simulations of Beetle Hind Wing Flapping during Free Forward Flight

    Institute of Scientific and Technical Information of China (English)

    Tuyen Quang Le; Tien Van Truong; Hieu Trung Tran; Soo Hyung Park; Jin Hwan Ko; Hoon Cheol Park; Kwang Joon Yoon

    2013-01-01

    Aerodynamic characteristic of the beetle,Trypoxylus dichotomus,which has a pair of elytra (forewings) and hind wings,is numerically investigated.Based on the experimental results of wing kinematics,two-dimensional (2D) and three-dimensional (3D) computational fluid dynamic simulations were carried out to reveal aerodynamic performance of the hind wing.The roles of the spiral Leading Edge Vortex (LEV) and the spanwise flow were clarified by comparing 2D and 3D simulations.Mainly due to pitching down of chord line during downstroke in highly inclined stroke plane,relatively high averaged thrust was produced in the free forward flight of the beetle.The effects of the local corrugation and the camber variation were also investigated for the beetle's hind wings.Our results show that the camber variation plays a significant role in improving both lift and thrust in the flapping.On the other hand,the local corrugation pattern has no significant effect on the aerodynamic force due to large angle of attack during flapping.

  12. INVESTIGATION OF THE PRESENCE OF DRUGSTORE BEETLES WITHIN CELOTEX ASSEMBLIES IN RADIOACTIVE MATERIAL PACKAGINGS

    Energy Technology Data Exchange (ETDEWEB)

    Loftin, B; Glenn Abramczyk, G

    2008-06-04

    During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles, (Stegobium paniceum (L.) Coleoptera: Anobiidae), were found within the fiberboard subassemblies of two 9975 Shipping Packages. Initial indications were that the beetles were feeding on the Celotex{trademark} assemblies within the package. Celotex{trademark} fiberboard is used in numerous radioactive material packages serving as both a thermal insulator and an impact absorber for both normal conditions of transport and hypothetical accident conditions. The Department of Energy's Packaging Certification Program (EM-63) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex{trademark}. The Savannah River National Laboratory is conducting the investigation with entomological expertise provided by Clemson University. The two empty 9975 shipping packages were transferred to the Savannah River National Laboratory in the fall of 2007. This paper will provide details and results of the ongoing investigation.

  13. The history of endemic Iberian ground beetle description (Insecta, Coleoptera, Carabidae): which species were described first?

    Science.gov (United States)

    Jiménez-Valverde, Alberto; Ortuño, Vicente M.

    2007-01-01

    iological correlates of species description dates can be used to predict the characteristics of yet-to-be-described species. Such information can be useful in the planning of biodiversity field surveys. This paper explores the influence of five factors—body size, geographic range size, geographic location, habitat and number of congeners—on the probability of description of endemic Iberian ground-beetles, and attempts to identify the effects of each factor, alone or in combination, through variation partitioning. Small-bodied and hypogean species were found to have been described later, as were those with smaller geographic ranges, while the number of congeners did not significantly affect description date. Additionally, Eastern hypogean species were described earlier than Western ones because of major lithology differences from east to west in the Iberian Peninsula, and concomitant geographic taxonomic bias. However, effects of each factor alone are quite small in comparison with effects of the combination of factors, due to their considerable correlation. Thus, "rarity", in its broadest sense, has been the determining factor of date of description of endemic Iberian ground-beetles. Previously, the technical difficulty encountered in the study of rare species retarded their description, whereas now they have become a "fashionable" object of study among carabidologists, due to the possibility of rapid publication. In order to improve the incomplete checklist of Iberian ground beetles it would be necessary to focus sampling efforts on marginal habitats and hypogean fauna.

  14. Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber

    Science.gov (United States)

    Dunlop, Jason A.; Kontschán, Jenő; Zwanzig, Michael

    2013-04-01

    Fossil mesostigmatid mites are extremely rare. Inclusions assignable to the tortoise mites (Mesostigmata, Uropodina) are described here for the first time from Eocene (ca. 44-49 Ma) Baltic amber. This is the oldest record of Uropodina and documents the first unequivocal amber examples potentially assignable to the extant genus Uroobovella Berlese, 1903 (Uropodoidea: Urodinychidae). Further mites in the same amber pieces are tentatively assigned to Microgynioidea (Microgyniina) and Ascidae (Gamasina), both potentially representing the oldest records of their respective superfamily and family groups. This new material also preserves behavioural ecology in the form of phoretic deutonymphs attached to their carriers via a characteristic anal pedicel. These deutonymphs in amber are intimately associated with longhorn beetles (Coleoptera: Cerambycidae), probably belonging to the extinct species Nothorhina granulicollis Zang, 1905. Modern uropodines have been recorded phoretic on species belonging to several beetle families, including records of living Uroobovella spp. occurring on longhorn beetles. Through these amber inclusions, a uropodine-cerambycid association can now be dated back to at least the Eocene.

  15. Environmental conditions enhance toxicant effects in larvae of the ground beetle Pterostichus oblongopunctatus (Coleoptera: Carabidae)

    Energy Technology Data Exchange (ETDEWEB)

    Bednarska, Agnieszka J., E-mail: a.bednarska@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland); Laskowski, Ryszard, E-mail: ryszard.laskowski@uj.edu.p [Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Krakow (Poland)

    2009-05-15

    The wide geographical distribution of ground beetles Pterostichus oblongopunctatus makes them very likely to be exposed to several environmental stressors at the same time. These could include both climatic stress and exposure to chemicals. Our previous studies demonstrated that the combined effect of nickel (Ni) and chlorpyrifos (CHP) was temperature (T)-dependent in adult P. oblongopunctatus. Frequently the different developmental stages of an organism are differently sensitive to single stressors, and for a number of reasons, such as differences in exposure routes, their interactions may also take different forms. Because of this, we studied the effects of the same factors on the beetle larvae. The results showed that all factors, as well as their interactions, influenced larvae survival. The synergistic effect of Ni and CPF was temperature-dependent and the effect of Ni x T interaction on the proportion of emerged imagines indicated stronger toxicity of Ni at 25 deg. C than at 10 deg. C. - Combined negative effects of nickel and chlorpyrifos on carabid beetles depend on ambient temperature.

  16. Phylogenetically informative rearrangements in mitochondrial genomes of Coleoptera, and monophyly of aquatic elateriform beetles (Dryopoidea).

    Science.gov (United States)

    Timmermans, Martijn J T N; Vogler, Alfried P

    2012-05-01

    Mitochondrial gene order in Coleoptera has been thought to be conservative but a survey of 60 complete or nearly complete genomes revealed a total of seven different gene rearrangements (deletions, gene order reversals), mainly affecting tRNA genes. All of these were found to be limited to a single taxon or a subclade of Coleoptera. The phylogenetic distribution of a translocation of tRNA(Pro) in three species of elateriform beetles was investigated further by sequencing three nearly complete mitochondrial genomes (Dascillidae, Byrrhidae, Limnichidae) and ten additional individuals for a ∼1370 bp diagnostic fragment spanning the relevant region. Phylogenetic analysis consistently recovered the monophyly of families previously grouped in the contentious superfamily Dryopoidea, a group of approximately 10 beetle families with mainly aquatic lifestyles. The Byrrhidae (moss beetles) were not part of this lineage, although they may be its sister group, to recover the widely accepted Byrrhoidea. The tRNA(Pro) translocation was present in all members of Dryopoidea, but not in any other Elateriformia, providing independent support for this lineage and for a single origin of aquatic habits.

  17. Yeast Associated with the Ambrosia Beetle, Platypus koryoensis, the Pest of Oak Trees in Korea.

    Science.gov (United States)

    Yun, Yeo Hong; Suh, Dong Yeon; Yoo, Hun Dal; Oh, Man Hwan; Kim, Seong Hwan

    2015-12-01

    Oak tree death caused by symbiosis of an ambrosia beetle, Platypus koryoensis, and an ophiostomatoid filamentous fungus, Raffaelea quercus-mongolicae, has been a nationwide problem in Korea since 2004. In this study, we surveyed the yeast species associated with P. koryoensis to better understand the diversity of fungal associates of the beetle pest. In 2009, a total of 195 yeast isolates were sampled from larvae and adult beetles (female and male) of P. koryoensis in Cheonan, Goyang, and Paju; 8 species were identified by based on their morphological, biochemical and molecular analyses. Meyerozyma guilliermondii and Candida kashinagacola were found to be the two dominant species. Among the 8 species, Candida homilentoma was a newly recorded yeast species in Korea, and thus, its mycological characteristics were described. The P. koryoensis symbiont R. quercusmongolicae did not show extracelluar CM-cellulase, xylanase and avicelase activity that are responsible for degradation of wood structure; however, C. kashinagacola and M. guilliermondii did show the three extracellular enzymatic activities. Extracelluar CM-cellulase activity was also found in Ambrosiozyma sp., C. homilentoma, C. kashinagacola, and Candida sp. Extracelluar pectinase activity was detected in Ambrosiozyma sp., C. homilentoma, Candida sp., and M. guilliermondii. All the 8 yeast species displayed compatible relationships with R. quercus-mongolicae when they were co-cultivated on yeast extract-malt extract plates. Overall, our results demonstrated that P. koryoensis carries the yeast species as a symbiotic fungal associate. This is first report of yeast diversity associated with P. koryoensis. PMID:26839506

  18. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect Releases.

    Science.gov (United States)

    Downey, Danielle; Chun, Stacey; Follett, Peter

    2015-06-01

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5-7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1-4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread. PMID:26470205

  19. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect Releases.

    Science.gov (United States)

    Downey, Danielle; Chun, Stacey; Follett, Peter

    2015-06-01

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5-7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1-4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread.

  20. The influence of age on reproductive performance of the predatory ladybird beetle, Propylea dissecta

    Directory of Open Access Journals (Sweden)

    Ahmad Pervez

    2004-07-01

    Full Text Available The influence of age on reproductive performance of an aphidophagous ladybird beetle, Propylea dissecta was examined using male and female beetles of varying ages (1-30 days after a single mating stimulus. All the intermediate (10 to 20 days old and old (30 days old age females mated with all intermediate and old age males, while only a fraction (0.29% of younger females, 1 to 5 days old, mated with males of similar or older age. The willingness to mate was male age dependent. It increased sigmoidally with increase in adult age. Adult males were more willing to mate with females irrespective of age. Mating duration was longest amongst older adults (30 day-old males and 20 day-old females. Male age did not contribute to shaping the fecundity of the female ladybird. Fecundity was female age dependent and it increased with age up to 20 days and thereafter decreased. 20 day-old females were most fecund producing 867 eggs after a single mating. Progeny production was male age dependent and eggs sired by 20-30 day-old males had significantly higher viability than those sired by younger males. Prolonged mating increased fecundity and egg viability. The results reveal that males of intermediate age were better mates. This information may improve our understanding of the effect of aging on reproduction in ladybirds and may help mass-multiplication of the ladybird beetles using adults of optimal age.

  1. Juvenile hormone and insulin regulate trehalose homeostasis in the red flour beetle, Tribolium castaneum.

    Directory of Open Access Journals (Sweden)

    Jingjing Xu

    2013-06-01

    Full Text Available Insulin/IGF-1 signaling (IIS has been well studied for its role in the control of life span extension and resistance to a variety of stresses. The Drosophila melanogaster insulin-like receptor (InR mutant showed extended life span due to reduced juvenile hormone (JH levels. However, little is known about the mechanism of cross talk between IIS and JH in regulation of life span extension and resistance to starvation. In the current study, we investigated the role of IIS and JH signaling in regulation of resistance to starvation. Reduction in JH biosynthesis, JH action, or insulin-like peptide 2 (ILP2 syntheses by RNA interference (RNAi-aided knockdown in the expression of genes coding for juvenile hormone acid methyltransferase (JHAMT, methoprene-tolerant (Met, or ILP2 respectively decreased lipid and carbohydrate metabolism and extended the survival of starved beetles. Interestingly, the extension of life span could be restored by injection of bovine insulin into JHAMT RNAi beetles but not by application of JH III to ILP2 RNAi beetles. These data suggest that JH controls starvation resistance by regulating synthesis of ILP2. More importantly, JH regulates trehalose homeostasis, including trehalose transport and metabolism, and controls utilization of stored nutrients in starved adults.

  2. Direct and indirect genetic effects in life-history traits of flour beetles (Tribolium castaneum).

    Science.gov (United States)

    Ellen, Esther D; Peeters, Katrijn; Verhoeven, Merel; Gols, Rieta; Harvey, Jeffrey A; Wade, Michael J; Dicke, Marcel; Bijma, Piter

    2016-01-01

    Indirect genetic effects (IGEs) are the basis of social interactions among conspecifics, and can affect genetic variation of nonsocial and social traits. We used flour beetles (Tribolium castaneum) of two phenotypically distinguishable populations to estimate genetic (co)variances and the effect of IGEs on three life-history traits: development time (DT), growth rate (GR), and pupal body mass (BM). We found that GR was strongly affected by social environment with IGEs accounting for 18% of the heritable variation. We also discovered a sex-specific social effect: male ratio in a group significantly affected both GR and BM; that is, beetles grew larger and faster in male-biased social environments. Such sex-specific IGEs have not previously been demonstrated in a nonsocial insect. Our results show that beetles that achieve a higher BM do so via a slower GR in response to social environment. Existing models of evolution in age-structured or stage-structured populations do not account for IGEs of social cohorts. It is likely that such IGEs have played a key role in the evolution of developmental plasticity shown by Tenebrionid larvae in response to density. Our results document an important source of genetic variation for GR, often overlooked in life-history theory.

