WorldWideScience

Sample records for bees

  1. Bee poison

    Science.gov (United States)

    ... and yellow jacket stings contain a substance called venom. Africanized bee colonies are very sensitive to being disturbed. When ... Bee, wasp, hornet, and yellow jacket venom can cause an allergic reaction in some people.

  2. Bee health

    DEFF Research Database (Denmark)

    Lecocq, Antoine

    of the year. The successful running of the colony is also affected by the numerous pests mentioned above. Part two of the thesis deals with what effects a microsporidian gut parasite, Nosema ceranae can have on the behaviour of groups of honey bees exposed from early-on in their adult life. The creation...... pathogens to other pollinators. The threat of inter-specific pathogen transmission appears to be real, and testing the infectivity of honey bee pathogens on other bee pollinators, represents a logical step following on from the recent detection of those pathogens using molecular methods. The preliminary...

  3. Bee Pollen

    Science.gov (United States)

    ... Pollen Extract, Buckwheat Pollen, Extrait de Pollen d’Abeille, Honeybee Pollen, Honey Bee Pollen, Maize Pollen, Pine Pollen, Polen de Abeja, Pollen, Pollen d'Abeille, Pollen d’Abeille de Miel, Pollen de Sarrasin.

  4. Bee-Wild about Pollinators!

    Science.gov (United States)

    Johnson, Bonnie; Kil, Jenny; Evans, Elaine; Koomen, Michele Hollingsworth

    2014-01-01

    With their sunny stripes and fuzzy bodies, bees are beloved--but unfortunately, they are in trouble. Bee decline, of both wild bees as well as managed bees like honey bees, has been in the news for the last several years. Habitat loss, diseases, pests, and pesticides have made it difficult for bees to survive in many parts of our world (Walsh…

  5. Blackawton bees.

    Science.gov (United States)

    Blackawton, P S; Airzee, S; Allen, A; Baker, S; Berrow, A; Blair, C; Churchill, M; Coles, J; Cumming, R F-J; Fraquelli, L; Hackford, C; Hinton Mellor, A; Hutchcroft, M; Ireland, B; Jewsbury, D; Littlejohns, A; Littlejohns, G M; Lotto, M; McKeown, J; O'Toole, A; Richards, H; Robbins-Davey, L; Roblyn, S; Rodwell-Lynn, H; Schenck, D; Springer, J; Wishy, A; Rodwell-Lynn, T; Strudwick, D; Lotto, R B

    2011-04-23

    Real science has the potential to not only amaze, but also transform the way one thinks of the world and oneself. This is because the process of science is little different from the deeply resonant, natural processes of play. Play enables humans (and other mammals) to discover (and create) relationships and patterns. When one adds rules to play, a game is created. the process of playing with rules that enables one to reveal previously unseen patterns of relationships that extend our collective understanding of nature and human nature. When thought of in this way, science education becomes a more enlightened and intuitive process of asking questions and devising games to address those questions. But, because the outcome of all game-playing is unpredictable, supporting this 'messyness', which is the engine of science, is critical to good science education (and indeed creative education generally). Indeed, we have learned that doing 'real' science in public spaces can stimulate tremendous interest in children and adults in understanding the processes by which we make sense of the world. The present study (on the vision of bumble-bees) goes even further, since it was not only performed outside my laboratory (in a Norman church in the southwest of England), but the 'games' were themselves devised in collaboration with 25 8- to 10-year-old children. They asked the questions, hypothesized the answers, designed the games (in other words, the experiments) to test these hypotheses and analysed the data. They also drew the figures (in coloured pencil) and wrote the paper. Their headteacher (Dave Strudwick) and I devised the educational programme (we call 'i,scientist'), and I trained the bees and transcribed the childrens' words into text (which was done with smaller groups of children at the school's local village pub). So what follows is a novel study (scientifically and conceptually) in 'kids speak' without references to past literature, which is a challenge. Although the

  6. Widespread occurrence of honey bee pathogens in solitary bees.

    Science.gov (United States)

    Ravoet, Jorgen; De Smet, Lina; Meeus, Ivan; Smagghe, Guy; Wenseleers, Tom; de Graaf, Dirk C

    2014-10-01

    Solitary bees and honey bees from a neighbouring apiary were screened for a broad set of putative pathogens including protists, fungi, spiroplasmas and viruses. Most sampled bees appeared to be infected with multiple parasites. Interestingly, viruses exclusively known from honey bees such as Apis mellifera Filamentous Virus and Varroa destructor Macula-like Virus were also discovered in solitary bees. A microsporidium found in Andrena vaga showed most resemblance to Nosema thomsoni. Our results suggest that bee hives represent a putative source of pathogens for other pollinators. Similarly, solitary bees may act as a reservoir of honey bee pathogens. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Bumblebees and solitary bees

    DEFF Research Database (Denmark)

    Henriksen, Casper Christian I

    organic fields than in those bordering conventional fields. This was due to the absence of herbicides and to practices inherent to organic farming systems, such as use of clover (a high value bee plant) as a green manure and fodder crop. Solitary bees responded with significantly higher numbers......Summary: The effects of farming system, flower resources and semi-natural habitats on bumblebees and solitary bees in intensively cultivated landscapes in Denmark were investigated in two sets of studies, in 2011 and 2012. The pan trap colour preferences of bumblebees and solitary bees were also...... use as a proxy at four different scales (250, 500, 750 and 1000 m). In 2012, the effect of a four-fold larger area of organic arable fields in simple, homogeneous landscapes on bumblebees and solitary bees was investigated in eight circular landscapes (radius 1000 m). Bumblebees and solitary bees were...

  8. Africanized Honey Bee

    OpenAIRE

    Hodgson, Erin W.; Stanley, Cory A.; Roe, Alan H.; Downey, Danielle

    2010-01-01

    African honey bees (Apis mellifera scutellata) are native to sub-Saharan Africa and were introduced in the Americas to improve honey production in the tropics. These African honey bees were accidentally released and began to interbreed with European honey bees (Apis mellifera ligustica), the most common subspecies used for pollination and honey production in the United States (Fig. 1). As a result, the hybrid offspring are called “Africanized” because of their shared characteristics. Africani...

  9. One World: Service Bees

    Science.gov (United States)

    Thomason, Rhonda

    2009-01-01

    Bees are a vital part of the ecology. People of conscience are a vital part of society. In Nina Frenkel's "One World" poster, the bee is also a metaphor for the role of the individual in a diverse society. This article presents a lesson that uses Frenkel's poster to help early-grades students connect these ideas and explore both the importance of…

  10. Geok Bee Teh

    Indian Academy of Sciences (India)

    Geok Bee Teh. Articles written in Sadhana. Volume 35 Issue 1 February 2010 pp 87-95. Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes · S Ramesh Geok Bee Teh Rong-Fuh Louh Yong Kong Hou Pung Yen Sin Lim Jing Yi · More Details Abstract Fulltext PDF.

  11. Bee deaths need analysing

    NARCIS (Netherlands)

    Boonekamp, P.M.

    2011-01-01

    Alarm bells are ringing all over the world about the death of bee populations. Although it is not known exactly how severe the decline is, it is important to take the problem seriously. The signals are alarming and the bee is important, not just for natural ecosystems but also for the pollination of

  12. Honey bee toxicology.

    Science.gov (United States)

    Johnson, Reed M

    2015-01-07

    Insecticides are chemicals used to kill insects, so it is unsurprising that many insecticides have the potential to harm honey bees (Apis mellifera). However, bees are exposed to a great variety of other potentially toxic chemicals, including flavonoids and alkaloids that are produced by plants; mycotoxins produced by fungi; antimicrobials and acaricides that are introduced by beekeepers; and fungicides, herbicides, and other environmental contaminants. Although often regarded as uniquely sensitive to toxic compounds, honey bees are adapted to tolerate and even thrive in the presence of toxic compounds that occur naturally in their environment. The harm caused by exposure to a particular concentration of a toxic compound may depend on the level of simultaneous exposure to other compounds, pathogen levels, nutritional status, and a host of other factors. This review takes a holistic view of bee toxicology by taking into account the spectrum of xenobiotics to which bees are exposed.

  13. Bumblebees and solitary bees

    DEFF Research Database (Denmark)

    Henriksen, Casper Christian I

    Summary: The effects of farming system, flower resources and semi-natural habitats on bumblebees and solitary bees in intensively cultivated landscapes in Denmark were investigated in two sets of studies, in 2011 and 2012. The pan trap colour preferences of bumblebees and solitary bees were also...... assessed. In 2011, bumblebees and solitary bees were trapped in road verges bordering 14 organic (organic sites) and 14 conventional (conventional sites) winter wheat fields. The quantity and quality of local flower resources in the road verge and adjacent field headland were estimated as overall density...... use as a proxy at four different scales (250, 500, 750 and 1000 m). In 2012, the effect of a four-fold larger area of organic arable fields in simple, homogeneous landscapes on bumblebees and solitary bees was investigated in eight circular landscapes (radius 1000 m). Bumblebees and solitary bees were...

  14. BEE VENOM TRAP DESIGN FOR PRODUCE BEE VENOM OF APIS MELLIFERA L. HONEY BEES

    OpenAIRE

    Budiaman

    2015-01-01

    Bee venom is one honey bee products are very expensive and are required in the pharmaceutical industry and as an anti-cancer known as nanobee, but the production technique is still done in the traditional way. The purpose of this study was to design a bee venom trap to produce bee venom of Apis mellifera L honey bees. The method used is to design several models of bee venom apparatus equipped weak current (DC current) with 3 variations of voltage, ie 12 volts, 15 volts and 18 volts coupled...

  15. Hey! A Bee Stung Me!

    Science.gov (United States)

    ... of bee is the honeybee. These bees build nests out of wax in old trees and manmade ... black with white markings, and they build papery nests shaped like footballs in trees and shrubs. Yellowjackets ...

  16. Magnetic effect on dancing bees

    Science.gov (United States)

    Lindauer, M.; Martin, H.

    1972-01-01

    Bee sensitivity to the earth's magnetic field is studied. Data cover sensitivity range and the use of magnetoreception for orientation purposes. Experimental results indicate bee orientation is aided by gravity fields when the magnetic field is compensated.

  17. Stakeholder Conference on Bee Health

    Science.gov (United States)

    USDA and EPA released a comprehensive scientific report on honey bee health in May 2013. The report points to multiple factors playing a role in honey bee colony declines, including parasites and disease, genetics, poor nutrition, and pesticide exposure.

  18. Immunology of Bee Venom.

    Science.gov (United States)

    Elieh Ali Komi, Daniel; Shafaghat, Farzaneh; Zwiener, Ricardo D

    2017-01-20

    Bee venom is a blend of biochemicals ranging from small peptides and enzymes to biogenic amines. It is capable of triggering severe immunologic reactions owing to its allergenic fraction. Venom components are presented to the T cells by antigen-presenting cells within the skin. These Th2 type T cells then release IL-4 and IL-13 which subsequently direct B cells to class switch to production of IgE. Generating venom-specific IgE and crosslinking FcεR1(s) on the surface of mast cells complete the sensitizing stage in allergic individuals who are most likely to experience severe and even fatal allergic reactions after being stung. Specific IgE for bee venom is a double-edged sword as it is a powerful mediator in triggering allergic events but is also applied successfully in diagnosis of the venom allergic patient. The healing capacity of bee venom has been rediscovered under laboratory-controlled conditions using animal models and cell cultures. The potential role of enzymatic fraction of bee venom including phospholipase A2 in the initiation and development of immune responses also has been studied in numerous research settings. Undoubtedly, having insights into immunologic interactions between bee venom components and innate/specific immune cells both locally and systematically will contribute to the development of immunologic strategies in specific and epitope-based immunotherapy especially in individuals with Hymenoptera venom allergy.

  19. Generalist Bee Species on Brazilian Bee-Plant Interaction Networks

    Directory of Open Access Journals (Sweden)

    Astrid de Matos Peixoto Kleinert

    2012-01-01

    Full Text Available Determining bee and plant interactions has an important role on understanding general biology of bee species as well as the potential pollinating relationship between them. Bee surveys have been conducted in Brazil since the end of the 1960s. Most of them applied standardized methods and had identified the plant species where the bees were collected. To analyze the most generalist bees on Brazilian surveys, we built a matrix of bee-plant interactions. We estimated the most generalist bees determining the three bee species of each surveyed locality that presented the highest number of interactions. We found 47 localities and 39 species of bees. Most of them belong to Apidae (31 species and Halictidae (6 families and to Meliponini (14 and Xylocopini (6 tribes. However, most of the surveys presented Apis mellifera and/or Trigona spinipes as the most generalist species. Apis mellifera is an exotic bee species and Trigona spinipes, a native species, is also widespread and presents broad diet breath and high number of individuals per colony.

  20. Sharifah Bee Abd Hamid

    Indian Academy of Sciences (India)

    Glassy carbon electrodes modified with gelatin functionalized reduced graphene oxide nanosheet for determination of gallic acid · Fereshteh Chekin Samira Bagheri Sharifah Bee Abd Hamid · More Details Abstract Fulltext PDF. A simple approach for the preparation of gelatin functionalized reduced graphene oxide ...

  1. Bees have magnetic remanence.

    Science.gov (United States)

    Gould, J L; Kirschvink, J L; Deffeyes, K S

    1978-09-15

    Honey bees orient to the earth's magnetic field. This ability may be associated with a region of transversely oriented magnetic material in the front of the abdomen. The magnetic moment apparently develops in the pupal state and persists in the adults.

  2. Special Issue: Honey Bee Viruses.

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-10-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field.

  3. Special Issue: Honey Bee Viruses

    Directory of Open Access Journals (Sweden)

    Sebastian Gisder

    2015-10-01

    Full Text Available Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus, or a so far neglected virus species (Apis mellifera filamentous virus, and cutting edge technologies (mass spectrometry, RNAi approach applied in the field.

  4. Special Issue: Honey Bee Viruses

    Science.gov (United States)

    Gisder, Sebastian; Genersch, Elke

    2015-01-01

    Pollination of flowering plants is an important ecosystem service provided by wild insect pollinators and managed honey bees. Hence, losses and declines of pollinating insect species threaten human food security and are of major concern not only for apiculture or agriculture but for human society in general. Honey bee colony losses and bumblebee declines have attracted intensive research interest over the last decade and although the problem is far from being solved we now know that viruses are among the key players of many of these bee losses and bumblebee declines. With this special issue on bee viruses we, therefore, aimed to collect high quality original papers reflecting the current state of bee virus research. To this end, we focused on newly discovered viruses (Lake Sinai viruses, bee macula-like virus), or a so far neglected virus species (Apis mellifera filamentous virus), and cutting edge technologies (mass spectrometry, RNAi approach) applied in the field. PMID:26702462

  5. Recent Honey Bee Colony Declines

    Science.gov (United States)

    2007-06-20

    the scientists who are researching this phenomenon, include but may not be limited to ! parasites , mites, and disease loads in the bees and brood ...thrips; ants; butterflies; moths; bats; and hummingbirds and other birds . 2 Berenbaum, M.R., University of Illinois, Statement before the...bee population losses due to bee pests, parasites , pathogens, and disease. Most notable are declines due to two parasitic mites, the so-called

  6. Bees brought to their knees: Microbes affecting honey bee health

    Science.gov (United States)

    The biology and health of the honey bee, Apis mellifera, has been of interest to human societies since the advent of beekeeping. Descriptive scientific research on pathogens affecting honey bees have been published for nearly a century, but it wasn’t until the recent outbreak of heavy colony losses...

  7. Honey Bees: Sweetness and Mites

    Science.gov (United States)

    Honey bee colony losses have been in the news lately and the potential reasons for these losses have taken up much space in the news media. In order to clarify what role mites play in the current loss (2006-2007) of bee colonies, called Colony Collapse Disorder, a better understanding of what a mit...

  8. Safety with Wasps and Bees.

    Science.gov (United States)

    Hackett, Erla

    This guide is designed to provide elementary school teachers with safe learning activities concerning bees and wasps. The following topics are included: (1) the importance of a positive teacher attitude towards bees and wasps; (2) special problems posed by paper wasps; (3) what to do when a child is bothered by a wasp; (4) what to do if a wasp…

  9. Native bees and plant pollination

    Science.gov (United States)

    Ginsberg, H.S.

    2004-01-01

    Bees are important pollinators, but evidence suggests that numbers of some species are declining. Decreases have been documented in the honey bee, Apis mellifera (which was introduced to North America), but there are no monitoring programs for the vast majority of native species, so we cannot be sure about the extent of this problem. Recent efforts to develop standardized protocols for bee sampling will help us collect the data needed to assess trends in bee populations. Unfortunately, diversity of bee life cycles and phenologies, and the large number of rare species, make it difficult to assess trends in bee faunas. Changes in bee populations can affect plant reproduction, which can influence plant population density and cover, thus potentially modifying horizontal and vertical structure of a community, microclimate near the ground, patterns of nitrogen deposition, etc. These potential effects of changes in pollination patterns have not been assessed in natural communities. Effects of management actions on bees and other pollinators should be considered in conservation planning.

  10. 7 CFR 322.29 - Dead bees.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Dead bees. 322.29 Section 322.29 Agriculture..., DEPARTMENT OF AGRICULTURE BEES, BEEKEEPING BYPRODUCTS, AND BEEKEEPING EQUIPMENT Importation and Transit of Restricted Articles § 322.29 Dead bees. (a) Dead bees imported into or transiting the United States must be...

  11. Bee sting of the cornea. Case report

    OpenAIRE

    Mauricio Vélez; Gloria I. Salazar; Patricia Monsalve

    2010-01-01

    Bee stings of the eye are uncommon entities and ocular reactions to the bee venom are wide, ranging from mild conjunctivitis to sudden vision loss. We present the case of a patient who suffered a bee sting of the cornea and the response to the poison components. We go through the bee venom properties, its actual treatment, and propose a new management alternative.

  12. Polychlorinated biphenyls in honey bees

    Energy Technology Data Exchange (ETDEWEB)

    Morse, R.A.; Culliney, T.W.; Gutenmann, W.H.; Littman, C.B.; Lisk, D.J.

    1987-02-01

    Honey bees (Apis mellifera L.) may traverse a radius of several miles from their hives and contact innumerable surfaces during their collection of nectar, pollen, propolis and water. In the process, they may become contaminated with surface constituents which are indicative of the type of environmental pollution in their particular foraging area. Honey has also been analyzed as a possible indicator of heavy metal pollution. Insecticides used in the vicinity of bee hives have been found in bees and honey. It has been recently reported that appreciable concentrations of polychlorinated biphenyls (PCBs) have been found in honey bees sampled throughout Connecticut. In the work reported here, an analytical survey was conducted on PCBs in honey bees, honey, propolis and related samples in several states to learn the extent of contamination and possible sources.

  13. Honey bee pathology: current threats to honey bees and beekeeping.

    Science.gov (United States)

    Genersch, Elke

    2010-06-01

    Managed honey bees are the most important commercial pollinators of those crops which depend on animal pollination for reproduction and which account for 35% of the global food production. Hence, they are vital for an economic, sustainable agriculture and for food security. In addition, honey bees also pollinate a variety of wild flowers and, therefore, contribute to the biodiversity of many ecosystems. Honey and other hive products are, at least economically and ecologically rather, by-products of beekeeping. Due to this outstanding role of honey bees, severe and inexplicable honey bee colony losses, which have been reported recently to be steadily increasing, have attracted much attention and stimulated many research activities. Although the phenomenon "decline of honey bees" is far from being finally solved, consensus exists that pests and pathogens are the single most important cause of otherwise inexplicable colony losses. This review will focus on selected bee pathogens and parasites which have been demonstrated to be involved in colony losses in different regions of the world and which, therefore, are considered current threats to honey bees and beekeeping.

  14. Bee or Wasp Sting.

    Science.gov (United States)

    Hon, Kam Lun; Leung, Alexander K C

    2017-09-01

    While jogging in a local park in Hong Kong, a 55-year-old, previously healthy man was stung on the ventral aspect of his right wrist. The tiny stinger was gently removed with nail cutters and examined under a microscope at 80x magni cation; plucking the stinger is ill- advised as this may inject more venom into the wounded site. Two days after stinging, the microscopic appearance of the stinger con rmed the diagnosis to be from a bee instead of a wasp or other insect. A simple method of con rming the nature of insect stings and an overview of Hymenoptera stings and their management are provided herein.

  15. Red mason bees cannot compete with honey bees for floral resources in a cage experiment

    OpenAIRE

    Hudewenz, Anika; Klein, Alexandra?Maria

    2015-01-01

    Abstract Intensive beekeeping to mitigate crop pollination deficits and habitat loss may cause interspecific competition between bees. Studies show negative correlations between flower visitation of honey bees (Apis mellifera) and wild bees, but effects on the reproduction of wild bees were not proven. Likely reasons are that honey bees can hardly be excluded from controls and wild bee nests are generally difficult to detect in field experiments. The goal of this study was to investigate whet...

  16. Do managed bees drive parasite spread and emergence in wild bees?

    Directory of Open Access Journals (Sweden)

    Peter Graystock

    2016-04-01

    Full Text Available Bees have been managed and utilised for honey production for centuries and, more recently, pollination services. Since the mid 20th Century, the use and production of managed bees has intensified with hundreds of thousands of hives being moved across countries and around the globe on an annual basis. However, the introduction of unnaturally high densities of bees to areas could have adverse effects. Importation and deployment of managed honey bee and bumblebees may be responsible for parasite introductions or a change in the dynamics of native parasites that ultimately increases disease prevalence in wild bees. Here we review the domestication and deployment of managed bees and explain the evidence for the role of managed bees in causing adverse effects on the health of wild bees. Correlations with the use of managed bees and decreases in wild bee health from territories across the globe are discussed along with suggestions to mitigate further health reductions in wild bees.

  17. Honey Bee Viruses in Wild Bees: Viral Prevalence, Loads, and Experimental Inoculation.

    Science.gov (United States)

    Dolezal, Adam G; Hendrix, Stephen D; Scavo, Nicole A; Carrillo-Tripp, Jimena; Harris, Mary A; Wheelock, M Joseph; O'Neal, Matthew E; Toth, Amy L

    2016-01-01

    Evidence of inter-species pathogen transmission from managed to wild bees has sparked concern that emerging diseases could be causing or exacerbating wild bee declines. While some pathogens, like RNA viruses, have been found in pollen and wild bees, the threat these viruses pose to wild bees is largely unknown. Here, we tested 169 bees, representing 4 families and 8 genera, for five common honey bee (Apis mellifera) viruses, finding that more than 80% of wild bees harbored at least one virus. We also quantified virus titers in these bees, providing, for the first time, an assessment of viral load in a broad spectrum of wild bees. Although virus detection was very common, virus levels in the wild bees were minimal-similar to or lower than foraging honey bees and substantially lower than honey bees collected from hives. Furthermore, when we experimentally inoculated adults of two different bee species (Megachile rotundata and Colletes inaequalis) with a mixture of common viruses that is lethal to honey bees, we saw no effect on short term survival. Overall, we found that honey bee RNA viruses can be commonly detected at low levels in many wild bee species, but we found no evidence that these pathogens cause elevated short-term mortality effects. However, more work on these viruses is greatly needed to assess effects on additional bee species and life stages.

  18. Rhabdomyolysis Secondary to Bee Sting

    Directory of Open Access Journals (Sweden)

    Okhan Akdur

    2013-01-01

    Full Text Available Insect stings belonging to Hymenoptera defined as wasps, yellow jackets, bees, or hornets by human usually result in unserious clinical pictures that go with pain. Rhabdomyolysis following a bee sting is a rare condition. This paper emphasizes “rhabdomyolysis” as a rare complication of this frequently observed envenomation. Rare but severe clinical results may occur due to multiple bee stings, such as intravascular hemolysis, rhabdomyolysis, acute renal insufficiency, and hepatic dysfunction. In bee stings as in our case, clinicians should be alert for rhabdomyolysis in cases with generalized body and muscle pain. Early onset alkaline diuresis and management in patients with rhabdomyolysis are vital in protecting the renal functions and preventing morbidity and mortality.

  19. Viral diseases in honey bee queens

    DEFF Research Database (Denmark)

    Francis, Roy Mathew

    Honey bees are important insects for human welfare, due to pollination as well as honey production. Viral diseases strongly impact honey bee health, especially since the spread of varroa mites. This dissertation deals with the interactions between honey bees, viruses and varroa mites. A new tool...... was developed to diagnose three viruses in honey bees. Quantitative PCR was used to investigate the distribution of two popular viruses in five different tissues of 86 honey bee queens. Seasonal variation of viral infection in honey bee workers and varroa mites were determined by sampling 23 colonies under...

  20. ZigBee-2007 Security Essentials

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    2008-01-01

    ZigBee is a fairly new but promising standard for wireless networks due to its low resource requirements. As in other wireless network standards, security is an important issue and each new version of the ZigBee Specification enhances the level of the ZigBee security. In this paper, we present...... the security essentials of the latest ZigBee Specification, ZigBee-2007. We explain the key concepts, protocols, and computations. In addition, we formulate the protocols using standard protocol narrations. Finally, we identify the key challenges to be considered for consolidating ZigBee....

  1. The Academic Quilting Bee

    Science.gov (United States)

    Files, Julia A.; Ko, Marcia G.; Blair, Janis E.

    2009-01-01

    In medicine, the challenges faced by female faculty members who are attempting to achieve academic advancement have been well described. Various strategies have been proposed to increase academic productivity to aid the promotion of women in medicine. We propose an innovative collaboration strategy that encourages completion of an academic writing project. This strategy acknowledges the challenges inherent in achieving work–life balance and utilizes a collaborative work style with a group of peer physicians. The model is designed to encourage the completion and collation of independently prepared sections of an academic paper within a setting that emphasizes social networking and collaboration. This approach has many similarities to the construction of a quilt during a “quilting bee.” PMID:19172365

  2. Chemical Ecology of Stingless Bees.

    Science.gov (United States)

    Leonhardt, Sara Diana

    2017-04-01

    Stingless bees (Hymenoptera, Apidae: Meliponini) represent a highly diverse group of social bees confined to the world's tropics and subtropics. They show a striking diversity of structural and behavioral adaptations and are important pollinators of tropical plants. Despite their diversity and functional importance, their ecology, and especially chemical ecology, has received relatively little attention, particularly compared to their relative the honeybee, Apis mellifera. Here, I review various aspects of the chemical ecology of stingless bees, from communication over resource allocation to defense. I list examples in which functions of specific compounds (or compound groups) have been demonstrated by behavioral experiments, and show that many aspects (e.g., queen-worker interactions, host-parasite interactions, neuronal processing etc.) remain little studied. This review further reveals that the vast majority of studies on the chemical ecology of stingless bees have been conducted in the New World, whereas studies on Old World stingless bees are still comparatively rare. Given the diversity of species, behaviors and, apparently, chemical compounds used, I suggest that stingless bees provide an ideal subject for studying how functional context and the need for species specificity may interact to shape pheromone diversification in social insects.

  3. A Beeline into Bee-Lining

    Czech Academy of Sciences Publication Activity Database

    Ernst, Ulrich R.

    2016-01-01

    Roč. 66, č. 10 (2016), s. 908-909 ISSN 0006-3568 Institutional support: RVO:61388963 Keywords : honeybees * bees * Apis mellifera * bee hunting * beeline Subject RIV: EG - Zoology Impact factor: 5.378, year: 2016

  4. Proceedings "… Towards Resilient Honey Bees …"

    NARCIS (Netherlands)

    Dooremalen, van C.A.; Zweep, A.

    2015-01-01

    The Research Roadmap is a co-creation by Bees@wur and the Dutch government, and the (inter)national researchers participating in the workshop Resilient Honey bees 23-24 November 2015, Castle Hoekelum, Bennekom, The Netherlands

  5. Honey Bees Inspired Optimization Method: The Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Ernesto Mastrocinque

    2013-11-01

    Full Text Available Optimization algorithms are search methods where the goal is to find an optimal solution to a problem, in order to satisfy one or more objective functions, possibly subject to a set of constraints. Studies of social animals and social insects have resulted in a number of computational models of swarm intelligence. Within these swarms their collective behavior is usually very complex. The collective behavior of a swarm of social organisms emerges from the behaviors of the individuals of that swarm. Researchers have developed computational optimization methods based on biology such as Genetic Algorithms, Particle Swarm Optimization, and Ant Colony. The aim of this paper is to describe an optimization algorithm called the Bees Algorithm, inspired from the natural foraging behavior of honey bees, to find the optimal solution. The algorithm performs both an exploitative neighborhood search combined with random explorative search. In this paper, after an explanation of the natural foraging behavior of honey bees, the basic Bees Algorithm and its improved versions are described and are implemented in order to optimize several benchmark functions, and the results are compared with those obtained with different optimization algorithms. The results show that the Bees Algorithm offering some advantage over other optimization methods according to the nature of the problem.

  6. Honey bees as pollinators in natural communities

    OpenAIRE

    Kingston, Jennifer Marie

    2017-01-01

    Honey bees are the most widespread pollinating animal species in natural plant communities worldwide, and in San Diego, California, despite high native bee diversity, the introduced honey bee is responsible for over 75% of flower visits. We performed a) a meta-analysis of published studies which report the per-visit efficiency of honey bees as pollinators relative to other floral visitors and b) a field survey documenting seasonal change in floral abundances and pollinator visitation in a co...

  7. Africanized bees extend their distribution in California.

    Science.gov (United States)

    Lin, Wei; McBroome, Jakob; Rehman, Mahwish; Johnson, Brian R

    2018-01-01

    Africanized honey bees (Apis mellifera) arrived in the western hemisphere in the 1950s and quickly spread north reaching California in the 1990s. These bees are highly defensive and somewhat more difficult to manage for commercial purposes than the European honey bees traditionally kept. The arrival of these bees and their potentially replacing European bees over much of the state is thus of great concern. After a 25 year period of little systematic sampling, a recent small scale study found Africanized honey bees in the Bay Area of California, far north of their last recorded distribution. The purpose of the present study was to expand this study by conducting more intensive sampling of bees from across northern California. We found Africanized honey bees as far north as Napa and Sacramento. We also found Africanized bees in all counties south of these counties. Africanized honey bees were particularly abundant in parts of the central valley and Monterey. This work suggests the northern spread of Africanized honey bees may not have stopped. They may still be moving north at a slow rate, although due to the long gaps in sampling it is currently impossible to tell for certain. Future work should routinely monitor the distribution of these bees to distinguish between these two possibilities.

  8. Aging and body size in solitary bees

    Science.gov (United States)

    Solitary bees are important pollinators of crops and non-domestic plants. Osmia lignaria is a native, commercially-reared solitary bee used to maximize pollination in orchard crops. In solitary bees, adult body size is extremely variable depending on the nutritional resources available to the develo...

  9. Honey bee genotypes and the environment

    DEFF Research Database (Denmark)

    Meixner, Marina D; Büchler, Ralph; Costa, Cecilia

    2014-01-01

    Although knowledge about honey bee geographic and genetic diversity has increased tremendously in recent decades, the adaptation of honey bees to their local environment has not been well studied. The current demand for high economic performance of bee colonies with desirable behavioural characte...

  10. Flowers and Wild Megachilid Bees Share Microbes.

    Science.gov (United States)

    McFrederick, Quinn S; Thomas, Jason M; Neff, John L; Vuong, Hoang Q; Russell, Kaleigh A; Hale, Amanda R; Mueller, Ulrich G

    2017-01-01

    Transmission pathways have fundamental influence on microbial symbiont persistence and evolution. For example, the core gut microbiome of honey bees is transmitted socially and via hive surfaces, but some non-core bacteria associated with honey bees are also found on flowers, and these bacteria may therefore be transmitted indirectly between bees via flowers. Here, we test whether multiple flower and wild megachilid bee species share microbes, which would suggest that flowers may act as hubs of microbial transmission. We sampled the microbiomes of flowers (either bagged to exclude bees or open to allow bee visitation), adults, and larvae of seven megachilid bee species and their pollen provisions. We found a Lactobacillus operational taxonomic unit (OTU) in all samples but in the highest relative and absolute abundances in adult and larval bee guts and pollen provisions. The presence of the same bacterial types in open and bagged flowers, pollen provisions, and bees supports the hypothesis that flowers act as hubs of transmission of these bacteria between bees. The presence of bee-associated bacteria in flowers that have not been visited by bees suggests that these bacteria may also be transmitted to flowers via plant surfaces, the air, or minute insect vectors such as thrips. Phylogenetic analyses of nearly full-length 16S rRNA gene sequences indicated that the Lactobacillus OTU dominating in flower- and megachilid-associated microbiomes is monophyletic, and we propose the name Lactobacillus micheneri sp. nov. for this bacterium.

  11. A Whole Day of Bees? Buzz Off!

    Science.gov (United States)

    Church, David

    2017-01-01

    In March 2016, the school that the author teaches at held its annual science day and the theme was "bees." Each class was given a different question relating to bees to investigate. The children in the authors' year 2 class (ages 6-7) were challenged to investigate the life cycle of a bee. The whole day was focused around the life cycle…

  12. Bumble bees at home and at school

    NARCIS (Netherlands)

    Kwak, MM

    1997-01-01

    Do you know how bumble bees live and what they need? You can discover a lot about bumble bees if you watch them while they visit flowers. This article is a shortened version of a chapter from the IBRA publication Bumble bees for pleasure and profit*, and gives you information on how to do

  13. Hologenome theory and the honey bee pathosphere

    Science.gov (United States)

    Recent research shows substantial genomic diversity among the parasites and pathogens honey bees encounter, a robust microbiota living within bees, and a genome-level view of relationships across global honey bee races. Different combinations of these genomic complexes may explain regional variatio...

  14. Swimming of the Honey Bees

    Science.gov (United States)

    Roh, Chris; Gharib, Morteza

    2016-11-01

    When the weather gets hot, nursing honey bees nudge foragers to collect water for thermoregulation of their hive. While on their mission to collect water, foragers sometimes get trapped on the water surface, forced to interact with a different fluid environment. In this study, we present the survival strategy of the honey bees at the air-water interface. A high-speed videography and shadowgraph were used to record the honey bees swimming. A unique thrust mechanism through rapid vibration of their wings at 60 to 150 Hz was observed. This material is based upon work supported by the National Science Foundation under Grant No. CBET-1511414; additional support by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144469.

  15. The plight of the bees

    Science.gov (United States)

    Spivak, Marla; Mader, Eric; Vaughan, Mace; Euliss, Ned H.

    2011-01-01

    The loss of biodiversity is a trend that is garnering much concern. As organisms have evolved mutualistic and synergistic relationships, the loss of one or a few species can have a much wider environmental impact. Since much pollination is facilitated by bees, the reported colony collapse disorder has many worried of widespread agricultural fallout and thus deleterious impact on human foodstocks. In this Feature, Spivak et al. review what is known of the present state of bee populations and provide information on how to mitigate and reverse the trend.

  16. How honey bees carry pollen

    Science.gov (United States)

    Matherne, Marguerite E.; Anyanwu, Gabriel; Leavey, Jennifer K.; Hu, David L.

    2017-11-01

    Honey bees are the tanker of the skies, carrying thirty percent of their weight in pollen per foraging trip using specialized orifices on their body. How do they manage to hang onto those pesky pollen grains? In this experimental study, we investigate the adhesion force of pollen to the honeybee. To affix pollen to themselves, honey bees form a suspension of pollen in nectar, creating a putty-like pollen basket that is skewered by leg hairs. We use tensile tests to show that the viscous force of the pollen basket is more than ten times the honeybee's flight force. This work may provide inspiration for the design of robotic flying pollinators.

  17. Structural studies of bee melittin

    Energy Technology Data Exchange (ETDEWEB)

    Eisenberg, D.; Terwilliger, T.C.; Tsui, F.

    1980-10-01

    The question of how proteins refold in passing from an aqueous phase to an amphipathic environment such as a membrane is beig addressed by a structural study of bee melittin. Melittin is the toxic, main protein of bee venom, and has been shown by others to integrate into natural and synthetic membranes and to lyse a variety of cells. This function is presumably related to its unusual sequence. Except for charges at the N-terminus and at lysine 7, the first 20 residues are largely apolar. In contrast, the last six residues contain four charges and two polar residues.

  18. Do managed bees have negative effects on wild bees?: A systematic review of the literature.

    Science.gov (United States)

    Mallinger, Rachel E; Gaines-Day, Hannah R; Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their

  19. Do managed bees have negative effects on wild bees?: A systematic review of the literature.

    Directory of Open Access Journals (Sweden)

    Rachel E Mallinger

    Full Text Available Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1 competition for floral and nesting resources, (2 indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3 transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined. Equal numbers of studies examining plant communities reported positive (36% and negative (36% effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70% reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens, but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand

  20. Do managed bees have negative effects on wild bees?: A systematic review of the literature

    Science.gov (United States)

    Gratton, Claudio

    2017-01-01

    Managed bees are critical for crop pollination worldwide. As the demand for pollinator-dependent crops increases, so does the use of managed bees. Concern has arisen that managed bees may have unintended negative impacts on native wild bees, which are important pollinators in both agricultural and natural ecosystems. The goal of this study was to synthesize the literature documenting the effects of managed honey bees and bumble bees on wild bees in three areas: (1) competition for floral and nesting resources, (2) indirect effects via changes in plant communities, including the spread of exotic plants and decline of native plants, and (3) transmission of pathogens. The majority of reviewed studies reported negative effects of managed bees, but trends differed across topical areas. Of studies examining competition, results were highly variable with 53% reporting negative effects on wild bees, while 28% reported no effects and 19% reported mixed effects (varying with the bee species or variables examined). Equal numbers of studies examining plant communities reported positive (36%) and negative (36%) effects, with the remainder reporting no or mixed effects. Finally, the majority of studies on pathogen transmission (70%) reported potential negative effects of managed bees on wild bees. However, most studies across all topical areas documented the potential for impact (e.g. reporting the occurrence of competition or pathogens), but did not measure direct effects on wild bee fitness, abundance, or diversity. Furthermore, we found that results varied depending on whether managed bees were in their native or non-native range; managed bees within their native range had lesser competitive effects, but potentially greater effects on wild bees via pathogen transmission. We conclude that while this field has expanded considerably in recent decades, additional research measuring direct, long-term, and population-level effects of managed bees is needed to understand their

  1. Bee cups: Single-use cages for honey bee experiments

    Science.gov (United States)

    Honey bees face challenges ranging from poor nutrition to exposure to parasites, pathogens, and environmental chemicals. These challenges drain colony resources and have been tied to both subtle and extreme colony declines, including the enigmatic Colony Collapse Disorder (CCD). Understanding how ...

  2. Chronic bee paralysis virus and Nosema ceranae experimental co-infection of winter honey bee workers (Apis mellifera L.)

    Science.gov (United States)

    Chronic bee paralysis virus (CBPV) is an important viral disease of adult bees which induces significant losses in honey bee colonies. In this study winter worker bees were experimentally infected using three different experiments. Bees were inoculated orally or topically with CBPV to evaluate the l...

  3. Bee venom in cancer therapy.

    Science.gov (United States)

    Oršolić, Nada

    2012-06-01

    Bee venom (BV) (api-toxin) has been widely used in the treatment of some immune-related diseases, as well as in recent times in treatment of tumors. Several cancer cells, including renal, lung, liver, prostate, bladder, and mammary cancer cells as well as leukemia cells, can be targets of bee venom peptides such as melittin and phospholipase A2. The cell cytotoxic effects through the activation of PLA2 by melittin have been suggested to be the critical mechanism for the anti-cancer activity of BV. The induction of apoptotic cell death through several cancer cell death mechanisms, including the activation of caspase and matrix metalloproteinases, is important for the melittin-induced anti-cancer effects. The conjugation of cell lytic peptide (melittin) with hormone receptors and gene therapy carrying melittin can be useful as a novel targeted therapy for some types of cancer, such as prostate and breast cancer. This review summarizes the current knowledge regarding potential of bee venom and its compounds such as melittin to induce cytotoxic, antitumor, immunomodulatory, and apoptotic effects in different tumor cells in vivo or in vitro. The recent applications of melittin in various cancers and a molecular explanation for the antiproliferative properties of bee venom are discussed.

  4. Parasite infection accelerates age polyethism in young honey bees

    DEFF Research Database (Denmark)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per

    2016-01-01

    them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite...

  5. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review

    OpenAIRE

    Rao, Pasupuleti Visweswara; Krishnan, Kumara Thevan; Salleh, Naguib; Gan, Siew Hua

    2016-01-01

    ABSTRACT Honey is a natural product produced by both honey bees and stingless bees. Both types of honey contain unique and distinct types of phenolic and flavonoid compounds of variable biological and clinical importance. Honey is one of the most effective natural products used for wound healing. In this review, the traditional uses and clinical applications of both honey bee and stingless bee honey – such as antimicrobial, antioxidant, anti-inflammatory, anticancer, antihyperlipidemic, and c...

  6. Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa)

    OpenAIRE

    Koch, Hauke; Stevenson, Philip C.

    2017-01-01

    For decades, linden trees (basswoods or lime trees), and particularly silver linden (Tilia tomentosa), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar r...

  7. Chronic Bee Paralysis Virus in Honeybee Queens

    DEFF Research Database (Denmark)

    Amiri, Esmaeil; Meixner, Marina; Büchler, Ralph

    2014-01-01

    Chronic bee paralysis virus (CBPV) is known as a disease of worker honey bees. To investigate pathogenesis of the CBPV on the queen, the sole reproductive individual in a colony, we conducted experiments regarding the susceptibility of queens to CBPV. Results from susceptibility experiment showed...... a similar disease progress in the queens compared to worker bees after infection. Infected queens exhibit symptoms by Day 6 post infection and virus levels reach 1011 copies per head. In a transmission experiment we showed that social interactions may affect the disease progression. Queens with forced...... contact to symptomatic worker bees acquired an overt infection with up to 1011 virus copies per head in six days. In contrast, queens in contact with symptomatic worker bees, but with a chance to receive food from healthy bees outside the cage appeared healthy. The virus loads did not exceed 107...

  8. Pollination value of male bees: The specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo)

    Science.gov (United States)

    Males can comprise a substantial fraction of the bees that visit flowers, particularly at floral hosts of those bee species that are taxonomic floral specialists for pollen. Despite their prevalence in a number of pollination guilds, contributions of male bees to host pollination have been largely ...

  9. Differential sensitivity of honey bees and bumble bees to a dietary insecticide (imidacloprid).

    Science.gov (United States)

    Cresswell, James E; Page, Christopher J; Uygun, Mehmet B; Holmbergh, Marie; Li, Yueru; Wheeler, Jonathan G; Laycock, Ian; Pook, Christopher J; de Ibarra, Natalie Hempel; Smirnoff, Nick; Tyler, Charles R

    2012-12-01

    Currently, there is concern about declining bee populations and the sustainability of pollination services. One potential threat to bees is the unintended impact of systemic insecticides, which are ingested by bees in the nectar and pollen from flowers of treated crops. To establish whether imidacloprid, a systemic neonicotinoid and insect neurotoxin, harms individual bees when ingested at environmentally realistic levels, we exposed adult worker bumble bees, Bombus terrestris L. (Hymenoptera: Apidae), and honey bees, Apis mellifera L. (Hymenoptera: Apidae), to dietary imidacloprid in feeder syrup at dosages between 0.08 and 125μg l(-1). Honey bees showed no response to dietary imidacloprid on any variable that we measured (feeding, locomotion and longevity). In contrast, bumble bees progressively developed over time a dose-dependent reduction in feeding rate with declines of 10-30% in the environmentally relevant range of up to 10μg l(-1), but neither their locomotory activity nor longevity varied with diet. To explain their differential sensitivity, we speculate that honey bees are better pre-adapted than bumble bees to feed on nectars containing synthetic alkaloids, such as imidacloprid, by virtue of their ancestral adaptation to tropical nectars in which natural alkaloids are prevalent. We emphasise that our study does not suggest that honey bee colonies are invulnerable to dietary imidacloprid under field conditions, but our findings do raise new concern about the impact of agricultural neonicotinoids on wild bumble bee populations. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. To bee or not to bee (interview with T. Blacquière & J. Calis)

    NARCIS (Netherlands)

    Thoenes, E.; Blacquière, T.; Calis, J.

    2009-01-01

    The honey bee is not doing very well. both in europe and in the United states, beekeepers increasingly see their bees fall victim to the ‘disappearing disease’. The symptom, an empty hive without any bees – neither living nor dead – poses a riddle to scientists. researchers from Wageningen Ur are

  11. Bee sting after seizure and ischemic attack

    Directory of Open Access Journals (Sweden)

    Aynur Yurtseven

    2015-09-01

    Full Text Available Insect bites, bee stings are the most frequently encountered. Often seen after bee stings usually only local allergic reactions. Sometimes with very serious clinical condition may also be confronted. Of this rare clinical findings; polyneuritis, parkinsonism, encephalitis, acute disseminated encephalomyelitis, Guillain-Barre syndrome, myocardial infarction, pulmonary edema, hemorrhage, hemolytic anemia and renal disease has. Here a rare convulsions after a bee sting is presented.

  12. Nutritional Physiology and Ecology of Honey Bees.

    Science.gov (United States)

    Wright, Geraldine A; Nicolson, Susan W; Shafir, Sharoni

    2018-01-07

    Honey bees feed on floral nectar and pollen that they store in their colonies as honey and bee bread. Social division of labor enables the collection of stores of food that are consumed by within-hive bees that convert stored pollen and honey into royal jelly. Royal jelly and other glandular secretions are the primary food of growing larvae and of the queen but are also fed to other colony members. Research clearly shows that bees regulate their intake, like other animals, around specific proportions of macronutrients. This form of regulation is done as individuals and at the colony level by foragers.

  13. What currency do bumble bees maximize?

    Directory of Open Access Journals (Sweden)

    Nicholas L Charlton

    2010-08-01

    Full Text Available In modelling bumble bee foraging, net rate of energetic intake has been suggested as the appropriate currency. The foraging behaviour of honey bees is better predicted by using efficiency, the ratio of energetic gain to expenditure, as the currency. We re-analyse several studies of bumble bee foraging and show that efficiency is as good a currency as net rate in terms of predicting behaviour. We suggest that future studies of the foraging of bumble bees should be designed to distinguish between net rate and efficiency maximizing behaviour in an attempt to discover which is the more appropriate currency.

  14. Honey Bee Hemocyte Profiling by Flow Cytometry

    Science.gov (United States)

    Marringa, William J.; Krueger, Michael J.; Burritt, Nancy L.; Burritt, James B.

    2014-01-01

    Multiple stress factors in honey bees are causing loss of bee colonies worldwide. Several infectious agents of bees are believed to contribute to this problem. The mechanisms of honey bee immunity are not completely understood, in part due to limited information about the types and abundances of hemocytes that help bees resist disease. Our study utilized flow cytometry and microscopy to examine populations of hemolymph particulates in honey bees. We found bee hemolymph includes permeabilized cells, plasmatocytes, and acellular objects that resemble microparticles, listed in order of increasing abundance. The permeabilized cells and plasmatocytes showed unexpected differences with respect to properties of the plasma membrane and labeling with annexin V. Both permeabilized cells and plasmatocytes failed to show measurable mitochondrial membrane potential by flow cytometry using the JC-1 probe. Our results suggest hemolymph particulate populations are dynamic, revealing significant differences when comparing individual hive members, and when comparing colonies exposed to diverse conditions. Shifts in hemocyte populations in bees likely represent changing conditions or metabolic differences of colony members. A better understanding of hemocyte profiles may provide insight into physiological responses of honey bees to stress factors, some of which may be related to colony failure. PMID:25285798

  15. Effects of honey bee (Hymenoptera: Apidae) and bumble bee (Hymenoptera: Apidae) presence on cranberry (Ericales: Ericaceae) pollination.

    Science.gov (United States)

    Evans, E C; Spivak, M

    2006-06-01

    Honey bees, Apis mellifera L., are frequently used to pollinate commercial cranberries, Vaccinium macrocarpon Ait., but information is lacking on the relative contribution of honey bees and native bees, the effects of surrounding vegetation on bee visitation, and on optimal timing for honey bee introduction. We begin with a descriptive study of numbers of honey bees, bumble bees, and other bees visiting cranberry blossoms, and their subsequent effect on cranberry yield, on three cranberry properties in 1999. The property surrounded by agricultural land, as opposed to wetlands and woodlands, had fewer numbers of all bee types. In 2000, one property did not introduce honey bee colonies, providing an opportunity to document the effect of lack of honey bees on yield. With no honey bees, plants along the edge of the bed had significantly higher berry weights compared with nonedge plants, suggesting that wild pollinators were only effective along the edge. Comparing the same bed between 1999, with three honey bee colonies per acre, and 2000, with no honey bees, we found a significant reduction in average berry size. In 2000, we compared stigma loading on properties with and without honey bees. Significantly more stigmas received the minimum number of tetrads required for fruit set on the property with honey bees. Significantly more tetrads were deposited during mid-bloom compared with early bloom, indicating that mid-bloom was the best time to have honey bees present. This study emphasizes the importance and effectiveness of honey bees as pollinators of commercial size cranberry plantings.

  16. Bee Queen Breeding Methods - Review

    Directory of Open Access Journals (Sweden)

    Silvia Patruica

    2016-05-01

    Full Text Available The biological potential of a bee family is mainly generated by the biological value of the queen. Whether we grow queens widely or just for our own apiaries, we must consider the acquisition of high-quality biological material, and also the creation of optimal feeding and caring conditions, in order to obtain high genetic value queens. Queen breeding technology starts with the setting of hoeing families, nurse families, drone-breeding families – necessary for the pairing of young queens, and also of the families which will provide the bees used to populate the nuclei where the next queens will hatch. The complex of requirements for the breeding of good, high-production queens is sometimes hard to met, under the application of artificial methods. The selection of breeding method must rely on all these requirements and on the beekeeper’s level of training.

  17. Live bee acupuncture (Bong-Chim) dermatitis: dermatitis due to live bee acupuncture therapy in Korea.

    Science.gov (United States)

    Park, Joon Soo; Lee, Min Jung; Chung, Ki Hun; Ko, Dong Kyun; Chung, Hyun

    2013-12-01

    Live bee acupuncture (Bong-Chim) dermatitis is an iatrogenic disease induced by so-called live bee acupuncture therapy, which applies the honeybee (Apis cerana) stinger directly into the lesion to treat various diseases in Korea. We present two cases of live bee acupuncture dermatitis and review previously published articles about this disease. We classify this entity into three stages: acute, subacute, and chronic. The acute stage is an inflammatory reaction, such as anaphylaxis or urticaria. In the chronic stage, a foreign body granuloma may develop from the remaining stingers, similar to that of a bee sting reaction. However, in the subacute stage, unlike bee stings, we see the characteristic histological "flame" figures resulting from eosinophilic stimulation induced by excessive bee venom exposure. We consider this stage to be different from the adverse skin reaction of accidental bee sting. © 2013 The International Society of Dermatology.

  18. Bees prefer foods containing neonicotinoid pesticides.

    Science.gov (United States)

    Kessler, Sébastien; Tiedeken, Erin Jo; Simcock, Kerry L; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C; Wright, Geraldine A

    2015-05-07

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  19. Pattern recognition in bees : orientation discrimination

    NARCIS (Netherlands)

    Hateren, J.H. van; Srinivasan, M.V.; Wait, P.B.

    1990-01-01

    Honey bees (Apis mellifera, worker) were trained to discriminate between two random gratings oriented perpendicularly to each other. This task was quickly learned with vertical, horizontal, and oblique gratings. After being trained on perpendicularly-oriented random gratings, bees could discriminate

  20. bees of southern Africa (Hymenoptera, Apoidea, Fideliidae)

    African Journals Online (AJOL)

    (Zygophyllaceae). Parafidelia friesei visits flowers of Sesamum. (Pedaliaceae) and Fidelia braunsiana is confined to Berkheya. (Asteraceae). The rainfall pattern divides the species into early summer bees (7 species) of the winter rainfall and autumn bees. (4 species) of the summer rainfall areas. Two of the above species.

  1. Physiology and biochemistry of honey bees

    Science.gov (United States)

    Despite their tremendous economic importance, honey bees are not a typical model system for studying general questions of insect physiology. This is primarily due to the fact that honey bees live in complex social settings which impact their physiological and biochemical characteristics. Not surpris...

