WorldWideScience

Sample records for beef tallow biodiesel

  1. Characterization of beef tallow biodiesel and their mixtures with soybean biodiesel and mineral diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Leonardo S.G. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); INCT de Energia e Ambiente, Universidade Federal da Bahia, 40.170-280, Salvador, Bahia (Brazil); Couto, Marcelo B.; Filho, Miguel Andrade; Assis, Julio C.R.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M.; Almeida, Selmo Q. [Departamento de Engenharia e Arquitetura, Universidade Salvador - UNIFACS, Av. Cardeal da Silva 132, 40.220-141, Salvador, Bahia (Brazil); Souza, Giancarlos S. [Instituto de Quimica, Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280, Salvador, Bahia (Brazil); Teixeira, Josanaide S.R. [Instituto Federal de Educacao Ciencia e Tecnologica da Bahia - IFBAHIA, Rua Emidio de Morais S/N, 40.625-650, Salvador, Bahia (Brazil)

    2010-04-15

    Tallow is a raw material for biodiesel production that, due to their highly centralized generation in slaughter/processing facilities and historically low prices, may have energy, environmental, and economic advantages that could be exploited. However beef tallow biodiesel have unfavorable properties due the presence of high concentration of saturated fatty esters. One way to overcome these inconveniences is using blending procedures. In this way, blends of beef tallow biodiesel with soybean biodiesel and with conventional mineral diesel fuel were prepared and the quality of the mixtures was monitored with the purpose to study ideal proportions of the fuels. By measurement of the viscosity, density, cold filter plugging point, and flash point, it was demonstrated that tallow biodiesel can be blended with both mineral diesel and soybean biodiesel to improve the characteristics of the blend fuels, over that of the tallow. (author)

  2. Comparison between conventional and ultrasonic preparation of beef tallow biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Leonardo S.G. [Instituto de Quimica - Universidade Federal da Bahia, Campus Universitario de Ondina, 40.170-280 - Salvador, Bahia (Brazil); Assis, Julio C.R.; Santos, Iran T.V.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M. [Universidade Salvador - UNIFACS - Departamento de Engenharia e Arquitetura, - Av. Cardeal da Silva 132, 40.220-141 - Salvador, Bahia (Brazil); Mendonca, Daniel R. [Escola Politecnica - Universidade Federal da Bahia, Av. Aristides Novis 2, 40.210-630, Salvador, Bahia (Brazil); Teixeira, Josanaide S.R. [Instituto Federal de Educacao Ciencia e Tecnologica da Bahia - IFBAHIA - Rua Emidio de Morais S/N, 40.625-650, Salvador - BA (Brazil)

    2009-09-15

    Tallow is biodiesel feedstock that, due to its highly centralized generation in slaughter/processing facilities and historically low prices, may have energetic, environmental, and economic advantages that could be exploited. Transesterification of fatty acids by means of ultrasonic energy has been used for biodiesel production from different vegetable oils. However, application of ultrasonic irradiation for biodiesel production from beef tallow has received little attention. In this work, the transesterification of beef tallow with methanol was performed in the presence of potassium hydroxide as a catalyst using ultrasound irradiation (400 W, 24 kHz). The reaction time, conversion and biodiesel quality were compared with that seen in conventional transesterification. The results indicated that the reaction conversion and biodiesel quality were similar; however, the use of ultrasonic irradiation decreased the reaction time, showing that this method may be a promising alternative to the conventional method. (author)

  3. Comparison between conventional and ultrasonic preparation of beef tallow biodiesel

    International Nuclear Information System (INIS)

    Teixeira, Leonardo S.G.; Assis, Julio C.R.; Santos, Iran T.V.; Guimaraes, Paulo R.B.; Pontes, Luiz A.M.; Mendonca, Daniel R.; Teixeira, Josanaide S.R.

    2009-01-01

    Tallow is biodiesel feedstock that, due to its highly centralized generation in slaughter/processing facilities and historically low prices, may have energetic, environmental, and economic advantages that could be exploited. Transesterification of fatty acids by means of ultrasonic energy has been used for biodiesel production from different vegetable oils. However, application of ultrasonic irradiation for biodiesel production from beef tallow has received little attention. In this work, the transesterification of beef tallow with methanol was performed in the presence of potassium hydroxide as a catalyst using ultrasound irradiation (400 W, 24 kHz). The reaction time, conversion and biodiesel quality were compared with that seen in conventional transesterification. The results indicated that the reaction conversion and biodiesel quality were similar; however, the use of ultrasonic irradiation decreased the reaction time, showing that this method may be a promising alternative to the conventional method. (author)

  4. BIODIESEL DARI CAMPURAN LEMAK SAPI (Beef Tallow DAN MINYAK SAWIT

    Directory of Open Access Journals (Sweden)

    Wara Dyah Pita Rengga

    2013-05-01

    Full Text Available Cadangan minyak bumi semakin menipis, sehingga dicari bahan bakar alternatif, salah satunya adalah biodiesel. Minyak nabati terutama minyak sawit merupakan bahan baku edible sedangkan lemak sapi merupakan bahan baku non-edible dengan biaya rendah dan memiliki ketersediaan tinggi pada produksi sapi. Pemanfaatan lemak sapi yang belum maksimal dapat digunakan bersama minyak sawit untuk menghasilkan biodiesel. Lemak sapi dicairkan supaya menjadi minyak sapi. Bahan baku minyak sapi dan minyak sawit dicampur dengan perban-dingan 3:1. Campuran minyak ditransesterifikasi dengan metanol dengan perbandingan molar (1:6 dan katalis NaOH. Proses dilakukan selama 90 menit pada suhu ±65°C. Hasil proses transesterifikasi adalah metil ester dan gliserol. Metil ester pada lapisan atas dipisahkan dari gliserol kemudian dilakukan pencucian. Metil ester atau biodiesel selanjutnya diuji angka asam, viskositas, densitas, dan analisis menggunakan GC-MS. Yield biodiesel yang dihasilkan dari campuran minyak sapi dan minyak sawit adalah 76%, angka asam 0,67124 mg-KOH/g, densitas 857,76 kg/cm³, dan viskositas 3,0074 mm2/s. Kesemua parameter tersebut sesuai dengan standart mutu SNI biodiesel. Kandungan metil ester dari minyak sawit dan lemak sapi adalah metiloleat dan metil palmitat. The availability of the fossil fuel is decreasing; hence the finding of an alternative fuels is very important. One of those alternative fuels is biodiesel. Vegetable oil, especially palm oil is the edible raw material, while the beef tallow is the non-edible raw material with low cost production and the availability is huge in the cattle production. The beef tallow mixed with palm oil can be used as raw material for producing biodiesel. Firstly, the beef tallow was melted into beef oil. The raw materials of beef tallow and palm oil were mixed with the composition ratio of 3:1. The resulted mixed-oil was transesterificated by adding methanol with molar ratio of 1:6 and NaOH as

  5. Power generation and gaseous emissions performance of an internal combustion engine fed with blends of soybean and beef tallow biodiesel.

    Science.gov (United States)

    Schirmer, Waldir Nagel; Gauer, Mayara Ananda; Tomaz, Edson; Rodrigues, Paulo Rogério Pinto; de Souza, Samuel Nelson Melegari; Chaves, Luiz Inácio; Villetti, Lucas; Olanyk, Luciano Zart; Cabral, Alexandre Rodrigues

    2016-01-01

    This study aimed to compare the performance of an internal combustion engine fed with blends of biodiesel produced from soybean and diesel, and blends of biodiesel produced from beef tallow and diesel. Performance was evaluated in terms of power generated at low loading conditions (0.5, 1.0 and 1.5 kW) and emission of organic and inorganic pollutants. In order to analyse inorganic gases (CO, SO2 and NOx), an automatic analyser was used and the organic emissions (benzene, toluene, ethylbenzene and xylene - BTEX) were carried out using a gas chromatograph. The results indicate that the introduction of the two biodiesels in the fuel caused a reduction in CO, SO2 and BTEX emissions. In addition, the reduction was proportional to the increase in loading regime. Beef tallow biodiesels presented better results regarding emission than soybean biodiesels. The use of pure biodiesels also presented a net reduction in pollutant gas emissions without hindering the engine generator performance.

  6. Comparing the environmental impacts of ethyl biodiesel production from soybean oil and beef tallow through lca for brazilian conditions

    Directory of Open Access Journals (Sweden)

    Rafael Alves Esteves

    2017-12-01

    Full Text Available The present paper sought compare the environmental impacts throughout the life cycle of biodiesel production obtained from the two raw materials most used in Brazil (soybean oil and beef tallow through the process ethyl transesterification in an alkaline medium. The reference flow adopted for the work was the generation of power supplied 1GJ from the produced biodiesel. The data used in the inventory life cycle were calculated based on similar scientific papers. The method of assessment of environmental impacts chosen was the CML 2001 modified. Altogether, it were analyzed nine categories of environmental impacts for both processes (abiotic depletion (kg Sb eq, land use (m2a, global warming (kg CO2 eq, ozone layer depletion (kg CFC-11 eq, human toxicity (kg 1,4-DB eq, freshwater ecotoxicity (kg 1,4-DB eq, terrestrial ecotoxicity (kg 1,4-DB eq, acidification (kg SO2 eq and eutrophication (kg PO43- eq. The results of evaluation of environmental impacts show that the biodiesel production process from soybean oil presents major environmental damage in seven categories of analyzed impacts (destruction of abiotic resources, destruction of the ozone layer, human toxicity, freshwater ecotoxicity, terrestrial ecotoxicity, acidification and eutrophication. The production process of biodiesel from tallow presents major environmental damage in two categories of impacts analyzed (land use and global warming. However, the results show that the absolute values of environmental damage caused by impacts of the production process using beef tallow are much more aggressive.

  7. Mistura de biodiesel de sebo bovino em motor diesel durante 600 horas Blend of biodiesel from beef tallow in a diesel engine during 600 hours of tests

    Directory of Open Access Journals (Sweden)

    Ila Maria Corrêa

    2011-07-01

    Full Text Available O biodiesel de sebo bovino é considerado uma alternativa de baixo custo e de grande disponibilidade por ser resíduo da produção agropecuária brasileira, que é uma das maiores do mundo. Raros são os trabalhos que mostram a utilização do biodiesel de sebo bovino em motores diesel. Assim, o objetivo deste trabalho foi verificar o efeito da mistura de biodiesel bovino na proporção de 5% ao óleo diesel comercial no desempenho do motor, possíveis consequências internas no motor e nas características do óleo lubrificante após o uso prolongado em motor diesel. Foram realizados ensaios em bancada dinamométrica utilizando um trator agrícola. O desempenho do motor foi determinado através da tomada de potência (TDP. O motor foi operado por 600h durante as quais foi determinada a potência, o consumo de combustível e analisadas as amostras de óleo lubrificante a cada 100h. Ao final do ensaio, o motor foi aberto e inspecionado. A análise do óleo lubrificante mostrou nível de contaminação crítico a partir das 400h, mas a inspeção visual do motor não detectou nenhum desgaste interno. O motor funcionou normalmente, embora tenha ocorrido tendência de redução na potência e aumento de consumo de combustível ao longo das 600h.Biodiesel from beef tallow has been considered a low-cost and high availability alternative due to be residue from the Brazilian livestock production, one of the world's largest. Papers that show the use of biodiesel from beef tallow in diesel engine are rare. The aim of this study was to investigate the effect of blend of biodiesel from beef tallow (B5 in commercial diesel oil on engine performance, analyzing possible internal consequences and characteristics of lubricating oil after the prolonged use in a diesel engine. Engine performance was evaluated through tractor power take off (PTO tests. The engine was operated for 600 hours. Power and fuel consumption were measured. Samples of lubricating oil were

  8. Biodiesel production by transesterification of duck tallow with methanol on alkali catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyong-Hwan [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea); Kim, Jin [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea)]|[Department of Advanced Chemicals Graduate School, Chonnam National University, Gwangju 500-757 (Korea); Lee, Ki-Young [Center for Functional Nano Fine Chemicals, Chonnam National University, Gwangju 500-757 (Korea)]|[Department of Applied Chemical Engineering and The Research Institute for Catalysis, Chonnam National University, Gwangju 500-757 (Korea)

    2009-01-15

    Duck tallow was employed as a feedstock for the production of biodiesel by transesterification with methanol. The content of fatty acid methyl ester (FAME) was evaluated on various alkali catalysts during transesterification. The composition and chemical properties of the FAME were investigated in the raw duck tallow and the biodiesel products. The major constituent in the biodiesel product was oleic acid. The FAME content was 97% on KOH catalyst in the reaction. It was acceptable for the limit of European biodiesel qualities for BD100. Acid value, density, and kinematic viscosity of the biodiesel products also came up to the biodiesel qualities. (author)

  9. Uso da cromatografia gasosa bidimensional abrangente (GC×GC na caracterização de misturas biodiesel/diesel: aplicação ao biodiesel de sebo bovino

    Directory of Open Access Journals (Sweden)

    Maria Silvana A Moraes

    2011-01-01

    Full Text Available The growth of biodiesel market and the implementation of regulations related to biodiesel production and biodiesel/diesel blending has encouraged the development of appropriate analytical methods to control the composition of this type of mixture. In this study, an evaluation of the potential of GC×GC for the characterization of samples of beef tallow biodiesel and the composition of blends of biodiesel/diesel is presented. The methodology was applied to beef tallow biodiesel and its mixtures with petrodiesel, ranging from B2 to B50. Results allowed not only the identification and quantification of the biodiesel esters, but also the biodiesel percentage in biodiesel/diesel blends.

  10. Biodiesel from Specified Risk Material Tallow: An Appraisal of TSE Risks and their Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Baribeau, A; Bradley, R; Brown, P; Goodwin, J; Kihm, U; Lotero, E; O' Connor, D; Schuppers, M; Taylor, D

    2007-03-15

    This document presents a systematic survey of current knowledge about the risk to human and animal health posed by the processing of tissues from animals potentially infected with transmissible spongiform encephalopathy (TSE, or 'prion disease') into biodiesel. It is organised into an introductory background section on TSE, followed by chapters treating the sequential stages of biodiesel production. The principal conclusions are: Animal tissue sources. The choice of geographic origin, based on published scientific evaluations of the risk of TSE to be present in a given country, can largely reduce or even eliminate the entry of contaminated tissue into the biodiesel feedstock. Further safeguards can be provided by selection of animal species not susceptible to TSE, and of tissues without any detectable infectivity even in susceptible species. None of these measures, however, would be applied to the biodiesel projects under consideration, which have the specific aim of using animals and tissues (including specified risk material, or SRM) considered to have sufficient potential risk to be unacceptable for use in food, feed, fertilisers, or pharmaceuticals (including biologicals and medical devices) and therefore are designated for other approved uses, or destruction. Tissue rendering to produce tallow. Experiments to test the survival of TSE infectivity in the products of rendering failed to detect any infectivity in the crude tallow fraction, even following processing methods that allowed survival of infectivity in the co-produced meat and bone meal fraction. It is therefore extremely unlikely that pure tallow originating from diseased animals would be infectious; however, lower grade tallow might contain infectious impurities. A requirement that tallow derived from SRM for use in biodiesel contain no detectable protein would reduce this possibility. Transesterification of tallow to biodiesel. Several steps in the manufacturing process have at least the potential to

  11. Biodiesel from Specified Risk Material Tallow: An Appraisal of TSE Risks and their Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Baribeau, A.; Bradley, R.; Brown, P.; Goodwin, J.; Kihm, U.; Lotero, E.; O' Connor, D.; Schuppers, M.; Taylor, D.

    2007-03-15

    This document presents a systematic survey of current knowledge about the risk to human and animal health posed by the processing of tissues from animals potentially infected with transmissible spongiform encephalopathy (TSE, or 'prion disease') into biodiesel. It is organised into an introductory background section on TSE, followed by chapters treating the sequential stages of biodiesel production. The principal conclusions are: Animal tissue sources. The choice of geographic origin, based on published scientific evaluations of the risk of TSE to be present in a given country, can largely reduce or even eliminate the entry of contaminated tissue into the biodiesel feedstock. Further safeguards can be provided by selection of animal species not susceptible to TSE, and of tissues without any detectable infectivity even in susceptible species. None of these measures, however, would be applied to the biodiesel projects under consideration, which have the specific aim of using animals and tissues (including specified risk material, or SRM) considered to have sufficient potential risk to be unacceptable for use in food, feed, fertilisers, or pharmaceuticals (including biologicals and medical devices) and therefore are designated for other approved uses, or destruction. Tissue rendering to produce tallow. Experiments to test the survival of TSE infectivity in the products of rendering failed to detect any infectivity in the crude tallow fraction, even following processing methods that allowed survival of infectivity in the co-produced meat and bone meal fraction. It is therefore extremely unlikely that pure tallow originating from diseased animals would be infectious; however, lower grade tallow might contain infectious impurities. A requirement that tallow derived from SRM for use in biodiesel contain no detectable protein would reduce this possibility. Transesterification of tallow to biodiesel. Several steps in the manufacturing process have at least the

  12. Effect of beef tallow on growth performance, carcass characteristics, meat composition, and lipid profile of growing lambs

    Directory of Open Access Journals (Sweden)

    Shahana Ahmed

    2015-09-01

    Full Text Available The objective of this study was to investigate the effect of diets with inclusion of beef tallow on growth, and carcass characteristics, meat quality, and lipid profile in growing lambs. The experiment was conducted with 15 lambs for 63 days. The lambs were randomly allotted into three dietary treatments (T0, T1, and T2 with five animals in each group; T0 (control diet without beef tallow, T1 (diet with 2% beef tallow, and T2 (diet with 4% beef tallow. The body weight and feed conversion ratio (FCR were significantly (P0.05 on meat quality and chemical composition among the three dietary groups. Group T1 showed the highest increase of cholesterol concentration (11.5% at the end of experiment, but serum triglyceride concentration was not significantly (P>0.05 correlated with any of the three dietary groups. To sum up, the use of beef tallow at 2% level in lamb diet can increase their performance without having any deleterious effect on carcass, meat quality and lipid profile. [J Adv Vet Anim Res 2015; 2(3.000: 346-352

  13. Effects of dietary beef tallow and soy oil on glucose and cholesterol homeostasis in normal and diabetic pigs

    International Nuclear Information System (INIS)

    Woollett, L.A.

    1987-01-01

    Toe valuate whether dietary fats of different degrees of unsaturation alter glucose and very low density lipoprotein-cholesterol (VLDL-CH) homeostasis, normal and alloxan-diabetic pigs were fed diets containing either beef tallow or soy oil as the primary source of fat for 6 weeks. After intra-arterial and oral doses of glucose, pigs fed soy oil had similar glucose and greater insulin concentrations in plasma when compared with pigs fed beef tallow. Beef tallow-fed pigs additionally were 40% more glucose effective than were soy oil-fed pigs. Disappearance of injected autologous 14 C-VLDL-CH was analyzed in pigs using a two-pool model. Diabetes resulted in a twofold increase in half-lives and a 60-fold increase in pool sizes of the primary and secondary components of VLDL-CH disappearance when compared with those of normal pigs. In normal pigs, feeding beef tallow resulted in longer half-lives of both components of VLDL-CH disappearance and no effect in pool size of both components of VLDL-CH disappearance than did feeding soy oil. In comparison, diabetic pigs fed beef tallow had a similar half-life of the primary component, a twofold shorter half-life of the secondary component, and threefold larger pool size of the primary component, and a similar pool size of the secondary component of VLDL-CH disappearance than did diabetic pigs fed soy oil. Thus, dietary fat seems to play an important role in regulation of glucose and VLDL-CH homeostasis in normal and diabetic animals

  14. Intensification of biodiesel production from waste goat tallow using infrared radiation: Process evaluation through response surface methodology and artificial neural network

    International Nuclear Information System (INIS)

    Chakraborty, R.; Sahu, H.

    2014-01-01

    Highlights: • Enhanced and significantly accelerated biodiesel synthesis from waste goat tallow by infrared radiation. • In situ water removal by adsorbent profoundly promotes achieving high free fatty acids (FFAs) conversion. • Process optimization and parametric interaction-effects assessment by response surface method. • Artificial Neural Network Modeling for prediction of triglycerides and FFA conversion. • At optimal conditions, product biodiesel contains 98.5 wt.% FAME. - Abstract: For the first time, an efficient simultaneous trans/esterification process for biodiesel synthesis from waste goat tallow with considerable free fatty acids (FFAs) content has been explored employing an infrared radiation assisted reactor (IRAR). The impacts of methanol to tallow molar ratio, IRAR temperature and H 2 SO 4 concentration on goat tallow conversion were evaluated by response surface methodology (RSM). Under optimal conditions, 96.7% FFA conversion was achieved within 2.5 h at 59.93 wt.% H 2 SO 4 , 69.97 °C IRAR temperature and 31.88:1 methanol to tallow molar ratio. The experimental results were also modeled using artificial neural network (ANN) and marginal improvement in modeling efficiency was observed in comparison with RSM. The infrared radiation strategy could significantly accelerate the conversion process as demonstrated through a substantial reduction in reaction time compared to conventionally heated reactor while providing appreciably high biodiesel yield. Moreover, the in situ water removal using silica-gel adsorbent could also facilitate achieving higher FFA conversion to fatty acid methyl ester (FAME). Owing to the occurrence of simultaneous transesterification of triglycerides present in goat tallow, overall 98.5 wt.% FAME content was determined at optimal conditions in the product biodiesel which conformed to ASTM and EN biodiesel specifications

  15. Biodiesel production from inedible animal tallow and an experimental investigation of its use as alternative fuel in a direct injection diesel engine

    International Nuclear Information System (INIS)

    Oener, Cengiz; Altun, Sehmus

    2009-01-01

    In this study, a substitute fuel for diesel engines was produced from inedible animal tallow and its usability was investigated as pure biodiesel and its blends with petroleum diesel fuel in a diesel engine. Tallow methyl ester as biodiesel fuel was prepared by base-catalyzed transesterification of the fat with methanol in the presence of NaOH as catalyst. Fuel properties of methyl ester, diesel fuel and blends of them (5%, 20% and 50% by volume) were determined. Viscosity and density of fatty acid methyl ester have been found to meet ASTM D6751 and EN 14214 specifications. Viscosity and density of tallow methyl esters are found to be very close to that of diesel. The calorific value of biodiesel is found to be slightly lower than that of diesel. An experimental study was carried out in order to investigate of its usability as alternative fuel of tallow methyl ester in a direct injection diesel engine. It was observed that the addition of biodiesel to the diesel fuel decreases the effective efficiency of engine and increases the specific fuel consumption. This is due to the lower heating value of biodiesel compared to diesel fuel. However, the effective engine power was comparable by biodiesel compared with diesel fuel. Emissions of carbon monoxide (CO), oxides of nitrogen (NO x ), sulphur dioxide (SO 2 ) and smoke opacity were reduced around 15%, 38.5%, 72.7% and 56.8%, respectively, in case of tallow methyl esters (B100) compared to diesel fuel. Besides, the lowest CO, NO x emissions and the highest exhaust temperature were obtained for B20 among all other fuels. The reductions in exhaust emissions made tallow methyl esters and its blends, especially B20 a suitable alternative fuel for diesel and thus could help in controlling air pollution. Based on this study, animal tallow methyl esters and its blends with petroleum diesel fuel can be used a substitute for diesel in direct injection diesel engines without any engine modification. (author)

  16. Enzyme-catalyzed synthesis and kinetics of ultrasonic-assisted biodiesel production from waste tallow.

    Science.gov (United States)

    Adewale, Peter; Dumont, Marie-Josée; Ngadi, Michael

    2015-11-01

    The use of ultrasonic processing was evaluated for its ability to achieve adequate mixing while providing sufficient activation energy for the enzymatic transesterification of waste tallow. The effects of ultrasonic parameters (amplitude, cycle and pulse) and major reaction factors (molar ratio and enzyme concentration) on the reaction kinetics of biodiesel generation from waste tallow bio-catalyzed by immobilized lipase [Candida antarctica lipase B (CALB)] were investigated. Three sets of experiments namely A, B, and C were conducted. In experiment set A, two factors (ultrasonic amplitude and cycle) were investigated at three levels; in experiment set B, two factors (molar ratio and enzyme concentration) were examined at three levels; and in experiment set C, two factors (ultrasonic amplitude and reaction time) were investigated at five levels. A Ping Pong Bi Bi kinetic model approach was employed to study the effect of ultrasonic amplitude on the enzymatic transesterification. Kinetic constants of transesterification reaction were determined at different ultrasonic amplitudes (30%, 35%, 40%, 45%, and 50%) and enzyme concentrations (4, 6, and 8 wt.% of fat) at constant molar ratio (fat:methanol); 1:6, and ultrasonic cycle; 5 Hz. Optimal conditions for ultrasound-assisted biodiesel production from waste tallow were fat:methanol molar ratio, 1:4; catalyst level 6% (w/w of fat); reaction time, 20 min (30 times less than conventional batch processes); ultrasonic amplitude 40% at 5 Hz. The kinetic model results revealed interesting features of ultrasound assisted enzyme-catalyzed transesterification (as compared to conventional system): at ultrasonic amplitude 40%, the reaction activities within the system seemed to be steady after 20 min which means the reaction could proceed with or without ultrasonic mixing. Reversed phase high performance liquid chromatography indicated the biodiesel yield to be 85.6±0.08%. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Gene expression of insulin signal-transduction pathway intermediates is lower in rats fed a beef tallow diet than in rats fed a safflower oil diet.

    Science.gov (United States)

    Kim, Y B; Nakajima, R; Matsuo, T; Inoue, T; Sekine, T; Komuro, M; Tamura, T; Tokuyama, K; Suzuki, M

    1996-09-01

    To elucidate the effects of dietary fatty acid composition on the insulin signaling pathway, we measured the gene expression of the earliest steps in the insulin action pathway in skeletal muscle of rats fed a safflower oil diet or a beef tallow diet. Rats were meal-fed an isoenergetic diet based on either safflower oil or beef tallow for 8 weeks. Both diets provided 45%, 35%, and 20% of energy as fat, carbohydrate, and protein, respectively. Insulin resistance, assessed from the diurnal rhythm of plasma glucose and insulin and the oral glucose tolerance test (OGTT), developed in rats fed a beef tallow diet. Body fat content was greater in rats fed a beef tallow diet versus a safflower oil diet. The level of insulin receptor mRNA, relative expression of the insulin receptor mRNA isoforms, and receptor protein were not affected by the composition of dietary fatty acids. The abundance of insulin receptor substrate-1 (IRS-1) and phosphatidylinositol (PI) 3-kinase mRNA and protein was significantly lower in rats fed a beef tallow diet versus a safflower oil diet. We conclude that long-term feeding of a high-fat diet with saturated fatty acids induces decrease in IRS-1 and PI 3-kinase mRNA and protein levels, causing insulin resistance in skeletal muscle.

  18. Hybrid striped bass feeds based on fish oil, beef tallow, and eicosapentaenoic acid/docosahexaenoic acid supplements: Insight regarding fish oil sparing and demand for -3 long-chain polyunsaturated fatty acids.

    Science.gov (United States)

    Bowzer, J; Jackson, C; Trushenski, J

    2016-03-01

    Previous research suggests that saturated (SFA) and monounsaturated fatty acid (MUFA) rich lipids, including beef tallow, can make utilization or diet-to-tissue transfer of long-chain polyunsaturated fatty acids (LC-PUFA) more efficient. We hypothesized that using beef tallow as an alternative to fish oil may effectively reduce the LC-PUFA demand of hybrid striped bass × and allow for greater fish oil sparing. Accordingly, we evaluated growth performance and tissue fatty acid profiles of juvenile fish (23.7 ± 0.3 g) fed diets containing menhaden fish oil (considered an ideal source of LC-PUFA for this taxon), beef tallow (BEEF ONLY), or beef tallow amended with purified sources of eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA) to achieve levels corresponding to 50 or 100% of those observed in the FISH ONLY feed. Diets were randomly assigned to quadruplicate tanks of fish ( = 4; 10 fish/tank), and fish were fed assigned diets to apparent satiation once daily for 10 wk. Survival (98-100%) was equivalent among treatments, but weight gain (117-180%), specific growth rate (1.1-1.5% BW/d), feed intake (1.4-1.8% BW/d), thermal growth coefficient (0.50-0.70), and feed conversion ratio (FCR; 1.1-1.4, DM basis) varied. Except for FCR, no differences were observed between the FISH ONLY and BEEF ONLY treatments, but performance was generally numerically superior among fish fed the diets containing beef tallow supplemented with DHA at the 100% or both EPA and DHA at the 50% or 100% level. Tissue fatty acid composition was significantly distorted in favor among fish fed the beef tallow-based feeds; however, profile distortion was most overt in peripheral tissues. Results suggest that beef tallow may be used as a primary lipid source in practical diets for hybrid striped bass, but performance may be improved by supplementation with LC-PUFA, particularly DHA. Furthermore, our results suggest that -3 LC-PUFA requirements reported for hybrid striped bass may not be

  19. Multiresponse optimisation on biodiesel obtained through a ternary mixture of vegetable oil and animal fat: Simplex-centroid mixture design application

    International Nuclear Information System (INIS)

    Orives, Juliane Resges; Galvan, Diego; Coppo, Rodolfo Lopes; Rodrigues, Cezar Henrique Furtoso; Angilelli, Karina Gomes; Borsato, Dionísio

    2014-01-01

    Highlights: • Mixture experimental design was used which allowed evaluating various responses. • Predictive equation was presented that allows verifying the behavior of the mixtures. • The results depicted that the obtained biodiesel dispensed the use of any additives. - Abstract: The quality of biodiesel is a determining factor in its commercialisation, and parameters such as the Cold Filter Plugging Point (CFPP) and Induction Period (IP) determine its operability in engines on cold days and storage time, respectively. These factors are important in characterisation of the final product. A B100 biodiesel formulation was developed using a multiresponse optimisation, for which the CFPP and cost were minimised, and the IP and yield were maximised. The experiments were carried out according to a simplex-centroid mixture design using soybean oil, beef tallow, and poultry fat. The optimum formulation consisted of 50% soybean oil, 20% beef tallow, and 30% poultry fat and had CFPP values of 1.92 °C, raw material costs of US$ 903.87 ton −1 , an IP of 8.28 h, and a yield of 95.68%. Validation was performed in triplicate and the t-test indicated that there were no difference between the estimated and experimental values for none of the dependent variables, thus indicating efficiency of the joint optimisation in the biodiesel production process that met the criteria for CFPP and IP, as well as high yield and low cost

  20. Environmental sustainability of biodiesel in Brazil

    International Nuclear Information System (INIS)

    Geraldes Castanheira, Érica; Grisoli, Renata; Freire, Fausto; Pecora, Vanessa; Coelho, Suani Teixeira

    2014-01-01

    Biodiesel production in Brazil has grown from 736 m 3 in 2007 to 2.7 Mm 3 in 2012. It is an emergent bioenergy for which it is important to guarantee environmental sustainability. The objective of this article is to characterise the biodiesel production chain in Brazil, to identify potential environmental impacts and to analyse key drivers and barriers for biodiesel environmental sustainability. This article explores these aspects and focusses on the increasing demand for the main feedstocks for biodiesel production in Brazil: soybean oil and beef tallow. The impacts of land use and land-use change on greenhouse gas emissions, biodiversity and water, as well as the energy balance, were found to be critical for the environmental sustainability assessment and development of biodiesel chains. Increasing agriculture yields, diversifying feedstocks and adopting ethyl transesterification can contribute to minimise environmental impacts. It was also found that environmental impacts could be mitigated by appropriate policies aiming at an integrated optimisation of food and bioenergy production and through agro-economic–ecological zoning, allowing adequate use of land for each purpose. Despite the limitation and weakness of some sustainability tools and initiatives, certification and zoning can play an important role in the sustainability of the emerging biodiesel production in Brazil

  1. The impact of the life cycle analysis methodology on whether biodiesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017

    Energy Technology Data Exchange (ETDEWEB)

    Thamsiriroj, T.; Murphy, J.D. [Department of Civil and Environmental Engineering, University College Cork (Ireland); Environmental Research Institute, University College Cork (Ireland)

    2011-01-15

    This paper considers biodiesel production from residues; tallow and used cooking oil (UCO). The tallow system is more complex involving two processes. The first process is rendering in which tallow (animal fat) and Meat and Bone Meal (MBM) are produced from the slaughter of cattle. MBM is assumed as a thermal energy source for cement manufacture and thus is not used for biodiesel production. The second process is biodiesel production from tallow. Three methodologies are employed to examine sustainability of the biodiesel. The no allocation approach assigns all the parasitic demands to the tallow; thus all energies required to make both MBM and tallow are associated with the tallow biodiesel. The resulting energy balance is negative. The substitution approach allocates the energy in MBM (used to produce cement) to tallow biodiesel. This results in the net energy being greater than the gross energy. The allocation by energy content method divides the parasitic demands of the rendering process between tallow and MBM by energy content. The parasitic demands of the biodiesel process are divided by energy content of the biodiesel, glycerol and K-fertiliser. For tallow biodiesel this yielded a net energy value of 38.6% of gross energy. The same method generated a net energy value of 67% for UCO biodiesel. More importantly the recommended method (allocation by energy content) generated a value of 54% greenhouse gas (GHG) emission savings for tallow and a value of 69% for UCO. Plants commencing after 2017, need to have a 60% GHG emission savings, to be considered sustainable. Thus a facility treating both feedstocks would need to treat a maximum of 60% tallow to be considered sustainable after 2017. (author)

  2. Iron utilization and liver mineral concentrations in rats fed safflower oil, flaxseed oil, olive oil, or beef tallow in combination with different concentrations of dietary iron.

    Science.gov (United States)

    Shotton, Andrea D; Droke, Elizabeth A

    2004-03-01

    Diets with a higher proportion of polyunsaturated fatty acids (i.e., linoleic acid) have decreased iron absorption and utilization compared with diets containing a higher proportion of the saturated fatty acid stearic acid (e.g., beef tallow). However, less is known regarding the influence of other polyunsaturated or monounsaturated fatty acids, along with higher dietary iron, on iron absorption and utilization. The present study was conducted to compare the effects of dietary fat sources known to vary in (n-3), (n-6), and (n-9) fatty acids on iron utilization and liver mineral concentrations. Male weanling rats were fed a diet containing 10, 35, or 100 microg/g iron in combination with safflower oil, flaxseed oil, olive oil, or beef tallow for 8 wk. Indicators of iron status, iron utilization, and liver iron concentrations were unaffected by an interaction between the fat source and iron concentration. Plasma copper was the only variable affected by an interaction between the fat source and dietary iron. Findings of this study demonstrate that flaxseed oil and olive oil may alter tissue minerals and affect iron utilization. Further studies should be conducted to establish the effect of varying (n-3), (n-6), and (n-9) fatty acids on trace mineral status and iron utilization.

  3. The emergence of the biodiesel industry in Brazil: Current figures and future prospects

    International Nuclear Information System (INIS)

    Domingos Padula, Antonio; Silveira Santos, Manoela; Ferreira, Luciano; Borenstein, Denis

    2012-01-01

    The aim of the present paper is to characterize and analyze the emergence of the biodiesel industry in Brazil, and provide an assessment of the extent to which the goals established by the National Biodiesel Production and Usage Program have been reached. In relation to the goal of including biodiesel within the Brazilian energy matrix, the program can be seen to be responding dynamically and ahead of schedule. In 2010, the B5 blend was already part of the diesel consumed in Brazil, with 81% of the biodiesel coming from soybean oil and 14% from beef tallow. By contrast, the plans to diversify the feedstocks used to produce biodiesel and improve production in the poorest regions of Brazil have failed to prosper. Regarding the goal of fostering social inclusion by encouraging the participation of family-based farming, this has been partially achieved. Finally, the goal of cost-efficiently producing biodiesel is far from being achieved. The economic feasibility of the production and use of biodiesel in Brazil can be questioned since it is still strongly supported by tax incentives and production and marketing subsidies. - Highlights: ► This paper examines the emergence of the biodiesel industry in Brazil. ► Biodiesel produced from soybean in large plants represents 80% of total production. ► Soybean-based biodiesel costs 30% more than the most economical alternatives. ► The production and trade of biodiesel in Brazil are highly subsidized. ► Feedstock diversification and family farming integration goals have so far failed.

  4. Metodologia experimental para avaliação de custos de produção e utilização de biodiesel: estudo de caso de quatro ésteres metílicos e óleo diesel comercial Experimental methodology for assessing the cost of biodiesel production and use biodiesel: a case study of four methyl esters and commercial diesel fuel

    Directory of Open Access Journals (Sweden)

    Diego Augusto Fiorese

    2011-11-01

    Full Text Available Considerando que o Brasil detém uma vasta gama de matérias-primas para produção de biodiesel, e também que há a possibilidade de produção em pequena escala, prima-se por estudos de cunho econômico a partir de metodologias de fácil execução. O objetivo do trabalho foi demonstrar uma metodologia e sua aplicação para avaliação dos custos inseridos dentro do processo produtivo e de utilização do biodiesel. A metodologia foi aplicada a biodieseis originários de óleo de soja, girassol, frango e sebo bovino, dos quais se avaliaram economicamente os custos fixos e variáveis para conversão química dos óleos e gorduras em ésteres metílicos, em uma planta de produção experimental. Os custos de produção para cada uma das quatro citadas são distintos em função do valor inicial por litro de cada uma. Também fora avaliado o custo específico e o consumo específico de cada um dos biodieseis, a fim de determinar a diferença em relação ao óleo diesel comercial. No estudo de caso, os resultados mostraram vantagens para o óleo diesel, tanto no custo quanto no consumo. Comparando-se os biodieseis, o de sebo bovino apresentou-se com o menor custo de produção e o menor consumo.Considering that Brazil has a wide range of raw materials for biodiesel production, and also the possibility of small scale production, there is a demand for economic methodology studies with easy implementation. The objective of this research was to demonstrate a methodology and its application to assess the costs within the production process and the biodiesel use. The methodology was applied to biodiesels originated from soybean oil, sunflower oil, chicken oil and beef tallow, which assessed the fixed and variable costs for chemical conversion of oils and fats into methyl esters in an experimental production plant. Production costs for each of the four mentioned esters are peculiar due to the initial value of each oil per liter. Also the specific cost

  5. Investigating the compression ignition combustion of multiple biodiesel/ULSD (ultra-low sulfur diesel) blends via common-rail injection

    International Nuclear Information System (INIS)

    Mangus, Michael; Kiani, Farshid; Mattson, Jonathan; Tabakh, Daniel; Petka, James; Depcik, Christopher; Peltier, Edward; Stagg-Williams, Susan

    2015-01-01

    Researchers across the globe are searching for energy sources to replace the petroleum-based fuels used by the transportation sector. A fuel of particular interest is biodiesel, produced from a diverse variety of feedstock oils with differing fuel properties that alter the operation and emissions of the engines using them. As biodiesel may be mixed with petroleum-based diesel, the fuel being used by a diesel engine may vary by both biodiesel blend percentage and source. Therefore, the influence of biodiesel properties as a function of blend is important to understand. In this study, four biodiesels, produced from palm, jatropha, soybean, and beef tallow, are tested with blends of petroleum diesel at ratios of 5%, 10%, 20%, and 50% biodiesel content. The results are compared with tests of neat diesel and each biodiesel. Using electronic injection, timing is modulated to normalize combustion phasing for all fuels tested to directly investigate the effects of biodiesel on combustion. Results indicate that fuel viscosity, energy content, and molecular structure have distinct influences on combustion that must be considered for engine calibration. When adjusted for combustion timing, biodiesel blends also showed a general decrease in NO x emissions compared to ultra-low sulfur diesel. - Highlights: • Biodiesel injection timing is adjusted to remove cetane number effect on combustion. • When combustion is normalized, biodiesel NO x emissions are lower than those of ULSD. • Four distinct biodiesels used in blends from 0% to 100% biodiesel/ULSD fraction. • Correlating fuel properties to combustion/emissions is useful for engine calibration

  6. In-situ transesterification of seeds of invasive Chinese tallow trees (Triadica sebifera L.) in a microwave batch system (GREEN(3)) using hexane as co-solvent: Biodiesel production and process optimization.