  3. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    Science.gov (United States)

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. PMID:26546596

  4. Host-Tree Monoterpenes and Biosynthesis of Aggregation Pheromones in the Bark Beetle Ips paraconfusus

    Directory of Open Access Journals (Sweden)

    John A. Byers

    2012-01-01

    Full Text Available A paradigm developed in the 1970s that Ips bark beetles biosynthesize their aggregation pheromone components ipsenol and ipsdienol by hydroxylating myrcene, a host tree monoterpene. Similarly, host α-pinene was hydroxylated to a third pheromone component cis-verbenol. In 1990, however, we reported that amounts of ipsenol and ipsdienol produced by male Ips paraconfusus (Coleoptera: Scolytinae feeding in five host pine species were nearly the same, even though no detectable myrcene precursor was detected in one of these pines (Pinus sabiniana. Subsequent research showed ipsenol and ipsdienol are also biosynthesized from smaller precursors such as acetate and mevalonate, and this de novo pathway is the major one, while host tree myrcene conversion by the beetle is the minor one. We report concentrations of myrcene, α-pinene and other major monoterpenes in five pine hosts (Pinus ponderosa, P. lambertiana, P. jeffreyi, P. sabiniana, and P. contorta of I. paraconfusus. A scheme for biosynthesis of ipsdienol and ipsenol from myrcene and possible metabolites such as ipsenone is presented. Mass spectra and quantities of ipsenone are reported and its possible role in biosynthesis of aggregation pheromone. Coevolution of bark beetles and host trees is discussed in relation to pheromone biosynthesis, host plant selection/suitability, and plant resistance.

  5. Radiobiology of Small Hive Beetle (Coleoptera: Nitidulidae) and Prospects for Management Using Sterile Insect

    International Nuclear Information System (INIS)

    Small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae), is considered a serious threat to beekeeping in the Western Hemisphere, Australia, and Europe mainly due to larval feeding on honey, pollen, and brood of the European honeybee, Apis mellifera L. Control methods are limited for this pest. Studies were conducted to provide information on the radiobiology of small hive beetle and determine the potential for sterile insect releases as a control strategy. Adult males and females were equally sensitive to a radiation dose of 80 Gy and died within 5–7 d after treatment. In reciprocal crossing studies, irradiation of females only lowered reproduction to a greater extent than irradiation of males only. For matings between unirradiated males and irradiated females, mean reproduction was reduced by >99% at 45 and 60 Gy compared with controls, and no larvae were produced at 75 Gy. Irradiation of prereproductive adults of both sexes at 45 Gy under low oxygen (1–4%) caused a high level of sterility (>99%) while maintaining moderate survivorship for several weeks, and should suffice for sterile insect releases. Sterile insect technique holds potential for suppressing small hive beetle populations in newly invaded areas and limiting its spread. (author)

  6. Saproxylic Beetle Assemblage Selection as Determining Factor of Species Distributional Patterns: Implications for Conservation.

    Science.gov (United States)

    García-López, A; Galante, E; Micó, E

    2016-01-01

    The knowledge of the distributional patterns of saproxylic beetles is essential for conservation biology due to the relevance of this fauna in the maintenance of ecological processes and the endangerment of species. The complex community of saproxylic beetles is shaped by different assemblages that are composed of species linked by the microhabitats they use. We evaluate how different the species distribution patterns that are obtained can be, depending on the analyzed assemblage and to what extent these can affect conservation decisions. Beetles were sampled using hollow emergence and window traps in three protected areas of the Iberian Peninsula. Species richness, composition, and diversity turnover were analyzed for each sampling method and showed high variation depending on the analyzed assemblage. Beta diversity was clearly higher among forests for the assemblage captured using window traps. This method collects flying insects from different tree microhabitats and its captures are influenced by the forest structuring. Within forests, the assemblages captured by hollow emergence traps, which collect the fauna linked to tree hollows, showed the largest turnover of species, as they are influenced by the characteristics of each cavity. Moreover, the selection of the forest showing the highest species richness strongly depended on the studied assemblage. This study demonstrates that differences in the studied assemblages (group of species co-occurring in the same habitat) can also lead to significant differences in the identified patterns of species distribution and diversity turnover. This fact will be necessary to take into consideration when making decisions about conservation and management. PMID:27252483

  7. Population ecology and conservation of beetles and pseudoscorpions living in hollow oaks in Sweden

    Directory of Open Access Journals (Sweden)

    Ranius, T.

    2002-01-01

    Full Text Available This paper aims at giving a summary of recent research on the habitat requirements and population structure of beetles and pseudoscorpions living in old, hollow oaks in Sweden. An inventory of old oaks in pasture woodlands revealed that the species richness of beetles is higher at sites that are originally open and are still grazed. The trees in these plots are preferred for two reasons: they are more sun-exposed and have a larger trunk diameter. Many species are harmed by forest regrowth and, thus, to preserve the rarer saproxylic fauna it is important to continue the management of areas with old oaks. In four of thirteen species (Osmoderma eremita, Tenebrio opacus, Elater ferrugineus and Larca lata, the occupancy per tree were found to be significantly positively correlated with the number of trees in the stand. This finding is noteworthy as there is little scientific evidence available to support that saproxylic beetles suffer from habitat fragmentation. The population dynamics were investigated on a certain study species, O. eremita. The results suggest that the individuals of each tree could be seen as a local population, and the populations in all occupied trees in a stand together form a metapopulation.

  8. Convergences and divergences between two European mountain dung beetle assemblages (Coleoptera, Scarabaeoidea

    Directory of Open Access Journals (Sweden)

    Lobo, J. M.

    2007-06-01

    Full Text Available We analyzed the altitudinal change in dung beetle species richness and the relative proportion of higher taxa, as well as the turnover in the type of distribution and range size of species in two mountain chains located at the two extremes of Europe (Western Rhodopes Mountains and the Iberian Central System. Both mountain ranges showed a clear substitution among higher taxa (Aphodiinae-Geotrupinae vs. Scarabaeidae and species richness variation with the altitude was similar. We suggest that East European dung beetle assemblages are conditioned by a horizontal colonization process in which mountains had been reached in relatively recent geological time by elements coming from different latitudes. In spite of these convergences, Rhodopes dung beetle assemblages are characterized by a significantly lower proportion of narrowly distributed species and a lower relevance of Aphodiinae species in lowland places. Although these divergences can be partially attributed to the dissimilar sampling effort accomplished in both regions, we suggest that the low number on narrowly distributed species could be due to the different role of these two mountain zones as refuges during glaciar-interglaciar Pleistocene cycles.

  9. Combined physical and chemical methods to control lesser mealworm beetles under laboratory conditions.

    Science.gov (United States)

    Wolf, Jônatas; Potrich, Michele; Lozano, Everton R; Gouvea, Alfredo; Pegorini, Carla S

    2015-06-01

    The lesser mealworm beetle, Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae), is an important insect pest. The insect acts as a disease vector and reservoir, negatively affecting the health of birds and humans, and harming poultry husbandry. Controlling the lesser mealworm is generally based on using synthetic chemical insecticides, which are sometimes ineffective, and is limited due to market concerns regarding the toxicity of chemical residues in food products. In this context, the present study aimed to evaluate the potential for the combination of physical and chemical methods to control A. diaperinus. Bioassays were conducted using poultry bedding and known populations of beetle adults and larvae. The treatments consisted of the isolated application of 400 g/m2 hydrated lime; 20% added moisture (distilled water); temperature increase to 45°C; an insecticide composed of cypermethrin, chlorpyrifos, and citronellal; and a combination of these factors. Beetle mortality was measured at 7 and 10 d of treatment. The hydrated lime and moisture treatments alone did not control A. diaperinus. Raising the temperature of the poultry bedding to 45°C effectively controlled both larvae (90±6%) and adults (90±4%). The use of insecticide provided adequate control of A. diaperinus in the conditions of the bioassay (93±2% and 68±5% for adults and larvae, respectively). The combination of the studied factors led to the total control of larvae and adults after 7 d of treatment. PMID:25834245

  10. Shades of yellow: interactive effects of visual and odour cues in a pest beetle

    Science.gov (United States)

    Stevenson, Philip C.; Belmain, Steven R.

    2016-01-01

    Background: The visual ecology of pest insects is poorly studied compared to the role of odour cues in determining their behaviour. Furthermore, the combined effects of both odour and vision on insect orientation are frequently ignored, but could impact behavioural responses. Methods: A locomotion compensator was used to evaluate use of different visual stimuli by a major coleopteran pest of stored grains (Sitophilus zeamais), with and without the presence of host odours (known to be attractive to this species), in an open-loop setup. Results: Some visual stimuli—in particular, one shade of yellow, solid black and high-contrast black-against-white stimuli—elicited positive orientation behaviour from the beetles in the absence of odour stimuli. When host odours were also present, at 90° to the source of the visual stimulus, the beetles presented with yellow and vertical black-on-white grating patterns changed their walking course and typically adopted a path intermediate between the two stimuli. The beetles presented with a solid black-on-white target continued to orient more strongly towards the visual than the odour stimulus. Discussion: Visual stimuli can strongly influence orientation behaviour, even in species where use of visual cues is sometimes assumed to be unimportant, while the outcomes from exposure to multimodal stimuli are unpredictable and need to be determined under differing conditions. The importance of the two modalities of stimulus (visual and olfactory) in food location is likely to depend upon relative stimulus intensity and motivational state of the insect.

  11. A Crispy Delicacy: Augosoma Beetle as Alternative Source of Protein in East Cameroon

    Directory of Open Access Journals (Sweden)

    F. J. Muafor

    2014-01-01

    Full Text Available Despite the fact that the exoskeleton of the Augosoma centaurus (Dynastinae is hard and difficult to chew, this insect is often gathered in Eastern Cameroon for food in periods of availability. Nine ethnic groups in Eastern Cameroon were surveyed to understand the role of this insect in assuring food security, using quantitative and qualitative social science approaches. Both the larvae and adult stages of this beetle are habitually consumed in the areas studied. In total, about 65% of consumers prefer consuming the adults, while 35% prefer consuming the larvae. About 24% of consumers derive the same satisfaction from the consumption of Augosoma or other edible insects. Close to 39% of consumers prefer other edible insects to Augosoma, while 37% prefer the consumption of Augosoma to other edible insects. This beetle usually occurs at a period when other edible insects are not available, therefore constituting a good source of alternative protein in this region where poverty, poaching, and biodiversity erosion are still a major problem. Furthermore, the gathering of this beetle for food is equally a means of biological pest control of raffia plants and a tool to enhance community-based conservation of the areas global biodiversity.

  12. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    Science.gov (United States)

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  13. Ground beetles (Coleoptera, Carabidae of the Hanford Nuclear Site in south-central Washington State

    Directory of Open Access Journals (Sweden)

    Chris Looney

    2014-04-01

    Full Text Available In this paper we report on ground beetles (Coleoptera: Carabidae collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site, which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte, and Stenolophus lineola (Fabricius. Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity.

  14. Ground beetles (Coleoptera, Carabidae) of the Hanford Nuclear Site in south-central Washington State

    Science.gov (United States)

    Looney, Chris; Zack, Richard S.; LaBonte, James R.

    2014-01-01

    Abstract In this paper we report on ground beetles (Coleoptera: Carabidae) collected from the Hanford Nuclear Reservation and Hanford National Monument (together the Hanford Site), which is located in south-central Washington State. The Site is a relatively undisturbed relict of the shrub-steppe habitat present throughout much of the western Columbia Basin before the westward expansion of the United States. Species, localities, months of capture, and capture method are reported for field work conducted between 1994 and 2002. Most species were collected using pitfall traps, although other capture methods were employed. Trapping results indicate the Hanford Site supports a diverse ground beetle community, with over 90% of the 92 species captured native to North America. Four species collected during the study period are newly recorded for Washington State: Bembidion diligens Casey, Calosoma obsoletum Say, Pseudaptinus rufulus (LeConte), and Stenolophus lineola (Fabricius). Based on these data, the Site maintains a diverse ground beetle fauna and, due to its size and diversity of habitats, is an important repository of shrub-steppe biodiversity. PMID:24715791

  15. Food preference of the rove beetle, Atheta coriaria Kraatz (Coleoptera: Staphylinidae) under laboratory conditions

    Institute of Scientific and Technical Information of China (English)

    EVA M. BIRKEN; RAYMOND A. CLOYD

    2007-01-01

    A study, involving laboratory choice tests, was conducted to determine thefeeding behavior, based on food preference, of the adult and larval stage of the rove beetle,Atheta coriaria Kraatz when presented with both fresh moistened oatmeal and secondinstar fungus gnat, Bradysia sp. nr. coprophila (Lintner) larvae in Petri dishes. Rovebeetles used in this study came from a laboratory-reared colony. A rating scale from 1 to5, based on percent missing (1 = 0 to 10%, 2 = 11 to 30%, 3 = 31 to 50%, 4 = 51 to 75%,and 5 = 76 to 100%), was used to objectively assess the amount of oatmeal and number offungus gnat larvae consumed by each rove beetle adult and larva. In all the choice tests,A. coriaria adults and larvae preferred to feed on fungus gnat larvae (78% and 69%,respectively) significantly more so than oatmeal (9% and 5%, respectively) based on theamount of oatmeal and number of fungus gnat larvae consumed after 4 and 6 hours. Therewere relatively minimal differences in the amount of food consumed for both adults andlarvae after 4 and 6 hours. The results of this study indicate that oatmeal may be aninexpensive supplemental food source, during the rearing process, which will not inhibitthe effectiveness of rove beetles to control fungus gnat larvae when released intogreenhouses.

  16. Cold exposure and associated metabolic changes in adult tropical beetles exposed to fluctuating thermal regimes.

    Science.gov (United States)

    Lalouette, L; Kostál, V; Colinet, H; Gagneul, D; Renault, D

    2007-04-01

    Environmental stress deleteriously affects every aspect of an ectotherm's biological function. Frequent exposure of terrestrial insects to temperature variation has thus led to the evolution of protective biochemical and physiological mechanisms. However, the physiological mechanisms underlying the positive impact of fluctuating thermal regimes (FTRs) on the fitness and survival of cold-exposed insects have not been studied. We have thus investigated the metabolic changes in adults of the beetle Alphitobius diaperinus in order to determine whether FTRs trigger the initiation of a metabolic response involving synthesis of protective compounds, such as free amino acids (FAAs) and polyols. The metabolic profile was analyzed during constant fluctuating thermal regimes (the beetles had daily pulses at higher temperatures that enabled them to recover) and compared with constant cold exposure and untreated controls. The increase of several essential amino acids (Lys, Iso, Leu, Phe and Trp) in cold-exposed beetles supports the conclusion that it results from the breakdown of proteins. Some FAAs have been shown to have cryoprotective properties in insects, but the relationship between FAAs, cold tolerance and survival has not yet been well defined. Instead of considering FAAs only as a part of the osmo- and cryoprotective arsenal, they should also be regarded as main factors involved in the multiple regulatory pathways activated during cold acclimation. Under FTRs, polyol accumulation probably contributes to the increased duration of survival in A. diaperinus. PMID:17331186

  17. The Response of Subalpine Vegetation to Climate Change and Bark Beetle Infestations: A Multi-Scale Interaction.

    Science.gov (United States)

    Foster, A.; Shuman, J. K.; Shugart, H. H., Jr.; Negrón, J. F.