  2. Bees prefer foods containing neonicotinoid pesticides

    Science.gov (United States)

    Kessler, Sébastien C.; Tiedeken, Erin Jo; Simcock, Kerry L.; Derveau, Sophie; Mitchell, Jessica; Softley, Samantha; Stout, Jane C.; Wright, Geraldine A.

    2015-05-01

    The impact of neonicotinoid insecticides on insect pollinators is highly controversial. Sublethal concentrations alter the behaviour of social bees and reduce survival of entire colonies. However, critics argue that the reported negative effects only arise from neonicotinoid concentrations that are greater than those found in the nectar and pollen of pesticide-treated plants. Furthermore, it has been suggested that bees could choose to forage on other available flowers and hence avoid or dilute exposure. Here, using a two-choice feeding assay, we show that the honeybee, Apis mellifera, and the buff-tailed bumblebee, Bombus terrestris, do not avoid nectar-relevant concentrations of three of the most commonly used neonicotinoids, imidacloprid (IMD), thiamethoxam (TMX), and clothianidin (CLO), in food. Moreover, bees of both species prefer to eat more of sucrose solutions laced with IMD or TMX than sucrose alone. Stimulation with IMD, TMX and CLO neither elicited spiking responses from gustatory neurons in the bees' mouthparts, nor inhibited the responses of sucrose-sensitive neurons. Our data indicate that bees cannot taste neonicotinoids and are not repelled by them. Instead, bees preferred solutions containing IMD or TMX, even though the consumption of these pesticides caused them to eat less food overall. This work shows that bees cannot control their exposure to neonicotinoids in food and implies that treating flowering crops with IMD and TMX presents a sizeable hazard to foraging bees.

  3. The Plight of the Honey Bee

    Science.gov (United States)

    Hockridge, Emma

    2010-01-01

    The decline of colonies of honey bees across the world is threatening local plant biodiversity and human food supplies. Neonicotinoid pesticides have been implicated as a major cause of the problem and are banned or suspended in several countries. Other factors could also be lowering the resistance of bees to opportunist infections by, for…

  4. Allee effects and colony collapse disorder in honey bees

    Science.gov (United States)

    We propose a mathematical model to quantify the hypothesis that a major ultimate cause of Colony Collapse Disorder (CCD) in honey bees is the presence of an Allee effect in the growth dynamics of honey bee colonies. In the model, both recruitment of adult bees as well as mortality of adult bees have...

  5. Bee Hive management and colonisation: a practical approach ...

    African Journals Online (AJOL)

    The managerial issues include the method of approaching the bees and hives, feeding of the bees and prevention of predators. Exploitation of the colony for bee products is usually done with special tools that ensure no disturbance of the inhabitants while also protecting the harvester. The market for bee products varies ...

  6. Assessing grooming behavior of Russian honey bees toward Varroa destructor.

    Science.gov (United States)

    The grooming behavior of Russian bees was compared to Italian bees. Overall, Russian bees had significantly lower numbers of mites than the Italian bees with a mean of 1,937 ± 366 and 5,088 ± 733 mites, respectively. This low mite population in the Russian colonies was probably due to the increased ...

  7. Pharmacological evaluation of bee venom and melittin

    Directory of Open Access Journals (Sweden)

    Camila G. Dantas

    Full Text Available The objective of this study was to identify the pharmacological effects of bee venom and its major component, melittin, on the nervous system of mice. For the pharmacological analysis, mice were treated once with saline, 0.1 or 1.2 mg/kg of bee venom and 0.1 mg/kg of melittin, subcutaneously, 30 min before being submitted to behavioral tests: locomotor activity and grooming (open-field, catalepsy, anxiety (elevated plus-maze, depression (forced swimming test and apomorphine-induced stereotypy. Haloperidol, imipramine and diazepam were administered alone (positive control or as a pre-treatment (haloperidol.The bee venom reduced motor activity and promoted cataleptic effect, in a similar manner to haloperidol.These effects were decreased by the pretreatment with haloperidol. Both melittin and bee venom decreased the apomorphine-induced stereotypies. The data indicated the antipsychotic activity of bee venom and melittin in a murine model.

  8. Antiviral Defense Mechanisms in Honey Bees.

    Science.gov (United States)

    Brutscher, Laura M; Daughenbaugh, Katie F; Flenniken, Michelle L

    2015-08-01

    Honey bees are significant pollinators of agricultural crops and other important plant species. High annual losses of honey bee colonies in North America and in some parts of Europe have profound ecological and economic implications. Colony losses have been attributed to multiple factors including RNA viruses, thus understanding bee antiviral defense mechanisms may result in the development of strategies that mitigate colony losses. Honey bee antiviral defense mechanisms include RNA-interference, pathogen-associated molecular pattern (PAMP) triggered signal transduction cascades, and reactive oxygen species generation. However, the relative importance of these and other pathways is largely uncharacterized. Herein we review the current understanding of honey bee antiviral defense mechanisms and suggest important avenues for future investigation.

  9. Hygienic behaviour in Brazilian stingless bees

    Directory of Open Access Journals (Sweden)

    Hasan Al Toufailia

    2016-11-01

    Full Text Available Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera. Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony. These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001, and a positive correlation with the cleaning out of brood cells (P=0.0008. This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because

  10. Metatranscriptomic analyses of honey bee colonies

    Directory of Open Access Journals (Sweden)

    Cansu Ozge Tozkar

    2015-03-01

    Full Text Available Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World’s most important centers of apiculture, harboring 5 subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9-10 million reads per library remained. These were then mapped to a curated set of public sequences containing ca. 60 megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp., neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae, Varroa destructor-1 virus, Sacbrood virus, Apis filamentous virus and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus, Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly. We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees.

  11. Metatranscriptomic analyses of honey bee colonies

    Science.gov (United States)

    Tozkar, Cansu Ö.; Kence, Meral; Kence, Aykut; Huang, Qiang; Evans, Jay D.

    2015-01-01

    Honey bees face numerous biotic threats from viruses to bacteria, fungi, protists, and mites. Here we describe a thorough analysis of microbes harbored by worker honey bees collected from field colonies in geographically distinct regions of Turkey. Turkey is one of the World's most important centers of apiculture, harboring five subspecies of Apis mellifera L., approximately 20% of the honey bee subspecies in the world. We use deep ILLUMINA-based RNA sequencing to capture RNA species for the honey bee and a sampling of all non-endogenous species carried by bees. After trimming and mapping these reads to the honey bee genome, approximately 10% of the sequences (9–10 million reads per library) remained. These were then mapped to a curated set of public sequences containing ca. Sixty megabase-pairs of sequence representing known microbial species associated with honey bees. Levels of key honey bee pathogens were confirmed using quantitative PCR screens. We contrast microbial matches across different sites in Turkey, showing new country recordings of Lake Sinai virus, two Spiroplasma bacterium species, symbionts Candidatus Schmidhempelia bombi, Frischella perrara, Snodgrassella alvi, Gilliamella apicola, Lactobacillus spp.), neogregarines, and a trypanosome species. By using metagenomic analysis, this study also reveals deep molecular evidence for the presence of bacterial pathogens (Melissococcus plutonius, Paenibacillus larvae), Varroa destructor-1 virus, Sacbrood virus, and fungi. Despite this effort we did not detect KBV, SBPV, Tobacco ringspot virus, VdMLV (Varroa Macula like virus), Acarapis spp., Tropilaeleps spp. and Apocephalus (phorid fly). We discuss possible impacts of management practices and honey bee subspecies on microbial retinues. The described workflow and curated microbial database will be generally useful for microbial surveys of healthy and declining honey bees. PMID:25852743

  12. Hygienic behaviour in Brazilian stingless bees

    Science.gov (United States)

    Alves, Denise A.; Bento, José M. S.; Marchini, Luis C.; Ratnieks, Francis L. W.

    2016-01-01

    ABSTRACT Social insects have many defence mechanisms against pests and pathogens. One of these is hygienic behaviour, which has been studied in detail in the honey bee, Apis mellifera. Hygienic honey bee workers remove dead and diseased larvae and pupae from sealed brood cells, thereby reducing disease transfer within the colony. Stingless bees, Meliponini, also rear broods in sealed cells. We investigated hygienic behaviour in three species of Brazilian stingless bees (Melipona scutellaris, Scaptotrigona depilis, Tetragonisca angustula) in response to freeze-killed brood. All three species had high mean levels of freeze-killed brood removal after 48 h ∼99% in M. scutellaris, 80% in S. depilis and 62% in T. angustula (N=8 colonies per species; three trials per colony). These levels are greater than in unselected honey bee populations, ∼46%. In S. depilis there was also considerable intercolony variation, ranging from 27% to 100% removal after 2 days. Interestingly, in the S. depilis colony with the slowest removal of freeze-killed brood, 15% of the adult bees emerging from their cells had shrivelled wings indicating a disease or disorder, which is as yet unidentified. Although the gross symptoms resembled the effects of deformed wing virus in the honey bee, this virus was not detected in the samples. When brood comb from the diseased colony was introduced to the other S. depilis colonies, there was a significant negative correlation between freeze-killed brood removal and the emergence of deformed worker bees (P=0.001), and a positive correlation with the cleaning out of brood cells (P=0.0008). This shows that the more hygienic colonies were detecting and removing unhealthy brood prior to adult emergence. Our results indicate that hygienic behaviour may play an important role in colony health in stingless bees. The low levels of disease normally seen in stingless bees may be because they have effective mechanisms of disease management, not because they lack

  13. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators

    Science.gov (United States)

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-01-01

    Background and Aims The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Methods Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. Key Results The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal–low deposition pollinators, whereas honey-bees were high removal–low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Conclusions Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside

  14. The endangered Iris atropurpurea (Iridaceae) in Israel: honey-bees, night-sheltering male bees and female solitary bees as pollinators.

    Science.gov (United States)

    Watts, Stella; Sapir, Yuval; Segal, Bosmat; Dafni, Amots

    2013-03-01

    The coastal plain of Israel hosts the last few remaining populations of the endemic Iris atropurpurea (Iridaceae), a Red List species of high conservation priority. The flowers offer no nectar reward. Here the role of night-sheltering male solitary bees, honey-bees and female solitary bees as pollinators of I. atropurpurea is documented. Breeding system, floral longevity, stigma receptivity, visitation rates, pollen loads, pollen deposition and removal and fruit- and seed-set were investigated. The main wild pollinators of this plant are male eucerine bees, and to a lesser extent, but with the potential to transfer pollen, female solitary bees. Honey-bees were found to be frequent diurnal visitors; they removed large quantities of pollen and were as effective as male sheltering bees at pollinating this species. The low density of pollen carried by male solitary bees was attributed to grooming activities, pollen displacement when bees aggregated together in flowers and pollen depletion by honey-bees. In the population free of honey-bee hives, male bees carried significantly more pollen grains on their bodies. Results from pollen analysis and pollen deposited on stigmas suggest that inadequate pollination may be an important factor limiting fruit-set. In the presence of honey-bees, eucerine bees were low removal-low deposition pollinators, whereas honey-bees were high removal-low deposition pollinators, because they removed large amounts into corbiculae and deposited relatively little onto receptive stigmas. Even though overall, both bee taxa were equally effective pollinators, we suggest that honey-bees have the potential to reduce the amount of pollen available for plant reproduction, and to reduce the amount of resources available to solitary bee communities. The results of this study have potential implications for the conservation of this highly endangered plant species if hives are permitted inside reserves, where the bulk of Oncocyclus iris species are

  15. Colony Collapse Disorder (CCD and bee age impact honey bee pathophysiology.

    Directory of Open Access Journals (Sweden)

    Dennis vanEngelsdorp

    Full Text Available Honey bee (Apis mellifera colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions, and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees, we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and

  16. Colony Collapse Disorder (CCD) and bee age impact honey bee pathophysiology.

    Science.gov (United States)

    vanEngelsdorp, Dennis; Traynor, Kirsten S; Andree, Michael; Lichtenberg, Elinor M; Chen, Yanping; Saegerman, Claude; Cox-Foster, Diana L

    2017-01-01

    Honey bee (Apis mellifera) colonies continue to experience high annual losses that remain poorly explained. Numerous interacting factors have been linked to colony declines. Understanding the pathways linking pathophysiology with symptoms is an important step in understanding the mechanisms of disease. In this study we examined the specific pathologies associated with honey bees collected from colonies suffering from Colony Collapse Disorder (CCD) and compared these with bees collected from apparently healthy colonies. We identified a set of pathological physical characteristics that occurred at different rates in CCD diagnosed colonies prior to their collapse: rectum distension, Malpighian tubule iridescence, fecal matter consistency, rectal enteroliths (hard concretions), and venom sac color. The multiple differences in rectum symptomology in bees from CCD apiaries and colonies suggest effected bees had trouble regulating water. To ensure that pathologies we found associated with CCD were indeed pathologies and not due to normal changes in physical appearances that occur as an adult bee ages (CCD colonies are assumed to be composed mostly of young bees), we documented the changes in bees of different ages taken from healthy colonies. We found that young bees had much greater incidences of white nodules than older cohorts. Prevalent in newly-emerged bees, these white nodules or cellular encapsulations indicate an active immune response. Comparing the two sets of characteristics, we determined a subset of pathologies that reliably predict CCD status rather than bee age (fecal matter consistency, rectal distension size, rectal enteroliths and Malpighian tubule iridescence) and that may serve as biomarkers for colony health. In addition, these pathologies suggest that CCD bees are experiencing disrupted excretory physiology. Our identification of these symptoms is an important first step in understanding the physiological pathways that underlie CCD and factors

  17. Management of corneal bee sting

    Directory of Open Access Journals (Sweden)

    Razmjoo H

    2011-12-01

    Full Text Available Hassan Razmjoo1,2, Mohammad-Ali Abtahi1,2,4, Peyman Roomizadeh1,3, Zahra Mohammadi1,2, Seyed-Hossein Abtahi1,3,41Medical School, Isfahan University of Medical Sciences (IUMS; 2Ophthalmology Ward, Feiz Hospital, IUMS; 3Isfahan Medical Students Research Center (IMSRC, IUMS; 4Isfahan Ophthalmology Research Center (IORC, Feiz Hospital, IUMS, Isfahan, IranAbstract: Corneal bee sting is an uncommon environmental eye injury that can result in various ocular complications with an etiology of penetrating, immunologic, and toxic effects of the stinger and its injected venom. In this study we present our experience in the management of a middle-aged male with a right-sided deep corneal bee sting. On arrival, the patient was complaining of severe pain, blurry vision with acuity of 160/200, and tearing, which he had experienced soon after the injury. Firstly, we administered conventional drugs for eye injuries, including topical antibiotic, corticosteroid, and cycloplegic agents. After 2 days, corneal stromal infiltration and edema developed around the site of the sting, and visual acuity decreased to 100/200. These conditions led us to remove the stinger surgically. Within 25 days of follow-up, the corneal infiltration decreased gradually, and visual acuity improved to 180/200. We suggest a two-stage management approach for cases of corneal sting. For the first stage, if the stinger is readily accessible or primary dramatic reactions, including infiltration, especially on the visual axis, exist, manual or surgical removal would be indicated. Otherwise, we recommend conventional treatments for eye injuries. Given this situation, patients should be closely monitored for detection of any worsening. If the condition does not resolve or even deteriorates, for the second stage, surgical removal of the stinger under local or generalized anesthesia is indicated.Keywords: bee sting, stinger, cornea, removal, management, surgery

  18. The effects of Bee Venom and Sweet Bee Venom to the preadipocyte proliferation and lipolysis of adipocyte, localized fat accumulation

    OpenAIRE

    Min-Ki Kim; Si Hyeong, Lee; Jo Young Shin; Kang San Kim; Nam Guen Cho; Ki Rok Kwon; Tae Jin Rhim

    2007-01-01

    Objectives : The purpose of this study was to investigate the effects of Bee Venom and Sweet Bee Venom to the primary cultured preadipocyte, adipocytes, and localized fat tissue. Methods : Decreased preadipocyte proliferation and decreased lipogenesis are mechanisms to reduce obesity. So, preadipocytes and adipocytes were performed on cell cultures using Sprague-Dawley Rats and treated with 0.01-1mg/㎖ Bee Venom and Sweet Bee Venom. And porcine skin including fat tissue after treated Bee Ve...

  19. Interactions between bee foraging and floral resource phenology shape bee populations and communities.

    Science.gov (United States)

    Ogilvie, Jane E; Forrest, Jessica Rk

    2017-06-01

    Flowers are ephemeral, yet bees rely on them for food throughout their lives. Floral resource phenology - which can be altered by changes in climate and land-use - is therefore key to bee fitness and community composition. Here, we discuss the interactions between floral resource phenology, bee foraging behaviour, and traits such as diet breadth, sociality, and body size. Recent research on bumble bees has examined behavioural responses to local floral turnover and effects of landscape-scale floral resource phenology on fitness, abundance, and foraging distances. Comparable studies are needed on non-social, pollen-specialist species. We also encourage greater use of information contained in museum collections on bee phenologies and floral hosts to test how phenology has shaped the evolution of bee-plant associations. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Differences of floral resource use between honey bees and wild bees in an intensive farming system

    OpenAIRE

    Bretagnolle, Vincent; Decourtye, Axel; Aptel, Jean; Michel, Nadia; Vaissière, Bernard; Henry, Mickaël

    2013-01-01

    Bees provide an essential pollination service for crops and wild plants. However, substantial declines in bee populations and diversity have been observed in Europe and North America for the past 50 years, partly due to the loss of natural habitats and reduction of plant diversity resulting from agricultural intensification. To mitigate the negative effects of agricultural intensification, agri-environmental schemes (AES) have been proposed to sustain bees and others pollinators in agrosystem...

  1. A Study on Allergic responses Between Bee Venom and Sweet Bee Venom Pharmacopuncture

    Directory of Open Access Journals (Sweden)

    Jin Seon Lee

    2006-12-01

    Full Text Available Objectives : Sweet bee venom is made by removing allergen from the bee venom through gel filtration chromatography and propionic acid/urea polyacrylamide gel electrophoresis. The aim of this study was to verify allergy inhibitory action in Sweet Bee Venom in which the allergy causing enzyme is removed. Methods : 95 healthy adult men and women were selected through a survey whom had never received the bee venom therapy in the past. The concentration of bee venom pharmacopuncture and Sweet BV pharmacopuncture was equally at 0.1mg/㎖ and the experiment was conducted as the double blind test. Experiment groups were classified into low dosage groups (0.1㎖ for both bee venom pharmacopuncture and Sweet BV and high dosage groups where 0.4㎖ of respective administrations were rendered made observations for allergic responses. Results : Participants of the study was comprised of 71 men and 24 women with the average age of 29.0 years. According to results of the low dosage groups, Sweet BV group showed significant reduction in pain after 4 hours and 24 hours compared to the bee venom pharmacopuncture group. Other allergic responses were insignificant between the groups. For the high dosage groups, Sweet bee venom group showed reduction in pain after 30 minutes and 4 hours. Other allergic responses such as edema, itchiness, dizziness from hypersensitivity, and fatigue were significantly lower in the Sweet bee venom administered group after 30 minutes. Conclusions : As a result of removed allergen, Sweet bee venom significantly inhibits allergic responses both locally and throughout the body. This indicates wider and easier application of Sweet bee venom for the symptoms applicable to the bee venom pharmacopuncture. Further comparative studies should be conducted to yield more objective verification.

  2. Enhanced production of parthenocarpic cucumbers pollinated with stingless bees and Africanized honey bees in greenhouses

    Directory of Open Access Journals (Sweden)

    Euclides Braga Malheiros

    2013-12-01

    Full Text Available Crops have different levels of dependence on pollinators; this holds true even for cultivars of the same species, as in the case of cucumber (Cucumis sativus. The aim of this research was to assess the attractiveness of flowers of three Japanese parthenocarpic cucumber cultivars and evaluate the importance of Africanized bees (Apis mellifera, and the Brazilian native stingless bees, Jataí (Tetragonisca angustula and Iraí (Nannotrigona testaceicornis on fruit production. Several parameters, including frequency of bee visits to flowers as well as duration of nectar collection and fruit set were examined; additionally, fruit weight, length and diameter were evaluated. Three greenhouses located in Ribeirão Preto, SP, were used for planting three cucumber cultivars (Hokushin, Yoshinari and Soudai. The female flowers were more attractive than male flowers; however, Jataí bees were not observed visiting the flowers. The Africanized and the Iraí bees collected only nectar, with a visitation peak between 10 and 12h. Visits to female flowers had a longer duration than visits to male flower visits in all three cultivars. Africanized bee colonies declined due to loss of bees while in the greenhouse; the native stingless bee colonies did not suffer these losses. When bees were excluded, fruit set was 78%; however, when bees had access to the flowers, fruit set was significantly (19.2% higher. Fruit size and weight did not differ with and without bees. This demonstrates that even in parthenocarpic cucumber cultivars, which do not require pollination in order to from fruits, fruit production is significantly increased by bee pollination.

  3. Bee Pollen: Chemical Composition and Therapeutic Application

    Directory of Open Access Journals (Sweden)

    Katarzyna Komosinska-Vassev

    2015-01-01

    Full Text Available Bee pollen is a valuable apitherapeutic product greatly appreciated by the natural medicine because of its potential medical and nutritional applications. It demonstrates a series of actions such as antifungal, antimicrobial, antiviral, anti-inflammatory, hepatoprotective, anticancer immunostimulating, and local analgesic. Its radical scavenging potential has also been reported. Beneficial properties of bee pollen and the validity for their therapeutic use in various pathological condition have been discussed in this study and with the currently known mechanisms, by which bee pollen modulates burn wound healing process.

  4. Single Assay Detection of Acute Bee Paralysis Virus, Kashmir Bee Virus and Israeli Acute Paralysis Virus

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Kryger, Per

    2012-01-01

    A new RT-PCR primer pair designed to identify Acute Bee Paralysis Virus (ABPV), Kashmir Bee Virus (KBV) or Israeli Acute Bee Paralysis Virus (IAPV) of honey bees (Apis mellifera L.) in a single assay is described. These primers are used to screen samples for ABPV, KBV, or IAPV in a single RT-PCR ......-PCR reaction saving time and money. The primers are located in the predicted overlapping gene (pog/ORFX) which is highly conserved across ABPV, KBV, IAPV and other dicistroviruses of social insects. This study has also identified the first case of IAPV in Denmark....

  5. A simple and distinctive microbiota associated with honey bees and bumble bees.

    Science.gov (United States)

    Martinson, Vincent G; Danforth, Bryan N; Minckley, Robert L; Rueppell, Olav; Tingek, Salim; Moran, Nancy A

    2011-02-01

    Specialized relationships with bacteria often allow animals to exploit a new diet by providing a novel set of metabolic capabilities. Bees are a monophyletic group of Hymenoptera that transitioned to a completely herbivorous diet from the carnivorous diet of their wasp ancestors. Recent culture-independent studies suggest that a set of distinctive bacterial species inhabits the gut of the honey bee, Apis mellifera. Here we survey the gut microbiotae of diverse bee and wasp species to test whether acquisition of these bacteria was associated with the transition to herbivory in bees generally. We found that most bee species lack phylotypes that are the same or similar to those typical of A. mellifera, rejecting the hypothesis that this dietary transition was symbiont-dependent. The most common bacteria in solitary bee species are a widespread phylotype of Burkholderia and the pervasive insect associate, Wolbachia. In contrast, several social representatives of corbiculate bees do possess distinctive bacterial phylotypes. Samples of A. mellifera harboured the same microbiota as in previous surveys, and closely related bacterial phylotypes were identified in two Asian honey bees (Apis andreniformis and Apis dorsata) and several bumble bee (Bombus) species. Potentially, the sociality of Apis and Bombus species facilitates symbiont transmission and thus is key to the maintenance of a more consistent gut microbiota. Phylogenetic analyses provide a more refined taxonomic placement of the A. mellifera symbionts. © 2010 Blackwell Publishing Ltd.

  6. Synergistic effects of non-Apis bees and honey bees for pollination services

    Science.gov (United States)

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner. PMID:23303545

  7. Synergistic effects of non-Apis bees and honey bees for pollination services.

    Science.gov (United States)

    Brittain, Claire; Williams, Neal; Kremen, Claire; Klein, Alexandra-Maria

    2013-03-07

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orchards with simple (honey bee only) and diverse (non-Apis bees present) bee communities. In orchards with non-Apis bees, the foraging behaviour of honey bees changed and the pollination effectiveness of a single honey bee visit was greater than in orchards where non-Apis bees were absent. This change translated to a greater proportion of fruit set in these orchards. Our field experiments show that increased pollinator diversity can synergistically increase pollination service, through species interactions that alter the behaviour and resulting functional quality of a dominant pollinator species. These results of functional synergy between species were supported by an additional controlled cage experiment with Osmia lignaria and Apis mellifera. Our findings highlight a largely unexplored facilitative component of the benefit of biodiversity to ecosystem services, and represent a way to improve pollinator-dependent crop yields in a sustainable manner.

  8. Seed coating with a neonicotinoid insecticide negatively affects wild bees.

    Science.gov (United States)

    Rundlöf, Maj; Andersson, Georg K S; Bommarco, Riccardo; Fries, Ingemar; Hederström, Veronica; Herbertsson, Lina; Jonsson, Ove; Klatt, Björn K; Pedersen, Thorsten R; Yourstone, Johanna; Smith, Henrik G

    2015-05-07

    Understanding the effects of neonicotinoid insecticides on bees is vital because of reported declines in bee diversity and distribution and the crucial role bees have as pollinators in ecosystems and agriculture. Neonicotinoids are suspected to pose an unacceptable risk to bees, partly because of their systemic uptake in plants, and the European Union has therefore introduced a moratorium on three neonicotinoids as seed coatings in flowering crops that attract bees. The moratorium has been criticized for being based on weak evidence, particularly because effects have mostly been measured on bees that have been artificially fed neonicotinoids. Thus, the key question is how neonicotinoids influence bees, and wild bees in particular, in real-world agricultural landscapes. Here we show that a commonly used insecticide seed coating in a flowering crop can have serious consequences for wild bees. In a study with replicated and matched landscapes, we found that seed coating with Elado, an insecticide containing a combination of the neonicotinoid clothianidin and the non-systemic pyrethroid β-cyfluthrin, applied to oilseed rape seeds, reduced wild bee density, solitary bee nesting, and bumblebee colony growth and reproduction under field conditions. Hence, such insecticidal use can pose a substantial risk to wild bees in agricultural landscapes, and the contribution of pesticides to the global decline of wild bees may have been underestimated. The lack of a significant response in honeybee colonies suggests that reported pesticide effects on honeybees cannot always be extrapolated to wild bees.

  9. The toxicology of honey bee poisoning.

    Science.gov (United States)

    Stefanidou, Maria; Athanaselis, Sotirios; Koutselinis, Antonios

    2003-10-01

    The use of insecticides continues to be a basic tool in pest management, since there are many pest situations for which there are no known alternative management methods. However, the harmful effects of insecticides against beneficial Insects continuous to be a serious problem. Poisoning of bee pollinators is a serious adverse effect of insecticide use which leads to a decrease in insect population, to reduction of honey yields, to destruction of plant communities, to insecticide residues in food, and to a significant loss of beekeepers' income. In bee poisoning, the identification of the responsible toxicant is necessary by both environmental and biological monitoring, to prevent bee poisoning and for the protection of public health. The different aspects of bee poisoning with anticholinesterase insecticides are discussed in detail.

  10. Gut microbial communities of social bees.

    Science.gov (United States)

    Kwong, Waldan K; Moran, Nancy A

    2016-06-01

    The gut microbiota can have profound effects on hosts, but the study of these relationships in humans is challenging. The specialized gut microbial community of honey bees is similar to the mammalian microbiota, as both are mostly composed of host-adapted, facultatively anaerobic and microaerophilic bacteria. However, the microbial community of the bee gut is far simpler than the mammalian microbiota, being dominated by only nine bacterial species clusters that are specific to bees and that are transmitted through social interactions between individuals. Recent developments, which include the discovery of extensive strain-level variation, evidence of protective and nutritional functions, and reports of eco-physiological or disease-associated perturbations to the microbial community, have drawn attention to the role of the microbiota in bee health and its potential as a model for studying the ecology and evolution of gut symbionts.

  11. Using Nonmetric Multidimensional Scaling to Analyze Bee Visitation in East Tennessee Crops as an Indicator of Pollination Services Provided by Honey Bees (Apis mellifera L.) and Native Bees.

    Science.gov (United States)

    Wilson, Michael E; Skinner, John A; Wszelaki, Annette L; Drummond, Frank

    2016-04-01

    This study investigated bee visitation on 10 agricultural crops grown on diverse small farms in Tennessee to determine the abundance of native bees and honey bees and the partitioning of visitation among crops. Summaries for each crop are used to generate mean proportions of bee visitation by categories of bees. This shows that native bee visits often occur as frequently, or in greater proportions than non-native honey bee visits. Visitation across multiple crops is then analyzed together with nonmetric multidimensional scaling to show how communities of bees that provide crop pollination change depending on the crop. Within squash and pumpkin plantings, continuous and discrete factors, such as "time of day" and "organic practices," further explain shifts in the community composition of flower visitors. Results from this study show that native bees frequently visit flowers on various crops, indicating that they are likely contributing to pollination services in addition to honey bees. Furthermore, the community of bees visiting flowers changes based on crop type, phenology, and spatial-temporal factors. Results suggest that developing pollinator conservation for farms that grow a wide variety of crops will likely require multiple conservation strategies. Farms that concentrate on a single crop may be able to tailor conservation practices toward the most important bees in their system and geographic locale. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Jennifer A Berry

    Full Text Available In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate and Check Mite+ (coumaphos and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  13. Field-level sublethal effects of approved bee hive chemicals on Honey Bees (Apis mellifera L).

    Science.gov (United States)

    Berry, Jennifer A; Hood, W Michael; Pietravalle, Stéphane; Delaplane, Keith S

    2013-01-01

    In a study replicated across two states and two years, we tested the sublethal effects on honey bees of the miticides Apistan (tau fluvalinate) and Check Mite+ (coumaphos) and the wood preservative copper naphthenate applied at label rates in field conditions. A continuous covariate, a colony Varroa mite index, helped us disambiguate the effects of the chemicals on bees while adjusting for a presumed benefit of controlling mites. Mite levels in colonies treated with Apistan or Check Mite+ were not different from levels in non-treated controls. Experimental chemicals significantly decreased 3-day brood survivorship and increased construction of queen supercedure cells compared to non-treated controls. Bees exposed to Check Mite+ as immatures had higher legacy mortality as adults relative to non-treated controls, whereas bees exposed to Apistan had improved legacy mortality relative to non-treated controls. Relative to non-treated controls, Check Mite+ increased adult emergence weight. Although there was a treatment effect on a test of associative learning, it was not possible to statistically separate the treatment means, but bees treated with Apistan performed comparatively well. And finally, there were no detected effects of bee hive chemical on colony bee population, amount of brood, amount of honey, foraging rate, time required for marked released bees to return to their nest, percentage of released bees that return to the nest, and colony Nosema spore loads. To our knowledge, this is the first study to examine sublethal effects of bee hive chemicals applied at label rates under field conditions while disambiguating the results from mite control benefits realized from the chemicals. Given the poor performance of the miticides at reducing mites and their inconsistent effects on the host, these results defend the use of bee health management practices that minimize use of exotic hive chemicals.

  14. Chalkbrood disease in honey bees.

    Science.gov (United States)

    Aronstein, K A; Murray, K D

    2010-01-01

    Chalkbrood is a fungal disease of honey bee brood caused by Ascosphaera apis. This disease is now found throughout the world, and there are indications that chalkbrood incidence may be on the rise. In this review we consolidate both historic knowledge and recent scientific findings. We document the worldwide spread of the fungus, which is aided by increased global travel and the migratory nature of many beekeeping operations. We discuss the current taxonomic classification in light of the recent complete reworking of fungal systematics brought on by application of molecular methods. In addition, we discuss epidemiology and pathogenesis of the disease, as well as pathogen biology, morphology and reproduction. New attempts at disease control methods and management tactics are reviewed. We report on research tools developed for identification and monitoring, and also include recent findings on genomic and molecular studies not covered by previous reviews, including sequencing of the A. apis genome and identification of the mating type locus. Published by Elsevier Inc.

  15. Behavior genetics: Bees as model

    International Nuclear Information System (INIS)

    Nates Parra, Guiomar

    2011-01-01

    The honeybee Apis mellifera (Apidae) is a model widely used in behavior because of its elaborate social life requiring coordinate actions among the members of the society. Within a colony, division of labor, the performance of tasks by different individuals, follows genetically determined physiological changes that go along with aging. Modern advances in tools of molecular biology and genomics, as well as the sequentiation of A. mellifera genome, have enabled a better understanding of honeybee behavior, in particular social behavior. Numerous studies show that aspects of worker behavior are genetically determined, including defensive, hygienic, reproductive and foraging behavior. For example, genetic diversity is associated with specialization to collect water, nectar and pollen. Also, control of worker reproduction is associated with genetic differences. In this paper, I review the methods and the main results from the study of the genetic and genomic basis of some behaviors in bees.

  16. Management of Corneal Bee Sting Injuries.

    Science.gov (United States)

    Rai, Ruju R; Gonzalez-Gonzalez, Luis A; Papakostas, Thanos D; Siracuse-Lee, Donna; Dunphy, Robert; Fanciullo, Lisa; Cakiner-Egilmez, Tulay; Daly, Mary K

    2017-01-01

    To review the management of keratitis after corneal bee stings and to report a case of deep stromal corneal infiltrate secondary to a retained bee stinger managed conservatively in a patient who presented three days after unsanitary manipulation of the stinger apparatus. Case report and review of literature. A 57-year-old male beekeeper was evaluated for pain, blurry vision, and photosensitivity after a corneal bee sting. Of note, the venom sac had been removed with dirty tweezers three days prior to his visit. On exam, a focal infiltrate with diffuse edema was seen surrounding a retained bee stinger in the peripheral cornea. Trace cells in the anterior chamber were also noted. Based on a high suspicion for infectious keratitis, a conservative treatment strategy was elected. Administration of broad-spectrum topical antibiotics with concomitant abstention of corticosteroids led to rapid resolution of the symptoms. Over 16 months of follow-up, the stinger has remained in situ without migration and the patient has maintained 20/20 visual acuity without complications. There is debate on the preferred method for the management of corneal injury secondary to bee stings, especially when it is associated with a retained stinger. We herein present our findings in our appraisal of reported cases. In the aftermath of an ocular bee sting, close surveillance for inflammation and infection is essential. Individual manifestations of these injuries vary in timing, type, and severity; therefore, the accessibility of the stinger and the evolving clinical picture should guide therapeutic decisions.

  17. Bees without Flowers: Before Peak Bloom, Diverse Native Bees Find Insect-Produced Honeydew Sugars.

    Science.gov (United States)

    Meiners, Joan M; Griswold, Terry L; Harris, David J; Ernest, S K Morgan

    2017-08-01

    Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals and even gauge nectar availability from changes in floral humidity or electric fields are well studied. Bee foraging behaviors in the absence of floral cues, however, are rarely considered. We observed 42 species of wild bees visiting inconspicuous, nonflowering shrubs during early spring in a protected Mediterranean habitat. We determined experimentally that these bees were accessing sugary honeydew secretions from scale insects without the aid of standard cues. While honeydew use is known among some social Hymenoptera, its use across a diverse community of solitary bees is a novel observation. The widespread ability of native bees to locate and use unadvertised, nonfloral sugars suggests unappreciated sensory mechanisms and/or the existence of an interspecific foraging network among solitary bees that may influence how native bees cope with scarcity of floral resources and increasing environmental change.

  18. Bee Mite ID - an online resource on identification of mites associated with bees of the World

    Science.gov (United States)

    Parasitic mites are known to be a factor in recent declines in bee pollinator populations. In particular, Varroa destructor, an introduced parasite and disease vector, has decimated colonies of the western honey bee, one of the most important agricultural pollinators in the world. Further, global tr...

  19. Imidacloprid alters foraging and decreases bee avoidance of predators.

    Directory of Open Access Journals (Sweden)

    Ken Tan

    Full Text Available Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb imidacloprid, honey bees (Apis cerana showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera, to other important bee species.

  20. Imidacloprid Alters Foraging and Decreases Bee Avoidance of Predators

    Science.gov (United States)

    Tan, Ken; Chen, Weiwen; Dong, Shihao; Liu, Xiwen; Wang, Yuchong; Nieh, James C.

    2014-01-01

    Concern is growing over the effects of neonicotinoid pesticides, which can impair honey bee cognition. We provide the first demonstration that sublethal concentrations of imidacloprid can harm honey bee decision-making about danger by significantly increasing the probability of a bee visiting a dangerous food source. Apis cerana is a native bee that is an important pollinator of agricultural crops and native plants in Asia. When foraging on nectar containing 40 µg/L (34 ppb) imidacloprid, honey bees (Apis cerana) showed no aversion to a feeder with a hornet predator, and 1.8 fold more bees chose the dangerous feeder as compared to control bees. Control bees exhibited significant predator avoidance. We also give the first evidence that foraging by A. cerana workers can be inhibited by sublethal concentrations of the pesticide, imidacloprid, which is widely used in Asia. Compared to bees collecting uncontaminated nectar, 23% fewer foragers returned to collect the nectar with 40 µg/L imidacloprid. Bees that did return respectively collected 46% and 63% less nectar containing 20 µg/L and 40 µg/L imidacloprid. These results suggest that the effects of neonicotinoids on honey bee decision-making and other advanced cognitive functions should be explored. Moreover, research should extend beyond the classic model, the European honey bee (A. mellifera), to other important bee species. PMID:25025334

  1. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees.

    Science.gov (United States)

    Woodcock, B A; Bullock, J M; Shore, R F; Heard, M S; Pereira, M G; Redhead, J; Ridding, L; Dean, H; Sleep, D; Henrys, P; Peyton, J; Hulmes, S; Hulmes, L; Sárospataki, M; Saure, C; Edwards, M; Genersch, E; Knäbe, S; Pywell, R F

    2017-06-30

    Neonicotinoid seed dressings have caused concern world-wide. We use large field experiments to assess the effects of neonicotinoid-treated crops on three bee species across three countries (Hungary, Germany, and the United Kingdom). Winter-sown oilseed rape was grown commercially with either seed coatings containing neonicotinoids (clothianidin or thiamethoxam) or no seed treatment (control). For honey bees, we found both negative (Hungary and United Kingdom) and positive (Germany) effects during crop flowering. In Hungary, negative effects on honey bees (associated with clothianidin) persisted over winter and resulted in smaller colonies in the following spring (24% declines). In wild bees ( Bombus terrestris and Osmia bicornis ), reproduction was negatively correlated with neonicotinoid residues. These findings point to neonicotinoids causing a reduced capacity of bee species to establish new populations in the year following exposure. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  2. Context affects nestmate recognition errors in honey bees and stingless bees.

    Science.gov (United States)

    Couvillon, Margaret J; Segers, Francisca H I D; Cooper-Bowman, Roseanne; Truslove, Gemma; Nascimento, Daniela L; Nascimento, Fabio S; Ratnieks, Francis L W

    2013-08-15

    Nestmate recognition studies, where a discriminator first recognises and then behaviourally discriminates (accepts/rejects) another individual, have used a variety of methodologies and contexts. This is potentially problematic because recognition errors in discrimination behaviour are predicted to be context-dependent. Here we compare the recognition decisions (accept/reject) of discriminators in two eusocial bees, Apis mellifera and Tetragonisca angustula, under different contexts. These contexts include natural guards at the hive entrance (control); natural guards held in plastic test arenas away from the hive entrance that vary either in the presence or absence of colony odour or the presence or absence of an additional nestmate discriminator; and, for the honey bee, the inside of the nest. For both honey bee and stingless bee guards, total recognition errors of behavioural discrimination made by guards (% nestmates rejected + % non-nestmates accepted) are much lower at the colony entrance (honey bee: 30.9%; stingless bee: 33.3%) than in the test arenas (honey bee: 60-86%; stingless bee: 61-81%; Phoney bees, although this reduction still fell short of bringing error levels down to what was found at the colony entrance. Lastly, in honey bees, the data show that the in-nest collective behavioural discrimination by ca. 30 workers that contact an intruder is insufficient to achieve error-free recognition and is not as effective as the discrimination by guards at the entrance. Overall, these data demonstrate that context is a significant factor in a discriminators' ability to make appropriate recognition decisions, and should be considered when designing recognition study methodologies.

  3. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    Science.gov (United States)

    van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd

    2012-01-01

    Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421

  4. Colonies of Bumble Bees (Bombus impatiens Produce Fewer Workers, Less Bee Biomass, and Have Smaller Mother Queens Following Fungicide Exposure

    Directory of Open Access Journals (Sweden)

    Olivia M. Bernauer

    2015-06-01

    Full Text Available Bees provide vital pollination services to the majority of flowering plants in both natural and agricultural systems. Unfortunately, both native and managed bee populations are experiencing declines, threatening the persistence of these plants and crops. Agricultural chemicals are one possible culprit contributing to bee declines. Even fungicides, generally considered safe for bees, have been shown to disrupt honey bee development and impair bumble bee behavior. Little is known, however, how fungicides may affect bumble bee colony growth. We conducted a controlled cage study to determine the effects of fungicide exposure on colonies of a native bumble bee species (Bombus impatiens. Colonies of B. impatiens were exposed to flowers treated with field-relevant levels of the fungicide chlorothalonil over the course of one month. Colony success was assessed by the number and biomass of larvae, pupae, and adult bumble bees. Bumble bee colonies exposed to fungicide produced fewer workers, lower total bee biomass, and had lighter mother queens than control colonies. Our results suggest that fungicides negatively affect the colony success of a native bumble bee species and that the use of fungicides during bloom has the potential to severely impact the success of native bumble bee populations foraging in agroecosystems.

  5. Late Onset of Acute Urticaria after Bee Stings

    Directory of Open Access Journals (Sweden)

    Yuko Asai

    2016-12-01

    Full Text Available Here we report the cases of five patients with a late onset of acute urticaria after a bee sting. The ages of the five Japanese patients ranged from 33 to 86 years (median: 61. All patients had no history of an allergic reaction to bee stings. The onset of urticaria was 6–14 days (median: 10 after a bee sting. Although four of the patients did not describe experiencing a bee sting at their presentation, the subsequent examination detected anti-bee-specific IgE antibodies. So, we think a history of a bee sting should thus be part of the medical interview sheet for patients with acute urticaria, and an examination of IgE for bees may help prevent a severe bee-related anaphylactic reaction in the future.

  6. Predicting bee community responses to land-use changes

    NARCIS (Netherlands)

    Palma, De Adriana; Abrahamczyk, Stefan; Aizen, Marcelo A.; Albrecht, Matthias; Basset, Yves; Bates, Adam; Blake, Robin J.; Boutin, Céline; Bugter, Rob; Connop, Stuart; Cruz-López, Leopoldo; Cunningham, Saul A.; Darvill, Ben; Diekötter, Tim; Dorn, Silvia; Downing, Nicola; Entling, Martin H.; Farwig, Nina; Felicioli, Antonio; Fonte, Steven J.; Fowler, Robert; Franzén, Markus; Goulson, Dave; Grass, Ingo; Hanley, Mick E.; Hendrix, Stephen D.; Herrmann, Farina; Herzog, Felix; Holzschuh, Andrea; Jauker, Birgit; Kessler, Michael; Knight, M.E.; Kruess, Andreas; Lavelle, Patrick; Féon, Le Violette; Lentini, Pia; Malone, Louise A.; Marshall, Jon; Pachón, Eliana Martínez; McFrederick, Quinn S.; Morales, Carolina L.; Mudri-Stojnic, Sonja; Nates-Parra, Guiomar; Nilsson, Sven G.; Öckinger, Erik; Osgathorpe, Lynne; Parra-H, Alejandro; Peres, Carlos A.; Persson, Anna S.; Petanidou, Theodora; Poveda, Katja; Power, Eileen F.; Quaranta, Marino; Quintero, Carolina; Rader, Romina; Richards, Miriam H.; Roulston, Tai; Rousseau, Laurent; Sadler, Jonathan P.; Samnegård, Ulrika; Schellhorn, Nancy A.; Schüepp, Christof; Schweiger, Oliver; Smith-Pardo, Allan H.; Steffan-Dewenter, Ingolf; Stout, Jane C.; Tonietto, Rebecca K.; Tscharntke, Teja; Tylianakis, Jason M.; Verboven, Hans A.F.; Vergara, Carlos H.; Verhulst, Jort; Westphal, Catrin; Yoon, Hyung Joo; Purvis, Andy

    2016-01-01

    Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically

  7. Mycobacterium chelonae infections associated with bee venom acupuncture.

    Science.gov (United States)

    Cho, Sun Young; Peck, Kyong Ran; Kim, Jungok; Ha, Young Eun; Kang, Cheol-In; Chung, Doo Ryeon; Lee, Nam Yong; Song, Jae-Hoon

    2014-03-01

    We report 3 cases of Mycobacterium chelonae infections after bee venom acupuncture. All were treated with antibiotics and surgery. Mycobacterium chelonae infections should be included in the differential diagnosis of chronic skin and soft tissue infections following bee venom acupuncture.

  8. Anti-arthritic effects of microneedling with bee venom gel

    OpenAIRE

    Mengdi Zhao; Jie Bai; Yang Lu; Shouying Du; Kexin Shang; Pengyue Li; Liu Yang; Boyu Dong; Ning Tan

    2016-01-01

    Objective: To combine with transdermal drug delivery using microneedle to simulate the bee venom therapy to evaluate the permeation of bee venom gel. Methods: In this study, the sodium urate and LPS were used on rats and mice to construct the model. Bee venom gel–microneedle combination effect on the model is to determine the role of microneedle gel permeation by observing inflammation factors. Results: Compared with the model group, the bee venom gel–microneedle combination group can r...

  9. Assessing Patterns of Admixture and Ancestry in Canadian Honey Bees

    Science.gov (United States)

    Canada has a large beekeeping industry comprised of 8483 beekeepers managing 672094 23 colonies. Canadian honey bees, like all honey bees in the New World, originate from centuries of importation of predominately European honey bees, but their precise ancestry remains unknown. There have been no i...

  10. Gardening and landscaping practices for nesting native bees

    Science.gov (United States)

    Bees have two primary needs in life: pollen and nectar to feed themselves and their offspring, and a suitable place to nest. Guidance is increasingly available about garden flowers to plant for native bees. We know far less about accommodating the nesting needs of our native bees, but there are cer...

  11. 29 CFR 780.123 - Raising of bees.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Raising of bees. 780.123 Section 780.123 Labor Regulations... Raising of Livestock, Bees, Fur-Bearing Animals, Or Poultry § 780.123 Raising of bees. The term “raising of * * * bees” refers to all of those activities customarily performed in connection with the...

  12. The honey bee parasite Nosema ceranae: transmissible via food exchange?

    Directory of Open Access Journals (Sweden)

    Michael L Smith

    Full Text Available Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it may instead be spread via an oral-oral pathway. Cages that separated older infected bees from young uninfected bees were used to test whether N. ceranae can be spread during food exchange. When cages were separated by one screen, food could be passed between the older bees and the young bees, but when separated by two screens, food could not be passed between the two cages. Young uninfected bees were also kept isolated in cages, as a solitary control. After 4 days of exposure to the older bees, and 10 days to incubate infections, young bees were more likely to be infected in the 1-Screen Test treatment vs. the 2-Screen Test treatment (P=0.0097. Young bees fed by older bees showed a 13-fold increase in mean infection level relative to young bees not fed by older bees (1-Screen Test 40.8%; 2-Screen Test 3.4%; Solo Control 2.8%. Although fecal-oral transmission is still possible in this experimental design, oral-oral infectivity could help explain the rapid spread of N. ceranae worldwide.

  13. Occurrence of Nosema species in honey bee colonies in Kenya ...

    African Journals Online (AJOL)

    Honey bees (Apis mellifera) provide critical pollination services and livelihood for small-holder farmers in Kenya, thus contributing to nutrition and food security. While honey bee colonies in North America and Europe are in decline due to parasites and pathogens, little is known about the status and effects of the honey bee ...

  14. Invasion of Varroa mites into honey bee brood cells

    NARCIS (Netherlands)

    Boot, W.J.

    1995-01-01

    The parasitic mite Varroa-jacobsoni is one of the most serious pests of Western honey bees, Apis mellifera. The mites parasitize adult bees, but reproduction only occurs while parasitizing on honey bee brood. Invasion into a

  15. Multiyear survey targeting disease incidence in US honey bees

    Science.gov (United States)

    The US National Honey Bee Disease Survey sampled colony pests and diseases from 2009 to 2014. We verified the absence of Tropilaelaps spp., the Asian honey bee (Apis cerana), and slow bee paralysis virus. Endemic health threats were quantified, including Varroa destructor, Nosema spp., and eight hon...

  16. Honey Bee Infecting Lake Sinai Viruses

    Directory of Open Access Journals (Sweden)

    Katie F. Daughenbaugh

    2015-06-01

    Full Text Available Honey bees are critical pollinators of important agricultural crops. Recently, high annual losses of honey bee colonies have prompted further investigation of honey bee infecting viruses. To better characterize the recently discovered and very prevalent Lake Sinai virus (LSV group, we sequenced currently circulating LSVs, performed phylogenetic analysis, and obtained images of LSV2. Sequence analysis resulted in extension of the LSV1 and LSV2 genomes, the first detection of LSV4 in the US, and the discovery of LSV6 and LSV7. We detected LSV1 and LSV2 in the Varroa destructor mite, and determined that a large proportion of LSV2 is found in the honey bee gut, suggesting that vector-mediated, food-associated, and/or fecal-oral routes may be important for LSV dissemination. Pathogen-specific quantitative PCR data, obtained from samples collected during a small-scale monitoring project, revealed that LSV2, LSV1, Black queen cell virus (BQCV, and Nosema ceranae were more abundant in weak colonies than strong colonies within this sample cohort. Together, these results enhance our current understanding of LSVs and illustrate the importance of future studies aimed at investigating the role of LSVs and other pathogens on honey bee health at both the individual and colony levels.

  17. Stingless Bees as Alternative Pollinators of Canola.

    Science.gov (United States)

    Witter, Sidia; Nunes-Silva, Patrícia; Lisboa, Bruno B; Tirelli, Flavia P; Sattler, Aroni; Both Hilgert-Moreira, Suzane; Blochtein, Betina

    2015-06-01

    Alternative pollinators can ensure pollination services if the availability of the managed or most common pollinator is compromised. In this study, the behavior and pollination efficiency of Apis mellifera L. and two species of stingless bees, Plebeia emerina Friese and Tetragonisca fiebrigi Schwarz, were evaluated and compared in flowers of Brassica napus L. 'Hyola 61'. A. mellifera was an efficient pollinator when collecting nectar because it effectively touched the reproductive organs of the flower. In contrast, stingless bees were efficient pollinators only when collecting pollen. The number of pollen grains deposited on the stigma after a single visit by worker bees of the three species was greater than the number of grains resulting from pollination without the bee visits. On average, the three species deposited enough pollen grains to fertilize all of the flower ovules. A. mellifera and P. emerina had similar pollination efficiency because no significant differences were observed in the characteristics of the siliques produced. Although T. fiebrigi is also an effective pollinator, the seed mass produced by their pollination was lower. Native bees promoted similar rates of fruit set compared with A. mellifera. Thus, P. emerina has potential to be used for pollination in canola crops. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Mapping Sleeping Bees within Their Nest: Spatial and Temporal Analysis of Worker Honey Bee Sleep

    Science.gov (United States)

    Klein, Barrett Anthony; Stiegler, Martin; Klein, Arno; Tautz, Jürgen

    2014-01-01

    Patterns of behavior within societies have long been visualized and interpreted using maps. Mapping the occurrence of sleep across individuals within a society could offer clues as to functional aspects of sleep. In spite of this, a detailed spatial analysis of sleep has never been conducted on an invertebrate society. We introduce the concept of mapping sleep across an insect society, and provide an empirical example, mapping sleep patterns within colonies of European honey bees (Apis mellifera L.). Honey bees face variables such as temperature and position of resources within their colony's nest that may impact their sleep. We mapped sleep behavior and temperature of worker bees and produced maps of their nest's comb contents as the colony grew and contents changed. By following marked bees, we discovered that individuals slept in many locations, but bees of different worker castes slept in different areas of the nest relative to position of the brood and surrounding temperature. Older worker bees generally slept outside cells, closer to the perimeter of the nest, in colder regions, and away from uncapped brood. Younger worker bees generally slept inside cells and closer to the center of the nest, and spent more time asleep than awake when surrounded by uncapped brood. The average surface temperature of sleeping foragers was lower than the surface temperature of their surroundings, offering a possible indicator of sleep for this caste. We propose mechanisms that could generate caste-dependent sleep patterns and discuss functional significance of these patterns. PMID:25029445

  19. Do linden trees kill bees? Reviewing the causes of bee deaths on silver linden (Tilia tomentosa).

    Science.gov (United States)

    Koch, Hauke; Stevenson, Philip C

    2017-09-01

    For decades, linden trees (basswoods or lime trees), and particularly silver linden ( Tilia tomentosa ), have been linked to mass bee deaths. This phenomenon is often attributed to the purported occurrence of the carbohydrate mannose, which is toxic to bees, in Tilia nectar. In this review, however, we conclude that from existing literature there is no experimental evidence for toxicity to bees in linden nectar. Bee deaths on Tilia probably result from starvation, owing to insufficient nectar resources late in the tree's flowering period. We recommend ensuring sufficient alternative food sources in cities during late summer to reduce bee deaths on silver linden. Silver linden metabolites such as floral volatiles, pollen chemistry and nectar secondary compounds remain underexplored, particularly their toxic or behavioural effects on bees. Some evidence for the presence of caffeine in linden nectar may mean that linden trees can chemically deceive foraging bees to make sub-optimal foraging decisions, in some cases leading to their starvation. © 2017 The Author(s).