    Science.gov (United States)

    Barekati-Goudarzi, Mohamad; Boldor, Dorin; Nde, Divine B

    2016-02-01

    In-situ transesterification (simultaneous extraction and transesterification) of Chinese tallow tree seeds into methyl esters using a batch microwave system was investigated in this study. A high degree of oil extraction and efficient conversion of oil to biodiesel were found in the proposed range. The process was further optimized in terms of product yields and conversion rates using Doehlert optimization methodology. Based on the experimental results and statistical analysis, the optimal production yield conditions for this process were determined as: catalyst concentration of 1.74wt.%, solvent ratio about 3 (v/w), reaction time of 20min and temperature of 58.1°C. H(+)NMR was used to calculate reaction conversion. All methyl esters produced using this method met ASTM biodiesel quality specifications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, R. L.; Tennant, C. J.; Hayes, R. R.; Black, S.; Ireland, J.; McDaniel, T.; Williams, A.; Frailey, M.; Sharp, C. A.

    2005-11-01

    Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were the following: 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NO{sub x}+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NO{sub x} emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NO{sub x} increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines. The cetane improver 2-ethyl hexyl nitrate was shown to have no measurable effect on NO{sub x} emissions from B20 in these engines, in contrast to observations reported for older engines. The effect of intake air humidity on NO{sub x} emissions from the Cummins ISB was quantified. The CFR NO{sub x}/humidity correction factor was shown to be valid for an engine equipped with EGR, operating at 1700 m above sea level, and operating on conventional or biodiesel.

  8. New heterogeneous acid catalysts in the synthesis of biodiesel; Estudo de novos catalisadores heterogeneous acidos na sintese de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Soldi, Rafael A.; Cesar-Oliveira, Maria Aparecida F. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Lab. de Polimeros Sinteticos], e-mail: mafco@quimica.ufpr.br; Oliveira, Angelo R.S.; Ramos, Luiz P. [Universidade Federal do Parana (UFPR), Curitiba, PR (Brazil). Dept. de Quimica. Centro de Pesquisa em Quimica Aplicada (CEPESQ)

    2007-07-01

    In this work, sulfonated polystyrene compounds (PSS) were synthesized from linear polystyrene (PS). Several methods and experimental conditions were investigated for the sulfonation of PS, producing catalytically active polymeric materials with sulfonation degrees in the range of 5.0-6.2 mmol -SO{sub 3}H/g of dry polymer. The performance of these catalysts was evaluated in transesterification reactions of beef tallow and vegetable oils with ethanol and methanol. For the sake of comparison, the same reaction conditions employed for the PSS catalysts were also used for an Amberlyst 15 (3,7 mmol SO{sub 3}H/g - Aldrich). The PSS samples were shown to be insoluble in the reaction media, leading to conversion rates of 85%, 75% and 80% of the refined soybean oil, beef tallow and crude corn oil in to ethyl esters, respectively, and 94% of the refined soybean oil methyl esters. Amberlyst 15 was studied as an alternative to the process, but its conversion rate to alkyl esters was very low in the employed conditions. These results demonstrated that our synthetic PSS materials have a great potential to act as heterogeneous catalysts for transesterification. (author)

  9. Uruguayan tallow characterization

    Directory of Open Access Journals (Sweden)

    Cecilia Rodríguez

    2011-04-01

    Full Text Available Eatable tallow is the product  obtained fusing oily, from clean and  healthy tissues (included the fats of clippings, and from muscles or bones adherents of bovine animals (Bos tsurus,  lambs (Ovis aries in good conditions of health in the moment of its sacrifice and whose has been treated and therefore are considered suitable for the human consumption.To obtain fat from the raw, this material must surrender to a previous treatment that breaks the adipose cells, by  mechanical destruction, boiling or by treatment with alcáli. The easiest  way  consists of the mechanical disintegration (breakup under heat, using steam in direct or indirect form. This product can be obtained by one of the following : discontinuous merger, humid constant merger and  continues merger at low temperature. At present is used in the  cosmetic industry (production of soaps, for nutrition (raw material for margarine, ranching (for the manufacture of food concentrated for animals, for the self propelling industry (raw material for the production of biodiesel. The major purpose of this work is the tallow characterization from the determination of the following parameters :Moisture and Volatile Matter (g/100g of sample, Melting Point (1C, Free Acidity (g. Oleic acid /100g of sample, Colour (yellow and red and Insoluble Matter (g/100g.de shows of 15 samples of animal tallow from Uruguay, in order to provide useful information for the selection of the material. The Norm used as reference was the AOCS (American Oil Chemistry Society. With the obtained information it has been realized a statistical exploratory analysis. The preliminary results, due to the high variability of the studied factors, do not allow to establish with the current number of samples a  model who explains the above mentioned variability, neither at first, to reduce the quantity of factors to consider; in effect, the regression of the moisture against the rest of the factors determined the

  10. The economic impact of Canadian biodiesel production on Canadian grains, oilseeds and livestock producers : final report

    International Nuclear Information System (INIS)

    Stiefelmeyer, K.; Mussell, A.; Moore, T.L.; Liu, D.

    2006-05-01

    This study was conducted to provide the Canadian Canola Growers Association with an understanding of the economic effects of a mandated use of biodiesel blends produced in Canada, focusing on canola and canola oil. A literature review was performed to determine what has been found elsewhere in terms of biodiesel. An overview of the feedstock markets was also conducted along with an empirical analysis to determine likely feedstock purchasing behaviour under biodiesel blend requirements. The analysis also considered the rendered animal fats industry. The objectives were to identify the economic impacts of biodiesel development; determine the nature of markets for candidate feedstocks that could be used in manufacturing biodiesel; estimate the economic effects of a 2 per cent biodiesel blend requirement in petroleum diesel; estimate the economic effects of a 5 per cent biodiesel blend requirement in petroleum diesel; and, determine the ultimate impact on the Canadian canola industry of the mandated biodiesel blend. It was shown that biodiesel can be made from a range of feedstocks and that the 2 key factors influencing the success of biodiesel manufacturing facilities were feedstock prices and feedstock availability. The key competitors facing canola oil in the biodiesel market are rendered oils, rendered animal fats, palm oil, and soybean oil. Canola and soybean oil are likely to be relatively high cost feedstocks for biodiesel production, while yellow grease, tallow, and palm oil would be better priced as feed for industrial uses. Two conceptions of market dynamic were considered. In the first, the feedstock prices remained constant, while in the other the feedstock prices fluctuated with volume consumed. It was concluded that if total fat and oil supplies are fixed at historic levels, biodiesel blend requirements of just over 2 per cent are feasible. It was concluded that a cluster of widely available, low-priced feedstocks for biodiesel production exists. These

  11. Improving the Cold Temperature Properties of Tallow-Based Methyl Ester Mixtures Using Fractionation, Blending, and Additives

    Science.gov (United States)

    Elwell, Caleb

    Beef tallow is a less common feedstock source for biodiesel than soy or canola oil, but it can have economic benefits in comparison to these traditional feedstocks. However, tallow methyl ester (TME) has the major disadvantage of poor cold temperature properties. Cloud point (CP) is an standard industry metric for evaluating the cold temperature performance of biodiesel and is directly related to the thermodynamic properties of the fuel's constituents. TME has a CP of 14.5°C compared with 2.3°C for soy methyl ester (SME) and -8.3°C for canola methyl ester (CME). In this study, three methods were evaluated to reduce the CP of TME: fractionation, blending with SME and CME, and using polymer additives. TME fractionation (i.e. removal of specific methyl ester constituents) was simulated by creating FAME mixtures to match the FAME profiles of fractionated TME. The fractionation yield was found to be highest at the eutectic point of methyl palmitate (MP) and methyl stearate (MS), which was empirically determined to be at a MP/(MP+MS) ratio of approximately 82%. Since unmodified TME has a MP/(MP+MS) ratio of 59%, initially only MS should be removed to produce a ratio closer to the eutectic point to reduce CP and maximize yield. Graphs relating yield (with 4:1 methyl stearate to methyl oleate carryover) to CP were produced to determine the economic viability of this approach. To evaluate the effect of blending TME with other methyl esters, SME and CME were blended with TME at blend ratios of 0 to 100%. Both the SME/TME and CME/TME blends exhibited decreased CPs with increasing levels of SME and CME. Although the CP of the SME/TME blends varied linearly with SME content, the CP of the CME/TME blends varied quadratically with CME content. To evaluate the potential of fuel additives to reduce the CP of TME, 11 different polymer additives were tested. Although all of these additives were specifically marketed to enhance the cold temperature properties of petroleum diesel or

  12. Identification of regulatory barriers in the production of biodiesel in Brazil; Identificacao de entraves regulatorios na producao de biodiesel no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Santana [Instituto Federal de Educacao, Ciencia e Tecnologia da Bahia (IFBA), Santo Amaro, BA (Brazil)], email: marcelosilva@ifba.edu.br; Teixeira, Francisco Lima Cruz [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil); Torres, Ednildo Andrade [Universidade Federal da Bahia (CIEnAm/UFBA), Salvador, BA (Brazil). Centro Interdisciplinar de Energia e Ambiente

    2010-07-01

    At a time when biofuels are in evidence in the international arena, it is essential to discuss this new market, in particular the biodiesel. To achieve agricultural and industrial sustainability, the main argument is that replacing oil with biofuels raises some questions, because of the lack of experience with the new productive chains. Due to the way the Biodiesel program is being implemented, this program presents several obstacles. Thus, this study aims to investigate the elements in the regulatory hurdles for the production of Biodiesel. In this work it was adopted qualitative descriptive and exploratory procedures, including desk research and recognition of perceptions through questionnaires to staff intentionally selected from different parts of the productive chain, through non-probabilistic sampling. The survey showed the following barriers: differentiated subsidies, which hinder the production of biodiesel by intensive agriculture and benefit familiar agriculture, do not encourage other regions of the country, or other raw material (animal tallow and ORG); incoherent taxation considering the quantity purchased raw materials; strict control on the region distribution to claim the Social Fuel Seal; it isn't prioritized environmental issues in their regulatory context; there's no prestige to small industry, cooperatives and associations; there is a tax for alcohol applied in biodiesel production; and the law penalizes biodiesel plants for the sale of hydrated alcohol. It was observed that these obstacles hinder the increase in biodiesel production, resulting in countless idle biodiesel plants. In this sense, it was found that the regulatory framework needs to be revised due to the investigated barriers. (author)

  13. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts.

    Science.gov (United States)

    Chen, Rui; Qin, Zhangcai; Han, Jeongwoo; Wang, Michael; Taheripour, Farzad; Tyner, Wallace; O'Connor, Don; Duffield, James

    2018-03-01

    This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel's fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affecting biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Life cycle energy and greenhouse gas emission effects of biodiesel in the United States with induced land use change impacts

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rui; Qin, Zhangcai; Han, Jeongwoo; Wang, Michael; Taheripour, Farzad; Tyner, Wallace; O' Connor, Don; Duffield, James

    2018-03-01

    This study conducted the updated simulations to depict a life cycle analysis (LCA) of the biodiesel production from soybeans and other feedstocks in the U.S. It addressed in details the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to the conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel’s fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affecting biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, biodiesel produced from other feedstocks (canola oil and tallow) were also investigated to contrast with soy biodiesel and petroleum diesel

  15. METHANOLYSIS AND ETHANOLYSIS OF ANIMAL FATS: A COMPARATIVE STUDY OF THE INFLUENCE OF ALCOHOLS

    Directory of Open Access Journals (Sweden)

    MANUEL GARCÍA

    2011-03-01

    Full Text Available Biodiesel from animal fats with methanol and ethanol was produced in the presence of sodium methoxide and sodium ethoxide as catalysts. Two samples of pork fats and one natural beef tallow were directly transesterified with a good final product yield: 87.7, 86.7 and 86.3% for methanolysis, and 78.4, 82.6 and 82.7% for ethanolysis, respectively. Methyl ester content was also determined, being higher than 96.5 mass% for all the samples prepared. The presence of natural C17:0 in animal fats makes it necessary to correct the method pro¬posed in the standard EN 14103 (2003. Biodiesel density at 15 C of the samples was between 870 and 876 kg/m3, within the acceptance range of standard EN 14214, and the dynamic viscosity at 40 °C of the produced biodiesels was in the range of 4.5 to 5.16 mm2/s, also fulfilling requirements of EN 14214 standard. The iodine value is much lower than the superior limit established by EN 14214 standard but oxidation stability (OSI is lower than the required limit, 6 h, of the standard, which can be attributed to the lack of natural antioxidants in tallows.

  16. Transesterification double step process for biodiesel preparation and its chromatographic characterization: oils and fats in practical organic chemistry

    International Nuclear Information System (INIS)

    Oliveira, Diogo Müller de; Ongaratto, Diego Paulo; Fontoura, Luiz Antonio Mazzini; Naciuk, Fabrício Fredo; Santos, Vinícius Oliveira Batista dos; Kunz, Jéssica Danieli; Marques, Marcelo Volpatto; Souza, Alexander Ossanes de; Pereira, Claudio Martin Pereira de; Samios, Dimitrios

    2013-01-01

    Methanolic transesterification of oils and fats was carried out in a two steps procedure, under basic and acidic catalysis. Palm, soybean, canola, corn, rice, grape seed, sunflower, peanut, pequi and olive oils, besides tallow and lard were used as feedstock. Specific gravity, relative viscosity, thin layer chromatography and gas chromatography were used to characterize the biodiesel. Biodiesel was obtained in high yield and purity. Results were used to discuss the following key-concepts: 1 – triglycerides, composition and properties; 2 – nucleophilic acyl substitution under basic and acid conditions, 3 – thin layer chromatography, 4 – as chromatography and its quantitative methods. (author)

  17. Transesterification double step process for biodiesel preparation and its chromatographic characterization: oils and fats in practical organic chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diogo Mueller de; Ongaratto, Diego Paulo; Fontoura, Luiz Antonio Mazzini; Naciuk, Fabricio Fredo; Santos, Vinicius Oliveira Batista dos; Kunz, Jessica Danieli; Marques, Marcelo Volpatto, E-mail: lmazzini@uol.com.br [Departamento de Engenharia de Processos, Fundacao de Ciencia e Tecnologia, Porto Alegre, RS (Brazil); Curso de Quimica, Universidade Luterana do Brasil, Canoas RS (Brazil); Souza, Alexander Ossanes de; Pereira, Claudio Martin Pereira de [Centro de Ciencias Quimicas, Farmaceuticas e de Alimentos, Universidade Federal de Pelotas, RS (Brazil); Samios, Dimitrios [Departamento de Fisico-Quimica, Instituto de Quimica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2013-09-01

    Methanolic transesterification of oils and fats was carried out in a two steps procedure, under basic and acidic catalysis. Palm, soybean, canola, corn, rice, grape seed, sunflower, peanut, pequi and olive oils, besides tallow and lard were used as feedstock. Specific gravity, relative viscosity, thin layer chromatography and gas chromatography were used to characterize the biodiesel. Biodiesel was obtained in high yield and purity. Results were used to discuss the following key-concepts: 1 - triglycerides, composition and properties; 2 - nucleophilic acyl substitution under basic and acid conditions, 3 - thin layer chromatography, 4 - as chromatography and its quantitative methods. (author)

  18. Mississippi State Biodiesel Production Project

    Energy Technology Data Exchange (ETDEWEB)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the

  19. Mahua (Madhuca Indica oil: A potential source for biodiesel production in India

    Directory of Open Access Journals (Sweden)

    Utkarsh

    2016-09-01

    Full Text Available The economic development of a country is highly dependent on the supply of fossil fuels which are constrained by its limited availability and pollution characteristics. India is among the world’s fourth-largest petroleum consumer due to which the vehicular emissions increased eight times over the last two decades. Due to the environmental awareness and depletion of fossil fuel reserves, attention has been given to find an alternative energy source. Among the alternatives existing, Biodiesel is the one which is less polluting and eco-friendly. So it can be used in industrial, commercial, agricultural and other sectors as a substitute for diesel. Biodiesel can be produced from crude vegetable oil, non-edible oil, frying oils (waste, animal tallow and algae by a process of chemical reaction called Transesterification. Biodiesel is also known as methyl or ethyl esters of the feedstock from which it is produced. It is miscible with diesel oil which allows the use of blends of petro diesel and biodiesel in any percentage. The C.I. engines fuelled with biodiesel perform more or less in the same fashion as that with the conventional fuel. Comparative to diesel, biodiesel has high Cetane number and lower compressibility. Additionally, the heat release rate of biodiesel is slightly lower than diesel owing to low calorific value, low volatility and high viscosity. The problem of high viscosity can be eradicated by transesterification process and by adding additives which help us to store the biodiesel for a longer duration of time without any decay. Exhaust emissions are significantly reduced with the use of biodiesel or its blends. The present paper investigates the potential of Mahua (Madhuca Indica oil for biodiesel production as it can be extracted from seeds of Mahua tree which are indigenous to India. It can grow even in dry regions and are found abundantly in several parts of India

  20. Study of the Rancimat test method in measuring the oxidation stability of biodiesel ester and blends

    Energy Technology Data Exchange (ETDEWEB)

    Berthiaume, D.; Tremblay, A. [Oleotek Inc., Thetford Mines, PQ (Canada)

    2006-11-15

    This paper provided details of a study conducted to examine the oxidation stability of biodiesel blends. The study tested samples of canola oil, soybean oil, fish oil, yellow grease, and tallow. The EN 14112 (Rancimat) method was used to compare oxidation stability results obtained in previous tests conducted in the United States and Europe. The aim of the study was also to evaluate the influence of peroxide value (PV), acid value (AV) and feedstock source on the the oxidative stability of different samples. The study also evaluated the possibility of developing a validated test method developed from the EN 14112 methods to specifically consider biodiesel blends. Results of the study indicated that the Rancimat method was not suitable for measuring the oxidation stability of biodiesels blended with petrodiesels. No direct correlation between oxidative stability and PV or AV was observed. It was concluded that fatty acid distribution was not a principal factor in causing changes in oxidation stability. 22 refs., 3 tabs., 1 fig.

  1. Mass spectrometric detection of proteins in non-aqueous media : the case of prion proteins in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Douma, M.D.; Kerr, G.M.; Brown, R.S.; Keller, B.O.; Oleschuk, R.D. [Queen' s Univ., Kingston, ON (Canada). Dept. of Chemistry

    2008-08-15

    This paper presented a filtration method for detecting protein traces in non-aqueous media. The extraction technique used a mixture of acetonitrile, non-ionic detergent and water along with filter disks with embedded C{sub 8}-modified silica particles to capture the proteins from non-aqueous samples. The extraction process was then followed by an elution of the protein from the filter disk and direct mass spectrometric detection and tryptic digestion with peptide mapping and MS/MS fragmentation of protein-specific peptides. The method was used to detect prion proteins in spiked biodiesel samples. A tryptic peptide with the sequence YGQGSPGGNR was used for unambiguous identification. Results of the study showed that the method is suitable for the large-scale testing of protein impurities in tallow-based biodiesel production processes. 33 refs., 6 figs.

  2. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Omidvarborna, Hamid; Kumar, Ashok [Department of Civil Engineering, The University of Toledo, Toledo, OH (United States); Kim, Dong-Shik, E-mail: dong.kim@utoledo.edu [Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH (United States)

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. - Highlights: • The unsaturation of biodiesel fuel was correlated with soot characteristics. • Average diameters of biodiesel soot were smaller than that of ULSD. • Eight elements were detected as the marker metals in biodiesel soot particles. • As the degree of unsaturation increased, the oxygen content in FAMEs increased. • Biodiesel

  3. The effects of biodiesels on semivolatile and nonvolatile particulate matter emissions from a light-duty diesel engine.

    Science.gov (United States)

    Cheng, Yuan; Li, Shao-Meng; Liggio, John; Hayden, Katherine; Han, Yuemei; Stroud, Craig; Chan, Tak; Poitras, Marie-Josée

    2017-11-01

    Semivolatile organic compounds (SVOCs) represent a dominant category of secondary organic aerosol precursors that are increasingly included in air quality models. In the present study, an experimental system was developed and applied to a light-duty diesel engine to determine the emission factors of particulate SVOCs (pSVOCs) and nonvolatile particulate matter (PM) components at dilution ratios representative of ambient conditions. The engine was tested under three steady-state operation modes, using ultra-low-sulfur diesel (ULSD), three types of pure biodiesels and their blends with ULSD. For ULSD, the contribution of pSVOCs to total particulate organic matter (POM) mass in the engine exhaust ranged between 21 and 85%. Evaporation of pSVOCs from the diesel particles during dilution led to decreases in the hydrogen to carbon ratio of POM and the PM number emission factor of the particles. Substituting biodiesels for ULSD could increase pSVOCs emissions but brought on large reductions in black carbon (BC) emissions. Among the biodiesels tested, tallow/used cooking oil (UCO) biodiesel showed advantages over soybean and canola biodiesels in terms of both pSVOCs and nonvolatile PM emissions. It is noteworthy that PM properties, such as particle size and BC mass fraction, differed substantially between emissions from conventional diesel and biodiesels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Selected mechanical and physical properties of Chinese tallow tree juvenile wood

    Science.gov (United States)

    Todd F. Shupe; LEslie H. Groom; Thomas L. Eberhardt; Thomas C. Pesacreta; Timothy G. Rials

    2008-01-01

    Chinese tallow tree is a noxious, invasive plant in the Southeastern United States. It is generally considered a nuisance and has no current commercial use. The objective of this research was to determine the moduli of rupture (MOR) and elasticity (MOE) of the stem wood of this species at different vertical sampling locations. Three Chinese tallow trees were felled and...

  5. Remote sensing survey of Chinese tallow tree in the Toledo Bend Reservoir area, Louisiana and Texas

    Science.gov (United States)

    Ramsey, Elijah W.; Rangoonwala, Amina; Bannister, Terri; Suzuoki, Yukihiro

    2013-01-01

    We applied Hyperion sensor satellite data acquired by the National Aeronautics and Space Administration’s Earth Observing-1 (EO-1) satellite in conjunction with reconnaissance surveys to map the occurrences of the invasive Chinese tallow tree (Triadica sebifera) in the Toledo Bend Reservoir study area of northwestern Louisiana and northeastern Texas. The rationale for application of high spectral resolution EO-1 Hyperion data was based on the successful use of Hyperion data in the mapping of Chinese tallow tree in southwestern Louisiana in 2005. In contrast to the single Hyperion image used in the 2005 project, more than 20 EO-1 Hyperion and Advanced Land Imager (ALI) images of the study area were collected in 2009 and 2010 during the fall senescence when Chinese tallow tree leaves turn red. Atmospherically corrected reflectance spectra of Hyperion imagery collected at ground and aerial observation locations provided the input datasets used in the program for spectral discrimination analysis. Discrimination analysis was used to identify spectral indicator sets to best explain variance contained in the input databases. The expectation was that at least one set of Hyperion-based indicator spectra would uniquely identify occurrences of red-leaf Chinese tallow tree; however, no combination of Hyperion-based reflectance datasets produced a unique identifier. The inability to discover a unique spectral indicator resulted primarily from relatively sparse coverage by red-leaf Chinese tallow tree within the study area (percentage of coverage was less than 5 percent per 30- by 30-meter Hyperion pixel). To enhance the performance of the spectral discrimination analysis, leaf and canopy spectra of Chinese tallow tree were added to the input datasets to guide the indicator selection. In addition, input databases were segregated by land class obtained from an ALI-based landcover classification in order to reduce the input variance and to promote spectral discrimination of red

  6. Safety of Animal Fats for Biodiesel Production: A Critical Review of Literature

    Energy Technology Data Exchange (ETDEWEB)

    Greene, A; Dawson, P; Nixon, D; Atkins, J; Pearl, G [Clemson University, SC (United States)

    2007-05-15

    An in-depth review of available literature was conducted on the safety of using animal fats for biodiesel. The review indicated little or no known risk to human and animal health and to the environment relative to inherent microbial, organic or inorganic agents in animal fats destined for biodiesel production. Animal by-products are generated from the inedible tissues derived from meat, poultry and fish production. This material is thermally processed by the rendering industry to generate a number of industrial materials including use of the fat portion to produce biodiesel. As the biodiesel industry continues to develop, questions have emerged about the safety of animal versus vegetable fats for biodiesel production and utilization. The following report is the result of a detailed literature search into the potential microbial, organic, and inorganic contaminants that may be present in animal fats and the potential for human or environmental safety issues associated with each. The potential safety risks associated with prions are discussed in a separate report, 'Biodiesel from Specified Risk Material Tallow: An Appraisal of TSE Risks and their Reduction'. In certain instances, very little was reported about the potential contaminating moiety and its fate in biodiesel production and usage. Establishing an absolute zero risk assessment is impossible on any fat utilized for biodiesel production. Among the potential microbial contaminants, bacteria, viruses, fungi, yeast, parasites, and microbial toxins were considered. In each instance, the nature of the production process and usage of biodiesel via combustion reduce the possibility that microbial contaminants would be a cause for concern to humans, animals, or the environment. Potential organic moieties contaminating the fat should meet a similar fate. Current evidence suggests that metals and metalloids within animal fats will not cause significant safety issues in the production and use of rendered fat

  7. Safety of Animal Fats for Biodiesel Production: A Critical Review of Literature

    Energy Technology Data Exchange (ETDEWEB)

    Greene, A.; Dawson, P.; Nixon, D.; Atkins, J.; Pearl, G. [Clemson University, SC (United States)

    2007-05-15

    An in-depth review of available literature was conducted on the safety of using animal fats for biodiesel. The review indicated little or no known risk to human and animal health and to the environment relative to inherent microbial, organic or inorganic agents in animal fats destined for biodiesel production. Animal by-products are generated from the inedible tissues derived from meat, poultry and fish production. This material is thermally processed by the rendering industry to generate a number of industrial materials including use of the fat portion to produce biodiesel. As the biodiesel industry continues to develop, questions have emerged about the safety of animal versus vegetable fats for biodiesel production and utilization. The following report is the result of a detailed literature search into the potential microbial, organic, and inorganic contaminants that may be present in animal fats and the potential for human or environmental safety issues associated with each. The potential safety risks associated with prions are discussed in a separate report, 'Biodiesel from Specified Risk Material Tallow: An Appraisal of TSE Risks and their Reduction'. In certain instances, very little was reported about the potential contaminating moiety and its fate in biodiesel production and usage. Establishing an absolute zero risk assessment is impossible on any fat utilized for biodiesel production. Among the potential microbial contaminants, bacteria, viruses, fungi, yeast, parasites, and microbial toxins were considered. In each instance, the nature of the production process and usage of biodiesel via combustion reduce the possibility that microbial contaminants would be a cause for concern to humans, animals, or the environment. Potential organic moieties contaminating the fat should meet a similar fate. Current evidence suggests that metals and metalloids within animal fats will not cause significant safety issues in the production and use of rendered fat

  8. The Effect of Tallow As Lipase Inducer on Total of Aspergillus Niger, Lipolitic Activity and Lipase Yield

    Directory of Open Access Journals (Sweden)

    Manik Eirry Sawitri

    2012-02-01

    Full Text Available The objectives of this research was to determined of tallow addition with different concentration as lipase Aspergillus niger inducer to total of A. niger, lipolitic activity and lipase yield. The result showed that tallow addition as inducer in the lipase A. niger production gave no significant effect on total of A. niger (5.3 x 107 – 1.7 x 108 cfu/gram in the medium. Tallow addition gave a highly significant effect on lipolytic activity and yield of lipase A. niger. Lipolytic activity ranged between 32.0354 – 53.1197 U/mg protein, while the yield of lipase was 6.6418–7.8941 µg/ml. The conclusion of this research was the addition of tallow for 8% as the lipase inducer of A. niger on lipase production was  more effective to obtain the optimal result. Keywords : Tallow, lipase, inducer, Aspergillus niger

  9. Obtenção de biodiesel por transesterificação em dois estágios e sua caracterização por cromatografia gasosa: óleos e gorduras em laboratório de química orgânica

    Directory of Open Access Journals (Sweden)

    Diogo Müller de Oliveira

    2013-01-01

    Full Text Available Methanolic transesterification of oils and fats was carried out in a two steps procedure, under basic and acidic catalysis. Palm, soybean, canola, corn, rice, grapeseed, sunflower, peanut, pequi and olive oils, besides tallow and lard were used as feedstock. Specific gravity, relative viscosity, thin layer chromatography and gas chromatography were used to characterize the biodiesel. Biodiesel was obtained in high yield and purity. Results were used to discuss the following key-concepts: 1 - triglycerides, composition and properties; 2 - nucleophilic acyl substitution under basic and acid conditions, 3 - thin layer chromatography, 4 - gas chromatography and its quantitative methods.

  10. The properties of the mixture of beef tallow and rapeseed oil with a high content of tallow after chemical and enzymatic interesterification

    Directory of Open Access Journals (Sweden)

    Gruczynska, Eliza

    2005-12-01

    Full Text Available A mixture of beef tallow with rapeseed oil (3:1 wt/wt was interesterified using sodium metoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM and Candida antarctica (Novozym 435 as catalysts. Chemical interesterifications were carried out at 60 and 90 ºC for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt-% CH3ONa. Depending on the catalyst used enzymatic interesterifications were carried out at 60 ºC for 8 h (Lipozyme IM or at 80 ºC for 4 h (Novozym 435. The catalysts doses were kept constant (8 % but the water content in catalysts varied from 2 to 10 %. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a non-triacylglycerol fraction, which contained free fatty acids, mono- and diacylglycerols. It was found that the concentrations of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower when compared with nonesterified blends. The sn-2 and sn-1,3 distributions of fatty acids in the triacylglycerol fractions before and after interesterification were determined.These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn-2 position remained practically unchanged compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stability, as assessed by Rancimat induction times. The addition of 0.02 % of BHA or BHT to the interesterified fats improved their stabilitie.Una mezcla de sebo con aceite de colza (3:1 p/p fue interesterificada usando metóxido de sodio y lipasas inmovilizadas de Rhizomucor miehei (Lipozyme IM and Candida antarctica (Novozym 435 como catalizadores. La interesterificación química se llevó a cabo a 60 ºC y 90

  11. A critical review of the applicability of biodiesel and grass biomethane as biofuels to satisfy both biofuel targets and sustainability criteria

    Energy Technology Data Exchange (ETDEWEB)

    Thamsiriroj, Thanasit; Murphy, Jerry D. [Department of Civil and Environmental Engineering, University College Cork (UCC), Cork (Ireland); Environmental Research Institute (ERI), University College Cork, Cork (Ireland)

    2011-04-15

    There are numerous ways to assess and compare biofuels. Gross energy per hectare reflects the quantity of product produced per unit of land. Net energy per hectare reflects the parasitic demand associated with the product per hectare. Gross and net energy per hectare are far superior for grass biomethane than rape seed biodiesel. For a biofuel made from residues the descriptor MJGJ{sub fuel}{sup -1} (MJ of biofuel produced per GJ of fossil fuel displaced) is more instructive; this reflects the relative efficiency of the biofuel. Of issue in the assessment is how to deal with co-products, by-products and residues. The allocation methodology allows for a variety of answers to be generated. UCO biodiesel has a good energy balance for any allocation approach; tallow biodiesel has a poor net energy unless credit is given for the co-production of meat and bone meal as a substitute fuel. To be deemed sustainable by the EU Renewable Energy Directive a value of 60% GHG savings is required for facilities built post 2017. A further crucial consideration is: how much fuel can be produced? This study shows that indigenous biodiesel produced in Ireland and grass biomethane may be deemed sustainable but only grass biomethane may produce a significant quantity, potentially satisfying the 10% renewable energy in transport target for 2020 as opposed to only 1.23% in total from all indigenous biodiesel systems. (author)

  12. Impact of ecological and socioeconomic determinants on the spread of tallow tree in southern forest lands

    Science.gov (United States)

    Yuan Tan; Joseph Z. Fan; Christopher M. Oswalt

    2010-01-01

    Based on USDA Forest Service Forest Inventory and Analysis (FIA) database, relationships between the presence of tallow tree and related driving variables including forest landscape metrics, stand and site conditions, as well as natural and anthropogenic disturbances were analyzed for the southern states infested by tallow trees. Of the 9,966 re-measured FIA plots in...

  13. The Influence of Tallow on Rumen Metabolism, Microbial Biomass Synthesis and Fatty Acid Composition of Bacteria and Protozoa

    DEFF Research Database (Denmark)

    Weisbjerg, Martin Riis; Børsting, Christian Friis; Hvelplund, Torben

    1992-01-01

    Rumen metabolism, microbial biomass synthesis and microbial long chain fatty acid composition were studied in lactating cows fed at two levels of dry matter intake (L, 8.6 kg DM and H, 12.6 kg DM) with 0, 4 and 6% added tallow at the low feed level (L0, L4 and L6) and 0, 2, 4 and 6% at the high...... feed level (H0, H2, H4 and H6). Fibre digestibility was not significantly affected by tallow addition. Increasing tallow level in the diet decreased the total VFA concentration, the ratio of acetic acid to propionic acid and the ammonia concentration in the rumen. Crude fat and fatty acid content...... in bacterial and protozoal dry matter increased with increased tallow level, especially due to an increase in fatty acids originating from the feeds. Microbial synthesis in the rumen and flow of amino acids to the duodenum was highest for medium fat intake at the high feed level....

  14. Prion infected meat-and-bone meal is still infectious after biodiesel production.

    Directory of Open Access Journals (Sweden)

    Cathrin E Bruederle

    2008-08-01

    Full Text Available The epidemic of bovine spongiform encephalopathy (BSE has led to a world-wide drop in the market for beef by-products, such as Meat-and-Bone Meal (MBM, a fat-containing but mainly proteinaceaous product traditionally used as an animal feed supplement. While normal rendering is insufficient, the production of biodiesel from MBM has been suggested to destroy infectivity from transmissible spongiform encephalopathies (TSEs. In addition to producing fuel, this method simultaneously generates a nutritious solid residue. In our study we produced biodiesel from MBM under defined conditions using a modified form of alkaline methanolysis. We evaluated the presence of prion in the three resulting phases of the biodiesel reaction (Biodiesel, Glycerol and Solid Residue in vitro and in vivo. Analysis of the reaction products from 263K scrapie infected MBM led to no detectable immunoreactivity by Western Blot. Importantly, and in contrast to the biochemical results the solid MBM residue from the reaction retained infectivity when tested in an animal bioassay. Histochemical analysis of hamster brains inoculated with the solid residue showed typical spongiform degeneration and vacuolation. Re-inoculation of these brains into a new cohort of hamsters led to onset of clinical scrapie symptoms within 75 days, suggesting that the specific infectivity of the prion protein was not changed during the biodiesel process. The biodiesel reaction cannot be considered a viable prion decontamination method for MBM, although we observed increased survival time of hamsters and reduced infectivity greater than 6 log orders in the solid MBM residue. Furthermore, results from our study compare for the first time prion detection by Western Blot versus an infectivity bioassay for analysis of biodiesel reaction products. We could show that biochemical analysis alone is insufficient for detection of prion infectivity after a biodiesel process.

  15. Development of integrated management practices for the control of Chinese tallow on Parris Island Marine Corps Recruit Depot

    Science.gov (United States)

    Lauren S. Pile; G. Geoff Wang; Patricia A. Layton

    2015-01-01

    Chinese tallow [Triadica sebifera (L.) Small] is an aggressive, fast-growing, highly adaptable invasive tree of the southeastern United States coastal region. Since its introduction in the early 1800s, Chinese tallow has become a serious threat to native grassland and forest communities from mid-coastal North Carolina to Northern Florida and West to Central Texas

  16. Detection of Prion Proteins and TSE Infectivity in the Rendering and Biodiesel Manufacture Processes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.; Keller, B.; Oleschuk, R. [Queen' s University, Kingston, Ontario (Canada)

    2007-03-15

    This paper addresses emerging issues related to monitoring prion proteins and TSE infectivity in the products and waste streams of rendering and biodiesel manufacture processes. Monitoring is critical to addressing the knowledge gaps identified in 'Biodiesel from Specified Risk Material Tallow: An Appraisal of TSE Risks and their Reduction' (IEA's AMF Annex XXX, 2006) that prevent comprehensive risk assessment of TSE infectivity in products and waste. The most important challenge for monitoring TSE risk is the wide variety of sample types, which are generated at different points in the rendering/biodiesel production continuum. Conventional transmissible spongiform encephalopathy (TSE) assays were developed for specified risk material (SRM) and other biological tissues. These, however, are insufficient to address the diverse sample matrices produced in rendering and biodiesel manufacture. This paper examines the sample types expected in rendering and biodiesel manufacture and the implications of applying TSE assay methods to them. The authors then discuss a sample preparation filtration, which has not yet been applied to these sample types, but which has the potential to provide or significantly improve TSE monitoring. The main improvement will come from transfer of the prion proteins from the sample matrix to a matrix compatible with conventional and emerging bioassays. A second improvement will come from preconcentrating the prion proteins, which means transferring proteins from a larger sample volume into a smaller volume for analysis to provide greater detection sensitivity. This filtration method may also be useful for monitoring other samples, including wash waters and other waste streams, which may contain SRM, including those from abattoirs and on-farm operations. Finally, there is a discussion of emerging mass spectrometric methods, which Prusiner and others have shown to be suitable for detection and characterisation of prion proteins (Stahl

  17. γ-Oryzanol recovers mouse hypoadiponectinemia induced by animal fat ingestion.