    2015-12-01

    Mean annual temperatures in the western United States have increased in the last few decades, and are predicted to continue warming. In the subalpine zone of the Rocky Mountains, this warming is also predicted to increase the frequency and severity of spruce beetle outbreaks. Climate change itself may affect this vegetation, potentially leading to shifts in species compositions. These forests are a crucial part of the US's carbon budget, thus it is important to analyze how climate change and bark beetles in conjunction will affect the biomass and species composition of vegetation in subalpine zone. UVAFME is an individual-based gap model that simulates biomass and species composition of a forest. This model has been quantitatively tested at various Rocky Mountain sites in the Front Range, and has been shown to accurately simulate the vegetation dynamics in the region. UVAFME has been updated with a spruce beetle subroutine that calculates the probability for beetle infestation of each tree on a plot. This probability is based on site, climate, and individual tree characteristics, such as temperature; stand structure; and tree stress level, size, and age. These governing characteristics are based on data from the US Forest Service, and other studies on spruce susceptibility and spruce beetle phenology. UVAFME is then run with multiple climate change and beetle scenarios to determine the net effect of both variables on subalpine vegetation. These results are compared among the different scenarios and to current forest inventory data. We project that increasing temperatures due to climate change will cause an increase in the frequency and severity of spruce beetle outbreaks, leading to a decrease in the biomass and dominance of Engelmann spruce. These results are an important step in understanding the possible futures for the vegetation of subalpine zone in the Rocky Mountains.

  18. Microsclerotia of Metarhizium brunneum F52 Applied in Hydromulch for Control of Asian Longhorned Beetles (Coleoptera: Cerambycidae).

    Science.gov (United States)

    Goble, Tarryn A; Hajek, Ann E; Jackson, Mark A; Gardescu, Sana

    2015-04-01

    The entomopathogenic fungus Metarhizium brunneum (Petch) strain F52 (Hypocreales: Clavicipitaceae) is able to produce environmentally persistent microsclerotia (hyphal aggregates). Microsclerotia of strain F52 produced as granules and incorporated into hydromulch (hydro-seeding straw, water, and a natural glue) provides a novel mycoinsecticide that could be sprayed onto urban, forest, or orchard trees. We tested this formulation against adult Asian longhorned beetles (Anoplophora glabripennis (Motschulsky)) using three substrates (moistened bark, dry bark, absorbent bench liner) sprayed with a low rate (9 microsclerotia granules/cm2) of hydromulch. Median survival times of beetles continuously exposed to sprayed moist bark or absorbent liner were 17.5 and 19.5 d, respectively. Beetles exposed to sprayed dry bark, which had a lower measured water activity, lived significantly longer. When moist bark pieces were sprayed with increased rates of microsclerotia granules in hydromulch, 50% died by 12.5 d at the highest application rate, significantly sooner than beetles exposed to lower application rates (16.5-17.5 d). To measure fecundity effects, hydromulch with or without microsclerotia was sprayed onto small logs and pairs of beetles were exposed for a 2-wk oviposition period in containers with 98 or 66% relative humidity. At 98% humidity, oviposition in the logs was highest for controls (18.3±1.4 viable offspring per female) versus 3.9±0.8 for beetles exposed to microsclerotia. At 66% humidity, fecundities of controls and beetles exposed to microsclerotia were not significantly different. This article presents the first evaluation of M. brunneum microsclerotia in hydromulch applied for control of an arboreal insect pest.

  19. Behavioral explanations underlying the lack of trap effectiveness for small-scale management of Japanese beetles (Coleoptera: Scarabaeidae).

    Science.gov (United States)

    Switzer, Paul V; Enstrom, Patrick C; Schoenick, Carissa A

    2009-06-01

    Traps containing a combination floral and synthetic pheromone lure are used to monitor and manage Japanese beetles, Popillia japonica Newman (Coleoptera: Scarabaeidae). One key factor limiting trap effectiveness for beetle control is the "trap spillover" phenomenon, in which the trap attracts beetles without capturing them, resulting in increased damage to surrounding host plants. We investigated the mechanisms underlying trap spillover by conducting two studies in a soybean field in east central Illinois. In the first study, we set up trap stations for 1 d and compared the sex, size, and egg load (for females) of beetles caught in the traps with those on the plants immediately surrounding the trap, downwind of the trap, at lure-only (no trap) stations, and at control areas. Females caught in traps tended to be smaller than those on plants surrounding the traps, and females attracted to the traps had fewer eggs than those downwind or at control sites. We did not find any difference in male characteristics. In the second study, we observed the behavior of beetles initially approaching traps. Upon initial approach, the majority of individuals landed on plants before making contact with the trap, and those beetles that spent an extended time on the leaves tended to be females. Arriving males would occasionally pair with these females on the plants. Overall, traps did not capture a random subset of the beetles present in the field. We hypothesize that trap spillover is a result of arriving females not being as attracted to the precise location of the trap as they are to the general location itself, and of arriving males seeking mates and finding them among these spillover females.

  20. Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum.

    Science.gov (United States)

    Altincicek, Boran; Elashry, Abdelnaser; Guz, Nurper; Grundler, Florian M W; Vilcinskas, Andreas; Dehne, Heinz-Wilhelm

    2013-01-01

    Beetles (Coleoptera) are the most diverse animal group on earth and interact with numerous symbiotic or pathogenic microbes in their environments. The red flour beetle Tribolium castaneum is a genetically tractable model beetle species and its whole genome sequence has recently been determined. To advance our understanding of the molecular basis of beetle immunity here we analyzed the whole transcriptome of T. castaneum by high-throughput next generation sequencing technology. Here, we demonstrate that the Illumina/Solexa sequencing approach of cDNA samples from T. castaneum including over 9.7 million reads with 72 base pairs (bp) length (approximately 700 million bp sequence information with about 30× transcriptome coverage) confirms the expression of most predicted genes and enabled subsequent qualitative and quantitative transcriptome analysis. This approach recapitulates our recent quantitative real-time PCR studies of immune-challenged and naïve T. castaneum beetles, validating our approach. Furthermore, this sequencing analysis resulted in the identification of 73 differentially expressed genes upon immune-challenge with statistical significance by comparing expression data to calculated values derived by fitting to generalized linear models. We identified up regulation of diverse immune-related genes (e.g. Toll receptor, serine proteinases, DOPA decarboxylase and thaumatin) and of numerous genes encoding proteins with yet unknown functions. Of note, septic-injury resulted also in the elevated expression of genes encoding heat-shock proteins or cytochrome P450s supporting the view that there is crosstalk between immune and stress responses in T. castaneum. The present study provides a first comprehensive overview of septic-injury responsive genes in T. castaneum beetles. Identified genes advance our understanding of T. castaneum specific gene expression alteration upon immune-challenge in particular and may help to understand beetle immunity in general.

  1. Egg Predation by the Introduced Lady Beetle, Coccinella septempunctata (Coleoptera: Coccinellidae, Lowers Mortality but Raises Relative Risk for the Native Lady Beetle, Coccinella novemnotata.

    Directory of Open Access Journals (Sweden)

    Rakim Turnipseed

    Full Text Available Populations of the native ninespotted lady beetle, Coccinella novemnotata Herbst, have undergone precipitous declines in North America following the establishment of the exotic sevenspotted lady beetle, Coccinella septempunctata L. Recent volunteer efforts have made it possible to establish colonies of the now-rare C. novemnotata and test mechanisms contributing to its decline. We evaluated the relative frequencies of intraguild predation and cannibalism of eggs between these two species. A single C. novemnotata or C. septempunctata adult was exposed to conspecific and heterospecific eggs in either the presence or absence of pea aphids. The study revealed two expected results: 1 eggs of C. novemnotata were consumed more frequently than eggs of C. septempunctata by both species, and 2 egg consumption was higher when aphids were absent, independent of predator and egg species. There were also two unexpected results from the study: 1 the asymmetry between egg predation rates was higher when aphids were present, and 2 higher predation rates on C. novemnotata eggs in the absence of alternate prey was due to a relatively higher rate of intraspecific cannibalism. This implies that C. novemnotata would have suffered higher egg mortality rates before the invasion of C. septempunctata, but even though the aggregate rate of egg predation on C. novemnotata eggs is lower post-invasion, it is still significantly higher than the aggregate rate of predation of C. septempunctata eggs. This differential pattern of asymmetric predation could contribute to habitat compression and the overall decline of C. novemnotata.

  2. Characterisation and tissue distribution of the PISCF allatostatin receptor in the red flour beetle, Tribolium castaneum.

    Science.gov (United States)

    Audsley, Neil; Vandersmissen, Hans Peter; Weaver, Robert; Dani, Paulina; Matthews, June; Down, Rachel; Vuerinckx, Kristel; Kim, Young-Joon; Vanden Broeck, Jozef

    2013-01-01

    The insect PISCF/allatostatins (ASTs) are pleiotropic peptides that are involved in the regulation of juvenile hormone biosynthesis, are myoinhibitory on the gut and the heart, and suppress feeding in various insects, but their roles in beetles are poorly understood. To provide further insight into the significance of PISCF/ASTs in beetles, the PISCF/AST receptor from Tribolium castaneum has been characterised and its tissue distribution determined. The biological activity of the T. castaneum PISCF/AST (Trica-AS) was also investigated. The Trica-AS receptor shows high sequence homology to other insect PISCF/AST receptors, which are related to the mammalian somatostatin/opioid receptors, a family of G protein-coupled receptors. The Trica-AS receptor was activated in a dose-dependent manner by both Trica-AS and T. castaneum allatostatin double C (Trica-ASTCC) as well as Manduca sexta-allatostatin (Manse-AS). Other allatoregulatory peptides (a FLG/AST, a MIP/AST and an allatotropin) and somatostatin(14) were inactive on this receptor. Receptor transcript levels in tissues, determined by qRT-PCR, were highest in the head and the gut, with variable amounts in the fat body and reproductive organs. There were measurable differences in receptor levels of the head, fat body and reproductive organs between males and females. There was also a widespread distribution of Trica-AS in various tissues of T. castaneum. The Trica-AS peptide precursor was most abundant in the head and there was a significant difference between levels in the heads and reproductive organs of males and females. Whole mount immunocytochemistry localised Trica-AS in the median and lateral neurosecretory cells of the brain, in the corpus cardiacum and throughout the ventral nerve cord. The peptide was also present in midgut neurosecretory cells, but no immunostaining was detected in the reproductive organs or Malpighian tubules. The widespread distribution of both Trica-AS and its receptor suggest this

  3. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA

    Science.gov (United States)

    Kulakowski, Dominik; Veblen, Thomas T.; Bebi, Peter

    2016-01-01

    The frequency, magnitude, and size of forest disturbances are increasing globally. Much recent research has focused on how the occurrence of one disturbance may affect susceptibility to subsequent disturbances. While much has been learned about such linked disturbances, the strength of the interactions is likely to be contingent on the severity of disturbances as well as climatic conditions, both of which can affect disturbance intensity and tree resistance to disturbances. Subalpine forests in western Colorado were affected by extensive and severe wildfires in the late 19th century and an extensive and severe outbreak of spruce beetle (Dendroctonus rufipennis) in the 1940s. Previous research found that most, but not all, of the stands that burned and established following the late 19th century fires were not susceptible to the 1940s outbreak as beetles preferentially attack larger trees and stands in advanced stages of development. However, previous research also left open the possibility that some stands that burned and established following the 19th century fires may have been attacked during the 1940s outbreak. Understanding how strongly stand structure, as shaped by disturbances of varying severity, affected susceptibility to past outbreaks is important to provide a baseline for assessing the degree to which recent climate change may be relaxing the preferences of beetles for larger trees and for stands in latter stages of structural development and thereby changing the nature of linked disturbances. Here, dendroecological methods were used to study disturbance history and tree age of stands in the White River National Forest in Western Colorado that were identified in historical documents or remotely-sensed images as having burned in the 19th century and having been attacked by spruce beetle in the 1940s. Dendroecological reconstructions indicate that in young post-fire stands only old remnant trees that survived the otherwise stand-replacing fires were

  4. Metal fate and partitioning in soils under bark beetle-killed trees

    Energy Technology Data Exchange (ETDEWEB)

    Bearup, Lindsay A., E-mail: lbearup@mines.edu [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Mikkelson, Kristin M. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Wiley, Joseph F. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Navarre-Sitchler, Alexis K.; Maxwell, Reed M. [Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Department of Geology and Geological Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Sharp, Jonathan O.; McCray, John E. [Department of Civil and Environmental Engineering, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States); Hydrological Science and Engineering Program, Colorado School of Mines, 1500 Illinois Street, Golden, CO 80401 (United States)

    2014-10-15

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid–liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of

  5. Fire Severity Controlled Susceptibility to a 1940s Spruce Beetle Outbreak in Colorado, USA.

    Directory of Open Access Journals (Sweden)

    Dominik Kulakowski

    Full Text Available The frequency, magnitude, and size of forest disturbances are increasing globally. Much recent research has focused on how the occurrence of one disturbance may affect susceptibility to subsequent disturbances. While much has been learned about such linked disturbances, the strength of the interactions is likely to be contingent on the severity of disturbances as well as climatic conditions, both of which can affect disturbance intensity and tree resistance to disturbances. Subalpine forests in western Colorado were affected by extensive and severe wildfires in the late 19th century and an extensive and severe outbreak of spruce beetle (Dendroctonus rufipennis in the 1940s. Previous research found that most, but not all, of the stands that burned and established following the late 19th century fires were not susceptible to the 1940s outbreak as beetles preferentially attack larger trees and stands in advanced stages of development. However, previous research also left open the possibility that some stands that burned and established following the 19th century fires may have been attacked during the 1940s outbreak. Understanding how strongly stand structure, as shaped by disturbances of varying severity, affected susceptibility to past outbreaks is important to provide a baseline for assessing the degree to which recent climate change may be relaxing the preferences of beetles for larger trees and for stands in latter stages of structural development and thereby changing the nature of linked disturbances. Here, dendroecological methods were used to study disturbance history and tree age of stands in the White River National Forest in Western Colorado that were identified in historical documents or remotely-sensed images as having burned in the 19th century and having been attacked by spruce beetle in the 1940s. Dendroecological reconstructions indicate that in young post-fire stands only old remnant trees that survived the otherwise stand