  20. The presence of Chronic Bee Paralysis Virus infection in Honey bees (Apis mellifera L.) in the U.S.

    Science.gov (United States)

    The presence of Chronic bee paralysis virus (CBPV) infection in the U.S. is reported for the first time. Using molecular methods, the evidence of infection of honey bees with CBPV has been detected in both symptomatic and asymptomatic bees. While our seven year’s survey showed that the CBPV infect...

  1. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    NARCIS (Netherlands)

    Dooremalen, van C.; Gerritsen, L.J.M.; Cornelissen, B.; Steen, van der J.J.M.; Langevelde, van F.; Blacquiere, T.

    2012-01-01

    Background: Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to

  2. Current Pesticide Risk Assessment Protocols Do Not Adequately Address Differences Between Honey Bees (Apis mellifera and Bumble Bees (Bombus spp.

    Directory of Open Access Journals (Sweden)

    Kimberly Stoner

    2016-12-01

    Full Text Available Recent research has demonstrated colony-level sublethal effects of imidacloprid on bumble bees, affecting foraging and food consumption, and thus colony growth and reproduction, at lower pesticide concentrations than for honey bee colonies. However, these studies may not reflect the full effects of neonicotinoids on bumble bees because bumble bee life cycles are different from those of honey bees. Unlike honey bees, bumble bees live in colonies for only a few months each year. Assessing the sublethal effects of systemic insecticides only on the colony level is appropriate for honey bees, but for bumble bees, this approach addresses just part of their annual life cycle. Queens are solitary from the time they leave their home colonies in fall until they produce their first workers the following year. Queens forage for pollen and nectar, and are thus exposed to more risk of direct pesticide exposure than honey bee queens. Almost no research has been done on pesticide exposure to and effects on bumble bee queens. Additional research should focus on critical periods in a bumble bee queen’s life which have the greatest nutritional demands, foraging requirements, and potential for exposure to pesticides, particularly the period during and after nest establishment in the spring when the queen must forage for the nutritional needs of her brood and for her own needs while she maintains an elevated body temperature in order to incubate the brood.

  3. Large Carpenter Bees as Agricultural Pollinators

    Directory of Open Access Journals (Sweden)

    Tamar Keasar

    2010-01-01

    Full Text Available Large carpenter bees (genus Xylocopa are wood-nesting generalist pollinators of broad geographical distribution that exhibit varying levels of sociality. Their foraging is characterized by a wide range of food plants, long season of activity, tolerance of high temperatures, and activity under low illumination levels. These traits make them attractive candidates for agricultural pollination in hot climates, particularly in greenhouses, and of night-blooming crops. Carpenter bees have demonstrated efficient pollination service in passionflower, blueberries, greenhouse tomatoes and greenhouse melons. Current challenges to the commercialization of these attempts lie in the difficulties of mass-rearing Xylocopa, and in the high levels of nectar robbing exhibited by the bees.

  4. Why do Varroa mites prefer nurse bees?

    Science.gov (United States)

    Xie, Xianbing; Huang, Zachary Y; Zeng, Zhijiang

    2016-06-15

    The Varroa mite, Varroa destructor, is an acarine ecto-parasite on Apis mellifera. It is the worst pest of Apis mellifera, yet its reproductive biology on the host is not well understood. In particular, the significance of the phoretic stage, when mites feed on adult bees for a few days, is not clear. In addition, it is not clear whether the preference of mites for nurses observed in the laboratory also happens inside real colonies. We show that Varroa mites prefer nurses over both newly emerged bees and forgers in a colony setting. We then determined the mechanism behind this preference. We show that this preference maximizes Varroa fitness, although due to the fact that each mite must find a second host (a pupa) to reproduce, the fitness benefit to the mites is not immediate but delayed. Our results suggest that the Varroa mite is a highly adapted parasite for honey bees.

  5. Omega-3 deficiency impairs honey bee learning

    Science.gov (United States)

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania

    2015-01-01

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3–poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3–rich diets, or omega-3–rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal. PMID:26644556

  6. Pathogen webs in collapsing honey bee colonies.

    Directory of Open Access Journals (Sweden)

    R Scott Cornman

    Full Text Available Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD, otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  7. Pathogen webs in collapsing honey bee colonies.

    Science.gov (United States)

    Cornman, R Scott; Tarpy, David R; Chen, Yanping; Jeffreys, Lacey; Lopez, Dawn; Pettis, Jeffery S; vanEngelsdorp, Dennis; Evans, Jay D

    2012-01-01

    Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.

  8. Omega-3 deficiency impairs honey bee learning.

    Science.gov (United States)

    Arien, Yael; Dag, Arnon; Zarchin, Shlomi; Masci, Tania; Shafir, Sharoni

    2015-12-22

    Deficiency in essential omega-3 polyunsaturated fatty acids (PUFAs), particularly the long-chain form of docosahexaenoic acid (DHA), has been linked to health problems in mammals, including many mental disorders and reduced cognitive performance. Insects have very low long-chain PUFA concentrations, and the effect of omega-3 deficiency on cognition in insects has not been studied. We show a low omega-6:3 ratio of pollen collected by honey bee colonies in heterogenous landscapes and in many hand-collected pollens that we analyzed. We identified Eucalyptus as an important bee-forage plant particularly poor in omega-3 and high in the omega-6:3 ratio. We tested the effect of dietary omega-3 deficiency on olfactory and tactile associative learning of the economically highly valued honey bee. Bees fed either of two omega-3-poor diets, or Eucalyptus pollen, showed greatly reduced learning abilities in conditioned proboscis-extension assays compared with those fed omega-3-rich diets, or omega-3-rich pollen mixture. The effect on performance was not due to reduced sucrose sensitivity. Omega-3 deficiency also led to smaller hypopharyngeal glands. Bee brains contained high omega-3 concentrations, which were only slightly affected by diet, suggesting additional peripheral effects on learning. The shift from a low to high omega-6:3 ratio in the Western human diet is deemed a primary cause of many diseases and reduced mental health. A similar shift seems to be occurring in bee forage, possibly an important factor in colony declines. Our study shows the detrimental effect on cognitive performance of omega-3 deficiency in a nonmammal.

  9. Study on Bee venom and Pain

    Directory of Open Access Journals (Sweden)

    Hyoung-Seok Yun

    2000-07-01

    Full Text Available In order to study Bee venom and Pain, We searched Journals and Internet. The results were as follows: 1. The domestic papers were total 13. 4 papers were published at The journal of korean acupuncture & moxibustion society, 3 papers were published at The journal of korean oriental medical society, Each The journal of KyoungHee University Oriental Medicine and The journal of korean sports oriental medical society published 1 papers and Unpublished desertations were 3. The clinical studies were 4 and the experimental studies were 9. 2. The domestic clinical studies reported that Bee venom Herbal Acupuncture therapy was effective on HIVD, Subacute arthritis of Knee Joint and Sequale of sprain. In the domestic experimental studies, 5 were related to analgesic effect of Bee vnom and 4 were related to mechanism of analgesia. 3. The journals searched by PubMed were total 18. 5 papers were published at Pain, Each 2 papers were published at Neurosci Lett. and Br J Pharmacol, and Each Eur J Pain, J Rheumatol, Brain Res, Neuroscience, Nature and Toxicon et al published 1 paper. 4. In the journals searched by PubMed, Only the experimental studies were existed. 8 papers used Bee Venom as pain induction substance and 1 paper was related to analgesic effects of Bee venom. 5. 15 webpage were searched by internet related to Bee Venom and pain. 11 were the introduction related to arthritis, 1 was the advertisement, 1 was the patient's experience, 1 was the case report on RA, 1 was review article.

  10. The Comparison of Effectiveness between Bee Venom and Sweet Bee Venom Therapy on Low back pain with Radiating pain

    Directory of Open Access Journals (Sweden)

    Lee Tae-ho

    2007-12-01

    Full Text Available Objective : The aim of this study is to investigate if Sweet Bee Venom therapy has the equal effect in comparison with Bee Venom Therapy on Low back pain with Radiation pain. Methods : Clinical studies were done 24 patients who were treated low back pain with radiation pain to Dept. of Acupuncture & Moxibusition, of Oriental Medicine Se-Myung University from April 1, 2007 to September 30, 2007. Subjects were randomly divided into two groups ; Bee Venom treated group(Group A, n=10, Sweet Bee Venom treatred group(Group B, n=14. In Bee Venom treated group(Group A, we treated patients with dry needle acupuncture and Bee Venom therapy. In Sweet Bee Venom treatred group(Group B, we treated patients with dry needle acupuncture and Sweet Bee Venom therapy. All process of treatment were performed by double blinding method. To estimate the efficacy of controlling pain. we checked Visual Analog Scale(VAS. For evaluating functional change of patients, Straight Leg Raising Test(S.L.R.T was measured. Results :1. In controlling pain, Sweet Bee Venom treatred group(Group B had similar ability in comparison with Bee Venom treated group(Group A. 2. In promoting function, Sweet Bee Venom treatred group(Group B had similar ability in comparison with Bee Venom treated group(Group A. Conclusions : It may be equal effects as compared with using Bee Venom to treat low back pain with radiation pain using Sweet Bee Venom. We can try to treat other disease known to have effect with Bee Venom.

  11. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees.

    Science.gov (United States)

    Alaux, Cédric; Dantec, Christelle; Parrinello, Hughes; Le Conte, Yves

    2011-10-10

    Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees to (less virulent) pathogens.

  12. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees

    Directory of Open Access Journals (Sweden)

    Parrinello Hughes

    2011-10-01

    Full Text Available Abstract Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera, pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen were analyzed by performing a digital gene expression (DGE analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome. Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce

  13. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees

    Science.gov (United States)

    2011-01-01

    Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees

  14. STUDY ON ANTIBACTERIAL ACTIVITY OF BEE VENOM.

    OpenAIRE

    Yeon Jo Ha; Chi Won Noh; Woo Young Bang; Sam Woong Kim; Sang Wan Gal.

    2018-01-01

    The purpose of this study was to investigate the antimicrobial activity against Salmonella infection which causes intestinal diseases from bee venom which is one of the social insects, and to find a way which use ghost vaccine. The minimum inhibitory concentration (MIC) of bee venom against Salmonella Typhimurium χ3339 was 101.81 ug/ml. Based on the result of MIC, the antimicrobial activity according to amount of the cells showed strong activities below 106 CFU/ml, but exhibited no and low ac...

  15. Disentangling urban habitat and matrix effects on wild bee species

    Directory of Open Access Journals (Sweden)

    Leonie K. Fischer

    2016-11-01

    Full Text Available In face of a dramatic decline of wild bee species in many rural landscapes, potential conservation functions of urban areas gain importance. Yet effects of urbanization on pollinators, and in particular on wild bees, remain ambiguous and not comprehensively understood. This is especially true for amenity grassland and extensively managed wastelands within large-scale residential housing areas. Using Berlin as a study region, we aimed to investigate (a if these greenspaces are accepted by wild bee assemblages as foraging habitats; (b how assemblage structure of bees and individual bee species are affected by different habitat (e.g., management, flower density and urban matrix variables (e.g., isolation, urbanization; and (c to what extent grassland restoration can promote bees in urban environments. In summer 2012, we collected 62 bee species belonging to more than 20% of the taxa known for Berlin. Urbanization significantly affected species composition of bees; 18 species were affiliated to different levels of urbanization. Most bee species were not affected by any of the environmental variables tested, and urbanization had a negative effect only for one bee species. Further, we determined that restoration of diverse grasslands positively affected bee species richnesss in urban environments. We conclude that differently structured and managed greenspaces in large-scale housing areas can provide additional foraging habitats and refuges for pollinators. This supports approaches towards a biodiversity friendly management within urban regions and may be of particular importance given that anthropogenic pressure is increasing in many rural landscapes.

  16. Video Tracking Protocol to Screen Deterrent Chemistries for Honey Bees.

    Science.gov (United States)

    Larson, Nicholas R; Anderson, Troy D

    2017-06-12

    The European honey bee, Apis mellifera L., is an economically and agriculturally important pollinator that generates billions of dollars annually. Honey bee colony numbers have been declining in the United States and many European countries since 1947. A number of factors play a role in this decline, including the unintentional exposure of honey bees to pesticides. The development of new methods and regulations are warranted to reduce pesticide exposures to these pollinators. One approach is the use of repellent chemistries that deter honey bees from a recently pesticide-treated crop. Here, we describe a protocol to discern the deterrence of honey bees exposed to select repellent chemistries. Honey bee foragers are collected and starved overnight in an incubator 15 h prior to testing. Individual honey bees are placed into Petri dishes that have either a sugar-agarose cube (control treatment) or sugar-agarose-compound cube (repellent treatment) placed into the middle of the dish. The Petri dish serves as the arena that is placed under a camera in a light box to record the honey bee locomotor activities using video tracking software. A total of 8 control and 8 repellent treatments were analyzed for a 10 min period with each treatment was duplicated with new honey bees. Here, we demonstrate that honey bees are deterred from the sugar-agarose cubes with a compound treatment whereas honey bees are attracted to the sugar-agarose cubes without an added compound.

  17. The antiquity and evolutionary history of social behavior in bees.

    Directory of Open Access Journals (Sweden)

    Sophie Cardinal

    Full Text Available A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives.

  18. The Antiquity and Evolutionary History of Social Behavior in Bees

    Science.gov (United States)

    Cardinal, Sophie; Danforth, Bryan N.

    2011-01-01

    A long-standing controversy in bee social evolution concerns whether highly eusocial behavior has evolved once or twice within the corbiculate Apidae. Corbiculate bees include the highly eusocial honey bees and stingless bees, the primitively eusocial bumble bees, and the predominantly solitary or communal orchid bees. Here we use a model-based approach to reconstruct the evolutionary history of eusociality and date the antiquity of eusocial behavior in apid bees, using a recent molecular phylogeny of the Apidae. We conclude that eusociality evolved once in the common ancestor of the corbiculate Apidae, advanced eusociality evolved independently in the honey and stingless bees, and that eusociality was lost in the orchid bees. Fossil-calibrated divergence time estimates reveal that eusociality first evolved at least 87 Mya (78 to 95 Mya) in the corbiculates, much earlier than in other groups of bees with less complex social behavior. These results provide a robust new evolutionary framework for studies of the organization and genetic basis of social behavior in honey bees and their relatives. PMID:21695157

  19. Wild Bee Community Composition and Foraging Behaviour in Commercial Strawberries

    DEFF Research Database (Denmark)

    Ahrenfeldt, Erica Juel

    despite the fact that value of bee pollination of cultured crops is estimated to approach 800 million DKK. This thesis explores how regional, landscape and local differences affect biodiversity and abundance of wild bees (paper I and II) and wild bee foraging behaviour in terms of spatial distribution...... and small clusters of trees positively affected activity-density of bees at scales from 100 m - 2000 m from where the bees were trapped, which shows the conservation value these habitats represent for wild bees in the agricultural land. Forest negatively affected activity-density at all spatial scales...... possibly due to the low biodiversity offered by many commercially driven, single species, Danish forests. At field scale (I) bee species richness was higher in field margins compared to field centres but there was no difference between centre and margin in body-size or activity-density. Sampling time had...

  20. Bats and bees are pollinating Parkia biglobosa in the Gambia

    DEFF Research Database (Denmark)

    Lassen, Kristin Marie; Ræbild, Anders; Hansen, Henrik

    2012-01-01

    A pollination experiment was conducted with Parkia biglobosa (Fabaceae) in The Gambia. P. biglobosa is integrated in the farming systems and produces fruit pulp and seeds used in cooking. The species is bat-pollinated, and in areas with few bats the main pollinators are assumed to be honey bees...... as replicates. The pollinators’ identity, efficiency, and relative effect were determined. Bats, honey bees, and stingless bees were able to pollinate the species. Bat-visited capitula produced more pods, but not significantly more than honey bees. Honey bees were more efficient than stingless bees, resulting...... was analysed and a positive correlation between number of seeds per pod and the sugar content was found. Improved pollination success may thus result in sweeter fruits. We conclude it is important to strive against a pollinator-friendly environment in order to attract bats and bees. Furthermore, we suggest...

  1. Bee venom therapy: Potential mechanisms and therapeutic applications.

    Science.gov (United States)

    Zhang, Shuai; Liu, Yi; Ye, Yang; Wang, Xue-Rui; Lin, Li-Ting; Xiao, Ling-Yong; Zhou, Ping; Shi, Guang-Xia; Liu, Cun-Zhi

    2018-04-11

    Bee venom is a very complex mixture of natural products extracted from honey bee which contains various pharmaceutical properties such as peptides, enzymes, biologically active amines and nonpeptide components. The use of bee venom into the specific points is so called bee venom therapy, which is widely used as a complementary and alternative therapy for 3000 years. A growing number of evidence has demonstrated the anti-inflammation, the anti-apoptosis, the anti-fibrosis and the anti-arthrosclerosis effects of bee venom therapy. With these pharmaceutical characteristics, bee venom therapy has also been used as the therapeutic method in treating rheumatoid arthritis, amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, liver fibrosis, atherosclerosis, pain and others. Although widely used, several cases still reported that bee venom therapy might cause some adverse effects, such as local itching or swelling. In this review, we summarize its potential mechanisms, therapeutic applications, and discuss its existing problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. ZigBee Test Harness: An Innovative Tool for ZigBee Node Testing

    Directory of Open Access Journals (Sweden)

    Andrea Ranalli

    2010-12-01

    Full Text Available The document describes an innovative tool called Test Harness, developed by Telecom Italia S.p.A (TIT.MI. The purpose of this software is to tests any ZigBee node compliant to the ZigBee public application profile specifications. The tool can be used to debug a device before its certification process, a step that needs to be done within the ZigBee Alliance in order to commercialize a product with the ZigBee logo. Typical testing include finding malformed packets format, wrong field values, checks the correct behavior of the node when receiving or sending messages, etc… The tool tries to speed up the activities of Test Houses, helping them to automate a test plan. Finally, the tool supports also a distribute mode testing, allowing companies to run remote testing and reduce budget cost (flights, accommodation, etc....

  3. Local bumble bee decline linked to recovery of honey bees, drought effects on floral resources.

    Science.gov (United States)

    Thomson, Diane M

    2016-10-01

    Time series of abundances are critical for understanding how abiotic factors and species interactions affect population dynamics, but are rarely linked with experiments and also scarce for bee pollinators. This gap is important given concerns about declines in some bee species. I monitored honey bee (Apis mellifera) and bumble bee (Bombus spp.) foragers in coastal California from 1999, when feral A. mellifera populations were low due to Varroa destructor, until 2014. Apis mellifera increased substantially, except between 2006 and 2011, coinciding with declines in managed populations. Increases in A. mellifera strongly correlated with declines in Bombus and reduced diet overlap between them, suggesting resource competition consistent with past experimental results. Lower Bombus numbers also correlated with diminished floral resources. Declines in floral abundances were associated with drought and reduced spring rainfall. These results illustrate how competition with an introduced species may interact with climate to drive local decline of native pollinators. © 2016 John Wiley & Sons Ltd/CNRS.

  4. Iridovirus and microsporidian linked to honey bee colony decline.

    Science.gov (United States)

    Bromenshenk, Jerry J; Henderson, Colin B; Wick, Charles H; Stanford, Michael F; Zulich, Alan W; Jabbour, Rabih E; Deshpande, Samir V; McCubbin, Patrick E; Seccomb, Robert A; Welch, Phillip M; Williams, Trevor; Firth, David R; Skowronski, Evan; Lehmann, Margaret M; Bilimoria, Shan L; Gress, Joanna; Wanner, Kevin W; Cramer, Robert A

    2010-10-06

    In 2010 Colony Collapse Disorder (CCD), again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses. We used Mass spectrometry-based proteomics (MSP) to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV) (Iridoviridae) associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1) bees from commercial apiaries sampled across the U.S. in 2006-2007, (2) bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3) bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone. These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.

  5. Iridovirus and microsporidian linked to honey bee colony decline.

    Directory of Open Access Journals (Sweden)

    Jerry J Bromenshenk

    2010-10-01

    Full Text Available In 2010 Colony Collapse Disorder (CCD, again devastated honey bee colonies in the USA, indicating that the problem is neither diminishing nor has it been resolved. Many CCD investigations, using sensitive genome-based methods, have found small RNA bee viruses and the microsporidia, Nosema apis and N. ceranae in healthy and collapsing colonies alike with no single pathogen firmly linked to honey bee losses.We used Mass spectrometry-based proteomics (MSP to identify and quantify thousands of proteins from healthy and collapsing bee colonies. MSP revealed two unreported RNA viruses in North American honey bees, Varroa destructor-1 virus and Kakugo virus, and identified an invertebrate iridescent virus (IIV (Iridoviridae associated with CCD colonies. Prevalence of IIV significantly discriminated among strong, failing, and collapsed colonies. In addition, bees in failing colonies contained not only IIV, but also Nosema. Co-occurrence of these microbes consistently marked CCD in (1 bees from commercial apiaries sampled across the U.S. in 2006-2007, (2 bees sequentially sampled as the disorder progressed in an observation hive colony in 2008, and (3 bees from a recurrence of CCD in Florida in 2009. The pathogen pairing was not observed in samples from colonies with no history of CCD, namely bees from Australia and a large, non-migratory beekeeping business in Montana. Laboratory cage trials with a strain of IIV type 6 and Nosema ceranae confirmed that co-infection with these two pathogens was more lethal to bees than either pathogen alone.These findings implicate co-infection by IIV and Nosema with honey bee colony decline, giving credence to older research pointing to IIV, interacting with Nosema and mites, as probable cause of bee losses in the USA, Europe, and Asia. We next need to characterize the IIV and Nosema that we detected and develop management practices to reduce honey bee losses.

  6. Complementary crops and landscape features sustain wild bee communities.

    Science.gov (United States)

    Martins, Kyle T; Albert, Cécile H; Lechowicz, Martin J; Gonzalez, Andrew

    2018-03-01

    Wild bees, which are important for commercial pollination, depend on floral and nesting resources both at farms and in the surrounding landscape. Mass-flowering crops are only in bloom for a few weeks and unable to support bee populations that persist throughout the year. Farm fields and orchards that flower in succession potentially can extend the availability of floral resources for pollinators. However, it is unclear whether the same bee species or genera will forage from one crop to the next, which bees specialize on particular crops, and to what degree inter-crop visitation patterns will be mediated by landscape context. We therefore studied local- and landscape-level drivers of bee diversity and species turnover in apple orchards, blueberry fields and raspberry fields that bloom sequentially in southern Quebec, Canada. Despite the presence of high bee species turnover, orchards and small fruit fields complemented each other phenologically by supporting two bee genera essential to their pollination: mining bees (Andrena spp.) and bumble bees (Bombus spp.). A number of bee species specialized on apple, blueberry or raspberry blossoms, suggesting that all three crops could be used to promote regional bee diversity. Bee diversity (rarefied richness, wild bee abundance) was highest across crops in landscapes containing hedgerows, meadows and suburban areas that provide ancillary nesting and floral resources throughout the spring and summer. Promoting phenological complementarity in floral resources at the farmstead and landscape scales is essential to sustaining diverse wild bee populations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Chem I Supplement: Bee Sting: The Chemistry of an Insect Venom.

    Science.gov (United States)

    O'Connor, Rod; Peck, Larry

    1980-01-01

    Considers various aspects of bee stings including the physical mechanism of the venom apparatus in the bee, categorization of physiological responses of nonprotected individuals to bee sting, chemical composition of bee venom and the mechanisms of venom action, and areas of interest in the synthesis of bee venom. (CS)

  8. Effects of stingless bee and honey bee propolis on four species of bacteria

    OpenAIRE

    FARNESI, A. P.; AQUINO-FERREIRA, R.; JONG, D. De; BASTOS, J. K.; SOARES, A. E. E.

    2009-01-01

    We examined the antibacterial activities of several types of propolis, including Africanized honey bee green propolis and propolis produced by meliponini bees. The antibacterial activity of green propolis against Micrococcus luteus and Staphylococcus aureus was superior to that of Melipona quadrifasciata and Scaptotrigona sp propolis. Only two samples of propolis (green propolis and Scaptotrigona sp propolis) were efficient against Escherichia coli. Melipona quadrifasciata propolis was better...

  9. The neglected bee trees: European beech forests as a home for feral honey bee colonies

    Directory of Open Access Journals (Sweden)

    Patrick Laurenz Kohl

    2018-04-01

    Full Text Available It is a common belief that feral honey bee colonies (Apis mellifera L. were eradicated in Europe through the loss of habitats, domestication by man and spread of pathogens and parasites. Interestingly, no scientific data are available, neither about the past nor the present status of naturally nesting honeybee colonies. We expected near-natural beech (Fagus sylvatica L. forests to provide enough suitable nest sites to be a home for feral honey bee colonies in Europe. Here, we made a first assessment of their occurrence and density in two German woodland areas based on two methods, the tracing of nest sites based on forager flight routes (beelining technique, and the direct inspection of potential cavity trees. Further, we established experimental swarms at forest edges and decoded dances for nest sites performed by scout bees in order to study how far swarms from beekeeper-managed hives would potentially move into a forest. We found that feral honey bee colonies regularly inhabit tree cavities in near-natural beech forests at densities of at least 0.11–0.14 colonies/km2. Colonies were not confined to the forest edges; they were also living deep inside the forests. We estimated a median distance of 2,600 m from the bee trees to the next apiaries, while scout bees in experimental swarms communicated nest sites in close distances (median: 470 m. We extrapolate that there are several thousand feral honey bee colonies in German woodlands. These have to be taken in account when assessing the role of forest areas in providing pollination services to the surrounding land, and their occurrence has implications for the species’ perception among researchers, beekeepers and conservationists. This study provides a starting point for investigating the life-histories and the ecological interactions of honey bees in temperate European forest environments.

  10. Synergistic effects of non-Apis bees and honey bees for pollination services.

    OpenAIRE

    Brittain, C; Williams, N; Kremen, C; Klein, AM

    2013-01-01

    In diverse pollinator communities, interspecific interactions may modify the behaviour and increase the pollination effectiveness of individual species. Because agricultural production reliant on pollination is growing, improving pollination effectiveness could increase crop yield without any increase in agricultural intensity or area. In California almond, a crop highly dependent on honey bee pollination, we explored the foraging behaviour and pollination effectiveness of honey bees in orcha...

  11. Sequence and expression pattern of the germ line marker vasa in honey bees and stingless bees

    Directory of Open Access Journals (Sweden)

    Érica Donato Tanaka

    2009-01-01

    Full Text Available Queens and workers of social insects differ in the rates of egg laying. Using genomic information we determined the sequence of vasa, a highly conserved gene specific to the germ line of metazoans, for the honey bee and four stingless bees. The vasa sequence of social bees differed from that of other insects in two motifs. By RT-PCR we confirmed the germ line specificity of Amvasa expression in honey bees. In situ hybridization on ovarioles showed that Amvasa is expressed throughout the germarium, except for the transition zone beneath the terminal filament. A diffuse vasa signal was also seen in terminal filaments suggesting the presence of germ line cells. Oocytes showed elevated levels of Amvasa transcripts in the lower germarium and after follicles became segregated. In previtellogenic follicles, Amvasa transcription was detected in the trophocytes, which appear to supply its mRNA to the growing oocyte. A similar picture was obtained for ovarioles of the stingless bee Melipona quadrifasciata, except that Amvasa expression was higher in the oocytes of previtellogenic follicles. The social bees differ in this respect from Drosophila, the model system for insect oogenesis, suggesting that changes in the sequence and expression pattern of vasa may have occurred during social evolution.

  12. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards.

    Science.gov (United States)

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-09-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness.

  13. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?

    Science.gov (United States)

    Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria

    2014-01-01

    The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.

  14. Pesticides and reduced-risk insecticides, native bees and pantropical stingless bees: pitfalls and perspectives.

    Science.gov (United States)

    Barbosa, Wagner F; Smagghe, Guy; Guedes, Raul Narciso C

    2015-08-01

    Although invertebrates generally have a low public profile, the honey bee, Apis mellifera L., is a flagship species whose popularity likely derives from the products it provides and its perceived ecological services. Therefore, the raging debate regarding honey bee decline has surpassed the realm of beekeepers, academia, industry and regulatory agencies and now also encompasses non-governmental agencies, media, fiction writers and the general public. The early interest and concern about honey bee colony collapse disorder (CCD) soon shifted to the bigger issue of pollinator decline, with a focus on the potential involvement of pesticides in such a phenomenon. Pesticides were previously recognised as the potential culprits of the reported declines, particularly the neonicotinoid insecticides owing to their widespread and peculiar use in agriculture. However, the evidence for the potential pivotal role of these neonicotinoids in honey bee decline remains a matter of debate, with an increased recognition of the multifactorial nature of the problem and the lack of a direct association between the noted decline and neonicotinoid use. The focus on the decline of honey bee populations subsequently spread to other species, and bumblebees became another matter of concern, particularly in Europe and the United States. Other bee species, ones that are particularly important in other regions of the world, remain the object of little concern (unjustifiably so). Furthermore, the continuous focus on neonicotinoids is also in need of revision, as the current evidence suggests that a broad spectrum of compounds deserve attention. Here we address both shortcomings. © 2015 Society of Chemical Industry.

  15. HomePort ZigBee Adapter

    DEFF Research Database (Denmark)

    Pedersen, Thomas; Smedegaard, Jacob Haubach; Hansen, Rene

    the existing tool, Homeport, to act as a middleware and bridge between ConLAN's existing network and the ZigBee network. This report primarily discusses three possible solutions for constructing this bridge and current status on the implementation of a Develco SmartAMM and Zigbee stack for HomePort....

  16. Reproduction in eusocial bees (Apidae: Apini, Meliponini)

    NARCIS (Netherlands)

    Chinh, T.X.

    2004-01-01

    This thesis presents some key aspects of the regulation and the mechanisms of colony reproduction in honeybees and stingless bees. Special attention is paid to key questions about how the production of males, gynes and swarms takes place, and what intranidal and extranidal factors are related to

  17. Testing Honey Bees' Avoidance of Predators

    Science.gov (United States)

    Robinson, Jesse Wade; Nieh, James C.; Goodale, Eben

    2012-01-01

    Many high school science students do not encounter opportunities for authentic science inquiry in their formal coursework. Ecological field studies can provide such opportunities. The purpose of this project was to teach students about the process of science by designing and conducting experiments on whether and how honey bees (Apis mellifera)…

  18. Electrophysiological effects of the solitary bee "Anthophora

    African Journals Online (AJOL)

    Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt. ABSTRACT. Effects of the crude venom of the solitary bee (Anthophora pauperata) on cardiac, skeletal and smooth muscles were studied to reveal the mechanism of action of this venom. The main toxic effects on the ECG of isolated toads'.

  19. Parkinsonism following Bee Sting: A Case Report

    Directory of Open Access Journals (Sweden)

    Ruchika Mittal

    2012-01-01

    Full Text Available We are reporting here a rare case of Parkinsonism (Hypokinetic dysarthria caused after a bee stung, a member of the hymenoptera order. The main aim of this report is to orient the clinicians with the possibility of extrapyramidal syndromes because of hymenoptera stings.

  20. Learning at old age: a study on winter bees

    Directory of Open Access Journals (Sweden)

    Andreas Behrends

    2010-04-01

    Full Text Available Ageing is often accompanied by a decline in learning and memory abilities across the animal kingdom. Understanding age-related changes in cognitive abilities is therefore a major goal of current research. The honey bee is emerging as a novel model organism for age-related changes in brain function, because learning and memory can easily be studied in bees under controlled laboratory conditions. In addition, genetically similar workers naturally display life expectancies from six weeks (summer bees to six months (winter bees. We studied whether in honey bees, extreme longevity leads to a decline in cognitive functions. Six-month-old winter bees were conditioned either to odours or to tactile stimuli. Afterwards, long-term memory and discrimination abilities were analysed. Winter bees were kept under different conditions (flight /no flight opportunity to test for effects of foraging activity on learning performance. Despite their extreme age, winter bees did not display an age-related decline in learning or discrimination abilities, but had a slightly impaired olfactory long-term memory. The opportunity to forage indoors led to a slight decrease in learning performance. This suggests that in honey bees, unlike in most other animals, age per se does not impair associative learning. Future research will show which mechanisms protect winter bees from age-related deficits in learning.

  1. Microbial Communities of Three Sympatric Australian Stingless Bee Species

    Science.gov (United States)

    Leonhardt, Sara D.; Kaltenpoth, Martin

    2014-01-01

    Bacterial symbionts of insects have received increasing attention due to their prominent role in nutrient acquisition and defense. In social bees, symbiotic bacteria can maintain colony homeostasis and fitness, and the loss or alteration of the bacterial community may be associated with the ongoing bee decline observed worldwide. However, analyses of microbiota associated with bees have been largely confined to the social honeybees (Apis mellifera) and bumblebees (Bombus spec.), revealing – among other taxa – host-specific lactic acid bacteria (LAB, genus Lactobacillus) that are not found in solitary bees. Here, we characterized the microbiota of three Australian stingless bee species (Apidae: Meliponini) of two phylogenetically distant genera (Tetragonula and Austroplebeia). Besides common plant bacteria, we find LAB in all three species, showing that LAB are shared by honeybees, bumblebees and stingless bees across geographical regions. However, while LAB of the honeybee-associated Firm4–5 clusters were present in Tetragonula, they were lacking in Austroplebeia. Instead, we found a novel clade of likely host-specific LAB in all three Australian stingless bee species which forms a sister clade to a large cluster of Halictidae-associated lactobacilli. Our findings indicate both a phylogenetic and geographical signal of host-specific LAB in stingless bees and highlight stingless bees as an interesting group to investigate the evolutionary history of the bee-LAB association. PMID:25148082

  2. Bee Venom Phospholipase A2: Yesterday's Enemy Becomes Today's Friend.

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-02-22

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson's disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  3. Physiological processes related to the bee swarming

    Directory of Open Access Journals (Sweden)

    Jiří Svoboda

    2010-01-01

    Full Text Available One of the essential genetically subjected behaviours of a bee-colony is swarming. However, in the time of queen breeding and technical approach to colony division, swarming constitutes a problem in the effectiveness of controlled beekeeping and subsequently in decreasing of the attainable economic profits. The intensity of swarming is a polyfactorial phenomenon whose characteristic feature is seasonality (the availability of breed, course of weather so the swarming intensity is different in particular years. This study is connected with the research carried out at the Department of Zoo­lo­gy, Fisheries, Hydrobiology and Apiculture at Mendel University in Brno. The experiment focused on the relationship between the swarming and biological state of bee-colony was realized in three seasons of the period 2003–2005. Experimental bee-colonies were stimulated to the swarming fever by zoo-technical practices, at the same time the biological status of given bee-colony was observed. Within the process of marking of newly emerged workers there was observed their number continuously during the particular season. The samples of 3- and 4-week-old workers were instrumental to the analysis of the development of their hypopharyngeal glands. The study has proved that a bee-colonies building higher number of queen cells are likely expected to be in swarming fever, b 3-week-old workers have hypopharyngeal glands in higher stage of development than 4-week-old workers, c higher stage of swarming fever is closely correlated with higher stage of de­ve­lop­ment of hypopharyngeal glands. These facts can contribute to the comprehension of the reason and relationships of the swarming.

  4. Learning context modulates aversive taste strength in honey bees.

    Science.gov (United States)

    de Brito Sanchez, Maria Gabriela; Serre, Marion; Avarguès-Weber, Aurore; Dyer, Adrian G; Giurfa, Martin

    2015-03-01

    The capacity of honey bees (Apis mellifera) to detect bitter substances is controversial because they ingest without reluctance different kinds of bitter solutions in the laboratory, whereas free-flying bees avoid them in visual discrimination tasks. Here, we asked whether the gustatory perception of bees changes with the behavioral context so that tastes that are less effective as negative reinforcements in a given context become more effective in a different context. We trained bees to discriminate an odorant paired with 1 mol l(-1) sucrose solution from another odorant paired with either distilled water, 3 mol l(-1) NaCl or 60 mmol l(-1) quinine. Training was either Pavlovian [olfactory conditioning of the proboscis extension reflex (PER) in harnessed bees], or mainly operant (olfactory conditioning of free-walking bees in a Y-maze). PER-trained and maze-trained bees were subsequently tested both in their original context and in the alternative context. Whereas PER-trained bees transferred their choice to the Y-maze situation, Y-maze-trained bees did not respond with a PER to odors when subsequently harnessed. In both conditioning protocols, NaCl and distilled water were the strongest and the weakest aversive reinforcement, respectively. A significant variation was found for quinine, which had an intermediate aversive effect in PER conditioning but a more powerful effect in the Y-maze, similar to that of NaCl. These results thus show that the aversive strength of quinine varies with the learning context, and reveal the plasticity of the bee's gustatory system. We discuss the experimental constraints of both learning contexts and focus on stress as a key modulator of taste in the honey bee. Further explorations of bee taste are proposed to understand the physiology of taste modulation in bees. © 2015. Published by The Company of Biologists Ltd.

  5. The bee microbiome: Impact on bee health and model for evolution and ecology of host-microbe interactions

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K.; McFrederick, Quinn; Anderson, Kirk E.; Barribeau, Seth Michael; Chandler, James Angus; Cornman, Robert S.; Dainat, Jacques; de Miranda, Joachim R.; Doublet, Vincent; Emery, Olivier; Evans, Jay D.; Farinelli, Laurent; Flenniken, Michelle L.; Granberg, Fredrik; Grasis, Juris A.; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G.; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J.; Powell, Eli; Sadd, Ben M.; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S.; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-01-01

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  6. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions

    Directory of Open Access Journals (Sweden)

    Philipp Engel

    2016-05-01

    Full Text Available As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.

  7. Pollination of tomatoes by the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera (Hymenoptera, Apidae).

    Science.gov (United States)

    dos Santos, S A Bispo; Roselino, A C; Hrncir, M; Bego, L R

    2009-06-30

    The pollination effectiveness of the stingless bee Melipona quadrifasciata and the honey bee Apis mellifera was tested in tomato plots. The experiment was conducted in four greenhouses as well as in an external open plot in Ribeirão Preto, SP, Brazil. The tomato plants were exposed to visits by M. quadrifasciata in one greenhouse and to A. mellifera in another; two greenhouses were maintained without bees (controls) and an open field plot was exposed to pollinators in an area where both honey bee and stingless bee colonies are abundant. We counted the number of tomatoes produced in each plot. Two hundred tomatoes from each plot were weighed, their vertical and transversal circumferences were measured, and the seeds were counted. We collected 253 Chrysomelidae, 17 Halictidae, one Paratrigona sp, and one honey bee from the flowers of the tomato plants in the open area. The largest number of fruits (1414 tomatoes), the heaviest and largest tomatoes, and the ones with the most seed were collected from the greenhouse with stingless bees. Fruits cultivated in the greenhouse with honey bees had the same weight and size as those produced in one of the control greenhouses. The stingless bee, M. quadrifasciata, was significantly more efficient than honey bees in pollinating greenhouse tomatoes.

  8. SOCIAL COMPLEXITY AND LEARNING FORAGING TASKS IN BEES

    Directory of Open Access Journals (Sweden)

    AMAYA-MÁRQUEZ MARISOL

    2008-12-01

    Full Text Available Social complexity and models concerning central place foraging were tested with respect to learning predictions using the social honey bee (Apis mellifera and solitary blue orchard bee (Osmia lignaria when given foraging problems. Both species were presented the same foraging problems, where 1 only reward molarity varied between flower morphs, and 2 only reward volume varied between flower morphs. Experiments utilized blue vs. white flower patches to standardize rewards in each experimental situation. Although honey bees learned faster than blue orchard bees when given a molarity difference reward problem, there was no significant difference in learning rate when presented a volume difference reward problem. Further, the rate at which blue orchard bees learned the volume difference problem was not significantly different from that with which honey bees learned about reward molarity differences. The results do not support the predictions of the social complexity theory, but do support those of the central place model

  9. Varroa-Virus Interaction in Collapsing Honey Bee Colonies

    DEFF Research Database (Denmark)

    Francis, Roy Mathew; Nielsen, Steen L.; Kryger, Per

    2013-01-01

    in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10......Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres...... subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses...

  10. Honey Bees, Satellites and Climate Change

    Science.gov (United States)

    Esaias, W.

    2008-05-01

    Life isn't what it used to be for honey bees in Maryland. The latest changes in their world are discussed by NASA scientist Wayne Esaias, a biological oceanographer with NASA Goddard Space Flight Center. At Goddard, Esaias has examined the role of marine productivity in the global carbon cycle using visible satellite sensors. In his personal life, Esaias is a beekeeper. Lately, he has begun melding his interest in bees with his professional expertise in global climate change. Esaias has observed that the period when nectar is available in central Maryland has shifted by one month due to local climate change. He is interested in bringing the power of global satellite observations and models to bear on the important but difficult question of how climate change will impact bees and pollination. Pollination is a complex, ephemeral interaction of animals and plants with ramifications throughout terrestrial ecosystems well beyond the individual species directly involved. Pollinators have been shown to be in decline in many regions, and the nature and degree of further impacts on this key interaction due to climate change are very much open questions. Honey bee colonies are used to quantify the time of occurrence of the major interaction by monitoring their weight change. During the peak period, changes of 5-15 kg/day per colony represent an integrated response covering thousands of hectares. Volunteer observations provide a robust metric for looking at spatial and inter-annual variations due to short term climate events, complementing plant phenology networks and satellite-derived vegetation phenology data. In central Maryland, the nectar flows are advancing by about -0.6 d/y, based on a 15 yr time series and a small regional study. This is comparable to the regional advancement in the spring green-up observed with MODIS and AVHRR. The ability to link satellite vegetation phenology to honey bee forage using hive weight changes provides a basis for applying satellite

  11. Habitat Fragmentation and Native Bees: a Premature Verdict?

    Directory of Open Access Journals (Sweden)

    James H. Cane

    2001-06-01

    Full Text Available Few studies directly address the consequences of habitat fragmentation for communities of pollinating insects, particularly for the key pollinator group, bees (Hymenoptera: Apiformes. Bees typically live in habitats where nesting substrates and bloom are patchily distributed and spatially dissociated. Bee studies have all defined habitat fragments as remnant patches of floral hosts or forests, overlooking the nesting needs of bees. Several authors conclude that habitat fragmentation is broadly deleterious, but their own data show that some native species proliferate in sampled fragments. Other studies report greater densities and comparable diversities of native bees at flowers in some fragment size classes relative to undisrupted habitats, but find dramatic shifts in species composition. Insightful studies of habitat fragmentation and bees will consider fragmentation, alteration, and loss of nesting habitats, not just patches of forage plants, as well as the permeability of the surrounding matrix to interpatch movement. Inasmuch as the floral associations and nesting habits of bees are often attributes of species or subgenera, ecological interpretations hinge on authoritative identifications. Study designs must accommodate statistical problems associated with bee community samples, especially non-normal data and frequent zero values. The spatial scale of fragmentation must be appreciated: bees of medium body size can regularly fly 1-2 km from nest site to forage patch. Overall, evidence for prolonged persistence of substantial diversity and abundances of native bee communities in habitat fragments of modest size promises practical solutions for maintaining bee populations. Provided that reserve selection, design, and management can address the foraging and nesting needs of bees, networks of even small reserves may hold hope for sustaining considerable pollinator diversity and the ecological services pollinators provide.

  12. Anti-arthritic effects of microneedling with bee venom gel

    Directory of Open Access Journals (Sweden)

    Mengdi Zhao

    2016-10-01

    Conclusions: Bee venom can significantly suppress the occurrence of gouty arthritis inflammation in rats and mice LPS inflammatory reaction. Choose the 750 μm microneedle with 10N force on skin about 3 minutes, bee venom can play the optimal role, and the anti-inflammatory effect is obvious. Microneedles can promote the percutaneous absorption of the active macromolecules bee venom gel.

  13. Flight of the bumble bee: Buzzes predict pollination services.

    Science.gov (United States)

    Miller-Struttmann, Nicole E; Heise, David; Schul, Johannes; Geib, Jennifer C; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to bee

  14. Flight of the bumble bee: Buzzes predict pollination services.

    Directory of Open Access Journals (Sweden)

    Nicole E Miller-Struttmann

    Full Text Available Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi. We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30-52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97, indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and

  15. Studies on Bee Venom and Its Medical Uses

    Science.gov (United States)

    Ali, Mahmoud Abdu Al-Samie Mohamed

    2012-07-01

    Use of honey and other bee products in human treatments traced back thousands of years and healing properties are included in many religious texts including the Veda, Bible and Quran. Apitherapy is the use of honey bee products for medical purposes, this include bee venom, raw honey, royal jelly, pollen, propolis, and beeswax. Whereas bee venom therapy is the use of live bee stings (or injectable venom) to treat various diseases such as arthritis, rheumatoid arthritis, multiple sclerosis (MS), lupus, sciatica, low back pain, and tennis elbow to name a few. It refers to any use of venom to assist the body in healing itself. Bee venom contains at least 18 pharmacologically active components including various enzymes, peptides and amines. Sulfur is believed to be the main element in inducing the release of cortisol from the adrenal glands and in protecting the body from infections. Contact with bee venom produces a complex cascade of reactions in the human body. The bee venom is safe for human treatments, the median lethal dose (LD50) for an adult human is 2.8 mg of venom per kg of body weight, i.e. a person weighing 60 kg has a 50% chance of surviving injections totaling 168 mg of bee venom. Assuming each bee injects all its venom and no stings are quickly removed at a maximum of 0.3 mg venom per sting, 560 stings could well be lethal for such a person. For a child weighing 10 kg, as little as 93.33 stings could be fatal. However, most human deaths result from one or few bee stings due to allergic reactions, heart failure or suffocation from swelling around the neck or the mouth. As compare with other human diseases, accidents and other unusual cases, the bee venom is very safe for human treatments.

  16. Flight of the bumble bee: Buzzes predict pollination services

    Science.gov (United States)

    Heise, David; Schul, Johannes; Geib, Jennifer C.; Galen, Candace

    2017-01-01

    Multiple interacting factors drive recent declines in wild and managed bees, threatening their pollination services. Widespread and intensive monitoring could lead to more effective management of wild and managed bees. However, tracking their dynamic populations is costly. We tested the effectiveness of an inexpensive, noninvasive and passive acoustic survey technique for monitoring bumble bee behavior and pollination services. First, we assessed the relationship between the first harmonic of the flight buzz (characteristic frequency) and pollinator functional traits that influence pollination success using flight cage experiments and a literature search. We analyzed passive acoustic survey data from three locations on Pennsylvania Mountain, Colorado to estimate bumble bee activity. We developed an algorithm based on Computational Auditory Scene Analysis that identified and quantified the number of buzzes recorded in each location. We then compared visual and acoustic estimates of bumble bee activity. Using pollinator exclusion experiments, we tested the power of buzz density to predict pollination services at the landscape scale for two bumble bee pollinated alpine forbs (Trifolium dasyphyllum and T. parryi). We found that the characteristic frequency was correlated with traits known to affect pollination efficacy, explaining 30–52% of variation in body size and tongue length. Buzz density was highly correlated with visual estimates of bumble bee density (r = 0.97), indicating that acoustic signals are predictive of bumble bee activity. Buzz density predicted seed set in two alpine forbs when bumble bees were permitted access to the flowers, but not when they were excluded from visiting. Our results indicate that acoustic signatures of flight can be deciphered to monitor bee activity and pollination services to bumble bee pollinated plants. We propose that applications of this technique could assist scientists and farmers in rapidly detecting and responding to

  17. Pollination value of male bees: the specialist bee Peponapis pruinosa (Apidae) at summer squash (Cucurbita pepo).

    Science.gov (United States)

    Cane, James H; Sampson, Blair J; Miller, Stephanie A

    2011-06-01

    Male bees can be abundant at flowers, particularly floral hosts of those bee species whose females are taxonomic pollen specialists (oligolecty). Contributions of male bees to host pollination are rarely studied directly despite their prevalence in a number of pollination guilds, including those of some crop plants. In this study, males of the oligolectic bee, Peponapis pruinosa Say, were shown to be effective pollinators of summer squash, Cucurbita pepo L. Seven sequential visits from male P. pruinosa maximized squash fruit set and growth. This number of male visits accumulated during the first hour of their foraging and mate searching at flowers soon after sunrise. Pollination efficacy of male P. pruinosa and their abundances at squash flowers were sufficient to account for most summer squash production at our study sites, and by extrapolation, to two-thirds of all 87 North American farms and market gardens growing squashes that were surveyed for pollinators by collaborators in the Squash Pollinators of the Americas Survey. We posit that the substantial pollination value of male Peponapis bees is a consequence of their species' oligolecty, their mate seeking strategy, and some extreme traits of Cucurbita flowers (massive rewards, flower size, phenology).

  18. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    Science.gov (United States)

    Xie, Zhenghua; Pan, Dongdong; Teichroew, Jonathan; An, Jiandong

    2016-01-01

    Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L.) and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover) and a low amount of natural habitats (≤ 12% of land cover) in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s) to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  19. The Potential Influence of Bumble Bee Visitation on Foraging Behaviors and Assemblages of Honey Bees on Squash Flowers in Highland Agricultural Ecosystems.

    Directory of Open Access Journals (Sweden)

    Zhenghua Xie

    Full Text Available Bee species interactions can benefit plant pollination through synergistic effects and complementary effects, or can be of detriment to plant pollination through competition effects by reducing visitation by effective pollinators. Since specific bee interactions influence the foraging performance of bees on flowers, they also act as drivers to regulate the assemblage of flower visitors. We selected squash (Cucurbita pepo L. and its pollinators as a model system to study the foraging response of honey bees to the occurrence of bumble bees at two types of sites surrounded by a high amount of natural habitats (≥ 58% of land cover and a low amount of natural habitats (≤ 12% of land cover in a highland agricultural ecosystem in China. At the individual level, we measured the elapsed time from the departure of prior pollinator(s to the arrival of another pollinator, the selection of honey bees for flowers occupied by bumble bees, and the length of time used by honey bees to explore floral resources at the two types of sites. At the community level, we explored the effect of bumble bee visitation on the distribution patterns of honey bees on squash flowers. Conclusively, bumble bee visitation caused an increase in elapsed time before flowers were visited again by a honey bee, a behavioral avoidance by a newly-arriving honey bee to select flowers occupied by bumble bees, and a shortened length of time the honey bee takes to examine and collect floral resources. The number of overall bumble bees on squash flowers was the most important factor explaining the difference in the distribution patterns of honey bees at the community level. Furthermore, decline in the number of overall bumble bees on the squash flowers resulted in an increase in the number of overall honey bees. Therefore, our study suggests that bee interactions provide an opportunity to enhance the resilience of ecosystem pollination services against the decline in pollinator diversity.