    Science.gov (United States)

    Nagasaka, Reiko; Yamsaki, Tomoteru; Uchida, Asako; Ohara, Kazuyuki; Ushio, Hideki

    2011-06-15

    Adiponectin is an insulin-sensitizing adipocyte-derived adipokine. The decrease in plasma adiponectin level (hypoadiponectinemia) is involved in the development of insulin resistance and the resulting type 2 diabetes. Our previous studies have demonstrated that γ-oryzanol (ORZ) from rice bran suppressed NF-κB activation and increased adiponectin secretion from adipocyte. In this study, we have evaluated effects of oral administration of animal fat (beef tallow) and palmitate on mouse serum adiponectin level. Oral administrations of beef tallow and palmitate significantly suppressed serum adiponectin levels into around half of the initial level from 48 to 96 h after administration compared with the case of corn oil (P<0.05). Coadministration of ORZ successfully remedied mouse hypoadiponectinemia induced by ingestion of beef tallow and the relative adiponectin levels attained to 1.66±0.23 at 96 h after administration (mean value±s.e., P<0.05). Diverse physiological functions of ORZ in crop bran might be promising us to prevent chronic inflammations in the pathogeneses of the metabolic or insulin resistance syndromes. Copyright © 2011 Elsevier GmbH. All rights reserved.

  18. Retro-analysis of liquid bio-ethanol and bio-diesel in New Zealand

    International Nuclear Information System (INIS)

    Krumdieck, S.; Page, S.

    2013-01-01

    This paper uses a new approach of retro-analysis. Typically policy is informed by forward-looking analysis of potential for alternative energy technologies. But historical knowledge of energy and processing requirements and greenhouse effects is more reliable for engineering evaluation of biofuel production systems. This study calculates energy inputs and greenhouse gas emissions for the most efficient biomass feedstocks in New Zealand if the policy had been implemented to maximize liquid biofuel production in the year 2004/2005. The study uses existing processing technologies and agricultural statistics. Bioethanol production is calculated from putrescible wastes and starch crops, and biodiesel production from rapeseed, tallow, wood and waste paper. Each production system is further evaluated using measures of land use, energy input, crop production related to the energy product, plus relative measures of efficiency and renewability. The research findings are that maximum biofuel production in 2004/2005 would have provided only a few per cent of demand, and would not have reduced dependence on foreign imported oil or exposure to fuel price rise. Finally, we conclude that demand management and efficiency are more effective means of meeting policy objectives. -- Graphical abstract: Input-output energy flows for liquid biofuels with retro-analysis reference to 2004. Display Omitted -- Highlights: •We conducted a Retro-analysis of biofuel production for New Zealand in 2004. •EROI analysis shows biodiesel from oil crops is the only viable biofuel. •Renewability analysis shows biofuels do not reduce exposure to peak oil issues. •GHG analysis shows 89% CO 2 emission reductions for the best biodiesel. •Total biofuel from food crops and wastes could provide less than 10% of demand

  19. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid.

    Science.gov (United States)

    Zhao, Xuebing; Peng, Feng; Du, Wei; Liu, Canming; Liu, Dehua

    2012-08-01

    Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.

  20. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    Putzig, Mollie [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-10-04

    This fact sheet (updated for 2017) provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, the difference between biodiesel and renewable diesel, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  1. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    This fact sheet (updated for 2017) provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, the difference between biodiesel and renewable diesel, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  2. Summary of routes for different study of combustion reaction in scale pilot magnetic nanocatalysts production Ni_0_,_5Zn_0_,_5Fe_2O_4

    International Nuclear Information System (INIS)

    Barros, Ana Beatriz de Sousa; Moura, Thales Filipe Barbosa de; Vasconcelos, Erik Vilar; Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo

    2016-01-01

    Biodiesel is derived from renewable sources and because of concerns about the environment, has gained relevance as regards the search for sustainable sources. It can be obtained by different processes consisting of a chemical reaction of vegetable oil or animal fat with a common alcohol, stimulated by a catalyst. In this work we used for the production of biodiesel the animal fat oil, beef tallow, because it’s a cheap raw material, avoiding discharges and pollution of the environment and considered to be a raw material clean. This study aimed to prepare a magnetic NiZn catalyst, wherein the synthesis was performed in two stainless steel containers with different capacity, PM and MM 10 and 30g / product by reacting, respectively, and characterized by XRD and EDX. The biodiesel was obtained by methyl esterification at 180 ° C / 1hrs, molar ratio 1:12, 2% catalys. Blank test was also conducted to compare the results. It was found that the two routes showed peaks of highest intensity corresponding to the cubic spinel crystalline phase majority of NiZn ferrite. The value of the crystallite size for the PM catalyst was higher by 23% compared to MM. The conversion into biodiesel results were approximately 62%, 42% and 5%, AM, and MM test blank respectively. So when comparing the blank test with PM and MM, the catalyst showed efficiency for the catalytic reaction, more effective for PM. (author)

  3. Summary of routes for different study of combustion reaction in scale pilot magnetic nanocatalysts production Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4}; Estudo de diferentes rotas da sintese por reacao de combustao em escala piloto para producao de nanocatalisadores magneticos Ni{sub 0,5}Zn{sub 0,5}Fe{sub 2}O{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Barros, Ana Beatriz de Sousa; Moura, Thales Filipe Barbosa de; Vasconcelos, Erik Vilar; Pereira, Kleberson Ricardo de Oliveira; Dantas, Joelda; Costa, Ana Cristina Figueiredo de Melo, E-mail: ana_sousa_barros@hotmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2016-07-01

    Biodiesel is derived from renewable sources and because of concerns about the environment, has gained relevance as regards the search for sustainable sources. It can be obtained by different processes consisting of a chemical reaction of vegetable oil or animal fat with a common alcohol, stimulated by a catalyst. In this work we used for the production of biodiesel the animal fat oil, beef tallow, because it’s a cheap raw material, avoiding discharges and pollution of the environment and considered to be a raw material clean. This study aimed to prepare a magnetic NiZn catalyst, wherein the synthesis was performed in two stainless steel containers with different capacity, PM and MM 10 and 30g / product by reacting, respectively, and characterized by XRD and EDX. The biodiesel was obtained by methyl esterification at 180 ° C / 1hrs, molar ratio 1:12, 2% catalys. Blank test was also conducted to compare the results. It was found that the two routes showed peaks of highest intensity corresponding to the cubic spinel crystalline phase majority of NiZn ferrite. The value of the crystallite size for the PM catalyst was higher by 23% compared to MM. The conversion into biodiesel results were approximately 62%, 42% and 5%, AM, and MM test blank respectively. So when comparing the blank test with PM and MM, the catalyst showed efficiency for the catalytic reaction, more effective for PM. (author)

  4. Beneficial effect of an omega-6 PUFA-rich diet in non-steroidal anti-inflammatory drug-induced mucosal damage in the murine small intestine.

    Science.gov (United States)

    Ueda, Toshihide; Hokari, Ryota; Higashiyama, Masaaki; Yasutake, Yuichi; Maruta, Koji; Kurihara, Chie; Tomita, Kengo; Komoto, Shunsuke; Okada, Yoshikiyo; Watanabe, Chikako; Usui, Shingo; Nagao, Shigeaki; Miura, Soichiro

    2015-01-07

    To investigate the effect of a fat rich diet on non-steroidal anti-inflammatory drug (NSAID)-induced mucosal damage in the murine small intestine. C57BL6 mice were fed 4 types of diets with or without indomethacin. One group was fed standard laboratory chow. The other groups were fed a fat diet consisting of 8% w/w fat, beef tallow (rich in SFA), fish oil, (rich in omega-3 PUFA), or safflower oil (rich in omega-6 PUFA). Indomethacin (3 mg/kg) was injected intraperitoneally from day 8 to day 10. On day 11, intestines and adhesions to submucosal microvessels were examined. In the indomethacin-treated groups, mucosal damage was exacerbated by diets containing beef tallow and fish oil, and was accompanied by leukocyte infiltration (P safflower oil diet than in mice fed the beef tallow or fish oil diet (P safflower oil significantly decreased monocyte and platelet recruitment (P < 0.05). A diet rich in SFA and omega-3 PUFA exacerbated NSAID-induced small intestinal damage via increased leukocyte infiltration. Importantly, a diet rich in omega-6-PUFA did not aggravate inflammation as monocyte migration was blocked.

  5. Biodiesel Basics

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-07-01

    This fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends and specifications. It also covers how biodiesel compares to diesel fuel in terms of performance (including in cold weather) and whether there are adverse effects on engines or other systems. Finally, it discusses biodiesel fuel quality and standards, and compares biodiesel emissions to those of diesel fuel.

  6. Growth pf Chinese tallow in a bottomland forest in Southern Mississippi

    Science.gov (United States)

    Nana Tian; Zhaofei Fan

    2015-01-01

    Chinese tallow tree [Triadica sebifera (L.) Small, formerly Sapium sebiferum (L.) Roxb.] is a monoecious and deciduous tree, native to central and southern China. As a nonnative invasive tree species, it has aggressively invaded forestlands in southeastern United States, particularly the low- and bottom-land forests along the coastal region of the Gulf of Mexico. This...

  7. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows.

    Science.gov (United States)

    Amanlou, H; Maheri-Sis, N; Bassiri, S; Mirza-Aghazadeh, A; Salamatdust, R; Moosavi, A; Karimi, V

    2012-01-01

    Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight) were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (Pfat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; PMilk fat yield and percentage of cows fed fat-supplemented diets were significantly (Pfat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (Pfat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein) sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  8. Biomodification of edible fats and oils by yeasts; Kobo ni yoru shokuyo yushi no seibutsugakuteki kaishitsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, K.; Endo, Y. [Tohoku University, Sendai (Japan). Faculty of Agriculture

    1995-10-20

    Lipid-biomodification ability was examined for yeasts isolated from soil using culture medium containing beef tallow (2%). Some yeasts, e.g. Candida, Trichosporon and Rhodotorula species were able to grow on fats and oils. Fatty acid and triacylglycerol compositions were modified in lipids of some strains. Candida sp. MIS-1 and YM1-1 preferentially produced oleic acid. Candida sp. MIS-1 had high level of triacylglycerol with a melting point like olive oil. Fatty acid composition of lipids in Candida lipolytica IAM4948 and Rhodotorula sp. AO3-5 was similar to that of cacao butter. Yeast oils obtained from C. lipolytica provided the melting characterization different from beef tallow. 30 refs., 3 figs., 7 tabs.

  9. Decreased red meat fat consumption in New Zealand: 1995-2002.

    Science.gov (United States)

    Laugesen, Murray

    2005-11-25

    To review New Zealand red meat and meat fat supply trends before and after the introduction of the Quality Mark standard. Review of trends in: per capita meat fat supply estimates from the Food and Agriculture Organization (FAO); carcase and meat cut composition reports of knife dissection and chemical analyses; the fate of fat trim; and a Lincoln College study of home-cooked and trimmed beef. Intervention From September 1997, the red meat industry's Quality Mark required trimming of beef and lamb cuts to no more than 5 mm external fat. (1) Trimming of fat from red meat before sale (supported by virtually all butchers) decreased the fat and saturated fat content of a red meat carcase by 30% (beef, -27%; lamb, -30%; tallow unchanged); by -8% in the total food supply; and by -17% across all meat. In 2002, fat comprised 7.4% of trimmed beef cuts, and 11.2% of all beef sold: cuts, mince, or sausages. In 2002, fat comprised 15.3% of lamb cuts; and 15.5% with mince included. (2) From 1995 to 2002, total saturated fat availability per capita in the food supply decreased by 19% (from 65 g to 53 g per day), mostly due to 7 g less saturated fat daily from red meat. (3) When combining effects (1) and (2), saturated fat per capita decreased: -27% in total food supply; -65% in red meat excluding tallow; -48% in red meat including tallow. In 1995 (without trimming), red meat contributed 25% of saturated fat in the total food supply whereas in 2002, red meat contributed 19% before (and 13% after) trimming. (4) Home trimming may remove an additional 27% of fat from beef steaks. Centralised meat processing, and Quality Mark labelling since 1997, ensured fat was trimmed from beef and lamb cuts, and reduced saturated fat in red meats by 30%. In 2002, mince and sausages accounted for nearly half of beef fat sold as red meat.

  10. Extraction and characterization of seed oil from naturally-grown Chinese tallow trees

    Science.gov (United States)

    Xiao-Qin Yang; Hui Pan; Tao Zeng; Todd F. Shupe; Chung-Yun Hse

    2013-01-01

    Seeds were collected from locally and naturally grown Chinese tallow trees (CTT) and characterized for general physical and chemical properties and fatty acid composition of the lipids. The effects of four different solvents (petroleum ether, hexane, diethyl ether, and 95 % ethanol) and two extraction methods (supercritical carbon dioxide (SC-CO2) and conventional...

  11. Authentication of animal fats using direct analysis in real time (DART) ionization-mass spectrometry and chemometric tools.

    Science.gov (United States)

    Vaclavik, Lukas; Hrbek, Vojtech; Cajka, Tomas; Rohlik, Bo-Anne; Pipek, Petr; Hajslova, Jana

    2011-06-08

    A combination of direct analysis in real time (DART) ionization coupled to time-of-flight mass spectrometry (TOFMS) and chemometrics was used for animal fat (lard and beef tallow) authentication. This novel instrumentation was employed for rapid profiling of triacylglycerols (TAGs) and polar compounds present in fat samples and their mixtures. Additionally, fat isolated from pork, beef, and pork/beef admixtures was analyzed. Mass spectral records were processed by principal component analysis (PCA) and stepwise linear discriminant analysis (LDA). DART-TOFMS profiles of TAGs were found to be more suitable for the purpose of discrimination among the examined fat types as compared to profiles of polar compounds. The LDA model developed using TAG data enabled not only reliable classification of samples representing neat fats but also detection of admixed lard and tallow at adulteration levels of 5 and 10% (w/w), respectively. The presented approach was also successfully applied to minced meat prepared from pork and beef with comparable fat content. Using the DART-TOFMS TAG profiles of fat isolated from meat mixtures, detection of 10% pork added to beef and vice versa was possible.

  12. Biodiesel at TRANSPETRO; Biodiesel na TRANSPETRO

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Antonio Carlos C. da; Machado, Tupinamba da Conceicao S. [TRANSPETRO, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    TRANSPETRO took the challenge, in early 2007, to design and install in less than one year, the systems of injection of Biodiesel in its Distribution Bases with loading truck. The basics premises, adopted for the development of the project, were based on the criteria of safety, operational reliability and to complying with legal deadline. These points guided the actions of Coordinating with two goals: Ensure the injection of Biodiesel according to time by law and the future flexibility of the system. Two to three sets were installed in each Distribution Base, respecting the characteristics of the market and the distance from centers producers of Biodiesel. TRANSPETRO was one of the first companies in Brazil using cutting-edge technology in injection of this product through the use of digital valves in the control of flow of the product. Sum up the storage capacity of Biodiesel the first and second phase of the project, TRANSPETRO will provide 8 to 10 days' stock of Biodiesel to its customers based on the injection of 5% to Diesel Oil. The Project Biodiesel at TRANSPETRO was differentiated by working in teams, the strategy for deployment and the modular aspect with focus on future demand. (author)

  13. Predicted range expansion of Chinese tallow tree (Triadica sebifera) in forestlands of the southern United States

    Science.gov (United States)

    Hsiao-Hsuan Wang; William Grant; Todd Swannack; Jianbang Gan; William Rogers; Tomasz Koralewski; James Miller; John W. Taylor Jr.

    2011-01-01

    We present an integrated approach for predicting future range expansion of an invasive species (Chinese tallow tree) that incorporates statistical forecasting and analytical techniques within a spatially explicit, agent-based, simulation framework.

  14. Biodiesel update

    International Nuclear Information System (INIS)

    Bee, K.

    1998-01-01

    Compared to gasoline driven spark ignition engines, diesel engines are more efficient and emit less CO 2 and CO. The use of mono-alkyl esters of long chain fatty acids derived from renewable lipid feed stocks such as vegetable oils or animal fats for use in compression ignition (diesel) engines was described. Production of this biodiesel product was illustrated. The raw materials for biodiesel include vegetable oil or animal fat, alcohol (methanol or ethanol), and a catalyst such as sodium hydroxide or potassium hydroxide. As far as uses are concerned, biodiesels can be used as a pure fuel, as a blending stock with petrodiesel, or in low levels with petrodiesel, indeed, anywhere where no. 1 or no. 2 petrodiesel is used. Details of the technical attributes of biodiesel were provided. The superior ability of biodiesel over petrodiesel to reduce particulates, carbon monoxide and unburned hydrocarbons was documented. A case study of using biodiesel fuel in an underground mine was part of the demonstration. 20 refs., 6 tabs

  15. Physico-chemical, spectroscopical and thermal characterization of bio diesel obtained by enzymatic route as a tool to select the most efficient immobilized lipase

    International Nuclear Information System (INIS)

    Silva, G.A.M.; Ros, P.C.M. da; Souza, L.T.A.; Costa, A.P.O.; Castro, H.F. de

    2012-01-01

    Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degree C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and 1 H NMR spectroscopy, suggested that the bio diesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage. (author)

  16. Physico-chemical, spectroscopical and thermal characterization of bio diesel obtained by enzymatic route as a tool to select the most efficient immobilized lipase

    Energy Technology Data Exchange (ETDEWEB)

    Silva, G.A.M.; Ros, P.C.M. da; Souza, L.T.A.; Costa, A.P.O.; Castro, H.F. de, E-mail: heizir@dequi.eel.usp.br [Engineering School of Lorena. University of Sao Paulo (EEL/USP), Lorena, SP (Brazil)

    2012-01-15

    Two microbial lipases from Burkholderia cepacia and Pseudomonas fluorescens were evaluated as catalysts for the enzymatic transesterification of beef tallow with ethanol and the most efficient lipase source was selected by taking into account the properties of the product to be used as fuel. Both lipases were immobilized on an epoxy silica-polyvinyl alcohol composite by covalent immobilization and used to perform the reactions under the following operational conditions: beef tallow-to-ethanol molar ratio of 1:9, 45 degree C and 400 units of enzymatic activity per gram of fat. Products, characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosimetry, thermogravimetry and {sup 1}H NMR spectroscopy, suggested that the bio diesel sample obtained in the reaction catalyzed by Burkholderia cepacia lipase has the best set of properties for fuel usage. (author)

  17. 9 CFR 319.313 - Beef with gravy and gravy with beef.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Beef with gravy and gravy with beef. 319.313 Section 319.313 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF... Dehydrated Meat Food Products § 319.313 Beef with gravy and gravy with beef. “Beef with Gravy” and “Gravy...

  18. Nutritional value of raw soybeans, extruded soybeans, roasted soybeans and tallow as fat sources in early lactating dairy cows

    Directory of Open Access Journals (Sweden)

    A. Moosavi

    2012-09-01

    Full Text Available Thirty multiparous Holstein cows (29.8 ± 4.01days in milk; 671.6 ± 31.47 kg of body weight were used in a completely randomized design to compare nutritional value of four fat sources including tallow, raw soybeans, extruded soybeans and roasted soybeans for 8 weeks. Experimental diets were a control containing 27.4 % alfalfa silage, 22.5% corn silage, and 50.1% concentrate, and four diets with either tallow, raw soybean, extruded soybean, or roasted soybean added to provide 1.93% supplemental fat. Dry matter and NEL intakes were similar among treatments, while cows fed fat diets had significantly (P<0.05 high NEL intakes when compared to control with no fat. Supplemental fat, whether tallow or full fat soybeans increased milk production (1.89-2.45 kg/d; P<0.01 and FCM production (1.05-2.79; P<0.01. Milk fat yield and percentage of cows fed fat-supplemented diets were significantly (P<0.01 and P<0.05 respectively higher than control. Between fat-supplemented diets, roasted soybean caused highest milk fat yield and extruded soybean caused lowest milk fat yield. There was no significant effect of supplemental fat on the milk protein and lactose content and yield. Feed efficiency of fat-supplemented diets was significantly (P<0.01 higher than control. Body weight, body weight change and BCS (body condition score of cows, as well as energy balance and energy efficiency were similar between treatments. In conclusion, while there was no significant effect of fat sources on production response of cows, fat originating from heat-treated soybean help to minimize imported RUP (rumen undegradable protein sources level as fish meal in comparison with tallow and raw soybean oil. In the Current study, there was no statistical significance among nutritional values of oil from extruded soybeans and roasted soybeans.

  19. Biodiesel

    Science.gov (United States)

    Biodiesel is a renewable alternative to petrodiesel that is prepared from plant oils or animal fats. Biodiesel is prepared via transesterification and the resulting fuel properties must be compliant with international fuel standards such as ASTM D6751 and EN 14214. Numerous catalysts, methods, and l...

  20. Thermal behavior of diesel/biodiesel blends of biodiesel obtained from buriti oil=Comportamento térmico de blendas de diesel/biodiesel de biodiesel obtido a partir do óleo de buriti

    Directory of Open Access Journals (Sweden)

    Alexandre Gustavo Soares do Prado

    2012-04-01

    Full Text Available Biodiesel has been obtained from methanolysis of buriti oil. This biodiesel was added in fossil diesel in order to obtain diesel/biodiesel blends. Thermal analysis of blends were carried on 30-600oC range at rate of 10oC min.-1. Kinetic parameters such as activation energy (Ea, pre-exponential factor (A, Gibbs energy (≠G, enthalpy (≠H and entropy (≠S of activation were determined by using Coats–Redfern equation. The Ea, ≠H and ≠G values presented a linear increase with biodiesel amount added in blends. The heat of combustion of diesel/biodiesel blends was determined, and it was observed that the heat of combustion decreased with the addition of biodiesel in diesel/biodiesel blends.O biodiesel foi obtido a partir de metanólise de óleo de buriti. O biodiesel foi adicionado ao diesel fóssil a fim de obter misturas de biodiesel/diesel. Análises térmica das misturas foram realizadas entre 30-600°C com uma taxa de aquecimento de 10ºC min.-1. Parâmetros cinéticos como a energia de ativação (Ea, fator pré-exponencial (A, energia livre de Gibbs (≠G, entalpia (≠H e entropia de ativação (≠S foram determinadas usando equação de Coats-Redfern. Os valores de Ea, ≠H and ≠G apresentaram aumento linear com a quantidade de biodiesel adicionado na mistura. O calor de combustão de misturas de biodiesel/diesel foi determinada, e foi observado que o calor de combustão diminuiu com a adição de biodiesel no diesel e nas misturas de biodiesel.

  1. Chinese Tallow (Triadica sebifera (L.) Small) Population expansion in Louisiana, East Texas, and Mississippi

    Science.gov (United States)

    Sonja N. Oswalt

    2010-01-01

    Chinese tallow (Triadica sebifera) is a nonnative invasive species with high fecundity rates that has naturalized from the coastal prairies of east Texas along the Gulf and Atlantic coasts as far north as North Carolina. Population differences were computed for two forest inventory periods (mid-1990s and late 2000s) in Louisiana, east Texas, and Mississippi using data...

  2. Studies Highlight Biodiesel's Benefits

    Science.gov (United States)

    , Colo., July 6, 1998 — Two new studies highlight the benefits of biodiesel in reducing overall air Energy's National Renewable Energy Laboratory (NREL) conducted both studies: An Overview of Biodiesel and Petroleum Diesel Life Cycles and Biodiesel Research Progress, 1992-1997. Biodiesel is a renewable diesel

  3. Digestibility of Fatty Acids in the Gastrointestinal Tract of Dairy Cows Fed with Tallow or Saturated Fats Rich in Stearic Acid or Palmitic Acid

    DEFF Research Database (Denmark)

    Weisbjerg, Martin Riis; Hvelplund, Torben; Børsting, Christian Friis

    1992-01-01

    Fatty acid digestibility was studied with five lactating cows fed three different fat sources in a 5 × 5 latin square experiment. The treatments were 500 g of tallow, 500 or 1000 g of saturated fat rich in stearic acid (C18:0) (SARF) or 500 or 1000 g of saturated fat rich in palmitic acid (C16......:0) (PARF) per day. The total daily fatty acid intake was about 1100 g in rations with the highest fat inclusion. The fatty acid digestibilities were 76% for tallow, 74 and 64% for 500 and 1000 g SARF, respectively, and 87 and 81% for 500 and 1000 g of PARF, respectively. When compared to fatty acid...... digestibility for tallow predicted from a model based on literature values, PARF had a higher fatty acid digestibility at both fat intakes, and SARF had a lower fatty acid digestibility, especially at high fat intake....

  4. Combustion Chemistry of Biodiesel for the Use in Urban Transport Buses: Experiment and Modeling

    Science.gov (United States)

    Omidvarborna, Hamid

    Biofuels, such as biodiesel, offer benefits as a possible alternative to conventional fuels due to their fuel source sustainability and their reduced environmental impact. Before they can be used, it is essential to understand their combustion chemistry and emission characterizations due to a number of issues associated with them (e.g., high emission of nitrogen oxides (NOx), lower heating value than diesel, etc.). During this study, emission characterizations of different biodiesel blends (B0, B20, B50, and B100) were measured on three different feedstocks (soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO)) with various characteristics, while an ultra-low sulfur diesel (ULSD) was used as base fuel at low-temperature combustion (LTC). A laboratory combustion chamber was used to analyze soot formation, NOx emissions, while real engine emissions were measured for further investigation on PM and NOx emissions. For further study, carbon emissions (CO, CO 2, and CH4) were also measured to understand their relations with feedstocks' type. The emissions were correlated with fuel's characteristics, especially unsaturation degree (number of double bonds in methyl esters) and chain length (oxygen-to-carbon ratio). The experimental results obtained from laboratory experiments were confirmed by field experiments (real engines) collected from Toledo area regional transit authority (TARTA) buses. Combustion analysis results showed that the neat biodiesel fuels had longer ignition delays and lower ignition temperatures compared to ULSD at the tested condition. The results showed that biodiesel containing more unsaturated fatty acids emitted higher levels of NOx compared to biodiesel with more saturated fatty acids. A paired t-test on fuels showed that neat biodiesel fuels had significant reduction in the formation of NOx compared with ULSD. In another part of this study, biodiesel fuel with a high degree of unsaturation and high portion of long chains of

  5. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, from ammonium hydroxide... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... subject to reporting. (1) The chemical substance identified as amides, from ammonium hydroxide - maleic...

  6. Alternative Fuels Data Center: Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Biodiesel on

  7. Biodiesel Fuel Quality and the ASTM Biodiesel Standard

    Science.gov (United States)

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedi...

  8. Managing an established tree invader: developing control methods for Chinese tallow (Triadica sebifera) in maritime forests

    Science.gov (United States)

    Lauren S. Pile; G. Geoff Wang; Thomas A. Waldrop; Joan L. Walker; William C. Bridges; Patricia A. Layton

    2017-01-01

    Biological invasions by woody species in forested ecosystems can have significant impacts on forest management and conservation. We designed and tested several management options based on the physiology of Chinese tallow (Triadica sebifera [L.] Small). Specifically, we tested four treatments, including mastication, foliar herbicide, and fire (MH...

  9. European consumers and beef safety

    DEFF Research Database (Denmark)

    Van Wezemael, Lynn; Verbeke, Wim; Kügler, Jens Oliver

    2010-01-01

    European beef consumption has been gradually declining during the past decades, while consumers' concerns about beef safety have increased. This paper explores consumer perceptions of and interest in beef safety and beef safety information, and their role in beef safety assessment and the beef...... consumption decision making process. Eight focus group discussions were performed with a total of 65 beef consumers in four European countries. Content analysis revealed that European consumers experienced difficulties in the assessment of the safety of beef and beef products and adopted diverging uncertainty...... reduction strategies. These include the use of colour, labels, brands and indications of origin as cues signalling beef safety. In general, consumer trust in beef safety was relatively high, despite distrust in particular actors....

  10. Where's the beef? Retail channel choice and beef preferences in Argentina.

    Science.gov (United States)

    Colella, Florencia; Ortega, David L

    2017-11-01

    Argentinean beef is recognized and demanded internationally. Locally, consumers are often unable to afford certified beef products, and may rely on external cues to determine beef quality. Uncovering demand for beef attributes and marketing them accordingly, may require an understanding of consumers' product purchasing strategies, which involves retailer choice. We develop a framework utilizing latent class analysis to identify consumer groups with different retailer preferences, and separately estimate their demand for beef product attributes. This framework accounts for the interrelationship between consumers' choice of retail outlets and beef product preferences. Our analysis of data from the city of Buenos Aires identifies two groups of consumers, a convenience- (67%) and a service- (33%) oriented group. We find significant differences in demand for beef attributes across these groups, and find that the service oriented group, while not willing to pay for credence attributes, relies on a service-providing retailer-namely a butcher-as a source of product quality assurance. Copyright © 2017. Published by Elsevier Ltd.

  11. Biodiesel Emissions Analysis Program

    Science.gov (United States)

    Using existing data, the EPA's biodiesel emissions analysis program sought to quantify the air pollution emission effects of biodiesel for diesel engines that have not been specifically modified to operate on biodiesel.

  12. European beef consumers' interest in a beef eating-quality guarantee

    DEFF Research Database (Denmark)

    Verbeke, Wim; Van Wezemael, Lyn; de Barcellos, Marcia Dutra

    2010-01-01

    and Germany to assess their opinions about beef muscle profiling and their interest in a beef eating-quality guarantee. Findings indicate that both concepts are well accepted by European beef consumers, although not unconditional. Besides acknowledging the opportunity to purchase beef with guaranteed...... tenderness, consumers express some reserve related to the possible upgrading of lower value cuts, too much standardisation, and the fact that tenderness is to some extent subjective. They further require the system to be simple, sufficiently documented and independent-party controlled. The insights obtained...

  13. Obtention and characterization of biodiesel; Obtencao e caracterizacao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leonidas B.O. dos; Caitano, Moises; Aranda, Donato A.G.; Mothe, Cheila G. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2004-07-01

    Biodiesel is an ester resulting from the transesterification reaction of an alcohol and an oil obtained from biomass. The products of the transesterification are an ester and the glycerol. The biodiesel and the petroleum commercial diesel have similar properties, and they can be mixed and used in diesel motors. The use of biodiesel will allow a better exploration of the energetic potential of our cultures. The biodiesel has some advantages compared to others combustibles, such as adaptability to usual diesel motors and non-generation of NO{sub x} and SO{sub x} compounds. Many experiments with biodiesel have been made in Brazil since the 70's. This work made samples of biodiesel by transesterification batch reactions to many blends of soybean oil and residual fry oil, at room temperature, using mechanical mixture or magnetic agitation by a magnetic stirrer, using as catalysts sodium methoxide and potassium hydroxide. For each obtained sample tests to determine the Acidity Index (ABNT-MB-74), Saponification Index (ABNT-MB-75), Iodine Wijz Index (ABNT-MB- 77), thermal analysis by DTA and TG (TA Instruments SDT 2960, 30 to 800 deg C, 10 deg C/min at nitrogen atmosphere) and rheological test (Haake RS 150 Rheo Stress rheometer) were done. (author)

  14. Biodiesel Mass Transit Demonstration

    Science.gov (United States)

    2010-04-01

    The Biodiesel Mass Transit Demonstration report is intended for mass transit decision makers and fleet managers considering biodiesel use. This is the final report for the demonstration project implemented by the National Biodiesel Board under a gran...

  15. The biodiesel handbook

    National Research Council Canada - National Science Library

    Knothe, Gerhard; Krahl, Jurgen; Van Gerpen, Jon Harlan

    2010-01-01

    .... The Biodiesel Handbook delivers solutions to issues associated with biodiesel feedstocks, production issues, quality control, viscosity, stability, applications, emissions, and other environmental...

  16. Consumer perceptions of beef healthiness

    DEFF Research Database (Denmark)

    Van Wezemael, Lynn; Verbeke, Wim; Dutra de Barcellos, Marcia

    2010-01-01

    of beef consumed. Focus group participants were not in favour of improving beef healthiness during processing, but rather focussed on appropriate consumption behaviour and preparation methods. CONCLUSIONS: The individual responsibility for health implies that consumers should be able to make correct......BACKGROUND: Consumer perception of the healthiness of beef is an important determinant of beef consumption. However, little is known about how consumers perceive the healthiness of beef. The aim of this study is to shed light on the associations between beef and health. METHODS: Eight focus group...... as well as negative effects of beef consumption on their health. Labelled, branded, fresh and lean beef were perceived as signalling healthful beef, in contrast with further processed and packaged beef. Consumers felt that their individual choices could make a difference with respect to the healthiness...

  17. Biodiesel production by microalgal biotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Huang, GuanHua [School of Chemical Engineering and Technology, China University of Mining and Technology (China); Chen, Feng [School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong (China); College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China); Wei, Dong; Zhang, XueWu; Chen, Gu [College of Light Industry and Food Sciences, South China University of Technology, Guangzhou (China)

    2010-01-15

    Biodiesel has received much attention in recent years. Although numerous reports are available on the production of biodiesel from vegetable oils of terraneous oil-plants, such as soybean, sunflower and palm oils, the production of biodiesel from microalgae is a newly emerging field. Microalgal biotechnology appears to possess high potential for biodiesel production because a significant increase in lipid content of microalgae is now possible through heterotrophic cultivation and genetic engineering approaches. This paper provides an overview of the technologies in the production of biodiesel from microalgae, including the various modes of cultivation for the production of oil-rich microalgal biomass, as well as the subsequent downstream processing for biodiesel production. The advances and prospects of using microalgal biotechnology for biodiesel production are discussed. (author)

  18. Importance of biodiesel as transportation fuel

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2007-01-01

    The scarcity of known petroleum reserves will make renewable energy resources more attractive. The most feasible way to meet this growing demand is by utilizing alternative fuels. Biodiesel is defined as the monoalkyl esters of vegetable oils or animal fats. Biodiesel is the best candidate for diesel fuels in diesel engines. The biggest advantage that biodiesel has over gasoline and petroleum diesel is its environmental friendliness. Biodiesel burns similar to petroleum diesel as it concerns regulated pollutants. On the other hand, biodiesel probably has better efficiency than gasoline. One such fuel for compression-ignition engines that exhibit great potential is biodiesel. Diesel fuel can also be replaced by biodiesel made from vegetable oils. Biodiesel is now mainly being produced from soybean, rapeseed and palm oils. The higher heating values (HHVs) of biodiesels are relatively high. The HHVs of biodiesels (39-41 MJ/kg) are slightly lower than that of gasoline (46 MJ/kg), petrodiesel (43 MJ/kg) or petroleum (42 MJ/kg), but higher than coal (32-37 MJ/kg). Biodiesel has over double the price of petrodiesel. The major economic factor to consider for input costs of biodiesel production is the feedstock, which is about 80% of the total operating cost. The high price of biodiesel is in large part due to the high price of the feedstock. Economic benefits of a biodiesel industry would include value added to the feedstock, an increased number of rural manufacturing jobs, an increased income taxes and investments in plant and equipment. The production and utilization of biodiesel is facilitated firstly through the agricultural policy of subsidizing the cultivation of non-food crops. Secondly, biodiesel is exempt from the oil tax. The European Union accounted for nearly 89% of all biodiesel production worldwide in 2005. By 2010, the United States is expected to become the world's largest single biodiesel market, accounting for roughly 18% of world biodiesel consumption

  19. Effects of an invasive plant, Chinese tallow (Triadica sebifera), on development and survival of anuran larvae

    Science.gov (United States)

    Taylor B. Cotten; Matthew A. Kwiatkowski; Daniel Saenz; Michael Collyer

    2012-01-01

    Amphibians are considered one of the most threatened vertebrate groups. Although numerous studies have addressed the many causes of amphibian population decline, little is known about effects of invasive plants. Chinese tallow (Triadica sebifera) is an exotic deciduous tree that has invaded the southeastern United States. Amphibian larvae in environments invaded by T....

  20. New regulatory landmark for biodiesel use; Novo marco regulatorio para usos de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Rosangela Moreira de [Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis (ANP), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The Brazilian Biodiesel Production and Use of Biodiesel - PNPB, made possible the insert of Biodiesel in the Brazilian energy matrix. The National Agency of the Petroleum, Natural Gas and Biofuels - ANP was responsible to create the outline regulatory that established the rules for entrance and commercialization of this new fuel in the country. This work seeks to present the effects of the implantation of the new relative rules to the biodiesel use. (author)

  1. Antioxidative activity of carnosine in gamma irradiated ground beef and beef patties

    International Nuclear Information System (INIS)

    Badr, H.M.