  6. Metal fate and partitioning in soils under bark beetle-killed trees

    International Nuclear Information System (INIS)

    Recent mountain pine beetle infestation in the Rocky Mountains of North America has killed an unprecedented acreage of pine forest, creating an opportunity to observe an active re-equilibration in response to widespread land cover perturbation. This work investigates metal mobility in beetle-impacted forests using parallel rainwater and acid leaches to estimate solid–liquid partitioning coefficients and a complete sequential extraction procedure to determine how metals are fractionated in soils under trees experiencing different phases of mortality. Geochemical model simulations analyzed in consideration with experimental data provide additional insight into the mechanisms controlling metal complexation. Metal and base-cation mobility consistently increased in soils under beetle-attacked trees relative to soil under healthy trees. Mobility increases were more pronounced on south facing slopes and more strongly correlated to pH under attacked trees than under healthy trees. Similarly, soil moisture was significantly higher under dead trees, related to the loss of transpiration and interception. Zinc and cadmium content increased in soils under dead trees relative to living trees. Cadmium increases occurred predominantly in the exchangeable fraction, indicating increased mobilization potential. Relative increases of zinc were greatest in the organic fraction, the only fraction where increases in copper were observed. Model results reveal that increased organic complexation, not changes in pH or base cation concentrations, can explain the observed differences in metal partitioning for zinc, nickel, cadmium, and copper. Predicted concentrations would be unlikely to impair human health or plant growth at these sites; however, higher exchangeable metals under beetle-killed trees relative to healthy trees suggest a possible decline in riverine ecosystem health and water quality in areas already approaching criteria limits and drinking water standards. Impairment of

  7. The biophysical controls on tree defense against attacking bark beetles in managed pine forests of the Southeastern United States

    Science.gov (United States)

    Novick, K. A.; Miniat, C. F.; Denham, S. O.; Ritger, H. M.; Williams, C.; Guldin, J. M.; Bragg, D.; Coyle, D.

    2013-12-01

    Bark beetles are highly damaging pests capable of destroying large areas of southern pine forests, with significant consequences for regional timber supply and forest ecosystem carbon dynamics. A number of recent studies have shown that following bark beetle outbreak, significant effects on ecosystem carbon and water cycling can occur. Relatively few studies have explored how ecosystem carbon and water cycling interact with other factors to control the hazard or risk of bark beetle outbreaks; these interactions, and their representation in conceptual model frameworks, are the focus of this study. Pine trees defend against bark beetle attacks through the exudation of of resin - a viscous compound that deters attacking beetles through a combination of chemical and physical mechanisms. Constitutive resin flow (CRF, representing resin produced before attack) is assumed to be directly proportional to the balance between gross primary productivity (GPP) and net primary productivity (NPP) according to the Growth-Differentiation Balance theory (GDB). Thus, predictions for tree mortality and bark beetle dynamics under different management and climate regimes may be more accurate if a model framework describing the biophysical controls on resin production (e.g., GDB) were employed. Here, we synthesize measurements of resin flow, bark beetle dynamics, and ecosystem C flux from three managed loblolly pine forests in the Southeastern U.S.: the Duke Forest in Durham, NC; the Savannah River DOE site near Aiken, SC; and the Crossett Experimental Forest in southern Arkansas. We also explore the relationship between CRF and induced resin flow (IRF, representing the de novo synthesis of resin following stem wounding) in the latter two sites, where IRF was promoted by a novel tree baiting approach and prescribed fire, respectively. We assimilate observations within a hierarchical Bayesian framework to 1) test whether observations conform to the GDB hypothesis, and 2) explore effects

  8. Insecticides evaluated as regulatory immersion treatments to eliminate third-instar Japanese beetles (Coleoptera: Scarabaeidae) from small-diameter field-grown nursery plants

    Science.gov (United States)

    Japanese beetles, Popillia japonica Newman, are a quarantine issue for nursery shipments to certain U.S. states. The Domestic Japanese Beetle Harmonization Plan (DJHP) allows balled and burlapped (B&B) root ball immersion in chlorpyrifos or bifenthrin for P. japonica certification. Study objective...

  9. Role of dung beetle feeding mechanisms in limiting the suitability of species as hosts for the nematode Spirocerca lupi

    DEFF Research Database (Denmark)

    du Toit, C. A.; Holter, P.; Lutermann, H.;

    2012-01-01

    Various species of dung beetle serve as intermediate hosts after ingesting the embryonated eggs (1115 x 3037 mu m) of Spirocerca lupi (Spirurida: Spirocercidae) in dog faeces. The feeding mechanisms of coprophagous dung beetles restrict the size of the food particles they can ingest and hence may...

  10. Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across a habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi

    Directory of Open Access Journals (Sweden)

    SHAHABUDDIN

    2010-01-01

    Full Text Available Shahabuddin (2010 Diversity and community structure of dung beetles (Coleoptera: Scarabaeidae across habitat disturbance gradient in Lore Lindu National Park, Central Sulawesi. Biodiversitas 11: 29-33. Dung beetles are important component of most terrestrial ecosystems and used to assess the effects of habitat disturbance and deforestation. This study aimed at comparing dung beetle assemblages among several habitat types ranging from natural tropical forest and agroforestry systems to open cultivated areas at the margin of Lore Lindu National Park (LLNP, Central Sulawesi (one of Indonesia’s biodiversity hotspots. Therefore, 10 pitfall traps baited with cattle dung were exposed at each habitat type (n = 4 replicate sites per habitat type to collect the dung beetles. The results showed that species richness of dung beetles declined significantly from natural forest to open area. However cacao agroforestry systems seemed to be capable of maintaining a high portion of dung beetle species inhabiting at forest sites. The closer relationship between dung beetle assemblages recorded at forest and agroforestry sites reflects the high similarity of some measured habitat parameters (e.g. vegetation structure and microclimate between both habitat types, while species assemblages at open areas differed significantly from both other habitat groups. These results indicated that habitat type has importance effect on determining the species richness and community structure of dung beetles at the margin of LLNP.

  11. Host preference of Callosobruchus maculatus: a comparison of life history characteristics for three strains of beetles on two varieties of cowpea

    NARCIS (Netherlands)

    Boeke, S.J.; Loon, van J.J.A.; Huis, van A.; Dicke, M.

    2004-01-01

    The reproductive success of Callosobruchus maculatus Fabricius, the main insect pest of stored cowpea, may vary between strains of this beetle and between varieties of the host seeds. Life history parameters of beetle strains from three different origins in West Africa were compared on two susceptib

  12. An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry

    Science.gov (United States)

    The ambrosia beetle Euwallacea fornicatus Einchoff was first recorded in Israel in 2009. A novel unnamed symbiotic species within Clade 3 of the Fusarium solani species complex, carried in the mandibular mycangia of the beetle, is responsible for the typical wilt symptoms inflicted on avocado (Perse...

  13. Volatile chemicals from host and non-host trees of the redbay ambrosia beetle Xyleborus glabratus, threatening the Floridian avocado production.

    Science.gov (United States)

    The redbay ambrosia beetle Xyleborus glabratus (Coleoptera: Scolytinae) is an invasive pest introduced in spreading in Southeastern US. The beetle carries a symbiotic fungus which causes laurel wilt, a vascular disease killing of host trees of the Laureacea family as 6 weeks. We compare the chemical...

  14. Dead ant walking: a myrmecophilous beetle predator uses parasitoid host location cues to selectively prey on parasitized ants.

    Science.gov (United States)

    Mathis, Kaitlyn A; Tsutsui, Neil D

    2016-08-17

    Myrmecophiles (i.e. organisms that associate with ants) use a variety of ecological niches and employ different strategies to survive encounters with ants. Because ants are typically excellent defenders, myrmecophiles may choose moments of weakness to take advantage of their ant associates. This hypothesis was studied in the rove beetle, Myrmedonota xipe, which associates with Azteca sericeasur ants in the presence of parasitoid flies. A combination of laboratory and field experiments show that M. xipe beetles selectively locate and prey upon parasitized ants. These parasitized ants are less aggressive towards beetles than healthy ants, allowing beetles to eat the parasitized ants alive without interruption. Moreover, behavioural assays and chemical analysis reveal that M. xipe are attracted to the ant's alarm pheromone, the same secretion used by the phorid fly parasitoids in host location. This strategy allows beetles access to an abundant but otherwise inaccessible resource, as A. sericeasur ants are typically highly aggressive. These results are the first, to our knowledge, to demonstrate a predator sharing cues with a parasitoid to gain access to an otherwise unavailable prey item. Furthermore, this work highlights the importance of studying ant-myrmecophile interactions beyond just their pairwise context. PMID:27512148

  15. Semiochemical Diversity in Practice: Antiattractant Semiochemicals Reduce Bark Beetle Attacks on Standing Trees—A First Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Fredrik Schlyter

    2012-01-01

    Full Text Available Reduction of tree mortality caused by bark beetle attacks is not only important for forestry, but also essential for the preservation of biodiversity and forest carbon sinks in the face of climate change. While bark beetle mass trapping (a “pull” approach is implemented in practice, few studies exist to estimate its effect. The more complex “push-pull” tactic has, in contrast, been repeatedly tested during the last decade. I analysed published data from 32 experiments in 9 papers published during 2000–2011 on Ips typographus and Dendroctonus ponderosae, to test if there was an overall effect of antiattractant semiochemicals, that is, if treatments reduced the number of attacks on standing trees at the habitat or stand scale. This meta-analysis showed a substantial overall effect size (treatment-control means divided by their SD of −0.96, with some heterogeneity but little evidence of publication bias. There was no effect of beetle species or publication year. Heterogeneity resulted from different designs and beetle population levels (as year of study. The conventional “% Reduction” measure correlated well with effect size (2=0.7. Recommendations include more precise reporting of responses (avoiding dichotomous data, more unified experimental designs, and further meta-analyses that include “grey literature” and more beetle species.

  16. Adhesive performance of the stick-capture apparatus of rove beetles of the genus Stenus (Coleoptera, Staphylinidae) toward various surfaces.

    Science.gov (United States)

    Koerner, Lars; Gorb, Stanislav N; Betz, Oliver

    2012-01-01

    Rove beetles of the genus Stenus possess a unique adhesive prey-capture apparatus that enables them to catch elusive prey such as springtails over a distance of several millimeters. The prey-capture device combines the hierarchically organized morphology of dry adhesive systems with the properties of wet ones, since an adhesive secretion is released into the contact zone. We hypothesize that this combination enables Stenus species successfully to capture prey possessing a wide range of surface structures and chemistries. We have investigated the influence of both surface energy and roughness of the substrate on the adhesive performance of the prey-capture apparatus in two Stenus species. Force transducers have been used to measure both the compressive and adhesive forces generated during the predatory strike of the beetles on (1) epoxy resin surfaces with defined roughness values (smooth versus rough with asperity diameters ranging from 0.3 to 12 μm) and (2) hydrophobic versus hydrophilic glass surfaces. Our experiments show that neither the surface roughness nor the surface energy significantly influences the attachment ability of the prey-capture apparatus. Thus, in contrast to the performance of locomotory adhesive systems in geckos, beetles, and flies, no critical surface roughness exists that might impede adhesion of the prey-capture apparatus of Stenus beetles. The prey-capture apparatus of Stenus beetles is therefore well adapted to adhere to the various unpredictable surfaces with diverse roughness and surface energy occurring in a wide range of potential prey. PMID:22119444

  17. Adhesive performance of the stick-capture apparatus of rove beetles of the genus Stenus (Coleoptera, Staphylinidae) toward various surfaces.

    Science.gov (United States)

    Koerner, Lars; Gorb, Stanislav N; Betz, Oliver

    2012-01-01

    Rove beetles of the genus Stenus possess a unique adhesive prey-capture apparatus that enables them to catch elusive prey such as springtails over a distance of several millimeters. The prey-capture device combines the hierarchically organized morphology of dry adhesive systems with the properties of wet ones, since an adhesive secretion is released into the contact zone. We hypothesize that this combination enables Stenus species successfully to capture prey possessing a wide range of surface structures and chemistries. We have investigated the influence of both surface energy and roughness of the substrate on the adhesive performance of the prey-capture apparatus in two Stenus species. Force transducers have been used to measure both the compressive and adhesive forces generated during the predatory strike of the beetles on (1) epoxy resin surfaces with defined roughness values (smooth versus rough with asperity diameters ranging from 0.3 to 12 μm) and (2) hydrophobic versus hydrophilic glass surfaces. Our experiments show that neither the surface roughness nor the surface energy significantly influences the attachment ability of the prey-capture apparatus. Thus, in contrast to the performance of locomotory adhesive systems in geckos, beetles, and flies, no critical surface roughness exists that might impede adhesion of the prey-capture apparatus of Stenus beetles. The prey-capture apparatus of Stenus beetles is therefore well adapted to adhere to the various unpredictable surfaces with diverse roughness and surface energy occurring in a wide range of potential prey.

  18. What is the importance of open habitat in a predominantly closed forest area to the dung beetle (Coleoptera, Scarabaeinae assemblage?