  20. Optimizing ZigBee Security using Stochastic Model Checking

    DEFF Research Database (Denmark)

    Yuksel, Ender; Nielson, Hanne Riis; Nielson, Flemming

    ZigBee is a fairly new but promising wireless sensor network standard that offers the advantages of simple and low resource communication. Nevertheless, security is of great concern to ZigBee, and enhancements are prescribed in the latest ZigBee specication: ZigBee-2007. In this technical report......, we identify an important gap in the specification on key updates, and present a methodology for determining optimal key update policies and security parameters. We exploit the stochastic model checking approach using the probabilistic model checker PRISM, and assess the security needs for realistic...

  1. ECONOMIC EFFICIENCY OF VARIOUS QUEEN BEES MAINTENANCE SYSTEMS

    Directory of Open Access Journals (Sweden)

    A POPESCU

    2003-10-01

    Full Text Available The modern queens maintenance systems are based on the use of artificial insemination, queens’ maintenance in the so called „queens bank” , in this way assuring an increased economic efficiency in beekeeping. This study aimed to compare the economic efficiency of the implementation of A.I. to various queen bees maintenance systems. Three alternatives have been taken into account: V1-a queen bee in a cage together with her bees, V2- a queen bank system and V3 – a queen bee in a nucleus. For each queen bee maintenance alternative have been evaluated the most important indicators such as: expenses, incomes, profit, number of marketable inseminated and selected queen bees, honey production, cost/queen, revenue/queen, profit/queen, profit rate. The most effective alternative was the queen bank system assuring 2,400 marketable queen bees and 20 kg honey delivered yearly, USD 12,442 incomes, USD 3,400 expenses, USD 9,042 profit, that is USD 3.77/queen bee and 265.72 % profit rate under the condition as A.I. costs are just USD 1,058, representing 31.1 % of total queen bees maintenance costs.

  2. Wild Bee Community Composition and Foraging Behaviour in Commercial Strawberries

    DEFF Research Database (Denmark)

    Ahrenfeldt, Erica Juel

    Denmark and under widespread cultivation in the rest of the world. A review study (IV) of the literature on wild bees and their pollination services in flowering crops make up the final part of the thesis. The review study aimed to assess how wild bees may respond to landscape parameters based...... on their biology, in particular diet, habitat requirements and sociality. At a regional scale (I) bee activity-density and species richness was higher in Denmark and Germany compared to South and Mid Norway, whereas the mean bee body size was higher in South- and Mid-Norway. At landscape scale (II) hedges...

  3. Bees of the Azores: an annotated checklist (Apidae, Hymenoptera).

    Science.gov (United States)

    Weissmann, Julie A; Picanço, Ana; Borges, Paulo A V; Schaefer, Hanno

    2017-01-01

    We report 18 species of wild bees plus the domesticated honeybee from the Azores, which adds nine species to earlier lists. One species, Hylaeus azorae , seems to be a single island endemic, and three species are possibly native ( Colletes eous , Halictus villosulus , and Hylaeus pictipes ). All the remaining bee species are most likely accidental introductions that arrived after human colonization of the archipelago in the 15 th century. Bee diversity in the Azores is similar to bee diversity of Madeira and Cape Verde but nearly ten times lower than it is in the Canary Islands.

  4. Comparative bioacoustical studies on flight and buzzing of neotropical bees

    Directory of Open Access Journals (Sweden)

    Andreas Burkart

    2012-01-01

    Full Text Available The presence of bees is typically accompanied by the humming sound of their flight. Bees of several tribes are also capable of pollen collecting by vibration, known as buzzing behaviour, which produces a buzzing sound, different from the flight sound. An open question is whether bee species have species-specific buzzing patterns or frequencies dependent of the bees' morphology or are capable to adjust their indivudual buzzing sound to optimize pollen return. The investigations to approach this issue were performed in northeastern Brazil near Recife in the state of Pernambuco. We present a new field method using a commercially available portable system able to record the sound of bees during flight and buzzing at flowers. Further, we describe computer linguistical algorithms to analyse the frequency of the recorded sound sequences. With this method, we recorded the flight and buzzing sequences of 59 individual bees out of 12 species visiting the flowers of Solanum stramoniifolium and S. paniculatum. Our findings demonstrate a typical frequency range for the sounds produced by the bees of a species. Our statistical analysis shows a strong correlation of bee size and flight frequency and demonstrate that bee species use different frequency patterns.

  5. Bee Venom Pharmacopuncture Responses According to Sasang Constitution and Gender

    Directory of Open Access Journals (Sweden)

    Kim Chaeweon

    2013-12-01

    Full Text Available Objectives: The current study was performed to compare the bee venom pharmacopuncture skin test reactions among groups with different sexes and Sasang constitutions. Methods: Between July 2012 and June 2013, all 76 patients who underwent bee venom pharmacopuncture skin tests and Sasang constitution diagnoses at Oriental Medicine Hospital of Sangji University were included in this study. The skin test was performed on the patient’s forearm intracutaneously with 0.05 ml of sweet bee venom (SBV on their first visit. If the patients showed a positive response, the test was discontinued. On the other hand, if the patient showed a negative response, the test was performed on the opposite forearm intracutaneously with 0.05 ml of bee venom pharmacopuncture 25% on the next day or the next visit. Three groups were made to compare the differences in the bee venom pharmacopuncture skin tests according to sexual difference and Sasang constitution: group A showed a positive response to SBV, group B showed a positive response to bee venom pharmacopuncture 25%, and group C showed a negative response on all bee venom pharmacopuncture skin tests. Fisher’s exact test was performed to evaluate the differences statistically. Results: The results of the bee venom pharmacopuncture skin tests showed no significant differences according to Sasang constitution (P = 0.300 or sexual difference (P = 0.163. Conclusion: No significant differences on the results of bee venom pharmacopuncture skin tests were observed according to two factors, Sasang constitution and the sexual difference.

  6. Determination of acute oral toxicity of flumethrin in honey bees.

    Science.gov (United States)

    Oruc, H H; Hranitz, J M; Sorucu, A; Duell, M; Cakmak, I; Aydin, L; Orman, A

    2012-12-01

    Flumethrin is one of many pesticides used for the control and treatment of varroatosis in honey bees and for the control of mosquitoes and ticks in the environment. For the control of varroatosis, flumethrin is applied to hives formulated as a plastic strip for several weeks. During this time, honey bees are treated topically with flumethrin, and hive products may accumulate the pesticide. Honey bees may indirectly ingest flumethrin through hygienic behaviors during the application period and receive low doses of flumethrin through comb wax remodeling after the application period. The goal of our study was to determine the acute oral toxicity of flumethrin and observe the acute effects on motor coordination in honey bees (Apis mellifera anatoliaca). Six doses (between 0.125 and 4.000 microg per bee) in a geometric series were studied. The acute oral LD50 of flumethrin was determined to be 0.527 and 0.178 microg per bee (n = 210, 95% CI) for 24 and 48 h, respectively. Orally administered flumethrin is highly toxic to honey bees. Oral flumethrin disrupted the motor coordination of honey bees. Honey bees that ingested flumethrin exhibited convulsions in the antennae, legs, and wings at low doses. At higher doses, partial and total paralysis in the antennae, legs, wings, proboscises, bodies, and twitches in the antennae and legs were observed.

  7. Crop pollination from native bees at risk from agricultural intensification.

    Science.gov (United States)

    Kremen, Claire; Williams, Neal M; Thorp, Robbin W

    2002-12-24

    Ecosystem services are critical to human survival; in selected cases, maintaining these services provides a powerful argument for conserving biodiversity. Yet, the ecological and economic underpinnings of most services are poorly understood, impeding their conservation and management. For centuries, farmers have imported colonies of European honey bees (Apis mellifera) to fields and orchards for pollination services. These colonies are becoming increasingly scarce, however, because of diseases, pesticides, and other impacts. Native bee communities also provide pollination services, but the amount they provide and how this varies with land management practices are unknown. Here, we document the individual species and aggregate community contributions of native bees to crop pollination, on farms that varied both in their proximity to natural habitat and management type (organic versus conventional). On organic farms near natural habitat, we found that native bee communities could provide full pollination services even for a crop with heavy pollination requirements (e.g., watermelon, Citrullus lanatus), without the intervention of managed honey bees. All other farms, however, experienced greatly reduced diversity and abundance of native bees, resulting in insufficient pollination services from native bees alone. We found that diversity was essential for sustaining the service, because of year-to-year variation in community composition. Continued degradation of the agro-natural landscape will destroy this "free" service, but conservation and restoration of bee habitat are potentially viable economic alternatives for reducing dependence on managed honey bees.

  8. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey bees in Japan.

    Science.gov (United States)

    Kojima, Yuriko; Toki, Taku; Morimoto, Tomomi; Yoshiyama, Mikio; Kimura, Kiyoshi; Kadowaki, Tatsuhiko

    2011-11-01

    Invasion of alien species has been shown to cause detrimental effects on habitats of native species. Insect pollinators represent such examples; the introduction of commercial bumble bee species for crop pollination has resulted in competition for an ecological niche with native species, genetic disturbance caused by mating with native species, and pathogen spillover to native species. The European honey bee, Apis mellifera, was first introduced into Japan for apiculture in 1877, and queen bees have been imported from several countries for many years. However, its effects on Japanese native honey bee, Apis cerana japonica, have never been addressed. We thus conducted the survey of honey bee viruses and Acarapis mites using both A. mellifera and A. c. japonica colonies to examine their infestation in native and non-native honey bee species in Japan. Honey bee viruses, Deformed wing virus (DWV), Black queen cell virus (BQCV), Israeli acute paralysis virus (IAPV), and Sacbrood virus (SBV), were found in both A. mellifera and A. c. japonica colonies; however, the infection frequency of viruses in A. c. japonica was lower than that in A. mellifera colonies. Based on the phylogenies of DWV, BQCV, and SBV isolates from A. mellifera and A. c. japonica, DWV and BQCV may infect both honey bee species; meanwhile, SBV has a clear species barrier. For the first time in Japan, tracheal mite (Acarapis woodi) was specifically found in the dead honey bees from collapsing A. c. japonica colonies. This paper thus provides further evidence that tracheal-mite-infested honey bee colonies can die during cool winters with no other disease present. These results demonstrate the infestation of native honey bees by parasite and pathogens of non-native honey bees that are traded globally.

  9. Importance of Pyrrolizidine Alkaloids in Bee Products

    OpenAIRE

    OZANSOY, GÖRKEM; KÜPLÜLÜ, ÖZLEM

    2017-01-01

    Pyrrolizidinealkaloids are one of the groups of harmful chemicals of plants, which arenatural toxins. Pyrrolizidine alkaloids found in about 3% of all floweringplants of widespread geographical distribution are known as one of thecomponents of the hepatotoxic group of plant origin and referred as hepatotoxicpyrrolizidine alkaloids. According to researches, bee products is regarded asone of the main food sources in the exposure of people to pyrrolizidinealkaloids. Consumption of pyrrolizidine ...

  10. Taxonomy Icon Data: honey bee [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available honey bee Apis mellifera Arthropoda Apis_mellifera_L.png Apis_mellifera_NL.png Apis_mellife...ra_S.png Apis_mellifera_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=L h...ttp://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellife...ra&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Apis+mellifera&t=NS ...

  11. A review of ecosystem service benefits from wild bees across social contexts.

    Science.gov (United States)

    Matias, Denise Margaret S; Leventon, Julia; Rau, Anna-Lena; Borgemeister, Christian; von Wehrden, Henrik

    2017-05-01

    In order to understand the role of wild bees in both social and ecological systems, we conducted a quantitative and qualitative review of publications dealing with wild bees and the benefits they provide in social contexts. We classified publications according to several attributes such as services and benefits derived from wild bees, types of bee-human interactions, recipients of direct benefits, social contexts where wild bees are found, and sources of changes to the bee-human system. We found that most of the services and benefits from wild bees are related to food, medicine, and pollination. We also found that wild bees directly provide benefits to communities to a greater extent than individuals. In the social contexts where they are found, wild bees occupy a central role. Several drivers of change affect bee-human systems, ranging from environmental to political drivers. These are the areas where we recommend making interventions for conserving the bee-human system.

  12. Why does bee health matter? The science surrounding honey bee health concerns and what we can do about it

    Science.gov (United States)

    Spivak, Marla S; Browning, Zac; Goblirsch, Mike; Lee, Katie; Otto, Clint R.; Smart, Matthew; Wu-Smart, Judy

    2017-01-01

    A colony of honey bees is an amazing organism when it is healthy; it is a superorganism in many senses of the word. As with any organism, maintaining a state of health requires cohesiveness and interplay among cells and tissues and, in the case of a honey bee colony, the bees themselves. The individual bees that make up a honey bee colony deliver to the superorganism what it needs: pollen and nectar collected from flowering plants that contain nutrients necessary for growth and survival. Honey bees with access to better and more complete nutrition exhibit improved immune system function and behavioral defenses for fighting off effects of pathogens and pesticides (Evans and Spivak 2010; Mao, Schuler, and Berenbaum 2013; Wahl and Ulm 1983). Sadly, as this story is often told in the headlines, the focus is rarely about what it means for a honey bee colony to be healthy and is instead primarily focused on colony survival rates. Bee colonies are chronically exposed to parasitic mites, viruses, diseases, miticides, pesticides, and poor nutrition, which weaken and make innate defenses insufficient at overcoming these combined stressors. Colonies that are chronically weakened can be even more susceptible to infections and levels of pesticide exposure that might otherwise be innocuous, further promoting a downward spiral of health. Sick and weakened bees diminish the colony’s resiliency, ultimately leading to a breakdown in the social structure, production, efficiency, immunity, and reproduction of the colony, and eventual or sudden colony death.

  13. The Status of Honey Bee Health in Italy: Results from the Nationwide Bee Monitoring Network.

    Science.gov (United States)

    Porrini, Claudio; Mutinelli, Franco; Bortolotti, Laura; Granato, Anna; Laurenson, Lynn; Roberts, Katherine; Gallina, Albino; Silvester, Nicholas; Medrzycki, Piotr; Renzi, Teresa; Sgolastra, Fabio; Lodesani, Marco

    2016-01-01

    In Italy a nation-wide monitoring network was established in 2009 in response to significant honey bee colony mortality reported during 2008. The network comprised of approximately 100 apiaries located across Italy. Colonies were sampled four times per year, in order to assess the health status and to collect samples for pathogen, chemical and pollen analyses. The prevalence of Nosema ceranae ranged, on average, from 47-69% in 2009 and from 30-60% in 2010, with strong seasonal variation. Virus prevalence was higher in 2010 than in 2009. The most widespread viruses were BQCV, DWV and SBV. The most frequent pesticides in all hive contents were organophosphates and pyrethroids such as coumaphos and tau-fluvalinate. Beeswax was the most frequently contaminated hive product, with 40% of samples positive and 13% having multiple residues, while 27% of bee-bread and 12% of honey bee samples were contaminated. Colony losses in 2009/10 were on average 19%, with no major differences between regions of Italy. In 2009, the presence of DWV in autumn was positively correlated with colony losses. Similarly, hive mortality was higher in BQCV infected colonies in the first and second visits of the year. In 2010, colony losses were significantly related to the presence of pesticides in honey bees during the second sampling period. Honey bee exposure to poisons in spring could have a negative impact at the colony level, contributing to increase colony mortality during the beekeeping season. In both 2009 and 2010, colony mortality rates were positively related to the percentage of agricultural land surrounding apiaries, supporting the importance of land use for honey bee health.

  14. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?

    Directory of Open Access Journals (Sweden)

    Nurit Eliash

    Full Text Available BACKGROUND: The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. PRINCIPAL FINDINGS: We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min. Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. CONCLUSIONS: These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.

  15. Impacts of Austrian Climate Variability on Honey Bee Mortality

    Science.gov (United States)

    Switanek, Matt; Brodschneider, Robert; Crailsheim, Karl; Truhetz, Heimo

    2015-04-01

    Global food production, as it is today, is not possible without pollinators such as the honey bee. It is therefore alarming that honey bee populations across the world have seen increased mortality rates in the last few decades. The challenges facing the honey bee calls into question the future of our food supply. Beside various infectious diseases, Varroa destructor is one of the main culprits leading to increased rates of honey bee mortality. Varroa destructor is a parasitic mite which strongly depends on honey bee brood for reproduction and can wipe out entire colonies. However, climate variability may also importantly influence honey bee breeding cycles and bee mortality rates. Persistent weather events affects vegetation and hence foraging possibilities for honey bees. This study first defines critical statistical relationships between key climate indicators (e.g., precipitation and temperature) and bee mortality rates across Austria, using 6 consecutive years of data. Next, these leading indicators, as they vary in space and time, are used to build a statistical model to predict bee mortality rates and the respective number of colonies affected. Using leave-one-out cross validation, the model reduces the Root Mean Square Error (RMSE) by 21% with respect to predictions made with the mean mortality rate and the number of colonies. Furthermore, a Monte Carlo test is used to establish that the model's predictions are statistically significant at the 99.9% confidence level. These results highlight the influence of climate variables on honey bee populations, although variability in climate, by itself, cannot fully explain colony losses. This study was funded by the Austrian project 'Zukunft Biene'.

  16. Non-bee insects are important contributors to global crop pollination.

    Science.gov (United States)

    Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A; Garratt, Michael P D; Howlett, Brad G; Winfree, Rachael; Cunningham, Saul A; Mayfield, Margaret M; Arthur, Anthony D; Andersson, Georg K S; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G; Chacoff, Natacha P; Entling, Martin H; Foully, Benjamin; Freitas, Breno M; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R; Gross, Caroline L; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q; Lindström, Sandra A M; Mandelik, Yael; Monteiro, Victor M; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E; Pereira, Natália de O; Pisanty, Gideon; Potts, Simon G; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G; Stanley, Dara A; Stout, Jane C; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H; Viana, Blandina F; Woyciechowski, Michal

    2016-01-05

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.

  17. Non-bee insects are important contributors to global crop pollination

    Science.gov (United States)

    Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H.; Foully, Benjamin; Freitas, Breno M.; Gemmill-Herren, Barbara; Ghazoul, Jaboury; Griffin, Sean R.; Gross, Caroline L.; Herbertsson, Lina; Herzog, Felix; Hipólito, Juliana; Jaggar, Sue; Jauker, Frank; Klein, Alexandra-Maria; Kleijn, David; Krishnan, Smitha; Lemos, Camila Q.; Lindström, Sandra A. M.; Mandelik, Yael; Monteiro, Victor M.; Nelson, Warrick; Nilsson, Lovisa; Pattemore, David E.; de O. Pereira, Natália; Pisanty, Gideon; Potts, Simon G.; Reemer, Menno; Rundlöf, Maj; Sheffield, Cory S.; Scheper, Jeroen; Schüepp, Christof; Smith, Henrik G.; Stanley, Dara A.; Stout, Jane C.; Szentgyörgyi, Hajnalka; Taki, Hisatomo; Vergara, Carlos H.; Viana, Blandina F.; Woyciechowski, Michal

    2016-01-01

    Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25–50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines. PMID:26621730

  18. ECOLOGICAL IMPACT ON NATIVE BEES BY THE INVASIVE AFRICANIZED HONEY BEE

    Directory of Open Access Journals (Sweden)

    DAVID ROUBIK

    2009-05-01

    Full Text Available ABSTRACT Very little effort has been made to investigate bee population dynamics among intact wilderness areas. The presence of newly-arrived feral Africanized honey bee (AHB, Apis mellifera (Apidae, populations was studied for 10-17 years in areas previously with few or no escaped European apiary honey bees. Here I describe and interpret the major results from studies in three neotropical forests: French Guiana, Panama and Yucatan, Mexico (5° to 19° N. latitude. The exotic Africanized honey bees did not produce a negative effect on native bees, including species that were solitary or highly eusocial. Major differences over time were found in honey bee abundance on flowers near habitat experiencing the greatest degree of disturbance, compared to deep forest areas. At the population level, sampled at nest blocks, or at flower patches, or at light traps, there was no sudden decline in bees after AHB arrival, and relatively steady or sinusoidal population dynamics. However, the native bees shifted their foraging time or floral species. A principal conclusion is that such competition is silent, in floristically rich habitats, because bees compensate behaviorally for competition. Other factors limit their populations. Key words: Africanized honey bee, native bees, competition, population dynamics, neotropical forests RESUMEN Pocos estudios han considerado la dinámica de poblaciones de abejas en bosques o hábitats no alterados por el hombre. La presencia de abejas silvestres Africanizadas de Apis mellifera (Apidae fue estudiado por 10-17 años en áreas previamente sin esta especie. Aquí presento e interpreto resultados de tres bosques neotropicales: Guyana Francesa, Panamá y Yucatán, México (5° a 19° N. latitud. La abeja Africanizada exótica no produjo efecto negativo en las abejas nativas, incluyendo especies altamente sociales y solitarias. Diferencias mayores a través del tiempo fueron encontradas en la abundancia de las abejas de miel

  19. RNAi and Antiviral Defense in the Honey Bee

    Directory of Open Access Journals (Sweden)

    Laura M. Brutscher

    2015-01-01

    Full Text Available Honey bees play an important agricultural and ecological role as pollinators of numerous agricultural crops and other plant species. Therefore, investigating the factors associated with high annual losses of honey bee colonies in the US is an important and active area of research. Pathogen incidence and abundance correlate with Colony Collapse Disorder- (CCD- affected colonies in the US and colony losses in the US and in some European countries. Honey bees are readily infected by single-stranded positive sense RNA viruses. Largely dependent on the host immune response, virus infections can either remain asymptomatic or result in deformities, paralysis, or death of adults or larvae. RNA interference (RNAi is an important antiviral defense mechanism in insects, including honey bees. Herein, we review the role of RNAi in honey bee antiviral defense and highlight some parallels between insect and mammalian immune systems. A more thorough understanding of the role of pathogens on honey bee health and the immune mechanisms bees utilize to combat infectious agents may lead to the development of strategies that enhance honey bee health and result in the discovery of additional mechanisms of immunity in metazoans.

  20. Bee Diversity (Hymenoptera: Apoidea in a Tropical Rainforest Succession

    Directory of Open Access Journals (Sweden)

    Allan Smith-Pardo

    2007-01-01

    15.356 specimens were collected, belonging to four families and 287 species, representing 62% of all bee species found in Colombia. About 50% of all individuals sampled were stingless social bees (Apidae, Meliponini. Trigona (Trigona fulviventris was the most abundant species (~10% in the survey. Augochlora and Megachile were the most specious genera. The pasture and secondary forest showed high values of diversity and richness and were significantly higher than those of the mature forest and low shrubs. In all successional stages, except in the mature forest, the number of new species collected in each sample period approached zero and the species accumulation curves tended to stabilize as time and sampling area increased. The net was the most efficient method in all successional stages, except in the forest, where most bee species and individuals were collected with the Van Somer trap. However, a higher percentage (50% of rare species was collected with the Malaise trap. The number of new species collected in each sampled period and the species accumulation curves suggest that our survey was nearly sufficient to estimate the bee diversity in these early successional stages, but insufficient to study the mature forest apifauna. Due to the high efficiency of the Van Somer trap to attract bees in the forest, this trap should be used regularly in additional bee surveys in tropical rain forests. We also summarize the bee surveys in Colombia and highlight the importance of using other less common sampling methods to study bees from tropical ecosystems.

  1. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees.

    Science.gov (United States)

    Youngsteadt, Elsa; Appler, R Holden; López-Uribe, Margarita M; Tarpy, David R; Frank, Steven D

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators.

  2. The importance of bees in natural and agricultural ecosystems

    Science.gov (United States)

    Paul Rhoades

    2013-01-01

    As the world’s most important group of pollinators, bees are a crucial part of agricultural production and natural ecosystem function. Bees and the pollination they provide are relevant to the nursery industry because of their role in the performance of seed increase plots as well as the importance of pollination in supporting persistent plant communities in restored...

  3. Parasite infection accelerates age polyethism in young honey bees.

    Science.gov (United States)

    Lecocq, Antoine; Jensen, Annette Bruun; Kryger, Per; Nieh, James C

    2016-02-25

    Honey bees (Apis mellifera) are important pollinators and their health is threatened worldwide by persistent exposure to a wide range of factors including pesticides, poor nutrition, and pathogens. Nosema ceranae is a ubiquitous microsporidian associated with high colony mortality. We used lab micro-colonies of honey bees and video analyses to track the effects of N. ceranae infection and exposure on a range of individual and social behaviours in young adult bees. We provide detailed data showing that N. ceranae infection significantly accelerated the age polyethism of young bees, causing them to exhibit behaviours typical of older bees. Bees with high N. ceranae spore counts had significantly increased walking rates and decreased attraction to queen mandibular pheromone. Infected bees also exhibited higher rates of trophallaxis (food exchange), potentially reflecting parasite manipulation to increase colony infection. However, reduction in queen contacts could help bees limit the spread of infection. Such accelerated age polyethism may provide a form of behavioural immunity, particularly if it is elicited by a wide variety of pathogens.

  4. Found in Translation: Weather, your bees live or die

    Science.gov (United States)

    Honey bee colonies, along with humans and the rest of life on Earth, are strongly impacted by the weather. As a species, Apis mellifera has succeeded incredibly well from the tropics to the colder regions of Europe and Asia. With help from their human keepers, honey bees now live across most of the ...

  5. Toxicity assessment of glyphosate on honey bee (Apis mellifera) spermatozoa

    Science.gov (United States)

    During 2016-2017, 33.2% of managed honey bee colonies in the U.S. were lost due to Colony Collapse Disorder (CCD). Commonly used pesticides are among the suspected reasons for bee mortality. N-(phosphonomethyl)glycine (glyphosate) is a widely used herbicide in the U.S. and has previously been shown ...

  6. The basic concept of honey bee breeding programs

    NARCIS (Netherlands)

    Uzunov, A.; Brascamp, Pim; Büchler, R.

    2017-01-01

    Selective honey bee breeding is a phenomenon that fascinates beekeepers around the world. They often regard it as one of the most enigmatic and complex aspects of beekeeping. Indeed, according to our experiences participating in many international projects, both beekeepers and bee experts without a

  7. Urbanization Increases Pathogen Pressure on Feral and Managed Honey Bees

    Science.gov (United States)

    López-Uribe, Margarita M.; Tarpy, David R.; Frank, Steven D.

    2015-01-01

    Given the role of infectious disease in global pollinator decline, there is a need to understand factors that shape pathogen susceptibility and transmission in bees. Here we ask how urbanization affects the immune response and pathogen load of feral and managed colonies of honey bees (Apis mellifera Linnaeus), the predominant economically important pollinator worldwide. Using quantitative real-time PCR, we measured expression of 4 immune genes and relative abundance of 10 honey bee pathogens. We also measured worker survival in a laboratory bioassay. We found that pathogen pressure on honey bees increased with urbanization and management, and the probability of worker survival declined 3-fold along our urbanization gradient. The effect of management on pathogens appears to be mediated by immunity, with feral bees expressing immune genes at nearly twice the levels of managed bees following an immune challenge. The effect of urbanization, however, was not linked with immunity; instead, urbanization may favor viability and transmission of some disease agents. Feral colonies, with lower disease burdens and stronger immune responses, may illuminate ways to improve honey bee management. The previously unexamined effects of urbanization on honey-bee disease are concerning, suggesting that urban areas may favor problematic diseases of pollinators. PMID:26536606

  8. Determinants of poverty among bee farmers: An antidote for ...

    African Journals Online (AJOL)

    The study examined the poverty status of bee-farmers in two ecological zones of Kwara State, Nigeria with modern bee-keeping farmers as a case study. Primary data subjected to a pre-survey which involved structured questionnaire and interview schedule were administered using multistage random technique to selected ...

  9. A survey of indigenous knowledge of stingless bees (Apidae ...

    African Journals Online (AJOL)

    The indigenous knowledge on stingless bees was assessed using questionnaires and semi-directive methods from five farming communities around the Kakum National Park in the Central Region of. Ghana. Stingless bees are very good pollinators of both wild and cultivated crops and also produce honey and propolis that ...

  10. Bee Hunt! Ecojustice in Practice for Earth's Buzzing Biodiversity

    Science.gov (United States)

    Mueller, Michael P.; Pickering, John

    2010-01-01

    The Bee Hunt! project and curriculum are designed with cultural and environmental sensitivity in mind. In this project, K-12 students develop their awareness and understanding of science and investigate North American pollinator declines. Bees, butterflies, and other pollinators are integrally connected to the pollination of the world's crops for…

  11. The pollen-collecting activities of some andrenid bees

    NARCIS (Netherlands)

    Dingemans-Bakels, F.N.

    1972-01-01

    Information about the pollen-collecting activities of bees is usually based on field observations. From such records it cannot be inferred whether pollen was actually collected, as bees, especially the males, also may visit flowers to suck honey or to rest. One may expect more exact data from an

  12. Behavioural evidence of colour vision in free flying stingless bees.

    Science.gov (United States)

    Spaethe, J; Streinzer, M; Eckert, J; May, S; Dyer, A G

    2014-06-01

    Colour vision was first demonstrated with behavioural experiments in honeybees 100 years ago. Since that time a wealth of quality physiological data has shown a highly conserved set of trichromatic colour receptors in most bee species. Despite the subsequent wealth of behavioural research on honeybees and bumblebees, there currently is a relative dearth of data on stingless bees, which are the largest tribe of the eusocial bees comprising of more than 600 species. In our first experiment we tested Trigona cf. fuscipennis, a stingless bee species from Costa Rica in a field setting using the von Frisch method and show functional colour vision. In a second experiment with these bees, we use a simultaneous colour discrimination test designed for honeybees to enable a comparative analysis of relative colour discrimination. In a third experiment, we test in laboratory conditions Tetragonula carbonaria, an Australian stingless bee species using a similar simultaneous colour discrimination test. Both stingless bee species show relatively poorer colour discrimination compared to honeybees and bumblebees; and we discuss the value of being able to use these behavioural methods to efficiently extend our current knowledge of colour vision and discrimination in different bee species.

  13. A honey bee can threat ear: Sudden sensorineural hearing loss.

    Science.gov (United States)

    Düzenli, Ufuk; Bozan, Nazım; Ayral, Abdurrahman; Yalınkılıç, Abdülaziz; Kıroğlu, Ahmet Faruk

    2017-11-01

    Sudden sensorineural hearing loss is an otologic emergency. Many etiological factors can lead to this pathology. Honey bee (Apis mellifera) sting may lead to local and systemic reactions due to sensitization of the patient. In this paper we described a sudden sensorineural hearing loss occurred after honey bee sting. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Enzymatic basis of mannose toxicity in honey bees.

    Science.gov (United States)

    SOLS, A; CADENAS, E; ALVARADO, F

    1960-01-29

    Honey bees have a negligible amount of phosphomannoseisomerase, together with a high content of a hexokinase which phosphorylates mannose more efficiently than fructose or glucose. Competition at the phosphorylation level plus accumulation of mannose-6-phosphate can fully account for the toxicity of mannose in honey bees.

  15. A comparative study of marriage in honey bees optimisation (MBO ...

    African Journals Online (AJOL)

    2012-02-15

    Feb 15, 2012 ... lar social animals considered in swarm intelligence studies. Among different honey bee activities, foraging, nest site selec- tion and mating are the most important fields used to create artificial algorithms. Yonezawa and Kikuchi (1996) examined the foraging behavior of honey bees and constructed an ...

  16. Anthidium vigintiduopunctatum Friese (Hymenoptera: Megachilidae): The elusive "dwarf bee" of the Galapagos Archipelago

    Science.gov (United States)

    The endemic large carpenter bee, Xylocopa darwini Cockerell, was the only known bee pollinator to the Galapagos Archipelago but as early as 1964 locals also spoke of the "dwarf bee of Floreana". We report the presence of the wool carder bee, Anthidium vigintiduopunctatum Friese, on the island of Fl...

  17. 75 FR 76405 - Winter Bee, Inc., Provisional Acceptance of a Settlement Agreement and Order

    Science.gov (United States)

    2010-12-08

    ... CONSUMER PRODUCT SAFETY COMMISSION [CPSC Docket No. 11-C0002] Winter Bee, Inc., Provisional...(e).\\1\\ Published below is a provisionally-accepted Settlement Agreement with Winter Bee, Inc... 1. In accordance with 16 CFR 1118.20, Winter Bee, Inc. (``Winter Bee'') and the staff (``Staff'') of...

  18. An artificial bee colony algorithm for the capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Szeto, W.Y.; Wu, Yongzhong; Ho, Sin C.

    2011-01-01

    This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also...

  19. Comparative testing of different methods for evaluation of Varroa destructor infestation of honey bee colonies

    Directory of Open Access Journals (Sweden)

    Nikolay D. Dobrynin

    2011-09-01

    Full Text Available Different methods for evaluation of the degree of Varroa destructor infestation of honey bee colonies were tested. The methods using in vivo evaluation were the most sparing for the bees but less precise. The methods using evaluation with the killing of the bees or brood were the most precise but less sparing for bees.

  20. Ecological and evolutionary approaches to managing honey bee disease

    Science.gov (United States)

    Brosi, Berry J.; Delaplane, Keith S.; Boots, Michael; de Roode, Jacobus C.

    2017-01-01

    Honey bee declines are a serious threat to global agricultural security and productivity. While multiple factors contribute to these declines, parasites are a key driver. Disease problems in honey bees have intensified in recent years, despite increasing attention to addressing them. Here we argue that we must focus on the principles of disease ecology and evolution to understand disease dynamics, assess the severity of disease threats, and manage these threats via honey bee management. We cover the ecological context of honey bee disease, including both host and parasite factors driving current transmission dynamics, and then discuss evolutionary dynamics including how beekeeping management practices may drive selection for more virulent parasites. We then outline how ecological and evolutionary principles can guide disease mitigation in honey bees, including several practical management suggestions for addressing short- and long-term disease dynamics and consequences. PMID:29046562

  1. Bees without flowers: before peak bloom, diverse native bees find insect-produced honeydew sugars

    Science.gov (United States)

    Bee foragers respond to complex visual, olfactory, and extrasensory cues to optimize searches for floral rewards. Their abilities to detect and distinguish floral colors, shapes, volatiles, and ultraviolet signals, and even gauge nectar availability from changes in floral humidity or electric fields...

  2. Bee++: An Object-Oriented, Agent-Based Simulator for Honey Bee Colonies

    Directory of Open Access Journals (Sweden)

    Matthew Betti

    2017-03-01

    Full Text Available We present a model and associated simulation package (www.beeplusplus.ca to capture the natural dynamics of a honey bee colony in a spatially-explicit landscape, with temporally-variable, weather-dependent parameters. The simulation tracks bees of different ages and castes, food stores within the colony, pollen and nectar sources and the spatial position of individual foragers outside the hive. We track explicitly the intake of pesticides in individual bees and their ability to metabolize these toxins, such that the impact of sub-lethal doses of pesticides can be explored. Moreover, pathogen populations (in particular, Nosema apis, Nosema cerenae and Varroa mites have been included in the model and may be introduced at any time or location. The ability to study interactions among pesticides, climate, biodiversity and pathogens in this predictive framework should prove useful to a wide range of researchers studying honey bee populations. To this end, the simulation package is written in open source, object-oriented code (C++ and can be easily modified by the user. Here, we demonstrate the use of the model by exploring the effects of sub-lethal pesticide exposure on the flight behaviour of foragers.

  3. Molecular genetic analysis of Varroa destructor mites in brood, fallen injured mites and worker bee longevity in honey bees

    Science.gov (United States)

    Two important traits that contribute to honey bee (Apis mellifera) colony survival are resistance to Varroa destructor and longevity of worker bees. We investigated the relationship between a panel of single nucleotide polymorphism (SNP) markers and three phenotypic measurements of colonies: a) perc...

  4. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome.

    Science.gov (United States)

    Bromenshenk, Jerry J; Henderson, Colin B; Seccomb, Robert A; Welch, Phillip M; Debnam, Scott E; Firth, David R

    2015-10-30

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%-80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  5. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    Directory of Open Access Journals (Sweden)

    Jerry J. Bromenshenk

    2015-10-01

    Full Text Available This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management.

  6. Bees as Biosensors: Chemosensory Ability, Honey Bee Monitoring Systems, and Emergent Sensor Technologies Derived from the Pollinator Syndrome

    Science.gov (United States)

    Bromenshenk, Jerry J.; Henderson, Colin B.; Seccomb, Robert A.; Welch, Phillip M.; Debnam, Scott E.; Firth, David R.

    2015-01-01

    This review focuses on critical milestones in the development path for the use of bees, mainly honey bees and bumble bees, as sentinels and biosensors. These keystone species comprise the most abundant pollinators of agro-ecosystems. Pollinating 70%–80% of flowering terrestrial plants, bees and other insects propel the reproduction and survival of plants and themselves, as well as improve the quantity and quality of seeds, nuts, and fruits that feed birds, wildlife, and us. Flowers provide insects with energy, nutrients, and shelter, while pollinators are essential to global ecosystem productivity and stability. A rich and diverse milieu of chemical signals establishes and maintains this intimate partnership. Observations of bee odor search behavior extend back to Aristotle. In the past two decades great strides have been made in methods and instrumentation for the study and exploitation of bee search behavior and for examining intra-organismal chemical communication signals. In particular, bees can be trained to search for and localize sources for a variety of chemicals, which when coupled with emerging tracking and mapping technologies create novel potential for research, as well as bee and crop management. PMID:26529030

  7. Studies of learned helplessness in honey bees (Apis mellifera ligustica).

    Science.gov (United States)

    Dinges, Christopher W; Varnon, Christopher A; Cota, Lisa D; Slykerman, Stephen; Abramson, Charles I

    2017-04-01

    The current study reports 2 experiments investigating learned helplessness in the honey bee (Apis mellifera ligustica). In Experiment 1, we used a traditional escape method but found the bees' activity levels too high to observe changes due to treatment conditions. The bees were not able to learn in this traditional escape procedure; thus, such procedures may be inappropriate to study learned helplessness in honey bees. In Experiment 2, we used an alternative punishment, or passive avoidance, method to investigate learned helplessness. Using a master and yoked design where bees were trained as either master or yoked and tested as either master or yoked, we found that prior training with unavoidable and inescapable shock in the yoked condition interfered with avoidance and escape behavior in the later master condition. Unlike control bees, learned helplessness bees failed to restrict their movement to the safe compartment following inescapable shock. Unlike learned helplessness studies in other animals, no decrease in general activity was observed. Furthermore, we did not observe a "freezing" response to inescapable aversive stimuli-a phenomenon, thus far, consistently observed in learned helplessness tests with other species. The bees, instead, continued to move back and forth between compartments despite punishment in the incorrect compartment. These findings suggest that, although traditional escape methods may not be suitable, honey bees display learned helplessness in passive avoidance procedures. Thus, regardless of behavioral differences from other species, honey bees can be a unique invertebrate model organism for the study of learned helplessness. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Bee bread - perspective source of bioactive compounds for future

    Directory of Open Access Journals (Sweden)

    Eva Ivanišová

    2015-12-01

    Full Text Available Bee bread is product with long history used mainly in folk medicine. Nowadays, bee bread is growing in commercial interest due to its high nutritional properties. The objective of this study was to determine biological activity of ethanolic extract of bee bread obtained from selected region of Ukraine - Poltava oblast, Kirovohrad oblast, Vinnica oblast, Kyiv oblast, Dnepropetrovsk oblast. The antioxidant activity was measured with the radical scavenging assays using 1,1-diphenyl-2-picrylhydrazyl (DPPH radical as well as phosphomolybdenum assay. Total polyphenol content was determined with Folin-Ciocalteau reagent and total flavonoid content by aluminium-chloride method. Secondary was also evaluated antimicrobial activity in bee bread samples with disc diffusion method and minimum inhibitory concentrations. Antioxidant activity expressed as mg TEAC per g of dry weight (Trolox equivalent antioxidant capacity was the highest in bee bread from Poltava oblast in DPPH and also phosphomolybdenum method. Samples of bee bread contained high levels of total polyphenols (12.36 - 18.24 mg GAE - gallic acid equivalent per g of dry weight and flavonoids (13.56 - 18.24 μg QE - quercetin equivalent per g of dry weight with the best values of bee bread from Poltava oblast. An elevated level of antioxidant potential in the bee bread determines its biological properties, which conditioned of the biological active substances. The best antibacterial activity of bee bred with disc diffusion method was found against Bacillus thuringiensis CCM 19. The antibacterial activity inhibited by the bee bread extract in the present study indicate that best minimal inhibition concentration was against bacteria Escherichia coli CCM 3988 and Salmonella enterica subs. enterica CCM 3807.

  9. A Study on Major Components of Bee Venom Using Electrophoresis

    Directory of Open Access Journals (Sweden)

    Lee, Jin-Seon

    2000-12-01

    Full Text Available This study was designed to study on major components of various Bee Venom(Bee Venom by electrical stimulation in Korea; K-BV I, Bee Venom by Microwave stimulation in Korea; K -BV II, 0.5rng/ml, Fu Yu Pharmaceutical Factory, China; C-BV, 1mg /ml, Monmouth Pain Institute, Inc., U.S.A.; A-BV using Electrophoresis. The results were summarized as follows: 1. In 1:4000 Bee Venom solution rate, the band was not displayed distinctly usmg Electrophoresis. But in 1: 1000, the band showed clearly. 2. The results of Electrophoresis at solution rate 1:1000, K-BV I and K-BVII showed similar band. 3. The molecular weight of Phospholipase A2 was known as 19,000 but its band was seen at 17,000 in Electrophoresis. 4. Protein concentration of Bee Venom by Lowry method was different at solution rate 1:4000 ; C-BV was 250μg/ml, K-BV I was 190μg/ml, K-BV Ⅱ was 160μg/ml and C-BV was 45μg/ml. 5. Electrophoresis method was unuseful for analysis of Bee Venom when solution rate is above 1:4000 but Protein concentration of Bee Venom by Lowry method was possible. These data from the study can be applied to establish the standard measurement of Bee Venom and prevent pure bee venom from mixing of another components. I think it is desirable to study more about safety of Bee Venom as time goes by.

  10. Wing shape of four new bee fossils (Hymenoptera: Anthophila provides insights to bee evolution.

    Directory of Open Access Journals (Sweden)

    Manuel Dehon

    Full Text Available Bees (Anthophila are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.. We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini, and one digger bee (Anthophorini], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen. and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen. reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France.

  11. Wing shape of four new bee fossils (Hymenoptera: Anthophila) provides insights to bee evolution.

    Science.gov (United States)

    Dehon, Manuel; Michez, Denis; Nel, André; Engel, Michael S; De Meulemeester, Thibaut

    2014-01-01

    Bees (Anthophila) are one of the major groups of angiosperm-pollinating insects and accordingly are widely studied in both basic and applied research, for which it is essential to have a clear understanding of their phylogeny, and evolutionary history. Direct evidence of bee evolutionary history has been hindered by a dearth of available fossils needed to determine the timing and tempo of their diversification, as well as episodes of extinction. Here we describe four new compression fossils of bees from three different deposits (Miocene of la Cerdanya, Spain; Oligocene of Céreste, France; and Eocene of the Green River Formation, U.S.A.). We assess the similarity of the forewing shape of the new fossils with extant and fossil taxa using geometric morphometrics analyses. Predictive discriminant analyses show that three fossils share similar forewing shapes with the Apidae [one of uncertain tribal placement and perhaps near Euglossini, one definitive bumble bee (Bombini), and one digger bee (Anthophorini)], while one fossil is more similar to the Andrenidae. The corbiculate fossils are described as Euglossopteryx biesmeijeri De Meulemeester, Michez, & Engel, gen. nov. sp. nov. (type species of Euglossopteryx Dehon & Engel, n. gen.) and Bombus cerdanyensis Dehon, De Meulemeester, & Engel, sp. nov. They provide new information on the distribution and timing of particular corbiculate groups, most notably the extension into North America of possible Eocene-Oligocene cooling-induced extinctions. Protohabropoda pauli De Meulemeester & Michez, gen. nov. sp. nov. (type species of Protohabropoda Dehon & Engel, n. gen.) reinforces previous hypotheses of anthophorine evolution in terms of ecological shifts by the Oligocene from tropical to mesic or xeric habitats. Lastly, a new fossil of the Andreninae, Andrena antoinei Michez & De Meulemeester, sp. nov., further documents the presence of the today widespread genus Andrena Fabricius in the Late Oligocene of France.

  12. Intelligent Control for the BEES Flyer

    Science.gov (United States)

    Krishnakumar, K.; Gundy-Burlet, Karen; Aftosmis, Mike; Nemec, Marian; Limes, Greg; Berry, Misty; Logan, Michael

    2004-01-01

    This paper describes the effort to provide a preliminary capability analysis and a neural network based adaptive flight control system for the JPL-led BEES aircraft project. The BEES flyer was envisioned to be a small, autonomous platform with sensing and control systems mimicking those of biological systems for the purpose of scientific exploration on the surface of Mars. The platform is physically tightly constrained by the necessity of efficient packing within rockets for the trip to Mars. Given the physical constraints, the system is not an ideal configuration for aerodynamics or stability and control. The objectives of this effort are to evaluate the aerodynamics characteristics of the existing design, to make recommendaaons as to potential improvements and to provide a control system that stabilizes the existing aircraft for nominal flight and damaged conditions. Towards this several questions are raised and analyses are presented to arrive at answers to some of the questions raised. CART3D, a high-fidelity inviscid analysis package for conceptual and preliminary aerodynamic design, was used to compute a parametric set of solutions over the expected flight domain. Stability and control derivatives were extracted from the database and integrated with the neural flight control system. The Integrated Vehicle Modeling Environment (IVME) was also used for estimating aircraft geometric, inertial, and aerodynamic characteristics. A generic neural flight control system is used to provide adaptive control without the requirement for extensive gain scheduling or explicit system identification. The neural flight control system uses reference models to specify desired handling qualities in the roll, pitch, and yaw axes, and incorporates both pre-trained and on-line learning neural networks in the inverse model portion of the controller. Results are presented for the BEES aircraft in the subsonic regime for terrestrial and Martian environments.

  13. Honey Bee Colonies Remote Monitoring System.

    Science.gov (United States)

    Gil-Lebrero, Sergio; Quiles-Latorre, Francisco Javier; Ortiz-López, Manuel; Sánchez-Ruiz, Víctor; Gámiz-López, Victoria; Luna-Rodríguez, Juan Jesús

    2016-12-29

    Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD). The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees' work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee) based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive-monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.

  14. Patterns of parasitism by tracheal mites (Locustacarus buchneri) in natural bumble bee populations

    OpenAIRE

    Otterstatter , Michael; Whidden , Troy

    2004-01-01

    International audience; Parasitic mites are among the most destructive enemies of social bees. However, aside from mites of honey bees, virtually nothing is known about the prevalence and effects of parasitic mites in natural bee populations. In this paper, we report on parasitism of bumble bees (Bombus spp.) by the tracheal mite Locustacarus buchneri Stammer in south-western Alberta, Canada. Parasitism of bumble bees by L. buchneri occurred at many sites and in several host species. However,...

  15. Behavioral responses of honey bees (Apis mellifera) to natural and synthetic xenobiotics in food

    OpenAIRE

    Liao, Ling-Hsiu; Wu, Wen-Yen; Berenbaum, May R.

    2017-01-01

    While the natural foods of the western honey bee (Apis mellifera) contain diverse phytochemicals, in contemporary agroecosystems honey bees also encounter pesticides as floral tissue contaminants. Whereas some ubiquitous phytochemicals in bee foods up-regulate detoxification and immunity genes, thereby benefiting nestmates, many agrochemical pesticides adversely affect bee health even at sublethal levels. How honey bees assess xenobiotic risk to nestmates as they forage is poorly understood. ...

  16. Honey bee (Apis mellifera) nurses do not consume pollens based on their nutritional quality

    OpenAIRE

    Corby-Harris, Vanessa; Snyder, Lucy; Meador, Charlotte; Ayotte, Trace

    2018-01-01

    Honey bee workers (Apis mellifera) consume a variety of pollens to meet the majority of their requirements for protein and lipids. Recent work indicates that honey bees prefer diets that reflect the proper ratio of nutrients necessary for optimal survival and homeostasis. This idea relies on the precept that honey bees evaluate the nutritional composition of the foods provided to them. While this has been shown in bumble bees, the data for honey bees are mixed. Further, there is controversy a...

  17. A Cell Line Resource Derived from Honey Bee (Apis mellifera) Embryonic Tissues

    OpenAIRE

    Goblirsch, Michael J.; Spivak, Marla S.; Kurtti, Timothy J.

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to la...

  18. The Bee Microbiome: Impact on Bee Health and Model for Evolution and Ecology of Host-Microbe Interactions.

    Science.gov (United States)

    Engel, Philipp; Kwong, Waldan K; McFrederick, Quinn; Anderson, Kirk E; Barribeau, Seth Michael; Chandler, James Angus; Cornman, R Scott; Dainat, Jacques; de Miranda, Joachim R; Doublet, Vincent; Emery, Olivier; Evans, Jay D; Farinelli, Laurent; Flenniken, Michelle L; Granberg, Fredrik; Grasis, Juris A; Gauthier, Laurent; Hayer, Juliette; Koch, Hauke; Kocher, Sarah; Martinson, Vincent G; Moran, Nancy; Munoz-Torres, Monica; Newton, Irene; Paxton, Robert J; Powell, Eli; Sadd, Ben M; Schmid-Hempel, Paul; Schmid-Hempel, Regula; Song, Se Jin; Schwarz, Ryan S; vanEngelsdorp, Dennis; Dainat, Benjamin

    2016-04-26

    As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health. Copyright © 2016 Engel et al.

  19. Honey bees avoid nectar colonized by three bacterial species, but not by a yeast species, isolated from the bee gut.

    Science.gov (United States)

    Good, Ashley P; Gauthier, Marie-Pierre L; Vannette, Rachel L; Fukami, Tadashi

    2014-01-01

    The gut microflora of the honey bee, Apis mellifera, is receiving increasing attention as a potential determinant of the bees' health and their efficacy as pollinators. Studies have focused primarily on the microbial taxa that appear numerically dominant in the bee gut, with the assumption that the dominant status suggests their potential importance to the bees' health. However, numerically minor taxa might also influence the bees' efficacy as pollinators, particularly if they are not only present in the gut, but also capable of growing in floral nectar and altering its chemical properties. Nonetheless, it is not well understood whether honey bees have any feeding preference for or against nectar colonized by specific microbial species. To test whether bees exhibit a preference, we conducted a series of field experiments at an apiary using synthetic nectar inoculated with specific species of bacteria or yeast that had been isolated from the bee gut, but are considered minor components of the gut microflora. These species had also been found in floral nectar. Our results indicated that honey bees avoided nectar colonized by the bacteria Asaia astilbes, Erwinia tasmaniensis, and Lactobacillus kunkeei, whereas the yeast Metschnikowia reukaufii did not affect the feeding preference of the insects. Our results also indicated that avoidance of bacteria-colonized nectar was caused not by the presence of the bacteria per se, but by the chemical changes to nectar made by the bacteria. These findings suggest that gut microbes may not only affect the bees' health as symbionts, but that some of the microbes may possibly affect the efficacy of A. mellifera as pollinators by altering nectar chemistry and influencing their foraging behavior.