    2005-01-01

    The activity of carnosine as a natural antioxidant in gamma irradiated ground beef and beef patties was studied. Samples of ground beef, in absence and presence of 0.5% or 1.0% carnosine, as well as raw and cooked beef patties prepared with 1.5% salt (NaCl), in absence and presence of 0.5% or 1.0% carnosine, were gamma irradiated at doses of 2 and 4 KGy. Then, the extent of oxidation in irradiated and non-irradiated samples of ground beef and raw beef patties was determined during refrigerated (4± 1 degree C) and frozen (-18 degree C) storage, while was determined for cooked beef patties during refrigerated storage only. Moreover, the determination of metmyoglobin (MetMb) accumulation and sensory evaluation for the visual colour were carried out for samples of ground beef and raw patties. The results indicated that salt or salt and cooking can accelerate the oxidative processes and significantly increased the peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) in the prepared non-irradiated samples. However, salt slowed down the accumulation of MetMb in raw patties. Irradiation treatments and storage in absence of carnosine significantly increased with higher rates the PV and TBARS in salted or salted and cooked beef samples. Moreover, irradiation and storage significantly increased the formation of MetMb in ground beef and raw patties in absence of carnosine. Addition of carnosine significantly reduced the oxidative processes and MetMb formation (proportionally to the used concentration) in samples post irradiation and during storage. Furthermore, carnosine exerted significant efficacy in maintaining an acceptable visual red colour post irradiation and during storage of ground beef and raw patties. These results demonstrate that carnosine can be successfully used as a natural antioxidant to increase the oxidative stability in gamma irradiated raw and cooked meat products

  2. Biodiesel production via non-catalytic SCF method and biodiesel fuel characteristics

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2006-01-01

    Vegetable oil (m)ethyl esters, commonly referred to as 'biodiesel,' are prominent candidates as alternative Diesel fuels. Biodiesel is technically competitive with or offers technical advantages compared to conventional petroleum Diesel fuel. The vegetable oils, as alternative engine fuels, are all extremely viscous with viscosities ranging from 10 to 20 times greater than that of petroleum Diesel fuel. The purpose of the transesterification process is to lower the viscosity of the oil. Transesterifications of vegetable oils in supercritical methanol are performed without using any catalyst. The most important variables affecting the methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Biodiesel has become more attractive recently because of its environmental benefits. The cost of biodiesel, however, is the main obstacle to commercialization of the product. With cooking oils used as raw material, the viability of a continuous transesterification process and recovery of high quality glycerol as a biodiesel by product are primary options to be considered to lower the cost of biodiesel. Supercritical methanol has a high potential for both transesterification of triglycerides and methyl esterification of free fatty acids to methyl esters for a Diesel fuel substitute. In the supercritical methanol transesterification method, the yield of conversion increases to 95% in 10 min. The viscosity values of vegetable oils are between 27.2 and 53.6 mm 2 /s, whereas those of vegetable oil methyl esters are between 3.59 and 4.63 mm 2 /s. The flash point values of vegetable oil methyl esters are much lower than those of vegetable oils. An increase in density from 860 to 885 kg/m 3 for vegetable oil methyl esters or biodiesels increases the viscosity from 3.59 to 4.63 mm 2 /s. Biodiesel is an environmentally friendly fuel that can be used in any Diesel engine without modification

  3. Biodiesel Test Plan

    Science.gov (United States)

    2014-07-01

    Biodiesel Test Plan Distribution Statement A: Approved for Public Release; distribution is unlimited. July 2014 Report No. CG-D-07-14...Appendix C) Biodiesel Test Plan ii UNCLAS//Public | CG-926 R&DC | G. W. Johnson, et al. Public | July 2014 N O T I C E This...Development Center 1 Chelsea Street New London, CT 06320 Biodiesel Test Plan iii UNCLAS//Public | CG-926 R&DC | G. W. Johnson, et al

  4. A quantitative assessment of the risk of transmission of bovine spongiform encephalopathy by tallow-based calf milk-replacer

    DEFF Research Database (Denmark)

    Paisley, Larry; Hostrup-Pedersen, J.

    2004-01-01

    three different levels of impurities, six different distributions of the BSE infectivity titers of CNS tissues and with and without inclusion of specified risk material (SRM). Our results suggest that tallow-based CMR could have been responsible for some BSE infections in nearly all simulations...

  5. Biodiesel separation and purification: A review

    International Nuclear Information System (INIS)

    Atadashi, I.M.; Aroua, M.K.; Aziz, A. Abdul

    2011-01-01

    Biodiesel as a biodegradable, sustainable and clean energy has worldwide attracted renewed and growing interest in topical years, chiefly due to development in biodiesel fuel and ecological pressures which include climatic changes. In the production of biodiesel from biomass, separation and purification of biodiesel is a critical technology. Conventional technologies used for biodiesel separation such as gravitational settling, decantation, filtration and biodiesel purification such as water washing, acid washing, and washing with ether and absorbents have proven to be inefficient, time and energy consumptive, and less cost effective. The involvement of membrane reactor and separative membrane shows great promise for the separation and purification of biodiesel. Membrane technology needs to be explored and exploited to overcome the difficulties usually encountered in the separation and purification of biodiesel. In this paper both conventional and most recent membrane technologies used in refining biodiesel have been critically reviewed. The effects of catalysts, free fatty acids, water content and oil to methanol ratios on the purity and quality of biodiesel are also examined. (author)

  6. Beef healthiness and nutritional enhancement in beef as perceived by European consumers

    DEFF Research Database (Denmark)

    de Barcellos, Marcia Dutra; Kügler, Jens Oliver; van Wezemael, Lynn

    Introduction: A trend towards a higher awareness of health with respect to food intake has been noticed during the last years. This makes the concept of health in relation to beef production and consumption a highly relevant research topic. Objective: To investigate beef healthiness and nutritional...... discussions were based on a common topic guide, translated into each language. The guide consisted of several sections, including one designed to elicit information on their opinions about beef healthiness and nutritional enhancement of beef. Results: Consumers associated health with wellbeing, an absence...... of disease and a good quality of life. Healthy beef was associated with a certain bias towards a "romantic view", a concept of the traditional encompassing grass-fed beef, raised outdoors with natural food. A healthy cut of meat was expected to be natural and without additives and hormones that could affect...

  7. Biodiesel/Cummins CRADA Report

    Science.gov (United States)

    2014-07-01

    dedicated totes). This change provided uncontaminated containers to transport the delivery of biodiesel to the ANT, and better control for dosing as...emissions calculations. Each approach makes assumptions for farming practices, the biodiesel production process, and transportation and distribution... Biodiesel /Cummins CRADA Report Distribution Statement A: Approved for Public Release; distribution is unlimited. July 2014 Report

  8. Beef lovers

    DEFF Research Database (Denmark)

    de Barcellos, Marcia Dutra; Pedrozo, Eugenio A.; van der Lans, Ivo A.

    2009-01-01

    In this chapter we will explore beef consumption behaviour from a cross-cultural perspective. Data collected in Brazil, Australia and the Netherlands supports the main objectives of identifying consumers' anticipated emotions, degree of involvement, attitudes and main concerns towards beef...

  9. Proceedings of the 2008 marine biodiesel symposium

    International Nuclear Information System (INIS)

    2008-01-01

    In addition to producing lower hydrocarbon emissions, marine biodiesel is biodegradable and does not harm fish. This symposium was held to discuss current marine biodiesel applications and examine methods of increasing the use of biodiesel in marine environments in British Columbia (BC). Biofuel policies and mandates in the province were reviewed, and methods of expanding the biodiesel market were explored. Updates on the use of biodiesel in ferries, tugboats, and smaller marine diesel engine applications were provided. Biodiesel projects in the United States were discussed. The environmental impacts of marine biodiesel were evaluated, and federal policies and standards for biodiesel were also outlined. The symposium was divided into the following 5 main sessions: (1) policy, (2) overviews, (3) using biodiesel in marine engines, (4) biodiesel in larger marine vessels, and (5) biodiesel quality and environmental considerations. The conference featured 13 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs

  10. Alternative Fuels Data Center: Biodiesel Benefits

    Science.gov (United States)

    , and transport. Maps & Data U.S. Biodiesel Production, Exports, and Consumption U.S. Biodiesel Benefits to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Benefits on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Benefits on Twitter Bookmark Alternative Fuels Data

  11. The U.S. biodiesel use mandate and biodiesel feedstock markets

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Wyatt; Meyer, Seth; Green, Travis [University of Missouri, 101 Park deVille Drive, Suite E; Columbia, MO 65203 (United States)

    2010-06-15

    Studies of individual biodiesel feedstocks or broad approaches that lump animal fats and vegetable oils into a single aggregate straddle the true case of imperfect but by no means inconsequential substitution among fats and oils by different users. United States biofuel policy includes a biodiesel use mandate that rises to almost 4 hm{sup 3} by 2012, calling for biomass feedstock analysis that recognizes the complex interdependence among potential feedstocks and competition for food and industrial uses. We model biodiesel input markets to investigate the implications of the mandate for quantities and prices with and without a provision disallowing biodiesel made from soybean oil. Findings suggest a hierarchy of price effects that tends to be largest for cheaper fats and oils typically used for industrial and feed purposes and smallest for fats and oils traditionally used exclusively for direct consumption, with the cross-commodity effects and other key economic parameters playing a critical part in determining the scale in each case. Although sensitive to the exact parameters used, our results argue against overly simplifying feedstock markets by holding prices constant when considering the economics of a particular feedstock or if estimating the broader impacts of rising biodiesel production on competing uses. (author)

  12. Biodiesel production with microalgae as feedstock: from strains to biodiesel.

    Science.gov (United States)

    Gong, Yangmin; Jiang, Mulan

    2011-07-01

    Due to negative environmental influence and limited availability, petroleum-derived fuels need to be replaced by renewable biofuels. Biodiesel has attracted intensive attention as an important biofuel. Microalgae have numerous advantages for biodiesel production over many terrestrial plants. There are a series of consecutive processes for biodiesel production with microalgae as feedstock, including selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. To reduce the overall production cost, technology development and process optimization are necessary. Genetic engineering also plays an important role in manipulating lipid biosynthesis in microalgae. Many approaches, such as sequestering carbon dioxide from industrial plants for the carbon source, using wastewater for the nutrient supply, and maximizing the values of by-products, have shown a potential for cost reduction. This review provides a brief overview of the process of biodiesel production with microalgae as feedstock. The methods associated with this process (e.g. lipid determination, mass culture, oil extraction) are also compared and discussed.

  13. Supercritical Synthesis of Biodiesel

    Directory of Open Access Journals (Sweden)

    Michel Vaultier

    2012-07-01

    Full Text Available The synthesis of biodiesel fuel from lipids (vegetable oils and animal fats has gained in importance as a possible source of renewable non-fossil energy in an attempt to reduce our dependence on petroleum-based fuels. The catalytic processes commonly used for the production of biodiesel fuel present a series of limitations and drawbacks, among them the high energy consumption required for complex purification operations and undesirable side reactions. Supercritical fluid (SCF technologies offer an interesting alternative to conventional processes for preparing biodiesel. This review highlights the advances, advantages, drawbacks and new tendencies involved in the use of supercritical fluids (SCFs for biodiesel synthesis.

  14. Production of biodiesel from microalgae

    Directory of Open Access Journals (Sweden)

    Danilović Bojana R.

    2014-01-01

    Full Text Available In recent years, more attention has been paid to the use of third generation feedstocs for the production of biodiesel. One of the most promising sources of oil for biodiesel production are microalgae. They are unicellular or colonial photosynthetic organisms, with permanently increasing industrial application in the production of not only chemicals and nutritional supplements but also biodiesel. Biodiesel productivity per hectare of cultivation area can be up to 100 times higher for microalgae than for oil crops. Also, microalgae can grow in a variety of environments that are often unsuitable for agricultural purposes. Microalgae oil content varies in different species and can reach up to 77% of dry biomass, while the oil productivity by the phototrophic cultivation of microalgae is up to 122 mg/l/d. Variations of the growth conditions and the implementation of the genetic engineering can induce the changes in the composition and productivity of microalgal oil. Biodiesel from microalgae can be produced in two ways: by transesterification of oil extracted from biomass or by direct transesterification of algal biomass (so called in situ transesterification. This paper reviews the curent status of microalgae used for the production of biodiesel including their isolation, cultivation, harvesting and conversion to biodiesel. Because of high oil productivity, microalgae will play a significant role in future biodiesel production. The advantages of using microalgae as a source for biofuel production are increased efficiency and reduced cost of production. Also, microalgae do not require a lot of space for growing and do not have a negative impact on the global food and water supplies. Disadvantages of using microalgae are more difficult separation of biomass and the need for further research to develop standardized methods for microalgae cultivation and biodiesel production. Currently, microalgae are not yet sustainable option for the commercial

  15. Biodiesel research progress 1992-1997

    Energy Technology Data Exchange (ETDEWEB)

    Tyson, K.S. [ed.

    1998-04-01

    The US Department of Energy (DOE) Office of Fuels Development began evaluating the potential of various alternative fuels, including biodiesel, as replacement fuels for traditional transportation fuels. Biodiesel is derived from a variety of biological materials from waste vegetable grease to soybean oil. This alkyl ester could be used as a replacement, blend, or additive to diesel fuel. This document is a comprehensive summary of relevant biodiesel and biodiesel-related research, development demonstration, and commercialization projects completed and/or started in the US between 1992 and 1997. It was designed for use as a reference tool to the evaluating biodiesel`s potential as a clean-burning alternative motor fuel. It encompasses, federally, academically, and privately funded projects. Research projects are presented under the following topical sections: Production; Fuel characteristics; Engine data; Regulatory and legislative activities; Commercialization activities; Economics and environment; and Outreach and education.

  16. Variables affecting the propensity to buy branded beef among groups of Australian beef buyers.

    Science.gov (United States)

    Morales, L Emilio; Griffith, Garry; Wright, Victor; Fleming, Euan; Umberger, Wendy; Hoang, Nam

    2013-06-01

    Australian beef consumers have different preferences given their characteristics and the effect on expected quality of cues related to health, production process and eating experience. Beef brands using Meat Standards Australia (MSA) grades can help to signal quality and reduce consumers' uncertainty when shopping. The objective of this study is to identify the characteristics of beef buyers and their perceptions about product attributes that affect the propensity to buy branded beef. Binary logistic models were applied identifying differences between all respondents and the potential target market, including buyers in medium to high income segments, and between buyers in the target market who would buy branded beef for taste and health reasons. Variables increasing the propensity to buy branded beef include previous experience, appreciation for branded cuts and concern about quality more than size. Finally, variations in preferences for marbling and cut were found between buyers who would buy branded beef for taste and health reasons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Environmental sustainability of beef

    Science.gov (United States)

    A national assessment of the sustainability of beef is being conducted in collaboration with the National Cattlemen’s Beef Association through the support of the Beef Checkoff. This includes surveys and visits to cattle operations throughout the U.S. to gather production information. With this infor...

  18. Chemical alternative to the energetic use of biodiesel; Chemische Alternativen zur energetischen Nutzung von Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S; Ruesch genannt Klaas, M; Harperscheid, M [Bundesanstalt fuer Getreide-, Kartoffel- und Fettforschung, Muenster (Germany). Inst. fuer Biochemie und Technologie der Fette - H.P. Kaufmann-Inst.

    1997-12-31

    Biodiesel is environment-friendly, but much more costly to produce than `normal` diesel fuel. Higher economic efficiency can be achieved by using biodiesel as a chemical feedstock instead. Tenside and polymers offer a wide range of applications. (orig) [Deutsch] Biodiesel ist ein umweltfreundlicher Kraftstoff, jedoch in der Herstellung deutlich teurer als Mineraloel-Dieselkraftstoff. Eine signifikant hoehere Wertschoepfung koennte errreicht werden, wenn Biodiesel nicht im Kraftstoffsektor, sondern als chemischer Rohstoff verwendet wird. Tenside und Polymere sind hierbei grossvolumige Einsatzbereiche. (orig)

  19. Chemical alternative to the energetic use of biodiesel; Chemische Alternativen zur energetischen Nutzung von Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S; Ruesch genannt Klaas, M.; Harperscheid, M. [Bundesanstalt fuer Getreide-, Kartoffel- und Fettforschung, Muenster (Germany). Inst. fuer Biochemie und Technologie der Fette - H.P. Kaufmann-Inst.

    1996-12-31

    Biodiesel is environment-friendly, but much more costly to produce than `normal` diesel fuel. Higher economic efficiency can be achieved by using biodiesel as a chemical feedstock instead. Tenside and polymers offer a wide range of applications. (orig) [Deutsch] Biodiesel ist ein umweltfreundlicher Kraftstoff, jedoch in der Herstellung deutlich teurer als Mineraloel-Dieselkraftstoff. Eine signifikant hoehere Wertschoepfung koennte errreicht werden, wenn Biodiesel nicht im Kraftstoffsektor, sondern als chemischer Rohstoff verwendet wird. Tenside und Polymere sind hierbei grossvolumige Einsatzbereiche. (orig)

  20. Marine biodiesel use in the Puget Sound

    International Nuclear Information System (INIS)

    Davidson, N.

    2008-01-01

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs

  1. Marine biodiesel use in the Puget Sound

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, N. [Northwest Biofuels Association, Portland, OR (United States)

    2008-07-01

    This presentation explored the use of marine biodiesel in the Puget Sound region. Marine vessels are now adopting biodiesel fuels as a means of expressing corporate commitments to reducing greenhouse gas (GHG) emissions and the environmental impacts of hydrocarbons released into marine environments. Various biodiesel blends have been designed for use in small commercial, recreational, and research vessels. Biodiesel has also been adopted by charter and whale watching vessels in the Puget Sound. The Guemes Island Ferry has recently been re-configured to use biodiesel fuels, with 2 fuel tanks capable of receiving 2200 gallons at a time. The ferry adopted biodiesel after receiving soot complaints from marinas, and hopes to serve as a model for other vessels in the region. Four fueling docks supply the biodiesel blend to marine vessels. The sale of biodiesel has doubled in some marinas over the last 5 years. Deterrents to biodiesel use include parts incompatibilities and warranty problems. Some marinas have stopped selling biodiesel as a result of low sales and high prices. It was concluded that educational programs are needed to ensure the widespread adoption of biodiesel in the Puget Sound. refs., tabs., figs.

  2. BeefTracker: Spatial Tracking and Geodatabase for Beef Herd Sustainability and Lifecycle Analysis

    Science.gov (United States)

    Oltjen, J. W.; Stackhouse, J.; Forero, L.; Stackhouse-Lawson, K.

    2015-12-01

    We have developed a web-based mapping platform named "BeefTracker" to provide beef cattle ranchers a tool to determine how cattle production fits within sustainable ecosystems and to provide regional data to update beef sustainability lifecycle analysis. After initial identification and mapping of pastures, herd data (class and number of animals) are input on a mobile device in the field with a graphical pasture interface, stored in the cloud, and linked via the web to a personal computer for inventory tracking and analysis. Pasture use calculated on an animal basis provides quantifiable data regarding carrying capacity and subsequent beef production to provide more accurate data inputs for beef sustainability lifecycle analysis. After initial testing by university range scientists and ranchers we have enhanced the BeefTracker application to work when cell service is unavailable and to improve automation for increased ease of use. Thus far experiences with BeefTracker have been largely positive, due to livestock producers' perception of the need for this type of software application and its intuitive interface. We are now in the process of education to increase its use throughout the U.S.

  3. Biodiesel Handling and Use Guide (Fifth Edition)

    Energy Technology Data Exchange (ETDEWEB)

    Alleman, T.L.; McCormick, R.L.; Christensen, E.D.; Fioroni, G.; Moriarty. K.; Yanowitz, J.

    2016-11-08

    This document is a guide for those who blend, distribute, and use biodiesel and biodiesel blends. It provides basic information on the proper and safe use of biodiesel and biodiesel blends in engines and boilers, and is intended to help fleets, individual users, blenders, distributors, and those involved in related activities understand procedures for handling and using biodiesel fuels.

  4. Opportunities and challenges for biodiesel fuel

    International Nuclear Information System (INIS)

    Lin, Lin; Cunshan, Zhou; Vittayapadung, Saritporn; Xiangqian, Shen; Mingdong, Dong

    2011-01-01

    Fossil fuel resources are decreasing daily. As a renewable energy, biodiesel has been receiving increasing attention because of the relevance it gains from the rising petroleum price and its environmental advantages. This review highlights some of the perspectives for the biodiesel industry to thrive as an alternative fuel, while discussing opportunities and challenges of biodiesel. This review is divided in three parts. First overview is given on developments of biodiesel in past and present, especially for the different feedstocks and the conversion technologies of biodiesel industry. More specifically, an overview is given on possible environmental and social impacts associated with biodiesel production, such as food security, land change and water source. Further emphasis is given on the need for government's incentives and public awareness for the use and benefits of biodiesel, while promoting policies that will not only endorse the industry, but also promote effective land management. (author)

  5. Biodiesel from microalgae beats bioethanol.

    Science.gov (United States)

    Chisti, Yusuf

    2008-03-01

    Renewable biofuels are needed to displace petroleum-derived transport fuels, which contribute to global warming and are of limited availability. Biodiesel and bioethanol are the two potential renewable fuels that have attracted the most attention. As demonstrated here, biodiesel and bioethanol produced from agricultural crops using existing methods cannot sustainably replace fossil-based transport fuels, but there is an alternative. Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely displace petroleum-derived transport fuels without adversely affecting supply of food and other crop products. Most productive oil crops, such as oil palm, do not come close to microalgae in being able to sustainably provide the necessary amounts of biodiesel. Similarly, bioethanol from sugarcane is no match for microalgal biodiesel.

  6. Optimizing biodiesel production in India

    International Nuclear Information System (INIS)

    Leduc, Sylvain; Natarajan, Karthikeyan; McCallum, Ian; Obersteiner, Michael; Dotzauer, Erik

    2009-01-01

    India is expected to at least double its fuel consumption in the transportation sector by 2030. To contribute to the fuel supply, renewable energies such as jatropha appear to be an attractive resource for biodiesel production in India as it can be grown on waste land and does not need intensive water supply. In order to produce biodiesel at a competitive cost, the biodiesel supply chain - from biomass harvesting to biodiesel delivery to the consumers - is analyzed. A mixed integer linear programming model is used in order to determine the optimal number and geographic locations of biodiesel plants. The optimization is based on minimization of the costs of the supply chain with respect to the biomass, production and transportation costs. Three biodiesel blends are considered, B2, B5 and B10. For each blend, 13 scenarios are considered where yield, biomass cost, cake price, glycerol price, transport cost and investment costs are studied. A sensitivity analysis is carried out on both those parameters and the resulting locations of the plants. The emissions of the supply chain are also considered. The results state that the biomass cost has most influence on the biodiesel cost (an increase of feedstock cost increases the biodiesel cost by about 40%) and to a lower effect, the investment cost and the glycerol price. Moreover, choosing the right set of production plant locations highly depends on the scenarios that have the highest probability to occur, for which the production plant locations still produce a competitive biodiesel cost and emissions from the transportation are minimum. In this study, one set of plant locations happened to meet these two requirements. (author)

  7. Are subsidies for biodiesel economically efficient?

    International Nuclear Information System (INIS)

    Wassell, Charles S.; Dittmer, Timothy P.

    2006-01-01

    Biodiesel produces less pollution than petrodiesel; however, it is more expensive and will only be a viable alternative if market prices of the products are comparable. This paper examines whether the external benefits from biodiesel use justify subsidies required for adoption outside of niche alternative fuel markets. The authors establish a range of subsidies required to make biodiesel a viable substitute for petrodiesel. Published estimates of the emissions reductions from biodiesel and the dollar benefits of unit reductions in emissions are used to compute a per-gallon external benefit from use of biodiesel, versus petrodiesel. Under conservative estimates of the benefits from biodiesel use in non-road equipment, the external benefits outweigh the required subsidies.(JEL Q48, Q42, H2)

  8. BiodieselFAO: An Integrated Decision Support System for Investment Analysis in the Biodiesel Production Chain

    Directory of Open Access Journals (Sweden)

    Aziz Galvão da Silva Júnior

    2015-06-01

    Full Text Available In the short and medium terms, biofuels are the most viable alternative to reduce the environmental impact of fossil fuels. The recent controversy over the competition between biofuels and food production increases the complexity of investment decisions in the biodiesel production chain. In this context, decision support tools are highly relevant. The purpose of this article is to describe the BiodieselFAO using the Unified Modeling Language (UML. An integrated analysis considering both agricultural and industrial sectors was identified as a key requirement to the system. Therefore, farmers and industry are the main actors in the use case diagram. As the raw material represents around 70% of the industrial cost of biodiesel production, the price negotiation of raw material (oilseeds is the central use case. Configuration, agriculture, industry, results and scenarios are the modules, which encompass the functionalities derived from the UML diagrams. The Food and Agriculture Organization of the United Nations (FAO has made the BiodieselFAO available, free of charge, to around 180 professionals from 17 Latin American countries. Additionally, the developing team has supported the usage of the BiodieselFAO in several biodiesel investment analyses throughout Latin America. The system was also useful in the design and analysis of policy related to biodiesel industry in Brazil.

  9. WSF Biodiesel Demonstration Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

    2009-04-30

    In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and

  10. Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology

    International Nuclear Information System (INIS)

    Dharma, S.; Masjuki, H.H.; Ong, Hwai Chyuan; Sebayang, A.H.; Silitonga, A.S.; Kusumo, F.; Mahlia, T.M.I.

    2016-01-01

    Highlights: • Jatropha curcas and Ceiba pentandra are potential feedstock for biodiesel. • Optimization of biodiesel production by response surface methodology. • Jatropha curcas–Ceiba pentandra mixed biodiesel yield was 93.33%. • The properties of mixed biodiesel fulfill ASTM (D6751) standard. - Abstract: Exploring and improvement of biodiesel production from non-edible vegetable oil is one of the effective ways to solve limited amount of traditional raw materials and their high prices. The main objective of this study is to optimize the biodiesel production process parameters (methanol-to-oil ratio, agitation speed and concentration of the potassium hydroxide catalyst) of a biodiesel derived from non-edible feedstocks, namely Jatropha curcas and Ceiba pentandra, using response surface methodology based on Box–Behnken experimental design. Based on the results, the optimum operating parameters for transesterification of the J50C50 oil mixture at 60 °C over a period of 2 h are as follows: methanol-to-oil ratio: 30%, agitation speed: 1300 rpm and catalyst concentration: 0.5 wt.%. These optimum operating parameters gives the highest yield for the J50C50 biodiesel with a value of 93.33%. The results show that there is a significant improvement in the physicochemical properties of the J50C50 biodiesel after optimization, whereby the kinematic viscosity at 40 °C, density at 15 °C, calorific value, acid value and oxidation stability is 3.950 mm"2/s, 831.2 kg/m"3, 40.929 MJ/kg, 0.025 mg KOH/g and 10.01 h, respectively. The physicochemical properties of the optimized J50C50 biodiesel fulfill the requirements given in the ASTM (D6751) and (EN14214) standards.

  11. Trends of non-destructive analytical methods for identification of biodiesel feedstock in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC and detecting diesel-biodiesel blend adulteration: A brief review.

    Science.gov (United States)

    Mazivila, Sarmento Júnior

    2018-04-01

    Discrimination of biodiesel feedstock present in diesel-biodiesel blend is challenging due to the great similarity in the spectral profile as well as digital image profile of each type of feedstock employed in biodiesel production. Once the marketed diesel-biodiesel blend is subsidized, in which motivates adulteration in biofuel blend by cheaper supplies with high solubility to obtain profits associated with the subsidies involved in biodiesel production. Non-destructive analytical methods based on qualitative and quantitative analysis for detecting marketed diesel-biodiesel blend adulteration are reviewed. Therefore, at the end is discussed the advantage of the qualitative analysis over quantitative analysis, when the systems require immediate decisions such as to know if the marketed diesel-biodiesel blend is unadulterated or adulterated in order to aid the analyst in selecting the most appropriate green analytical procedure for detecting diesel-biodiesel blend adulteration proceeding in fast way. This critical review provides a brief review on the non-destructive analytical methods reported in scientific literature based on different first-order multivariate calibration models coupled with spectroscopy data and digital image data to identify the type of biodiesel feedstock present in diesel-biodiesel blend in order to meets the strategies adopted by European Commission Directive 2012/0288/EC as well as to monitoring diesel-biodiesel adulteration. According to that Directive, from 2020 biodiesel produced from first-generation feedstock, that is, oils employed in human food such as sunflower, soybean, rapeseed, palm oil, among other oils should not be subsidized. Therefore, those non-destructive analytical methods here reviewed are helpful for discrimination of biodiesel feedstock present in diesel-biodiesel blend according to European Commission Directive 2012/0288/EC as well as for detecting diesel-biodiesel blend adulteration. Copyright © 2017 Elsevier B

  12. Effect of supplemental fat in low energy diets on some blood ...

    African Journals Online (AJOL)

    Food intake and body weight gain both increased significantly with supplemental level of both fat sources, the rate in food intake being higher with soyabean oil than with beef tallow. Feed conversion ratio decreased significantly with both sources in the period 29 – 42 d. Serum triglyceride and very low density lipoprotein ...

  13. Thermodegradation of biodiesel: thermoanalytical and rheological characterization; Degradacao termica de biodiesel: caracterizacao termoanalitica e reologica

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Everson L.; Carvalho, Laura H.; Araujo, Gilmar T.; Gadelha, Tatiana S. [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2008-07-01

    Brazil is a country of extensive agricultural land and great oil consumption and these factors favor biodiesel production in this country. In order for diesel/biodiesel mixtures to be effectively employed in diesel engines, a rigid quality control of these mixtures is needed. Biodiesel and mixtures must have their quality monitored with respect to oxidative resistance, thermal stability, fluidity and volatility, properties which can be modified by the adverse transport and stock conditions prior to consumption. Oxidation is the main degradation mechanism of products under transport and stock conditions, which can lead to significant economical losses. In this work sought the thermal degradation of neat biodiesel, synthesized in our laboratories was monitored. Thermal aging was conducted at 210 deg C for up to 1000 h. Virgin and thermally degraded samples were characterized by rheological measurements (in different shear conditions); FTIR; density and by color changes. We concluded that the soy biodiesel was successfully synthesized and that thermal exposure caused thermal-oxidative degradation of the biodiesel sample, significantly changing its properties as a function of thermal exposure times. (author)

  14. Economic assessment of biodiesel production from wastewater sludge.

    Science.gov (United States)

    Chen, Jiaxin; Tyagi, Rajeshwar Dayal; Li, Ji; Zhang, Xiaolei; Drogui, Patrick; Sun, Feiyun

    2018-04-01

    Currently, there are mainly two pathways of the biodiesel production from wastewater sludge including 1) directly extracting the lipid in sludge and then converting the lipid to biodiesel through trans-esterification, and 2) employing sludge as medium to cultivate oleaginous microorganism to accumulate lipid and then transferring the lipid to biodiesel. So far, the study was still in research stage and its cost feasibility was not yet investigated. In this study, biodiesel production from wastewater sludge was designed and the cost was estimated with SuperPro Designer. With consideration of converting the lipid in raw sludge to biodiesel, the unit production cost was 0.67 US $/kg biodiesel (0.59 US $/L biodiesel). When the sludge was used as medium to grow oleaginous microorganism to accumulate lipid for producing biodiesel, the unit production cost was 1.08 US $/kg biodiesel (0.94 US $/L biodiesel). The study showed that sludge has great potential in biodiesel production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  16. Biodiesel Production from Spent Coffee Grounds

    Science.gov (United States)

    Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš

    2017-06-01

    The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.

  17. Biodiesel production technologies: review

    Directory of Open Access Journals (Sweden)

    Shemelis Nigatu Gebremariam

    2017-05-01

    Full Text Available Biodiesel is a fuel with various benefits over the conventional diesel fuel. It is derived from renewable resources, it has less emission to environment, it is biodegradable so has very limited toxicity and above all its production can be decentralized so that it could have a potential in helping rural economies. However, there are also some worth mentioning challenges associated with production of biodiesel. Among them repeatedly mentioned are the cost of feedstock and the choice of convenient technology for efficient production of the fuel from diverse feedstock types. There are four main routes by which raw vegetable oil and/or animal fat can be made suitable for use as substituent fuel in diesel engines without modification. These are direct use or blending of oils, micro-emulsion, thermal cracking or pyrolysis and transesterification reaction. Due to the quality of the fuel produced, the transesterification method is the most preferred way to produce biodiesel from diverse feedstock types. Through this method, oils and fats (triglycerides are converted to their alkyl esters with reduced viscosity to near diesel fuel levels. There are different techniques to carry out transesterification reaction for biodiesel production. Each technique has its own advantages and disadvantages as well as its own specifically convenient feedstock character. There are also some very important reaction conditions to be given due attention in each of this techniques for efficient production of biodiesel, such as molar ratio of alcohol to oil, type and amount of catalyst, reaction temperature, reaction time, reaction medium, type and relative amount of solvents, among others. This review is meant to investigate the main transesterification techniques for biodiesel production in terms of their choice of feedstock character as well as their determinately required reaction conditions for efficient biodiesel production, so that to give an overview on their advantages

  18. Competitive liquid biofuels from biomass

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2011-01-01

    The cost of biodiesels varies depending on the feedstock, geographic area, methanol prices, and seasonal variability in crop production. Most of the biodiesel is currently made from soybean, rapeseed, and palm oils. However, there are large amounts of low-cost oils and fats (e.g., restaurant waste, beef tallow, pork lard, and yellow grease) that could be converted to biodiesel. The crop types, agricultural practices, land and labor costs, plant sizes, processing technologies and government policies in different regions considerably vary ethanol production costs and prices by region. The cost of producing bioethanol in a dry mill plant currently totals US$1.65/galon. The largest ethanol cost component is the plant feedstock. It has been showed that plant size has a major effect on cost. The plant size can reduce operating costs by 15-20%, saving another $0.02-$0.03 per liter. Thus, a large plant with production costs of $0.29 per liter may be saving $0.05-$0.06 per liter over a smaller plant. Viscosity of biofuel and biocrude varies greatly with the liquefaction conditions. The high and increasing viscosity indicates a poor flow characteristic and stability. The increase in the viscosity can be attributed to the continuing polymerization and oxidative coupling reactions in the biocrude upon storage. Although stability of biocrude is typically better than that of bio-oil, the viscosity of biocrude is much higher. The bio-oil produced by flash pyrolysis is a highly oxygenated mixture of carbonyls, carboxyls, phenolics and water. It is acidic and potentially corrosive. Bio-oil can also be potentially upgraded by hydrodeoxygenation. The liquid, termed biocrude, contains 60% carbon, 10-20 wt.% oxygen and 30-36 MJ/kg heating value as opposed to <1 wt.% and 42-46 MJ/kg for petroleum. (author)

  19. Competitive liquid biofuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, Ayhan [Sirnak University, Dean of Engineering Faculty, Department of Mechanical Engineering, Sirnak (Turkey)

    2011-01-15

    The cost of biodiesels varies depending on the feedstock, geographic area, methanol prices, and seasonal variability in crop production. Most of the biodiesel is currently made from soybean, rapeseed, and palm oils. However, there are large amounts of low-cost oils and fats (e.g., restaurant waste, beef tallow, pork lard, and yellow grease) that could be converted to biodiesel. The crop types, agricultural practices, land and labor costs, plant sizes, processing technologies and government policies in different regions considerably vary ethanol production costs and prices by region. The cost of producing bioethanol in a dry mill plant currently totals US$1.65/galon. The largest ethanol cost component is the plant feedstock. It has been showed that plant size has a major effect on cost. The plant size can reduce operating costs by 15-20%, saving another $0.02-$0.03 per liter. Thus, a large plant with production costs of $0.29 per liter may be saving $0.05-$0.06 per liter over a smaller plant. Viscosity of biofuel and biocrude varies greatly with the liquefaction conditions. The high and increasing viscosity indicates a poor flow characteristic and stability. The increase in the viscosity can be attributed to the continuing polymerization and oxidative coupling reactions in the biocrude upon storage. Although stability of biocrude is typically better than that of bio-oil, the viscosity of biocrude is much higher. The bio-oil produced by flash pyrolysis is a highly oxygenated mixture of carbonyls, carboxyls, phenolics and water. It is acidic and potentially corrosive. Bio-oil can also be potentially upgraded by hydrodeoxygenation. The liquid, termed biocrude, contains 60% carbon, 10-20 wt.% oxygen and 30-36 MJ/kg heating value as opposed to <1 wt.% and 42-46 MJ/kg for petroleum. (author)

  20. Level of selected nutrients in meat, liver, tallow and bone marrow from semi-domesticated reindeer (Rangifer t. tarandus L.

    Directory of Open Access Journals (Sweden)

    Ammar Ali Hassan

    2012-03-01

    Full Text Available Objectives: To acquire new knowledge on the nutritional composition of semi-domesticated reindeer (Rangifer t. tarandus L. and their nutritional value for humans. The results could be useful in updating the Norwegian Food Composition Database, whose current data on reindeer is limited. Study design: Cross-sectional study on population of semi-domesticated reindeer from 2 northern Norwegian counties (Finnmark and Nordland. Methods: Semi-domesticated reindeer carcasses (n=31 were randomly selected, from which meat, liver, tallow and bone marrow samples were collected. Selected vitamins, minerals, fatty acids and total lipids were studied. Results: As expected, reindeer meat was found to be lean (2% total lipid, thus it is a good source of low-fat meat. The meat was also found to be a good source of vitamin B12, docosapentaenoic acid (C22:5 n-3 and α-linolenic acid (C18:3 n-3. Statistically significant differences (p<0.05 in most of the nutrient levels between meat and the rest of the studied reindeer tissues were observed. In most cases, the liver, tallow and bone marrow had higher nutritional values when compared to meat. Liver had the highest concentrations of vitamin A, all vitamin B types, vitamin C, iron, selenium and the total amount of polyunsaturated fatty acids (n-3. Additionally, liver was the only edible tissue that contained vita-mins B9 and C. The vast majority of the vitamin concentrations in liver, tallow and bone marrow were significantly correlated with the concentrations in meat (p<0.05. Conclusions: The studied tissues from reindeer demonstrated that reindeer is a valuable food source that could meet or contribute to the consumers’ nutritional recommended daily allowance (RDA.

  1. The uses of biodiesel in buses

    International Nuclear Information System (INIS)

    Smigins, R.; Gulbis, V.