    Directory of Open Access Journals (Sweden)

    Fábio C. Costa

    2013-09-01

    Full Text Available What is the importance of open habitat in a predominantly closed forest to the dung beetle assemblage? The Atlantic Forest in Brazil is one of the most highly disturbed ecosystems and is mainly represented by fragmented areas. However, in places where human disturbances have ceased, certain areas are showing a natural regeneration pattern. The aim of the present study was to determine how the dung beetle assemblage responds to distinct habitat structures in a fragment of Atlantic Forest. For such, open and closed forest areas were sampled in a fragment of the Atlantic Forest in the northeastern region of Brazil. Pitfall traps baited with excrement and carrion were used to collect the beetles. A total of 7,267 individuals belonging to 35 species were captured. Canthon chalybaeus and C. mutabilis were restricted to open areas. Nearly 90% of the individuals of C. aff. simulans and Deltochilum aff. irroratum were identified in these areas. A higher percentage (> 50% of Canthon staigi, Dichotomius aff. depressicolis and D. aff. sericeus occurred in closed areas. Abundance differed between areas, with higher values in closed areas. Richness was not influenced by the habitat structure. NMDS ordination exhibited the segregation of areas and ANOSIM confirmed that this variable explained the assemblage of dung beetle species. The findings of the present study validate that open areas are associated to more restrictive conditions, limiting a higher abundance of dung beetle. Although situated near preserved fragments, the studied open areas increase the heterogeneity of the general landscape.

  19. Japanese Interest in "Hotaru" (Fireflies) and "Kabuto-Mushi" (Japanese Rhinoceros Beetles) Corresponds with Seasonality in Visible Abundance.

    Science.gov (United States)

    Takada, Kenta

    2012-01-01

    Seasonal changes in the popularity of fireflies [usually Genji-fireflies (Luciola cruciata Motschulsky) in Japan] and Japanese rhinoceros beetles [Allomyrina dichotoma (Linne)] were investigated to examine whether contemporary Japanese are interested in visible emergence of these insects as seasonal events. The popularity of fireflies and Japanese rhinoceros beetles was assessed by the Google search volume of their Japanese names, "Hotaru" and "Kabuto-mushi" in Japanese Katakana script using Google Trends. The search volume index for fireflies and Japanese rhinoceros beetles was distributed across seasons with a clear peak in only particular times of each year from 2004 to 2011. In addition, the seasonal peak of popularity for fireflies occurred at the beginning of June, whereas that for Japanese rhinoceros beetles occurred from the middle of July to the beginning of August. Thus seasonal peak of each species coincided with the peak period of the emergence of each adult stage. These findings indicated that the Japanese are interested in these insects primarily during the time when the two species are most visibly abundant. Although untested, this could suggest that fireflies and Japanese rhinoceros beetles are perceived by the general public as indicators or symbols of summer in Japan. PMID:26466535

  20. Living near the edge: Being close to mature forest increases the rate of succession in beetle communities.

    Science.gov (United States)

    Fountain-Jones, Nicholas M; Jordan, Gregory J; Baker, Thomas P; Balmer, Jayne M; Wardlaw, Tim; Baker, Susan C

    2015-04-01

    In increasingly fragmented landscapes, it is important to understand how mature forest affects adjacent secondary forest (forest influence). Forest influence on ecological succession of beetle communities is largely unknown. We investigated succession and forest influence using 235 m long transects across boundaries between mature and secondary forest at 15 sites, sampling a chronosequence of three forest age classes (5-10, 23- 29, and 42-46 years since clear-cutting) in tall eucalypt forest in Tasmania, Australia. Our results showed that ground-dwelling beetle communities showed strong successional changes, and in the oldest secondary forests, species considered indicators of mature forest had recolonized to abundance levels similar to those observed within adjacent mature forest stands. However, species composition also showed forest influence gradients in all age classes. Forest influence was estimated to extend 13 m and 20 m in the youngest and intermediate-aged secondary forests, respectively. However, the estimated effect extended to at least 176 m in the oldest secondary forest. Our environmental modeling suggests that leaf litter, microclimate, and soil variables were all important in explaining the spatial variation in beetle assemblages, and the relative importance of factors varied between secondary forest age classes. Mature-forest beetle communities can recolonize successfully from the edge, and our results provide a basis for land managers to build mature habitat connectivity into forest mosaics typical of production forests. Our results also indicate the importance of forest influence in determining potential conservation value of older secondary forest for beetles. PMID:26214924

  1. Extraordinary Adaptive Plasticity of Colorado Potato Beetle: “Ten-Striped Spearman” in the Era of Biotechnological Warfare

    Directory of Open Access Journals (Sweden)

    Aleksandar Cingel

    2016-09-01

    Full Text Available Expanding from remote areas of Mexico to a worldwide scale, the ten-striped insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata Say, has risen from being an innocuous beetle to a prominent global pest. A diverse life cycle, phenotypic plasticity, adaptation to adverse conditions, and capability to detoxify or tolerate toxins make this insect appear to be virtually “indestructible”. With increasing advances in molecular biology, tools of biotechnological warfare were deployed to combat CPB. In the last three decades, genetically modified potato has created a new challenge for the beetle. After reviewing hundreds of scientific papers dealing with CPB control, it became clear that even biotechnological means of control, if used alone, would not defeat the Colorado potato beetle. This control measure once again appears to be provoking the potato beetle to exhibit its remarkable adaptability. Nonetheless, the potential for adaptation to these techniques has increased our knowledge of this pest and thus opened possibilities for devising more sustainable CPB management programs.

  2. Parasitism of Ground Beetles (Coleoptera: Carabidae) by a New Species of Hairworm (Nematomorpha: Gordiida) in Arctic Canada.

    Science.gov (United States)

    Ernst, Crystal M; Hanelt, Ben; Buddle, Christopher M

    2016-06-01

    The host-parasite associations between ground beetles (Coleoptera: Carabidae) and hairworms (Nematomorpha: Gordiida) collected from the Arctic (an understudied and ecologically important region) is described. Carabids and their parasites were collected from 12 sites spanning the 3 northernmost ecoclimatic zones of Canada (north boreal, subarctic, and high Arctic) using standardized methods. The beetles and hairworms were identified using traditional morphological approaches. Seven beetle species are recorded as hosts: Amara alpina, Pterostichus caribou, Pterostichus brevicornis, Pterostichus tareumiut, Pterostichus haematopus, Patrobus septentrionis, and Notiophilus borealis. All represent new host records (increasing the known North American host list from 14 to 21), and this is the first record of hairworm infection in the genus Notiophilus. Beetles from Banks Island, Northwest Territory, were infected in high numbers (11-19% per sampling period) and were used as an ecological case study. There was no significant relationship between infection status and host species, body size, or sex. Beetles collected in yellow pan traps and in wet habitats were more likely to be infected, likely due to water-seeking behavior induced by the parasites. Morphological examinations indicate that the hairworms collected from all locations represent a single, new species of Gordionus, making it only the sixth hairworm species and the third species of that genus found in Canada. Hosts are unknown for all other Canadian (and 1 Alaskan) Gordionus species.

  3. Declining Bark Beetle Densities (Ips typographus, Coleoptera: Scolytinae from Infested Norway Spruce Stands and Possible Implications for Management

    Directory of Open Access Journals (Sweden)

    Alexander Angst

    2012-01-01

    Full Text Available The eight-toothed spruce bark beetle (Ips typographus is the most serious insect pest in Central European forests. During the past two decades, extreme meteorological events and subsequent beetle infestations have killed millions of cubic meters of standing spruce trees. Not all the infested stands could be cleared in time, and priorities in management had to be set. Natural or man-made buffer zones of about 500 meters in width are frequently defined to separate differently managed stands in Central Europe. While the buffer zones seem to be effective in most of the cases, their impact has not been studied in detail. Beetle densities were therefore assessed in three case studies using pheromone traps along transects, leading from infested stands into spruce-free buffer zones. The results of the trap catches allow an estimation of the buffer zone influence on densities and the dispersal of Ips typographus. Beetle densities were found to decrease rapidly with increasing distance from the infested spruce stands. The trap catches were below high-risk thresholds within a few hundred meters of the infested stands. The decrease in catches was more pronounced in open land and in an urban area than in a broadleaf stand. Designed buffer zones of 500 m width without spruce can therefore very probably help to reduce densities of spreading beetles.

  4. Assessing forest vulnerability and the potential distribution of pine beetles under current and future climate scenarios in the Interior West of the US

    Science.gov (United States)

    Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.

    2011-01-01

    The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the

  5. Luciferase from Fulgeochlizus bruchi (Coleoptera:Elateridae), a Brazilian click-beetle with a single abdominal lantern: molecular evolution, biological function and comparison with other click-beetle luciferases.

    Science.gov (United States)

    Amaral, Danilo T; Prado, Rogilene A; Viviani, Vadim R

    2012-07-01

    Bioluminescent click-beetles emit a wide range of bioluminescence colors (λ(Max) = 534-594 nm) from thoracic and abdominal lanterns, which are used for courtship. Only the luciferases from Pyrophorus and Pyrearinus species were cloned and sequenced. The Brazilian Fulgeochlizus bruchi click-beetle, which inhabits the Central-west Cerrado (Savannas), is noteworthy because, differently from other click-beetles, the adult stage displays only a functional abdominal lantern, which produces a bright green bioluminescence for sexual attraction purposes, and lacks functional thoracic lanterns. We cloned the cDNA for the abdominal lantern luciferase of this species. Notably, the primary sequence of this luciferase showed slightly higher identity with the green emitting dorsal lantern luciferases of the Pyrophorus genus instead of the abdominal lanterns luciferases. This luciferase displays a blue-shifted spectrum (λ(Max) = 540 nm), which is pH-insensitive from pH 7.5 to 9.5 and undergoes a slight red shift and broadening above this pH; the lowest K(M) for luciferin among studied click-beetle luciferases, and the highest optimum pH (9.0) ever reported for a beetle luciferase. At pH 9.0, the K(M) for luciferin increases, showing a decrease of affinity for this substrate, despite the higher activity. The slow luminescence decay rate of F. bruchi luciferase in vitro reaction could be an adaptation of this luciferase for the long and sustained in vivo luminescence display of the click-beetle during the courtship, and could be useful for in vivo intracellular imaging.

  6. Bacterial communities associated with the digestive tract of the predatory ground beetle, Poecilus chalcites, and their response to laboratory rearing and antibiotic treatment

    Energy Technology Data Exchange (ETDEWEB)

    Michael Lehman

    2008-06-01

    Ground beetles such as Poecilus chalcites (Coleoptera: Carabidae) are beneficial insects in agricultural systems where they contribute to the control of insect and weed pests. We assessed the complexity of bacterial communities occurring in the digestive tracts of field-collected P. chalcites using terminal restriction fragment length polymorphism analyses of polymerase chain reaction-amplified 16S rRNA genes. Bacterial identification was performed by the construction of 16S rRNA gene clone libraries and sequence analysis. Intestinal bacteria in field-collected beetles were then compared to those from groups of beetles that were reared in the lab on an artificial diet with and without antibiotics. Direct cell counts estimated 1.5 × 10S bacteria per milliliter of gut. The digestive tract of field-collected P. chalcites produced an average of 4.8 terminal restriction fragments (tRF) for each beetle. The most abundant clones were affiliated with the genus Lactobacillus, followed by the taxa Enterobacteriaceae, Clostridia, and Bacteriodetes. The majority of the sequences recovered were closely related to those reported from other insect gastrointestinal tracts. Lab-reared beetles produced fewer tRF, an average of 3.1 per beetle, and a reduced number of taxa with a higher number of clones from the family Enterobacteriaceae compared to the field-collected beetles. Antibiotic treatment significantly (p < 0.05) reduced the number of tRF per beetle and selected for a less diverse set of bacterial taxa. We conclude that the digestive tract of P. chalcites is colonized by a simple community of bacteria that possess autochthonous characteristics. Laboratory-reared beetles harbored the most common bacteria found in field-collected beetles, and these bacterial communities may be manipulated in the laboratory with the addition of antibiotics to the diet to allow study of functional roles.

  7. Detection of beetle damage in forests by X-ray CT image processing; Deteccao de danos causados por besouro em florestas com processamento de imagens de tomografia computadorizada de raios X

    Energy Technology Data Exchange (ETDEWEB)

    Cruvinel, Paulo Estevao; Naime, Joao de Mendonca; Macedo, Alvaro [EMBRAPA, Sao Carlos, SP (Brazil). Agricultural Instrumentation; Borges, Miguel [EMBRAPA/Labex - USDA, ARS, Beltsville, MD (United States); Zhang, Aijun [USDA, ARS Chemicals Affecting Insect Behavior Laboratory, BARC-W, Beltsville, MD (United States)

    2003-09-15

    Some beetle species can have devastating economic impacts on forest and nursery industries. A recent example is Anophophora glabripennis, a species of beetle known in the United States as the 'Asian Longhorrned beetle1', which has damaged many American forests, and is a threat which can unintentionally reach south American countries, including Brazil. This work presents a new method based on X-ray computerized tomography (CT) and image processing for beetle injury detection in forests. Its results show a set of images with correct identification of the location of beetles in living trees as well as damage evaluation with time. (author)

  8. ONGOING INVESTIGATION OF THE EFFECT THAT DRUGSTORE BEETLES HAVE ON CELOTEX ASSEMBLIES FOUND WITHIN RADIOACTIVE MATERIAL PACKAGINGS

    Energy Technology Data Exchange (ETDEWEB)

    Loftin, B.

    2009-06-08

    During normal operations at the Department of Energy's Hanford Site in Hanford, WA, drugstore beetles were found within the fiberboard subassemblies of two 9975 Shipping Packages. The Department of Energy's Packaging Certification Program (EM-60) directed a thorough investigation to determine if the drugstore beetles were causing damage that would be detrimental to the safety performance of the Celotex. The Savannah River National Laboratory is continuing to conduct the investigation with entomological expertise being provided by Clemson University. The outcome from the investigation conducted over the previous year was that no discernible damage had been caused by the drugstore beetles. One of the two packages has been essentially untouched over the past year and has only been opened to visually inspect for additional damage. This paper will provide details and results of the ongoing investigation of that package.

  9. Laboratory evaluation of the toxic properties of forest anchomanes, Anchomanes difformis against pulse beetle Callosobruchus maculatus (Coleoptera: Bruchidae)

    Institute of Scientific and Technical Information of China (English)

    ROTIMI O. AKINKUROLERE; CHRIS O. ADEDIRE; OLUSOLA O.ODEYEMI

    2006-01-01

    Laboratory experiments were carried out to investigate the efficacy of crude stem extracts of forest anchomanes, Anchomanes difformis (P. Beauv.) a plant occurring in West African forests, against the pulse beetle Callosobruchus maculatus (Fabricius). Crude stem extracts at 3% concentration showed high contact toxicity to adult beetles within 24 h after application, while it was moderately toxic to the beetles at the lowest (1%) concentration. At the highest application rate, the plant extract provided good protection to grains stored for 90 days. Grain viability and water absorption capacity were not affected by treatments with ethanol extracts ofA. difformis. The significance of these findings is discussed in relation to biopesticide-means of controlling cowpea bruchids.