  20. Quality of durable cookies enriched with rape bee pollen

    Directory of Open Access Journals (Sweden)

    Miriam Solgajová

    2014-03-01

    Full Text Available The objective of this study was to enrich durable cookies with different additions of rape (Brassica napus var. napus bee pollen to increase nutritional properties of cookie samples and to improve technological and sensorial properties as well. Bee pollen is an important raw material due to its nutritional and functional properties. Cookie samples were prepared by substituting wheat flour with rape bee pollen in the amount of 16 % (1 g of bee pollen per cookie and 32 % (2 g of bee pollen per cookie using bee pollen from two localities Lenártovce and Nové Zámky. In baked samples beside sensory properties also chemical parameters and technological parameters of cookies were evaluated. It was found out that with the gradual addition of rape bee pollen the amount of ash content increased and the highest ash content was analysed in variants II and IV (0.71 and 0.77 % using 32 % addition of rape bee pollen. In terms of reducing sugars, addition of bee pollen caused that the content of reducing sugars in the products increased slightly. The highest reducing sugar content was determined in variant II. (24.59 %. On the other hand amount of crude protein the most considerably raised by addition of 2 g of pollen per cookie. The highest content of crude protein was analysed in variants II and IV (8.72 and 9.00 %. From the results of a linear models in which the dependent variables were the ash, crude protein and moisture it was determined the significant effect (p <0.05 only of the pollen addition. In the case of the model with the dependent variable reducing sugars it was found out significant effect (p<0.0001 of pollen addition and locality and their interactions. With the gradual addition of bee pollen values of technological parameters such as diameter and weight of cookies increased and thickness of products decreased. Based on sensory scores using a 9-point Hedonic scale the best sensorial acceptability (7.4 was found in variant I (1 g of bee

  1. Bee community shifts with landscape context in a tropical countryside.

    Science.gov (United States)

    Brosi, Berry J; Daily, Gretchen C; Ehrlich, Paul R

    2007-03-01

    The ongoing scientific controversy over a putative "global pollination crisis" underscores the lack of understanding of the response of bees (the most important taxon of pollinators) to ongoing global land-use changes. We studied the effects of distance to forest, tree management, and floral resources on bee communities in pastures (the dominant land-use type) in southern Costa Rica. Over two years, we sampled bees and floral resources in 21 pastures at three distance classes from a large (approximately 230-ha) forest patch and of three common types: open pasture; pasture with remnant trees; and pasture with live fences. We found no consistent differences in bee diversity or abundance with respect to pasture management or floral resources. Bee community composition, however, was strikingly different at forest edges as compared to deforested countryside only a few hundred meters from forest. At forest edges, native social stingless bees (Apidae: Meliponini) comprised approximately 50% of the individuals sampled, while the alien honeybee Apis mellifera made up only approximately 5%. Away from forests, meliponines dropped to approximately 20% of sampled bees, whereas Apis increased to approximately 45%. Meliponine bees were also more speciose at forest edge sites than at a distance from forest, their abundance decreased with continuous distance to the nearest forest patch, and their species richness was correlated with the proportion of forest cover surrounding sample sites at scales from 200 to 1200 m. Meliponines and Apis together comprise the eusocial bee fauna of the study area and are unique in quickly recruiting foragers to high-quality resources. The diverse assemblage of native meliponine bees covers a wide range of body sizes and flower foraging behavior not found in Apis, and populations of many bee species (including Apis), are known to fluctuate considerably from year to year. Thus, the forest-related changes in eusocial bee communities we found may have

  2. Why do Varroa mites prefer nurse bees?

    OpenAIRE

    Xie, Xianbing; Huang, Zachary Y.; Zeng, Zhijiang

    2016-01-01

    The Varroa mite, Varroa destructor, is an acarine ecto-parasite on Apis mellifera. It is the worst pest of Apis mellifera, yet its reproductive biology on the host is not well understood. In particular, the significance of the phoretic stage, when mites feed on adult bees for a few days, is not clear. In addition, it is not clear whether the preference of mites for nurses observed in the laboratory also happens inside real colonies. We show that Varroa mites prefer nurses over both newly emer...

  3. Chinese sacbrood virus infection in Asian honey bees (Apis cerana cerana) and host immune responses to the virus infection

    Science.gov (United States)

    Chinese Sacbrood virus (CSBV) is a common honey bee virus that infects both the European honey bee (A. mellifera) and the Asian honey bee (A. cerana). However, CSBV has much more devastating effects on Asian honey bees than on European honey bees, posing a serious threat to the agricultural and nat...

  4. Nosema ceranae escapes fumagillin control in honey bees.

    Science.gov (United States)

    Huang, Wei-Fone; Solter, Leellen F; Yau, Peter M; Imai, Brian S

    2013-03-01

    Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2) in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.

  5. Nosema ceranae escapes fumagillin control in honey bees.

    Directory of Open Access Journals (Sweden)

    Wei-Fone Huang

    2013-03-01

    Full Text Available Fumagillin is the only antibiotic approved for control of nosema disease in honey bees and has been extensively used in United States apiculture for more than 50 years for control of Nosema apis. It is toxic to mammals and must be applied seasonally and with caution to avoid residues in honey. Fumagillin degrades or is diluted in hives over the foraging season, exposing bees and the microsporidia to declining concentrations of the drug. We showed that spore production by Nosema ceranae, an emerging microsporidian pathogen in honey bees, increased in response to declining fumagillin concentrations, up to 100% higher than that of infected bees that have not been exposed to fumagillin. N. apis spore production was also higher, although not significantly so. Fumagillin inhibits the enzyme methionine aminopeptidase2 (MetAP2 in eukaryotic cells and interferes with protein modifications necessary for normal cell function. We sequenced the MetAP2 gene for apid Nosema species and determined that, although susceptibility to fumagillin differs among species, there are no apparent differences in fumagillin binding sites. Protein assays of uninfected bees showed that fumagillin altered structural and metabolic proteins in honey bee midgut tissues at concentrations that do not suppress microsporidia reproduction. The microsporidia, particularly N. ceranae, are apparently released from the suppressive effects of fumagillin at concentrations that continue to impact honey bee physiology. The current application protocol for fumagillin may exacerbate N. ceranae infection rather than suppress it.

  6. Varroa-virus interaction in collapsing honey bee colonies.

    Directory of Open Access Journals (Sweden)

    Roy M Francis

    Full Text Available Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI and Deformed Wing Virus (DWV were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries under three treatment conditions: Organic acids (11 colonies, pyrethroid (9 colonies and untreated (3 colonies. Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10 subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be carried over with the bees into the next season. In general, AKI and DWV titres did not show any notable response to the treatment and steadily increased over the season from April to October. In the untreated control group, titres increased most dramatically. Viral copies were correlated to number of varroa mites. Most colonies that collapsed over the winter had significantly higher AKI and DWV titres in October compared to survivors. Only treated colonies survived the winter. We discuss our results in relation to the varroa-virus model developed by Stephen Martin.

  7. Bee venom treatment for refractory postherpetic neuralgia: a case report.

    Science.gov (United States)

    Lee, Seung Min; Lim, Jinwoong; Lee, Jae-Dong; Choi, Do-Young; Lee, Sanghoon

    2014-03-01

    Bee venom has been reported to have antinociceptive and anti-inflammatory effects in experimental studies. However, questions still remain regarding the clinical use of bee venom. This report describes the successful outcome of bee venom treatment for refractory postherpetic neuralgia. A 72-year-old Korean man had severe pain and hypersensitivity in the region where he had developed a herpes zoster rash 2 years earlier. He was treated with antivirals, painkillers, steroids, and analgesic patches, all to no effect. The patient visited the East-West Pain Clinic, Kyung Hee University Medical Center, to receive collaborative treatment. After being evaluated for bee venom compatibility, he was treated with bee venom injections. A 1:30,000 diluted solution of bee venom was injected subcutaneously along the margins of the rash once per week for 4 weeks. Pain levels were evaluated before every treatment, and by his fifth visit, his pain had decreased from 8 to 2 on a 10-point numerical rating scale. He experienced no adverse effects, and this improvement was maintained at the 3-month, 6-month, and 1-year phone follow-up evaluations. Bee venom treatment demonstrates the potential to become an effective treatment for postherpetic neuralgia. Further large-sample clinical trials should be conducted to evaluate the overall safety and efficacy of this treatment.

  8. Therapeutic effect of bee pollens on acute radiation sickness

    International Nuclear Information System (INIS)

    Wang Mingsuo; Huang Chaoqun; Chen Zhen; Huang Meiying; Jiang Ying; Wang Tao

    1997-09-01

    The therapeutic effect of bee pollens on acute radiation sickness were evaluated by observing the changes in the peripheral white blood cell (PWBC) count, the total activity of superoxide dismutase (SOD) and the levels of lipid peroxides (LPO) in sera of the irradiated rats following P.O. administration of bee pollens. It was found that bee pollens could remarkably help irradiated rats recover from radiation-induced injury. The functions of bee pollens might be summarized as follows: (1) Stimulating Proliferation of PWBC. The PWBC count of the bee pollens group showed no significant difference as compared with the normal control group on the 30 th day postirradiation. (2) Enhancing antioxidative effect of clearing free radicals. The total activity of serum SOD in the bee pollens group increased by 6.48% as compared with the normal control group on the 30 th day after irradiation, and the LPO levels i.e. MDA and POV in sera of the irradiated rats decreased by 54.73% and 21.60% respectively. The result suggests that using bee pollens as antiradiation and health-promoting agents in clinical treatment of acute radiation sickness and during radiotherapy of patients with tumors may has certain practical value. (12 refs., 2 figs., 2 tabs.)

  9. Varroa-virus interaction in collapsing honey bee colonies.

    Science.gov (United States)

    Francis, Roy M; Nielsen, Steen L; Kryger, Per

    2013-01-01

    Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10 subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be carried over with the bees into the next season. In general, AKI and DWV titres did not show any notable response to the treatment and steadily increased over the season from April to October. In the untreated control group, titres increased most dramatically. Viral copies were correlated to number of varroa mites. Most colonies that collapsed over the winter had significantly higher AKI and DWV titres in October compared to survivors. Only treated colonies survived the winter. We discuss our results in relation to the varroa-virus model developed by Stephen Martin.

  10. Parasite Pressures on Feral Honey Bees (Apis mellifera sp.)

    Science.gov (United States)

    Thompson, Catherine E.; Biesmeijer, Jacobus C.; Allnutt, Theodore R.; Pietravalle, Stéphane; Budge, Giles E.

    2014-01-01

    Feral honey bee populations have been reported to be in decline due to the spread of Varroa destructor, an ectoparasitic mite that when left uncontrolled leads to virus build-up and colony death. While pests and diseases are known causes of large-scale managed honey bee colony losses, no studies to date have considered the wider pathogen burden in feral colonies, primarily due to the difficulty in locating and sampling colonies, which often nest in inaccessible locations such as church spires and tree tops. In addition, little is known about the provenance of feral colonies and whether they represent a reservoir of Varroa tolerant material that could be used in apiculture. Samples of forager bees were collected from paired feral and managed honey bee colonies and screened for the presence of ten honey bee pathogens and pests using qPCR. Prevalence and quantity was similar between the two groups for the majority of pathogens, however feral honey bees contained a significantly higher level of deformed wing virus than managed honey bee colonies. An assessment of the honey bee race was completed for each colony using three measures of wing venation. There were no apparent differences in wing morphometry between feral and managed colonies, suggesting feral colonies could simply be escapees from the managed population. Interestingly, managed honey bee colonies not treated for Varroa showed similar, potentially lethal levels of deformed wing virus to that of feral colonies. The potential for such findings to explain the large fall in the feral population and the wider context of the importance of feral colonies as potential pathogen reservoirs is discussed. PMID:25126840

  11. Pesticide Residues and Bees – A Risk Assessment

    Science.gov (United States)

    Sanchez-Bayo, Francisco; Goka, Koichi

    2014-01-01

    Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees. PMID:24718419

  12. Bumble bees (Bombus spp along a gradient of increasing urbanization.

    Directory of Open Access Journals (Sweden)

    Karin Ahrné

    Full Text Available BACKGROUND: Bumble bees and other wild bees are important pollinators of wild flowers and several cultivated crop plants, and have declined in diversity and abundance during the last decades. The main cause of the decline is believed to be habitat destruction and fragmentation associated with urbanization and agricultural intensification. Urbanization is a process that involves dramatic and persistent changes of the landscape, increasing the amount of built-up areas while decreasing the amount of green areas. However, urban green areas can also provide suitable alternative habitats for wild bees. METHODOLOGY/PRINCIPAL FINDINGS: We studied bumble bees in allotment gardens, i.e. intensively managed flower rich green areas, along a gradient of urbanization from the inner city of Stockholm towards more rural (periurban areas. Keeping habitat quality similar along the urbanization gradient allowed us to separate the effect of landscape change (e.g. proportion impervious surface from variation in habitat quality. Bumble bee diversity (after rarefaction to 25 individuals decreased with increasing urbanization, from around eight species on sites in more rural areas to between five and six species in urban allotment gardens. Bumble bee abundance and species composition were most affected by qualities related to the management of the allotment areas, such as local flower abundance. The variability in bumble bee visits between allotment gardens was higher in an urban than in a periurban context, particularly among small and long-tongued bumble bee species. CONCLUSIONS/SIGNIFICANCE: Our results suggest that allotment gardens and other urban green areas can serve as important alternatives to natural habitats for many bumble bee species, but that the surrounding urban landscape influences how many species that will be present. The higher variability in abundance of certain species in the most urban areas may indicate a weaker reliability of the ecosystem

  13. Pesticide residues and bees--a risk assessment.

    Directory of Open Access Journals (Sweden)

    Francisco Sanchez-Bayo

    Full Text Available Bees are essential pollinators of many plants in natural ecosystems and agricultural crops alike. In recent years the decline and disappearance of bee species in the wild and the collapse of honey bee colonies have concerned ecologists and apiculturalists, who search for causes and solutions to this problem. Whilst biological factors such as viral diseases, mite and parasite infections are undoubtedly involved, it is also evident that pesticides applied to agricultural crops have a negative impact on bees. Most risk assessments have focused on direct acute exposure of bees to agrochemicals from spray drift. However, the large number of pesticide residues found in pollen and honey demand a thorough evaluation of all residual compounds so as to identify those of highest risk to bees. Using data from recent residue surveys and toxicity of pesticides to honey and bumble bees, a comprehensive evaluation of risks under current exposure conditions is presented here. Standard risk assessments are complemented with new approaches that take into account time-cumulative effects over time, especially with dietary exposures. Whilst overall risks appear to be low, our analysis indicates that residues of pyrethroid and neonicotinoid insecticides pose the highest risk by contact exposure of bees with contaminated pollen. However, the synergism of ergosterol inhibiting fungicides with those two classes of insecticides results in much higher risks in spite of the low prevalence of their combined residues. Risks by ingestion of contaminated pollen and honey are of some concern for systemic insecticides, particularly imidacloprid and thiamethoxam, chlorpyrifos and the mixtures of cyhalothrin and ergosterol inhibiting fungicides. More attention should be paid to specific residue mixtures that may result in synergistic toxicity to bees.

  14. Disentangling metabolic functions of bacteria in the honey bee gut.

    Directory of Open Access Journals (Sweden)

    Lucie Kešnerová

    2017-12-01

    Full Text Available It is presently unclear how much individual community members contribute to the overall metabolic output of a gut microbiota. To address this question, we used the honey bee, which harbors a relatively simple and remarkably conserved gut microbiota with striking parallels to the mammalian system and importance for bee health. Using untargeted metabolomics, we profiled metabolic changes in gnotobiotic bees that were colonized with the complete microbiota reconstituted from cultured strains. We then determined the contribution of individual community members in mono-colonized bees and recapitulated our findings using in vitro cultures. Our results show that the honey bee gut microbiota utilizes a wide range of pollen-derived substrates, including flavonoids and outer pollen wall components, suggesting a key role for degradation of recalcitrant secondary plant metabolites and pollen digestion. In turn, multiple species were responsible for the accumulation of organic acids and aromatic compound degradation intermediates. Moreover, a specific gut symbiont, Bifidobacterium asteroides, stimulated the production of host hormones known to impact bee development. While we found evidence for cross-feeding interactions, approximately 80% of the identified metabolic changes were also observed in mono-colonized bees, with Lactobacilli being responsible for the largest share of the metabolic output. These results show that, despite prolonged evolutionary associations, honey bee gut bacteria can independently establish and metabolize a wide range of compounds in the gut. Our study reveals diverse bacterial functions that are likely to contribute to bee health and provide fundamental insights into how metabolic activities are partitioned within gut communities.

  15. Parallel inputs to memory in bee colour vision.

    Science.gov (United States)

    Horridge, Adrian

    2016-03-01

    In the 19(th) century, it was found that attraction of bees to light was controlled by light intensity irrespective of colour, and a few critical entomologists inferred that vision of bees foraging on flowers was unlike human colour vision. Therefore, quite justly, Professor Carl von Hess concluded in his book on the Comparative Physiology of Vision (1912) that bees do not distinguish colours in the way that humans enjoy. Immediately, Karl von Frisch, an assistant in the Zoology Department of the same University of Münich, set to work to show that indeed bees have colour vision like humans, thereby initiating a new research tradition, and setting off a decade of controversy that ended only at the death of Hess in 1923. Until 1939, several researchers continued the tradition of trying to untangle the mechanism of bee vision by repeatedly testing trained bees, but made little progress, partly because von Frisch and his legacy dominated the scene. The theory of trichromatic colour vision further developed after three types of receptors sensitive to green, blue, and ultraviolet (UV), were demonstrated in 1964 in the bee. Then, until the end of the century, all data was interpreted in terms of trichromatic colour space. Anomalies were nothing new, but eventually after 1996 they led to the discovery that bees have a previously unknown type of colour vision based on a monochromatic measure and distribution of blue and measures of modulation in green and blue receptor pathways. Meanwhile, in the 20(th) century, search for a suitable rationalization, and explorations of sterile culs-de-sac had filled the literature of bee colour vision, but were based on the wrong theory.

  16. Biodemographic analysis of male honey bee mortality

    Science.gov (United States)

    Rueppell, Olav; Fondrk, M. Kim; Page, Robert E.

    2008-01-01

    Summary Biodemographic studies of insects have significantly enhanced our understanding of the biology of aging. Eusocial insects have evolved to form different groups of colony members that are specialized for particular tasks and highly dependent on each other. These different groups (castes and sexes) also differ strongly in their life expectancy but relatively little is known about their mortality dynamics. In this study we present data on the age-specific flight activity and mortality of male honey bees from two different genetic lines that are exclusively dedicated to reproduction. We show that males initiating flight at a young age experience more flight events during their lifetime. No (negative) relation between the age at flight initiation and lifespan exists, as might be predicted on the basis of the antagonistic pleiotropy theory of aging. Furthermore, we fit our data to different aging models and conclude that overall a slight deceleration of the age-dependent mortality increase at advanced ages occurs. However, mortality risk increases according to the Gompertz–Makeham model when only days with flight activity (active days) are taken into account. Our interpretation of the latter is that two mortality components act on honey bee males during flight: increasing, age-dependent deaths (possibly from wear-and-tear), and age-independent deaths (possibly due to predation). The overall mortality curve is caused by the interaction of the distribution of age at foraging initiation and the mortality function during the active (flight) lifespan. PMID:15659209

  17. Wireless ZigBee home automation system

    Science.gov (United States)

    Craciunescu, Razvan; Halunga, Simona; Fratu, Octavian

    2015-02-01

    The home automation system concept existed for many years but in the last decade, due to the rapid development of sensors and wireless technologies, a large number of various such "intelligent homes" have been developed. The purpose of the present paper is to demonstrate the flexibility, reliability and affordability of home automation projects, based on a simple and affordable implementation. A wireless sensing and control system have been developed and tested, having a number of basic functionalities such as switching on/off the light according to ambient lighting and turning on/off the central heating. The system has been built around low power microcontrollers and ZigBee modems for wireless communication, using a set of Vishay 640 thermistor sensors for temperature measurements and Vishay LDR07 photo-resistor for humidity measurements. A trigger is activated when the temperature or light measurements are above/below a given threshold and a command is transmitted to the central unit through the ZigBee radio module. All the data processing is performed by a low power microcontroller both at the sensing device and at the control unit.

  18. Macroevolution of perfume signalling in orchid bees.

    Science.gov (United States)

    Weber, Marjorie G; Mitko, Lukasz; Eltz, Thomas; Ramírez, Santiago R

    2016-11-01

    Theory predicts that both stabilising selection and diversifying selection jointly contribute to the evolution of sexual signalling traits by (1) maintaining the integrity of communication signals within species and (2) promoting the diversification of traits among lineages. However, for many important signalling traits, little is known about whether these dynamics translate into predictable macroevolutionary signatures. Here, we test for macroevolutionary patterns consistent with sexual signalling theory in the perfume signals of neotropical orchid bees, a group well studied for their chemical sexual communication. Our results revealed both high species-specificity and elevated rates of evolution in perfume signals compared to nonsignalling traits. Perfume complexity was correlated with the number of congeners in a species' range, suggesting that perfume evolution may be tied to the remarkably high number of orchid bee species coexisting together in some neotropical communities. Finally, sister-pair comparisons were consistent with both rapid divergence at speciation and character displacement upon secondary contact. Together, our results provide new insight into the macroevolution of sexual signalling in insects. © 2016 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  19. Flower diversity and bee reproduction in an arid ecosystem

    Directory of Open Access Journals (Sweden)

    Jimena Dorado

    2016-07-01

    Full Text Available Background: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. Materials and Methods: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site, and whether such effects were modulated by bee generalization on floral resources. Results: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. Discussion: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the

  20. A Mathematical Model for the Bee Hive of Apis Mellifera

    Science.gov (United States)

    Antonioni, Alberto; Bellom, Fabio Enrici; Montabone, Andrea; Venturino, Ezio

    2010-09-01

    In this work we introduce and discuss a model for the bee hive, in which only adult bees and drones are modeled. The role that the latter have in the system is interesting, their population can retrieve even if they are totally absent from the bee hive. The feasibility and stability of the equilibria is studied numerically. A simplified version of the model shows the importance of the drones' role, in spite of the fact that it allows only a trivial equilibrium. For this simplified system, no Hopf bifurcations are shown to arise.

  1. Three Cases of Radial Nerve Palsy with Bee Venom Therapy

    Directory of Open Access Journals (Sweden)

    Kim Hyo-Soo

    2004-06-01

    Full Text Available Objectives : The purpose of this study is to report the efficiency of Bee Venom Therapy by managering of radial nerve palsy patients. Methods : Three patients were treatmented by Bee Venom therapy and acupucture therapy. And We took pictures of someone's wrist and checked the power of muscles by the improving phase. Results : Almost cases shows the improvement in the movement of wrist and the numbness of hand. By using acuputure and Bee Venom therapy, the symptoms of radial nerv palsy was more fastly recovered.

  2. REVIEW: The Diversity of Indigenous Honey Bee Species of Indonesia

    Directory of Open Access Journals (Sweden)

    SOESILAWATI HADISOESILO

    2001-01-01

    Full Text Available It has been known that Indonesia has the most diverse honey bee species in the world. At least five out of nine species of honey bees are native to Indonesia namely Apis andreniformis, A. dorsata, A. cerana, A. koschevnikovi, and A. nigrocincta. One species, A. florea, although it was claimed to be a species native to Indonesia, it is still debatable whether it is really found in Indonesia or not. The new species, A. nuluensis, which is found in Sabah, Borneo is likely to be found in Kalimantan but it has not confirmed yet. This paper discusses briefly the differences among those native honey bees.

  3. BEE AS ENVIRONMENTAL BIOINDICATOR: FIRST RESULTS IN PIEDMONT

    Directory of Open Access Journals (Sweden)

    P. Guaraldo

    2011-01-01

    Full Text Available Many investigators have employed honeybees or honeybee products (honey, wax, pollen as tools for assessing environmental pollution in industrial areas. Several reports refer of their utility in monitoring environmental radionuclides or heavy metal contamination. The objective of this study was to investigate the potential impact of pollution on Biella area, located in the east of Piedmont region. A survey of 6 apiaries was carried out, samples of: honey, beeswax, bees and pollen were collected and analyzed for: pesticides and PCB, neonicotinoides and heavy metal; by GC/MS, LC/MS/MS or AAS. We found 23% of samples of bees contained neonicotinoides, suggesting the correlation with bees mortality.

  4. Radioactive contamination of honey and other bee-keeping products

    International Nuclear Information System (INIS)

    Frantsevich, L.I.; Komissar, A.D.; Levchenko, I.A.

    1990-01-01

    Great amount of dust is collected in propolis under emergency atmospheric fallouts. Specific coefficient of the product migration amounts to several m 2 per 1 kg. Propolis is a good biological indicator of radioactive fallouts. The propolis collection is inadmissible after radioactive fallouts. Cocoon residuals obtained during bees-wax separation contain many radionuclides and should be disposed in special places. Nuclides are absent in bees-wax. Nuclides accumulated absent in a bee organism migrate into honey and queen milk, the honey is contaminated mainly via biogenic path

  5. The corbiculate bees arose from New World oil-collecting bees: implications for the origin of pollen baskets.

    Science.gov (United States)

    Martins, Aline C; Melo, Gabriel A R; Renner, Susanne S

    2014-11-01

    The economically most important group of bees is the "corbiculates", or pollen basket bees, some 890 species of honeybees (Apis), bumblebees (Bombus), stingless bees (Meliponini), and orchid bees (Euglossini). Molecular studies have indicated that the corbiculates are closest to the New World genera Centris, with 230 species, and Epicharis, with 35, albeit without resolving the precise relationships. Instead of concave baskets, these bees have hairy hind legs on which they transport pollen mixed with floral oil, collected with setae on the anterior and middle legs. We sampled two-thirds of all Epicharis, a third of all Centris, and representatives of the four lineages of corbiculates for four nuclear gene regions, obtaining a well-supported phylogeny that has the corbiculate bees nested inside the Centris/Epicharis clade. Fossil-calibrated molecular clocks, combined with a biogeographic reconstruction incorporating insights from the fossil record, indicate that the corbiculate clade arose in the New World and diverged from Centris 84 (72-95)mya. The ancestral state preceding corbiculae thus was a hairy hind leg, perhaps adapted for oil transport as in Epicharis and Centris bees. Its replacement by glabrous, concave baskets represents a key innovation, allowing efficient transport of plant resins and large pollen/nectar loads and freeing the corbiculate clade from dependence on oil-offering flowers. The transformation could have involved a novel function of Ubx, the gene known to change hairy into smooth pollen baskets in Apis and Bombus. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Efficiency of local Indonesia honey bees (Apis cerana L.) and stingless bee (Trigona iridipennis) on tomato (Lycopersicon esculentum Mill.) pollination.

    Science.gov (United States)

    Putra, Ramadhani Eka; Kinasih, Ida

    2014-01-01

    Tomato (Lycopersicon esculentum Mill.) is considered as one of major agricultural commodity of Indonesia farming. However, monthly production is unstable due to lack of pollination services. Common pollinator agent of tomatoes is bumblebees which is unsuitable for tropical climate of Indonesia and the possibility of alteration of local wild plant interaction with their pollinator. Indonesia is rich with wild bees and some of the species already domesticated for years with prospect as pollinating agent for tomatoes. This research aimed to assess the efficiency of local honey bee (Apis cerana L.) and stingless bee (Trigona iridipennis), as pollinator of tomato. During this research, total visitation rate and total numbers of pollinated flowers by honey bee and stingless bee were compared between them with bagged flowers as control. Total fruit production, average weight and size also measured in order to correlated pollination efficiency with quantity and quality of fruit produced. Result of this research showed that A. cerana has slightly higher rate of visitation (p>0.05) and significantly shorter handling time (p tomato flowers. However, honey bee pollinated tomato flowers more efficient pollinator than stingless bee (80.3 and 70.2% efficiency, respectively; p tomatoes were similar (p>0.05). Based on the results, it is concluded that the use of Apis cerana and Trigona spp., for pollinating tomatoes in tropical climates could be an alternative to the use of non-native Apis mellifera and bumblebees (Bombus spp.). However, more researches are needed to evaluate the cost/benefit on large-scale farming and greenhouse pollination using both bees against other bee species and pollination methods.

  7. Vanishing honey bees: Is the dying of adult worker bees a consequence of short telomeres and premature aging?

    Science.gov (United States)

    Stindl, Reinhard; Stindl, Wolfgang

    2010-10-01

    Einstein is often quoted to have said that without the bee, mankind would have but 4years to live. It is highly unlikely that he made this comment, which was even mentioned in a Lancet article on honey bees. However, the current vanishing of the bees can have serious consequences for human health, because 35% of the human diet is thought to benefit from pollination. Colony collapse disorder (CCD) in honey bees is characterized by the rapid decline of the adult bee population, leaving the brood and the queen poorly or completely unattended, with no dead bodies in or around the hive. A large study found no evidence that the presence or amount of any individual pesticide or infectious agent occurred more frequently or abundantly in CCD-affected colonies. The growing consensus is that honey bees are suffering from comprised immune systems, which allow various infectious pathogens to invade. The question remains, what causes immunosuppression in many colonies of Apis mellifera in North America and Europe? Telomeres are protective DNA structures located at eukaryotic chromosome tips that shorten in the somatic tissues of animals with age. Lifelong tissue regeneration takes place in Apis mellifera, and worker bees have been shown to senesce. In humans, a vast amount of literature has accumulated on exhausted telomere reserves causing impaired tissue regeneration and age-associated diseases, specifically cancer and immunosuppression. Therefore, we propose a new causative mechanism for the vanishing of the bees: critically short telomeres in long-lived winter bees. We term this the telomere premature aging syndrome. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Abundance and Diversity of Native Bumble Bees Associated with Agricultural Crops: The Willamette Valley Experience

    Directory of Open Access Journals (Sweden)

    Sujaya Rao

    2010-01-01

    Full Text Available There are widespread concerns about declining populations of bumble bees due to conversion of native habitats to agroecosystems. Certain cropping systems, however, provide enormous foraging resources, and are beneficial for population build up of native bees, especially eusocial bees such as bumble bees. In this review, we present evidence of a flourishing bumble bee fauna in the Willamette Valley in western Oregon which we believe is sustained by cultivation of bee-pollinated crops which bloom in sequence, and in synchrony with foraging by queens and workers of a complex of bumble bee species. In support of our perspective, we describe the Oregon landscape and ascribe the large bumble bee populations to the presence of a pollen source in spring (cultivated blueberries followed by one in summer (red clover seed crops. Based on our studies, we recommend integration into conservation approaches of multiple agroecosystems that bloom in sequence for sustaining and building bumble bee populations.

  9. The Comparison of Effectiveness between Bee Venom and Sweet Bee Venom Therapy on Low back pain with Radiating pain

    OpenAIRE

    Lee Tae-ho; Hwang Hee-sang; Chang So-young; Cha Jung-ho; Jung Ki-hoon; Lee Eun-young; Roh Jeongdu

    2007-01-01

    Objective : The aim of this study is to investigate if Sweet Bee Venom therapy has the equal effect in comparison with Bee Venom Therapy on Low back pain with Radiation pain. Methods : Clinical studies were done 24 patients who were treated low back pain with radiation pain to Dept. of Acupuncture & Moxibusition, of Oriental Medicine Se-Myung University from April 1, 2007 to September 30, 2007. Subjects were randomly divided into two groups ; Bee Venom treated group(Group A, n=10), Sweet B...

  10. Policy Mitigating Acute Risk to Bees from Pesticide Products

    Science.gov (United States)

    Pesticide risk management must be based on sound science, consistent with the laws under which pesticides are regulated in the United States. EPA has been working aggressively to protect bees and other pollinators from pesticide exposures.

  11. Preliminary observations on enemies of stingless bees and ...

    African Journals Online (AJOL)

    Preliminary observations on enemies of stingless bees and honeybee (Apis Mellifera adansonii L.) Colonies from the Miticivanga- Tshibinda sector east of Kahuzi Biega National Park, South-Kivu Province, eastern DR Congo.

  12. Sympatric speciation: perfume preferences of orchid bee lineages.

    Science.gov (United States)

    Jackson, Duncan E

    2008-12-09

    Female attraction to an environmentally derived mating signal released by male orchid bees may be tightly linked to shared olfactory preferences of both sexes. A change in perfume preference may have led to divergence of two morphologically distinct lineages.

  13. Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

    OpenAIRE

    T. Vigneswari; M. A. Maluk Mohamed

    2015-01-01

    Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...

  14. Interactions between Cooccurring Lactic Acid Bacteria in Honey Bee Hives.

    Science.gov (United States)

    Rokop, Z P; Horton, M A; Newton, I L G

    2015-10-01

    In contrast to the honey bee gut, which is colonized by a few characteristic bacterial clades, the hive of the honey bee is home to a diverse array of microbes, including many lactic acid bacteria (LAB). In this study, we used culture, combined with sequencing, to sample the LAB communities found across hive environments. Specifically, we sought to use network analysis to identify microbial hubs sharing nearly identical operational taxonomic units, evidence which may indicate cooccurrence of bacteria between environments. In the process, we identified interactions between noncore bacterial members (Fructobacillus and Lactobacillaceae) and honey bee-specific "core" members. Both Fructobacillus and Lactobacillaceae colonize brood cells, bee bread, and nectar and may serve the role of pioneering species, establishing an environment conducive to the inoculation by honey bee core bacteria. Coculture assays showed that these noncore bacterial members promote the growth of honey bee-specific bacterial species. Specifically, Fructobacillus by-products in spent medium supported the growth of the Firm-5 honey bee-specific clade in vitro. Metabolic characterization of Fructobacillus using carbohydrate utilization assays revealed that this strain is capable of utilizing the simple sugars fructose and glucose, as well as the complex plant carbohydrate lignin. We tested Fructobacillus for antibiotic sensitivity and found that this bacterium, which may be important for establishment of the microbiome, is sensitive to the commonly used antibiotic tetracycline. Our results point to the possible significance of "noncore" and environmental microbial community members in the modulation of honey bee microbiome dynamics and suggest that tetracycline use by beekeepers should be limited. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  15. Current knowledge of detoxification mechanisms of xenobiotic in honey bees.

    Science.gov (United States)

    Gong, Youhui; Diao, Qingyun

    2017-01-01

    The western honey bee Apis mellifera is the most important managed pollinator species in the world. Multiple factors have been implicated as potential causes or factors contributing to colony collapse disorder, including honey bee pathogens and nutritional deficiencies as well as exposure to pesticides. Honey bees' genome is characterized by a paucity of genes associated with detoxification, which makes them vulnerable to specific pesticides, especially to combinations of pesticides in real field environments. Many studies have investigated the mechanisms involved in detoxification of xenobiotics/pesticides in honey bees, from primal enzyme assays or toxicity bioassays to characterization of transcript gene expression and protein expression in response to xenobiotics/insecticides by using a global transcriptomic or proteomic approach, and even to functional characterizations. The global transcriptomic and proteomic approach allowed us to learn that detoxification mechanisms in honey bees involve multiple genes and pathways along with changes in energy metabolism and cellular stress response. P450 genes, is highly implicated in the direct detoxification of xenobiotics/insecticides in honey bees and their expression can be regulated by honey/pollen constitutes, resulting in the tolerance of honey bees to other xenobiotics or insecticides. P450s is also a key detoxification enzyme that mediate synergism interaction between acaricides/insecticides and fungicides through inhibition P450 activity by fungicides or competition for detoxification enzymes between acaricides. With the wide use of insecticides in agriculture, understanding the detoxification mechanism of insecticides in honey bees and how honeybees fight with the xenobiotis or insecticides to survive in the changing environment will finally benefit honeybees' management.

  16. The Adoption of Russian Varroa-Resistant Honey Bees

    OpenAIRE

    Kim, Seon-Ae; Westra, John V.; Gillespie, Jeffrey M.

    2006-01-01

    Factors influencing the adoption of Russian Varroa-Resistant honey bees were assessed using a double hurdle model. Results indicate factors associated with the adoption include sales over $1,000 of bee related products, residence in the delta states, internet use, and membership in the AHPA. Negatively associated factors are high percentage of income coming from beekeeping, and membership in the ABF. Intensity of adoption increased with frequent contact with the USDA, and decreased with great...

  17. Effects of cocaine on honey bee dance behaviour

    OpenAIRE

    Barron, Andrew B.; Maleszka, Ryszard; Helliwell, Paul G.; Robinson, Gene E.

    2008-01-01

    The role of cocaine as an addictive drug of abuse in human society is hard to reconcile with its ecological role as a natural insecticide and plant-protective compound, preventing herbivory of coca plants (Erythroxylum spp.). This paradox is often explained by proposing a fundamental difference in mammalian and invertebrate responses to cocaine, but here we show effects of cocaine on honey bees (Apis mellifera L.) that parallel human responses. Forager honey bees perfo...

  18. Fire influences the structure of plant-bee networks.

    Science.gov (United States)

    Peralta, Guadalupe; Stevani, Erica L; Chacoff, Natacha P; Dorado, Jimena; Vázquez, Diego P

    2017-10-01

    Fire represents a frequent disturbance in many ecosystems, which can affect plant-pollinator assemblages and hence the services they provide. Furthermore, fire events could affect the architecture of plant-pollinator interaction networks, modifying the structure and function of communities. Some pollinators, such as wood-nesting bees, may be particularly affected by fire events due to damage to the nesting material and its long regeneration time. However, it remains unclear whether fire influences the structure of bee-plant interactions. Here, we used quantitative plant-wood-nesting bee interaction networks sampled across four different post-fire age categories (from freshly-burnt to unburnt sites) in an arid ecosystem to test whether the abundance of wood-nesting bees, the breadth of resource use and the plant-bee community structure change along a post-fire age gradient. We demonstrate that freshly-burnt sites present higher abundances of generalist than specialist wood-nesting bees and that this translates into lower network modularity than that of sites with greater post-fire ages. Bees do not seem to change their feeding behaviour across the post-fire age gradient despite changes in floral resource availability. Despite the effects of fire on plant-bee interaction network structure, these mutualistic networks seem to be able to recover a few years after the fire event. This result suggests that these interactions might be highly resilient to this type of disturbance. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  19. BEE VENOM TOLERANCE IN WHITE MICE IN RELATION TO DIET.

    Science.gov (United States)

    BENTON, A W; MORSE, R G; GUNNISON, A F

    1964-09-25

    In white mice the consumption of a high protein diet either just before, or over a period of 3 days prior to, the injection of venom from the honey bee Apis mellifera L. markedly increases the number of deaths. Conversely, a period of starvation or a nonprotein diet fed to white mice for 3 days prior to the injection of bee venom significantly reduces the number of deaths.

  20. Causes and Scale of Winter Flights in Honey Bee (Apis Mellifera Carnica ) Colonies

    OpenAIRE

    Węgrzynowicz Paweł; Gerula Dariusz; Bieńkowska Małgorzata; Panasiuk Beata

    2014-01-01

    Winter honey bee losses were evaluated during the two overwintering periods of 2009/2010 and 2010/2011. The research included dead bee workers that fell on the hive bottom board (debris) and the ones that flew out of the hive. Differences were observed in the number of bees fallen as debris between the two periods, whereas the number of bees flying out was similar in both years. No differences were found between the numbers of dead bees in strong and weak colonies. The percentage of bees flyi...

  1. ZigBee-based remote patient monitoring.

    Science.gov (United States)

    Fernandez-Lopez, Helena; Afonso, José Augusto; Correia, José Higino; Simões, Ricardo

    2012-01-01

    This paper describes a developed continuous patient monitoring system based on the ZigBee protocol. The system was tested in the hospital environment using six sensor devices in two different modes. For electrocardiogram transmission and in the absence of hidden-nodes, the system achieved a mean delivery ratio of 100% and 98.56%, respectively for star and 2-hop tree network topologies. When sensor devices were arranged in a way that three of them were unable to hear the transmissions made by the other three, the mean delivery ratio dropped to 83.96%. However, when sensor devices were reprogrammed to transmit only heart rate values, the mean delivery ratio increased to 99.90%, despite the presence of hidden-nodes.

  2. Propolis Counteracts Some Threats to Honey Bee Health

    Science.gov (United States)

    Simone-Finstrom, Michael; Borba, Renata S.; Wilson, Michael; Spivak, Marla

    2017-01-01

    Honey bees (Apis mellifera) are constantly dealing with threats from pathogens, pests, pesticides and poor nutrition. It is critically important to understand how honey bees’ natural immune responses (individual immunity) and collective behavioral defenses (social immunity) can improve bee health and productivity. One form of social immunity in honey bee colonies is the collection of antimicrobial plant resins and their use in the nest architecture as propolis. We review research on the constitutive benefits of propolis on the honey bee immune system, and its known therapeutic, colony-level effects against the pathogens Paenibacillus larvae and Ascosphaera apis. We also review the limited research on the effects of propolis against other pathogens, parasites and pests (Nosema, viruses, Varroa destructor, and hive beetles) and how propolis may enhance bee products such as royal jelly and honey. Although propolis may be a source of pesticide contamination, it also has the potential to be a detoxifying agent or primer of detoxification pathways, as well as increasing bee longevity via antioxidant-related pathways. Throughout this paper, we discuss opportunities for future research goals and present ways in which the beekeeping community can promote propolis use in standard colonies, as one way to improve and maintain colony health and resiliency. PMID:28468244

  3. Social polymorphism in the sweat beeLasioglossum(Evylaeus)calceatum.

    Science.gov (United States)

    Davison, P J; Field, J

    Temperate-zone socially polymorphic sweat bees (Hymenoptera: Halictidae) are ideal model systems for elucidating the origins of eusociality, a major evolutionary transition. Bees express either social or solitary behaviour in different parts of their range, and social phenotype typically correlates with season length. Despite their obvious utility, however, socially polymorphic sweat bees have received relatively little attention with respect to understanding the origins of eusociality. Lasioglossum ( Evylaeus ) calceatum is a widespread sweat bee that is thought to be socially polymorphic, with important potential as an experimental model species. We first determined the social phenotype of L. calceatum at three sites located at different latitudes within the UK. We then investigated sociality in detail across two years at the southernmost site. We found that L. calceatum exhibits latitudinal social polymorphism within the UK; bees were solitary at our two northern sites but the majority of nests were social at our southern site. Sociality in the south was characterised by a relatively small mean of two and 3.5 workers per nest in each year, respectively, and a small to medium mean caste-size dimorphism of 6.6 %. Foundresses were smaller in our more northern and high altitude populations. Sociality is clearly less specialised than in some closely related obligately social species but probably more specialied than other polymorphic sweat bees. Our research provides a starting point for future experimental work to investigate mechanisms underlying social polymorphism in L . calceatum .

  4. Range and Frequency of Africanized Honey Bees in California (USA)

    Science.gov (United States)

    Kono, Yoshiaki; Kohn, Joshua R.

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California’s central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee. PMID:26361047

  5. Advances and limitations of visual conditioning protocols in harnessed bees.

    Science.gov (United States)

    Avarguès-Weber, Aurore; Mota, Theo

    2016-10-01

    Bees are excellent invertebrate models for studying visual learning and memory mechanisms, because of their sophisticated visual system and impressive cognitive capacities associated with a relatively simple brain. Visual learning in free-flying bees has been traditionally studied using an operant conditioning paradigm. This well-established protocol, however, can hardly be combined with invasive procedures for studying the neurobiological basis of visual learning. Different efforts have been made to develop protocols in which harnessed honey bees could associate visual cues with reinforcement, though learning performances remain poorer than those obtained with free-flying animals. Especially in the last decade, the intention of improving visual learning performances of harnessed bees led many authors to adopt distinct visual conditioning protocols, altering parameters like harnessing method, nature and duration of visual stimulation, number of trials, inter-trial intervals, among others. As a result, the literature provides data hardly comparable and sometimes contradictory. In the present review, we provide an extensive analysis of the literature available on visual conditioning of harnessed bees, with special emphasis on the comparison of diverse conditioning parameters adopted by different authors. Together with this comparative overview, we discuss how these diverse conditioning parameters could modulate visual learning performances of harnessed bees. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Bee products prevent agrichemical-induced oxidative damage in fish.

    Directory of Open Access Journals (Sweden)

    Daiane Ferreira

    Full Text Available In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™ and a group that was exposed to 0.88 mg L(-1 of TEB alone (corresponding to 16.6% of the 96-h LC50. We show that waterborne bee products, including royal jelly (RJ, honey (H, bee pollen (BP and propolis (P, reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD, catalase (CAT and glutathione-S-transferase (GST are increased.

  7. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    Science.gov (United States)

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  8. Range and Frequency of Africanized Honey Bees in California (USA).

    Science.gov (United States)

    Kono, Yoshiaki; Kohn, Joshua R

    2015-01-01

    Africanized honey bees entered California in 1994 but few accounts of their northward expansion or their frequency relative to European honey bees have been published. We used mitochondrial markers and morphometric analyses to determine the prevalence of Africanized honeybees in San Diego County and their current northward progress in California west of the Sierra Nevada crest. The northernmost African mitotypes detected were approximately 40 km south of Sacramento in California's central valley. In San Diego County, 65% of foraging honey bee workers carry African mitochondria and the estimated percentage of Africanized workers using morphological measurements is similar (61%). There was no correlation between mitotype and morphology in San Diego County suggesting Africanized bees result from bidirectional hybridization. Seventy percent of feral hives, but only 13% of managed hives, sampled in San Diego County carried the African mitotype indicating that a large fraction of foraging workers in both urban and rural San Diego County are feral. We also found a single nucleotide polymorphism at the DNA barcode locus COI that distinguishes European and African mitotypes. The utility of this marker was confirmed using 401 georeferenced honey bee sequences from the worldwide Barcode of Life Database. Future censuses can determine whether the current range of the Africanized form is stable, patterns of introgression at nuclear loci, and the environmental factors that may limit the northern range of the Africanized honey bee.

  9. The Colombian wild bees: Why and how to preserve them

    Directory of Open Access Journals (Sweden)

    Guiomar Nates Parra

    2000-01-01

    Full Text Available The Colombian wild bees, as well as those in the rest of the whole world are undergoing the rigor of human activities and so are considered to be under threat of extinction. The current knowledge about Colombian bees, like other insects, is still in its beginnings, is fragmentated and a synthesis is desirable. Only 5% of the Colombian bees are well known, especially the corbiculates bees of the Apidae family. A small bitin taxonomic work has been done by Colombian researchers and nothing else has been contributed by foreign ones. Not having enough resources, plus the difficulties to send material overseas and the lack of specialist on the subject, have made the work more difficult. However, the great variety of species that is thought to be found in our country represent a reason to do research for a better understanding of this group biodiversity. An analisis of the main causes of risk (deforestation, grazing, africanized honeybees and bad explotation of native bees for the wild apifauna ispresented. Some propossals are provided to protect these species, that will be more fruitfull by joint cooperation with academic centers, farmers, countryman, indianpopulation and the whole society. We must have in mind that throug pollination bees become important pieces into the ecosistem, allowing the conservation of many vegetal species and other comunities.

  10. Honey Bee Colonies Remote Monitoring System

    Directory of Open Access Journals (Sweden)

    Sergio Gil-Lebrero

    2016-12-01

    Full Text Available Bees are very important for terrestrial ecosystems and, above all, for the subsistence of many crops, due to their ability to pollinate flowers. Currently, the honey bee populations are decreasing due to colony collapse disorder (CCD. The reasons for CCD are not fully known, and as a result, it is essential to obtain all possible information on the environmental conditions surrounding the beehives. On the other hand, it is important to carry out such information gathering as non-intrusively as possible to avoid modifying the bees’ work conditions and to obtain more reliable data. We designed a wireless-sensor networks meet these requirements. We designed a remote monitoring system (called WBee based on a hierarchical three-level model formed by the wireless node, a local data server, and a cloud data server. WBee is a low-cost, fully scalable, easily deployable system with regard to the number and types of sensors and the number of hives and their geographical distribution. WBee saves the data in each of the levels if there are failures in communication. In addition, the nodes include a backup battery, which allows for further data acquisition and storage in the event of a power outage. Unlike other systems that monitor a single point of a hive, the system we present monitors and stores the temperature and relative humidity of the beehive in three different spots. Additionally, the hive is continuously weighed on a weighing scale. Real-time weight measurement is an innovation in wireless beehive—monitoring systems. We designed an adaptation board to facilitate the connection of the sensors to the node. Through the Internet, researchers and beekeepers can access the cloud data server to find out the condition of their hives in real time.

  11. Insecticide Susceptibility in Asian Honey Bees (Apis cerana (Hymenoptera: Apidae)) and Implications for Wild Honey Bees in Asia.

    Science.gov (United States)

    Yasuda, Mika; Sakamoto, Yoshiko; Goka, Koichi; Nagamitsu, Teruyoshi; Taki, Hisatomo

    2017-04-01

    To conserve local biodiversity and ensure the provision of pollination services, it is essential to understand the impact of pesticides on wild honey bees. Most studies that have investigated the effects of pesticides on honey bees have focused on the European honey bee (Apis mellifera (Hymenoptera: Apidae)), which is commonly domesticated worldwide. However, the Asian honey bee (Apis cerana) is widely distributed throughout Asia, and toxicity data are lacking for this species. This study aimed to fill this important knowledge gap. In this study, we determined the acute contact toxicity in A. cerana to various pesticides, including neonicotinoids, fipronil, organophosphorus, synthetic pyrethroids, carbamate, and anthranilic diamide. Based on the test duration of 48 h of contact LD50 tests, A. cerana was most sensitive to dinotefuran (0.0014 μg/bee), followed by thiamethoxam (0.0024 μg/bee) and fipronil (0.0025 μg/bee). Dinotefuran is used extensively in Asia, thereby potentially creating a substantial hazard. More generally, A. cerana was approximately one order of magnitude more sensitive than was A. mellifera to most of the pesticides evaluated. The results of our study suggest that neonicotinoid pesticides should not be considered as a single group that acts uniformly on all honey bees, and that more careful management strategies are required to conserve A. cerana populations than A. mellifera. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Experimental Study on the comparison of antibacterial and antioxidant effects between the Bee Venom and Sweet Bee Venom

    OpenAIRE

    Joong chul An; Ki Rok Kwon; Eun Hee Lee; Bae Chun Cha

    2006-01-01

    Objectives : This study was conducted to compare antibacterial activities and free radical scavenging activity between the Bee Venom and Sweet Bee Venom in which the allergy-causing enzyme is removed. Methods : To evaluate antibacterial activities of the test samples, gram negative E. coli and gram positive St. aureus were compared using the paper disc method. For comparison of the antioxidant effects, DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical scavenging assay and Thiobarbituric Ac...

  13. Vegetation Management and Host Density Influence Bee-Parasite Interactions in Urban Gardens.

    Science.gov (United States)

    Cohen, Hamutahl; Quistberg, Robyn D; Philpott, Stacy M

    2017-12-08

    Apocephalus borealis phorid flies, a parasitoid of bumble bees and yellow jacket wasps in North America, was recently reported as a novel parasitoid of the honey bee Apis mellifera Linnaeus (Hymenoptera: Apidae). Little is known about the ecology of this interaction, including phorid fecundity on bee hosts, whether phorid-bee parasitism is density dependent, and which local habitat and landscape features may correlate with changes in parasitism rates for either bumble or honey bees. We examined the impact of local and landscape drivers and host abundance on phorid parasitism of A. mellifera and the bumble bee Bombus vosnesenskii Radoszkowski (Hymenoptera: Apidae). We worked in 19 urban gardens along the North-Central Coast of California, where phorid parasitism of honey bees was first reported in 2012. We collected and incubated bees for phorid emergence, and surveyed local vegetation, ground cover, and floral characteristics as well as land cover types surrounding gardens. We found that phorid parasitism was higher on bumble bees than on honey bees, and phorids produced nearly twice as many pupae on individual bumble bee hosts than on honey bee hosts. Parasitism of both bumble and honey bees increased with abundance of honey bees in a site. Differences in landscape surroundings did not correlate with parasitism, but local factors related to bee resource provisioning (e.g., tree and shrub abundance) positively correlated with increased parasitism. This research thus helps to document and describe conditions that may have facilitated phorid fly host shift to honey bees and further elucidate how resource provisioning in urban gardens influences bee-parasite interactions. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Multiple Virus Infections and the Characteristics of Chronic Bee Paralysis Virus in Diseased Honey Bees (Apis Mellifera L. in China

    Directory of Open Access Journals (Sweden)

    Wu Yan Y.

    2015-12-01

    Full Text Available China has the largest number of managed honey bee colonies globally, but there is currently no data on viral infection in diseased A. mellifera L. colonies in China. In particular, there is a lack of data on chronic bee paralysis virus (CBPV in Chinese honey bee colonies. Consequently, the present study investigated the occurrence and frequency of several widespread honey bee viruses in diseased Chinese apiaries, and we used the reverse transcription-polymerase chain reaction (RT-PCR assay. Described was the relationship between the presence of CBPV and diseased colonies (with at least one of the following symptoms: depopulation, paralysis, dark body colorings and hairless, or a mass of dead bees on the ground surrounding the beehives. Phylogenetic analyses of CBPV were employed. The prevalence of multiple infections of honey bee viruses in diseased Chinese apiaries was 100%, and the prevalence of infections with even five and six viruses were higher than expected. The incidence of CBPV in diseased colonies was significantly higher than that in apparently healthy colonies in Chinese A. mellifera aparies, and CBPV isolates from China can be separated into Chinese-Japanese clade 1 and 2. The results indicate that beekeeping in China may be threatened by colony decline due to the high prevalence of multiple viruses with CBPV.