    2003-01-01

    In November 2001 in Naukseni, Valmiera district the biodiesel - methyl ester of rapeseed oil (RME) - plant first in Latvia and in all Baltic States began to work. The production capacity of the plant is 2500 t of biodiesel per year. In the summer and autumn period of the last year the first experiment using 100% RME on one city bus line was carried out. The bus Ikarus-280 in total turned 30700 km consuming 11 tons or 12600 litres of biodiesel. The fuel consumption with biodiesel was 0.9 kg/h (14.2%) or 3.01/100 km higher as with fossil diesel fuel. The engine power and the driving speed on the line were practically unchanged in spite that the heat capacity of biodiesel is lower than of ordinary diesel fuel (according 37.1 l and 42.1 MJ/kg). Using biodiesel the toxicity of the exhaust gases dropped down very essentially. It was controlled regularly by measuring the absorption coefficient and smokiness. At the end of second month of the experiment the absorption coefficient was 2.09 m -1 and 47.8%. This shows that by the influence of biodiesel the compression chambers of the engine clean from burnt parts and the combustion process most completely thanks to the oxygen content in the biodiesel (authors)

  2. Biodiesel of distilled hydrogenated fat and biodiesel of distilled residual oil: fuel consumption in agricultural tractor

    Energy Technology Data Exchange (ETDEWEB)

    Camara, Felipe Thomaz da; Lopes, Afonso; Silva, Rouverson Pereira da; Oliveira, Melina Cais Jejcic; Furlani, Carlos Eduardo Angeli [Universidade Estadual Paulista (UNESP), Jaboticabal, SP (Brazil); Dabdoub, Miguel Joaquim [Universidade de Sao Paulo (USP), Ribeirao Preto (Brazil)

    2008-07-01

    Great part of the world-wide oil production is used in fry process; however, after using, such product becomes an undesirable residue, and the usual methods of discarding of these residues, generally contaminate the environment, mainly the rivers. In function of this, using oil and residual fat for manufacturing biodiesel, besides preventing ambient contamination, turning up an undesirable residue in to fuel. The present work had as objective to evaluate the fuel consumption of a Valtra BM100 4x2 TDA tractor functioning with methylic biodiesel from distilled hydrogenated fat and methylic biodiesel from distilled residual oil, in seven blends into diesel. The work was conducted at the Department of Agricultural Engineering, at UNESP - Jaboticabal, in an entirely randomized block statistical design, factorial array of 2 x 7, with three repetitions. The factors combinations were two types of methylic distilled biodiesel (residual oil and hydrogenated fat) and seven blends (B{sub 0}, B{sub 5}, B{sub 1}5, B{sub 2}5, B{sub 5}0, B{sub 7}5 and B{sub 1}00). The results had evidenced that additioning 15% of biodiesel into diesel, the specific consumption was similar, and biodiesel of residual oil provided less consumption than biodiesel from hydrogenated fat. (author)

  3. Cottonseed oil for biodiesel production; Oleo de algodao para a producao de biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, Anna L.M.T.; Park, Kil J. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil)], E-mail: annalets@feagri.unicamp.br; Ferrari, Roseli A; Miguel, Ana M.R.O. [Instituto de Tecnologia de Alimentos (ITAL), Campinas, SP (Brazil)], Emails: roseliferrari@ital.sp.gov.br, anarauen@ital.sp.gov.br, kil@feagri.unicamp.br

    2009-07-01

    Crude cottonseed oil is an alternative for biodiesel production, mostly in Mato Grosso State, where its production is the biggest of Brazil. Even being an acid oil, esterification reaction, followed by transesterification, could make possible the biodiesel production. In this study, crude cottonseed oil obtained from expelled process was reacted to evaluate molar ration and catalyst concentration effects in biodiesel yield. Molar ratio varied from 3 to 15 moles of ethanol to 1 mol of oil, and catalyst, from 1 to 5% by oil mass. Statistic analysis showed that none of studied variables was significant, for the values range. Biodiesel yield had a maximum of 88%, for molar ratio of 4.7 and 4.42% of catalyst concentration. A combination of oil with high free fatty acid content and ethanol as alcohol, affected the separation between esters and glycerol. (author)

  4. Ecological Impact of Biodiesel Use

    International Nuclear Information System (INIS)

    Gulbis, V.; Shmigins, R.

    2005-01-01

    Full text: The paper presents a study of biodiesel application and its ecological impacts. Our study is based on the comparison of exhaust emission composition produced by the combustion of rapeseed oil methyl ester (RME) and conventional diesel fuel (DD) and its blends in a direct injection diesel engine XD2P (YTT). The engine was tested in biofuels laboratory of LUA Motor Vehicle Institute. Fuelling the engine with biodiesel and biodiesel/diesel blend reduced oxides of nitrogen by 17.5% (100RME) and by 5.6% (35RME) and carbon monoxide by 49.8% (100RME) and by 45.3% (35RME). Fuelling the engine with biodiesel and different biodiesel/diesel blends reduced the absorbtion coefficient by 33.9% (5RME), by 44.3% (20RME) and by 51.2% (100RME) on free acceleration regime. In these tests soot reduced by 28...76.7% at full opened throttle position with 100RME. (Authors)

  5. Three years operational experience with biodiesel

    International Nuclear Information System (INIS)

    Murphy, J.

    2008-01-01

    TSI Terminal Systems Inc. is the largest container terminal operator in Canada, and has an annual payroll exceeding $150 million. The company started a biodiesel test program with the Canadian Bioenergy Corporation in order to assess the emission reduction impacts of using biodiesel. The pilot was tested with 6 different pieces of equipment used at the terminal over an initial period of 3 weeks. Emissions testing was then conducted for different biodiesel blend levels and compared with baseline data in relation to particulate matter, total hydrocarbons, carbon monoxide (CO), carbon dioxide (CO 2 ), and nitrous oxides (NO x ). Results of the tests confirmed that the biodiesel blends significantly reduced emissions at the terminal and confirmed the operability of biodiesel. Overall emissions were reduced by 30 per cent. The fuel is now being used in all the company's equipment. The use of the biodiesel has not resulted in any engine failures or power losses. tabs., figs

  6. PRELIMINARY DESIGN OF OSCILLATORY FLOW BIODIESEL REACTOR FOR CONTINUOUS BIODIESEL PRODUCTION FROM JATROPHA TRIGLYCERIDES

    Directory of Open Access Journals (Sweden)

    AZHARI T. I. MOHD. GHAZI

    2008-08-01

    Full Text Available The concept of a continuous process in producing biodiesel from jatropha oil by using an Oscillatory Flow Biodiesel Reactor (OFBR is discussed in this paper. It has been recognized that the batch stirred reactor is a primary mode used in the synthesis of biodiesel. However, pulsatile flow has been extensively researcehed and the fundamental principles have been successfully developed upon which its hydrodynamics are based. Oscillatory flow biodiesel reactor offers precise control of mixing by means of the baffle geometry and pulsation which facilitates to continuous operation, giving plug flow residence time distribution with high turbulence and enhanced mass and heat transfer. In conjunction with the concept of reactor design, parameters such as reactor dimensions, the hydrodynamic studies and physical properties of reactants must be considered prior to the design work initiated recently. The OFBR reactor design involves the use of simulation software, ASPEN PLUS and the reactor design fundamentals. Following this, the design parameters shall be applied in fabricating the OFBR for laboratory scale biodiesel production.

  7. Sustainable Biocatalytic Biodiesel Production

    DEFF Research Database (Denmark)

    Güzel, Günduz

    As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase and chemi......As part of his PhD studies, Gündüz Güzel examined the thermodynamics of reactions involved in biocatalytic biodiesel production processes, with a specific focus on phase equilibria of reactive systems. He carried out the thermodynamic analyses of biocatalytic processes in terms of phase...... and chemical equilibria as part of his main sustainable biodiesel project. The transesterification reaction of vegetable oils or fats with an aliphatic alcohol – in most cases methanol or ethanol – yields biodiesel (long-chain fatty acid alkyl esters – FAAE) as the main product in the presence of alkaline...

  8. Influence of biodiesel blending on physicochemical properties and importance of mathematical model for predicting the properties of biodiesel blend

    International Nuclear Information System (INIS)

    Wakil, M.A.; Kalam, M.A.; Masjuki, H.H.; Atabani, A.E.; Rizwanul Fattah, I.M.

    2015-01-01

    Highlights: • Short identification of selected biodiesel feedstock. • Review of physicochemical properties for blended biodiesel. • Mathematical model for predicting properties of various biodiesel blends. - Abstract: The growing demand for green world serves as one of the most significant challenges of modernization. Requirements like largest usage of energy for modern society as well as demand for friendly milieu create a deep concern in field of research. Biofuels are placed at the peak of the research arena for their underlying benefits as mentioned by multiple researches. Out of a number of vegetable oils, only a few are used commercially for biodiesel production. Due to various limitations of edible oil, non-edible oils are becoming a profitable choice. Till today, very little percentage of biodiesel is used successfully in engine. The research is still continuing for improving the biodiesel usage level. Recently, it is found that the blended biodiesel from more than one feedstock provides better performance in engine. This paper reviews the physicochemical properties of different biodiesel blends obtained from various feedstocks with a view to properly understand the fuel quality. Moreover, a short description of each feedstock is given along with graphical presentation of important properties for various blend percentages from B0 to B100. Finally, mathematical model is formed for predicting various properties of biodiesel blend with the help of different research data by using polynomial curve fitting method. The results obtained from a number of literature based on this work shows that the heating value of biodiesel is about 11% lower than diesel except coconut (14.5% lower) whereas kinematic viscosity is in the range of 4–5.4 mm 2 /s. Flash point of all biodiesels are more than 150 °C, except neem and coconut. Cold flow properties of calophyllum, palm, jatropha, moringa are inferior to others. This would help to determine important properties of

  9. Genetic engineering of microorganisms for biodiesel production

    Science.gov (United States)

    Lin, Hui; Wang, Qun; Shen, Qi; Zhan, Jumei; Zhao, Yuhua

    2013-01-01

    Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples. PMID:23222170

  10. Algal biodiesel economy and competition among bio-fuels.

    Science.gov (United States)

    Lee, D H

    2011-01-01

    This investigation examines the possible results of policy support in developed and developing economies for developing algal biodiesel through to 2040. This investigation adopts the Taiwan General Equilibrium Model-Energy for Bio-fuels (TAIGEM-EB) to predict competition among the development of algal biodiesel, bioethanol and conventional crop-based biodiesel. Analytical results show that algal biodiesel will not be the major energy source in 2040 without strong support in developed economies. In contrast, bioethanol enjoys a development advantage relative to both forms of biodiesel. Finally, algal biodiesel will almost completely replace conventional biodiesel. CO(2) reduction benefits the development of the bio-fuels industry. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Biodiesel production by transesterification using immobilized lipase.

    Science.gov (United States)

    Narwal, Sunil Kumar; Gupta, Reena

    2013-04-01

    Biodiesel can be produced by transesterification of vegetable or waste oil catalysed by lipases. Biodiesel is an alternative energy source to conventional fuel. It combines environmental friendliness with biodegradability, low toxicity and renewability. Biodiesel transesterification reactions can be broadly classified into two categories: chemical and enzymatic. The production of biodiesel using the enzymatic route eliminates the reactions catalysed under acid or alkali conditions by yielding product of very high purity. The modification of lipases can improve their stability, activity and tolerance to alcohol. The cost of lipases and the relatively slower reaction rate remain the major obstacles for enzymatic production of biodiesel. However, this problem can be solved by immobilizing the enzyme on a suitable matrix or support, which increases the chances of re-usability. The main factors affecting biodiesel production are composition of fatty acids, catalyst, solvents, molar ratio of alcohol and oil, temperature, water content, type of alcohol and reactor configuration. Optimization of these parameters is necessary to reduce the cost of biodiesel production.

  12. Beef, Real Food for Real People: An Industrial Analysis of the Beef Industry

    Science.gov (United States)

    1992-04-01

    poultry . In 1989 Amrericans spent an average of $3.89 per person per week on beef products. Consumer bought $21 billion in beef products in 1989; they...or decreases in price. If the price of beef gets to high, consumers will switch their purchase to another red meat, poultry or seafood. TECHNOLOGY...The beginning of organized labor in meatpacking occurred with the -- •formation of the Amalgamated Meat Cutters and Butcher Workman of North America

  13. The effect of dietary lipid saturation and monensin-Na on the CLA ...

    African Journals Online (AJOL)

    One diet contained no ionophore antibiotic and the other monensin-Na included at 165 g/ton. These two basal diets were supplemented, according to a 2 x 3 factorial design, with three lipid sources [i.e. 20 g/kg of either beef tallow, sunflower oil or a CLA oil concentrate] differing in saturation level and fatty acid profile.

  14. Current biodiesel production technologies: A comparative review

    International Nuclear Information System (INIS)

    Abbaszaadeh, Ahmad; Ghobadian, Barat; Omidkhah, Mohammad Reza; Najafi, Gholamhassan

    2012-01-01

    Highlights: ► In this paper we review the technologies related to biodiesel production. ► 4 Primary approaches reviewed are direct use and blending of oils, micro-emulsions, pyrolysis and transesterification method. ► Both advantages and disadvantages of the different biodiesel production methods are also discussed. ► The most common technology of biodiesel production is transesterification of oils. ► Selection of a transesterification method depends on the amount of FFA and water content of the feedstock. - Abstract: Despite the high energy demand in the industrialized world and the pollution problems caused by widespread use of fossil fuels, the need for developing renewable energy sources with less environmental impacts are increasing. Biodiesel production is undergoing rapid and extensive technological reforms in industries and academia. The major obstacle in production and biodiesel commercialization path is production cost. Thus, in previous years numerous studies on the use of technologies and different methods to evaluate optimal conditions of biodiesel production technically and economically have been carried out. In this paper, a comparative review of the current technological methods so far used to produce biodiesel has been investigated. Four primary approaches to make biodiesel are direct use and blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification. Transesterification reaction, the most common method in the production of biodiesel, is emphasized in this review. The two types of transestrification process; catalytic and non-catalytic are discussed at length in the paper. Both advantages and disadvantages of the different biodiesel production methods are also discussed.

  15. Biodiesel production from sediments of a eutrophic reservoir

    International Nuclear Information System (INIS)

    Kuchkina, A.Yu.; Gladyshev, M.I.; Sushchik, N.N.; Kravchuk, E.S.; Kalachova, G.S.

    2011-01-01

    Sediments from eutrophic reservoir Bugach (Siberia, Russia) were tested for possibility to produce biodiesel. We supposed that the sediments could be a promising biodiesel producer. The major reason of high price of biodiesel fuel is cost of a raw material. The use of dredging sediments for biodiesel production reduces production costs, because the dredging sediments are by-products which originated during lake restoration actions, and are free of cost raw materials. Lipid content in sediments was 0.24% of dry weight. To assess the potential of from sediments as a substitute of diesel fuel, the properties of the biodiesel such as cetane number, iodine number and heat of combustion were calculated. All of this parameters complied with limits established by EN 14214 and EN 14213 related to biodiesel quality. -- Highlights: → Dredging sediments were considered as a new feedstock for biodiesel production. → Lipid and fatty acid content in the sediments were determined. → Main properties of the biodiesel were calculated basing on fatty acid composition. → The properties well complied with limits established in biodiesel standards.

  16. Business management for biodiesel producers

    Energy Technology Data Exchange (ETDEWEB)

    Gerpen, Jon Van [Iowa State Univ., Ames, IA (United States)

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  17. Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

    Science.gov (United States)

    Biodiesel Printable Version Share this resource Send a link to Alternative Fuels Data Center : Diesel Vehicles Using Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicles Using Biodiesel

  18. Montana BioDiesel Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Peyton, Brent [Montana State Univ., Bozeman, MT (United States)

    2017-01-29

    This initiative funding helped put Montana State University (MSU) in a position to help lead in the development of biodiesel production strategies. Recent shortages in electrical power and rising gasoline prices have focused much attention on the development of alternative energy sources that will end our dependence on fossil fuels. In addition, as the concern for environmental impact of utilizing fossil fuels increases, effective strategies must be implemented to reduce emissions or the increased regulations imposed on fossil fuel production will cause economic barriers for their use to continue to increase. Biodiesel has been repeatedly promoted as a more environmentally sound and renewable source of fuel and may prove to be a highly viable solution to provide, at the least, a proportion of our energy needs. Currently there are both practical and economic barriers to the implementation of alternative energy however the advent of these technologies is inevitable. Since many of the same strategies for the storage, transport, and utilization of biodiesel are common with that of fossil fuels, the practical barriers for biodiesel are comparatively minimal. Strategies were developed to harness the CO2 as feedstock to support the growth of biodiesel producing algae. The initiative funding led to the successful funding of highly rated projects in competitive national grant programs in the National Science Foundation and the Department of Energy. This funding put MSU in a key position to develop technologies to utilize the CO2 rich emissions produced in fossil fuel utilization and assembled world experts concerning the growth characteristics of photosynthetic microorganisms capable of producing biodiesel.

  19. Using internet images to gather distributional data for a newly discovered Caloptilia species (Lepidoptera: Gracillariidae) specializing on Chinese tallow in North America

    Science.gov (United States)

    Chinese tallow tree (Triadica sebifera (L.), Euphorbiaceae) is a noxious and highly invasive species that was deliberately introduced to GA in 1772. In early 2009, an unfamiliar caterpillar was independently discovered feeding on T. sebifera trees in Gainesville, FL and Slidell, LA. Adult moths were...

  20. Consumer perception of Brazilian traced beef

    Directory of Open Access Journals (Sweden)

    Júlio Otávio Jardim Barcellos

    2012-03-01

    Full Text Available The objective of this study was to determine consumers understanding of beef traceability, identifying how consumers value this meat and traceability elements to be presented on retail shelves. The method used in this study was a survey through the internet applying the Sphinx software. The sample consisted of 417 consumers, mostly living in Porto Alegre, Brazil. Consumers are aware of certified beef, consider it important, but this is not a demand. As to traced beef, most consumers (62.4% are in favor of mandatory traceability of beef cattle in Brazil, but 86.6% disagree with the destination of traced beef only to the foreign market. The majority of people are willing to pay more for traced beef and consider traceability a market opportunity, used as a differentiating tool.

  1. SUPPLY CHAIN MANAGEMENT OF IMPORTED FROZEN BEEF: AN ALTERNATIVE TO INTEGRATE WITH LOCAL BEEF SUPPLY CHAIN MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Sani R.

    2017-12-01

    Full Text Available The purpose of this study is to describe the supply chain management of imported frozen beef from Australia to Indonesia; to analyze where the strengths, weaknesses, opportunities, and threats for the frozen meat distributor, and what strategy should be chosen; and to analyze alternatives of cooperation between imported frozen beef distribution with local beef distribution chain. The research approach is qualitative, and the research strategy is a case study. This research was conducted in Jakarta, data collecting technique by interview method and literature study. Data analysis techniques use supply chain management (SCM and strengths, weaknesses, opportunities, and threats (SWOT analysis. The results show that the distribution chain management of imported frozen beef needs to tripartite cooperation with government and local beef distributors to conduct joint marketing of imported frozen beef and cooler procurement to the point of retailers in traditional markets; expanding the market share of imported frozen beef to industrial segments (hotels, restaurant, catering company; and meat processing factories; and cooperate with imported beef suppliers to overcome the problem of taste flavor and lack of weight of imported frozen meat, and clarify halal certification.

  2. Color, sensory and physicochemical attributes of beef burger made using meat from young bulls fed levels of licuri cake.

    Science.gov (United States)

    de Gouvêa, Ana Al; Oliveira, Ronaldo L; Leão, André G; Assis, Dallyson Yc; Bezerra, Leilson R; Nascimento Júnior, Nilton G; Trajano, Jaqueline S; Pereira, Elzania S

    2016-08-01

    Licuri cake is a biodiesel byproduct and has been tested as an alternative feed additive for use in cattle production. This study analyzed the color, sensory and chemical attributes of burger meat from bovines. Thirty-two young Nellore bulls were used, housed in individual pens and distributed in a randomized experimental design with four treatments: no addition or the addition of 7, 14 or 21% (w/w) licuri cake in the dry matter of the diet. Interactions between the licuri cake level and the physicochemical variables (P > 0.05) were observed. Additionally, an interaction was observed between the licuri cake level and the burger beef color parameter lightness index (L*) (P = 0.0305). The L* value was positively and linearly correlated with the proportion of licuri cake in the diet of young bulls. The level of inclusion of licuri cake did not affect (P > 0.05) the sensory characteristics; the variables were graded between 6 and 7, indicating good overall acceptance. Up to 21% (w/w) licuri cake can be included in the diet of young bulls without negatively impacting on beef burger quality. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  3. Beef Species Symposium: an assessment of the 1996 Beef NRC: metabolizable protein supply and demand and effectiveness of model performance prediction of beef females within extensive grazing systems.

    Science.gov (United States)

    Waterman, R C; Caton, J S; Löest, C A; Petersen, M K; Roberts, A J

    2014-07-01

    Interannual variation of forage quantity and quality driven by precipitation events influence beef livestock production systems within the Southern and Northern Plains and Pacific West, which combined represent 60% (approximately 17.5 million) of the total beef cows in the United States. The beef cattle requirements published by the NRC are an important tool and excellent resource for both professionals and producers to use when implementing feeding practices and nutritional programs within the various production systems. The objectives of this paper include evaluation of the 1996 Beef NRC model in terms of effectiveness in predicting extensive range beef cow performance within arid and semiarid environments using available data sets, identifying model inefficiencies that could be refined to improve the precision of predicting protein supply and demand for range beef cows, and last, providing recommendations for future areas of research. An important addition to the current Beef NRC model would be to allow users to provide region-specific forage characteristics and the ability to describe supplement composition, amount, and delivery frequency. Beef NRC models would then need to be modified to account for the N recycling that occurs throughout a supplementation interval and the impact that this would have on microbial efficiency and microbial protein supply. The Beef NRC should also consider the role of ruminal and postruminal supply and demand of specific limiting AA. Additional considerations should include the partitioning effects of nitrogenous compounds under different physiological production stages (e.g., lactation, pregnancy, and periods of BW loss). The intent of information provided is to aid revision of the Beef NRC by providing supporting material for changes and identifying gaps in existing scientific literature where future research is needed to enhance the predictive precision and application of the Beef NRC models.

  4. Er biodiesel en god ide?

    DEFF Research Database (Denmark)

    Schmidt, Jannick

    2007-01-01

    Biodiesel opfattes som en grøn miljøvenlig teknologi. Men har dette 'grønne' alternativ til konventionel diesel en skjult bagside af medaljen? Og kan det være, at man i stedet for at få et bedre miljø, medvirker til øgede miljøpåvirkninger i form af emissioner og naturødelæggelse, når man skifter...... til biodiesel? I artiklen belyses nogle af de mest sejlivede myter omkring biodiesel. Udgivelsesdato: Januar...

  5. Assessment of the biodiesel distribution infrastructure in Canada

    International Nuclear Information System (INIS)

    Lagace, C.

    2007-08-01

    Canada's biodiesel industry is in its infancy, and must work to achieve the demand needed to ensure its development. This assessment of Canada's biodiesel distribution infrastructure was conducted to recommend the most efficient infrastructure pathway for effective biodiesel distribution. The study focused on the establishment of a link between biodiesel supplies and end-users. The current Canadian biodiesel industry was discussed, and future market potentials were outlined. The Canadian distillate product distribution infrastructure was discussed. Technical considerations and compliance issues were reviewed. The following 2 scenarios were used to estimate adaptations and costs for the Canadian market: (1) the use of primary terminals to ensure quality control of biodiesel, and (2) storage in secondary terminals where biodiesel blends are prepared before being transported to retail outlets. The study showed that relevant laboratory training programs are needed as well as proficiency testing programs in order to ensure adequate quality control of biodiesel. Standards for biodiesel distribution are needed, as well as specifications for the heating oil market. It was concluded that this document may prove useful in developing government policy objectives and identifying further research needs. 21 refs., 12 tabs., 13 figs

  6. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  7. Alternative Fuels Data Center: Biodiesel Equipment Options

    Science.gov (United States)

    Equipment Options to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Equipment Options on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Equipment Options on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Equipment Options on Google Bookmark Alternative Fuels

  8. Into beef consumers' mind

    DEFF Research Database (Denmark)

    de Barcellos, Marcia Dutra; Brei, Vinicius A.

    indicated similarities amongst Brazilian and Australian consumers regarding their positive attitude towards beef and main concerns regarding its consumption. Dutch consumers, although presented negative attitudes, considered beef consumption as important. In general respondents presented a high degree...

  9. Do beef risk perceptions or risk attitudes have a greater effect on the beef purchase decisions of Canadian consumers?

    Science.gov (United States)

    Yang, Jun; Goddard, Ellen

    2011-01-01

    Cluster analysis is applied in this study to group Canadian households by two characteristics, their risk perceptions and risk attitudes toward beef. There are some similarities in demographic profiles, meat purchases, and bovine spongiform encephalopathy (BSE) media recall between the cluster that perceives beef to be the most risky and the cluster that has little willingness to accept the risks of eating beef. There are similarities between the medium risk perception cluster and the medium risk attitude cluster, as well as between the cluster that perceives beef to have little risk and the cluster that is most willing to accept the risks of eating beef. Regression analysis shows that risk attitudes have a larger impact on household-level beef purchasing decisions than do risk perceptions for all consumer clusters. This implies that it may be more effective to undertake policies that reduce the risks associated with eating beef, instead of enhancing risk communication to improve risk perceptions. Only for certain clusters with higher willingness to accept the risks of eating beef might enhancing risk communication increase beef consumption significantly. The different role of risk perceptions and risk attitudes in beef consumption needs to be recognized during the design of risk management policies.

  10. Aqueous solubility, dispersibility and toxicity of biodiesels

    International Nuclear Information System (INIS)

    Hollebone, B.P.; Fieldhouse, B.; Lumley, T.C.; Landriault, M.; Doe, K.; Jackman, P.

    2007-01-01

    The renewed interest in the use of biological fuels can be attributed to that fact that feedstocks for fatty-acid ester biodiesels are renewable and can be reclaimed from waste. Although there are significant benefits to using biodiesels, their increased use leaves potential for accidental release to the environment. Therefore, their environmental behaviours and impacts must be evaluated along with the risk associated with their use. Biodiesel fuels may be made from soy oil, canola oil, reclaimed restaurant grease, fish oil and animal fat. The toxicological fate of biofuel depends on the variability of its chemical composition. This study provided an initial assessment of the aqueous fate and effects of biodiesel from a broad range of commonly available feedstocks and their blends with petroleum diesels. The study focused primarily on the fate and impact of these fuels in fresh-water. The use of chemical dispersion as a countermeasure for saltwater was also investigated. The exposure of aquatic ecosystems to biodiesels and petroleum diesel occurs via the transfer of material from the non-aqueous phase liquid (NAPL) into the aqueous phase, as both soluble and dispersed components. The aqueous solubilities of the fuels were determined from the equilibrium water-accommodated fraction concentrations. The acute toxicities of many biodiesels were reported for 3 test species used by Environment Canada for toxicological evaluation, namely rainbow trout, the water flea and a luminescent bacterium. This study also evaluated the natural potential for dispersion of the fuels in the water column in both low and high-energy wave conditions. Chemical dispersion as a potential countermeasure for biodiesel spills was also evaluated using solubility testing, acute toxicity testing, and dispersibility testing. It was shown that biodiesels have much different fates and impacts from petroleum diesels. The compounds partitioning into the water column are also very different for each

  11. Biodiesel in British Columbia : feasibility study report

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, M.; Murray-Hill, A.; Schaddelee, K. [Wise Energy Co-op, Victoria, BC (Canada)

    2004-05-05

    This report evaluates the potential for biodiesel as a viable fuel in British Columbia. Biodiesel is a non-toxic, biodegradable, renewable fuel produced from recycled bio-oils that can be used to replace conventional petroleum diesel. The report also examines potential feedstock characteristics, output volumes and environmental impacts. Production of biodiesel is increasing globally due to its economic, human and environmental health benefits. Canada's Climate Change Action Plan target of 500 million litres of biodiesel production per year by 2010 will also contribute to biodiesel growth. The use of pure biodiesel as an alternative fuel results in reduced emissions of carbon dioxide, sulphur dioxide, methane, unburned hydrocarbons, carbon monoxide, particulate matter and polycyclic aromatic hydrocarbons. British Columbia's biodiesel feedstock volumes yield a total theoretical capacity of 125 million litres per year of biodiesel, or 4.5 per cent of the province's total annual diesel consumption The feedstock is enough to fuel over 3,700 transit buses annually and significantly reduce greenhouse gas emissions. This report outlines the activities needed to establish commercial biodiesel companies in the province. It also examines standards and regulatory issues; technology availability; cost and processing analysis; potential markets and distribution channels; and environmental impact comparisons. The 4 critical factors that will determine the success or failure of a commercial biodiesel project include: the ability to balance feedstock supplies, processing technology, and market penetration in an integrated system that is reliable and efficient; the ability to form stable strategic alliances with feedstock suppliers, distributors and end users; the ability to deal effectively with competitive pressures; and, the ability to generate a business plan that will attract financing. It was concluded that community-based biodiesel production at a plant scale

  12. Economic feasibility of biodiesel production from Macauba in Brazil

    International Nuclear Information System (INIS)

    Lopes, Daniela de Carvalho; Steidle Neto, Antonio José; Mendes, Adriano Aguiar; Pereira, Débora Tamires Vítor

    2013-01-01

    In this work the economic feasibility of biodiesel production in Brazil by using the Macauba oil as raw matter is studied. The software SIMB-E, in which a cash flow model applied to biodiesel production is implemented, was used during simulations. Economic indexes related to biodiesel production features, as well as the competitiveness between selling prices of biodiesel and petrodiesel were considered. It was found that all of the 8 simulated scenarios were potentially profitable, but only 2 of them presented competitive biodiesel selling prices, being considered as worthwhile projects. These were seed-oil plants with alkaline transesterification. Results also indicated that the success of biodiesel production still requires additional revenues beyond that derived from biodiesel itself, including income from the feedstock coproducts and glycerol. Macauba showed to be a potential crop to be used in biodiesel production. However, the domestication and improvement on processing of this species are indispensable to ensure its availability of long-term use. - Highlights: • Competitiveness between selling prices of biodiesel and petrodiesel was the main evaluated criterion. • The main criterion to suggest worthwhile projects was the biodiesel selling price. • Biodiesel plants with integrated oil mill and alkaline transesterification were profitable. • Macauba showed to be a potential crop to be used in biodiesel production. • The domestication and improvement on processing of Macauba are indispensable

  13. Overview on the current trends in biodiesel production

    International Nuclear Information System (INIS)

    Yusuf, N.N.A.N.; Kamarudin, S.K.; Yaakub, Z.

    2011-01-01

    Research highlights: → Various method for the production of biodiesel from vegetable oil were reviewed. → Such as direct use and blending, microemulsion, pyrolysis and transesterification. → The advantages and disadvantages of the different biodiesel-production methods are also discussed. → Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  14. Overview on the current trends in biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Yusuf, N.N.A.N. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Kamarudin, S.K., E-mail: ctie@eng.ukm.m [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yaakub, Z. [Department of Chemical and Process Engineering, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2011-07-15

    Research highlights: {yields} Various method for the production of biodiesel from vegetable oil were reviewed. {yields} Such as direct use and blending, microemulsion, pyrolysis and transesterification. {yields} The advantages and disadvantages of the different biodiesel-production methods are also discussed. {yields} Finally, the economics of biodiesel production was discussed using Malaysia as a case study. -- Abstract: The finite nature of fossil fuels necessitates consideration of alternative fuels from renewable sources. The term biofuel refers to liquid, gas and solid fuels predominantly produced from biomass. Biofuels include bioethanol, biomethanol, biodiesel and biohydrogen. Biodiesel, defined as the monoalkyl esters of vegetable oils or animal fats, is an attractive alternative fuel because it is environmentally friendly and can be synthesized from edible and non-edible oils. Here, we review the various methods for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsion, pyrolysis and transesterification. The advantages and disadvantages of the different biodiesel-production methods are also discussed. Finally, we analyze the economics of biodiesel production using Malaysia as a case study.

  15. QUALITY MANAGEMENT IN ECOLOGICAL BEEF PRODUCTION

    Directory of Open Access Journals (Sweden)

    Cornelia Petroman

    2012-09-01

    Full Text Available Producing high quality beef asks for the implementation of a performing management of raising cattle ecologically. The main ways of improving beef quality management have a technical nature: sustaina ble grazing management to conserve floral diversity and to obtain ecological beef and rational distribution of the cattle over the grassland to facilitate vegetation recovery and to avoid the setting of invasive species. Implementing a sustainable manageme nt of the resources in the neighborhood of animal farms has beneficial effects on beef quality, brings good economic income through the practice of best beef quality management, protects the environment long - term, and reduces infrastructure expenses thus a voiding the risks of meat contamination.

  16. DEMAND FOR BEEF IN THE PROVINCE OF YOGYAKARTA

    Directory of Open Access Journals (Sweden)

    Sulistiya

    2014-07-01

    Full Text Available RACT Protein consumption level of society in Yogyakarta Province has yet to meet the target, but the beef is a source of animal protein that is easily obtainable. Therefore, research on the analysis of demand for beef in this province needs to be done. Objective: (1 Determine the factors that affect the demand for beef in Yogyakarta. (2 Determine the own price elasticity and income elasticity of demand for beef in this province, and to know the cross-price elasticity of demand for beef to changes in the price of mutton, chicken, rice, and cooking oil. Metode: descriptive statistics, followed by inductive statistics , and hypothesis testing. The data used are primary and secondary data. Data were analyzed by multiple linear regression with the value of t and F tests, and analysis of the coefficient of determination. Results: Taken together, the factors that affect the demand for beef in the province is the price of beef, mutton, chicken, rice, cooking oil, income, number of inhabitants. Individually, beef demand is influenced by the price of beef and income residents. Beef inelastic demand means that beef is the daily necessities that are affordable and easy to obtain population of Yogyakarta Province. The increase in income population does not add to demand for beef. Substitutes of beef in the province is goat and chicken, while the complementary goods are rice and cooking oil.

  17. Model Biaya Produksi Biodiesel Berbasis Minyak Sawit

    OpenAIRE

    Meilita Tryana Sembiring; Sukardi Sukardi; Ani Suryani; Muhammad Romli

    2015-01-01

    Biodiesel is a renewable energy source in Indonesia of which the use is regulated by the government in the form of mandatory policy of biodiesel and diesel fuel blending. The production of biodiesel in Indonesia is not developed (the need is 3.4 million kiloliters but the total national production is only 1,703 kiloliters). It is because the selling price (referring to Mean of Platts Singapore) is always lower than the production cost. Biodiesel production is influenced by raw materials and p...

  18. Purification of crude biodiesel using dry washing and membrane technologies

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quality biodiesel fuel, considerable amount of spent absorbents is recorded, besides the skeletal knowledge on its operating process. Further, recent findings have shown that biodiesel purification using membrane technique could offer high-quality biodiesel fuel with less wastewater discharges. Thus, both researchers and industries are expected to benefit from the development of membrane technique in purifying crude biodiesel. As well biodiesel purification via membranes has been shown to be environmentally friendly. For these reasons, it is important to explore and exploit membrane technology to purify crude biodiesel.

  19. Biodiesel Analytical Methods: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G.

    2004-07-01

    Biodiesel is an alternative fuel for diesel engines that is receiving great attention worldwide. The material contained in this book is intended to provide the reader with information about biodiesel engines and fuels, analytical methods used to measure fuel properties, and specifications for biodiesel quality control.

  20. Corned Beef: an Enigmatic Irish Dish

    OpenAIRE

    Mac Con Iomaire, Máirtín; Gallagher, Pádraic Óg

    2011-01-01

    Corned beef and cabbage, which is consumed in America in large quantities each Saint Patrick’s Day (17th March), is considered by most Americans to be the ultimate Irish dish. However, corned beef and cabbage is seldom eaten in modern day Ireland. It is widely reported that Irish immigrants replaced their beloved bacon and cabbage with corned beef and cabbage when they arrived in America, drawing on the corned beef supplied by their neighbouring Jewish butchers, but not all commentators beli...

  1. Consumer attitudes towards beef and acceptability of enhanced beef.

    Science.gov (United States)

    Robbins, K; Jensen, J; Ryan, K J; Homco-Ryan, C; McKeith, F K; Brewer, M S

    2003-10-01

    The objective of this study was to evaluate consumer quality characteristics of enhanced steaks and roasts derived from cattle supplemented with vitamin E during finishing, and to assess the attitudes of these consumers towards beef. Twelve steers were fed either a control (E-) diet or a diet supplemented with dl-alpha tocopheryl acetate (E+). Paired strip loins and rounds were either used as controls (C) or were pumped (P) to 110% of raw weight to contain 0.4% sodium chloride and 0.4% sodium tripolyphosphate in the final product. Consumers (n=103) evaluated roasts and steaks for juiciness, tenderness, saltiness, and overall acceptability on a 9-point hedonic scale. Enhanced steaks and roasts were more acceptable than non-enhanced controls; E+ steaks were less acceptable than E- steaks. A beef quality questionnaire revealed that color, price, visible fat and cut were the most important factors underlying beef steak purchase, while tenderness, flavor and juiciness were weighted most heavily with regard to eating satisfaction.

  2. BACTERIAL COMMUNITY DYNAMICS AND ECOTOXICOLOGICAL ASSESSMENT DURING BIOREMEDIATION OF SOILS CONTAMINATED BY BIODIESEL AND DIESEL/BIODIESEL BLENDS.