  10. Necrophagous beetles associated with carcasses in a semi-arid environment in northeastern Brazil: implications for forensic entomology.

    Science.gov (United States)

    Mayer, Ana C G; Vasconcelos, Simão D

    2013-03-10

    Data on the ecology and bionomics of necrophagous beetles are scarce in tropical countries despite their relevance in forensic investigations. We performed a survey on the diversity and temporal pattern of colonization of beetles on pig carcasses in a fragment of dry forest in northeastern Brazil. We collected 1550 adults of diverse feeding habits from 12 families, of which 96% had necrophagous and/or copro-necrophagous habits and belonged to four families: Dermestidae, Scarabaeidae, Cleridae and Trogidae. Three species, Dermestes maculatus, Necrobia rufipes and Omorgus suberosus are reported for the first time with an expanded geographical distribution that includes the semi-arid region in Brazil. Adult beetles were collected as early as 24h after death. One endemic species, Deltochilum verruciferum, stood out in terms of numerical dominance and temporal occurrence during different stages of decomposition. Its intimate association with carrion emphasizes their potential role in forensic entomology in the region.

  11. Menzbieria chalcographi, a new neogregarine pathogen of the great spruce bark beetle, Dendroctonus micans (Kugelann) (Curculionidae, Scolytinae).

    Science.gov (United States)

    Yaman, Mustafa; Radek, Renate

    2012-09-01

    This study concerns a new neogregarine parasitic in the great spruce bark beetle Dendroctonus micans (Kugelann) (Curculionidae, Scolytinae). The rate of infection was high, reaching 27.3%. There was no difference in the rate of infection of male and female beetles. The life-cycle stages of the pathogen were described by light and electron microscopy. Each gametocyst of the neogregarine included 8-16 actinocephalid oocysts measuring 11.19 ± 0.42 × 4.99 ± 0.25 μm. The described pathogen has the typical characteristics of members of the genus Menzbieria within the order Neogregarinida and it was identified as Menzbieria chalcographi. This is the first record of an infection of D. micans by M. chalcographi. Possibly, this pathogen could be useful for the biological control of this destructive bark beetle.

  12. A Comment on “Management for Mountain Pine Beetle Outbreak Suppression: Does Relevant Science Support Current Policy?”

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-04-01

    Full Text Available There are two general approaches for reducing the negative impacts of mountain pine beetle, Dendroctonus ponderosae Hopkins, on forests. Direct control involves short-term tactics designed to address current infestations by manipulating mountain pine beetle populations, and includes the use of fire, insecticides, semiochemicals, sanitation harvests, or a combination of these treatments. Indirect control is preventive, and designed to reduce the probability and severity of future infestations within treated areas by manipulating stand, forest and/or landscape conditions by reducing the number of susceptible host trees through thinning, prescribed burning, and/or alterations of age classes and species composition. We emphasize that “outbreak suppression” is not the intent or objective of management strategies implemented for mountain pine beetle in the western United States, and that the use of clear, descriptive language is important when assessing the merits of various treatment strategies.

  13. Early Detection of Bark Beetle Green Attack Using TerraSAR-X and RapidEye Data

    Directory of Open Access Journals (Sweden)

    Gerald Kändler

    2013-04-01

    Full Text Available Bark beetles cause widespread damages in the coniferous-dominated forests of central Europe and North America. In the future, areas affected by bark beetles may further increase due to climate change. However, the early detection of the bark beetle green attack can guide management decisions to prevent larger damages. For this reason, a field-based bark beetle monitoring program is currently implemented in Germany. The combination of remote sensing and field data may help minimizing the reaction time and reducing costs of monitoring programs covering large forested areas. In this case study, RapidEye and TerraSAR-X data were analyzed separately and in combination to detect bark beetle green attack. The remote sensing data were acquired in May 2009 for a study site in south-west Germany. In order to distinguish healthy areas and areas affected by bark beetle green attack, three statistical approaches were compared: generalized linear models (GLM, maximum entropy (ME and random forest (RF. The spatial scale (minimum mapping unit was 78.5 m2. TerraSAR-X data resulted in fair classification accuracy with a cross-validated Cohen’s Kappa Coefficient (kappa of 0.23. RapidEye data resulted in moderate classification accuracy with a kappa of 0.51. The highest classification accuracy was obtained by combining the TerraSAR-X and RapidEye data, resulting in a kappa of 0.74. The accuracy of ME models was considerably higher than the accuracy of GLM and RF models.

  14. Feeding by flea beetles (Coleoptera: Chrysomelidae; Phyllotreta spp.) is decreased on canola (Brassica napus) seedlings with increased trichome density.

    Science.gov (United States)

    Soroka, Juliana J; Holowachuk, Jennifer M; Gruber, Margaret Y; Grenkow, Larry F

    2011-02-01

    Laboratory and field studies were undertaken to determine the effects of increased numbers of trichomes on seedling stems, petioles, and first true leaves of Brassica napus L., canola, on the feeding and behavior of the crucifer flea beetle Phyllotreta cruciferae (Goeze) (Coleoptera: Chrysomelidae). Seedlings of 'Westar' canola with genes inserted from Arabidopsis thaliana L. for increased trichome production, called Hairyl, were tested against Westar seedlings in no-choice and choice laboratory tests, and against parental plants and other cultivars grown from seed with and without insecticide in field trials at Saskatoon and Lethbridge, Canada. Analyses ofprefeeding and feeding behavior in no-choice tests of first true leaves found that flea beetles interacted with their host while off Hairyl leaves more so than beetles presented with leaves of Westar. Beetles required twice as much time to reach satiation when feeding on leaves with increased pubescence than on Westar leaves. In laboratory choice tests, flea beetles fed more on cotyledons and second true leaves of Westar than on comparable tissues of the transgenic line. In field trials, variations in feeding patterns were seen over time on cotyledons of the line with elevated trichomes. However, all four young true leaves of Hairyl seedlings were fed upon less than were the parental lines. Feeding on Hairyl plants frequently occurred at levels equal to or less than on cultivars grown from insecticide-treated seed. This study highlights the first host plant resistance trait developed in canola, dense pubescence, with a strong potential to deter feeding by crucifer flea beetles.

  15. Dung beetles (Coleoptera: Scarabaeidae) attracted to dung of the largest herbivorous rodent on earth: a comparison with human feces.

    Science.gov (United States)

    Puker, Anderson; Correa, César M A; Korasaki, Vanesca; Ferreira, Kleyton R; Oliveira, Naiara G

    2013-12-01

    The capybara, Hydrochoerus hydrochaeris (L.) (Rodentia: Caviidae), is the largest herbivorous rodent on Earth and abundant in the Neotropical region, which can provide a stable food source of dung for dung beetle communities (Coleoptera: Scarabaeidae: Scarabaeinae). However, the use of capybara dung by dung beetles is poorly known. Here, we present data on the structure of the dung beetle community attracted to capybara dung and compare with the community attracted to human feces. Dung beetles were captured with pitfall traps baited with fresh capybara dung and human feces in pastures with exotic grass (Brachiaria spp.), patches of Brazilian savanna (Cerrado), and points of degraded riparian vegetation along the Aquidauana river in Anastácio and Aquidauana, Mato Grosso do Sul, Brazil. In traps baited with human feces, 13,809 individuals of 31 species were captured, and in those baited with capybara dung 1,027 individuals belonging to 26 species were captured. The average number of individuals and species captured by the traps baited with human feces was greater than for capybara dung in all habitats studied. Composition of the communities attracted to human feces and capybara dung formed distinct groups in all habitats. Despite the smaller number of species and individuals captured in capybara dung when compared with human feces, capybara dung was attractive to dung beetles. In Brazil, the legalization of hunting these rodents has been debated, which would potentially affect the community and consequently the ecological functions performed by dung beetles that use the feces of these animals as a resource. In addition, the knowledge of the communities associated with capybaras may be important in predicting the consequences of future management of their populations.

  16. Do riparian reserves support dung beetle biodiversity and ecosystem services in oil palm-dominated tropical landscapes?

    Science.gov (United States)

    Gray, Claudia L; Slade, Eleanor M; Mann, Darren J; Lewis, Owen T

    2014-04-01

    Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest-dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm-dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the

  17. Reproduction of confused flour beetle Tribolium confusum Du Val (Coleoptera: Tenebrionidae on common and spelt wheat and their products

    Directory of Open Access Journals (Sweden)

    Radmila Almaši

    2014-09-01

    Full Text Available The interest in spelt wheat production has grown in recent years but there is hardly any information on pest development on that wheat species in storehouses. The influence of common and spelt wheat and their products on the reproduction and offspring of confused flour beetles Tribolium confusum Du Val was studied under laboratory conditions (22-25 °C and 40-60% RH. The experiment was carried out in four replications with four, 10 and 20 insects over a period of six months. The reproduction of confused flour beetles significantly varied depending on the wheat species and product. The highest reproduction rate was recorded on spelt wheat (Triticum spelta L.. The greatest number of offspring beetles appeared on spelt wheat flour (23469. The number of offspring beetles was higher on common (7044 than on spelt wheat kernels (5469. No offspring developed on common wheat pasta while only 4 young beetles were found on spelt wheat pasta. Offspring numbers increased with storage period up to a point but further on they depended on insect number. The number of insects increased over the first four months but decreased later on and the mortality rate was higher. Initial population density affected the offspring numbers but offspring numbers did not rise proportionally with the rising initial population density. Considering the species of wheat, higher mortality was recorded in common wheat. Regarding the type of product, the highest mortality was recorded in pasta, then in kernels and the lowest in flour. The paper shows that confused flour beetles develop extremely well on spelt wheat, even better than on common wheat which is widely grown in Serbia.

  18. The Relative Importance of Spatial and Local Environmental Factors in Determining Beetle Assemblages in the Inner Mongolia Grassland.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Yu

    Full Text Available The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae along a geographic (longitudinal/precipitation gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles.

  19. The Relative Importance of Spatial and Local Environmental Factors in Determining Beetle Assemblages in the Inner Mongolia Grassland.

    Science.gov (United States)

    Yu, Xiao-Dong; Lü, Liang; Wang, Feng-Yan; Luo, Tian-Hong; Zou, Si-Si; Wang, Cheng-Bin; Song, Ting-Ting; Zhou, Hong-Zhang

    2016-01-01

    The aim of this paper is to increase understanding of the relative importance of the input of geographic and local environmental factors on richness and composition of epigaeic steppe beetles (Coleoptera: Carabidae and Tenebrionidae) along a geographic (longitudinal/precipitation) gradient in the Inner Mongolia grassland. Specifically, we evaluate the associations of environmental variables representing climate and environmental heterogeneity with beetle assemblages. Beetles were sampled using pitfall traps at 25 sites scattered across the full geographic extent of the study biome in 2011-2012. We used variance partitioning techniques and multi-model selection based on the Akaike information criterion to assess the relative importance of the spatial and environmental variables on beetle assemblages. Species richness and abundance showed unimodal patterns along the geographic gradient. Together with space, climate variables associated with precipitation, water-energy balance and harshness of climate had strong explanatory power in richness pattern. Abundance pattern showed strongest association with variation in temperature and environmental heterogeneity. Climatic factors associated with temperature and precipitation variables and the interaction between climate with space were able to explain a substantial amount of variation in community structure. In addition, the turnover of species increased significantly as geographic distances increased. We confirmed that spatial and local environmental factors worked together to shape epigaeic beetle communities along the geographic gradient in the Inner Mongolia grassland. Moreover, the climate features, especially precipitation, water-energy balance and temperature, and the interaction between climate with space and environmental heterogeneity appeared to play important roles on controlling richness and abundance, and species compositions of epigaeic beetles. PMID:27138752

  20. How Does Dung Beetle (Coleoptera: Scarabaeidae) Diversity Vary Along a Rainy Season in a Tropical Dry Forest?

    Science.gov (United States)

    Novais, Samuel M A; Evangelista, Lucas A; Reis-Júnior, Ronaldo; Neves, Frederico S

    2016-01-01

    Dung beetle community dynamics are determined by regional rainfall patterns. However, little is known about the temporal dynamics of these communities in tropical dry forests (TDFs). This study was designed to test the following predictions: 1) Peak diversity of dung beetle species occurs early in the wet season, with a decrease in diversity (α and β) and abundance throughout the season; 2) Nestedness is the primary process determining β-diversity, with species sampled in the middle and the end of the wet season representing subsets of the early wet season community. Dung beetles were collected in a TDF in the northern Minas Gerais state, Brazil over three sampling events (December 2009, February and April 2010). We sampled 2,018 dung beetles belonging to 39 species and distributed among 15 genera. Scarabaeinae α-diversity and abundance were highest in December and equivalent between February and April, while β-diversity among plots increased along the wet season. The importance of nestedness and species turnover varies between pairs of sample periods as the main process of temporal β-diversity. Most species collected in the middle and end of the wet season were found in greater abundance in early wet season. Thus, the dung beetle community becomes more homogeneous at the beginning of the wet season, and as the season advances, higher resource scarcity limits population size, which likely results in a smaller foraging range, increasing β-diversity. Our results demonstrate high synchronism between the dung beetle life cycle and seasonality of environmental conditions throughout the wet season in a TDF, where the onset of rains determines adult emergence for most species. PMID:27620555

  1. Spatial genetic structure of a symbiotic beetle-fungal system: toward multi-taxa integrated landscape genetics.

    Directory of Open Access Journals (Sweden)

    Patrick M A James

    Full Text Available Spatial patterns of genetic variation in interacting species can identify shared features that are important to gene flow and can elucidate co-evolutionary relationships. We assessed concordance in spatial genetic variation between the mountain pine beetle (Dendroctonus ponderosae and one of its fungal symbionts, Grosmanniaclavigera, in western Canada using neutral genetic markers. We examined how spatial heterogeneity affects genetic variation within beetles and fungi and developed a novel integrated landscape genetics approach to assess reciprocal genetic influences between species using constrained ordination. We also compared landscape genetic models built using Euclidean distances based on allele frequencies to traditional pair-wise Fst. Both beetles and fungi exhibited moderate levels of genetic structure over the total study area, low levels of structure in the south, and more pronounced fungal structure in the north. Beetle genetic variation was associated with geographic location while that of the fungus was not. Pinevolume and climate explained beetle genetic variation in the northern region of recent outbreak expansion. Reciprocal genetic relationships were only detectedin the south where there has been alonger history of beetle infestations. The Euclidean distance and Fst-based analyses resulted in similar models in the north and over the entire study area, but differences between methods in the south suggest that genetic distances measures should be selected based on ecological and evolutionary contexts. The integrated landscape genetics framework we present is powerful, general, and can be applied to other systems to quantify the biotic and abiotic determinants of spatial genetic variation within and among taxa.