  15. Bumble Bees (Bombus terrestris use mechanosensory hairs to detect electric fields

    Directory of Open Access Journals (Sweden)

    Sutton Gregory

    2016-01-01

    Full Text Available Bees and flowers have an intricate relationship which benefits both organisms. Plants provide nectar bees, in turn, distribute pollen to fertilize plants. To make pollination work, flowers need a mechanism to incentivize individual bees to visit only a single species of flower. Flowers, like modern advertising agencies, use multiple senses to create a floral ‘brand’ that is easily recognized. Size, smell, colour, touch, and even temperature are used to allow bees to differentiate between flower species. Recently, a new sense has been found that is usable by bees to differentiate flowers, an ‘electric sense’: they can identify flowers based only on the flower’s electric field. This new sense provides a novel example of how flowers differentiate themselves to bees and has obvious implications for how bees and flowers interact with the electrical world around us. Bumble bees detect this electric field by using their body hairs, which bend in the presence of electric charge.

  16. Bee communities along a prairie restoration chronosequence: similar abundance and diversity, distinct composition.

    Science.gov (United States)

    Tonietto, Rebecca K; Ascher, John S; Larkin, Daniel J

    2017-04-01

    Recognition of the importance of bee conservation has grown in response to declines of managed honey bees and some wild bee species. Habitat loss has been implicated as a leading cause of declines, suggesting that ecological restoration is likely to play an increasing role in bee conservation efforts. In the midwestern United States, restoration of tallgrass prairie has traditionally targeted plant community objectives without explicit consideration for bees. However, restoration of prairie vegetation is likely to provide ancillary benefits to bees through increased foraging and nesting resources. We investigated community assembly of bees across a chronosequence of restored eastern tallgrass prairies and compared patterns to those in control and reference habitats (old fields and prairie remnants, respectively). We collected bees for 3 yr and measured diversity and abundance of in-bloom flowering plants, vegetation structure, ground cover, and surrounding land use as predictors of bee abundance and bee taxonomic and functional diversity. We found that site-level variables, but not site type or restoration age, were significant predictors of bee abundance (bloom diversity, P = 0.004; bare ground cover, P = 0.02) and bee diversity (bloom diversity, P = 0.01). There were significant correlations between overall composition of bee and blooming plant communities (Mantel test, P = 0.002), and both plant and bee assemblages in restorations were intermediate between those of old fields and remnant prairies. Restorations exhibited high bee beta diversity, i.e., restored sites' bee assemblages were taxonomically and functionally differentiated from each other. This pattern was strong in younger restorations (20 yr), suggesting restored prairie bee communities become more similar to one another and more similar to remnant prairie bee communities over time with the arrival of more species and functional groups of bees. Our results indicate that old fields

  17. STUDIES ON THE RESISTANCE TO WINTERING OF THE ITALIAN BEES APIS MELLIFERA LIGUSTICA REARED IN ROMANIA

    OpenAIRE

    MONICA PÂRVU; CORINA AURELIA ZUGRAVU; IOANA CRISTINA ANDRONIE; CARMEN BERGHEŞ; IUDITH IPATE

    2009-01-01

    The study was conducted on bee families of Apis mellifera carpatica and Apis mellifera ligustica breeds. The bees were housed in multi-storey hives. The experimental period was of 6 months. The resistance to wintering was evaluated on the basis of several apicultural indicators: mortality, feed intake during the winter, general state of the family. Mortality was 35% during wintering for the Carpathian bee and 52% for the Italian bee. The differences were very significant (p≤0.001). When winte...

  18. Influence of pollen nutrition on honey bee health: do pollen quality and diversity matter?

    Directory of Open Access Journals (Sweden)

    Garance Di Pasquale

    Full Text Available Honey bee colonies are highly dependent upon the availability of floral resources from which they get the nutrients (notably pollen necessary to their development and survival. However, foraging areas are currently affected by the intensification of agriculture and landscape alteration. Bees are therefore confronted to disparities in time and space of floral resource abundance, type and diversity, which might provide inadequate nutrition and endanger colonies. The beneficial influence of pollen availability on bee health is well-established but whether quality and diversity of pollen diets can modify bee health remains largely unknown. We therefore tested the influence of pollen diet quality (different monofloral pollens and diversity (polyfloral pollen diet on the physiology of young nurse bees, which have a distinct nutritional physiology (e.g. hypopharyngeal gland development and vitellogenin level, and on the tolerance to the microsporidian parasite Nosemaceranae by measuring bee survival and the activity of different enzymes potentially involved in bee health and defense response (glutathione-S-transferase (detoxification, phenoloxidase (immunity and alkaline phosphatase (metabolism. We found that both nurse bee physiology and the tolerance to the parasite were affected by pollen quality. Pollen diet diversity had no effect on the nurse bee physiology and the survival of healthy bees. However, when parasitized, bees fed with the polyfloral blend lived longer than bees fed with monofloral pollens, excepted for the protein-richest monofloral pollen. Furthermore, the survival was positively correlated to alkaline phosphatase activity in healthy bees and to phenoloxydase activities in infected bees. Our results support the idea that both the quality and diversity (in a specific context of pollen can shape bee physiology and might help to better understand the influence of agriculture and land-use intensification on bee nutrition and health.

  19. Expermental Studies of quantitative evaluation using HPLC and safety of Sweet Bee Venom

    OpenAIRE

    Ki Rok Kwon; Ching Seng Chu; Hee Soo Park; Min Ki Kim; Bae Chun Cha; Eun Lee

    2007-01-01

    Objectives : This study was conducted to carry out quantitative evaluation and safety of Sweet Bee Venom. Methods : Content analysis was done using HPLC, measurement of LD50 was conducted intravenous, subcutaneous, and intra-muscular injection to the ICR mice. Results : 1. According to HPLC analysis, removal of the enzymes containing phospholipase A2 was successfully rendered on Sweet Bee Venom. And analyzing melittin content, Sweet Bee Venom contained 12% more melittin than Bee Venom. ...

  20. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    OpenAIRE

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycli...

  1. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators

    OpenAIRE

    Goulson, Dave; Hughes, William O H

    2015-01-01

    Bees naturally suffer from a broad range of parasites, including mites, protozoans, bacteria, fungi and viruses. Some appear to be host-specific, but most appear able to infect multiple bee species, and some are found in insects outside of the Hymenoptera. The host range, natural geographic range and virulence in different hosts are poorly understood for most bee parasites. It is of considerable concern that the anthropogenic movement of bees species for crop pollination purposes has led to t...

  2. Landscaping pebbles attract nesting by the native ground-nesting bee Halictus rubicundus (Hymenoptera: Halictidae)

    Science.gov (United States)

    Most species of bees nest underground. Recent interest in pollinator-friendly gardens and landscaping focuses on planting suitable flowering species for bees, but we know little about providing for the ground-nesting needs of bees other than leaving them bare dirt surfaces. In this study, a surfac...

  3. Diversity and human perceptions of bees (Hymenoptera: Apoidea) in Southeast Asian megacities.

    Science.gov (United States)

    Sing, Kong-Wah; Wang, Wen-Zhi; Wan, Tao; Lee, Ping-Shin; Li, Zong-Xu; Chen, Xing; Wang, Yun-Yu; Wilson, John-James

    2016-10-01

    Urbanization requires the conversion of natural land cover to cover with human-constructed elements and is considered a major threat to biodiversity. Bee populations, globally, are under threat; however, the effect of rapid urban expansion in Southeast Asia on bee diversity has not been investigated. Given the pressing issues of bee conservation and urbanization in Southeast Asia, coupled with complex factors surrounding human-bee coexistence, we investigated bee diversity and human perceptions of bees in four megacities. We sampled bees and conducted questionnaires at three different site types in each megacity: a botanical garden, central business district, and peripheral suburban areas. Overall, the mean species richness and abundance of bees were significantly higher in peripheral suburban areas than central business districts; however, there were no significant differences in the mean species richness and abundance between botanical gardens and peripheral suburban areas or botanical gardens and central business districts. Urban residents were unlikely to have seen bees but agreed that bees have a right to exist in their natural environment. Residents who did notice and interact with bees, even though being stung, were more likely to have positive opinions towards the presence of bees in cities.

  4. A New Threat to Honey Bees, the Parasitic Phorid Fly Apocephalus borealis

    Science.gov (United States)

    Core, Andrew; Runckel, Charles; Ivers, Jonathan; Quock, Christopher; Siapno, Travis; DeNault, Seraphina; Brown, Brian; DeRisi, Joseph; Smith, Christopher D.; Hafernik, John

    2012-01-01

    Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD), a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD. PMID:22235317

  5. Generalist bees pollinate red-flowered Penstemon eatonii: Duality in the hummingbird pollination syndrome

    Science.gov (United States)

    James H. Cane; Rick. Dunne

    2014-01-01

    The red tubular flowers of Penstemon eatonii (Plantaginaceae) typify the classic pollination syndrome for hummingbirds. Bees are thought to diminish its seed siring potential, but we found that foraging female generalist bees (Apis, Anthophora) deposited substantial amounts of conspecific pollen on P. eatonii stigmas. In the absence of hummingbirds, bee pollination of...

  6. A new threat to honey bees, the parasitic phorid fly Apocephalus borealis.

    Directory of Open Access Journals (Sweden)

    Andrew Core

    Full Text Available Honey bee colonies are subject to numerous pathogens and parasites. Interaction among multiple pathogens and parasites is the proposed cause for Colony Collapse Disorder (CCD, a syndrome characterized by worker bees abandoning their hive. Here we provide the first documentation that the phorid fly Apocephalus borealis, previously known to parasitize bumble bees, also infects and eventually kills honey bees and may pose an emerging threat to North American apiculture. Parasitized honey bees show hive abandonment behavior, leaving their hives at night and dying shortly thereafter. On average, seven days later up to 13 phorid larvae emerge from each dead bee and pupate away from the bee. Using DNA barcoding, we confirmed that phorids that emerged from honey bees and bumble bees were the same species. Microarray analyses of honey bees from infected hives revealed that these bees are often infected with deformed wing virus and Nosema ceranae. Larvae and adult phorids also tested positive for these pathogens, implicating the fly as a potential vector or reservoir of these honey bee pathogens. Phorid parasitism may affect hive viability since 77% of sites sampled in the San Francisco Bay Area were infected by the fly and microarray analyses detected phorids in commercial hives in South Dakota and California's Central Valley. Understanding details of phorid infection may shed light on similar hive abandonment behaviors seen in CCD.

  7. Foraging behaviour of equatorial Afrotropical stingless bees: habitat selection and competition for resources

    NARCIS (Netherlands)

    Kajobe, R.

    2008-01-01

    This thesis is a result of fieldwork on foraging ecology of Afrotropical stingless bees in Uganda. This is because most studies on stingless bee ecology are largely based in South America and South-east Asia and have ignored the aspects of Afrotropical stingless bees. The central question is how the

  8. Conversion of high and low pollen protein diets into protein in worker honey bees (Hymenoptera: Apidae).

    Science.gov (United States)

    Basualdo, M; Barragán, S; Vanagas, L; García, C; Solana, H; Rodríguez, E; Bedascarrasbure, E

    2013-08-01

    Adequate protein levels are necessary to maintain strong honey bee [Apis mellifera (L.)] colonies. The aim of this study was to quantify how pollens with different crude protein contents influence protein stores within individual honey bees. Caged bees were fed one of three diets, consisting of high-protein-content pollen, low-protein-content pollen, or protein-free diet as control; measurements were made based on protein content in hemolymph and fat body, fat body weight, and body weight. Vitellogenin in hemolymph was also measured. Bees fed with high crude protein diet had significantly higher levels of protein in hemolymph and fat bodies. Caged bees did not increase pollen consumption to compensate for the lower protein in the diet, and ingesting approximately 4 mg of protein per bee could achieve levels of 20 microg/microl protein in hemolymph. Worker bees fed with low crude protein diet took more time in reaching similar protein content of the bees that were fed with high crude protein diet. The data showed that fat bodies and body weight were not efficient methods of measuring the protein status of bees. The determination of total protein or vitellogenin concentration in the hemolymph from 13-d-old bees and protein concentration of fat bodies from 9-d-old bees could be good indicators of nutritional status of honey bees.

  9. Gender-bias primes elicit queen-bee responses among senior Policewomen

    NARCIS (Netherlands)

    Derks, B.; Laar, C. van; Ellemers, N.; Groot, K. de

    2011-01-01

    Queen bees are senior women in male-dominated organizations who have achieved success by emphasizing how they differ from other women. Although the behavior of queen bees tends to be seen as contributing to gender disparities in career outcomes, we argue that queen-bee behavior is actually a result

  10. Bee diversity effects on pollination depend on functional complementarity and niche shifts.

    Science.gov (United States)

    Fründ, Jochen; Dormann, Carsten F; Holzschuh, Andrea; Tscharntke, Teja

    2013-09-01

    Biodiversity is important for many ecosystem processes. Global declines in pollinator diversity and abundance have been recognized, raising concerns about a pollination crisis of crops and wild plants. However, experimental evidence for effects of pollinator species diversity on plant reproduction is extremely scarce. We established communities with 1-5 bee species to test how seed production of a plant community is determined by bee diversity. Higher bee diversity resulted in higher seed production, but the strongest difference was observed for one compared to more than one bee species. Functional complementarity among bee species had a far higher explanatory power than bee diversity, suggesting that additional bee species only benefit pollination when they increase coverage of functional niches. In our experiment, complementarity was driven by differences in flower and temperature preferences. Interspecific interactions among bee species contributed to realized functional complementarity, as bees reduced interspecific overlap by shifting to alternative flowers in the presence of other species. This increased the number of plant species visited by a bee community and demonstrates a new mechanism for a biodiversity-function relationship ("interactive complementarity"). In conclusion, our results highlight both the importance of bee functional diversity for the reproduction of plant communities and the need to identify complementarity traits for accurately predicting pollination services by different bee communities.

  11. Critical PO2 of developing Megachile rotundata, the alfalfa leaf-cutting bee

    Science.gov (United States)

    The alfalfa leaf-cutting bee, Megachile rotundata, is a solitary, cavity-nesting bee. Juvenile bees develop inside brood cells constructed out of leaf pieces. During development inside the brood cell, pre-pupae may experience hypoxic conditions from both the cavity nesting behavior and brood cell ...

  12. How honey bees of successive age classes are distributed over a one storey, ten frames hive

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Cornelissen, B.; Donders, J.N.L.C.; Blacquière, T.; Dooremalen, van C.

    2012-01-01

    In honey bee studies focusing on physiology, disease diagnosis or bio indication, bees are sampled from the colony. This raises the question of where in the colony samples must be taken from for specific study objectives. In this study we recorded where bees of known age are found in the hive. We

  13. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed Wing Virus

    Science.gov (United States)

    The impact of Deformed wing virus (DWV) on Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks [Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL)] to DWV infection to that of Italian ho...

  14. Status of breeding and use of Russian and VSH bees world-wide

    Science.gov (United States)

    Research at the USDA Honey Bee Breeding, Genetics and Physiology Laboratory produced two types of honey bees (Apis mellifera) with resistance to Varroa destructor. Colonies of these bees host mite populations that remain small enough to allow beekeepers to eliminate or reduce miticide treatments. S...

  15. Spore loads and immune responses of honey bees naturally infected by Nosema ceranae

    Science.gov (United States)

    Nosema ceranae, a microsporidia parasite originally found in Asian honey bees, Apis cerana, causes widespread infection in adult workers of European honey bees, Apis mellifera, and has often been linked to honey bee colony losses worldwide. Previous investigations of the host immune response to N. c...

  16. Ecology and economics of using native managed bees for almond pollination

    Science.gov (United States)

    Evidence of the efficacy of using managed native bees, rather than or concurrently with honey bees, in crop pollination is increasing. However, a broader ecological economic framework for evaluating the costs and benefits of using these bees has not been developed. We conducted a cost-benefit analy...

  17. Rapid behavioral maturation accelerates failure of stressed honey bee colonies.

    Science.gov (United States)

    Perry, Clint J; Søvik, Eirik; Myerscough, Mary R; Barron, Andrew B

    2015-03-17

    Many complex factors have been linked to the recent marked increase in honey bee colony failure, including pests and pathogens, agrochemicals, and nutritional stressors. It remains unclear, however, why colonies frequently react to stressors by losing almost their entire adult bee population in a short time, resulting in a colony population collapse. Here we examine the social dynamics underlying such dramatic colony failure. Bees respond to many stressors by foraging earlier in life. We manipulated the demography of experimental colonies to induce precocious foraging in bees and used radio tag tracking to examine the consequences of precocious foraging for their performance. Precocious foragers completed far fewer foraging trips in their life, and had a higher risk of death in their first flights. We constructed a demographic model to explore how this individual reaction of bees to stress might impact colony performance. In the model, when forager death rates were chronically elevated, an increasingly younger forager force caused a positive feedback that dramatically accelerated terminal population decline in the colony. This resulted in a breakdown in division of labor and loss of the adult population, leaving only brood, food, and few adults in the hive. This study explains the social processes that drive rapid depopulation of a colony, and we explore possible strategies to prevent colony failure. Understanding the process of colony failure helps identify the most effective strategies to improve colony resilience.

  18. Cytosine modifications in the honey bee (Apis mellifera worker genome

    Directory of Open Access Journals (Sweden)

    Erik Magne Koscielniak Rasmussen

    2015-02-01

    Full Text Available Epigenetic changes enable genomes to respond to changes in the environment, such as altered nutrition, activity, or social setting. Epigenetic modifications, thereby, provides a source of phenotypic plasticity in many species. The honey bee (Apis mellifera uses nutritionally sensitive epigenetic control mechanisms in the development of the royal caste (queens and the workers. The workers are functionally sterile females that can take on a range of distinct physiological and/or behavioral phenotypes in response to environmental changes. Honey bees have a wide repertoire of epigenetic mechanisms which, as in mammals, includes cytosine methylation, hydroxymethylated cytosines, together with the enzymatic machinery responsible for these cytosine modifications. Current data suggests that honey bees provide an excellent system for studying the social repertoire of the epigenome. In this review, we elucidate what is known so far about the honey bee epigenome and its mechanisms. Our discussion includes what may distinguish honey bees from other model animals, how the epigenome can influence worker behavioral task separation, and how future studies can answer central questions about the role of the epigenome in social behavior.

  19. Honey bee: a consumer’s point of view

    Directory of Open Access Journals (Sweden)

    Zavodna Lucie Sara

    2016-09-01

    Full Text Available This article concerns the way bee products are perceived by customers. It is mainly focused on honey, which is considered the main output product of beekeeping. Beekeeping is a very popular activity in the Czech Republic. Based on current data there are over 48 thousand people engaged in beekeeping in the Czech Republic. Hand in hand with the increasing number of beekeepers the popularity of bee products - especially honey - among Czech consumers is also growing. Recently, the consumption of honey in the Czech Republic has been slightly increasing. A big problem today is that honey sold in Czech supermarkets is frequently falsified. At the same time, it is increasingly popular to buy honey directly from beekeepers. The aim of this research was to describe the situation about the honey market in the Czech Republic, and also to examine the relationship between consumers on the one hand, and honey/beekeepers on the other. We have also considered customer's trust in organic honey and honey sold in supermarket chains. Results show that consumers view bee products as generally healthy and prefer to buy bee products from a beekeeper because of greater convenience as locally sourced honey is perceived to be of higher quality. The majority of consumers agree with paying a higher price for a product of higher quality. The article confirmed the hypothesis that most people think that bee products sold by a beekeeper are healthier than those bought at ordinary shops.

  20. Do sexist organizational cultures create the Queen Bee?

    Science.gov (United States)

    Derks, Belle; Ellemers, Naomi; van Laar, Colette; de Groot, Kim

    2011-09-01

    'Queen Bees' are senior women in masculine organizational cultures who have fulfilled their career aspirations by dissociating themselves from their gender while simultaneously contributing to the gender stereotyping of other women. It is often assumed that this phenomenon contributes to gender discrimination in organizations, and is inherent to the personalities of successful career women. We argue for a social identity explanation and examine organizational conditions that foster the Queen Bee phenomenon. Participants were 94 women holding senior positions in diverse companies in The Netherlands who participated in an on-line survey. In line with predictions, indicators of the Queen Bee phenomenon (increased gender stereotyping and masculine self-descriptions) were found mostly among women who indicated they had started their career with low gender identification and who had subsequently experienced a high degree of gender discrimination on their way up. By contrast, the experience of gender discrimination was unrelated to signs of the Queen Bee phenomenon among women who indicated to be highly identified when they started their career. Results are discussed in light of social identity theory, interpreting the Queen Bee phenomenon as an individual mobility response of low gender identified women to the gender discrimination they encounter in their work. ©2010 The British Psychological Society.

  1. Hydroxymethylfurfural: a possible emergent cause of honey bee mortality?

    Science.gov (United States)

    Zirbes, Lara; Nguyen, Bach Kim; de Graaf, Dirk C; De Meulenaer, Bruno; Reybroeck, Wim; Haubruge, Eric; Saegerman, Claude

    2013-12-11

    Hydroxymethylfurfural (HMF), a common product of hexose degradation occurring during the Maillard reaction and caramelization, has been found toxic for rats and mice. It could cause a potential health risk for humans due to its presence in many foods, sometimes exceeding 1 g/kg (in certain dried fruits and caramel products), although the latter still is controversial. HMF can also be consumed by honey bees through bad production batches of sugar syrups that are offered as winter feeding. In Belgium, abnormal losses of honey bee colonies were observed in colonies that were fed with syrup of inverted beet sugar containing high concentrations of HMF (up to 475 mg/kg). These losses suggest that HMF could be implicated in bee mortality, a topic that so far has received only little attention. This paper reviews the current knowledge of the presence of HMF in honey bee environment and possible consequences on bee mortality. Some lines of inquiry for further toxicological analysis are likewise proposed.

  2. Bee assemblage in habitats associated with Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Rosana Halinski

    2015-09-01

    Full Text Available ABSTRACTAssessments in agricultural crops indicate that alterations in the landscape adjacent to the crops can result in reduced productivity due to loss or low abundance of pollinating agents. In the canola crop, production is partially dependent on insect pollination. Therefore, knowledge of the faunal diversity within and near crop fields is key for the management of these insects and consequently for the increase in productivity. This study aimed to determine and compare the diversity of bees in habitats associated with canola fields in southern Brazil. Bees were captured in four agricultural areas using pan traps in three habitat classes: (1 flowering canola crop, (2 forest remnant, and (3 grassland vegetation. The highest abundance of bees was observed in the grassland vegetation (50% and in the flowering canola field (47%. Eight species common to the three habitat classes were recorded, four of which are represented by native social bees. In addition, a single or a few individuals represented species that were exclusive to a specific habitat class; eight species were collected exclusively in the interior of the canola field, 51 in the grassland vegetation, and six in the forest remnant. The majority of the rare species recorded exhibits subsocial or solitary behaviour and inhabit open places. The composition of bee groups differed between the habitats showing the importance of maintaining habitat mosaics with friendly areas for pollinators, which promote the pollination service for canola flowers.

  3. Bee genera, diversity and abundance in genetically modified canola fields.

    Science.gov (United States)

    O'Brien, Colton; Arathi, H S

    2018-03-12

    Intensive agricultural practices resulting in large scale habitat loss ranks as the top contributing factors in the global bee decline. Growing Genetically Modified Herbicide Tolerant (GMHT) crops as large monocultures has resulted extensive applications of herbicides leading to the degradation of natural habitats surrounding farmlands. Herbicide tolerance trait is beneficial for crops such as Canola (Brassica napus) that are extremely vulnerable to weed competition. While the trait in itself does not harm pollinators, growing genetically modified herbicide tolerant cultivars indirectly contributes towards pollinator declines through habitat loss. Canola, a mass-flowering crop is highly attractive to bee pollinators and the extensive adoption of the herbicide tolerant trait has led to depletion of non-crop floral resources. Extensive use of herbicide in and near fields with herbicide tolerant cultivars systematically eliminates semi-natural habitats around agricultural fields which consist of non-crop flowering plants. Planting pollinator strips provides floral resources for bees after crop flowering. We document the bee genera in canola and the adjoining pollinator strip. The overlap in bee genera reinforces the importance of pollinator habitats in agricultural landscape.

  4. Native bees buffer the negative impact of climate warming on honey bee pollination of watermelon crops.

    Science.gov (United States)

    Rader, Romina; Reilly, James; Bartomeus, Ignasi; Winfree, Rachael

    2013-10-01

    If climate change affects pollinator-dependent crop production, this will have important implications for global food security because insect pollinators contribute to production for 75% of the leading global food crops. We investigate whether climate warming could result in indirect impacts upon crop pollination services via an overlooked mechanism, namely temperature-induced shifts in the diurnal activity patterns of pollinators. Using a large data set on bee pollination of watermelon crops, we predict how pollination services might change under various climate change scenarios. Our results show that under the most extreme IPCC scenario (A1F1), pollination services by managed honey bees are expected to decline by 14.5%, whereas pollination services provided by most native, wild taxa are predicted to increase, resulting in an estimated aggregate change in pollination services of +4.5% by 2099. We demonstrate the importance of native biodiversity in buffering the impacts of climate change, because crop pollination services would decline more steeply without the native, wild pollinators. More generally, our study provides an important example of how biodiversity can stabilize ecosystem services against environmental change. © 2013 John Wiley & Sons Ltd.

  5. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    Directory of Open Access Journals (Sweden)

    Seung-Bae Lee

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV and sweet bee venom (SBV against Candida albicans (C. albicans clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

  6. ZigBee-Based Telemetry System

    Directory of Open Access Journals (Sweden)

    L. Khriji

    2010-12-01

    Full Text Available Nowadays, there is a significant improvement in technology regarding healthcare. Real-time monitoring systems improve the quality of life of patients as well as the performance of hospitals and healthcare centers. In this paper, we present an implementation of a designed framework of a telemetry system using ZigBee technology for automatic and real-time monitoring of Biomedical signals. These signals are collected and processed using 2-tiered subsystems. The first subsystem is the mobile device which is carried on the body and runs a number of biosensors. The second subsystem performs further processing by a local base station using the raw data which is transmitted on-request by the mobile device. The processed data as well as its analysis are then continuously monitored and diagnosed through a human-machine interface. The system should possess low power consumption, low cost and advanced configuration possibilities. This paper accelerates the digital convergence age through continual research and development of technologies related to healthcare.

  7. Artificial bee colony in neuro - Symbolic integration

    Science.gov (United States)

    Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf

    2017-08-01

    Swarm intelligence is a research area that models the population of the swarm based on natural computation. Artificial bee colony (ABC) algorithm is a swarm based metaheuristic algorithm introduced by Karaboga to optimize numerical problem. Pattern-SAT is a pattern reconstruction paradigm that utilized 2SAT logical rule in representing the behavior of the desired pattern. The information of the desired pattern in terms of 2SAT logic is embedded to Hopfield neural network (HNN-P2SAT) and the desired pattern is reconstructed during the retrieval phase. Since the performance of HNN-P2SAT in Pattern-SAT deteriorates when the number of 2SAT clause increased, newly improved ABC is used to reduce the computation burden during the learning phase of HNN-P2SAT (HNN-P2SATABC). The aim of this study is to investigate the performance of Pattern-SAT produced by ABC incorporated with HNN-P2SAT and compare it with conventional standalone HNN. The comparison is examined by using Microsoft Visual Basic C++ 2013 software. The detailed comparison in doing Pattern-SAT is discussed based on global Pattern-SAT, ratio of activated clauses and computation time. The result obtained from computer simulation indicates the beneficial features of HNN-P2SATABC in doing Pattern-SAT. This finding is expected to result in a significant implication on the choice of searching method used to do Pattern-SAT.

  8. Simulation of Fermentation Pathway Using Bees Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Ying LEONG

    2012-09-01

    Full Text Available Normal 0 21 false false false EN-US JA X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:12.0pt; font-family:Cambria; mso-ascii-font-family:Cambria; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Cambria; mso-hansi-theme-font:minor-latin; mso-ansi-language:EN-US;} In this paper, we propose Bees Algorithm (BA to enhance the performance in estimating the parameters for metabolic pathway data to simulate fermentation pathway for Saccharomyces cerevisiae. However, the parameter estimation of biological processes has always been a challenging task due to the complexity and nonlinear equations. Therefore, we present this algorithm as a new approach for parameter estimation for biological interactions to obtain more accurate parameter values. The result shows that BA outperforms other estimation algorithms as it produces the most accurate kinetic parameters, which contributes to the precision of simulated kinetic model.

  9. Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis

    DEFF Research Database (Denmark)

    Jensen, Annette Bruun; Palmer, Kellie A.; Chaline, Nicolas

    2005-01-01

    Apis mellifera mellifera, gene flow, honey bee conservation, mating distance, National Park, European black bee, Peak District, polyandry, social insects Udgivelsesdato: JUL......Apis mellifera mellifera, gene flow, honey bee conservation, mating distance, National Park, European black bee, Peak District, polyandry, social insects Udgivelsesdato: JUL...

  10. Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens.

    Science.gov (United States)

    Quistberg, Robyn D; Bichier, Peter; Philpott, Stacy M

    2016-03-31

    Urban gardens may preserve biodiversity as urban population densities increase, but this strongly depends on the characteristics of the gardens and the landscapes in which they are embedded. We investigated whether local and landscape characteristics are important correlates of bee (Hymenoptera: Apiformes) abundance and species richness in urban community gardens. We worked in 19 gardens in the California central coast and sampled bees with aerial nets and pan traps. We measured local characteristics (i.e., vegetation and ground cover) and used the USGS National Land Cover Database to classify the landscape surrounding our garden study sites at 2 km scales. We classified bees according to nesting type (i.e., cavity, ground) and body size and determined which local and landscape characteristics correlate with bee community characteristics. We found 55 bee species. One landscape and several local factors correlated with differences in bee abundance and richness for all bees, cavity-nesting bees, ground-nesting bees, and different sized bees. Generally, bees were more abundant and species rich in bigger gardens, in gardens with higher floral abundance, less mulch cover, more bare ground, and with more grass. Medium bees were less abundant in sites surrounded by more medium intensity developed land within 2 km. The fact that local factors were generally more important drivers of bee abundance and richness indicates a potential for gardeners to promote bee conservation by altering local management practices. In particular, increasing floral abundance, decreasing use of mulch, and providing bare ground may promote bees in urban gardens. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Observations on fragrance collection behaviour of euglossine bees (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Peter W.H. Holland

    2015-03-01

    Full Text Available Male bees of the tribe Euglossini collect volatile chemicals secreted by orchids using dense patches of hair on the front tarsi. After collecting chemicals, the bee hovers while transferring these fragrances to invaginations on the hind tibiae. The fragrance collection and hovering behaviours are repeated multiple times. Here I report preliminary field observations on the length of fragrance collection and hovering phases in bees of the Eulaema meriana (Oliver, 1789 mimicry complex visiting the orchid Catasetum discolor in Kavanayén, Venezuela. I observed that in extended visits with many cycles of fragrance collection and hovering, the length of each collection phase gradually increased, while the length of hovering phase was static. This suggests either that chemicals secreted by orchids are in limited supply or that efficiency of fragrance collection drops.

  12. A Simple and Efficient Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunfeng Xu

    2013-01-01

    Full Text Available Artificial bee colony (ABC is a new population-based stochastic algorithm which has shown good search abilities on many optimization problems. However, the original ABC shows slow convergence speed during the search process. In order to enhance the performance of ABC, this paper proposes a new artificial bee colony (NABC algorithm, which modifies the search pattern of both employed and onlooker bees. A solution pool is constructed by storing some best solutions of the current swarm. New candidate solutions are generated by searching the neighborhood of solutions randomly chosen from the solution pool. Experiments are conducted on a set of twelve benchmark functions. Simulation results show that our approach is significantly better or at least comparable to the original ABC and seven other stochastic algorithms.

  13. Environmental consultancy: dancing bee bioindicators to evaluate landscape health

    Directory of Open Access Journals (Sweden)

    Margaret Jane Couvillon

    2015-05-01

    Full Text Available Here we explore how waggle dance decoding may be applied as a tool for ecology by evaluating the benefits and limitations of the methodology compared to other existing ways to evaluate the honey bees’ use of the landscape. The honey bee foragers sample and report back on large areas (c. 100km2. Because honey bees perform dances only for the most profitable resources, these data provide spatial information about the availability of good quality forage for any given time. We argue that dance decoding provides information for a wide range of ecological, conservation, and land management issues. In this way, one species and methodology gives us a novel measure of a landscape’s profitability and health that may be widely relevant, not just for honey bees, but for other flower-visiting insects as well.

  14. ZigBee wireless sensor network for environmental monitoring system

    Science.gov (United States)

    Chai, Shun-qi; Ji, Lei; Wu, Hong

    2009-11-01

    ZigBee is a new close-up, low-complexity, low-power, low data rate, low-cost wireless networking technology, mainly used for short distance wireless transmission. It is based on IEEE802.15.4 standards, thousands of tiny sensors form a network through mutual coordination to communications. This paper introduces the ZigBee wireless sensor networks in environmental monitoring applications. The hardware design, including microprocessor, data acquisition, antenna and peripheral circuits of the chips, and through software design composed ZigBee mesh network that can make data acquisition and communication. This network has low power consumption, low cost, the effective area is big, and information transfers reliable merits. And have confirmed the network's communication applicability by the Serial Com Assistant, also testified the network have very good pragmatism by the NS2 emulation the network's operation.

  15. Cuticular Hydrocarbons of Orchid Bees Males: Interspecific and Chemotaxonomy Variation.

    Science.gov (United States)

    Dos Santos, Aline Borba; do Nascimento, Fábio Santos

    2015-01-01

    Recent studies have investigated the composition of compounds that cover the cuticle in social insects, but few studies have focused on solitary bees. Cuticular hydrocarbons may provide a tool for chemotaxonomy, and perhaps they can be used as a complement to morphology and genetic characters in phylogenetic studies. Orchid bees (Tribe Euglossini) are a highly diverse group of Neotropical bees with more than 200 species. Here, the cuticular hydrocarbons of 17 species were identified and statistical analysis revealed 108 compounds, which allowed for the taxonomic classification according to the genera. The most significant compounds discriminating the four genera were (Z)-9-pentacosene, (Z,Z)-pentatriacontene-3, (Z)-9-tricosene, and (Z)-9-heptacosene. The analyses demonstrated the potential use of CHCs to identify different species.

  16. Cuticular Hydrocarbons of Orchid Bees Males: Interspecific and Chemotaxonomy Variation.

    Directory of Open Access Journals (Sweden)

    Aline Borba Dos Santos

    Full Text Available Recent studies have investigated the composition of compounds that cover the cuticle in social insects, but few studies have focused on solitary bees. Cuticular hydrocarbons may provide a tool for chemotaxonomy, and perhaps they can be used as a complement to morphology and genetic characters in phylogenetic studies. Orchid bees (Tribe Euglossini are a highly diverse group of Neotropical bees with more than 200 species. Here, the cuticular hydrocarbons of 17 species were identified and statistical analysis revealed 108 compounds, which allowed for the taxonomic classification according to the genera. The most significant compounds discriminating the four genera were (Z-9-pentacosene, (Z,Z-pentatriacontene-3, (Z-9-tricosene, and (Z-9-heptacosene. The analyses demonstrated the potential use of CHCs to identify different species.

  17. Nosema ceranae induced mortality in honey bees (Apis mellifera) depends on infection methods.

    Science.gov (United States)

    Milbrath, Meghan O; Xie, Xianbing; Huang, Zachary Y

    2013-09-01

    Nosema ceranae infection can reduce survival of the Western honey bee, Apis mellifera, but experiments examining its virulence have highly variable results. This variation may arise from differences in experimental techniques. We examined survival effects of two techniques: Nosema infection at day 1 without anesthesia and infection at day 5 using CO2 anesthesia. All bees infected with the latter method had poorer survival. Interestingly, these bees also had significantly fewer spores than bees infected without anesthesia. These results indicate that differences in Nosema ceranae-induced mortality in honey bees may be partially due to differences in experimental techniques. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution

    Science.gov (United States)

    Libor, Anika; Kupelwieser, Vera; Crailsheim, Karl

    2017-01-01

    We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera) under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis). Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80%) intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5) or 45% (20:20) of the

  19. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution.

    Directory of Open Access Journals (Sweden)

    Robert Brodschneider

    Full Text Available We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis. Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80% intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5 or 45

  20. Food consumption and food exchange of caged honey bees using a radioactive labelled sugar solution.

    Science.gov (United States)

    Brodschneider, Robert; Libor, Anika; Kupelwieser, Vera; Crailsheim, Karl

    2017-01-01

    We measured the distribution of sugar solution within groups of caged honey bees (Apis mellifera) under standard in vitro laboratory conditions using 14C polyethylene glycol as a radioactive marker to analyze ingestion by individual bees after group feeding. We studied the impact of different experimental setups by varying the number of bees, age of bees, origin of bees, duration of experiment, the amount of available diet, and the influence of the neurotoxic pesticide imidacloprid in the diet on the feeding and food sharing behavior (trophallaxis). Sugar solution was non-uniformly distributed in bees in 36 out of 135 cages. As a measure of the extent to which the sugar diet was equally distributed between caged bees, we calculated the (inner 80%) intake ratio by dividing the intake of the 90th percentile bee by the intake of the 10th percentile bee. This intake ratio ranged from 1.3 to 94.8 in 133 individual cages, further supporting a non-uniform distribution of food among caged bees. We can expect a cage with 10 or 30 bees containing one bee that ingests, on average, the 8.8-fold of the bee in the same cage ingesting the smallest quantity of food. Inner 80% intake ratios were lower in experiments with a permanent or chronic offering of labelled sugar solution compared to temporary or acute feedings. After pooling the data of replicates to achieve a higher statistical power we compared different experimental setups. We found that uniform food distribution is best approached with 10 newly emerged bees per cage, which originate from a brood comb from a single colony. We also investigated the trophallaxis between caged honey bees which originally consumed the diet and newly added bees. Color marked bees were starved and added to the cages in a ratio of 10:5 or 20:20 after the initial set of bees consumed all the labelled sugar solution. The distribution of the labelled sugar solution by trophallaxis within 48 hours to added bees was 25% (10:5) or 45% (20:20) of the

  1. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    OpenAIRE

    Gihyun Lee; Hyunsu Bae

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases inc...

  2. Predatory behavior in a necrophagous bee Trigona hypogea (Hymenoptera; Apidae, Meliponini)

    Science.gov (United States)

    Mateus, Sidnei; Noll, Fernando B.

    Although most bees feed on nectar and pollen, several exceptions have been reported. The strangest of all is the habit found in some neotropical stingless bees, which have completely replaced pollen-eating by eating animal protein from corpses. For more than 20 years, it was believed that carrion was the only protein source for these bees. We report that these bees feed not only off dead animals, but on the living brood of social wasps and possibly other similar sources. Using well developed prey location and foraging behaviors, necrophagous bees discover recently abandoned wasps' nests and, within a few hours, prey upon all immatures found there.

  3. Use of the Ethanolic Extract of Bee Pollen (Bee Bread) and Gamma Irradiation for Keeping the Quality of Silver Carp (Hypophthalmichthys Molitrix) Fish Patties

    International Nuclear Information System (INIS)

    Gibriel, AY.; Abdeldaiem, M.H.; Ali, H.G.M.

    2016-01-01

    This investigation was carried out to extend the shelf-life of silver carp fish patties (Hypophthalmichthys molitrix) by the use of ethanolic extract of bee pollen (bee bread) at concentration of 4%, and gamma irradiation at doses of 1, 3 and 5 kGy as an individual treatment. The first group was control, the second group was silver carp fish patties samples treated with 4 % the ethanolic extract of bee pollen (bee bread) then irritated at doses of 1, 3 and 5 kGy. The effects of these treatments on the microbiological, chemical and sensory characteristics of silver carp fish patties samples have been observed. In addition, shelf-life periods were higher for silver carp fish patties samples treated by 4% the ethanolic extract of bee pollen (bee bread) and gamma radiation at dose of 5 kGy. This treatment was more effective as antimicrobial, consequently may be useful as natural food preservative.

  4. Olfactory interference during inhibitory backward pairing in honey bees.

    Directory of Open Access Journals (Sweden)

    Matthieu Dacher

    Full Text Available Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.

  5. Learning impairment in honey bees caused by agricultural spray adjuvants.

    Directory of Open Access Journals (Sweden)

    Timothy J Ciarlo

    Full Text Available BACKGROUND: Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s. The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. METHODOLOGY/PRINCIPAL FINDINGS: An improved, automated version of the proboscis extension reflex (PER assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. CONCLUSIONS/SIGNIFICANCE: A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many

  6. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera.

    Directory of Open Access Journals (Sweden)

    Reed M Johnson

    Full Text Available BACKGROUND: Chemical analysis shows that honey bees (Apis mellifera and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. METHODOLOGY/PRINCIPAL FINDINGS: Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17 while amitraz toxicity was mostly unchanged (1 of 15. The sterol biosynthesis inhibiting (SBI fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. CONCLUSIONS/SIGNIFICANCE: Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication

  7. Learning impairment in honey bees caused by agricultural spray adjuvants.

    Science.gov (United States)

    Ciarlo, Timothy J; Mullin, Christopher A; Frazier, James L; Schmehl, Daniel R

    2012-01-01

    Spray adjuvants are often applied to crops in conjunction with agricultural pesticides in order to boost the efficacy of the active ingredient(s). The adjuvants themselves are largely assumed to be biologically inert and are therefore subject to minimal scrutiny and toxicological testing by regulatory agencies. Honey bees are exposed to a wide array of pesticides as they conduct normal foraging operations, meaning that they are likely exposed to spray adjuvants as well. It was previously unknown whether these agrochemicals have any deleterious effects on honey bee behavior. An improved, automated version of the proboscis extension reflex (PER) assay with a high degree of trial-to-trial reproducibility was used to measure the olfactory learning ability of honey bees treated orally with sublethal doses of the most widely used spray adjuvants on almonds in the Central Valley of California. Three different adjuvant classes (nonionic surfactants, crop oil concentrates, and organosilicone surfactants) were investigated in this study. Learning was impaired after ingestion of 20 µg organosilicone surfactant, indicating harmful effects on honey bees caused by agrochemicals previously believed to be innocuous. Organosilicones were more active than the nonionic adjuvants, while the crop oil concentrates were inactive. Ingestion was required for the tested adjuvant to have an effect on learning, as exposure via antennal contact only induced no level of impairment. A decrease in percent conditioned response after ingestion of organosilicone surfactants has been demonstrated here for the first time. Olfactory learning is important for foraging honey bees because it allows them to exploit the most productive floral resources in an area at any given time. Impairment of this learning ability may have serious implications for foraging efficiency at the colony level, as well as potentially many social interactions. Organosilicone spray adjuvants may therefore contribute to the

  8. Acaricide, fungicide and drug interactions in honey bees (Apis mellifera).

    Science.gov (United States)

    Johnson, Reed M; Dahlgren, Lizette; Siegfried, Blair D; Ellis, Marion D

    2013-01-01

    Chemical analysis shows that honey bees (Apis mellifera) and hive products contain many pesticides derived from various sources. The most abundant pesticides are acaricides applied by beekeepers to control Varroa destructor. Beekeepers also apply antimicrobial drugs to control bacterial and microsporidial diseases. Fungicides may enter the hive when applied to nearby flowering crops. Acaricides, antimicrobial drugs and fungicides are not highly toxic to bees alone, but in combination there is potential for heightened toxicity due to interactive effects. Laboratory bioassays based on mortality rates in adult worker bees demonstrated interactive effects among acaricides, as well as between acaricides and antimicrobial drugs and between acaricides and fungicides. Toxicity of the acaricide tau-fluvalinate increased in combination with other acaricides and most other compounds tested (15 of 17) while amitraz toxicity was mostly unchanged (1 of 15). The sterol biosynthesis inhibiting (SBI) fungicide prochloraz elevated the toxicity of the acaricides tau-fluvalinate, coumaphos and fenpyroximate, likely through inhibition of detoxicative cytochrome P450 monooxygenase activity. Four other SBI fungicides increased the toxicity of tau-fluvalinate in a dose-dependent manner, although possible evidence of P450 induction was observed at the lowest fungicide doses. Non-transitive interactions between some acaricides were observed. Sublethal amitraz pre-treatment increased the toxicity of the three P450-detoxified acaricides, but amitraz toxicity was not changed by sublethal treatment with the same three acaricides. A two-fold change in the toxicity of tau-fluvalinate was observed between years, suggesting a possible change in the genetic composition of the bees tested. Interactions with acaricides in honey bees are similar to drug interactions in other animals in that P450-mediated detoxication appears to play an important role. Evidence of non-transivity, year-to-year variation

  9. Working-class royalty: bees beat the caste system.

    Science.gov (United States)

    Wenseleers, Tom; Ratnieks, Francis L W; de F Ribeiro, Marcia; de A Alves, Denise; Imperatriz-Fonseca, Vera-Lucia

    2005-06-22

    The struggle among social classes or castes is well known in humans. Here, we show that caste inequality similarly affects societies of ants, bees and wasps, where castes are morphologically distinct and workers have greatly reduced reproductive potential compared with queens. In social insects, an individual normally has no control over its own fate, whether queen or worker, as this is socially determined during rearing. Here, for the first time, we quantify a strategy for overcoming social control. In the stingless bee Schwarziana quadripunctata, some individuals reared in worker cells avoid a worker fate by developing into fully functional dwarf queens.

  10. National protocol framework for the inventory and monitoring of bees

    Science.gov (United States)

    Droege, Sam; Engler, Joseph D.; Sellers, Elizabeth A.; Lee O'Brien,

    2016-01-01

    This national protocol framework is a standardized tool for the inventory and monitoring of the approximately 4,200 species of native and non-native bee species that may be found within the National Wildlife Refuge System (NWRS) administered by the U.S. Fish and Wildlife Service (USFWS). However, this protocol framework may also be used by other organizations and individuals to monitor bees in any given habitat or location. Our goal is to provide USFWS stations within the NWRS (NWRS stations are land units managed by the USFWS such as national wildlife refuges, national fish hatcheries, wetland management districts, conservation areas, leased lands, etc.) with techniques for developing an initial baseline inventory of what bee species are present on their lands and to provide an inexpensive, simple technique for monitoring bees continuously and for monitoring and evaluating long-term population trends and management impacts. The latter long-term monitoring technique requires a minimal time burden for the individual station, yet can provide a good statistical sample of changing populations that can be investigated at the station, regional, and national levels within the USFWS’ jurisdiction, and compared to other sites within the United States and Canada. This protocol framework was developed in cooperation with the United States Geological Survey (USGS), the USFWS, and a worldwide network of bee researchers who have investigated the techniques and methods for capturing bees and tracking population changes. The protocol framework evolved from field and lab-based investigations at the USGS Bee Inventory and Monitoring Laboratory at the Patuxent Wildlife Research Center in Beltsville, Maryland starting in 2002 and was refined by a large number of USFWS, academic, and state groups. It includes a Protocol Introduction and a set of 8 Standard Operating Procedures or SOPs and adheres to national standards of protocol content and organization. The Protocol Narrative

  11. Foraging traits modulate stingless bee community disassembly under forest loss.

    Science.gov (United States)

    Lichtenberg, Elinor M; Mendenhall, Chase D; Brosi, Berry

    2017-10-01

    Anthropogenic land use change is an important driver of impacts to biological communities and the ecosystem services they provide. Pollination is one ecosystem service that may be threatened by community disassembly. Relatively little is known about changes in bee community composition in the tropics, where pollination limitation is most severe and land use change is rapid. Understanding how anthropogenic changes alter community composition and functioning has been hampered by high variability in responses of individual species. Trait-based approaches, however, are emerging as a potential method for understanding responses of ecologically similar species to global change. We studied how communities of tropical, eusocial stingless bees (Apidae: Meliponini) disassemble when forest is lost. These bees are vital tropical pollinators that exhibit high trait diversity, but are under considerable threat from human activities. We compared functional traits of stingless bee species found in pastures surrounded by differing amounts of forest in an extensively deforested landscape in southern Costa Rica. Our results suggest that foraging traits modulate competitive interactions that underlie community disassembly patterns. In contrast to both theoretical predictions and temperate bee communities, we found that stingless bee species with the widest diet breadths were less likely to persist in sites with less forest. These wide-diet-breadth species also tend to be solitary foragers, and are competitively subordinate to group-foraging stingless bee species. Thus, displacement by dominant, group-foraging species may make subordinate species more dependent on the larger or more diversified resource pool that natural habitats offer. We also found that traits that may reduce reliance on trees-nesting in the ground or inside nests of other species-correlated with persistence in highly deforested landscapes. The functional trait perspective we employed enabled capturing community

  12. Identification of Aspergillus nomius in Bees Visiting Brazil Nut Flowers

    Science.gov (United States)

    Massi, Fernanda Pelisson; Penha, Rafael Elias Silva; Cavalcante, Marcelo Casimiro; Viaro, Helena Paula; da Silva, Josué José; de Souza Ferranti, Larissa; Fungaro, Maria Helena Pelegrinelli

    2015-01-01

    We designed a primer pair (BtubNomF/BtubNomR) specifically for amplifying Aspergillus nomius DNA. In vitro assays confirmed BtubNomF/BtubNomR specificity, corroborating its usefulness in detecting and identifying A. nomius. We then investigated the occurrence of A. nomius in floral visitors of Bertholletia excelsa trees by means of PCR, and A. nomius was detected in the following bees: Xylocopa frontalis, Bombus transversalis, Centris denudans, C. ferruginea, and Epicharis flava. The presence of A. nomius in bees visiting Brazil nuts opens up new avenues for obtaining novel insights into the process whereby Brazil nuts are contaminated by aflatoxin-producing fungi. PMID:26063353

  13. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema

    Science.gov (United States)

    Pettis, Jeffery S.; Vanengelsdorp, Dennis; Johnson, Josephine; Dively, Galen

    2012-02-01

    Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.

  14. Nosema ceranae parasitism impacts olfactory learning and memory and neurochemistry in honey bees (Apis mellifera).

    Science.gov (United States)

    Gage, Stephanie L; Kramer, Catherine; Calle, Samantha; Carroll, Mark; Heien, Michael; DeGrandi-Hoffman, Gloria

    2018-02-19

    Nosema sp. is an internal parasite of the honey bee, Apis mellifera , and one of the leading contributors to colony losses worldwide. This parasite is found in the honey bee midgut and has profound consequences for the host's physiology. Nosema sp. impairs foraging performance in honey bees, yet, it is unclear whether this parasite affects the bee's neurobiology. In this study, we examined whether Nosema sp. affects odor learning and memory and whether the brains of parasitized bees show differences in amino acids and biogenic amines. We took newly emerged bees and fed them with Nosema ceranae At approximate nurse and forager ages, we employed an odor-associative conditioning assay using the proboscis extension reflex and two bioanalytical techniques to measure changes in brain chemistry. We found that nurse-aged bees infected with N. ceranae significantly outperformed controls in odor learning and memory, suggestive of precocious foraging, but by forager age, infected bees showed deficits in learning and memory. We also detected significant differences in amino acid concentrations, some of which were age specific, as well as altered serotonin, octopamine, dopamine and l-dopa concentrations in the brains of parasitized bees. These findings suggest that N. ceranae infection affects honey bee neurobiology and may compromise behavioral tasks. These results yield new insight into the host-parasite dynamic of honey bees and N. ceranae , as well as the neurochemistry of odor learning and memory under normal and parasitic conditions. © 2018. Published by The Company of Biologists Ltd.

  15. Linking magnetite in the abdomen of honey bees to a magnetoreceptive function.

    Science.gov (United States)

    Lambinet, Veronika; Hayden, Michael E; Reigl, Katharina; Gomis, Surath; Gries, Gerhard

    2017-03-29

    Previous studies of magnetoreception in honey bees, Apis mellifera , focused on the identification of magnetic material, its formation, the location of the receptor and potential underlying sensory mechanisms, but never directly linked magnetic material to a magnetoreceptive function. In our study, we demonstrate that ferromagnetic material consistent with magnetite plays an integral role in the bees' magnetoreceptor. Subjecting lyophilized and pelletized bee tagmata to analyses by a superconducting quantum interference device generated a distinct hysteresis loop for the abdomen but not for the thorax or the head of bees, indicating the presence of ferromagnetic material in the bee abdomen. Magnetic remanence of abdomen pellets produced from bees that were, or were not, exposed to the 2.2-kOe field of a magnet while alive differed, indicating that magnet exposure altered the magnetization of this magnetite in live bees. In behavioural two-choice field experiments, bees briefly exposed to the same magnet, but not sham-treated control bees, failed to sense a custom-generated magnetic anomaly, indicating that magnet exposure had rendered the bees' magnetoreceptor dysfunctional. Our data support the conclusion that honey bees possess a magnetite-based magnetoreceptor located in the abdomen. © 2017 The Authors.