    Science.gov (United States)

    Matos, G I; Junior, C S; Oliva, T C; Subtil, D F; Matsushita, L Y; Chaves, A L; Lutterbach, M T; Sérvulo, E F; Agathos, S N; Stenuit, B

    2015-01-01

    The gradual introduction of biodiesel in the Brazilian energy landscape has primarily occurred through its blending with conventional petroleum diesel (e.g., B20 (20% biodiesel) and B5 (5% biodiesel) formulations). Because B20 and lower-level blends generally do not require engine modifications, their use as transportation fuel is increasing in the Brazilian distribution networks. However, the environmental fate of low-level biodiesel blends and pure biodiesel (B100) is poorly understood and the ecotoxicological-safety endpoints of biodiesel-contaminated environments are unknown. Using laboratory microcosms consisting of closed reactor columns filled with clay loam soil contaminated with pure biodiesel (EXPB100) and a low-level blend (EXPB5) (10% w/v), this study presents soil ecotoxicity assessement and dynamics of culturable heterotrophic bacteria. Most-probable-number (MPN) procedures for enumeration of bacteria, dehydrogenase assays and soil ecotoxicological tests using Eisenia fetida have been performed at different column depths over the course of incubation. After 60 days of incubation, the ecotoxicity of EXPB100-derived samples showed a decrease from 63% of mortality to 0% while EXPB5-derived samples exhibited a reduction from 100% to 53% and 90% on the top and at the bottom of the reactor column, respectively. The dehydrogenase activity of samples from EXPB100 and EXPB5 increased significantly compared to pristine soil after 60 days of incubation. Growth of aerobic bacterial biomass was only observed on the top of the reactor column while the anaerobic bacteria exhibited significant growth at different column depths in EXPB100 and EXPB5. These preliminary results suggest the involvement of soil indigenous microbiota in the biodegradation of biodiesel and blends. However, GC-FID analyses for quantification of fatty acid methyl esters (FAMEs) and aliphatic hydrocarbons and targeted sequencing of 16S rRNA tags using illumina platforms will provide important

  3. Microbial recycling of glycerol to biodiesel.

    Science.gov (United States)

    Yang, Liu; Zhu, Zhi; Wang, Weihua; Lu, Xuefeng

    2013-12-01

    The sustainable supply of lipids is the bottleneck for current biodiesel production. Here microbial recycling of glycerol, byproduct of biodiesel production to biodiesel in engineered Escherichia coli strains was reported. The KC3 strain with capability of producing fatty acid ethyl esters (FAEEs) from glucose was used as a starting strain to optimize fermentation conditions when using glycerol as sole carbon source. The YL15 strain overexpressing double copies of atfA gene displayed 1.7-fold increase of FAEE productivity compared to the KC3 strain. The titer of FAEE in YL15 strain reached to 813 mg L(-1) in minimum medium using glycerol as sole carbon source under optimized fermentation conditions. The titer of glycerol-based FAEE production can be significantly increased by both genetic modifications and fermentation optimization. Microbial recycling of glycerol to biodiesel expands carbon sources for biodiesel production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Enzymatisk omestring til produktion af biodiesel

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2007-01-01

      Biodiesel er i dag sammen med bioethanol et bud på, hvordan transportsektoren kan nedbringe sin netto CO2-emission til atmosfæren og lagrene af fossilt brændstof kan strækkes. På verdensplan forventes der en produktion af biodiesel på 7,9 mio. tons i 2007. Ved den industrielle fremstilling af...... biodiesel benyttes i dag kemiske katalysatorer såsom H2SO4, NaOH, MeONa eller KOH, der efterfølgende fjernes fra den producerede biodiesel med store mængder vand og derved produceres store mængder spildevand. Ved at benytte enzymer i processen kan man reducere mængden af spildevand, der skal renses. Enzymer...... benyttes ikke i de eksisterende processer, men det forventes, at udviklingen af processerne vil øge deres anvendelse i biodieselproduktion. I artiklen præsenteres fordele og ulemper ved anvendelse af enzymer til biodiesel produktion....

  5. 9 CFR 319.15 - Miscellaneous beef products.

    Science.gov (United States)

    2010-01-01

    ..., the amount of such cheek meat shall be limited to 25 percent; and if in excess of natural proportions..., binders, or extenders. Beef cheek meat (trimmed beef cheeks) may be used in the preparation of hamburger... levels of up to 65 ppm may be used as a binder. Beef cheek meat (trimmed beef cheeks) may be used in the...

  6. Castor oil biodiesel: an economic evaluation; Biodiesel de mamona: uma avaliacao economica

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Monica de Moura; Alves, Jaenes Miranda; Almeida Neto, Jose Adolfo de; Almeida, Cezar Menezes; Sousa, Geovania Silva de; Cruz, Rosenira Serpa da; Monteiro, Renata; Lopes, Beatriz Sampaio; Robra, Sabine [Universidade Estadual de Santa Cruz, Ilheus, BA (Brazil). Grupo Bioenergia e Meio Ambiente]. E-mails: mpires@uesc.br; jaenes@uesc.br; jalmeida@uesc.br; roserpa@uesc.br

    2004-07-01

    The production cost of castor oil biodiesel by methyl way and its economic viability, using as reference the production cost data of castor oil and the implantation of the pilot plant at UESC - state university of Santa Cruz, Bahia State, Brazil was determined. From this information, it was seen that the estimated price of castor oil biodiesel is close to the diesel price in the Itabuna market, Bahia state, Brazil. The indicators show economic viability of the mini-power plant installation. Such information are preliminary estimative for the market and can be modified as function of changes in the main factors used to have the production costs, as well as the sectorial policies that drives the activity as much in levels of raw material production as in biodiesel.

  7. Biodiesel Reactor Design with Glycerol Separation to Increase Biodiesel Production Yield

    Directory of Open Access Journals (Sweden)

    Budy Rahmat

    2013-09-01

    Full Text Available The study consisted of reactor design used for transesterification process, effect of glycerol separation ontransesterification reaction, determination of biodiesel quality, and mass balance analysis. The reactor was designed byintegrating circulated pump/stirrer, static mixer, and sprayer that intensify the reaction in the outer tank reactor. The objective was to reduce the use of methanol in excess and to shorten the processing time. The results showed that thereactor that applied the glycerol separation was able to compensate for the decreased use of the reactant methanol from 6:1 to 5:1 molar ratio, and changed the mass balance in the product, including: (i the increase of biodiesel productionfrom 42.37% to 49.34%, and (ii the reduction of methanol in excess from 42.37% to 32.89%. The results suggested that the efficiency of biodiesel production could be increased with the glycerol separation engineering.

  8. Impacts of biodiesel production on Croatian economy

    International Nuclear Information System (INIS)

    Kulisic, Biljana; Loizou, Efstratios; Rozakis, Stelios; Segon, Velimir

    2007-01-01

    The aim of this paper is to assess the direct and indirect impacts on a national economy from biodiesel (rapeseed methyl ester (RME)) production using input-output (I-O) analysis. Biodiesel development in Croatia is used as a case study. For Croatia, as for many other countries in Europe, biodiesel is a new activity not included in the existing I-O sectoral accounts. For this reason the I-O table has to be modified accordingly before being able to quantify the effect of an exogenous demand for biodiesel. Impacts in terms of output, income and employment lead to the conclusion that biodiesel production could have significant positive net impact on the Croatian economy despite the high level of subsidies for rapeseed growing

  9. Biodiesel: most recent developments in distribution infra-structure; Recentes desenvolvimentos na infra-estrutura do biodiesel: caso pratico apresentando desde a compra do biodiesel ate a mistura automatizada nas bases

    Energy Technology Data Exchange (ETDEWEB)

    Kauer, Luiz Athayde da Silva; Luis, Silberman [Petroleo Ipiranga (Grupo ULTRA), Rio Grande, RS (Brazil)

    2008-07-01

    This presentation will show a practical large scale case of, which involves: the purchase, distribution and storage of 80 million liters of Biodiesel that we have bought in the Brazilian market; the way the distribution is being done and the future perspectives in its infra-structure. Moreover, this presentation will approach and detail the most recent developments in: automation of the mix in the terminals of distribution. Specific analysis of our terminal in Rio de Janeiro - Brazil; identification of the best practice and the results already obtained from it; identification of the tie breaker criteria to produce the mix of the Biodiesel in the Diesel oil; what we are doing to development the modals of transportation of Biodiesel; the Biodiesel storage - Best operational practices; the Biodiesel - aspects for the consumer quality control; acquisition of 5 thousand tons of carbon credits. (author)

  10. Biodiesel Basics (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-08-01

    This Spanish-language fact sheet provides a brief introduction to biodiesel, including a discussion of biodiesel blends, which blends are best for which vehicles, where to buy biodiesel, how biodiesel compares to diesel fuel in terms of performance, how biodiesel performs in cold weather, whether biodiesel use will plug vehicle filters, how long-term biodiesel use may affect engines, biodiesel fuel standards, and whether biodiesel burns cleaner than diesel fuel. The fact sheet also dismisses the use of vegetable oil as a motor fuel.

  11. Property modification of jatropha oil biodiesel by blending with other biodiesels or adding antioxidants

    International Nuclear Information System (INIS)

    Chen, Yi-Hung; Chen, Jhih-Hong; Luo, Yu-Min; Shang, Neng-Chou; Chang, Cheng-Hsin; Chang, Ching-Yuan; Chiang, Pen-Chi; Shie, Je-Lueng

    2011-01-01

    The feasibility of biodiesel production from jatropha (Jatropha curcas) oil was investigated with respect to the biodiesel blending properties and its oxidation stability with antioxidants. The JME (jatropha oil methyl esters) had the cetane number of 54, cold filter plugging point of -2 o C, density of 881 kg/m 3 at 15 o C, ester content of 99.4 wt.%, iodine value of 96.55 g I 2 /100 g, kinematic viscosity of 4.33 mm 2 /s at 40 o C, and oxidation stability of 3.86 h. Furthermore, the JME was blended with palm oil biodiesel and soybean oil biodiesel at various weight ratios and evaluated for fuel properties as compared to the relevant specifications. In addition, several antioxidants at concentrations between 100 and 1000 ppm were studied for their potential to improve the oxidation stability of the JME. The relationship between the IP (induction period) in the measurement of the oxidation stability associated with the antioxidant consumption in the JME was described by first-order reaction rate kinetics. Moreover, the ln IP (natural logarithm of the IP) at various concentrations of pyrogallol showed a linear relationship with the test temperature. The oxidation stability at ambient temperatures was predicted on the basis of an extrapolation of the temperature-dependent relationship. -- Highlights: → Jatropha oil methyl esters had satisfactory biodiesel properties except for the oxidation stability. → The oxidation stability and cold filter plugging point of the jatropha-based biodiesel blends cannot meet the EN 14214 requirements simultaneously. → The addition of pyrogallol was recommended for the stabilization of the jatropha oil methyl esters with a concentration of 100-250 ppm.

  12. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  13. Biodiesel Fuel Technology for Military Application

    National Research Council Canada - National Science Library

    Frame, Edwin

    1997-01-01

    This program addressed the effects of biodiesel (methyl soyate) and blends of biodiesel with petrofuels on fuel system component and material compatibility, fuel storage stability, and fuel lubricity...

  14. Biodiesel as a motor fuel price stabilization mechanism

    International Nuclear Information System (INIS)

    Serra, Teresa; Gil, José M.

    2012-01-01

    This article studies the capacity of biofuels to reduce motor fuel price fluctuations. For this purpose, we study dependence between crude oil and biodiesel blend prices in Spain. Copula models are used for this purpose. Results suggest that the practice of blending biodiesel with diesel can protect consumers against extreme crude oil price increases. - Highlights: ► We study the capacity of biofuels to reduce fuel price fluctuations. ► We focus on Spanish biodiesel market. ► Biodiesel and crude oil price dependence is studied using copula functions. ► Biodiesel can protect consumers against extreme crude oil price increases.

  15. Production and application of biodiesel from waste cooking oil

    Science.gov (United States)

    Tuly, S. S.; Saha, M.; Mustafi, N. N.; Sarker, M. R. I.

    2017-06-01

    Biodiesel has been identified as an alternative and promising fuel source to reduce the dependency on conventional fossil fuel in particular diesel. In this work, waste cooking oil (WCO) of restaurants is considered to produce biodiesel. A well-established transesterification reaction by sodium hydroxide (NaOH) catalytic and supercritical methanol (CH3OH) methods are applied to obtain biodiesel. In the catalytic transesterification process, biodiesel and glycerine are simultaneously produced. The impact of temperature, methanol/WCO molar ratio and sodium hydroxide concentration on the biodiesel formation were analysed and presented. It was found that the optimum 95% of biodiesel was obtained when methanol/WCO molar ratio was 1:6 under 873 K temperature with the presence of 0.2% NaOH as a catalyst. The waste cooking oil blend proportions were 10%, 15%, 20% and 25% and named as bio-diesel blends B-10, B-15, B-20, and B-25, respectively. Quality of biodiesel was examined according to ASTM 6751: biodiesel standards and testing methods. Important fuel properties of biodiesel, such as heating value, cetane index, viscosity, and others were also investigated. A four-stroke single cylinder naturally aspirated DI diesel engine was operated using in both pure form and as a diesel blend to evaluate the combustion and emission characteristics of biodiesel. Engine performance is examined by measuring brake specific fuel consumption and fuel conversion efficiency. The emission of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), and others were measured. It was measured that the amount of CO2 increases and CO decreases both for pure diesel and biodiesel blends with increasing engine load. However, for same load, a higher emission of CO2 from biodiesel blends was recorded than pure diesel.

  16. Spray Behavior and Atomization Characteristics of Biodiesel

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.

  17. Bio-diesel: A candidate for a Nigeria energy mix

    International Nuclear Information System (INIS)

    Eze, T.; Dim, L. A.; Funtua, I. I.; Oladipo, M. O. A.

    2011-01-01

    This paper presents a review of bio-diesel development and economic potentials. The basics of biodiesel and its production technology are described. Attention is given to development potential, challenges and prospests of bio-diesel in Nigeria with ground facts on bio-diesel production feasibility in Nigeria highlighted.

  18. Corrosion mechanism of copper in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Corrosion of copper in biodiesel increases with the increase of immersion time. ► The corrosion patina is found to be composed of CuO, Cu 2 O, CuCO 3 and Cu(OH) 2 . ► Green CuCO 3 was found as the major corrosion product. ► The mechanisms governing corrosion of copper in palm biodiesel are discussed. - Abstract: Biodiesel is a promising alternative fuel. However, it causes enhanced corrosion of automotive materials, especially of copper based components. In the present study, corrosion mechanism of copper was investigated by scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Compositional change of biodiesel due to the exposure of copper was also investigated. Corrosion patina on copper is found to be composed of Cu 2 O, CuO, Cu(OH) 2 and CuCO 3. Dissolved O 2 , H 2 O, CO 2 and RCOO − radical in biodiesel seem to be the leading factors in enhancing the corrosiveness of biodiesel.

  19. Biodiesel scenario in India

    Energy Technology Data Exchange (ETDEWEB)

    Taj, S. [Bangalore Univ., Al-Ameen College, Bangalore (India). Dept. of Chemistry; Prasad, H. [Bangalore Univ., Central College, Bangalore (India). Dept. of Chemistry; Ramesh, N. [Reva College, Bangladore (India); Papavinasam, S. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Materials Technology Lab

    2009-08-15

    This article presented an overview of biodiesel production in India. Biodiesel has gained widespread acceptance in the United States and the European Union as a substitute for diesel. In early 2003, the Indian National Planning Commission launched a program to also foster development of vegetable oil based biofuels in order to address the energy challenges facing India. Approximately 57 per cent of rural Indian households are still not connected to the power grid, and India imports 75 per cent of its total petroleum. The National Planning Commission advocated widespread planting of an inedible, but high-yielding tree-born oilseed known as jatropha curcas that would serve as the primary feedstock for the production of vegetable oil based biofuels. Jatropha and pongamia are widely recognized as the most economically viable and environmentally neutral feedstock options. Both of these tree-borne oilseeds are adaptable to reasonably harsh climatic and growing conditions, enabling them to be cultivated on wastelands that are not currently used in agricultural production. The Commission recommended that 11.2 million hectares of jatropha be cultivated on marginal waste lands which would, over time, replace 20 per cent of total national diesel consumption with biodiesel. Both public and private sector players have begun to act on the Commission's plan. More than a hundred thousand hectares of jatropha have been planted and private firms have begun to build biodiesel processing plants. State-owned petroleum product marketing firms have committed to distributing biodiesel through some existing distribution channels. 8 refs., 6 tabs., 3 figs.

  20. Accelerated oxidation processes is biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M.; Monyem, A.; Van Gerpen, J.

    1999-12-01

    Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feedstocks such as vegetable oil and animal fats. These feedstocks are reacted with an alcohol to produce alkyl monoesters that can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This article reports the results of experiments to track the chemical and physical changes that occur in biodiesel as it oxidizes. These results show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are explored also. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq/kg ester, the acid value and viscosity increase monotonically as oxidation proceeds.

  1. Calorific value for compositions with biodiesel of fat chicken and diesel oil; Valor calorifico para composicoes com biodiesel da gordura de frango e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Marcelo Jose da [Universidade de Campinas (FEAGRI/UNICAMP), SP (Brazil). Fac. de Engenharia Agricola], email: marcelo.jose@feagri.unicamp.br; Souza, Samuel N.M. de; Souza, Abel A. de; Martins, Gislaine I. [Universidade Estadual do Oeste do Parana (CCET/UNIOESTE), Cascavel, PR (Brazil). Centro de Ciencias Exatas e Tecnologicas], emails: ssouza@unioeste.br, abel.sza@hotmail.com, iastiaque@yahoo.com.br

    2011-07-01

    The biodiesel fuel is a renewable source of alternative fuel used in diesel cycle engines. The production of biodiesel involves the reaction of methanol with fatty acids of animal or vegetable. The production of biodiesel from chicken fat can be very attractive for some regions from Brazil with high poultry production, as in the Parana West and Santa Catarina West. In this study , the goal was the lower calorific value of the compositions between biodiesel and diesel oil: 100% Diesel oil (B0), 20% biodiesel (B20), 40% biodiesel (B40), 60% biodiesel (B60), 80% biodiesel (B80 ), 100% biodiesel (B100). The biodiesel used was acquired in the Centre for Development and Diffusion of technologies on the Assis Gurgacz College, in Cascavel city. The nominal production capacity of the unit is 900 liters on period of 8 hours. The model of the calorimeter used, was the E2K. The lower calorific value of B100 composition was 35.388 MJ kg-1 and the diesel oil was 41.299 MJ kg-1. With the measuring of the caloric value of six samples mix of diesel oil and biodiesel, was obtained a linear function decrease of the calorific value when increased it the proportion of biodiesel from chicken fat into fuel. (author)

  2. Pressure resistance of cold-shocked Escherichia coli O157:H7 in ground beef, beef gravy and peptone water.

    Science.gov (United States)

    Baccus-Taylor, G S H; Falloon, O C; Henry, N

    2015-06-01

    (i) To study the effects of cold shock on Escherichia coli O157:H7 cells. (ii) To determine if cold-shocked E. coli O157:H7 cells at stationary and exponential phases are more pressure-resistant than their non-cold-shocked counterparts. (iii) To investigate the baro-protective role of growth media (0·1% peptone water, beef gravy and ground beef). Quantitative estimates of lethality and sublethal injury were made using the differential plating method. There were no significant differences (P > 0·05) in the number of cells killed; cold-shocked or non-cold-shocked. Cells grown in ground beef (stationary and exponential phases) experienced lowest death compared with peptone water and beef gravy. Cold-shock treatment increased the sublethal injury to cells cultured in peptone water (stationary and exponential phases) and ground beef (exponential phase), but decreased the sublethal injury to cells in beef gravy (stationary phase). Cold shock did not confer greater resistance to stationary or exponential phase cells pressurized in peptone water, beef gravy or ground beef. Ground beef had the greatest baro-protective effect. Real food systems should be used in establishing food safety parameters for high-pressure treatments; micro-organisms are less resistant in model food systems, the use of which may underestimate the organisms' resistance. © 2015 The Society for Applied Microbiology.

  3. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    International Nuclear Information System (INIS)

    Sarin, Amit; Singh, Meetu; Sharma, Neerja; Singh, N. P.

    2017-01-01

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  4. Prospects of Tectona Grandis as a Feedstock for Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit, E-mail: amit.sarin@yahoo.com [Department of Physical Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Singh, Meetu [Department of Applied Sciences, I.K. Gujral Punjab Technical University, Kapurthala (India); Sharma, Neerja [PG Department of Physics and Electronics, DAV College, Amritsar (India); Singh, N. P. [Department of Planning and External Development, I.K. Gujral Punjab Technical University, Kapurthala (India)

    2017-10-26

    The limited availability of fossil fuels has encouraged the need of replacement fuels of renewable nature. Among the renewable fuels, biodiesel produced from oil seeds and food wastes has been favored by the majority of researchers. In this study, Tectona Grandis seed oil has been investigated as a non-edible feedstock for biodiesel. The oil content of seed is 43% which makes it suitable for commercial production of biodiesel. The synthesis of biodiesel from T. Grandis oil was done with transesterification reaction giving high percentage yield of biodiesel which reached to 89%. The T. Grandis biodiesel was subjected to determine various physicochemical parameters by standard testing methods and found in agreement with the ASTM D-6751 and EN-14214 standards. The fatty-acid methyl ester composition for the biodiesel is composed of 42.71% oleic acid, 13.1% palmitic acid, and 31.51% linoleic acid. The biodiesel showed low oxidation stability which is attributed to high percentage of unsaturation. To address this issue, synthetic antioxidants were added to increase its resistance towards oxidation. By considering all the parameters, the present study reveals that T. Grandis seed oil is reliable for the production of biodiesel with encouraging probability in future.

  5. Energy analysis and environmental impacts of microalgal biodiesel in China

    International Nuclear Information System (INIS)

    Liao Yanfen; Huang Zehao; Ma Xiaoqian

    2012-01-01

    The entire life cycle of biodiesel produced by microalgal biomasses was evaluated using the method of life cycle assessment (LCA) to identify and quantify the fossil energy requirements and environmental impact loading of the system. The life cycle considers microalgae cultivation, harvesting, drying, oil extraction, anaerobic digestion, oil transportation, esterification, biodiesel transportation and biodiesel combustion. The investigation results show that the fossil energy requirement for the biodiesel production is 0.74 MJ/MJ biodiesel, indicating that 1 MJ of biodiesel requires an input of 0.74 MJ of fossil energy. Accordingly, biodiesel production is feasible as an energy producing process. The environmental impact loading of microalgal biodiesel is 3.69 PET 2010 (Person Equivalents, Targeted, in 2010) and the GWP is 0.16 kg CO 2-eq /MJ biodiesel. The effects of photochemical ozone formation were greatest among all calculated categorization impacts. The fossil energy requirement and GWP in this operation were found to be particularly sensitive to oil content, drying rate and esterification rate. Overall, the results presented herein indicate that the cultivation of microalgae has the potential to produce an environmentally sustainable feedstock for the production of biodiesel. - Highlights: ► Do energy analysis and environmental impacts of algal biodiesel in China. ► GWP and energy consumption are sensitive to lipid content and drying rate. ► Fossil energy consumption for algal biodiesel is 0.74 MJ/MJ. ► Microalgae are an environmentally sustainable feedstock for biodiesel production.

  6. BEEF MARKET IN ROMANIA

    Directory of Open Access Journals (Sweden)

    Elena SOARE

    2015-04-01

    Full Text Available This scientific paper presents the cattle market dynamics in Romania during 2007-2013. In order to realize this research there were used certain indicators, as following: herds of cattle, realized beef production, selling price, human consumption, import and export. The data were collected from the Ministry of Agriculture and Rural Development, National Institute of Statistics and Faostat. During the analysis, the presented indicators were modified from a period to another, because of both internal and external factors. Consumption demand is being influenced by: beef price, beef quality, price of other meat categories, consumers incomes, population’s food consumption pattern and so on.

  7. Compatibility of elastomers in palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Masjuki, H.H.; Siang, C.T.; Fazal, M.A. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-10-15

    In recent time, environmental awareness and concern over the rapid exhaustion of fossil fuels have led to an increased popularity of biodiesel as an alternative fuel for automobiles. However, there are concerns over enhanced degradation of automotive materials in biodiesel. The present study aims to investigate the impact of palm biodiesel on the degradation behavior of elastomers such as nitrile rubber (NBR), polychloroprene, and fluoro-viton A. Static immersion tests in B0 (diesel), B10 (10% biodiesel in diesel), B100 (biodiesel) were carried out at room temperature (25 C) and at 50 C for 500 h. At the end of immersion test, degradation behavior was investigated by measuring mass, volume, hardness as well as tensile strength and elongation. The exposed elastomer surface was studied by scanning electron microscopy (SEM). Fourier Transform Infrared (FTIR) spectroscopy was carried out to identify the chemical and structural changes. Results showed that the extent of degradation was higher for both polychloroprene and NBR while fluoro-viton exhibited good resistance to degradation and was least attacked. (author)

  8. Oxidation stability and risk evaluation of biodiesel

    Directory of Open Access Journals (Sweden)

    Hoshino Takashi

    2007-01-01

    Full Text Available This review describes oxidation and thermal stability and hazardous possibility of biodiesel by auto-oxidation. As it can be distributed using today’s infrastructure biodisel production has increased especially in the European Union. Biodiesel has many surpassing properties as an automotive fuel. Biodiesel is considered safer than diesel fuel because of the high flash point, but it has oxygen and double bond(s. Fatty acid methyl esters are more sensitive to oxidative degradation than fossil diesel fuel. The ability of producing peroxides is rather high, therefore we should care of handling of biodiesel.

  9. Predicting specific gravity and viscosity of biodiesel fuels

    OpenAIRE

    Tesfa, Belachew; Mishra, Rakesh; Gu, Fengshou; Ball, Andrew

    2009-01-01

    Biodiesel is a promising non-toxic and biodegradable alternative fuel in transport sector. Of all the biodiesel properties, specific gravity and viscosity are the most significant for the effects they have on the utilization of biodiesel fuels in unmodified engines. This paper presents models, which have been derived from experimental data, for predicting the specific gravity and dynamic viscosity of biodiesel at various temperatures and fractions. In addition a model has also been developed ...

  10. Degradation of nitrile rubber fuel hose by biodiesel use

    International Nuclear Information System (INIS)

    Coronado, Marcos; Montero, Gisela; Valdez, Benjamín; Stoytcheva, Margarita; Eliezer, Amir; García, Conrado; Campbell, Héctor; Pérez, Armando

    2014-01-01

    Nowadays biodiesel is becoming an increasingly important and popular fuel, obtained from renewable sources, and contributes to pollutant emissions reduction and decreasing fossil fuels dependence. However, its easier oxidation and faster degradation in comparison to diesel led to compatibility problems between biodiesel and various metallic and polymeric materials contacted. Therefore, the objective of this work is to investigate the effect of different mixtures diesel–biodiesel (fuel type B5, B10, B20) used in Baja California, Mexico on the resistance of nitrile rubber fuel hoses at temperatures of 25 °C and 70 °C applying gravimetric tests, tensile strength measurements and scanning electron microscopy analysis. The factors affecting the material mass change were identified using an experimental design analysis. It was found that the fuel temperature did not conduct to significant mass loss of nitrile rubber fuel hose, while biodiesel concentration affected the properties of the elastomer, causing the phenomenon of swelling. The exposure of hoses to fuel with increasing concentrations of biodiesel led to tensile strength decrease. - Highlights: • The biodiesel oxidation led to problems with polymeric materials. • The degradation of a nitrile rubber fuel hose in biodiesel blends was assessed. • The nitrile rubber showed greater affinity for biodiesel than diesel. • The elastomer swelled, cracked and lost its mechanical properties by biodiesel. • SEM analysis confirmed surface morphology changes in higher biodiesel blends

  11. Critical review of jatropha biodiesel promotion policies in India

    International Nuclear Information System (INIS)

    Kumar, Sunil; Chaube, Alok; Jain, Shashi Kumar

    2012-01-01

    Jatropha, a non-edible oil seed yielding plant has been identified by the Government of India to produce biodiesel under National Biodiesel Mission. Failure of phase-I of National Biodiesel Mission and likely failure of phase-II requires critical analysis of policy frameworks related to its long term sustainability. Indian biofuel promotion policies like Biodiesel Purchase Policy and National Biofuel Policy have failed to yield any visible results. No tangible ground work is visible as of now to ensure success of various government plans and policies related to adoption of jatropha biodiesel. It is clearly evident that some serious bottlenecks are delaying the adoption of jatropha biodiesel. Present work identifies important policy bottlenecks like availability of land, non-remunerative pricing policy and state fear relating to loss of revenue in the case of zero duty regimes. This paper attempts to explore and critically analyze present policies and possible options taking into account the recent Indian experiences for successful adoption of jatropha biodiesel. - Highlights: ► Wrong waste land estimates for jatropha has failed Biodiesel Mission. ► No redressal of technological problems with biodiesel usage. ► Present estimated costing of jatropha biodiesel is Rs. 46.45 per liter. ► Promotion of any biofuel needs central government assistance to the states. ► Targets under National Biofuel Policy are also unlikely to be met.

  12. Physico-chemical characterization of biodiesel from pests attacked corn oil; Caracterizacao fisico-quimica do biodiesel de oleo de milho danificado por pragas

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fabia M.; Correa, Paulo C.; Martins, Marcio A.; Santos, Silmara B.; Damian, Amanda D. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: copace@ufv.br, aredes@ufv.br, syllmara@vicosa.ufv.br

    2009-07-01

    The biodiesel is a renewable energy source alternative to fossil fuels. The biodiesel synthesis can be made by many types of triglycerides transesterification, it is possible to use this biofuel in vehicles if it has the quality required from Agencia Nacional de Petroleo, Gas Natural e Biocombustiveis (ANP). Searching an application for pests attacked corn, there is feasibility technical for the biodiesel production from this corn oil. The biodiesel synthesis was made through ethyl transesterification process with alkaline catalyst using ethanol. The biodiesel physical-chemical characterization was performed using ANP methods. (author)

  13. 9 CFR 319.81 - Roast beef parboiled and steam roasted.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Roast beef parboiled and steam roasted... beef parboiled and steam roasted. “Roast Beef Parboiled and Steam Roasted” shall be prepared so that... “Roast Beef Parboiled and Steam Roasted.” When beef cheek meat, beef head meat, or beef heart meat is...

  14. BIODIESEL BLENDS IN SPACE HEATING EQUIPMENT

    International Nuclear Information System (INIS)

    KRISHNA, C.R.

    2001-01-01

    Biodiesel is a diesel-like fuel that is derived from processing vegetable oils from various sources, such as soy oil, rapeseed or canola oil, and also waste vegetable oils resulting from cooking use. Brookhaven National laboratory initiated an evaluation of the performance of blends of biodiesel and home heating oil in space heating applications under the sponsorship of the Department of Energy (DOE) through the National Renewable Energy Laboratory (NREL). This report is a result of this work performed in the laboratory. A number of blends of varying amounts of a biodiesel in home heating fuel were tested in both a residential heating system and a commercial size boiler. The results demonstrate that blends of biodiesel and heating oil can be used with few or no modifications to the equipment or operating practices in space heating. The results also showed that there were environmental benefits from the biodiesel addition in terms of reductions in smoke and in Nitrogen Oxides (NOx). The latter result was particularly surprising and of course welcome, in view of the previous results in diesel engines where no changes had been seen. Residential size combustion equipment is presently not subject to NOx regulation. If reductions in NOx similar to those observed here hold up in larger size (commercial and industrial) boilers, a significant increase in the use of biodiesel-like fuel blends could become possible

  15. French bio-diesel demand and promoting measures analysis by 2010

    International Nuclear Information System (INIS)

    Bernard, F.

    2008-02-01

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  16. A model for 'sustainable' US beef production.

    Science.gov (United States)

    Eshel, Gidon; Shepon, Alon; Shaket, Taga; Cotler, Brett D; Gilutz, Stav; Giddings, Daniel; Raymo, Maureen E; Milo, Ron

    2018-01-01

    Food production dominates land, water and fertilizer use and is a greenhouse gas source. In the United States, beef production is the main agricultural resource user overall, as well as per kcal or g of protein. Here, we offer a possible, non-unique, definition of 'sustainable' beef as that subsisting exclusively on grass and by-products, and quantify its expected US production as a function of pastureland use. Assuming today's pastureland characteristics, all of the pastureland that US beef currently use can sustainably deliver ≈45% of current production. Rewilding this pastureland's less productive half (≈135 million ha) can still deliver ≈43% of current beef production. In all considered scenarios, the ≈32 million ha of high-quality cropland that beef currently use are reallocated for plant-based food production. These plant items deliver 2- to 20-fold more calories and protein than the replaced beef and increase the delivery of protective nutrients, but deliver no B 12 . Increased deployment of rapid rotational grazing or grassland multi-purposing may increase beef production capacity.

  17. Model Biaya Produksi Biodiesel Berbasis Minyak Sawit

    Directory of Open Access Journals (Sweden)

    Meilita Tryana Sembiring

    2015-06-01

    Full Text Available Biodiesel is a renewable energy source in Indonesia of which the use is regulated by the government in the form of mandatory policy of biodiesel and diesel fuel blending. The production of biodiesel in Indonesia is not developed (the need is 3.4 million kiloliters but the total national production is only 1,703 kiloliters. It is because the selling price (referring to Mean of Platts Singapore is always lower than the production cost. Biodiesel production is influenced by raw materials and process technology, so it needs to be conducted biodiesel production modeling as a basis in determining the supporting policies of biodiesel selling price. The purpose of this study is to identify the raw materials, process technology, and modeling the production cost structure of palm oil-based biodiesel. Identification of raw materials was conducted by literature study and field survey to biodiesel producers. Identification of process technology was conducted by field survey and mass balance calculation using Grand Inizio technology to get the number of yield of each raw material. Then, production cost study was based on the specifications of raw materials and process technology with heuristic approach. Types and specifications of palm oil widely used by Indonesian producers are Crude Palm Oil (CPO FFA<5%, Refined Palm Oil (RPO FFA<5%, Refined Oil FFA<1%, Palm Fatty Acid Distillated (PFAD FFA 90%. The technology process used was transesterification for FFA level <1% and esterification-transesterification for FFA level <5%. The resulting yield for 1000 kg of raw material is 1051.75 kg CPO, 975.94 kg RPO and PFAD, 973.81 kg Refined Oil with Grand Inizio technology approach. The production cost model represents the total production cost influenced by the costs of Inside Battery Limit, Outside Battery Limit, general cost and glycerol value-added.ABSTRAKBiodiesel adalah sumber energi terbarukan di Indonesia yang diatur penggunaannya oleh pemerintah dalam bentuk

  18. Sustainable Future for Biodiesel in Brazil

    DEFF Research Database (Denmark)

    Dias, Maria Amélia de Paula

    This thesis aims to study alternatives to biodiesel industry in Brazil, for 2030, taking in account the sustainability dimensions, namely economic, environmental, ecological, social, national and international politics, territorial, cultural, and technological, through the development of scenarios...... for agriculture and pasture. Thus, a simulation, using linear programming models, was made in order to verify the alternatives of feedstock to produce biodiesel. It was observed that it is possible to decentralize the market, reduce land use, and regionalize production, making better use of the availability...... to identify the driving forces to develop the scenario storylines. This proposition was tested in an in-depth interview with the biodiesel market stakeholders. Based on the findings of the two approaches, the simulations and the interviews, it was possible to obtain future alternatives, where the biodiesel...

  19. Isothermal calorimetry on enzymatic biodiesel production

    DEFF Research Database (Denmark)

    Fjerbæk, Lene

    2008-01-01

    information about effects taking place when using lipases immobilized on an inert carrier for transesterification of a triglyceride and an alcohol as for biodiesel production. The biodiesel is produced by rapeseed oil and methanol as well as ethanol and a commercial biocatalyst Novozym 435 from Novozymes...... containing a Candida Antarctica B lipase immobilized on an acrylic resin. The reaction investigated is characterized by immiscible liquids (oil, methanol, glycerol and biodiesel) and enzymes imm. on an inert carrier during reaction, which allows several effects to take place that during normal reaction...... conditions can not be elucidated. These effects have been observed with isothermal calorimetry bringing forth new information about the reaction of enzymes catalyzing transesterification. Enzymatic biodiesel production has until now not been investigated with isothermal microcalorimetry, but the results...

  20. The Current Status of Biodiesel Production Technology: A Review

    Directory of Open Access Journals (Sweden)

    Rizal Alamsyah

    2007-12-01

    Full Text Available Biodiesel is addressed to the name of fuel which consist of mono-alkyl ester that made from renewable and biodegradable resources, such as oils from plants (vegetable oils, waste or used cooking oil, and animal fats. Such oils or fats are chemically reacted with alcohols or methanol In producing chernical compounds called fatty acid methyl ester (FAME and these reactions are called transesterification and esterification. Glycerol, used in the pharmaceutical and cosmetics industry is produced from biodiesel production as a by-product. Researches on biodiesel as an alternative petroleum diesel have been done for more than 20 years. Transesterification reaction can be acid-catalyzed, alkali-catatyzed, or enzyme-catalyzed. Commercially biodiesel is processed by transesterification with alkali catalyst. This process, however, requires refining of products and recovery of catalysts, Such biodiesel production accelerates researches on biodiesel to obtain simpler methods, better quality. and minimum production cost. Besides the catalytic production for biodiesel, there is a method for biodiesel production namely non-catalytic production. Non-catalytic transesterification method was developed since catalytic tranestertfification still has two main problems assoclated With long reaction time and complicated purification. The first problem occurres because of the two phase nature of vegetable oil/methanol mixture, and the last problem is due to purification of catalyst and glycerol. The application of catalytic tranestertfication method leads to condition of high biodiesel production cost and high energy consumption. This paper provides information of biodiesel production progress namely catalytic tranestertfification (acid, alkali, and enzymatic tranesterfification, and non-catalytic tranesterification (at sub-critical­-supercritical temperature under pressurized conditions. It was found that every method of biodiesel production still has advantages and

  1. Biodiesel II: A new concept of biodiesel production - transesterification with supercritical methanol

    Directory of Open Access Journals (Sweden)

    Skala Dejan U.

    2004-01-01

    Full Text Available Biodiesel is defined as a fuel that might be used as a pure biofuel or at high concentration in mineral oil derivatives, in accordance with specific quality standards for transport applications. The main raw material used for biodiesel production is rapeseed, which contains mono-unsaturated (about 60% and also, in a lower quantity, poly-unsaturated fatty acids (C 18:1 and C 18:3, as well as some amounts of undesired saturated fatty acids (palmitic and stearic acids. Other raw materials have also been used in the research and industrial production of biodiesel (palm-oil, sunflower-oil, soybean-oil, waste plant oil, animal fats, etc. The historical background of the biodiesel production, installed industrial capacities, as well as Directives of the European Parliament and of the Council (May 2003 regarding the promotion of the use of biofuels or other renewable fuels for transport are discussed in the first part of this article (Chem. Ind. 58 (2004. The second part focused on some new concepts and the future development of technology for biodiesel production based on the use of non-catalytic transesterification under supercritical conditions. A literature review, as well as original results based on the transesterification of animal fats, plant oil and used plant oil were discussed. Obtained results were compared with the traditional concept of transesterification based on base or acid catalysis. Experimental investigations of transesterification with supercritical methanol were performed in a 2 dm3 autoclave at 140 bar pressure and at 300°C with molar ratio of methanol to triglycerides of about 41. The degree of esterification strongly depends on the density of supercritical methanol and on the possibility of reaction occurring in one phase.