  2. Assessing the Ecological Response of Dung Beetles in an Agricultural Landscape Using Number of Individuals and Biomass in Diversity Measures.

    Science.gov (United States)

    Cultid-Medina, C A; Escobar, F

    2016-04-01

    The global increase in demand for productive land requires us to increase our knowledge of the value of agricultural landscapes for the management and conservation of biodiversity, particularly in tropical regions. Thus, comparative studies of how different community attributes respond to changes in land use under different levels of deforestation intensity would be useful. We analyzed patterns of dung beetle diversity in an Andean region dominated by sun-grown coffee. Diversity was estimated using two measures of species abundance (the number of individuals and biomass) and was compared among four types of vegetation cover (forest, riparian forest, sun-grown coffee, and pastures) in three landscape plots with different degrees of deforestation intensity (low, intermediate, and high). We found that dung beetle diversity patterns differed between types of vegetation cover and degree of deforestation, depending on whether the number of individuals or biomass was used. Based on biomass, inequality in the dung beetle community was lowest in the forest, and increased in the sun-grown coffee and pastures across all levels of deforestation, particularly for the increasing dominance of large species. The number of beetles and biomass indicate that the spatial dominance of sun-grown coffee does not necessarily imply the drastic impoverishment of dung beetle diversity. In fact, for these beetles, it would seem that the landscape studied has not yet crossed "a point of no return." This system offers a starting point for exploring biodiversity management and conservation options in the sun-grown coffee landscapes of the Colombian Andes. PMID:26803806

  3. Diversity and Abundance of Beetle (Coleoptera) Functional Groups in a Range of Land Use System in Jambi, Sumatra

    OpenAIRE

    SURYO HARDIWINOTO; INDRIYATI; FRANCISCUS XAVERIUS SUSILO

    2009-01-01

    Degradation of tropical rain forest might exert impacts on biodiversity loss and affect the function and stability of the related ecosystems. The objective of this study was to study the impact of land use systems (LUS) on the diversity and abundance of beetle functional groups in Jambi area, Sumatra. This research was carried out during the rainy season (May-June) of 2004. Inventory and collection of beetles have been conducted using winkler method across six land use systems, i.e. primary f...

  4. Three new species of tiger beetles and new data on Cicindelina species from Angola (Coleoptera: Carabidae: Cicindelinae).

    Science.gov (United States)

    Serrano, Artur R M; Capela, Rúben A; Oesterle, Andreas

    2015-10-15

    Three new species of tiger beetles, two of the genus Trichotaenia Rivalier, 1957 and one of the genus Cylindera Westwood, 1831, subgenus Ifasina Jeannel, 1946 are described from Angola. An annotated list of species of Cicindelina sampled in this country is provided also. Records for three species previously unknow from Angola are given: Ophryodera smrzi Werner, 2005, Lophyra clatharta (Dejean, 1825) and Lophyra sumlini Cassola, 1976. Some considerations on the distribution and general ecology of these beetles in Angola are also presented. Further, two dichotomic keys are made available for the identification of Trichotaenia species with marked shoulders and Cylindera (Ifasina) species of western and southwestern Africa, respectively.

  5. Redefinition of the genus Silphitrombium (Trombidiformes: Neothrombiidae) with description of two new species parasitizing beetles (Coleoptera: Elateridae, Tenebrionidae) from Iran.

    Science.gov (United States)

    Tashakor, Samaneh; Hajiqanbar, Hamidreza; Saboori, Alireza

    2013-11-15

    Two new species of Silphitrombium Fain, 1992 (Acari: Prostigmata: Neothrombiidae), ectoparasites of beetles (Insecta: Coleoptera), are described from Sistan and Baluchestan Province, eastern Iran: S. elateridum sp. nov. on Heteroderes heideni Reitter, 1891 (Col.: Elateridae) and S. iranicum sp. nov. on Opatroides punctulatus Brullé, 1832 (Col.: Tenebrionidae) and the genus Silphitrombium is redefined. It is the first record of the relationship between beetles of the families Elateridae and Tenebrionidae, and mites of the genus Silphitrombium. A key to the species of the genus is presented.

  6. Functional asymmetry of invertebrates’ nervous system on the example of spatial orientation of the Tentyriini tribe beetles

    Directory of Open Access Journals (Sweden)

    K. O. Moroz

    2010-10-01

    Full Text Available The functional asymmetry of the nervous system of insects was studied on an example of two taxonomically and ecologically closed darkling beetles: Anatolica eremita (Steven, 1829 and Tentiria nomas taurica (Pallas, 1781. Species-specificity of motor-spatial asymmetry is revealed for imago of these species. Spatial differentiation of specimens’ movement for “right-handers”, “left-handers” and “ambidexters” with different degree of the sign display was investigated. Fluctuations and distributing of values of the asymmetry ratio for both species of the darkling beetles were determined. Influence of the first priority of the locomotion direction on further orientational manifestations was analysed.

  7. Climate change induced effects on the predisposition of forests of the water protection zone Wildalpen to disturbances by bark beetles

    Science.gov (United States)

    Baier, P.; Pennerstorfer, J.; Schopf, A.

    2012-04-01

    The provision of drinking water of high quality is a precious service of forests. Large-scale disturbances like forest fires, wind throws, pest outbreaks and subsequent clear cutting may lead to changes in hydrology (runoff as well as percolation). Furthermore, water quality can be negatively influenced by increased erosion, increased decomposition of litter and humus and leaching of nitrate. Large-scale epidemics of forest pests may induce forest decline at landscape scale with subsequent long-lasting negative effects on water quality. The European spruce bark beetle, Ips typographus (L.), is one of the most significant sources of mortality in mature spruce forest ecosystems in Eurasia. The objective of this study was to apply a complex predisposition assessment system for hazard rating and for the evaluation of climate change impacts for the water protection forests of the City of Vienna in Wildalpen. The following steps have been done to adapt/apply the bark beetle phenology model and the hazard rating system: -application, adaptation and validation of the bark beetle phenology model PHENIPS concerning start of dispersion, brood initiation, duration of development, beginning of sister broods, voltinism and hibernation - spatial/temporal modelling of the phenology and voltinism of I. typographus using past, present as well as projected climate data - application and validation of the stand- and site related long-term predisposition assessment system using forest stand/site data, annual damage reports and outputs of phenology modelling as data input - mapping of endangered areas and assessment of future susceptibility to infestations by I. typographus and other disturbing agents based on climate scenarios using GIS. The assessment of site- and stand-related predisposition revealed that the forest stands in Wildalpen are highly susceptible to bark beetle infestation. More than 65% of the stands were assigned to the predisposition classes high/very high. Only 10% of

  8. Bark beetles and pinhole borers (Curculionidae, Scolytinae, Platypodinae alien to Europe

    Directory of Open Access Journals (Sweden)

    Lawrence Kirkendall

    2010-09-01

    Full Text Available Invasive bark beetles are posing a major threat to forest resources around the world. DAISIE’s web-based and printed databases of invasive species in Europe provide an incomplete and misleading picture of the alien scolytines and platypodines. We present a review of the alien bark beetle fauna of Europe based on primary literature through 2009. We find that there are 18 Scolytinae and one Platypodinae species apparently established in Europe, from 14 different genera. Seventeen species are naturalized. We argue that Trypodendron laeve, commonly considered alien in Europe, is a native species; conversely, we hypothesize that Xyleborus pfeilii, which has always been treated as indigenous, is an alien species from Asia. We also point out the possibility that the Asian larch bark beetle Ips subelongatus is established in European Russia. We show that there has been a marked acceleration in the rate of new introductions to Europe, as is also happening in North America: seven alien species were first recorded in the last decade. We present information on the biology, origins, and distributions of the alien species. All but four are polyphagous, and 11 are inbreeders: two traits which increase invasiveness. Eleven species are native to Asia, six to the Americas, and one is from the Canary Islands. The Mediterranean is especially favorable for invasives, hosting a large proportion of the aliens (8/18. Italy, Spain and France have the largest numbers of alien species (15, 10 and 7 respectively. We point out that the low numbers for at least some countries is likely due to under-reporting. Finally, we discuss the difficulties associated with identifying newly invasive species. Lack of good illustrations and keys hinder identification, particularly for species coming from Asia and Oceania.

  9. Evaluation of five methods for total DNA extraction from western corn rootworm beetles.

    Directory of Open Access Journals (Sweden)

    Hong Chen

    Full Text Available BACKGROUND: DNA extraction is a routine step in many insect molecular studies. A variety of methods have been used to isolate DNA molecules from insects, and many commercial kits are available. Extraction methods need to be evaluated for their efficiency, cost, and side effects such as DNA degradation during extraction. METHODOLOGY/PRINCIPAL FINDINGS: From individual western corn rootworm beetles, Diabrotica virgifera virgifera, DNA extractions by the SDS method, CTAB method, DNAzol reagent, Puregene solutions and DNeasy column were compared in terms of DNA quantity and quality, cost of materials, and time consumed. Although all five methods resulted in acceptable DNA concentrations and absorbance ratios, the SDS and CTAB methods resulted in higher DNA yield (ng DNA vs. mg tissue at much lower cost and less degradation as revealed on agarose gels. The DNeasy kit was most time-efficient but was the costliest among the methods tested. The effects of ethanol volume, temperature and incubation time on precipitation of DNA were also investigated. The DNA samples obtained by the five methods were tested in PCR for six microsatellites located in various positions of the beetle's genome, and all samples showed successful amplifications. CONCLUSION/SIGNIFICANCE: These evaluations provide a guide for choosing methods of DNA extraction from western corn rootworm beetles based on expected DNA yield and quality, extraction time, cost, and waste control. The extraction conditions for this mid-size insect were optimized. The DNA extracted by the five methods was suitable for further molecular applications such as PCR and sequencing by synthesis.

  10. Anisotropy and non-homogeneity of an Allomyrina Dichotoma beetle hind wing membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ha, N S; Jin, T L; Goo, N S; Park, H C, E-mail: nsgoo@konkuk.ac.kr [Biomimetics and Intelligent Microsystem Laboratory, Department of Advanced Technology Fusion, Konkuk University, Seoul 143-701 (Korea, Republic of)

    2011-12-15

    Biomimetics is one of the most important paradigms as researchers seek to invent better engineering designs over human history. However, the observation of insect flight is a relatively recent work. Several researchers have tried to address the aerodynamic performance of flapping creatures and other natural properties of insects, although there are still many unsolved questions. In this study, we try to answer the questions related to the mechanical properties of a beetle's hind wing, which consists of a stiff vein structure and a flexible membrane. The membrane of a beetle's hind wing is small and flexible to the point that conventional methods cannot adequately quantify the material properties. The digital image correlation method, a non-contact displacement measurement method, is used along with a specially designed mini-tensile testing system. To reduce the end effects, we developed an experimental method that can deal with specimens with as high an aspect ratio as possible. Young's modulus varies over the area in the wing and ranges from 2.97 to 4.5 GPa in the chordwise direction and from 1.63 to 2.24 GPa in the spanwise direction. Furthermore, Poisson's ratio in the chordwise direction is 0.63-0.73 and approximately twice as large as that in the spanwise direction (0.33-0.39). From these results, we can conclude that the membrane of a beetle's hind wing is an anisotropic and non-homogeneous material. Our results will provide a better understanding of the flapping mechanism through the formulation of a fluid-structure interaction analysis or aero-elasticity analysis and meritorious data for biomaterial properties database as well as a creative design concept for a micro aerial flapper that mimics an insect.

  11. The De Novo Transcriptome and Its Functional Annotation in the Seed Beetle Callosobruchus maculatus.

    Science.gov (United States)

    Sayadi, Ahmed; Immonen, Elina; Bayram, Helen; Arnqvist, Göran

    2016-01-01

    Despite their unparalleled biodiversity, the genomic resources available for beetles (Coleoptera) remain relatively scarce. We present an integrative and high quality annotated transcriptome of the beetle Callosobruchus maculatus, an important and cosmopolitan agricultural pest as well as an emerging model species in ecology and evolutionary biology. Using Illumina sequencing technology, we sequenced 492 million read pairs generated from 51 samples of different developmental stages (larvae, pupae and adults) of C. maculatus. Reads were de novo assembled using the Trinity software, into a single combined assembly as well as into three separate assemblies based on data from the different developmental stages. The combined assembly generated 218,192 transcripts and 145,883 putative genes. Putative genes were annotated with the Blast2GO software and the Trinotate pipeline. In total, 33,216 putative genes were successfully annotated using Blastx against the Nr (non-redundant) database and 13,382 were assigned to 34,100 Gene Ontology (GO) terms. We classified 5,475 putative genes into Clusters of Orthologous Groups (COG) and 116 metabolic pathways maps were predicted based on the annotation. Our analyses suggested that the transcriptional specificity increases with ontogeny. For example, out of 33,216 annotated putative genes, 51 were only expressed in larvae, 63 only in pupae and 171 only in adults. Our study illustrates the importance of including samples from several developmental stages when the aim is to provide an integrative and high quality annotated transcriptome. Our results will represent an invaluable resource for those working with the ecology, evolution and pest control of C. maculatus, as well for comparative studies of the transcriptomics and genomics of beetles more generally. PMID:27442123

  12. Dung beetle communities in coal mining areas in the process of recovery

    Directory of Open Access Journals (Sweden)

    Joana Zamprônio Bett

    2014-09-01

    Full Text Available Dung beetles that are sensitive to environmental alterations may be used as indicator species to mark the recovery of degraded areas. This work aimed at registering and comparing the communities of Scarabaeinae located in areas with different periods of environmental recovery after being used for coal mining. This study was developed in Lauro Müller, Santa Catarina, and consisted of two areas in the process of recovery, one for one year and one for five years. Fifteen pitfall traps baited with human feces were placed in each area in order to attract the dung beetles. The counting, identification and measurement of body size and biomass of the specimens captured were carried out in the laboratory. Sampling sufficiency was verified and variables from both areas were compared using a t test. The recorded species were Canthon aff. chalybaeus, Canthon angularis, Canthon rutilans cyanescens, Deltochilum multicolor, Dichotomius sericeus, Eurysternus parallelus and Ontherus sulcator. A total of 35 individuals were captured, three in the one-year recovery area and 32 in the area under recovery for five years, C. rutilans cyanescens being the most abundant species (40.6%. All species collected were found in the five-years recovery area, whereas only C. aff. chalybaeus and D. multicolor were found in the one-year recovery area. Individuals sampled in the area with one year of recovery had an average size of 11.03 mm and average biomass of 0.051 g, whereas in the five-years recovery area the average size and the biomass of the dung beetles sampled was 12.25 mm and 0.093 g, respectively.