  16. The Impact of Pesticides on Honey Bees and Hence on Humans

    Directory of Open Access Journals (Sweden)

    Antonina Jivan

    2013-05-01

    Full Text Available Bee crisis is threatening global food security, given the fact that one third of global agricultural production relies on pollination, especially that of honey bees. Despite their importance for human being, honey bees die with alarming speed. In recent years, in Europe and America, due to pollution, pesticides and neglect there was registered an unprecedented rate of disappearance of honey bees. Einstein's theory, the fact that once the bees cease to exist, humanity has only four years to extinction, seems now truer than ever. Thus, the issue has gained a tone of maximum urgency; the bee crisis can entirely shatter the world food security, already affected by the economic crisis. There are plenty of factors that could cause honey bee population decline: disease, parasites, climatic factors (high temperature, drought or decrease in the diversity of honey flora. It may sometimes happen that the beekeeper himself causes the poisoning of his honey bees, use inappropriate products which should protect the honey bees. It is therefore possible to imagine a multi-factorial explanation of problems encountered by honey bees and to underestimate the key role of pesticides. Considering these, a review of the impact of pesticides on honey bees should not be superfluous.

  17. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera).

    Science.gov (United States)

    Wilson-Rich, Noah; Dres, Stephanie T; Starks, Philip T

    2008-01-01

    Honey bees (Apis mellifera) are of vital economic and ecological importance. These eusocial animals display temporal polyethism, which is an age-driven division of labor. Younger adult bees remain in the hive and tend to developing brood, while older adult bees forage for pollen and nectar to feed the colony. As honey bees mature, the types of pathogens they experience also change. As such, pathogen pressure may affect bees differently throughout their lifespan. We provide the first direct tests of honey bee innate immune strength across developmental stages. We investigated immune strength across four developmental stages: larvae, pupae, nurses (1-day-old adults), and foragers (22-30 days old adults). The immune strength of honey bees was quantified using standard immunocompetence assays: total hemocyte count, encapsulation response, fat body quantification, and phenoloxidase activity. Larvae and pupae had the highest total hemocyte counts, while there was no difference in encapsulation response between developmental stages. Nurses had more fat body mass than foragers, while phenoloxidase activity increased directly with honey bee development. Immune strength was most vigorous in older, foraging bees and weakest in young bees. Importantly, we found that adult honey bees do not abandon cellular immunocompetence as has recently been proposed. Induced shifts in behavioral roles may increase a colony's susceptibility to disease if nurses begin foraging activity prematurely.

  18. Foraging on some nonfloral resources by stingless bees (Hymenoptera, Meliponini in a caatinga region

    Directory of Open Access Journals (Sweden)

    M. C. A. Lorenzon

    Full Text Available In a caatinga region the flowers and nonfloral resources visited by highly eusocial bees, stingless beess and Apis mellifera (Africanized honey bee were studied. During one year, monthly sampling took place in two sites at Serra da Capivara National Park (Piauí State, Brazil, one of them, including the local village, outside the park, and the other inside, using already existing park trails. With the help of entomological nets, all bees were caught while visiting floral and nonfloral resources. At the study sites we observed more stingless bees in nonfloral resources, made possible by human presence. Twelve stingless bee species used the nonfloral resources in different proportions, showing no preference for time of day, season of the year, or sites. During the rainy season, more water sources and abundant flowering plants were observed, which attract stingless bees, even though many worker bees were found foraging in the aqueous substrates while few were observed at water sources. This relationship was higher for stingless bee species than for Africanized honey bees. Paratrigona lineata was represented by few specimens in floral and nonfloral resources and is perhaps rare in this region. Frieseomelitta silvestrii could be considered rare in the floral resources, but they were abundant in nonfloral resources. The variety and intriguing abundance of bees in nonfloral resources suggests that these are an important part of the stingless bee niches, even if these resources are used for nest construction and defense.

  19. Impact of honeybee (Apis mellifera L. density on wild bee foraging behaviour

    Directory of Open Access Journals (Sweden)

    Goras Georgios

    2016-06-01

    Full Text Available Honey bees are globally regarded as important crop pollinators and are also valued for their honey production. They have been introduced on an almost worldwide scale. During recent years, however, several studies argue their possible competition with unmanaged pollinators. Here we examine the possible effects of honey bees on the foraging behaviour of wild bees on Cistus creticus flowers in Northern Greece. We gradually introduced one, five, and eight honey-bee hives per site, each containing ca. 20,000 workers. The visitation frequency and visit duration of wild bees before and after the beehive introductions were measured by flower observation. While the visitation frequencies of wild bees were unaffected, the average time wild bees spent on C. creticus increased with the introduction of the honey-bee hives. Although competition between honey bees and wild bees is often expected, we did not find any clear evidence for significant effects even in honey-bee densities much higher than the European-wide average of 3.1 colonies/km2.

  20. Pollination Services Provided by Bees in Pumpkin Fields Supplemented with Either Apis mellifera or Bombus impatiens or Not Supplemented

    OpenAIRE

    Petersen, Jessica D.; Reiners, Stephen; Nault, Brian A.

    2013-01-01

    Pollinators provide an important service in many crops. Managed honey bees (Apis mellifera L.) are used to supplement pollination services provided by wild bees with the assumption that they will enhance pollination, fruit set and crop yield beyond the levels provided by the wild bees. Recent declines in managed honey bee populations have stimulated interest in finding alternative managed pollinators to service crops. In the eastern U.S., managed hives of the native common eastern bumble bee ...

  1. Causes and Scale of Winter Flights in Honey Bee (Apis Mellifera Carnica Colonies

    Directory of Open Access Journals (Sweden)

    Węgrzynowicz Paweł

    2014-06-01

    Full Text Available Winter honey bee losses were evaluated during the two overwintering periods of 2009/2010 and 2010/2011. The research included dead bee workers that fell on the hive bottom board (debris and the ones that flew out of the hive. Differences were observed in the number of bees fallen as debris between the two periods, whereas the number of bees flying out was similar in both years. No differences were found between the numbers of dead bees in strong and weak colonies. The percentage of bees flying out of the colony increased in the presence of Nosema spores, Varroa infestation, increased average air temperature, and insolation during the day. In addition, both the presence of Nosema and insolation during the day had an impact on the number of bees that died and fell on the hive board.

  2. Impact of Bee Species and Plant Density on Alfalfa Pollination and Potential for Gene Flow

    Directory of Open Access Journals (Sweden)

    Johanne Brunet

    2010-01-01

    Full Text Available In outcrossing crops like alfalfa, various bee species can contribute to pollination and gene flow in seed production fields. With the increasing use of transgenic crops, it becomes important to determine the role of these distinct pollinators on alfalfa pollination and gene flow. The current study examines the relative contribution of honeybees, three bumble bee species, and three solitary bee species to pollination and gene flow in alfalfa. Two wild solitary bee species and one wild bumble bee species were best at tripping flowers, while the two managed pollinators commonly used in alfalfa seed production, honeybees and leaf cutting bees, had the lowest tripping rate. Honeybees had the greatest potential for gene flow and risk of transgene escape relative to the other pollinators. For honeybees, gene flow and risk of transgene escape were not affected by plant density although for the three bumble bee species gene flow and risk of transgene escape were the greatest in high-density fields.

  3. The impact of molecular data on our understanding of bee phylogeny and evolution.

    Science.gov (United States)

    Danforth, Bryan N; Cardinal, Sophie; Praz, Christophe; Almeida, Eduardo A B; Michez, Denis

    2013-01-01

    Our understanding of bee phylogeny has improved over the past fifteen years as a result of new data, primarily nucleotide sequence data, and new methods, primarily model-based methods of phylogeny reconstruction. Phylogenetic studies based on single or, more commonly, multilocus data sets have helped resolve the placement of bees within the superfamily Apoidea; the relationships among the seven families of bees; and the relationships among bee subfamilies, tribes, genera, and species. In addition, molecular phylogenies have played an important role in inferring evolutionary patterns and processes in bees. Phylogenies have provided the comparative framework for understanding the evolution of host-plant associations and pollen specialization, the evolution of social behavior, and the evolution of parasitism. In this paper, we present an overview of significant discoveries in bee phylogeny based primarily on the application of molecular data. We review the phylogenetic hypotheses family-by-family and then describe how the new phylogenetic insights have altered our understanding of bee biology.

  4. Hemolymph proteome changes during worker brood development match the biological divergences between western honey bees (Apis mellifera) and eastern honey bees (Apis cerana).

    Science.gov (United States)

    Feng, Mao; Ramadan, Haitham; Han, Bin; Fang, Yu; Li, Jianke

    2014-07-05

    Hemolymph plays key roles in honey bee molecule transport, immune defense, and in monitoring the physiological condition. There is a lack of knowledge regarding how the proteome achieves these biological missions for both the western and eastern honey bees (Apis mellifera and Apis cerana). A time-resolved proteome was compared using two-dimensional electrophoresis-based proteomics to reveal the mechanistic differences by analysis of hemolymph proteome changes between the worker bees of two bee species during the larval to pupal stages. The brood body weight of Apis mellifera was significantly heavier than that of Apis cerana at each developmental stage. Significantly, different protein expression patterns and metabolic pathways were observed in 74 proteins (166 spots) that were differentially abundant between the two bee species. The function of hemolymph in energy storage, odor communication, and antioxidation is of equal importance for the western and eastern bees, indicated by the enhanced expression of different protein species. However, stronger expression of protein folding, cytoskeletal and developmental proteins, and more highly activated energy producing pathways in western bees suggests that the different bee species have developed unique strategies to match their specific physiology using hemolymph to deliver nutrients and in immune defense. Our disparate findings constitute a proof-of-concept of molecular details that the ecologically shaped different physiological conditions of different bee species match with the hemolymph proteome during the brood stage. This also provides a starting point for future research on the specific hemolymph proteins or pathways related to the differential phenotypes or physiology.

  5. Flower volatiles, crop varieties and bee responses.

    Directory of Open Access Journals (Sweden)

    Björn K Klatt

    Full Text Available Pollination contributes to an estimated one third of global food production, through both the improvement of the yield and the quality of crops. Volatile compounds emitted by crop flowers mediate plant-pollinator interactions, but differences between crop varieties are still little explored. We investigated whether the visitation of crop flowers is determined by variety-specific flower volatiles using strawberry varieties (Fragaria x ananassa Duchesne and how this affects the pollination services of the wild bee Osmia bicornis L. Flower volatile compounds of three strawberry varieties were measured via headspace collection. Gas chromatography showed that the three strawberry varieties produced the same volatile compounds but with quantitative differences of the total amount of volatiles and between distinct compounds. Electroantennographic recordings showed that inexperienced females of Osmia bicornis had higher antennal responses to all volatile compounds than to controls of air and paraffin oil, however responses differed between compounds. The variety Sonata was found to emit a total higher level of volatiles and also higher levels of most of the compounds that evoked antennal responses compared with the other varieties Honeoye and Darselect. Sonata also received more flower visits from Osmia bicornis females under field conditions, compared with Honeoye. Our results suggest that differences in the emission of flower volatile compounds among strawberry varieties mediate their attractiveness to females of Osmia bicornis. Since quality and quantity of marketable fruits depend on optimal pollination, a better understanding of the role of flower volatiles in crop production is required and should be considered more closely in crop-variety breeding.

  6. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L.)

    Science.gov (United States)

    Lucas, Hannah M.; Webster, Thomas C.; Sagili, Ramesh R.

    2016-01-01

    Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected) and intensity (number of spores per bee) of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis). Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony) were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland protein content and

  7. Colony Level Prevalence and Intensity of Nosema ceranae in Honey Bees (Apis mellifera L..

    Directory of Open Access Journals (Sweden)

    Cameron J Jack

    Full Text Available Nosema ceranae is a widely prevalent microsporidian parasite in the western honey bee. There is considerable uncertainty regarding infection dynamics of this important pathogen in honey bee colonies. Understanding the infection dynamics at the colony level may aid in development of a reliable sampling protocol for N. ceranae diagnosis, and provide insights into efficient treatment strategies. The primary objective of this study was to characterize the prevalence (proportion of the sampled bees found infected and intensity (number of spores per bee of N. ceranae infection in bees from various age cohorts in a colony. We examined N. ceranae infection in both overwintered colonies that were naturally infected with N. ceranae and in quadruple cohort nucleus colonies that were established and artificially inoculated with N. ceranae. We also examined and quantified effects of N. ceranae infection on hypopharyngeal gland protein content and gut pH. There was no correlation between the prevalence and intensity of N. ceranae infection in composite samples (pooled bee samples used for analysis. Our results indicated that the prevalence and intensity of N. ceranae infection is significantly influenced by honey bee age. The N. ceranae infection prevalence values from composite samples of background bees (unmarked bees collected from four different locations in a colony were not significantly different from those pertaining to marked-bee age cohorts specific to each sampling date. The foraging-aged bees had a higher prevalence of N. ceranae infection when compared to nurse-aged bees. N. ceranae did not have a significant effect on hypopharyngeal gland protein content. Further, there was no significant difference in mean gut pH of N. ceranae infected bees and non-infected bees. This study provides comprehensive insights into N. ceranae infection dynamics at the colony level, and also demonstrates the effects of N. ceranae infection on hypopharyngeal gland

  8. Native Honey Bees Outperform Adventive Honey Bees in Increasing Pyrus bretschneideri (Rosales: Rosaceae) Pollination.

    Science.gov (United States)

    Gemeda, Tolera Kumsa; Shao, Youquan; Wu, Wenqin; Yang, Huipeng; Huang, Jiaxing; Wu, Jie

    2017-12-05

    The foraging behavior of different bee species is a key factor influencing the pollination efficiency of different crops. Most pear species exhibit full self-incompatibility and thus depend entirely on cross-pollination. However, as little is known about the pear visitation preferences of native Apis cerana (Fabricius; Hymenoptera: Apidae) and adventive Apis mellifera (L.; Hymenoptera: Apidae) in China. A comparative analysis was performed to explore the pear-foraging differences of these species under the natural conditions of pear growing areas. The results show significant variability in the pollen-gathering tendency of these honey bees. Compared to A. mellifera, A. cerana begins foraging at an earlier time of day and gathers a larger amount of pollen in the morning. Based on pollen collection data, A. mellifera shows variable preferences: vigorously foraging on pear on the first day of observation but collecting pollen from non-target floral resources on other experimental days. Conversely, A. cerana persists in pear pollen collection, without shifting preference to other competitive flowers. Therefore, A. cerana outperforms adventive A. mellifera with regard to pear pollen collection under natural conditions, which may lead to increased pear pollination. This study supports arguments in favor of further multiplication and maintenance of A. cerana for pear and other native crop pollination. Moreover, it is essential to develop alternative pollination management techniques to utilize A. mellifera for pear pollination. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Visual working memory in decision making by honey bees

    Science.gov (United States)

    Zhang, Shaowu; Bock, Fiola; Si, Aung; Tautz, Juergen; Srinivasan, Mandyam V.

    2005-01-01

    The robustness and plasticity of working memory were investigated in honey bees by using a delayed matching-to-sample (DMTS) paradigm. The findings are summarized as follows: first, performance in the DMTS task decreases as the duration between the presentation of the sample stimulus and the presentation of the comparison stimuli is increased. This decrease is well approximated by an exponential decay function. Performance is significantly better than random-choice level even at delays as long as 5 sec and is reduced to random-choice levels at an average delay time of 8.68 ± 0.06 sec. Second, when the DMTS task involves two samples (one relevant, the other irrelevant), bees can be trained to learn to use the relevant sample to perform the task if (i) the relevant sample is always at a fixed position, or (ii) the relevant sample always has the same place in the sequence of presentation (always first or always second). Bees that have learned to use the relevant sample and to ignore the irrelevant sample can generalize this learning, and apply it to novel sets of sample and comparison stimuli that they have never previously encountered. The findings point to a remarkably robust, and yet plastic, working memory in the honey bee. PMID:15795382

  10. Propolis counteracts some threats to honey bee health

    Science.gov (United States)

    Honey bee (Apis mellifera) populations in North America and Europe are currently experiencing high and unsustainable annual losses. It is critically important to understand the impact of individual stressors and the interactions among stressors in order to develop solutions to increase colony health...

  11. A new bee species that excavates sandstone nests

    Science.gov (United States)

    Many wonder why animals act in seemingly injurious ways. Understanding the behavior of pollinators such as bees is especially important because of the necessary ecosystem service they provide. The new species Anthophora pueblo, discovered excavating sandstone nests, provides a model system for addre...

  12. Short communications: Recommendation to remove the Somali Bee ...

    African Journals Online (AJOL)

    Short communications: Recommendation to remove the Somali Bee-eater Merops revoilii from the Tanzania list. N E Baker. Abstract. No abstract. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · AJOL African Journals Online. HOW TO USE AJOL.

  13. Bee plant inventory and the pollen potentiality of Menagesha Suba ...

    African Journals Online (AJOL)

    The study was designed with the objectives of assessing the pollen yielding plant species and to establish, the flowering phenology of bee plants. Pollen was collected from the zander beehives using the pollen trap fitted to the entrance of beehives for two years. The pollen was identified using light microscope with a 400x ...

  14. New Records of Bee Genera (Hymenoptera: Apoidea from Colombia

    Directory of Open Access Journals (Sweden)

    Víctor H. González

    2006-07-01

    Full Text Available The solitary bee genera Lophothygater Moure y Michener (Apidae, Eucerini and Tapinotaspoides Moure (Apidae, Tapinotaspidini are reported from northern Colombia for the first time. These genera were previously known from the central Brazilian Amazonian and Argentina and Paraguay, respectively.

  15. A case of multiple mating in stingless bees (Meliponinae)

    NARCIS (Netherlands)

    Imperatriz-Fonseca, V.L.; Matos, E.T.; Ferreira, F.; Velthuis, H.H.W.

    1998-01-01

    In several stingless bee species many males aggregate in the vicinity of a nest when a virgin queen is present in the colony and is preparing for the nuptial flight. We report such male assemblage for Tetragonisca angustula. The departure of a virgin queen from the colony and the

  16. The partial mitochondrial sequence of the Old World stingless bee ...

    Indian Academy of Sciences (India)

    2003; Rasmussen and Cameron 2007; Thummajitsakul et al. 2011). T. pagdeni. Schwarz is widely distributed in Indo-Malayan/Australasian and Neotropical regions (Michener 2000) and is one of the most common indigenous stingless bees in Thailand. (Sakagami 1978). Materials and methods. Sample and DNA extraction.

  17. Factors Affecting Agroforestry Sustainability in Bee Endemic Parts of ...

    African Journals Online (AJOL)

    This paper attempts, in an exploratory manner, to identify the various ways in which bad beekeeping and honey hunting practices result in the loss of important multi-purpose agro-forestry tree species in bee endemic parts of South Eastern Nigeria. Both qualitative and quantitative approaches (Participatory Rural Appraisal ...

  18. Applicability of BEE requirements for tour operating enterprises in ...

    African Journals Online (AJOL)

    This article focuses on tour operating, one of the key sub-sectors of the tourism industry. The research highlights the profile of tour operating enterprises in South Africa, and evaluates their ability to comply with BEE requirements, as well as the utilization of tourism incentives. Data were collected by questionnaire through a ...

  19. Interference competition between sunbirds and carpenter bees for ...

    African Journals Online (AJOL)

    We observed aggressive behaviour by African sunbirds (Cinnyris reichenowi and Cinnyris bouvieri) defending the nectar plant Hypoestes aristata against carpenter bees (Xylocopa caffra and Xylocopa inconstans) in the Bamenda Highlands, Cameroon. During 200 hours of observation, we recorded 38 cases of the ...

  20. Challenges associated with the honey bee ( Apis Mellifera Adansonii )

    African Journals Online (AJOL)

    A study carried out in Lagos, Ogun and Osun states between December 2009 and September 2011 examined 14 randomly selected commercial bee farms for problems associated with decline in colony establishment. Sampling and treatments were split equally between each apiary and three colonies were selected in ...

  1. Evaluating the effects of mosquito control adulticides on honey bees

    Science.gov (United States)

    While mosquito control adulticides can be effective in rapidly reducing mosquito populations during times of high arbovirus transmission, the impacts of these control measures on pollinators has been of recent interest. The purpose of our study was to evaluate mosquito and honey bee mortality using ...

  2. Genetic variability in the population of the endemic bee Anthophora ...

    African Journals Online (AJOL)

    The genetic diversity and spatial genetic population structure of the solitary bee Anthophora pauperata Walker 1871, a species endemic to St Katherine Protectorate, were studied by RAPD markers in seven wadis in the St Katherine Protectorate, South Sinai, Egypt. High levels of genetic diversity were found, mostly within ...

  3. Phylogenetic Analysis of the Bee Tribe Anthidiini | Combey | Journal ...

    African Journals Online (AJOL)

    The phylogenetic relationships among members of long tongue bee tribe Anthidiini (Megachilidae: Megachilinae) were investigated at the Department of Entomology and Wildlife, University of Cape Coast (Ghana) and the Agricultural Research Council, Pretoria (South Af-rica) from July, 2006 to May, 2007. Ten museums ...

  4. The role of honey bees as pollinators in natural areas

    Science.gov (United States)

    Clare E. Aslan; Christina T. Liang; Ben Galindo; Hill Kimberly; Walter Topete

    2016-01-01

    The western or European honey bee (Apis mellifera) is the primary managed pollinator in US agricultural systems, and its importance for food production is widely recognized. However, the role of A. mellifera as an introduced species in natural areas is potentially more complicated. The impact of A. mellifera...

  5. Transcription analysis of overwintering dormancy in the Blue Orchard Bee

    Science.gov (United States)

    The solitary bee Osmia lignaria is an emerging pollinator of growing economic importance. They are unique in that they become dormant two times at different developmental stages in response to very different environmental conditions. Larva develop during the spring and early summer inside of indiv...

  6. Improving honey production in worker bees (Apis mellifera adansoni ...

    African Journals Online (AJOL)

    Modification of feeding activity, nursing care and undertaker behaviour were carried out among some colonies of honey bees Apis mellifera adansoni L to know the effect on honey production. Apiaries Numbers 1, 2 and 3 contain three replicates of experimental hives while apiary Number 4 contains control hives. All the ...

  7. A survey of the ethnozoological knowledge of honey bees Apis ...

    African Journals Online (AJOL)

    A survey of the ethnozoological knowledge of honey bee Apis mellifera in Ijebu division of South western Nigeria was carried out to examine the pattern of invasion, control methods of their invasion and their effects in life and economy of the people which also include the medicinal and traditional utilization. The Survey was ...

  8. Handling sticky resin by stingless bees (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Markus Gastauer

    2011-06-01

    Full Text Available For their nest defense, stingless bees (Meliponini collect plant resins which they stick on intruders like ants or cleptobiotic robber bees causing their immobilization. The aim of this article is to identify all parts of stingless bee workers contacting these sticky resins. Of special interest are those body parts with anti-adhesive properties to resin, where it can be removed without residues. For that, extensive behavioral observations during foraging flight, handling and application of the resin have been carried out. When handling the resin, all tarsi touch the resin while walking above it. For transportation from plants to the nest during foraging flight, the resin is packed to the corbicula via tarsi and basitarsi of front and middle legs. Once stuck to the resin or after the corbicula had been unloaded, the bee's legs have to be cleaned thoroughly. Only the tips of the mandibles, that form, cut and apply the sticky resin, seem to have at least temporarily resin-rejecting properties.

  9. Monogamy in large bee societies: a stingless paradox

    Science.gov (United States)

    Jaffé, Rodolfo; Pioker-Hara, Fabiana C.; dos Santos, Charles F.; Santiago, Leandro R.; Alves, Denise A.; de M. P. Kleinert, Astrid; Francoy, Tiago M.; Arias, Maria C.; Imperatriz-Fonseca, Vera L.

    2014-03-01

    High genetic diversity is important for the functioning of large insect societies. Across the social Hymenoptera (ants, bees, and wasps), species with the largest colonies tend to have a high colony-level genetic diversity resulting from multiple queens (polygyny) or queens that mate with multiple males (polyandry). Here we studied the genetic structure of Trigona spinipes, a stingless bee species with colonies an order of magnitude larger than those of polyandrous honeybees. Genotypes of adult workers and pupae from 43 nests distributed across three Brazilian biomes showed that T. spinipes colonies are usually headed by one singly mated queen. Apart from revealing a notable exception from the general incidence of high genetic diversity in large insect societies, our results reinforce previous findings suggesting the absence of polyandry in stingless bees and provide evidence against the sperm limitation hypothesis for the evolution of polyandry. Stingless bee species with large colonies, such as T. spinipes, thus seem promising study models to unravel alternative mechanisms to increase genetic diversity within colonies or understand the adaptive value of low genetic diversity in large insect societies.

  10. Foraging and pollination behaviour of the African Honey bee ( Apis ...

    African Journals Online (AJOL)

    Foraging and pollination behaviour of the African Honey bee (Apis mellifera adansonii) on Callistemon rigidus flowers in Ngaoundere (Cameroon). F-N Tchuenguem Fohouo, J Messi, D Brüchner, B Bouba, G Mbofung, J Hentchoya Hemo. Abstract. No Abstract Available Journal of the Cameroon Academy of Sciences ...

  11. Honeybee forage, bee visitation counts and the properties of honey ...

    African Journals Online (AJOL)

    The aim of the survey was to document honeybee forage plants and asses honeybee visitation counts on different forage plants and properties of honey from selected agro-ecological zones of Uganda. In order to achieve the objectives of the study, a survey of the apiaries and beekeepers was done by selecting fifteen bee ...

  12. The Honey Bee Parasite Nosema ceranae: Transmissible via Food Exchange?

    NARCIS (Netherlands)

    Smith, M.L.

    2012-01-01

    Nosema ceranae, a newly introduced parasite of the honey bee, Apis mellifera, is contributing to worldwide colony losses. Other Nosema species, such as N. apis, tend to be associated with increased defecation and spread via a fecal-oral pathway, but because N. ceranae does not induce defecation, it

  13. Color-dependent learning in restrained Africanized honey bees.

    Science.gov (United States)

    Jernigan, C M; Roubik, D W; Wcislo, W T; Riveros, A J

    2014-02-01

    Associative color learning has been demonstrated to be very poor using restrained European honey bees unless the antennae are amputated. Consequently, our understanding of proximate mechanisms in visual information processing is handicapped. Here we test learning performance of Africanized honey bees under restrained conditions with visual and olfactory stimulation using the proboscis extension response (PER) protocol. Restrained individuals were trained to learn an association between a color stimulus and a sugar-water reward. We evaluated performance for 'absolute' learning (learned association between a stimulus and a reward) and 'discriminant' learning (discrimination between two stimuli). Restrained Africanized honey bees (AHBs) readily learned the association of color stimulus for both blue and green LED stimuli in absolute and discriminatory learning tasks within seven presentations, but not with violet as the rewarded color. Additionally, 24-h memory improved considerably during the discrimination task, compared with absolute association (15-55%). We found that antennal amputation was unnecessary and reduced performance in AHBs. Thus color learning can now be studied using the PER protocol with intact AHBs. This finding opens the way towards investigating visual and multimodal learning with application of neural techniques commonly used in restrained honey bees.

  14. Western honey bee management for crop pollination | Toni | African ...

    African Journals Online (AJOL)

    Apis mellifera is widely used for pollination purposes for several reasons, including its polylectic nature, its wide distribution, its relatively ease and low cost management, and hive products from which the beekeeper get additional incomes. The Western honey bee is used to pollinate 66 commodities on all continents, except ...

  15. Bee pollination improves crop quality, shelf life and commercial value.

    Science.gov (United States)

    Klatt, Björn K; Holzschuh, Andrea; Westphal, Catrin; Clough, Yann; Smit, Inga; Pawelzik, Elke; Tscharntke, Teja

    2014-01-22

    Pollination improves the yield of most crop species and contributes to one-third of global crop production, but comprehensive benefits including crop quality are still unknown. Hence, pollination is underestimated by international policies, which is particularly alarming in times of agricultural intensification and diminishing pollination services. In this study, exclusion experiments with strawberries showed bee pollination to improve fruit quality, quantity and market value compared with wind and self-pollination. Bee-pollinated fruits were heavier, had less malformations and reached higher commercial grades. They had increased redness and reduced sugar-acid-ratios and were firmer, thus improving the commercially important shelf life. Longer shelf life reduced fruit loss by at least 11%. This is accounting for 0.32 billion US$ of the 1.44 billion US$ provided by bee pollination to the total value of 2.90 billion US$ made with strawberry selling in the European Union 2009. The fruit quality and yield effects are driven by the pollination-mediated production of hormonal growth regulators, which occur in several pollination-dependent crops. Thus, our comprehensive findings should be transferable to a wide range of crops and demonstrate bee pollination to be a hitherto underestimated but vital and economically important determinant of fruit quality.

  16. Tourism based Black Economic Empowerment [BEE]: Initiatives for ...

    African Journals Online (AJOL)

    This paper aims at discussing the viewpoints, practicalities and challenges of the tourism related BEE initiatives towards achieving community empowerment and development in KwaZulu-Natal. It also focuses on identifying tourism business opportunities available to the previously neglected communities and social groups.

  17. STM/STS and BEES study of nanocrystals

    Science.gov (United States)

    Shao, Jianfei

    This work investigates the electronic properties of very small gold and semiconductor particles using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). Complementary theoretical works were also performed. The first theoretical work was to calculate the quantized states in the CdS/HgS/CdS quantum-well-quantum-dot nanocrystals using eight-band envelope method. Measured spectroscopy data on gold nanocrystals have rich features. In order to understand and relate these features to the electronic properties of the nanocrystals, we developed a tunneling model. This model includes the effect of excited states which have electron-hole pairs. The relaxation between discrete energy levels can also be included in this model. We also considered how the nanocrystals affect the BEES current. In this work an ultra-high vacuum and low-temperature STM was re-designed and re-built. The BEEM/BEES capabilities were incorporated into the STM. We used this STM to image gold nanocrystals and semiconductor nanocrystals. STS and BEES spectra of gold nanocrystals were collected and compared with calculations.

  18. Local perception of ecosystem services provided by bats and bees ...

    African Journals Online (AJOL)

    Indigenous perception on ecosystem services provided by honey bees and fruit bats were assessed in Bénin to find out whether the communities value these services and to appreciate if there is any chance to conserve them locally. Farmers were interviewed with questionnaire in three regions of Bénin to report their ...

  19. "Microsporidia in bumble bee rearing - significance and control"

    NARCIS (Netherlands)

    Steen, van der J.J.M.; Fries, I.

    2005-01-01

    The project "Biodiversity, impact and control of microsporidia in bumble bee (bombus spp.) pollinators" (acronim "Pollinator parasites") within Key Action 5 of the Fifth framework R&D Programme Quality of LIfe and Management of Living Resources was initiated January 1, 2003 and terminates

  20. Patch Departure Behavior of Bumble Bees: Rules and Mechanisms

    Directory of Open Access Journals (Sweden)

    Dale E. Taneyhill

    2010-01-01

    Full Text Available I present an increment-decay model for the mechanism of bumble bees' decision to depart from inflorescences. The probability of departure is the consequence of a dynamic threshold level of stimuli necessary to elicit a stereotyped landing reaction. Reception of floral nectar lowers this threshold, making the bee less likely to depart. Concurrently the threshold increases, making departure from the inflorescence more probable. Increments to the probability of landing are an increasing, decelerating function of nectar volume, and are worth less, in sequence, for the same amount of nectar. The model is contrasted to threshold departure rules, which predict that bees will depart from inflorescences if the amount of nectar in the last one or two flowers visited is below a given level. Field tests comparing the two models were performed with monkshood (Aconitum columbianum. Treated flowers contained a descending series of nectar volumes (6 to 0 L of 30 % sucrose solution. The more nectar that bees encountered in the treated flowers, the more likely they were to remain within the inflorescence after subsequently visiting one to three empty flowers. I discuss the differences between rules and mechanisms in regard to cognitive models of foraging behavior.

  1. Bee pollen as a bioindicator of environmental pesticide contamination.

    Science.gov (United States)

    de Oliveira, Renata Cabrera; Queiroz, Sonia Claudia do Nascimento; da Luz, Cynthia Fernandes Pinto; Porto, Rafael Silveira; Rath, Susanne

    2016-11-01

    Honeybees and bee products are potential bioindicators of the presence of contaminants in the environment, enabling monitoring of large areas due to the long distances travelled by bees. This work evaluates the use of bee pollen as a bioindicator of environmental contamination by pesticides. A GC-MS/MS analytical method for multiresidue determination of 26 different pesticides in pollen was developed and validated in accordance with the recommendations of the European Union SANCO guide. Environmental monitoring was conducted using the analysis of 145 pollen samples collected from ten beehives in the experimental apiary of Embrapa in Jaguariúna (São Paulo State, Brazil). Bioallethrin and pendimethalin were identified in four and eighteen samples, respectively, at concentrations below the LOQ of the method (25 ng g(-1)). Passive sampling with polyurethane foam discs was used as a control, and no pesticides were found. The detection of pesticide residues in seven samples (33%) from commercial apiaries in Ribeirão Preto (São Paulo State) confirmed the efficiency of the analytical method and the need for environmental monitoring for the presence of pesticide residues. The results demonstrated the potential of bee pollen as a bioindicator of environmental contamination by pesticides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. New species of the stingless bee genus Schwarziana (Hymenoptera, Apidae

    Directory of Open Access Journals (Sweden)

    Gabriel A.R. Melo

    2015-12-01

    Full Text Available ABSTRACT Two new species of the stingless bee genus Schwarziana from Brazil are described and illustrated. Schwarziana bocainensis sp. nov. is described from Serra da Bocaina, in São Paulo, and S. chapadensis sp. nov. is described from Chapada dos Veadeiros, in Goiás. An identification key to workers of the known species of Schwarziana is provided.

  3. Immune thrombocytopenia after bee venom therapy: a case report.

    Science.gov (United States)

    Abdulsalam, Mohammad Adel; Ebrahim, Bader Esmael; Abdulsalam, Ahmad Jasem

    2016-03-25

    Immune thrombocytopenia (ITP) is a hematological disorder with an isolated decrease in number of circulating platelets. Bee venom therapy (BVT) is a form of alternative medicine. It is still being practiced in the Middle East and other parts of Asia. In BVT, acupuncture points are used to inject diluted bee venom into the body. The pharmacological basis behind BVT is not fully understood. However, it has been used to treat various medical conditions such as arthritis and low back pain. On the other hand there have been a number of reported complications of BVT use such as ITP. We present a case report on ITP after BVT. A 61 year old lady presented with gum bleeding and ecchymosis and found to have isolated thrombocytopenia (platelet count of 9 × 10(9)/L) after receiving four direct bee sting sessions. There was no evidence of any other risk factors of ITP. Bee venom components and toxicity may be associated with thrombocytopenia as a complication. Further research is needed to postulate guidelines and protocol for BVT. In the meantime, monitoring of the practice of BVT should be made, with an emphasis on patient education regarding the safety profile and associated risks compared to the gained benefits.

  4. Novel antimicrobial peptides from the venom of solitary bees

    Czech Academy of Sciences Publication Activity Database

    Čeřovský, Václav; Cvačka, Josef; Voburka, Zdeněk; Hovorka, Oldřich; Slaninová, Jiřina; Fučík, Vladimír; Bednárová, Lucie

    2008-01-01

    Roč. 14, č. 8 (2008), s. 92-92 ISSN 1075-2617. [European Peptide Symposium /30./. 31.08.2008-05.09.2008, Helsinki] Institutional research plan: CEZ:AV0Z40550506 Keywords : antimicrobial peptides * solitary bees * melectin * isolation and characterization Subject RIV: CC - Organic Chemistry

  5. A comparative study of marriage in honey bees optimisation (MBO ...

    African Journals Online (AJOL)

    ... particle swarm optimisation (PSO) and elitist-mutation particle swarm optimisation (EMPSO). The results indicate the superiority of MBO over the algorithms tested. Keywords: non-linear optimisation, multi reservoir system, honey bee mating optimisation algorithm, evolutionary algorithms, meta-heuristic algorithms ...

  6. Bee diseases: Examining options for their management in Africa ...

    African Journals Online (AJOL)

    In Europe and Asia, the problem of damage to bees by Varroa-Mites has primarily been attacked by increased medical treatment: in Europe, in 1980, they started with one treatment per year and have meanwhile arrived at four to five yearly treatments, depending on the region. The side-effects of the treatment have ...

  7. New species of the stingless bee genus Schwarziana (Hymenoptera, Apidae)

    OpenAIRE

    Melo, Gabriel A.R.

    2015-01-01

    ABSTRACT Two new species of the stingless bee genus Schwarziana from Brazil are described and illustrated. Schwarziana bocainensis sp. nov. is described from Serra da Bocaina, in São Paulo, and S. chapadensis sp. nov. is described from Chapada dos Veadeiros, in Goiás. An identification key to workers of the known species of Schwarziana is provided.

  8. The partial mitochondrial sequence of the Old World stingless bee ...

    Indian Academy of Sciences (India)

    It con- tains several short repeating sequences (6–13 bp) with vary- ing copy numbers (two-to-four copies), scattered through the whole region and a polythymidine stretch. This poly- thymidine stretch is reported to be a transcription control or the initiation of replication (Zhang and Hewitt 1997). For stingless bee M. bicolor, ...

  9. Controlled Release Formulation of Indomethacin Prepared With Bee ...

    African Journals Online (AJOL)

    Erah

    2010-12-27

    Dec 27, 2010 ... liquid chromatography (HPLC) and determination of the values of fat and fixed oils. Several ... that the best-fit drug release model varied with the drug:propolis extract ratio of the formulations. Conclusion: Formulation F13 (with equal proportion of drug and bee glue extract) came out best from the dissolution ...

  10. Sensitivity analyses for simulating pesticide impacts on honey bee colonies

    Science.gov (United States)

    We employ Monte Carlo simulation and sensitivity analysis techniques to describe the population dynamics of pesticide exposure to a honey bee colony using the VarroaPop+Pesticide model. Simulations are performed of hive population trajectories with and without pesticide exposure to determine the eff...

  11. Routes of pesticide exposure in solitary, cavity-nesting bees

    Science.gov (United States)

    The declines of pollinator health and populations are a current commercial and ecological concern. In particular, challenges related to maintaining healthy commercial honey bee (Apis mellifera L.) populations continue. Agricultural practices, such as the use of agrochemicals, are among factors that ...

  12. Methods to estimate breeding values in honey bees

    NARCIS (Netherlands)

    Brascamp, E.W.; Bijma, P.

    2014-01-01

    Background Efficient methodologies based on animal models are widely used to estimate breeding values in farm animals. These methods are not applicable in honey bees because of their mode of reproduction. Observations are recorded on colonies, which consist of a single queen and thousands of workers

  13. Africanized honey bees are slowere learners than their European counterparts

    Science.gov (United States)

    The range of Africanized honeybees continues to expand, superseding the common European honeybees in the southern United States. Are superior learning and memory the reason for their ecological success? Surprisingly, a comparison in a classical conditioning test of the two bee races shows that few...

  14. A Brazilian social bee must cultivate fungus to survive.

    Science.gov (United States)

    Menezes, Cristiano; Vollet-Neto, Ayrton; Marsaioli, Anita Jocelyne; Zampieri, Davila; Fontoura, Isabela Cardoso; Luchessi, Augusto Ducati; Imperatriz-Fonseca, Vera Lucia

    2015-11-02

    The nests of social insects provide suitable microenvironments for many microorganisms as they offer stable environmental conditions and a rich source of food [1-4]. Microorganisms in turn may provide several benefits to their hosts, such as nutrients and protection against pathogens [1, 4-6]. Several examples of symbiosis between social insects and microorganisms have been found in ants and termites. These symbioses have driven the evolution of complex behaviors and nest structures associated with the culturing of the symbiotic microorganisms [5, 7, 8]. However, while much is known about these relationships in many species of ants and termites, symbiotic relationships between microorganisms and social bees have been poorly explored [3, 4, 9, 10]. Here, we report the first case of an obligatory relationship between the Brazilian stingless bee Scaptotrigona depilis and a fungus of the genus Monascus (Ascomycotina). Fungal mycelia growing on the provisioned food inside the brood cell are eaten by the larva. Larvae reared in vitro on sterilized larval food supplemented with fungal mycelia had a much higher survival rate (76%) compared to larvae reared under identical conditions but without fungal mycelia (8% survival). The fungus was found to originate from the material from which the brood cells are made. Since the bees recycle and transport this material between nests, fungus would be transferred to newly built cells and also to newly founded nests. This is the first report of a fungus cultivation mutualism in a social bee. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Hybrid origins of Australian honey bees (Apis mellifera)

    Science.gov (United States)

    With increased globalisation and homogenisation the maintenance of genetic integrity of local populations of agriculturally important species is of increasing concern. The honey bee provides an interesting perspective as it is both domesticated and wild, with a large native range and much larger int...

  16. Peers, Pressure, and Performance at the National Spelling Bee

    Science.gov (United States)

    Smith, Jonathan

    2013-01-01

    This paper investigates how individuals' performances of a cognitive task in a high-pressure competition are affected by their peers' performances. To do so, I use novel data from the National Spelling Bee, in which students attempt to spell words correctly in a tournament setting. Across OLS and instrumental variables approaches, I…

  17. Honey bee gut dysbiosis: A novel context for disease ecology

    Science.gov (United States)

    A biofilm in the ileum of the honey bee has become a hot-spot of recent research. Highly host co-evolved, hindgut biofilm structure consists of six species that alter in relative abundance over the life of the adult worker, showing parallels with age-related senescence in Drosophila. Induced shifts ...

  18. Sensitivity analysis for simulating pesticide impacts on honey bee colonies

    Science.gov (United States)

    Background/Question/Methods Regulatory agencies assess risks to honey bees from pesticides through a tiered process that includes predictive modeling with empirical toxicity and chemical data of pesticides as a line of evidence. We evaluate the Varroapop colony model, proposed by...

  19. The impact of black economic empowerment (BEE) on South African ...

    African Journals Online (AJOL)

    L.P. Krüger is Professor of Operations, Project and Quality Management, University of South Africa. E-mail: krugelp@unisa.ac. ..... The impact of black economic empowerment (BEE) on South African businesses. Table 5: Industry type. Industry description. Frequency Percentage Industry description. Frequency Percentage.

  20. Stingless bees further improve apple pollination and production

    Directory of Open Access Journals (Sweden)

    Blandina Felipe Viana

    2014-10-01

    Full Text Available The use of Africanised honeybee (Apis mellifera scutellata Lepeletier hives to increase pollination success in apple orchards is a widespread practice. However, this study is the first to investigate the number of honeybee hives ha-1 required to increase the production of fruits and seeds as well as the potential contribution of the stingless bee Mandaçaia (Melipona quadrifasciata anthidioides Lepeletier. We performed tests in a 43-ha apple orchard located in the municipality of Ibicoara (13º24’50.7’’S and 41º17’7.4’’W in Chapada Diamantina, State of Bahia, Brazil. In 2011, fruits from the Eva variety set six seeds on average, and neither a greater number of hives (from 7 to 11 hives ha-1 nor a greater number of pollen collectors at the honeybee hives displayed general effects on the seed number. Without wild pollinators, seven Africanised honeybee hives ha-1 with pollen collectors is currently the best option for apple producers because no further increase in the seed number was observed with higher hive densities. In 2012, supplementation with both stingless bees (12 hives ha-1 and Africanised honeybees (7 hives ha-1 provided higher seed and fruit production than supplementation with honeybees (7 hives ha-1 alone. Therefore, the stingless bee can improve the performance of honeybee as a pollinator of apple flowers, since the presence of both of these bees results in increases in apple fruit and seed number.

  1. How bees distinguish patterns by green and blue modulation

    Directory of Open Access Journals (Sweden)

    Horridge A

    2015-10-01

    Full Text Available Adrian Horridge Biological Sciences, Australian National University, Canberra, ACT, Australia Abstract: In the 1920s, Mathilde Hertz found that trained bees discriminated between shapes or patterns of similar size by something related to total length of contrasting contours. This input is now interpreted as modulation in green and blue receptor channels as flying bees scan in the horizontal plane. Modulation is defined as total contrast irrespective of sign multiplied by length of edge displaying that contrast, projected to vertical, therefore, combining structure and contrast in a single input. Contrast is outside the eye; modulation is a phasic response in receptor pathways inside. In recent experiments, bees trained to distinguish color detected, located, and measured three independent inputs and the angles between them. They are the tonic response of the blue receptor pathway and modulation of small-field green or (less preferred blue receptor pathways. Green and blue channels interacted intimately at a peripheral level. This study explores in more detail how various patterns are discriminated by these cues. The direction of contrast at a boundary was not detected. Instead, bees located and measured total modulation generated by horizontal scanning of contrasts, irrespective of pattern. They also located the positions of isolated vertical edges relative to other landmarks and distinguished the angular widths between vertical edges by green or blue modulation alone. The preferred inputs were the strongest green modulation signal and angular width between outside edges, irrespective of color. In the absence of green modulation, the remaining cue was a measure and location of blue modulation at edges. In the presence of green modulation, blue modulation was inhibited. Black/white patterns were distinguished by the same inputs in blue and green receptor channels. Left–right polarity and mirror images could be discriminated by retinotopic green

  2. Selection of bee species for environmental risk assessment of GM cotton in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Carmen Sílvia Soares Pires

    2014-08-01

    Full Text Available The objective of this work was to list potential candidate bee species for environmental risk assessment (ERA of genetically modified (GM cotton and to identify the most suited bee species for this task, according to their abundance and geographical distribution. Field inventories of bee on cotton flowers were performed in the states of Bahia and Mato Grosso, and in Distrito Federal, Brazil. During a 344 hour sampling, 3,470 bees from 74 species were recovered, at eight sites. Apis mellifera dominated the bee assemblages at all sites. Sampling at two sites that received no insecticide application was sufficient to identify the three most common and geographically widespread wild species: Paratrigona lineata, Melissoptila cnecomola, and Trigona spinipes, which could be useful indicators of pollination services in the ERA. Indirect ordination of common wild species revealed that insecticides reduced the number of native bee species and that interannual variation in bee assemblages may be low. Accumulation curves of rare bee species did not saturate, as expected in tropical and megadiverse regions. Species-based approaches are limited to analyze negative impacts of GM cotton on pollinator biological diversity. The accumulation rate of rare bee species, however, may be useful for evaluating possible negative effects of GM cotton on bee diversity.

  3. The sound and the fury--bees hiss when expecting danger.

    Directory of Open Access Journals (Sweden)

    Henja-Niniane Wehmann

    Full Text Available Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.

  4. Migratory management and environmental conditions affect lifespan and oxidative stress in honey bees

    Science.gov (United States)

    Simone-Finstrom, Michael; Li-Byarlay, Hongmei; Huang, Ming H.; Strand, Micheline K.; Rueppell, Olav; Tarpy, David R.

    2016-01-01

    Most pollination in large-scale agriculture is dependent on managed colonies of a single species, the honey bee Apis mellifera. More than 1 million hives are transported to California each year just to pollinate the almonds, and bees are trucked across the country for various cropping systems. Concerns have been raised about whether such “migratory management” causes bees undue stress; however to date there have been no longer-term studies rigorously addressing whether migratory management is detrimental to bee health. To address this issue, we conducted field experiments comparing bees from commercial and experimental migratory beekeeping operations to those from stationary colonies to quantify effects on lifespan, colony health and productivity, and levels of oxidative damage for individual bees. We detected a significant decrease in lifespan of migratory adult bees relative to stationary bees. We also found that migration affected oxidative stress levels in honey bees, but that food scarcity had an even larger impact; some detrimental effects of migration may be alleviated by a greater abundance of forage. In addition, rearing conditions affect levels of oxidative damage incurred as adults. This is the first comprehensive study on impacts of migratory management on the health and oxidative stress of honey bees. PMID:27554200

  5. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  6. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees.

    Science.gov (United States)

    Grüter, Christoph; Segers, Francisca H I D; Menezes, Cristiano; Vollet-Neto, Ayrton; Falcón, Tiago; von Zuben, Lucas; Bitondi, Márcia M G; Nascimento, Fabio S; Almeida, Eduardo A B

    2017-02-23

    The differentiation of workers into morphological castes represents an important evolutionary innovation that is thought to improve division of labor in insect societies. Given the potential benefits of task-related worker differentiation, it is puzzling that physical worker castes, such as soldiers, are extremely rare in social bees and absent in wasps. Following the recent discovery of soldiers in a stingless bee, we studied the occurrence of worker differentiation in 28 stingless bee species from Brazil and found that several species have specialized soldiers for colony defence. Our results reveal that worker differentiation evolved repeatedly during the last ~ 25 million years and coincided with the emergence of parasitic robber bees, a major threat to many stingless bee species. Furthermore, our data suggest that these robbers are a driving force behind the evolution of worker differentiation as targets of robber bees are four times more likely to have nest guards of increased size than non-targets. These findings reveal unexpected diversity in the social organization of stingless bees.Although common in ants and termites, worker differentiation into physical castes is rare in social bees and unknown in wasps. Here, Grüter and colleagues find a guard caste in ten species of stingless bees and show that the evolution of the guard caste is associated with parasitization by robber bees.

  7. The sound and the fury--bees hiss when expecting danger.

    Science.gov (United States)

    Wehmann, Henja-Niniane; Gustav, David; Kirkerud, Nicholas H; Galizia, C Giovanni

    2015-01-01

    Honey bees are important model systems for the investigation of learning and memory and for a better understanding of the neuronal basics of brain function. Honey bees also possess a rich repertoire of tones and sounds, from queen piping and quacking to worker hissing and buzzing. In this study, we tested whether the worker bees' sounds can be used as a measure of learning. We therefore conditioned honey bees aversively to odours in a walking arena and recorded both their sound production and their movement. Bees were presented with two odours, one of which was paired with an electric shock. Initially, the bees did not produce any sound upon odour presentation, but responded to the electric shock with a strong hissing response. After learning, many bees hissed at the presentation of the learned odour, while fewer bees hissed upon presentation of another odour. We also found that hissing and movement away from the conditioned odour are independent behaviours that can co-occur but do not necessarily do so. Our data suggest that hissing can be used as a readout for learning after olfactory conditioning, but that there are large individual differences between bees concerning their hissing reaction. The basis for this variability and the possible ecological relevance of the bees' hissing remain to be investigated.

  8. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Science.gov (United States)

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  9. Performance of two honey bee subspecies during harsh weather and Acacia gerrardii nectar-rich flow

    Directory of Open Access Journals (Sweden)

    Awad Mohamed Awad

    Full Text Available ABSTRACT Both climatic factors and bee forage characteristics affect the population size and productivity of honey bee colonies. To our knowledge, no scientific investigation has as yet considered the potential effect of nectar-rich bee forage exposed to drastic subtropical weather conditions on the performance of honey bee colonies. This study investigated the performance of the honey bee subspecies Apis mellifera jemenitica Ruttner (Yemeni and Apis mellifera carnica Pollmann (Carniolan in weather that was hot and dry and in an environment of nectar-rich flora. The brood production, food storage, bee population and honey yield of Yemeni (native and Carniolan (imported colonies on Talh trees (Acacia gerrardii Benth., a nectar-rich, subtropical, and summer bee forage source in Central Arabia were evaluated. Owing to their structural and behavioral adaptations, the Yemeni bees constructed stronger (high population size colonies than the Carniolan bees. Although both groups yielded similar amounts of Talh honey, the Yemeni bees consumed their stored honey rapidly if not timely harvested. A. m. jemenitica has a higher performance than A. m. carnica during extremely hot-dry conditions and A. gerrardii nectar-rich flow.

  10. Bee species diversity enhances productivity and stability in a perennial crop.

    Directory of Open Access Journals (Sweden)

    Shelley R Rogers

    Full Text Available Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning--and, therefore, their importance in maintaining and enhancing these services-remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination are stabilized through the differential response of bee taxa to weather (i.e., response diversity. Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.