  2. Investigation of friction and wear characteristics of palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2013-01-01

    Highlights: ► Both wear and friction decrease with the increase of biodiesel concentration. ► Wear and friction appear to decrease more at the range of 10–20% biodiesel in diesel blend. ► The wear of steel ball in biodiesel (B100) was 20% lower than that in diesel (B0). ► Lubricity in terms of wear and friction decreases with the increase of rotating speed. - Abstract: Use of biodiesel in automobile engine is creating tribology related new challenges. The present study aims to assess the friction and wear characteristics of palm biodiesel at different concentration level by using four-ball wear machine. The investigated fuels were biodiesel (B100), diesel (B0) and three different biodiesel blends such as B10 (10% biodiesel in diesel), B20, B50. Tests were conducted at 75 °C under a normal load of 40 kg for 1 h at four different speeds viz, 600, 900, 1200 and 1500 rpm. Worn surfaces of the balls were examined by SEM. Results showed that wear and friction decreased with the increase of biodiesel concentration. The wear of steel ball in B100 was appeared to be 20% lower than that in diesel (B0)

  3. Particulate emissions from biodiesel fuelled CI engines

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Gupta, Tarun; Shukla, Pravesh C.; Dhar, Atul

    2015-01-01

    Highlights: • Physical and chemical characterization of biodiesel particulates. • Toxicity of biodiesel particulate due to EC/OC, PAHs and BTEX. • Trace metals and unregulated emissions from biodiesel fuelled diesel engines. • Influence of aftertreatment devices and injection strategy on biodiesel particulates. • Characterization of biodiesel particulate size-number distribution. - Abstract: Compression ignition (CI) engines are the most popular prime-movers for transportation sector as well as for stationary applications. Petroleum reserves are rapidly and continuously depleting at an alarming pace and there is an urgent need to find alternative energy resources to control both, the global warming and the air pollution, which is primarily attributed to combustion of fossil fuels. In last couple of decades, biodiesel has emerged as the most important alternative fuel candidate to mineral diesel. Numerous experimental investigations have confirmed that biodiesel results in improved engine performance, lower emissions, particularly lower particulate mass emissions vis-à-vis mineral diesel and is therefore relatively more environment friendly fuel, being renewable in nature. Environmental and health effects of particulates are not simply dependent on the particulate mass emissions but these change depending upon varying physical and chemical characteristics of particulates. Particulate characteristics are dependent on largely unpredictable interactions between engine technology, after-treatment technology, engine operating conditions as well as fuel and lubricating oil properties. This review paper presents an exhaustive summary of literature on the effect of biodiesel and its blends on exhaust particulate’s physical characteristics (such as particulate mass, particle number-size distribution, particle surface area-size distribution, surface morphology) and chemical characteristics (such as elemental and organic carbon content, speciation of polyaromatic

  4. Sustainable Energy Production from Jatropha Bio-Diesel

    Science.gov (United States)

    Yadav, Amit Kumar; Krishna, Vijai

    2012-10-01

    The demand for petroleum has risen rapidly due to increasing industrialization and modernization of the world. This economic development has led to a huge demand for energy, where the major part of that energy is derived from fossil sources such as petroleum, coal and natural gas. Continued use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies. There is a growing interest in using Jatropha curcas L. oil as the feedstock for biodiesel production because it is non-edible and thus does not compromise the edible oils, which are mainly used for food consumption. Further, J. curcas L. seed has a high content of free fatty acids that is converted in to biodiesel by trans esterification with alcohol in the presence of a catalyst. The biodiesel produced has similar properties to that of petroleum-based diesel. Biodiesel fuel has better properties than petro diesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future. Biodiesel has the potential to economically, socially, and environmentally benefit communities as well as countries, and to contribute toward their sustainable development.

  5. Perspectives of microbial oils for biodiesel production

    Energy Technology Data Exchange (ETDEWEB)

    Li Qiang; Du Wei; Liu Dehua [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering

    2008-10-15

    Biodiesel has become more attractive recently because of its environmental benefits, and the fact that it is made from renewable resources. Generally speaking, biodiesel is prepared through transesterification of vegetable oils or animal fats with short chain alcohols. However, the lack of oil feedstocks limits the large-scale development of biodiesel to some extent. Recently, much attention has been paid to the development of microbial, oils and it has been found that many microorganisms, such as algae, yeast, bacteria, and fungi, have the ability to accumulate oils under some special cultivation conditions. Compared to other plant oils, microbial oils have many advantages, such as short life cycle, less labor required, less affection by venue, season and climate, and easier to scale up. With the rapid expansion of biodiesel, microbial oils might become one of potential oil feedstocks for biodiesel production in the future, though there are many works associated with microorganisms producing oils need to be carried out further. This review is covering the related research about different oleaginous microorganisms producing oils, and the prospects of such microbial oils used for biodiesel production are also discussed. (orig.)

  6. Mackerel biodiesel production from the wastewater containing fish oil

    International Nuclear Information System (INIS)

    Wu, Y.P.; Huang, H.M.; Lin, Y.F.; Huang, W.D.; Huang, Y.J.

    2014-01-01

    Marine fish such as mackerel are important for coastal fisheries in Taiwan. Nearly 60,000 tons of mackerel are produced in Suao, I-lan, Taiwan every year. In this study, oil from the discarded parts of mackerel fish contained in wastewater stream were used as the raw material to produce biodiesel through transesterification reaction. The major fuel properties of MB (mackerel biodiesel), including the iodine value, dynamic viscosity, flash point, and heat value, were determined and compared with sunflower seed oil methyl ester (SFM), JCB (Jatropha curcas biodiesel), and premium diesel (D). MB had a higher iodine value, dynamic viscosity, density, and flash point, but a lower heat value, than did D. MB was also used as fuel in a regular diesel engine to verify its emission characteristics. The MB fuel used for exhaust emission test included pure MB (MB100) and a 20% MB blend with premium diesel (MB20). The exhaust emission of MB was also compared with the exhaust emissions of D and JCB. The results showed that MB20 provided a significant reduction in NO, NO x , and SO 2 emissions under varied engine loads, and required no engine modification. - Highlights: • Biodiesel was produced from wastewater containing mackerel fish oil. • Mackerel biodiesel is compared with Jatropha biodiesel and sunflower seed biodiesel. • MBE (mackerel biodiesel) was found to contain higher amount of unsaturated fatty acids. • Mackerel biodiesel, diesel, and Jatropha biodiesel emissions are compared

  7. The State High Biodiesel Project

    Science.gov (United States)

    Heasley, Paul L.; Van Der Sluys, William G.

    2009-01-01

    Through a collaborative project in Pennsylvania, high school students developed a method for converting batches of their cafeteria's waste fryer oil into biodiesel using a 190 L (50 gal) reactor. While the biodiesel is used to supplement the school district's heating and transportation energy needs, the byproduct--glycerol--is used to make hand…

  8. Integrating spread dynamics and economics of timber production to manage Chinese tallow invasions in southern U.S. forestlands.

    Directory of Open Access Journals (Sweden)

    Hsiao-Hsuan Wang

    Full Text Available Economic costs associated with the invasion of nonnative species are of global concern. We estimated expected costs of Chinese tallow (Triadica sebifera (L. Small invasions related to timber production in southern U.S. forestlands under different management strategies. Expected costs were confined to the value of timber production losses plus costs for search and control. We simulated management strategies including (1 no control (NC, and control beginning as soon as the percentage of invaded forest land exceeded (2 60 (Low Control, (3 25 (Medium Control, or (4 0 (High Control using a spatially-explicit, stochastic, bioeconomic model. With NC, simulated invasions spread northward and westward into Arkansas and along the Gulf of Mexico to occupy ≈1.2 million hectares within 20 years, with associated expected total costs increasing exponentially to ≈$300 million. With LC, MC, and HC, invaded areas reached ≈275, 34, and 2 thousand hectares after 20 years, respectively, with associated expected costs reaching ≈$400, $230, and $200 million. Complete eradication would not be cost-effective; the minimum expected total cost was achieved when control began as soon as the percentage of invaded land exceeded 5%. These results suggest the importance of early detection and control of Chinese tallow, and emphasize the importance of integrating spread dynamics and economics to manage invasive species.

  9. Light vehicle regulated and unregulated emissions from different biodiesels

    International Nuclear Information System (INIS)

    Karavalakis, George; Stournas, Stamoulis; Bakeas, Evangelos

    2009-01-01

    In this study, the regulated and unregulated emissions profile and fuel consumption of an automotive diesel and biodiesel blends, prepared from two different biodiesels, were investigated. The biodiesels were a rapeseed methyl ester (RME) and a palm-based methyl ester (PME). The tests were performed on a chassis dynamometer with constant volume sampling (CVS) over the New European Driving Cycle (NEDC) and the non-legislated Athens Driving Cycle (ADC), using a Euro 2 compliant passenger vehicle. The objectives were to evaluate the impact of biodiesel chemical structure on the emissions, as well as the influence of the applied driving cycle on the formation of exhaust emissions and fuel consumption. The results showed that NOx emissions were influenced by certain biodiesel properties, such as those of cetane number and iodine number. NOx emissions followed a decreasing trend over both cycles, where the most beneficial reduction was obtained with the application of the more saturated biodiesel. PM emissions were decreased with the palm-based biodiesel blends over both cycles, with the exception of the 20% blend which was higher compared to diesel fuel. PME blends led to increases in PM emissions over the ADC. The majority of the biodiesel blends showed a tendency for lower CO and HC emissions. The differences in CO2 emissions were not statistically significant. Fuel consumption presented an increase with both biodiesels. Total PAH and nitro-PAH emission levels were decreased with the use of biodiesel independently of the source material. Lower molecular weight PAHs were predominant in both gaseous and particulate phases. Both biodiesels had a negative impact on certain carbonyl emissions. Formaldehyde and acetaldehyde were the dominant aldehydes emitted from both fuels.

  10. Purification of crude biodiesel using dry washing and membrane technologies

    OpenAIRE

    Atadashi, I.M.

    2015-01-01

    Purification of crude biodiesel is mandatory for the fuel to meet the strict international standard specifications for biodiesel. Therefore, this paper carefully analyzed recently published literatures which deal with the purification of biodiesel. As such, dry washing technologies and the most recent membrane biodiesel purification process have been thoroughly examined. Although purification of biodiesel using dry washing process involving magnesol and ion exchange resins provides high-quali...

  11. Beschikbaarheid koolzaad voor biodiesel

    OpenAIRE

    Janssens, B.; Prins, H.; Smit, A.B.; Annevelink, E.; Meeusen-van Onna, M.J.G.

    2005-01-01

    This report provides an insight into the conditions under which the Dutch agricultural industry will cultivate oilseed rape for biodiesel. The Dutch agricultural entrepreneur occupies a central role in this. The possibilities relating to the cultivation of oilseed rape are assessed from the perspective of the Dutch farmer, within the framework of the EU directive regarding the substitution of 2% of transport fuels with bio transport fuels in the Netherlands. Along with bio-ethanol, biodiesel ...

  12. Profitability and sustainability of small - medium scale palm biodiesel plant

    Science.gov (United States)

    Solikhah, Maharani Dewi; Kismanto, Agus; Raksodewanto, Agus; Peryoga, Yoga

    2017-06-01

    The mandatory of biodiesel application at 20% blending (B20) has been started since January 2016. It creates huge market for biodiesel industry. To build large-scale biodiesel plant (> 100,000 tons/year) is most favorable for biodiesel producers since it can give lower production cost. This cost becomes a challenge for small - medium scale biodiesel plants. However, current biodiesel plants in Indonesia are located mainly in Java and Sumatra, which then distribute biodiesel around Indonesia so that there is an additional cost for transportation from area to area. This factor becomes an opportunity for the small - medium scale biodiesel plants to compete with the large one. This paper discusses the profitability of small - medium scale biodiesel plants conducted on a capacity of 50 tons/day using CPO and its derivatives. The study was conducted by performing economic analysis between scenarios of biodiesel plant that using raw material of stearin, PFAD, and multi feedstock. Comparison on the feasibility of scenarios was also conducted on the effect of transportation cost and selling price. The economic assessment shows that profitability is highly affected by raw material price so that it is important to secure the source of raw materials and consider a multi-feedstock type for small - medium scale biodiesel plants to become a sustainable plant. It was concluded that the small - medium scale biodiesel plants will be profitable and sustainable if they are connected to palm oil mill, have a captive market, and are located minimally 200 km from other biodiesel plants. The use of multi feedstock could increase IRR from 18.68 % to 56.52 %.

  13. Determinants of stakeholders' attitudes towards biodiesel.

    Science.gov (United States)

    Amin, Latifah; Hashim, Hasrizul; Mahadi, Zurina; Ibrahim, Maznah; Ismail, Khaidzir

    2017-01-01

    Concern about the inevitable depletion of global energy resources is rising and many countries are shifting their focus to renewable energy. Biodiesel is one promising energy source that has garnered much public attention in recent years. Many believe that this alternative source of energy will be able to sustain the need for increased energy security while at the same time being friendly to the environment. Public opinion, as well as proactive measures by key players in industry, may play a decisive role in steering the direction of biodiesel development throughout the world. Past studies have suggested that public acceptance of biofuels could be shaped by critical consideration of the risk-benefit perceptions of the product, in addition to the impact on the economy and environment. The purpose of this study was to identify the relevant factors influencing stakeholders' attitudes towards biodiesel derived from crops such as palm oil for vehicle use, as well as to analyse the interrelationships of these factors in an attitude model. A survey of 509 respondents, consisting of various stakeholder groups in the Klang Valley region of Malaysia, was undertaken. The results of the study have substantiated the premise that the most important direct predictor of attitude to biodiesel is the perceived benefits ( β  = 0.80, p  < 0.001). Attitude towards biodiesel also involves the interplay between other factors, such as engagement to biotechnology, trust of key players, attitude to technology, and perceived risk. Although perceived benefit has emerged as the main predictor of public support of biodiesel, the existence of other significant interactions among variables leads to the conclusion that public attitude towards biodiesel should be seen as a multi-faceted process and should be strongly considered prior to its commercialisation.

  14. Particulate Emissions and Biodiesel: A review

    Directory of Open Access Journals (Sweden)

    Michal Angelovič

    2013-05-01

    Full Text Available Abstract The current mode of transport using fuel it cannot be characterized as harmless to human health or as sustainable. The whole process of extracting, processing and using of petroleum products can be seen as the raw material cycle in nature. This cycle also cause serious damage to the environment and human health. Many studies on air pollutant emissions with biodiesel have been carried out worldwide. Studies have shown that diesel-powered vehicles are the major contributors of PM emissions. PM particulates are especially important in regard to adverse health outcomes, such as increased cardiovascular, respiratory morbidity and mortality rates, due to their larger active surface and the higher likelihood of deposition in the alveolar region of the lungs. Hence, it is overwhelming argument that the use of biodiesel instead of diesel causes reduce of PM emissions. Of course, this reduction will become smaller with the reduction of biodiesel proportion in the blended fuel. The trend with which PM emissions of biodiesel will be reduced, is due to lower aromatic and sulfur compounds and higher cetane number for biodiesel, but the more important factor is the higher oxygen content.

  15. [Column chromatography purification and analysis of biodiesel by transesterification].

    Science.gov (United States)

    Liu, Yang; Yi, Huai-feng; Chen, Yu; Wu, Yu-long; Yang, Ming-de; Chen, Zeng; Tong, Jun-mao

    2012-02-01

    In the present paper, crude biodiesel prepared with sorbifolia oil as raw material by transesterification was purified by column chromatography, then the composition of biodiesel was analyzed by gas chromatography, FTIR, GC-MS and 1H NMR. Column chromatography can separate the crude biodiesel into two fractions: petroleum ether eluted fraction (A1) and methanol eluted fraction (A2). Petroleum ether eluted fraction was mainly biodiesel fraction, which was produced from sorbifolia oil by transesterification, including methyl linoleate, methyl cis-9-octadecenoate and so on; methanol eluted fraction was mainly glycerol fraction, which came from the side reaction of transesterification. The results show that the purity of refined biodiesel increased from 77.51% to 93.872, and the product recovery rate reached up to 91.04% after the purification by column chromatography. The results obtained by FTIR and 1H NMR further showed that the column chromatography can effectively improve the purity of biodiesel. This paper provides a basis for industrialization of purification of biodiesel.

  16. Study about the particularities of biodiesel in Brazil; Estudo sobre as particularidades do biodiesel no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcia Franca Ribeiro Fernandes dos [Instituto Brasileiro de Geografia e Estatistica (IBGE), Brasilia, DF (Brazil); Peixoto, Jose Antonio Assuncao; Souza, Cristina Gomes de [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The environmental concern associated with the impending shortage of oil, which is pressing to raise the price of the barrel, has forced governments and society to seek alternatives that will replace the use of fossil fuels. The biodiesel, in particular, has been set up as an alternative energy by it of fuel come from renewable sources, and less polluting the environment. In this context, the objective of this article is to present some features of the production of biodiesel in Brazil, identifying the characteristics of the main oil used, as well as regional motivations for the use of biodiesel in Brazil. The methodology adopted in this study was exploratory in nature based on a literature search and documentary from a survey of information available in literature. The main results, the article points out that: unlike alcohol, which is in sugar cane their ideal raw material, biodiesel is still in a stage of intensive research and development in order to identify the most appropriate its oil production - with emphasis on soybean and castor bean, and the motivations for regional use of biodiesel are different for the Brazilian regions. The study aims to contribute to the discussion on the subject, emphasizing that technological research should be directed taking into consideration the conditions and needs of Brazil. (author)

  17. Sustainable Algae Biodiesel Production in Cold Climates

    Directory of Open Access Journals (Sweden)

    Rudras Baliga

    2010-01-01

    Full Text Available This life cycle assessment aims to determine the most suitable operating conditions for algae biodiesel production in cold climates to minimize energy consumption and environmental impacts. Two hypothetical photobioreactor algae production and biodiesel plants located in Upstate New York (USA are modeled. The photobioreactor is assumed to be housed within a greenhouse that is located adjacent to a fossil fuel or biomass power plant that can supply waste heat and flue gas containing CO2 as a primary source of carbon. Model results show that the biodiesel areal productivity is high (19 to 25 L of BD/m2/yr. The total life cycle energy consumption was between 15 and 23 MJ/L of algae BD and 20 MJ/L of soy BD. Energy consumption and air emissions for algae biodiesel are substantially lower than soy biodiesel when waste heat was utilized. Algae's most substantial contribution is a significant decrease in the petroleum consumed to make the fuel.

  18. Production of biodiesel from Coelastrella sp. microalgae

    Science.gov (United States)

    Mansur, Dieni; Fitriady, Muhammad Arifuddin; Susilaningsih, Dwi; Simanungkalit, Sabar Pangihutan

    2017-11-01

    Microalgae have a wide area of usage and one of them it can be used for biodiesel production. In biodiesel production, lipids containing triglyceride or free fatty acid are converted into methyl ester through trans/esterification reactions. Lipids from microalgae can be extracted by acetone and dimethyl carbonate using homogenizer. Esterification of the lipids was investigated using various catalysts and source of methyl group. Activity of homogeneous catalyst such as HCl and H2SO4 and heterogeneous catalysts such as montmorillonit K-10 and ledgestone was investigated. Moreover, methanol and dimethyl carbonate as source of methyl group were also studied. Among of catalysts with methanol as source of methyl group, it was found that yield of crude biodiesel derived from Choelestrella Sp. microalgae was high over H2SO4 catalyst. On the other hand, over H2SO4 catalyst using dimethyl carbonate as source of methyl group, yield of crude biodiesel significant increase. However, FAME composition of crude biodiesel was high over HCl catalyst.

  19. Process development for scum to biodiesel conversion.

    Science.gov (United States)

    Bi, Chong-hao; Min, Min; Nie, Yong; Xie, Qing-long; Lu, Qian; Deng, Xiang-yuan; Anderson, Erik; Li, Dong; Chen, Paul; Ruan, Roger

    2015-06-01

    A novel process was developed for converting scum, a waste material from wastewater treatment facilities, to biodiesel. Scum is an oily waste that was skimmed from the surface of primary and secondary settling tanks in wastewater treatment plants. Currently scum is treated either by anaerobic digestion or landfilling which raised several environmental issues. The newly developed process used a six-step method to convert scum to biodiesel, a higher value product. A combination of acid washing and acid catalyzed esterification was developed to remove soap and impurities while converting free fatty acids to methyl esters. A glycerol washing was used to facilitate the separation of biodiesel and glycerin after base catalyzed transesterification. As a result, 70% of dried and filtered scum was converted to biodiesel which is equivalent to about 134,000 gallon biodiesel per year for the Saint Paul waste water treatment plant in Minnesota. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. French bio-diesel demand and promoting measures analysis by 2010; Analyse de la demande et des mesures de promotion francaises du biodiesel a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, F

    2008-02-15

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  1. MOET Utility in Beef Production Strategies

    Directory of Open Access Journals (Sweden)

    Marcel Theodor Paraschivescu

    2012-10-01

    Full Text Available The paper presents the reason of beef production for human food security and the necessity of special dairy and beefbreeds in order to balance the milk and the meat production in cattle farming. That is a difficult target for manycountries since they don’t dispose of large natural pastures to extensively feed the beef cattle herds. At the same timemany European countries breed only dual purpose cattle breeds. So the idea of intensive farming with beef breeds orcrosses is developed. To speed up this kind of programs Open MOET (Multiple Ovulation Embryo Transfer Farmtechnology is proposed and it is completed with the needed facilities for production and preservation of embryos.Concerning the MOET Farm which confers directly pure bred beef calves, emphases is put on veterinary quarantineand heifer receptors conditioning. Concerning embryo conservation the direct transfer (DT technique isrecommended. Modalities of integrating dairy farms and beef cattle farms are finally discussed as recommendedstrategy for Romanian Agriculture.

  2. Production and characterization of biodiesel derived from Hodgsonia macrocarpa seed oil

    International Nuclear Information System (INIS)

    Cao, Leichang; Zhang, Shicheng

    2015-01-01

    Highlights: • The oil content of HM seed was 71.65 wt%. The HM biodiesel yield was 95.46 wt%. • HM biodiesel satisfied ASTM D6751 and EN 14214 standards, with the exception of OS. • The transportation safety and cold flow properties of HM biodiesel were excellent. • After treatment with 400 ppm TBHQ, the OS of HM biodiesel satisfied EN 14214. - Abstract: Using inexpensive and high-quality oil feedstock is an effective means to produce low-cost biodiesel. This work investigated the production and fuel properties of biodiesel derived from Hodgsonia macrocarpa (HM). The oil content of HM seed was 71.65 wt%, which is much higher than that of many potential oil plants. With traditional base-catalyzed transesterification, biodiesel was readily prepared from HM seed oil. The biodiesel yield was 95.46 wt% from HM seed oil. Biodiesel derived from HM met all ASTM D6751 and EN 14214 specifications, except for oxidative stability (OS). The OS specifications of the two biodiesel standards were met after treatment of HM biodiesel with 400 ppm tertbutyl hydroquinone. The biodiesel exhibited excellent transportation safety and cold flow properties, with flash point of 153 °C, pour point of −9 °C, and cold filter plugging point of −7 °C

  3. Enzymatic biodiesel production: Technical and economical considerations

    DEFF Research Database (Denmark)

    Munk Nielsen, Per; Brask, Jesper; Fjerbæk, Lene

    2008-01-01

    It is well documented in the literature that enzymatic processing of oils and fats for biodiesel is technically feasible. However, with very few exceptions, enzyme technology is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process design...... and a lack of available costeffective enzymes. The technology to re-use enzymes has typically proven insufficient for the processes to be competitive. However, literature data documenting the productivity of enzymatic biodiesel together with the development of new immobilization technology indicates...... that enzyme catalysts can become cost effective compared to chemical processing. This work reviews the enzymatic processing of oils and fats into biodiesel with focus on process design and economy....

  4. Biodiesel wash-water reuse using microfiltration: toward zero-discharge strategy for cleaner and economized biodiesel production

    Directory of Open Access Journals (Sweden)

    R. Jaber

    2015-03-01

    Full Text Available A simple but economically feasible refining method to treat and re-use biodiesel wash-water was developed. In detail, microfiltration (MF through depth-filtration configuration was used in different hybrid modules. Then, the treated wash-water was mixed with clean water at different ratios, re-used for biodiesel purification and water-washing efficiency was evaluated based on methyl ester purity analysis. The findings of the present study revealed that depth-filtration-based MF combined with sand filtration/activated carbon separation and 70% dilution rate with fresh water not only achieved standard-quality biodiesel product but also led to up to 15% less water consumption after two rounds of production operations. This would be translated into a considerable reduction in the total volume of fresh water used during the operation process and would also strengthen the environmental-friendly aspects of the biodiesel production process for wastewater generation was obviously cut by the same rate as well.

  5. European consumers' acceptance of beef processing technologies

    DEFF Research Database (Denmark)

    de Barcellos, Marcia Dutra; Kügler, Jens Oliver; Grunert, Klaus G.

    2010-01-01

    The use of new technologies in beef production chains may affect consumers' opinion of meat products. A qualitative study was performed to investigate consumers' acceptance of seven beef processing technologies: marinating by injection aiming for increased 1) healthiness; 2) safety; and 3) eating...... adults (19-60 years old) participated in eight focus groups in Spain, France, Germany and the UK. Results suggested a relationship between acceptance of new beef products, technology familiarity and perceived risks related to its application. Excessive manipulation and fear of moving away from 'natural......' beef were considered negative outcomes of technological innovations. Beef processing technologies were predominantly perceived as valuable options for convenience shoppers and less demanding consumers. Overall, respondents supported the development of 'non-invasive' technologies that were able...

  6. Environmental impacts the of production and use of biodiesel.

    Science.gov (United States)

    Živković, Snežana; Veljković, Milan

    2018-01-01

    Biodiesel as renewable, environmental friendly, less toxic, and biodegradable is an attractive alternative to fossil fuels and is produced mainly from vegetable oils and animal fats. It is expected, globally, that the use of renewable biofuels, in general, will increase rapidly in the near future. The growing biodiesel production and usage have encouraged assessment of its impact on the environment. The present paper reviews various aspects of biodiesel production using commercial processing technology and biodiesel use through evaluation and analysis of the studies concerning environmental impacts of biodiesel. As a general conclusion, it can be said that biodiesel has the potential to offer a series of perceived benefits such as political, economical, and agricultural, as well as environmental (due to its biodegradability, less toxicity, renewability) and health (greenhouse gas-saving, less harmful exhaust emissions).

  7. Biodiesel production with special emphasis on lipase-catalyzed transesterification.

    Science.gov (United States)

    Bisen, Prakash S; Sanodiya, Bhagwan S; Thakur, Gulab S; Baghel, Rakesh K; Prasad, G B K S

    2010-08-01

    The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

  8. Alcohol biodiesel from frying oil residues; Biodiesel etilico a partir de oleo de fritura residual

    Energy Technology Data Exchange (ETDEWEB)

    Festa, Brunna Simoes; Marques, Luiz Guilherme da Costa [Universidade Federal do Rio de Janeiro (IVIG/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Inst. Virtual Internacional de Mudancas Globais], E-mail: lguilherme@ivig.coppe.ufrj.br

    2010-07-01

    This paper describes the reaction optimization and production of biodiesel through the use of frying residual oil made available by the restaurant placed at the PETROBRAS Research Center (CENPES-RJ), using ethanol, so that to permit the production of sustainable bio diesel. The environmental gains obtained by the utilization of residual oil, avoiding that this oil be released in the nature, and the economic gains coming from the generation and utilization of ethanol allowing the production of biodiesel be an viable alternative. The obtained results during laboratory tests shown that biodiesel produced from the transesterification in alkaline medium, of the frying residual oil collected presented a reaction yield of approximately 80% considering in mass.

  9. Controls and measurements of KU engine test cells for biodiesel, SynGas, and assisted biodiesel combustion

    Science.gov (United States)

    Cecrle, Eric Daniel

    This thesis is comprised of three unique data acquisition and controls (CDAQ) projects. Each of these projects differs from each other; however, they all include the concept of testing renewable or future fuel sources. The projects were the following: University of Kansas's Feedstock-to-Tailpipe Initiative's Synthesis Gas Reforming rig, Feedstock-to-Tailpipe Initiative's Biodiesel Single Cylinder Test Stand, and a unique Reformate Assisted Biodiesel Combustion architecture. The main responsibility of the author was to implement, develop and test CDAQ systems for the projects. For the Synthesis Gas Reforming rig, this thesis includes a report that summarizes the analysis and solution of building a controls and data acquisition system for this setup. It describes the purpose of the sensors selected along with their placement throughout the system. Moreover, it includes an explanation of the planned data collection system, along with two models describing the reforming process useful for system control. For the Biodiesel Single Cylinder Test Stand, the responsibility was to implement the CDAQ system for data collection. This project comprised a variety of different sensors that are being used collect the combustion characteristics of different biodiesel formulations. This project is currently being used by other graduates in order to complete their projects for subsequent publication. For the Reformate Assisted Biodiesel Combustion architecture, the author developed a reformate injection system to test different hydrogen and carbon monoxide mixtures as combustion augmentation. Hydrogen combustion has certain limiting factors, such as pre-ignition in spark ignition engines and inability to work as a singular fuel in compression ignition engines. To offset these issues, a dual-fuel methodology is utilized by injecting a hydrogen/carbon monoxide mixture into the intake stream of a diesel engine operating on biodiesel. While carbon monoxide does degrade some of the

  10. Performance and emission characteristics of double biodiesel blends with diesel

    Directory of Open Access Journals (Sweden)

    Kuthalingam Arun Balasubramanian

    2013-01-01

    Full Text Available Recent research on biodiesel focused on performance of single biodiesel and its blends with diesel. The present work aims to investigate the possibilities of the application of mixtures of two biodiesel and its blends with diesel as a fuel for diesel engines. The combinations of Pongamia pinnata biodiesel, Mustard oil biodiesel along with diesel (PMD and combinations of Cotton seed biodiesel, Pongamia pinnata biodiesel along with diesel (CPD are taken for the experimental analysis. Experiments are conducted using a single cylinder direct-injection diesel engine with different loads at rated 3000 rpm. The engine characteristics of the two sets of double biodiesel blends are compared. For the maximum load, the value of Specific Fuel consumption and thermal efficiency of CPD-1 blend (10:10:80 is close to the diesel values. CPD blends give better engine characteristics than PMD blends. The blends of CPD are suitable alternative fuel for diesel in stationary/agricultural diesel engines.

  11. Base catalyzed transesterification of sunflower oil biodiesel | Ahmad ...

    African Journals Online (AJOL)

    In this study, sunflower oil was investigated for biodiesel production. Sunflower is one of the leading oil seed crop, cultivated for the production of oil in the world. It has also been considered as an important crop for biodiesel production. Seeds for biodiesel production were procured from local farmers of Attock and ...

  12. Presumptions of effective operation of diesel engines running on rme biodiesel. Research on kinetics of combustion of RME biodiesel

    Directory of Open Access Journals (Sweden)

    A. Vaicekauskas

    2007-06-01

    Full Text Available The results of experimental research on kinetics of fuel combustion of diesel engine A41are presented in the publication. The change of characteristics of indicated work (in-cylinder pressure and temperature, period of induction, heat release and heat release rate and fuel injection (fuel injection pressure, fuel injection phases was determined in diesel engine running on RME biodiesel being compared to diesel fuel. The results of researches were used to explain experimentally determined changes of operational and ecological characteristics of diesel engine running on RME biodiesel. In addition, the reliability of diesel engine A41 running on RME biodiesel was evaluated. The presumptions of effective operation of diesel engines running on RME biodiesel were formulated.

  13. Progress and recent trends in biodiesel fuels

    International Nuclear Information System (INIS)

    Demirbas, Ayhan

    2009-01-01

    Fossil fuel resources are decreasing daily. Biodiesel fuels are attracting increasing attention worldwide as blending components or direct replacements for diesel fuel in vehicle engines. Biodiesel fuel typically comprises lower alkyl fatty acid (chain length C 14 -C 22 ), esters of short-chain alcohols, primarily, methanol or ethanol. Various methods have been reported for the production of biodiesel from vegetable oil, such as direct use and blending, microemulsification, pyrolysis, and transesterification. Among these, transesterification is an attractive and widely accepted technique. The purpose of the transesterification process is to lower the viscosity of the oil. The most important variables affecting methyl ester yield during the transesterification reaction are the molar ratio of alcohol to vegetable oil and the reaction temperature. Methanol is the commonly used alcohol in this process, due in part to its low cost. Methyl esters of vegetable oils have several outstanding advantages over other new-renewable and clean engine fuel alternatives. Biodiesel fuel is a renewable substitute fuel for petroleum diesel or petrodiesel fuel made from vegetable or animal fats; it can be used in any mixture with petrodiesel fuel, as it has very similar characteristics, but it has lower exhaust emissions. Biodiesel fuel has better properties than petrodiesel fuel; it is renewable, biodegradable, non-toxic, and essentially free of sulfur and aromatics. Biodiesel seems to be a realistic fuel for future; it has become more attractive recently because of its environmental benefits. Biodiesel is an environmentally friendly fuel that can be used in any diesel engine without modification

  14. Impact of product familiarity on beef quality perception

    DEFF Research Database (Denmark)

    Banovic, Marija; Fontes, Magda Aguiar; Barreira, Maria Madalena

    2012-01-01

    This study examines the use of intrinsic and extrinsic cues in beef quality perception at the point of purchase and upon consumption by consumers with varying levels of familiarity with a particular beef product. High-familiarity consumers tend to use the color of the meat to assess beef quality......, whereas low-familiarity consumers tend to believe that the brand is the most valid cue for assessing beef quality. However, due to the lack of consistency in sensory beef quality, high-familiarity consumers’ ability to form quality expectations that are predictive of their quality experience is no better...

  15. Environmental sustainability assessment of palm biodiesel production in Thailand

    International Nuclear Information System (INIS)

    Silalertruksa, Thapat; Gheewala, Shabbir H.

    2012-01-01

    The study assesses the environmental sustainability of palm biodiesel production systems in Thailand by focusing on their energy efficiency and environmental impact potentials. The Net Energy Balance (NEB) and Renewability indicate energy gain for palm biodiesel and its co-products as compared to fossil energy inputs. In addition, life cycle assessment also reveals lower values of environmental impact potentials of biodiesel as compared to conventional diesel. For example, palm biodiesel can provide greenhouse gas (GHG) reduction of around 46–73% as compared to diesel. Nitrogen-fertilizer production and application in the plantation and the air emissions from the ponds treating palm oil mill effluent (POME) are found to be the major environmental aspects. However, the energy and environmental performances depend on various factors such as the management efficiency of empty fruit bunches (EFB) and POME and the possible land-use change in the future. Recommendations are made for improving environmental performance of palm biodiesel and for securing the long-term availability of crude palm oil supply with a view towards sustainable palm biodiesel production. -- Highlights: ► Environmental sustainability of palm biodiesel production in Thailand is assessed. ► Palm biodiesel can provide GHG reduction of around 46–73% as compared to diesel. ► Net energy ratio and renewability of palm biodiesel both range between 2 and 4. ► Efficient use of by-products in the value chain enhances environmental benefits.

  16. Biomass for biodiesel production on family farms in Brazil: promise or failure? : integrated assessment of biodiesel crops, farms, policies and producer organisations

    NARCIS (Netherlands)

    Belo Leite, Dal J.G.

    2013-01-01

    In Brazil, a biodiesel policy was implemented as a way of reducing poverty among family farms. The objective of this thesis is to perform an integrated assessment of biodiesel crops, farm types, biodiesel policies and producer organisations that reveals opportunities and limitations of family

  17. Production of Biodiesel from Vegetable Oil Using Microware Irradiation

    Directory of Open Access Journals (Sweden)

    N. Kapilan

    2012-01-01

    Full Text Available The petroleum oil supply crisis, the increase in demand and the price eruption have led to a search for an alternative fuel of bio-origin in India. Among the alternative fuels, biodiesel is considered as a sustainable renewable alternative fuel to fossil diesel. Non-edible jatropha oil has considerable potential for the production of biodiesel in India. The production of biodiesel from jatropha oil using a conventional heating method takes more than 1h. In this work, microwave irradiation has been used as a source of heat for the transesterification reaction. A domestic microwave oven was modified and used for microwave heating of the reactants. The time taken for biodiesel production using microwave irradiation was 1 min. The fuel property analysis shows that the properties of jatropha oil biodiesel satisfy the biodiesel standards, and are close to the fossil diesel standards. From this work, it is concluded that biodiesel can be produced from vegetable oil using microwave irradiation, with a significant reduction in production time.

  18. Biodiesel production from microbial granules in sequencing batch reactor.

    Science.gov (United States)

    Liu, Lin; Hong, Yuling; Ye, Xin; Wei, Lili; Liao, Jie; Huang, Xu; Liu, Chaoxiang

    2018-02-01

    Effect of reaction variables of in situ transesterification on the biodiesel production, and the characteristic differences of biodiesel obtained from aerobic granular sludge (AG) and algae-bacteria granular consortia (AAG) were investigated. The results indicated that the effect of variables on the biodiesel yield decreased in the order of methanol quantity > catalyst concentration > reaction time, yet the parameters change will not significantly affect biodiesel properties. The maximum biodiesel yield of AAG was 66.21 ± 1.08 mg/g SS, what is significant higher than that of AG (35.44 ± 0.92 mg/g SS). Although methyl palmitate was the dominated composition of biodiesel obtained from both granules, poly-unsaturated fatty acid in the AAG showed a higher percentage (21.86%) than AG (1.2%) due to Scenedesmus addition. Further, microbial analysis confirmed that the composition of biodiesel obtained from microbial granules was also determined by bacterial community, and Xanthomonadaceae and Rhodobacteraceae were the dominant bacteria of AG and AAG, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Non-Edible Plant Oils as New Sources for Biodiesel Production

    Directory of Open Access Journals (Sweden)

    M. Rafiqul Islam

    2008-02-01

    Full Text Available Due to the concern on the availability of recoverable fossil fuel reserves and the environmental problems caused by the use those fossil fuels, considerable attention has been given to biodiesel production as an alternative to petrodiesel. However, as the biodiesel is produced from vegetable oils and animal fats, there are concerns that biodiesel feedstock may compete with food supply in the long-term. Hence, the recent focus is to find oil bearing plants that produce non-edible oils as the feedstock for biodiesel production. In this paper, two plant species, soapnut (Sapindus mukorossi and jatropha (jatropha curcas, L. are discussed as newer sources of oil for biodiesel production. Experimental analysis showed that both oils have great potential to be used as feedstock for biodiesel production. Fatty acid methyl ester (FAME from cold pressed soapnut seed oil was envisaged as biodiesel source for the first time. Soapnut oil was found to have average of 9.1% free FA, 84.43% triglycerides, 4.88% sterol and 1.59% others. Jatropha oil contains approximately 14% free FA, approximately 5% higher than soapnut oil. Soapnut oil biodiesel contains approximately 85% unsaturated FA while jatropha oil biodiesel was found to have approximately 80% unsaturated FA. Oleic acid was found to be the dominant FA in both soapnut and jatropha biodiesel. Over 97% conversion to FAME was achieved for both soapnut and jatropha oil.