  13. The effect of surface anisotropy in the slippery zone of Nepenthes alata pitchers on beetle attachment

    Directory of Open Access Journals (Sweden)

    Elena V. Gorb

    2011-06-01

    Full Text Available The slippery zone in pitchers of the carnivorous plant Nepenthes alata bears scattered prominent lunate cells and displays continuous epicuticular crystalline wax coverage. The aim of this study was to examine the influence of the surface anisotropy, caused by the shape of lunate cells, on insect attachment ability. Traction tests with ladybird beetles Coccinella septempunctata were performed in two types of experiments, where surface samples of (1 intact pitchers, (2 chemically de-waxed pitchers, and (3 their polymer replicas were placed horizontally. Beetle traction forces were measured when they walked on test surfaces in either an upward (towards the peristome or downward (towards the pitcher bottom direction, corresponding to the upright or inverted positions of the pitcher. On intact pitcher surfaces covered with both lunate cells and wax crystals, experiments showed significantly higher forces in the direction towards the pitcher bottom. To distinguish between the contributions, from claw interlocking and pad adhesion, to insect attachment on the pitcher surfaces, intact versus claw-ablated beetles were used in the second type of experiment. On both de-waxed plant samples and their replicas, intact insects generated much higher forces in the downward direction compared to the upward one, whereas clawless insects did not. These results led to the conclusion that, (i due to the particular shape of lunate cells, the pitcher surface has anisotropic properties in terms of insect attachment, and (ii claws were mainly responsible for attachment enhancement in the downward pitcher direction, since, in this direction, they could interlock with overhanging edges of lunate cells.

  14. Insecticidal Activity and Chemical Composition of the Morinda lucida Essential Oil against Pulse Beetle Callosobruchus maculatus

    Directory of Open Access Journals (Sweden)

    Moses S. Owolabi

    2014-01-01

    Full Text Available Insecticidal activity of essential oil extracted from Morinda lucida was tested on pulse beetle Callosobruchus maculatus, which is a pest that causes serious damage to several pulses. The insecticidal activity was compared with two pesticides, Phostoxin and Primo-ban-20. 120 mixed sex adult C. maculatus were introduced, along with 30 g of cowpeas. Four concentrations (0.40, 0.20, 0.10, and 0.05 μg/mL of the M. lucida essential oil, Phostoxin, and Primo-ban-20 were tested. Essential oil chemical composition was analyzed by GC-MS. M. lucida essential oil showed a high toxicological effect, producing 100% mortality after 72 hours at a dose of 0.20 μg/mL. M. lucida essential oil had a potent insecticidal activity (LC90 = 0.629 μg/mL compared to both pesticides, Phostoxin (LC90 = 0.652 μg/mL and Primo-ban-20 (LC90 = 0.726 μg/mL, at 24 h. The main compounds of the essential oil were the oxygenated monoterpenoids, 1,8-cineole (43.4%, and α-terpinyl acetate (14.5%, and the monoterpene hydrocarbons, mostly sabinene (8.2% and β-pinene (4.0%. Results clearly indicate that M. lucida essential oil can be used as an effective alternative for pulse beetle C. maculatus control, and it could be tested against other pulse beetles affecting Asia and Africa and throughout the world, thereby reducing use of synthetic pesticides.

  15. Non-Native Ambrosia Beetles as Opportunistic Exploiters of Living but Weakened Trees.

    Science.gov (United States)

    Ranger, Christopher M; Schultz, Peter B; Frank, Steven D; Chong, Juang H; Reding, Michael E

    2015-01-01

    Exotic Xylosandrus spp. ambrosia beetles established in non-native habitats have been associated with sudden and extensive attacks on a diverse range of living trees, but factors driving their shift from dying/dead hosts to living and healthy ones are not well understood. We sought to characterize the role of host physiological condition on preference and colonization by two invaders, Xylosandrus germanus and Xylosandrus crassiusculus. When given free-choice under field conditions among flooded and non-flooded deciduous tree species of varying intolerance to flooding, beetles attacked flood-intolerant tree species over more tolerant species within 3 days of initiating flood stress. In particular, flood-intolerant flowering dogwood (Cornus florida) sustained more attacks than flood-tolerant species, including silver maple (Acer saccharinum) and swamp white oak (Quercus bicolor). Ethanol, a key host-derived attractant, was detected at higher concentrations 3 days after initiating flooding within stems of flood intolerant species compared to tolerant and non-flooded species. A positive correlation was also detected between ethanol concentrations in stem tissue and cumulative ambrosia beetle attacks. When adult X. germanus and X. crassiusculus were confined with no-choice to stems of flood-stressed and non-flooded C. florida, more ejected sawdust resulting from tunneling activity was associated with the flood-stressed trees. Furthermore, living foundresses, eggs, larvae, and pupae were only detected within galleries created in stems of flood-stressed trees. Despite a capability to attack diverse tree genera, X. germanus and X. crassiusculus efficiently distinguished among varying host qualities and preferentially targeted trees based on their intolerance of flood stress. Non-flooded trees were not preferred or successfully colonized. This study demonstrates the host-selection strategy exhibited by X. germanus and X. crassiusculus in non-native habitats involves

  16. Cryptic diversity, high host specificity and reproductive synchronization in army ant-associated Vatesus beetles.

    Science.gov (United States)

    von Beeren, Christoph; Maruyama, Munetoshi; Kronauer, Daniel J C

    2016-02-01

    Army ants and their arthropod symbionts represent one of the most species-rich animal associations on Earth, and constitute a fascinating example of diverse host-symbiont interaction networks. However, despite decades of research, our knowledge of army ant symbionts remains fragmentary due to taxonomic ambiguity and the inability to study army ants in the laboratory. Here, we present an integrative approach that allows us to reliably determine species boundaries, assess biodiversity, match different developmental stages and sexes, and to study the life cycles of army ant symbionts. This approach is based on a combination of community sampling, DNA barcoding, morphology and physiology. As a test case, we applied this approach to the staphylinid beetle genus Vatesus and its different Eciton army ant host species at La Selva Biological Station, Costa Rica. DNA barcoding led to the discovery of cryptic biodiversity and, in combination with extensive community sampling, revealed strict host partitioning with no overlap in host range. Using DNA barcoding, we were also able to match the larval stages of all focal Vatesus species. In combination with studies of female reproductive physiology, this allowed us to reconstruct almost the complete life cycles of the different beetle species. We show that Vatesus beetles are highly adapted to the symbiosis with army ants, in that their reproduction and larval development are synchronized with the stereotypical reproductive and behavioural cycles of their host colonies. Our approach can now be used to study army ant-symbiont communities more broadly, and to obtain novel insights into co-evolutionary and ecological dynamics in species-rich host-symbiont systems. PMID:26618779

  17. Diapause induction and termination in a commonly univoltine leaf beetle ( Phratora vulgatissima)

    Institute of Scientific and Technical Information of China (English)

    Peter Dalin

    2011-01-01

    TheleafbeetlePhratoravulgatissima(Linnaeus1758)iscommonlyunivoltine in south-central Sweden but may sometimes initiate a partial second generation.The current study was set out to investigate under what abiotic conditions the beetles initiate a second generation.Using climate chamber experiments,the beetles were shown to have a facultative reproductive diapause induced by declining day-length.The critical day-length (CDL) for diapause induction was estimated to be 18 h and 10 min.In the field,firstgeneration beetles developing to adulthood before August in 2009 became reproductively active and produced a second generation,but most individuals emerged later and were in reproductive diapause.P vulgatissima overwinter as adults and diapause was shown to be maintained until mid-winter in 2008/2009.The cumulative temperature requirement for oviposition after diapause termination was estimated to be 222 day-degrees with a 5.5℃C temperature threshold.Three different day-degree models that were developed to predict the phenology of female oviposition in the spring were validated by comparing model results with field data on the timing of oviposition in previous years.The study suggests that P vulgatissima may initiate a second generation in Sweden if development of the first generation is completed before August.Warmer spring and summer temperatures due to ongoing climate change may cause advanced insect phenology and faster completion of insect life-cycles at northern latitudes,which will affect the proportion of insects that initiate a second generation.

  18. Structure of dung beetle communities in an altitudinal gradient of neotropical dry forest.

    Science.gov (United States)

    Domínguez, D; Marín-Armijos, D; Ruiz, C

    2015-02-01

    To understand the effects of global warming in tropical insect communities, it is necessary to comprehend how such communities respond to different abiotic factors that covariate with altitude. In this study, we partially answer this question applied to dung beetle communities distributed along an altitudinal gradient. The sampling was conducted in seven stations 100 m apart each in altitude in a dry mountain scrub in southern Ecuador. A total of 7422 individuals belonging to six species were captured. Canthon balteatus Boheman was the most abundant with 6502 individuals, and Onoreidium ohausi (Arrow) was the least abundant with 20 individuals. We found significant changes in the structure of the dung beetle communities with altitude. Two abiotic factors showed a relationship with the abundance pattern for all species (altitude, Z = 0.011, p < 0.01, and temperature, Z = 0.859, p < 0.01). Canthon balteatus Boheman showed a positive relationship with altitude (Z = 1.422, p < 0.001) and temperature (Z = 1.121, p < 0.001), Dichotomius problematicus (Lüederwaldt) a positive relationship with precipitation (Z = 0.113, p < 0.001), and Malagoniella cupreicollis (Waterhouse) a positive relationship with temperature (Z = 0.668, p < 0.001) and negative with precipitation (Z = -0.189, p < 0.001). Phanaeus achilles Boheman, Onthophagus sp., and O. ohausi (Arrow) did not show any relationship with the studied variables, nor was the richness correlated with the studied variables. These results suggest that the effects of global warming over dung beetle communities will be difficult to predict because of species-specific responses to global warming. PMID:26013011

  19. Formation of rigid, non-flight forewings (elytra of a beetle requires two major cuticular proteins.

    Directory of Open Access Journals (Sweden)

    Yasuyuki Arakane

    Full Text Available Insect cuticle is composed primarily of chitin and structural proteins. To study the function of structural cuticular proteins, we focused on the proteins present in elytra (modified forewings that become highly sclerotized and pigmented covers for the hindwings of the red flour beetle, Tribolium castaneum. We identified two highly abundant proteins, TcCPR27 (10 kDa and TcCPR18 (20 kDa, which are also present in pronotum and ventral abdominal cuticles. Both are members of the Rebers and Riddiford family of cuticular proteins and contain RR2 motifs. Transcripts for both genes dramatically increase in abundance at the pharate adult stage and then decline quickly thereafter. Injection of specific double-stranded RNAs for each gene into penultimate or last instar larvae had no effect on larval-larval, larval-pupal, or pupal-adult molting. The elytra of the resulting adults, however, were shorter, wrinkled, warped, fenestrated, and less rigid than those from control insects. TcCPR27-deficient insects could not fold their hindwings properly and died prematurely approximately one week after eclosion, probably because of dehydration. TcCPR18-deficient insects exhibited a similar but less dramatic phenotype. Immunolocalization studies confirmed the presence of TcCPR27 in the elytral cuticle. These results demonstrate that TcCPR27 and TcCPR18 are major structural proteins in the rigid elytral, dorsal thoracic, and ventral abdominal cuticles of the red flour beetle, and that both proteins are required for morphogenesis of the beetle's elytra.

  20. Bioreplicated visual features of nanofabricated buprestid beetle decoys evoke stereotypical male mating flights.

    Science.gov (United States)

    Domingue, Michael J; Lakhtakia, Akhlesh; Pulsifer, Drew P; Hall, Loyal P; Badding, John V; Bischof, Jesse L; Martín-Palma, Raúl J; Imrei, Zoltán; Janik, Gergely; Mastro, Victor C; Hazen, Missy; Baker, Thomas C

    2014-09-30

    Recent advances in nanoscale bioreplication processes present the potential for novel basic and applied research into organismal behavioral processes. Insect behavior potentially could be affected by physical features existing at the nanoscale level. We used nano-bioreplicated visual decoys of female emerald ash borer beetles (Agrilus planipennis) to evoke stereotypical mate-finding behavior, whereby males fly to and alight on the decoys as they would on real females. Using an industrially scalable nanomolding process, we replicated and evaluated the importance of two features of the outer cuticular surface of the beetle's wings: structural interference coloration of the elytra by multilayering of the epicuticle and fine-scale surface features consisting of spicules and spines that scatter light into intense strands. Two types of decoys that lacked one or both of these elements were fabricated, one type nano-bioreplicated and the other 3D-printed with no bioreplicated surface nanostructural elements. Both types were colored with green paint. The light-scattering properties of the nano-bioreplicated surfaces were verified by shining a white laser on the decoys in a dark room and projecting the scattering pattern onto a white surface. Regardless of the coloration mechanism, the nano-bioreplicated decoys evoked the complete attraction and landing sequence of Agrilus males. In contrast, males made brief flying approaches toward the decoys without nanostructured features, but diverted away before alighting on them. The nano-bioreplicated decoys were also electroconductive, a feature used on traps such that beetles alighting onto them were stunned, killed, and collected. PMID:25225359