  11. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    Directory of Open Access Journals (Sweden)

    Gihyun Lee

    2016-02-01

    Full Text Available Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2 has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes.

  12. Late winter feeding stimulates rapid spring development of carniolan honey bee colonies (Apis mellifera carnica

    Directory of Open Access Journals (Sweden)

    Zlatko Puškadija

    2017-01-01

    Full Text Available Unfavourable weather conditions after the queen starts with intensive oviposition during early spring may cause an imbalance in the division of tasks among worker bees in the bee colony. This can lead to slow spring development and poor exploitation of the main spring nectar flows. In order to accelerate the spring development, it is necessary, as a technological measure, to feed supplemental candy to bee colonies. In this research, the necessity of supplemental feeding, as well as the composition of candy (pollen and protein substitute were analysed. Three groups of ten bee colonies each were formed - the control, unfed group, pollen candy fed and protein substitute candy fed. In the period from 22/02/2016 and 04/04/2016 three control measurements were performed during which the number of bees, the number of brood cells and weight of the bee colonies were determined. The research has shown that supplemental feeding of the bee colony in late winter in order to encourage the rapid spring development is justified. Namely, at the final measurements in April, the results showed differences between groups. The treated colonies had higher net hive weight, a greater number of bees and statistically significantly more brood cells. The results of this study confirm that the technological measure of supplemental feeding in late winter should be performed on all commercial apiaries for the production of honey, pollen, royal jelly, queen bees and bee venom.

  13. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells

    Directory of Open Access Journals (Sweden)

    Mishima Satoshi

    2009-11-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is a key regulator of pathogenic angiogenesis in diseases such as cancer and diabetic retinopathy. Bee products [royal jelly (RJ, bee pollen, and Chinese red propolis] from the honeybee, Apis mellifera, have been used as traditional health foods for centuries. The aim of this study was to investigate the anti-angiogenic effects of bee products using human umbilical vein endothelial cells (HUVECs. Methods In an in vitro tube formation assay, HUVECs and fibroblast cells were incubated for 14 days with VEGF and various concentrations of bee products [RJ, ethanol extract of bee pollen, ethanol extract of Chinese red propolis and its constituent, caffeic acid phenethyl ester (CAPE]. To clarify the mechanism of in vitro angiogenesis, HUVEC proliferation and migration were induced by VEGF with or without various concentrations of RJ, bee pollen, Chinese red propolis, and CAPE. Results RJ, bee pollen, Chinese red propolis, and CAPE significantly suppressed VEGF-induced in vitro tube formation in the descending order: CAPE > Chinese red propolis >> bee pollen > RJ. RJ and Chinese red propolis suppressed both VEGF-induced HUVEC proliferation and migration. In contrast, bee pollen and CAPE suppressed only the proliferation. Conclusion Among the bee products, Chinese red propolis and CAPE in particular showed strong suppressive effects against VEGF-induced angiogenesis. These findings indicate that Chinese red propolis and CAPE may have potential as preventive and therapeutic agents against angiogenesis-related human diseases.

  14. Individual perception of bees: Between perceived danger and willingness to protect.

    Science.gov (United States)

    Schönfelder, Mona Lisa; Bogner, Franz Xaver

    2017-01-01

    The current loss of biodiversity has found its way into the media. Especially the loss of bees as pollinators has recently received much attention aiming to increase public awareness about the consequence of pollinator loss and strategies for protection. However, pollinating insects like bees often prompt considerable anxiety. Negative emotions such as fear and disgust often lead to lack of support for conservation and appropriate initiatives for protection. Our study monitored perceptions of bees in the contexts of conservation and danger bees possibly represent by applying a semantic differential using contrasting adjectives under the heading "I think bees are…". Additionally, open questions were applied to examine individual perceptions of danger and conservation of bees. Respondents were students from primary school, secondary school and university. We compared these novices (n = 499) to experts (beekeepers, n = 153). An exploratory factor analysis of the semantic differential responses yielded three major oblique factors: Interest, Danger and Conservation & Usefulness. The inter-correlations of these factors were significant. Although all subgroups showed an overall high willingness to protect bees, the perception of danger scored medium. The individual experience of bee stings was the most prevalent reason for expressing fear. Educational programs focusing on pollinator conservation may reduce the perceived danger through removing misinformation, and supporting interest in the species. Based on the overall positive attitude toward bees, we suggest introducing bees (e.g., Apis mellifera) as a flagship species for pollinator conservation.

  15. Preparation and characterization of bee venom-loaded PLGA particles for sustained release.

    Science.gov (United States)

    Park, Min-Ho; Jun, Hye-Suk; Jeon, Jong-Woon; Park, Jin-Kyu; Lee, Bong-Joo; Suh, Guk-Hyun; Park, Jeong-Sook; Cho, Cheong-Weon

    2016-12-14

    Bee venom-loaded poly(lactic-co-glycolic acid) (PLGA) particles were prepared by double emulsion-solvent evaporation, and characterized for a sustained-release system. Factors such as the type of organic solvent, the amount of bee venom and PLGA, the type of PLGA, the type of polyvinyl alcohol, and the emulsification method were considered. Physicochemical properties, including the encapsulation efficiency, drug loading, particle size, zeta-potential and surface morphology were examined by Fourier transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), and X-ray diffraction (XRD). The size of the bee venom-loaded PLGA particles was 500 nm (measured using sonication). Zeta-potentials of the bee venom-loaded PLGA particles were negative owing to the PLGA. FT-IR results demonstrated that the bee venom was completely encapsulated in the PLGA particles, indicated by the disappearance of the amine and amide peaks. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis indicated that the bee venom in the bee venom-loaded PLGA particles was intact. In vitro release of the bee venom from the bee venom-loaded PLGA particles showed a sustained-release profile over 1 month. Bee venom-loaded PLGA particles can help improve patients' quality of life by reducing the number of injections required.

  16. Bee Venom Phospholipase A2: Yesterday’s Enemy Becomes Today’s Friend

    Science.gov (United States)

    Lee, Gihyun; Bae, Hyunsu

    2016-01-01

    Bee venom therapy has been used to treat immune-related diseases such as arthritis for a long time. Recently, it has revealed that group III secretory phospholipase A2 from bee venom (bee venom group III sPLA2) has in vitro and in vivo immunomodulatory effects. A growing number of reports have demonstrated the therapeutic effects of bee venom group III sPLA2. Notably, new experimental data have shown protective immune responses of bee venom group III sPLA2 against a wide range of diseases including asthma, Parkinson’s disease, and drug-induced organ inflammation. It is critical to evaluate the beneficial and adverse effects of bee venom group III sPLA2 because this enzyme is known to be the major allergen of bee venom that can cause anaphylactic shock. For many decades, efforts have been made to avoid its adverse effects. At high concentrations, exposure to bee venom group III sPLA2 can result in damage to cellular membranes and necrotic cell death. In this review, we summarized the current knowledge about the therapeutic effects of bee venom group III sPLA2 on several immunological diseases and described the detailed mechanisms of bee venom group III sPLA2 in regulating various immune responses and physiopathological changes. PMID:26907347

  17. Negative effects of pesticides on wild bee communities can be buffered by landscape context

    Science.gov (United States)

    Park, Mia G.; Blitzer, E. J.; Gibbs, Jason; Losey, John E.; Danforth, Bryan N.

    2015-01-01

    Wild bee communities provide underappreciated but critical agricultural pollination services. Given predicted global shortages in pollination services, managing agroecosystems to support thriving wild bee communities is, therefore, central to ensuring sustainable food production. Benefits of natural (including semi-natural) habitat for wild bee abundance and diversity on farms are well documented. By contrast, few studies have examined toxicity of pesticides on wild bees, let alone effects of farm-level pesticide exposure on entire bee communities. Whether beneficial natural areas could mediate effects of harmful pesticides on wild bees is also unknown. Here, we assess the effect of conventional pesticide use on the wild bee community visiting apple (Malus domestica) within a gradient of percentage natural area in the landscape. Wild bee community abundance and species richness decreased linearly with increasing pesticide use in orchards one year after application; however, pesticide effects on wild bees were buffered by increasing proportion of natural habitat in the surrounding landscape. A significant contribution of fungicides to observed pesticide effects suggests deleterious properties of a class of pesticides that was, until recently, considered benign to bees. Our results demonstrate extended benefits of natural areas for wild pollinators and highlight the importance of considering the landscape context when weighing up the costs of pest management on crop pollination services. PMID:26041355

  18. Dynamics of Persistent and Acute Deformed Wing Virus Infections in Honey Bees, Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2011-12-01

    Full Text Available The dynamics of viruses are critical to our understanding of disease pathogenesis. Using honey bee Deformed wing virus (DWV as a model, we conducted field and laboratory studies to investigate the roles of abiotic and biotic stress factors as well as host health conditions in dynamics of virus replication in honey bees. The results showed that temperature decline could lead to not only significant decrease in the rate for pupae to emerge as adult bees, but also an increased severity of the virus infection in emerged bees, partly explaining the high levels of winter losses of managed honey bees, Apis mellifera, around the world. By experimentally exposing adult bees with variable levels of parasitic mite Varroa destructor, we showed that the severity of DWV infection was positively correlated with the density and time period of Varroa mite infestation, confirming the role of Varroa mites in virus transmission and activation in honey bees. Further, we showed that host conditions have a significant impact on the outcome of DWV infection as bees that originate from strong colonies resist DWV infection and replication significantly better than bee originating from weak colonies. The information obtained from this study has important implications for enhancing our understanding of host‑pathogen interactions and can be used to develop effective disease control strategies for honey bees.

  19. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    Directory of Open Access Journals (Sweden)

    Zhiguo Li

    Full Text Available Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV, on the foraging behaviors and homing ability of European honey bees (Apis mellifera L. were investigated based on proboscis extension response (PER assays and radio frequency identification (RFID systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  20. Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology.

    Science.gov (United States)

    Sponsler, Douglas B; Johnson, Reed M

    2017-04-01

    The role of pesticides in recent honey bee losses is controversial, partly because field studies often fail to detect effects predicted by laboratory studies. This dissonance highlights a critical gap in the field of honey bee toxicology: there exists little mechanistic understanding of the patterns and processes of exposure that link honey bees to pesticides in their environment. The authors submit that 2 key processes underlie honey bee pesticide exposure: 1) the acquisition of pesticide by foraging bees, and 2) the in-hive distribution of pesticide returned by foragers. The acquisition of pesticide by foraging bees must be understood as the spatiotemporal intersection between environmental contamination and honey bee foraging activity. This implies that exposure is distributional, not discrete, and that a subset of foragers may acquire harmful doses of pesticide while the mean colony exposure would appear safe. The in-hive distribution of pesticide is a complex process driven principally by food transfer interactions between colony members, and this process differs importantly between pollen and nectar. High priority should be placed on applying the extensive literature on honey bee biology to the development of more rigorously mechanistic models of honey bee pesticide exposure. In combination with mechanistic effects modeling, mechanistic exposure modeling has the potential to integrate the field of honey bee toxicology, advancing both risk assessment and basic research. Environ Toxicol Chem 2017;36:871-881. © 2016 SETAC. © 2016 SETAC.

  1. Nectar robbery by bees Xylocopa virginica and Apis mellifera contributes to the pollination of rabbiteye blueberry.

    Science.gov (United States)

    Sampson, Blair J; Danka, Robert G; Stringer, Stephen J

    2004-06-01

    Honey bees, Apis mellifera L., probe for nectar from robbery slits previously made by male carpenter bees, Xylocopa virginica (L.), at the flowers of rabbiteye blueberry, Vaccinium ashei Reade. This relationship between primary nectar robbers (carpenter bees) and secondary nectar thieves (honey bees) is poorly understood but seemingly unfavorable for V. ashei pollination. We designed two studies to measure the impact of nectar robbers on V. ashei pollination. First, counting the amount of pollen on stigmas (stigmatic pollen loading) showed that nectar robbers delivered fewer blueberry tetrads per stigma after single floral visits than did our benchmark pollinator, the southeastern blueberry bee, Habropoda laboriosa (F.), a recognized effective pollinator of blueberries. Increasing numbers of floral visits by carpenter bee and honey bee robbers yielded larger stigmatic loads. As few as three robbery visits were equivalent to one legitimate visit by a pollen-collecting H. laboriosa female. More than three robbery visits per flower slightly depressed stigmatic pollen loads. In our second study, a survey of 10 commercial blueberry farms demonstrated that corolla slitting by carpenter bees (i.e., robbery) has no appreciable affect on overall V. ashei fruit set. Our observations demonstrate male carpenter bees are benign or even potentially beneficial floral visitors of V ashei. Their robbery of blueberry flowers in the southeast may attract more honey bee pollinators to the crop.

  2. Bee species diversity enhances productivity and stability in a perennial crop.

    Science.gov (United States)

    Rogers, Shelley R; Tarpy, David R; Burrack, Hannah J

    2014-01-01

    Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning--and, therefore, their importance in maintaining and enhancing these services-remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild-bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services.

  3. The Bacterial Communities Associated with Honey Bee (Apis mellifera) Foragers

    Science.gov (United States)

    Corby-Harris, Vanessa; Maes, Patrick; Anderson, Kirk E.

    2014-01-01

    The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop), a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB) that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1) despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2) corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3) the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae), highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation. PMID:24740297

  4. The bacterial communities associated with honey bee (Apis mellifera foragers.

    Directory of Open Access Journals (Sweden)

    Vanessa Corby-Harris

    Full Text Available The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop, a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1 despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2 corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3 the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae, highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation.

  5. Why, when and where did honey bee dance communication evolve?

    Directory of Open Access Journals (Sweden)

    Robbie eI'Anson Price

    2015-11-01

    Full Text Available Honey bees (Apis sp. are the only known bee genus that uses nest-based communication to provide nest-mates with information about the location of resources, the so-called dance language. Successful foragers perform waggle dances for high quality food sources and suitable nest-sites during swarming. However, since many species of social insects do not communicate the location of resources to their nest-mates, the question of why the dance language evolved is of ongoing interest. We review recent theoretical and empirical research into the ecological circumstances that make dance communication beneficial in present day environments. This research suggests that the dance language is most beneficial when food sources differ greatly in quality and are hard to find. The dances of extant honey bee species differ in important ways, and phylogenetic studies suggest an increase in dance complexity over time: species with the least complex dance were the first to appear and species with the most complex dance are the most derived. We review the fossil record of honey bees and speculate about the time and context (foraging vs. swarming in which spatially referential dance communication might have evolved. We conclude that there are few certainties about when the dance language first appeared; dance communication could be older than 40 million years and, thus, predate the genus Apis, or it could be as recent as 20 million years when extant honey bee species diverged during the early Miocene. The most parsimonious scenario assumes it evolved in a sub-tropical to temperate climate, with patchy vegetation somewhere in Eurasia.

  6. The metabolic fate of nectar nicotine in worker honey bees.

    Science.gov (United States)

    du Rand, Esther E; Pirk, Christian W W; Nicolson, Susan W; Apostolides, Zeno

    2017-04-01

    Honey bees (Apis mellifera) are generalist pollinators that forage for nectar and pollen of a very large variety of plant species, exposing them to a diverse range of secondary metabolites produced as chemical defences against herbivory. Honey bees can tolerate high levels of many of these toxic compounds, including the alkaloid nicotine, in their diet without incurring apparent fitness costs. Very little is known about the underlying detoxification processes mediating this tolerance. We examined the metabolic fate of nicotine in newly emerged worker bees using radiolabeled nicotine and LC-MS/MS analysis to determine the kinetic distribution profile of nicotine as well as the absence or presence and identity of any nicotine-derived metabolites. Nicotine metabolism was extensive; virtually no unmetabolised nicotine were recovered from the rectum. The major metabolite found was 4-hydroxy-4-(3-pyridyl) butanoic acid, the end product of 2'C-oxidation of nicotine. It is the first time that 4-hydroxy-4-(3-pyridyl) butanoic acid has been identified in an insect as a catabolite of nicotine. Lower levels of cotinine, cotinine N-oxide, 3'hydroxy-cotinine, nicotine N-oxide and norcotinine were also detected. Our results demonstrated that formation of 4-hydroxy-4-(3-pyridyl) butanoic acid is quantitatively the most significant pathway of nicotine metabolism in honey bees and that the rapid excretion of unmetabolised nicotine does not contribute significantly to nicotine tolerance in honey bees. In nicotine-tolerant insects that do not rely on the rapid excretion of nicotine like the Lepidoptera, it is possible that the 2'C-oxidation of nicotine is the conserved metabolic pathway instead of the generally assumed 5'C-oxidation pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Inbreeding in Mimulus guttatus reduces visitation by bumble bee pollinators.

    Directory of Open Access Journals (Sweden)

    David E Carr

    Full Text Available Inbreeding in plants typically reduces individual fitness but may also alter ecological interactions. This study examined the effect of inbreeding in the mixed-mating annual Mimulus guttatus on visitation by pollinators (Bombus impatiens in greenhouse experiments. Previous studies of M. guttatus have shown that inbreeding reduced corolla size, flower number, and pollen quantity and quality. Using controlled crosses, we produced inbred and outbred families from three different M. guttatus populations. We recorded the plant genotypes that bees visited and the number of flowers probed per visit. In our first experiment, bees were 31% more likely to visit outbred plants than those selfed for one generation and 43% more likely to visit outbred plants than those selfed for two generations. Inbreeding had only a small effect on the number of flowers probed once bees arrived at a genotype. These differences were explained partially by differences in mean floral display and mean flower size, but even when these variables were controlled statistically, the effect of inbreeding remained large and significant. In a second experiment we quantified pollen viability from inbred and self plants. Bees were 37-54% more likely to visit outbred plants, depending on the population, even when controlling for floral display size. Pollen viability proved to be as important as floral display in predicting pollinator visitation in one population, but the overall explanatory power of a multiple regression model was weak. Our data suggested that bees use cues in addition to display size, flower size, and pollen reward quality in their discrimination of inbred plants. Discrimination against inbred plants could have effects on plant fitness and thereby reinforce selection for outcrossing. Inbreeding in plant populations could also reduce resource quality for pollinators, potentially resulting in negative effects on pollinator populations.

  8. The bacterial communities associated with honey bee (Apis mellifera) foragers.

    Science.gov (United States)

    Corby-Harris, Vanessa; Maes, Patrick; Anderson, Kirk E

    2014-01-01

    The honey bee is a key pollinator species in decline worldwide. As part of a commercial operation, bee colonies are exposed to a variety of agricultural ecosystems throughout the year and a multitude of environmental variables that may affect the microbial balance of individuals and the hive. While many recent studies support the idea of a core microbiota in guts of younger in-hive bees, it is unknown whether this core is present in forager bees or the pollen they carry back to the hive. Additionally, several studies hypothesize that the foregut (crop), a key interface between the pollination environment and hive food stores, contains a set of 13 lactic acid bacteria (LAB) that inoculate collected pollen and act in synergy to preserve pollen stores. Here, we used a combination of 454 based 16S rRNA gene sequencing of the microbial communities of forager guts, crops, and corbicular pollen and crop plate counts to show that (1) despite a very different diet, forager guts contain a core microbiota similar to that found in younger bees, (2) corbicular pollen contains a diverse community dominated by hive-specific, environmental or phyllosphere bacteria that are not prevalent in the gut or crop, and (3) the 13 LAB found in culture-based studies are not specific to the crop but are a small subset of midgut or hindgut specific bacteria identified in many recent 454 amplicon-based studies. The crop is dominated by Lactobacillus kunkeei, and Alpha 2.2 (Acetobacteraceae), highly osmotolerant and acid resistant bacteria found in stored pollen and honey. Crop taxa at low abundance include core hindgut bacteria in transit to their primary niche, and potential pathogens or food spoilage organisms seemingly vectored from the pollination environment. We conclude that the crop microbial environment is influenced by worker task, and may function in both decontamination and inoculation.

  9. Honey bee foraging preferences, effects of sugars, and fruit fly toxic bait components.

    Science.gov (United States)

    Mangan, Robert L; Moreno, Aleena Tarshis

    2009-08-01

    Field tests were carried out to evaluate the repellency of the Dow AgroSciences fruit fly toxic bait GF-120 (NF Naturalyte) to domestic honey bees (Apis mellifera L.). GF-120 is an organically registered attractive bait for tephritid fruit flies composed of spinosad, hydrolyzed protein (Solulys), high-fructose corn syrup (ADM CornSweet 42 high-fructose corn syrup, referred to as invertose sugar or invertose here), vegetable oils, adjuvants, humectants, and attractants. Tests were carried out with non-Africanized honey bees in February and March 2005 and 2007 during periods of maximum hunger for these bees. In all tests, bees were first trained to forage from plates of 30% honey-water (2005) or 30% invertose (2007). In 2005 bees were offered choices between honey-water and various bait components, including the complete toxic bait. In 2007, similar tests were performed except bees were attracted with 30% invertose then offered the bait components or complete bait as no-choice tests. Initially, the 2005 tests used all the components of GF-120 except the spinosad as the test bait. After we were convinced that bees would not collect or be contaminated by the bait, we tested the complete GF-120. Behavior of the bees indicated that during initial attraction and after switching the baits, the bait components and the complete bait were repellent to honey bees, but the honey-water remained attractive. Invertose was shown to be less attractive to bees, addition of Solulys eliminated almost all bee activity, and addition of ammonium acetate completely eliminated feeding in both choice and no-choice tests. These results confirm previous tests showing that bees do not feed on GF-120 and also show that honey bees are repelled by the fruit fly attractant components of the bait in field tests.

  10. Does the Honey Bee "Risk Cup" Runneth Over? Estimating Aggregate Exposures for Assessing Pesticide Risks to Honey Bees in Agroecosystems.

    Science.gov (United States)

    Berenbaum, May R

    2016-01-13

    Honey bees (Apis mellifera) are uniquely vulnerable to nontarget pesticide impacts because, as ubiquitous managed pollinators, they are deliberately transported into areas where crops are grown with pesticides. Moreover, attributes making them excellent managed pollinators, including large long-lived colonies and complex behavior, also make them challenging subjects for toxicity bioassays. For over 150 years, improvements in formulation and delivery of pesticides, increasing their environmental and temporal presence, have had unintended consequences for honey bees. Since 1996, the Environmental Protection Agency has used "aggregate risk"--exposure risks to all possible sources--to set tolerances; once a "risk cup" is filled, no new pesticide or use can be approved unless risks are reduced elsewhere. The EPA now recommends a modeling approach for aggregating all exposure risks for bees, with differential lifestage sensitivity and exposure probabilities. Thus, the honey bee is the first insect with its own "risk cup"--a technological innovation that may not have unintended consequences for this beleaguered beneficial species.

  11. Influence of honey bee, Apis mellifera, hives and field size on foraging activity of native bee species in pumpkin fields.

    Science.gov (United States)

    Artz, Derek R; Hsu, Cynthia L; Nault, Brian A

    2011-10-01

    The purpose of this study was to identify bee species active in pumpkin fields in New York and to estimate their potential as pollinators by examining their foraging activity. In addition, we examined whether foraging activity was affected by either the addition of hives of the honey bee, Apis mellifera L., or by field size. Thirty-five pumpkin (Cucurbita spp.) fields ranging from 0.6 to 26.3 ha, 12 supplemented with A. mellifera hives and 23 not supplemented, were sampled during peak flowering over three successive weeks in 2008 and 2009. Flowers from 300 plants per field were visually sampled for bees on each sampling date. A. mellifera, Bombus impatiens Cresson, and Peponapis pruinosa (Say) accounted for 99% of all bee visits to flowers. A. mellifera and B. impatiens visited significantly more pistillate flowers than would be expected by chance, whereas P. pruinosa showed no preference for visiting pistillate flowers. There were significantly more A. mellifera visits per flower in fields supplemented with A. mellifera hives than in fields not supplemented, but there were significantly fewer P. pruinosa visits in supplemented fields. The number of B. impatiens visits was not affected by supplementation, but was affected by number of flowers per field. A. mellifera and P. pruinosa visits were not affected by field size, but B. impatiens visited fewer flowers as field size increased in fields that were not supplemented with A. mellifera hives. Declining A. mellifera populations may increase the relative importance of B. impatiens in pollinating pumpkins in New York.

  12. Colour is more than hue: preferences for compiled colour traits in the stingless bees Melipona mondury and M. quadrifasciata.

    Science.gov (United States)

    Koethe, Sebastian; Bossems, Jessica; Dyer, Adrian G; Lunau, Klaus

    2016-10-01

    The colour vision of bees has been extensively analysed in honeybees and bumblebees, but few studies consider the visual perception of stingless bees (Meliponini). In a five-stage experiment the preference for colour intensity and purity, and the preference for the dominant wavelength were tested by presenting four colour stimuli in each test to freely flying experienced workers of two stingless bee species, Melipona mondury and Melipona quadrifasciata. The results with bee-blue, bee-UV-blue and bee-green colours offered in four combinations of varying colour intensity and purity suggest a complex interaction between these colour traits for the determination of colour choice. Specifically, M. mondury preferred bee-UV-blue colours over bee-green, bee-blue and bee-blue-green colours while M. quadrifasciata preferred bee-green colour stimuli. Moreover in M. mondury the preferences were different if the background colour was changed from grey to green. There was a significant difference between species where M. mondury preferred UV-reflecting over UV-absorbing bee-blue-green colour stimuli, whereas M. quadrifasciata showed an opposite preference. The different colour preferences of the free flying bees in identical conditions may be caused by the bees' experience with natural flowers precedent to the choice tests, suggesting reward partitioning between species.

  13. To bee or not to bee—comments on “Discrete optimum design of truss structures using artificial bee colony algorithm”

    DEFF Research Database (Denmark)

    Stolpe, Mathias

    2011-01-01

    An Artificial Bee Colony algorithm was presented by Sonmez (StructMultidisc Optim 43:85–97, 2011) for solving discrete truss design problems. It was numerically tested on four benchmark examples and concluded to be robust and efficient. We compare the Artificial Bee Colony algorithm numerically...

  14. Measurements of Chlorpyrifos Levels in Forager Bees and Comparison with Levels that Disrupt Honey Bee Odor-Mediated Learning Under Laboratory Conditions.

    Science.gov (United States)

    Urlacher, Elodie; Monchanin, Coline; Rivière, Coraline; Richard, Freddie-Jeanne; Lombardi, Christie; Michelsen-Heath, Sue; Hageman, Kimberly J; Mercer, Alison R

    2016-02-01

    Chlorpyrifos is an organophosphate pesticide used around the world to protect food crops against insects and mites. Despite guidelines for chlorpyrifos usage, including precautions to protect beneficial insects, such as honeybees from spray drift, this pesticide has been detected in bees in various countries, indicating that exposure still occurs. Here, we examined chlorpyrifos levels in bees collected from 17 locations in Otago, New Zealand, and compared doses of this pesticide that cause sub-lethal effects on learning performance under laboratory conditions with amounts of chlorpyrifos detected in the bees in the field. The pesticide was detected at 17 % of the sites sampled and in 12 % of the colonies examined. Amounts detected ranged from 35 to 286 pg.bee(-1), far below the LD50 of ~100 ng.bee(-1). We detected no adverse effect of chlorpyrifos on aversive learning, but the formation and retrieval of appetitive olfactory memories was severely affected. Chlorpyrifos fed to bees in amounts several orders of magnitude lower than the LD50, and also lower than levels detected in bees, was found to slow appetitive learning and reduce the specificity of memory recall. As learning and memory play a central role in the behavioral ecology and communication of foraging bees, chlorpyrifos, even in sublethal doses, may threaten the success and survival of this important insect pollinator.

  15. Scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (Apis mellifera, Bombus spp. and solitary bees)

    NARCIS (Netherlands)

    Luttik, R.; Arnold, G.; Boesten, J.J.T.I.; Cresswell, J.; Hart, A.; Pistorius, J.; Sgolastra, F.; Delso, N.S.; Steurbaut, W.; Thompson, H.

    2012-01-01

    The PPR Panel was asked to deliver a scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). Specific protection goals options were suggested based on the ecosystem services approach. The

  16. Comparison of Treatment Effects and Allergic responses to stiff neck between Sweet Bee Venom and Bee Venom Pharmacopuncture (A pilot study, Double blind, Randomized Controlled Clinical Trail

    Directory of Open Access Journals (Sweden)

    Kyoung-hee Lee

    2008-12-01

    Full Text Available Objective : The purpose of this study is to investigate the difference of treatment effects and allergic responses to stiff neck between Bee Venom Pharmacopuncture and Sweet Bee Venom Pharmacopuncture. Methods : Forty one patients who felt stiff neck were randomly divided into two groups, a Bee Venom Pharmacopuncture group(group Ⅰ and a Sweet Bee Venom Pharmacopuncture group(group Ⅱ. Evaluations of the treatment effects were made before and after a treatment using Visual Analog Scale(VAS, Neck Disability Index(NDI, Clinical Evaluation Grade(CEG. The comparison of allergic responses was measured with VAS. The obtained data were analyzed and compared with SPSS. Results : The group Ⅰ and group Ⅱ showed significant improvement(p<0.05 according to the VAS, NDI, CEG. And the differences between the two groups were insignificant according to VAS, NDI, CEG. But allergic responses such as localized edema, localized itching were significantly lower in group Ⅱ than group Ⅰ. Conclusions : It seems that there are no big different treatment effects between the two groups. Sweet Bee Venom Pharmacopuncture appears to be more effective measurement against allergic reactions than the Bee Venom Pharmacopuncture. Further studies are needed for the comparison of Bee Venom Pharmacopuncture and Sweet Bee Venom Pharmacopuncture.

  17. Bee Venom (Apis Mellifera an Effective Potential Alternative to Gentamicin for Specific Bacteria Strains Bee Venom an Effective Potential for Bacteria

    Directory of Open Access Journals (Sweden)

    Hossein Zolfagharian

    2016-09-01

    Full Text Available Objectives: Mellitine, a major component of bee venom (BV, Apis mellifera, is more active against gram positive than gram negative bacteria. Moreover, BV has been reported to have multiple effects, including antibacterial, antivirus, and anti-inflammation effects, in various types of cells. In addition, wasp venom has bee

  18. Organophosphorus insecticides in honey, pollen and bees (Apis mellifera L.) and their potential hazard to bee colonies in Egypt.

    Science.gov (United States)

    Al Naggar, Yahya; Codling, Garry; Vogt, Anja; Naiem, Elsaied; Mona, Mohamed; Seif, Amal; Giesy, John P

    2015-04-01

    There is no clear single factor to date that explains colony loss in bees, but one factor proposed is the wide-spread application of agrochemicals. Concentrations of 14 organophosphorous insecticides (OPs) in honey bees (Apis mellifera) and hive matrices (honey and pollen) were measured to assess their hazard to honey bees. Samples were collected during spring and summer of 2013, from 5 provinces in the middle delta of Egypt. LC/MS-MS was used to identify and quantify individual OPs by use of a modified Quick Easy Cheap Effective Rugged Safe (QuEChERS) method. Pesticides were detected more frequently in samples collected during summer. Pollen contained the greatest concentrations of OPs. Profenofos, chlorpyrifos, malation and diazinon were the most frequently detected OPs. In contrast, ethoprop, phorate, coumaphos and chlorpyrifos-oxon were not detected. A toxic units approach, with lethality as the endpoint was used in an additive model to assess the cumulative potential for adverse effects posed by OPs. Hazard quotients (HQs) in honey and pollen ranged from 0.01-0.05 during spring and from 0.02-0.08 during summer, respectively. HQs based on lethality due to direct exposure of adult worker bees to OPs during spring and summer ranged from 0.04 to 0.1 for best and worst case respectively. It is concluded that direct exposure and/or dietary exposure to OPs in honey and pollen pose little threat due to lethality of bees in Egypt. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A Push-pull Protocol to Reduce Colonization of Bird Nest Boxes by Honey Bees.

    Science.gov (United States)

    Efstathion, Caroline A; Kern, William H

    2016-09-04

    Introduction of the invasive Africanized honey bee (AHB) into the Neotropics is a serious problem for many cavity nesting birds, specifically parrots. These bees select cavities that are suitable nest sites for birds, resulting in competition. The difficulty of removing bees and their defensive behavior makes a prevention protocol necessary. Here, we describe a push-pull integrated pest management protocol to deter bees from inhabiting bird boxes by applying a bird safe insecticide, permethrin, to repel bees from nest boxes, while simultaneously attracting them to pheromone-baited swarm traps. Shown here is an example experiment using Barn Owl nest boxes. This protocol successfully reduced colonization of Barn Owl nest boxes by Africanized honey bees. This protocol is flexible, allowing adjustments to accommodate a wide range of bird species and habitats. This protocol could benefit conservation efforts where AHB are located.

  20. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine.

    Science.gov (United States)

    du Rand, Esther E; Smit, Salome; Beukes, Mervyn; Apostolides, Zeno; Pirk, Christian W W; Nicolson, Susan W

    2015-07-02

    Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality.

  1. Clinical Report of Oriental Medicine Treatment with Bee Venom Therapy of Progressive muscle atrophy 1 Patient

    Directory of Open Access Journals (Sweden)

    Kim Young-Ho

    2000-07-01

    Full Text Available The authors reports in order to study the effect of Bee Venom therapy of progressive muscle atrophy. The authors investigated 1 patient who is treated at Woosuk University Oriental Medical Hospital. The patient diagnosed by MRI EMG Hematology Muscle biopsy as progressive muscle atrophy is administered by Bee Venom therapy for 4 months. Bee Venom therapy is operated by 2 times per a week(every 3 days, 0.1cc per one operation, 0.05cc per one acupuncture point. The authors checked changes of this patient's chief symptoms by comparing before and after Bee Venom therapy is operated at 30 times. After Bee Venom therapy, the patient increased motor power & ROM, decreased general cooling sense & swallowing disorder. As above, the authors conclude that better results can be obtained Oriental Medical Treatment with Bee Venom therapy in progressive muscle atrophy

  2. The Protective Effect of Bee Venom on Fibrosis Causing Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Woo-Ram Lee

    2015-11-01

    Full Text Available Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient’s skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.

  3. Seasonality of honey bee (Apis mellifera) micronutrient supplementation and environmental limitation.

    Science.gov (United States)

    Bonoan, Rachael E; O'Connor, Luke D; Starks, Philip T

    2018-02-09

    Honey bees (Apis mellifera) obtain micronutrients from floral resources and "dirty", or turbid, water. Past research suggests that honey bees drink dirty water to supplement the micronutrients in their floral diet, however, there is no research that directly investigates how floral micronutrient content varies with water preferences, or how micronutrients in honey bees themselves vary seasonally. In this study, we used chemical analyses (ICP-OES) to investigate seasonal variation of micronutrients in honey bee workers and floral resources in the field. We found that honey bees likely use mineralized water to supplement their floral diet and may be limited by availability of calcium and potassium. Our results also suggest that honey bees may seasonally seek specific micronutrients, perhaps in preparation for overwintering. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Irrigation method does not affect wild bee pollinators of hybrid sunflower

    Directory of Open Access Journals (Sweden)

    Hillary Sardiñas

    2016-09-01

    Full Text Available Irrigation method has the potential to directly or indirectly influence populations of wild bee crop pollinators nesting and foraging in irrigated crop fields. The majority of wild bee species nest in the ground, and their nests may be susceptible to flooding. In addition, their pollination of crops can be influenced by nectar quality and quantity, which are related to water availability. To determine whether different irrigation methods affect crop pollinators, we compared the number of ground-nesting bees nesting and foraging in drip- and furrow-irrigated hybrid sunflower fields in the Sacramento Valley. We found that irrigation method did not impact wild bee nesting rates or foraging bee abundance or bee species richness. These findings suggest that changing from furrow irrigation to drip irrigation to conserve water likely will not alter hybrid sunflower crop pollination.

  5. Radiologic Findings of Foreign Body Granuloma by the Bee Sting: A Case Report

    International Nuclear Information System (INIS)

    Kim, Jae Won; Yang, Ik; Kim, Jeong Won; Jung, Ah Young; Chung, Soo Young; Kim, Hong Dae; Woo, Ji Young; Yoon, Sa Rah; Choi, Seon Hyeong

    2010-01-01

    Bee sting therapy is a folk remedy used for arthralgia. An adverse reaction to bee sting therapy can be variable, ranging from a local inflammatory reaction to generalized anaphylaxis. There have been reports of dermatologic findings pertaining to bee sting granulomas, which results from a foreign body reaction to the persistence of venom and stinger at the sting site. However to the best of our knowledge, the radiologic findings of bee sting granulomas have not been reported on in Korea. We describe the ultrasound and MRI findings of bee sting granulomas at the lower extremity in a 36-year-old woman who underwent bee-sting therapy for osteoarthritis of the knee joints 3 months prior

  6. The protective effect of bee venom on fibrosis causing inflammatory diseases.

    Science.gov (United States)

    Lee, Woo-Ram; Pak, Sok Cheon; Park, Kwan-Kyu

    2015-11-16

    Bee venom therapy is a treatment modality that may be thousands of years old and involves the application of live bee stings to the patient's skin or, in more recent years, the injection of bee venom into the skin with a hypodermic needle. Studies have proven the effectiveness of bee venom in treating pathological conditions such as arthritis, pain and cancerous tumors. However, there has not been sufficient review to fully elucidate the cellular mechanisms of the anti-inflammatory effects of bee venom and its components. In this respect, the present study reviews current understanding of the mechanisms of the anti-inflammatory properties of bee venom and its components in the treatment of liver fibrosis, atherosclerosis and skin disease.

  7. Radiologic Findings of Foreign Body Granuloma by the Bee Sting: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Won; Yang, Ik; Kim, Jeong Won; Jung, Ah Young; Chung, Soo Young; Kim, Hong Dae; Woo, Ji Young; Yoon, Sa Rah; Choi, Seon Hyeong [Kangnam Sacred Heart Hospital, Seoul (Korea, Republic of)

    2010-03-15

    Bee sting therapy is a folk remedy used for arthralgia. An adverse reaction to bee sting therapy can be variable, ranging from a local inflammatory reaction to generalized anaphylaxis. There have been reports of dermatologic findings pertaining to bee sting granulomas, which results from a foreign body reaction to the persistence of venom and stinger at the sting site. However to the best of our knowledge, the radiologic findings of bee sting granulomas have not been reported on in Korea. We describe the ultrasound and MRI findings of bee sting granulomas at the lower extremity in a 36-year-old woman who underwent bee-sting therapy for osteoarthritis of the knee joints 3 months prior.

  8. Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine

    Science.gov (United States)

    Rand, Esther E. du; Smit, Salome; Beukes, Mervyn; Apostolides, Zeno; Pirk, Christian W.W.; Nicolson, Susan W.

    2015-01-01

    Insecticides are thought to be among the major factors contributing to current declines in bee populations. However, detoxification mechanisms in healthy, unstressed honey bees are poorly characterised. Alkaloids are naturally encountered in pollen and nectar, and we used nicotine as a model compound to identify the mechanisms involved in detoxification processes in honey bees. Nicotine and neonicotinoids have similar modes of action in insects. Our metabolomic and proteomic analyses show active detoxification of nicotine in bees, associated with increased energetic investment and also antioxidant and heat shock responses. The increased energetic investment is significant in view of the interactions of pesticides with diseases such as Nosema spp which cause energetic stress and possible malnutrition. Understanding how healthy honey bees process dietary toxins under unstressed conditions will help clarify how pesticides, alone or in synergy with other stress factors, lead to declines in bee vitality. PMID:26134631

  9. How bees distinguish patterns by green and blue modulation.

    Science.gov (United States)

    Horridge, Adrian

    2015-01-01

    In the 1920s, Mathilde Hertz found that trained bees discriminated between shapes or patterns of similar size by something related to total length of contrasting contours. This input is now interpreted as modulation in green and blue receptor channels as flying bees scan in the horizontal plane. Modulation is defined as total contrast irrespective of sign multiplied by length of edge displaying that contrast, projected to vertical, therefore, combining structure and contrast in a single input. Contrast is outside the eye; modulation is a phasic response in receptor pathways inside. In recent experiments, bees trained to distinguish color detected, located, and measured three independent inputs and the angles between them. They are the tonic response of the blue receptor pathway and modulation of small-field green or (less preferred) blue receptor pathways. Green and blue channels interacted intimately at a peripheral level. This study explores in more detail how various patterns are discriminated by these cues. The direction of contrast at a boundary was not detected. Instead, bees located and measured total modulation generated by horizontal scanning of contrasts, irrespective of pattern. They also located the positions of isolated vertical edges relative to other landmarks and distinguished the angular widths between vertical edges by green or blue modulation alone. The preferred inputs were the strongest green modulation signal and angular width between outside edges, irrespective of color. In the absence of green modulation, the remaining cue was a measure and location of blue modulation at edges. In the presence of green modulation, blue modulation was inhibited. Black/white patterns were distinguished by the same inputs in blue and green receptor channels. Left-right polarity and mirror images could be discriminated by retinotopic green modulation alone. Colors in areas bounded by strong green contrast were distinguished as more or less blue than the

  10. Implication of infectious agents and parasites in the Colony Collapse Disorder of the bee Apis mellifera

    OpenAIRE

    Giménez Bonillo, Sara

    2014-01-01

    Pòster The Apis mellifera bee is a pollinator with a very important role and it is indispensable for the growth of the productivity of some agricultural crops. In the last years there is the worry for the increasing loss of mellifera bee colonies all over the world. The CCD (Colony Collapse Disorder) is a sudden death of bee colonies and, in many cases, swarm abandonment

  11. Honey bees (Apis mellifera) as explosives detectors: exploring proboscis extension reflex conditioned response to trinitrotolulene (TNT)

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-mccabe, Kirsten J [Los Alamos National Laboratory; Wingo, Robert M [Los Alamos National Laboratory; Haarmann, Timothy K [Los Alamos National Laboratory

    2008-01-01

    We examined honey bee's associative learning response to conditioning with trinitrotolulene (TNT) vapor concentrations generated at three temperatures and their ability to be reconditioned after a 24 h period. We used classical conditioning of the proboscis extension (PER) in honey bees using TNT vapors as the conditioned stimulus and sucrose as the unconditioned stimulus. We conducted fifteen experimental trials with an explosives vapor generator set at 43 C, 25 C and 5 C, producing three concentrations of explosives (1070 ppt, 57 ppt, and 11 ppt). Our objective was to test the honey bee's ability to exhibit a conditioned response to TNT vapors at all three concentrations by comparing the mean percentage of honey bees successfully exhibiting a conditioned response within each temperature group. Furthermore, we conducted eight experimental trials to test the honey bee's ability to retain their ability to exhibit a conditioned response to TNT after 24h period by comparing the mean percentage of honey bees with a conditioned response TNT on the first day compared to the percentage of honey bees with a conditioned response to TNT on the second day. Results indicate that there was no significant difference between the mean percentage of honey bees with a conditioned response to TNT vapors between three temperature groups. There was a significant difference between the percentage of honey bees exhibiting conditioned response on the first day of training compared to the percentage of honey bees exhibiting conditioned response 24 h after training. Our experimental results indicate that honey bees can be trained to exhibit a conditioned response to a range of TNT concentrations via PER However, it appears that the honey bee's ability to retain the conditioned response to TNT vapors after 24h significantly decreases.

  12. Bumble bees regulate their intake of essential protein and lipid pollen macronutrients.

    Science.gov (United States)

    Vaudo, A D; Stabler, D; Patch, H M; Tooker, J F; Grozinger, C M; Wright, G A

    2016-12-15

    Bee population declines are linked to the reduction of nutritional resources due to land-use intensification, yet we know little about the specific nutritional needs of many bee species. Pollen provides bees with their primary source of protein and lipids, but nutritional quality varies widely among host-plant species. Therefore, bees might have adapted to assess resource quality and adjust their foraging behavior to balance nutrition from multiple food sources. We tested the ability of two bumble bee species, Bombus terrestris and Bombus impatiens, to regulate protein and lipid intake. We restricted B. terrestris adults to single synthetic diets varying in protein:lipid ratios (P:L). The bees over-ate protein on low-fat diets and over-ate lipid on high-fat diets to reach their targets of lipid and protein, respectively. The bees survived best on a 10:1 P:L diet; the risk of dying increased as a function of dietary lipid when bees ate diets with lipid contents greater than 5:1 P:L. Hypothesizing that the P:L intake target of adult worker bumble bees was between 25:1 and 5:1, we presented workers from both species with unbalanced but complementary paired diets to determine whether they self-select their diet to reach a specific intake target. Bees consumed similar amounts of proteins and lipids in each treatment and averaged a 14:1 P:L for B. terrestris and 12:1 P:L for B. impatiens These results demonstrate that adult worker bumble bees likely select foods that provide them with a specific ratio of P:L. These P:L intake targets could affect pollen foraging in the field and help explain patterns of host-plant species choice by bumble bees. © 2016. Published by The Company of Biologists Ltd.

  13. On the vertical distribution of bees in a temperate deciduous forest

    Science.gov (United States)

    Michael Ulyshen; Villa Soon; James Hanula

    2010-01-01

    1. Despite a growing interest in forest canopy biology, very few studies have examined the vertical distribution of forest bees. In this study, bees were sampled using 12 pairs of flight-intercept traps suspended in the canopy (‡15 m) and near the ground (0.5 m) in a bottomland hardwood forest in the southeastern United States. 2. In total, 6653 bees from 5 families...

  14. Safety of methionine, a novel biopesticide, to adult and larval honey bees (Apis mellifera L.).

    Science.gov (United States)

    Weeks, Emma N I; Schmehl, Daniel R; Baniszewski, Julie; Tomé, Hudson V V; Cuda, James P; Ellis, James D; Stevens, Bruce R

    2018-03-01

    Methionine is an essential/indispensible amino acid nutrient required by adult and larval honey bees (Apis mellifera L. [Hymenoptera: Apidae]). Bees are unable to rear broods on pollen deficient in methionine, and reportedly behaviorally avoid collecting pollen or nectar from florets deficient in methioinine. In contrast, it has been demonstrated that methionine is toxic to certain pest insects; thus it has been proposed as an effective biopesticide. As an ecofriendly integrated pest management agent, methionine boasts a novel mode of action differentiating it from conventional pesticides, while providing non-target safety. Pesticides that minimize collateral effects on bees are desirable, given the economic and ecological concerns about honey bee health. The aim of the present study was to assess the potential impact of the biopesticide methionine on non-target adult and larval honey bees. Acute contact adult toxicology bioassays, oral adult assessments and chronic larval toxicity assessments were performed as per U.S. Environmental Protection Agency (EPA) requirements. Our results demonstrated that methionine fits the U.S. EPA category of practically nontoxic (i.e. lethal dose to 50% mortality or LD 50 > 11µg/bee) to adult honey bees. The contact LD 50 was > 25µg/bee and the oral LD 50 was > 100µg/bee. Mortality was observed in larval bees that ingested DL-methionine (effective concentration to 50% mortality or EC 50 560µg/bee). Therefore, we conclude that methionine poses little threat to the health of the honey bee, due to unlikely exposure at concentrations shown to elicit toxic effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Economic Risk of Bee Pollination in Maine Wild Blueberry, Vaccinium angustifolium.

    Science.gov (United States)

    Asare, Eric; Hoshide, Aaron K; Drummond, Francis A; Criner, George K; Chen, Xuan

    2017-10-01

    Recent pollinator declines highlight the importance of evaluating economic risk of agricultural systems heavily dependent on rented honey bees or native pollinators. Our study analyzed variability of native bees and honey bees, and the risks these pose to profitability of Maine's wild blueberry industry. We used cross-sectional data from organic, low-, medium-, and high-input wild blueberry producers in 1993, 1997-1998, 2005-2007, and from 2011 to 2015 (n = 162 fields). Data included native and honey bee densities (count/m2/min) and honey bee stocking densities (hives/ha). Blueberry fruit set, yield, and honey bee hive stocking density models were estimated. Fruit set is impacted about 1.6 times more by native bees than honey bees on a per bee basis. Fruit set significantly explained blueberry yield. Honey bee stocking density in fields predicted honey bee foraging densities. These three models were used in enterprise budgets for all four systems from on-farm surveys of 23 conventional and 12 organic producers (2012-2013). These budgets formed the basis of Monte Carlo simulations of production and profit. Stochastic dominance of net farm income (NFI) cumulative distribution functions revealed that if organic yields are high enough (2,345 kg/ha), organic systems are economically preferable to conventional systems. However, if organic yields are lower (724 kg/ha), it is riskier with higher variability of crop yield and NFI. Although medium-input systems are stochastically dominant with lower NFI variability compared with other conventional systems, the high-input system breaks even with the low-input system if honey bee hive rental prices triple in the future. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  16. Two Cases of Benign Prostatic Hyperplasia with Bee Venom Pharmacopunture Therapy

    OpenAIRE

    Gang Hyeon Min; Kim Gwan Soo; Kim Doo Yong; Ryu Young Jin; Park Hee Soo; Ki Rok, Kwon

    2008-01-01

    Objective : The purpose of this study was to report the efficiency of Bee Venom Pharmacopunture Therapy by managering of Benign Prostatic Hyperplasia patients. Method : Two patients were treated with Bee Venom Pharmacopunture and another Korean Medicine therapy for six weeks and compared with I-PSS(International Prostate Symptom Score) before and after. Results : After treated with Bee Venom Pharmacopunture Therapy, ‘I-PSS’ values decreased significantly all the patients. Conclusi...

  17. Gender-bias primes elicit queen bee responses among senior policewomen

    OpenAIRE

    Derks, Belle; van Laar, Colette; Ellemers, Naomi; De Groot, Kim

    2011-01-01

    Queen bees are senior women in male-dominated organizations who have achieved success by emphasizing how they differ from other women. Although the behavior of queen bees tends to be seen as contributing to gender disparities in career outcomes, we argue that queen-bee behavior is actually a result of the gender bias and social identity threat that produce gender disparities in career outcomes. In the experiment reported here, we asked separate groups of senior policewomen to recall the prese...

  18. Mixtures of herbicides and metals affect the redox system of honey bees.

    Science.gov (United States)

    Jumarie, Catherine; Aras, Philippe; Boily, Monique

    2017-02-01

    The increasing loss of bee colonies in many countries has prompted a surge of studies on the factors affecting bee health. In North America, main crops such as maize and soybean are cultivated with extensive use of pesticides that may affect non-target organisms such as bees. Also, biosolids, used as a soil amendment, represent additional sources of metals in agroecosystems; however, there is no information about how these metals could affect the bees. In previous studies we investigated the effects of environmentally relevant doses of herbicides and metals, each individually, on caged honey bees. The present study aimed at investigating the effects of mixtures of herbicides (glyphosate and atrazine) and metals (cadmium and iron), as these mixtures represent more realistic exposure conditions. Levels of metal, vitamin E, carotenoids, retinaldehyde, at-retinol, retinoic acid isomers (9-cis RA, 13-cis RA, at-RA) and the metabolites 13-cis-4-oxo-RA and at-4-oxo-RA were measured in bees fed for 10 days with contaminated syrup. Mixtures of herbicides and cadmium that did not affect bee viability, lowered bee α- and β-carotenoid contents and increased 9-cis-RA as well as 13-cis-4-oxo-RA without modifying the levels of at-retinol. Bee treatment with either glyphosate, a combination of atrazine and cadmium, or mixtures of herbicides promoted lipid peroxidation. Iron was bioconcentrated in bees and led to high levels of lipid peroxidation. Metals also decreased zeaxanthin bee contents. These results show that mixtures of atrazine, glyphosate, cadmium and iron may affect different reactions occurring in the metabolic pathway of vitamin A in the honey bee. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An improved marriage in honey bees optimization algorithm for single objective unconstrained optimization.

    Science.gov (United States)

    Celik, Yuksel; Ulker, Erkan

    2013-01-01

    Marriage in honey bees optimization (MBO) is a metaheuristic optimization algorithm developed by inspiration of the mating and fertilization process of honey bees and is a kind of swarm intelligence optimizations. In this study we propose improved marriage in honey bees optimization (IMBO) by adding Levy flight algorithm for queen mating flight and neighboring for worker drone improving. The IMBO algorithm's performance and its success are tested on the well-known six unconstrained test functions and compared with other metaheuristic optimization algorithms.

  20. Application of the Artificial Bee Colony Algorithm for Solving the Set Covering Problem

    OpenAIRE

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show...