  20. Georges Chavanne and the first biodiesel

    Science.gov (United States)

    This article discusses the first production and use of a fuel around 1937 now called biodiesel, which is obtained from a vegetable or plant oil through a straightforward chemical reaction called transesterification. Biodiesel has become an alternative or supplement to conventional diesel fuel derive...

  1. Composition evaluation of the tallow and meat fatty acids of the cattle and determining their atherogenesis and thrombogenesisindexes in South Khorasan Province

    Directory of Open Access Journals (Sweden)

    Mohammad Malekaneh

    2015-01-01

    Conclusion: It was found that the sum of trans and stearic fatty acids was more in tallow. The hypocholesterolemic fatty acids levels were higher in the meat in the whole province. The cattle’s meat had lower atherogenetic and thrombogenetic properties compared with the animals’ fat.The consumed cattle’s meat and fat in the province appear to have a proper condition.

  2. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Bambang Tri Nugroho

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31. doi:10.9767/bcrec.4.1.23.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.23.23-31

  3. French bio-diesel demand and promoting measures analysis by 2010; Analyse de la demande et des mesures de promotion francaises du biodiesel a l'horizon 2010

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, F

    2008-02-15

    The researches presented aim at assessing bio-diesel promoting measures under consideration in France by 2010. This assessment is based on a deep study of French bio-diesel demand. The use of a linear model for optimizing the whole French refining industry costs allow us to take into account the physicochemical characteristics of bio-diesel useful for gas oil blending operation. This researches show that bio-diesel can be incorporated up to 27% blend in volume to diesel fuel without major technical problem. A decomposition of the value allotted to the bio-diesel by French refiners according to its physicochemical characteristics shows that energy content is the most disadvantageous characteristics for bio-diesel incorporation and, up to 17%, density become also constraining. However, the low bio-diesel sulphur content could become interesting from now to 2010. On the basis of this bio-diesel demand analysis, we proceed to an external coupling of an agro-industrial model of bio-diesel supply with the French refining model. Thus, we study the impact of the 2010 French bio-diesel consumption objective on agricultural surface need, the competitiveness of the bio-diesel, the reduction of greenhouse gases emissions and the trade balance of the petroleum products. On this basis, we propose a critical analysis of French bio-diesel promoting measures under consideration by 2010. (author)

  4. Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas

    Science.gov (United States)

    Tree Biodiesel Truck Transports Capitol Christmas Tree to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Truck Transports Capitol Christmas Tree on Twitter Bookmark Alternative

  5. Costs of biodiesel supply chain in Latvia

    International Nuclear Information System (INIS)

    Birzietis, G.; Kunkule, D.

    2003-01-01

    Biodiesels has already become reality in Latvia, but still not are extensively used due to number of reasons. Cost reduction would be one of the most efficient tools that could encourage wider use of biodiesel. Identifying costs in biodiesel supply chain and evaluating their weight in total cost of final product is the first step to finding most costly elements and potential for cost reduction. General cost breakdown in final price is calculated and analysed in this study (authors)

  6. Leaf litter of invasive Chinese tallow (Triadica sebifera) negatively affects hatching success of an aquatic breeding anuran, the southern leopard frog (Lithobates sphenocephalus)

    Science.gov (United States)

    C.K. Adams; D. Saenz

    2012-01-01

    Chinese tallow (Triadica sebifera (L.) Small) is an aggressive invasive tree species that can be abundant in parts of its non-native range. This tree species has the capability of producing monocultures, by outcompeting native trees, which can be in or near wetlands that are utilized by breeding amphibians. Existing research suggests that leaf litter from invasive...

  7. Biodiesel production through hydrodynamic cavitation and performance testing

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Amit; Verma, Ashish; Kachhwaha, S.S.; Maji, S. [Department of Mechanical Engineering, Delhi College of Engineering, Bawana Road, Delhi 110042 (India)

    2010-03-15

    This paper presents the details of development of a biodiesel production test rig based on hydrodynamic cavitation followed by results of experimental investigation carried out on a four cylinder, direct injection water cooled diesel engine operating on diesel and biodiesel blend of Citrullus colocyntis (Thumba) oil. The experiment covers a wide range of engine rpm. Results show that biodiesel of Thumba oil produced through hydrodynamic cavitation technique can be used as an alternative fuel with better performance and lower emissions compared to diesel. The most significant conclusions are that (1) Biodiesel production through hydrodynamic cavitation technique seems to be a simple, efficient, time saving, eco-friendly and industrially viable process. (2) 30% biodiesel blend of Thumba oil shows relatively higher brake power, brake thermal efficiency, reduced bsfc and smoke opacity with favourable p-{theta} diagram as compared to diesel. (author)

  8. ECOTOXICOLOGICAL EFFECTS OF BIODIESEL IN THE SOIL

    Directory of Open Access Journals (Sweden)

    Małgorzata Hawrot-Paw

    2015-11-01

    Full Text Available The paper analysed the toxic effect of the presence of biodiesel in the soil. The study involved tests with microorganisms that evaluated changes in their number and activity, and phytotoxicity tests with garden cress (Lepidium sativum and spring barley (Hordeum vulgare. Biodiesel produced in laboratory conditions and biofuel purchased at a petrol station were introduced to the soil. Two levels of contamination were used – 1% and 5% (per dry mass of the soil. Based on the results, it was discovered that biofuels both stimulated and reduced the number and activity of microorganisms. The changes observed depended on the type of biofuel and, most often, on its dose. Laboratory biodiesel exhibited more toxic effects, especially for actinobacteria and fungi. The tested plants showed diverse sensitivity to the presence of biodiesel. Given the determined value of the germination index, laboratory biodiesel was more toxic to spring barley and commercial biofuel to garden cress. In both cases, toxicity increased with an increase in the amount of biofuel.

  9. Prospects of biodiesel production from microalgae in India

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shakeel A.; Hussain, Mir Z.; Prasad, S. [Division of Environmental Sciences, Indian Agricultural Research Institute, New Delhi 110012 (India); Rashmi; Banerjee, U.C. [Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical and Education Research (NIPER), Sector 67, Phase X, S.A.S. Nagar, Mohali 160062, Punjab (India)

    2009-12-15

    Energy is essential and vital for development, and the global economy literally runs on energy. The use of fossil fuels as energy is now widely accepted as unsustainable due to depleting resources and also due to the accumulation of greenhouse gases in the environment. Renewable and carbon neutral biodiesel are necessary for environmental and economic sustainability. Biodiesel demand is constantly increasing as the reservoir of fossil fuel are depleting. Unfortunately biodiesel produced from oil crop, waste cooking oil and animal fats are not able to replace fossil fuel. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Production of biodiesel using microalgae biomass appears to be a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. Microalgae are photosynthetic microorganisms which convert sunlight, water and CO{sub 2} to sugars, from which macromolecules, such as lipids and triacylglycerols (TAGs) can be obtained. These TAGs are the promising and sustainable feedstock for biodiesel production. Microalgal biorefinery approach can be used to reduce the cost of making microalgal biodiesel. Microalgal-based carbon sequestration technologies cover the cost of carbon capture and sequestration. The present paper is an attempt to review the potential of microalgal biodiesel in comparison to the agricultural crops and its prospects in India. (author)

  10. A comprehensive review on biodiesel purification and upgrading

    Directory of Open Access Journals (Sweden)

    Hamed Bateni

    2017-09-01

    Full Text Available Serious environmental concerns regarding the use of fossil-based fuels have raised awareness regarding the necessity of alternative clean fuels and energy carriers. Biodiesel is considered a clean, biodegradable, and non-toxic diesel substitute produced via the transesterification of triglycerides with an alcohol in the presence of a proper catalyst. After initial separation of the by-product (glycerol, the crude biodiesel needs to be purified to meet the standard specifications prior to marketing. The presence of impurities in the biodiesel not only significantly affects its engine performance but also complicates its handling and storage. Therefore, biodiesel purification is an essential step prior to marketing. Biodiesel purification methods can be classified based on the nature of the process into equilibrium-based, affinity-based, membrane-based, reaction-based, and solid-liquid separation processes. The main adverse properties of biodiesel – namely moisture absorption, corrosiveness, and high viscosity – primarily arise from the presence of oxygen. To address these issues, several upgrading techniques have been proposed, among which catalytic (hydrodeoxygenation using conventional hydrotreating catalysts, supported metallic materials, and most recently transition metals in various forms appear promising. Nevertheless, catalyst deactivation (via coking and/or inadequacy of product yields necessitate further research. This paper provides a comprehensive overview on the techniques and methods used for biodiesel purification and upgrading.

  11. Beef Cattle: Selection and Evaluation.

    Science.gov (United States)

    Clemson Univ., SC. Vocational Education Media Center.

    Designed for secondary vocational agriculture students, this text provides an overview of selecting and evaluating beef cattle in Future Farmers of America livestock judging events. The first of four major sections addresses topics such as the ideal beef animal, selecting steers, selecting breeding animals, studying the animal systematically, and…

  12. Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel

    Science.gov (United States)

    Trucks Seattle Bakery Delivers With Biodiesel Trucks to someone by E-mail Share Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Facebook Tweet about Alternative Fuels Data Center: Seattle Bakery Delivers With Biodiesel Trucks on Twitter Bookmark Alternative Fuels

  13. Market penetration of biodiesel and ethanol

    Science.gov (United States)

    Szulczyk, Kenneth Ray

    This dissertation examines the influence that economic and technological factors have on the penetration of biodiesel and ethanol into the transportation fuels market. This dissertation focuses on four aspects. The first involves the influence of fossil fuel prices, because biofuels are substitutes and have to compete in price. The second involves biofuel manufacturing technology, principally the feedstock-to-biofuel conversion rates, and the biofuel manufacturing costs. The third involves prices for greenhouse gas offsets. The fourth involves the agricultural commodity markets for feedstocks, and biofuel byproducts. This dissertation uses the Forest and Agricultural Sector Optimization Model-Greenhouse Gas (FASOM-GHG) to quantitatively examine these issues and calculates equilibrium prices and quantities, given market interactions, fossil fuel prices, carbon dioxide equivalent prices, government biofuel subsidies, technological improvement, and crop yield gains. The results indicate that for the ranges studied, gasoline prices have a major impact on aggregate ethanol production but only at low prices. At higher prices, one runs into a capacity constraint that limits expansion on the capacity of ethanol production. Aggregate biodiesel production is highly responsive to gasoline prices and increases over time. (Diesel fuel price is proportional to the gasoline price). Carbon dioxide equivalent prices expand the biodiesel industry, but have no impact on ethanol aggregate production when gasoline prices are high again because of refinery capacity expansion. Improvement of crop yields shows a similar pattern, expanding ethanol production when the gasoline price is low and expanding biodiesel. Technological improvement, where biorefinery production costs decrease over time, had minimal impact on aggregate ethanol and biodiesel production. Finally, U.S. government subsidies have a large expansionary impact on aggregate biodiesel production. Finally, U.S. government

  14. Degradation of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2012-01-01

    As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were examined by measuring TAN (total acid number), density and viscosity. Among the metal investigated, copper is found to be least resistant in biodiesel and formed comparatively more corrosion products than other metals. Upon exposure of metals in biodiesel, TAN number crosses the limit given by standard while density and viscosity remain within the acceptable range of limit. -- Highlights: ► Order of incompatible metals in palm biodiesel: copper > brass > aluminum > cast iron. ► The possible reactions for the degradation of copper and cast iron have been discussed. ► For metal exposed biodiesel, only TAN number crosses the limit while density and viscosity remain within the limit. ► Copper and copper based alloy (brass) increase TAN number comparatively more than other metals.

  15. Combustion, performance and emissions of a diesel power generator fueled with biodiesel-kerosene and biodiesel-kerosene-diesel blends

    International Nuclear Information System (INIS)

    Bayındır, Hasan; Işık, Mehmet Zerrakki; Argunhan, Zeki; Yücel, Halit Lütfü; Aydın, Hüseyin

    2017-01-01

    High percentages of biodiesel blends or neat biodiesel cannot be used in diesel engines due to high density and viscosity, and poor atomization properties that lead to some engine operational problems. Biodiesel was produced from canola oil by transesterification process. Test fuels were prepared by blending 80% of the biodiesel with 20% of kerosene (B80&K20) and 80% of the biodiesel with 10% of kerosene and 10% diesel fuel (B80&K10&D10). Fuels were used in a 4 cylinders diesel engine that was loaded with a generator. Combustion, performance and emission characteristics of the blend fuels and D2 in the diesel engine for certain loads of 3.6, 7.2 and 10.8 kW output power and 1500 rpm constant engine speed were experimented and deeply analyzed. It was found that kerosene contained blends had quite similar combustion characteristics with those of D2. Mass fuel consumption and Bscf were slightly increased for blend fuels. HC emissions slightly increased while NOx emissions considerably reduced for blends. It was resulted that high percentages of biodiesel can be a potential substitute for diesel fuel provided that it is used as blending fuel with certain amounts of kerosene. - Highlights: • Effects of kerosene and diesel addition to biodiesel in a diesel engine were investigated. • B80&K10 and B80&K10&D10 were tested and comparisons have been made with D2. • Similar fuel properties and combustion parameters have been found for all fuels. • Heat release initiated earlier for B80&K10 and B80&K10&D10. • CO and NOx emissions are lowered for B80&K10 and B80&K10&D10.

  16. Impact of ternary blends of biodiesel on diesel engine performance

    Directory of Open Access Journals (Sweden)

    Prem Kumar

    2016-06-01

    Full Text Available The Pongamia and waste cooking oils are the main non edible oils for biodiesel production in India. The aim of the present work is to evaluate the fuel properties and investigate the impact on engine performance using Pongamia and waste cooking biodiesel and their ternary blend with diesel. The investigation of the fuel properties shows that Pongamia biodiesel and waste cooking biodiesel have poor cold flow property. This will lead to starting problem in the engine operation. To overcome this problem the ternary blends of diesel, waste cooking biodiesel and Pongamia biodiesel are prepared. The cloud and pour point for ternary blend, (WCB20:PB20:D60 were found to be 7 °C and 6.5 °C which are comparable to cloud and pour point of diesel 6 °C and 5 °C, respectively. The result of the test showed that brake specific fuel consumption for Pongamia biodiesel and waste cooking biodiesel is higher than ternary blend, (WCB20:PB20:D60 due to their lower energy content. The brake thermal efficiency of ternary blend and diesel is comparable while the Pongamia and waste cooking biodiesel have low efficiency. The result of investigation showed that ternary blend can be developed as alternate fuel.

  17. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan

    2014-01-01

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  18. Blending Biodiesel in Fishing Boat Fuels for Improved Fuel Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Cherng-Yuan, E-mail: lin7108@ntou.edu.tw [Department of Marine Engineering, National Taiwan Ocean University, Keelung, Taiwan (China)

    2014-02-24

    Biodiesel is a renewable, clean, alternative energy source with advantages, such as excellent lubricity, superior biodegradability, and high combustion efficiency. Biodiesel is considered for mixing with fishing boat fuels to adjust their fuel characteristics so that toxic pollutants and greenhouse-effect gas emissions from such shipping might be reduced. The effects of blending fishing boat fuels A and B with various weight proportions of biodiesel are experimentally investigated in this study. The results show that biodiesel blending can significantly improve the inferior fuel properties of both fishing boat fuels and particularly fuel B. The flash points of both of these fuels increases significantly with the addition of biodiesel and thus enhances the safety of transporting and storing these blended fuels. The flash point of fishing boat fuel B even increases by 16% if 25 wt.% biodiesel is blended. The blending of biodiesel with no sulfur content is found to be one of the most effective ways to reduce the high sulfur content of fishing boat fuel, resulting in a reduction in the emission of sulfur oxides. The addition of only 25 wt.% biodiesel decreased the sulfur content of the fishing boat fuel by 37%. The high kinematic viscosity of fishing boat fuel B was also observed to be reduced by 63% with the blending of just 25 wt.% biodiesel. However, biodiesel blending caused a slight decrease in heating value around 1–4.5%.

  19. Cetane Number of Biodiesel from Karaya Oil

    KAUST Repository

    Wasfi, Bayan

    2017-04-01

    Biodiesel is a renewable fuel alternative to petroleum Diesel, biodiesel has similar characteristic but with lesser exhaust emission. In this study, transesterification of Karaya oil is examined experimentally using a batch reactor at 100-140°C and 5 bar in subcritical methanol conditions, residence time from 10 to 20 minutes, using a mass ratio 6 methanol-to-vegetable oil. Methanol is used for alcoholysis and sodium hydroxide as a catalyst. Experiments varied the temperature and pressure, observing the effect on the yield and reaction time. In addition, biodiesel from corn oil was created and compared to biodiesel from karaya oil. Kinetic model proposed. The model estimates the concentration of triglycerides, diglycerides, monoglycerides and methyl esters during the reaction. The experiments are carried out at temperatures of 100°C and above. The conversion rate and composition of methyl esters produced from vegetable oils are determined by Gas Chromatography Analysis. It was found that the higher the temperature, the higher reaction rate. Highest yield is 97% at T=140°C achieved in 13 minutes, whereas at T=100°C yield is 68% in the same time interval. Ignition Quality Test (IQT) was utilized for determination of the ignition delay time (IDT) inside a combustion chamber. From the IDT cetane number CN inferred. In case of corn oil biodiesel, the IDT = 3.5 mS, leading to a CN = 58. Whereas karaya oil biodiesel showed IDT = 2.4 mS, leading to a CN = 97. The produced methyl esters were also characterized by measurements of viscosity (υ), density (ρ), flash point (FP) and heat of combustion (HC). The following properties observed: For corn biodiesel, υ = 8.8 mPa-s, ρ = 0.863 g/cm3, FP = 168.8 °C, and HC = 38 MJ/kg. For karaya biodiesel, υ = 10 mPa-s, ρ = 0.877 g/cm3, FP = 158.2 °C, and HC = 39 MJ/kg.

  20. Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel

    Science.gov (United States)

    Vehicles in Vermont Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont to someone by E -mail Share Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in Vermont on Facebook Tweet about Alternative Fuels Data Center: Recycled Cooking Oil Powers Biodiesel Vehicles in

  1. Rapid biodiesel production using wet microalgae via microwave irradiation

    International Nuclear Information System (INIS)

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2014-01-01

    Highlights: • Lipid was directly extracted from wet microalgae using microwave irradiation. • The microwave irradiation and water bath-assisted solvent extraction are applied. • Cell walls are significantly disrupted under microwave irradiation. • Highly disrupted cell walls led to higher biodiesel yield in microwave irradiation. • Microwave irradiation is a promising direct technique with high biodiesel yields. - Abstract: The major challenges for industrial commercialized biodiesel production from microalgae are the high cost of downstream processing such as dewatering and drying, utilization of large volumes of solvent and laborious extraction processes. In order to address these issues the microwave irradiation method was used to produce biodiesel directly from wet microalgae biomass. This alternative method of biodiesel production from wet microalgae biomass is compared with the conventional water bath-assisted solvent extraction. The microwave irradiation extracted more lipids and high biodiesel conversion was obtained compared to the water bath-assisted extraction method due to the high cell disruption achieved and rapid transesterification. The total content of lipid extracted from microwave irradiation and water bath-assisted extraction were 38.31% and 23.01% respectively. The biodiesel produced using microwave irradiation was higher (86.41%) compared to the conventional method. Thus microwave irradiation is an attractive and promising technology to be used in the extraction and transesterification process for efficient biodiesel production

  2. Regulated and unregulated emissions from a diesel engine fueled with biodiesel and biodiesel blended with methanol

    Science.gov (United States)

    Cheung, C. S.; Zhu, Lei; Huang, Zhen

    Experiments were carried out on a diesel engine operating on Euro V diesel fuel, pure biodiesel and biodiesel blended with methanol. The blended fuels contain 5%, 10% and 15% by volume of methanol. Experiments were conducted under five engine loads at a steady speed of 1800 rev min -1 to assess the performance and the emissions of the engine associated with the application of the different fuels. The results indicate an increase of brake specific fuel consumption and brake thermal efficiency when the diesel engine was operated with biodiesel and the blended fuels, compared with the diesel fuel. The blended fuels could lead to higher CO and HC emissions than biodiesel, higher CO emission but lower HC emission than the diesel fuel. There are simultaneous reductions of NO x and PM to a level below those of the diesel fuel. Regarding the unregulated emissions, compared with the diesel fuel, the blended fuels generate higher formaldehyde, acetaldehyde and unburned methanol emissions, lower 1,3-butadiene and benzene emissions, while the toluene and xylene emissions not significantly different.

  3. Current status of biodiesel development in Brazil.

    Science.gov (United States)

    Ramos, Luiz Pereira; Wilhelm, Helena Maria

    2005-01-01

    In recent years, the concept of producing biodiesel from renewable lipid sources has regained international attention. In Brazil, a national program was launched in 2002 to evaluate the technical, economic, and environmental competitiveness of biodiesel in relation to the commercially available diesel oil. Several research projects were initiated nationwide to investigate and/or optimize biodiesel production from renewable lipid sources and ethanol derived from sugarcane (ethyl esters). Once implemented, this program will not only decrease our dependence on petroleum derivatives but also create new market opportunities for agribusiness, opening new jobs in the countryside, improving the sustainability of our energy matrix, and helping the Brazilian government to support important actions against poverty. This article discusses the efforts to develop the Brazilian biodiesel program in the context of technical specifications as well as potential oilseed sources.

  4. Operation and Control of Enzymatic Biodiesel Production

    DEFF Research Database (Denmark)

    Price, Jason Anthony; Huusom, Jakob Kjøbsted; Nordblad, Mathias

    This work explores the control of biodiesel production via an enzymatic catalyst. The process involves the transesterification of oils/fats with an alcohol (usually methanol or ethanol), using enzymatic catalysts to generate mono-alkyl esters (the basis of biodiesel) and glycerol as by......-product. Current literature indicates that enzymatic processing of oils and fats to produce biodiesel is technically feasible and developments in immobilization technology indicate that enzyme catalysts can become cost effective compared to chemical processing. However, with very few exceptions, enzyme technology...... is not currently used in commercial-scale biodiesel production. This is mainly due to non-optimized process designs, which do not use the full potential of the catalysts in a cost-efficient way. Furthermore is it unclear what process variables need to be monitored and controlled to ensure optimal economics...

  5. Biodiesel production methods of rubber seed oil: a review

    Science.gov (United States)

    Ulfah, M.; Mulyazmi; Burmawi; Praputri, E.; Sundari, E.; Firdaus

    2018-03-01

    The utilization of rubber seed as raw material of biodiesel production is seen highly potential in Indonesia. The availability of rubber seeds in Indonesia is estimated about 5 million tons per annum, which can yield rubber seed oil about 2 million tons per year. Due to the demand of edible oils as a food source is tremendous and the edible oil feedstock costs are far expensive to be used as fuel, production of biodiesel from non-edible oils such as rubber seed is an effective way to overcome all the associated problems with edible oils. Various methods for producing biodiesel from rubber seed oil have been reported. This paper introduces an optimum condition of biodiesel production methods from rubber seed oil. This article was written to be a reference in the selection of methods and the further development of biodiesel production from rubber seed oil. Biodiesel production methods for rubber seed oils has been developed by means of homogeneous catalysts, heterogeneous catalysts, supercritical method, ultrasound, in-situ and enzymatic processes. Production of biodiesel from rubber seed oil using clinker loaded sodium methoxide as catalyst is very interesting to be studied and developed further.

  6. Evaluation of Biodiesel Production, Engine Performance, and Emissions

    Science.gov (United States)

    Gürü, Metin; Keskïn, Ali

    2016-08-01

    Nowadays, to decrease environmental pollution and dependence on fossil-based fuels, research on alternative renewable energy sources has been increasing. One such renewable energy source is biodiesel, which is used as an alternative fuel for diesel engines. Biodiesel is renewable, nontoxic, biodegradable, and environmentally friendly. Biodiesel is domestically produced from vegetable oil (edible or nonedible), animal fat, and used cooking oils. In the biodiesel production process, oil or fat undergoes transesterification reaction through use of simple alcohols such as methanol, ethanol, propanol, butanol, etc. Use of methanol is most feasible because of its low cost, and physical and chemical advantages. Acid catalysis, alkali catalysis, and enzyme catalysis are usually used to improve the reaction rate and yield. Glycerol is a byproduct of the reaction and can be used as an industrial raw material. In this study, biodiesel production methods (direct use, pyrolysis, microemulsion, transesterification, supercritical processes, ultrasound- assisted, and microwave-assisted) and types of catalyst (homogeneous, heterogeneous, and enzyme) have been evaluated and compared. In addition, the effects of biodiesel and its blends on diesel engine performance and exhaust emissions are described and reviewed.

  7. Systematic sustainable process design and analysis of biodiesel processes

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad Imran; Babi, Deenesh Kavi

    2013-01-01

    Biodiesel is a promising fuel alternative compared to traditional diesel obtained from conventional sources such as fossil fuel. Many flowsheet alternatives exist for the production of biodiesel and therefore it is necessary to evaluate these alternatives using defined criteria and also from...... a biodiesel production case study....

  8. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    Mäder, A; Eskiner, M; Burger, C; Rossner, M; Krahl, J; Ruck, W

    2012-01-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  9. An updated comprehensive techno-economic analysis of algae biodiesel.

    Science.gov (United States)

    Nagarajan, Sanjay; Chou, Siaw Kiang; Cao, Shenyan; Wu, Chen; Zhou, Zhi

    2013-10-01

    Algae biodiesel is a promising but expensive alternative fuel to petro-diesel. To overcome cost barriers, detailed cost analyses are needed. A decade-old cost analysis by the U.S. National Renewable Energy Laboratory indicated that the costs of algae biodiesel were in the range of $0.53-0.85/L (2012 USD values). However, the cost of land and transesterification were just roughly estimated. In this study, an updated comprehensive techno-economic analysis was conducted with optimized processes and improved cost estimations. Latest process improvement, quotes from vendors, government databases, and other relevant data sources were used to calculate the updated algal biodiesel costs, and the final costs of biodiesel are in the range of $0.42-0.97/L. Additional improvements on cost-effective biodiesel production around the globe to cultivate algae was also recommended. Overall, the calculated costs seem promising, suggesting that a single step biodiesel production process is close to commercial reality. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. PRODUKSI BIODIESEL DARI MINYAK JELANTAH MENGGUNAKAN KATALIS KALSIUM OKSIDA

    Directory of Open Access Journals (Sweden)

    Yulia Tri Rahkadima

    2016-08-01

    Full Text Available The transesterification  reaction  has performed to convert waste cooking oils into biodiesel with assistant of  heterogen catalyst of calcium oxide using reactor  in a laboratory . The reaction was performed in two stages that is the esterification followed transesterification reaction. The aim of research is to study the effect of temperature and time reaction on viscosity and biodiesel yield. The results showed that obtained biodiesel had viscosity value in accordance with SNI 04-7182-2006 about diesel-fuel viscosity.  At lower temperature (40, 45, and 50°C, the longer reaction time could lead to the increasing of biodiesel yield. Meanwhile, at higher temperature reaction (55°C and 60°C the longer reaction time could reduce biodiesel yield. The highest biodiesel yield was obtained at following reaction condition: temperature reaction 50°C, 6 hours reaction time, ratio oil:MeOH = 1:48 molar ratio, % wt CaO = 8% to weight of waste cooking oil.

  11. IMPACT OF EXPORTS ON THE U.S. BEEF INDUSTRY

    OpenAIRE

    Van Eenoo, Edward, Jr.; Peterson, Everett B.; Purcell, Wayne D.

    2000-01-01

    Policy and programmatic decisions dealing with beef exports require good information as to the impact of exports on the domestic beef industry. This paper utilizes a partial equilibrium model of the world beef market to assess the impacts on the U.S. beef sector of increases in real income in major beef importing countries, the impacts of changes in the prices of pork and poultry products, and the impacts of changes in the price of feedgrains. A one percent increase in real GDP in Canada, Jap...

  12. New technologies in biodiesel production

    International Nuclear Information System (INIS)

    Santacesaria, E.; Di Serio, M.; Tesser, R.

    2009-01-01

    The cost of biodiesel is nowadays affected by the cost of the raw materials, because the currently used method of preparation requires highly refined vegetable oils containing very low amounts of free fatty acids and moisture. Alternatively, less expensive technologies are possible using heterogeneous catalysts. In the present paper examples of these new technologies, based on the use of heterogeneous catalysts, in the production of biodiesel are described and discussed. [it

  13. The North Dakota Beef Industry Survey: Implications for Extension

    Science.gov (United States)

    Dahlen, Carl R.; Hadrich, Joleen C.; Lardy, Gregory P.

    2014-01-01

    A portion of the North Dakota Beef Industry Survey was developed to determine how educational programs can evolve to meet future needs of North Dakota beef producers. Of the 2,500 surveys mailed out to beef producers, 527 responses were completed and returned. Results highlight the level of education of North Dakota beef producers, anticipated use…

  14. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2009-06-01

    Full Text Available Biodiesel production has received considerable attention in the recent past as a renewable fuel. The production of biodiesel by conventional transesterification process employs alkali or acid catalyst and has been industrially accepted for its high conversion and reaction rates. However for alkali catalyst, there may be risk of free acid or water contamination and soap formation is likely to take place which makes the separation process difficult. Although yield is high, the acids, being corrosive, may cause damage to the equipment and the reaction rate was also observed to be low. This research focuses on empirical modeling and optimization for the biodiesel production over plasma reactor. The plasma reactor technology is more promising than the conventional catalytic processes due to the reducing reaction time and easy in product separation. Copyright (c 2009 by BCREC. All Rights reserved.[Received: 10 August 2009, Revised: 5 September 2009, Accepted: 12 October 2009][How to Cite: I. Istadi, D.D. Anggoro, P. Marwoto, S. Suherman, B.T. Nugroho (2009. Biodiesel Production from Vegetable Oil over Plasma Reactor: Optimization of Biodiesel Yield using Response Surface Methodology. Bulletin of Chemical Reaction Engineering and Catalysis, 4(1: 23-31.  doi:10.9767/bcrec.4.1.7115.23-31][How to Link/ DOI: http://dx.doi.org/10.9767/bcrec.4.1.7115.23-31 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/7115

  15. The beef market in the European Union

    DEFF Research Database (Denmark)

    Nielsen, Niels Asger

    small with the largest slaughtering company slaughtering only 3% of the total. 9. Relations between industry (slaughterhouses) and farmers tend to be much looser in the beef market than it is in other agricultural markets, eg the milk market. Cattle markets are still quite important although the share......'s share of total meat consumption 3. As a consequence of the consumers' demand for convenient shopping, butcher's share of total beef sales is rapidly decreasing in Europe. 4. Changes in meat consumption have traditionally been explained by relative price and per capita income, but these economic demand...... analyses can explain a rapidly decreasing share of the variation in beef consumption. 5. Studies show that beef consumption tends to increase with age; the heavy users are found among middle-aged men. Beef consumption also increases with income and social class. 6. The most important user-oriented quality...

  16. Spanish, French and British consumers' acceptability of Uruguayan beef, and consumers' beef choice associated with country of origin, finishing diet and meat price.

    Science.gov (United States)

    Realini, C E; Font i Furnols, M; Sañudo, C; Montossi, F; Oliver, M A; Guerrero, L

    2013-09-01

    The effect of country of origin (local, Switzerland, Argentina, Uruguay), finishing diet (grass, grass plus concentrate, concentrate), and price (low, medium, high) on consumer's beef choice and segmentation was evaluated in Spain, France and United Kingdom. Sensory acceptability of Uruguayan beef from different production systems was also evaluated and contrasted with consumers' beef choices. Origin was the most important characteristic for the choice of beef with preference for meat produced locally. The second most important factor was animal feed followed by price with preference for beef from grass-fed animals and lowest price. The least preferred product was beef from Uruguay, concentrate-fed animals and highest price. Sensory data showed higher acceptability scores for Uruguayan beef from grass-fed animals with or without concentrate supplementation than animals fed concentrate only. Consumer segments with distinct preferences were identified. Foreign country promotion seems to be fundamental for marketing beef in Europe, as well as the development of different marketing strategies to satisfy each consumer segment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Cetane Number of Biodiesel from Karaya Oil

    KAUST Repository

    Wasfi, Bayan

    2017-01-01

    Biodiesel is a renewable fuel alternative to petroleum Diesel, biodiesel has similar characteristic but with lesser exhaust emission. In this study, transesterification of Karaya oil is examined experimentally using a batch reactor at 100-140°C

  18. Policy measures to increase the competitiveness of biodiesel fuel

    International Nuclear Information System (INIS)

    Assink, R.A.J.; Kerkhof, F.P.J.M.; Das, A.

    1993-01-01

    As a transport fuel of agricultural origin, biodiesel, which may be produced by means of a simple process from any available vegetable oil, is gathering more and more interest. Biodiesel is a mixture of methylesters of linear carbonic acids, which may be combusted in existing diesel engines. In this article the cultivation of the agricultural raw material and the fuel characteristics of biodiesel from rapeseed oil are elucidated. Also attention is paid to technological backgrounds and economical aspects of biodiesel production. At a rapeseed oil price of 750 Dutch guilders per ton, the cost price of biodiesel is 0.90 Dutch guilders per liter. Commercial demand can be created at an 85% reduction of the usual excises and levies. 9 figs., 4 tabs., 9 refs

  19. Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview

    International Nuclear Information System (INIS)

    Lim, Steven; Teong, Lee Keat

    2010-01-01

    Energy supply and its security issues have been the topic of interest lately. With growing environmental awareness about the negative implications brought by excessive usage of fossil fuels, the race for finding alternative energy as their substitutions is getting heated up. For now, renewable energy from biodiesel has been touted as one of the most promising substitutions for petroleum-derived diesel. Combustion of biodiesel as fuel is more environment-friendly while retaining most of the positive engine properties of petroleum-derived diesel. Production of biodiesel is also a proven technology with established commercialization activities. The huge potential of biodiesel coupled with the abundance of palm oil which is one of the most cost-effective feedstocks for biodiesel is responsible for the pledging of Malaysia to become the leading producer of high quality biodiesel in the region. Currently, total approved installed capacity of biodiesel production in Malaysia equals to almost 92% of the world biodiesel production output in 2008. While Malaysia does indeed possessed materials, technologies and marketing superiority to vie for that position, many more challenges are still awaiting. The price restriction, provisions controversy, escalating non-tariff trade barriers and negligible public support need to be addressed appropriately. In this review, Malaysia's previous and current position in global biodiesel market, its future potential towards the prominent leading biodiesel status and major disrupting obstacles are being discussed. The feasibility of utilizing algae as the up-and-coming biodiesel feedstock in Malaysia is also under scrutiny. Lastly, several recommendations on the roles played by three major forces in Malaysia's biodiesel industry are presented to tackle the shortcomings in achieving the coveted status by Malaysia. It is hope that Malaysia's progress in biodiesel industry will not only benefit itself but rather as the role model to catalyst the

  20. Assessment of boundary lubrication in biodiesels by nanotribological tests

    International Nuclear Information System (INIS)

    Maru, Marcia M.; Almeida, Clara M.; Silva, Rui F.; Achete, Carlos A.

    2013-01-01

    Nanoscale measurements using atomic force microscopy are performed in order to scrutinize the friction phenomena observed in microscale ball-on-disc tribological tests under (boundary lubrication) BL regime. Two reference biodiesels, one derived from a vegetable source (soybean) and the other from animal fat, are compared. A linear dependence of the friction coefficient (μ) with the Stribeck parameter (S = viscosity × velocity/load) is observed: μ = 0.11 − 26.54 × S for the animal fat and μ = 0.12 − 51.56 × S for the soybean biodiesel. The nanotribological tests allowed highlighting the cohesion component of friction force in the BL regime that is associated to the intrinsic characteristics of the biodiesels, the respective friction coefficients being μ = 0.0206 for the animal fat and μ = 0.0233 for the soybean biodiesel. The better lubricity of the animal fat biodiesel compared to the soybean observed in microscale is attributed to the presence of sulfur and to the higher amount of mono- and di-glycerides contaminants in it. The polarity and/or chemical affinity of the respective sulfur and OH groups facilitate them to reacting with the steel surfaces during the rubbing action. At nanoscale level, the same ranking in friction is observed among the biodiesels, being that here the friction phenomena are attributed to the cohesive forces other than those related to viscosity. - Highlights: • The frictional behavior of standard reference biodiesels is studied. • Nanotribology tests help scrutinizing microscale friction in boundary lubrication. • AFM tests allowed highlighting the cohesion component of friction in the BL regime. • Animal fat biodiesel promotes lower and more stable friction than soybean biodiesel

  1. Two novel approaches used to produce biodiesel from low-cost feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Fan, X.; Chen, F. [Clemson Univ., SC (United States). Dept. of Food Science and Human Nutrition; Wang, X. [Clemson Univ., SC (United States). Dept. of Genetics and Biochemistry

    2010-07-01

    The cost of feedstock has a significant effect of the economic viability of biodiesel production. The paper discussed a preliminary study looking at 2 approaches used to economically produce biodiesel, one from waste cooking oil (WCO) and the other from flaked cottonseed. Ultrasound-assisted synthesis was used to produce biodiesel from WCO, and in situ transesterification was used to produce biodiesel from the flaked cottonseed. The use of WCO solves the problem of waste disposal and also generates an environmentally benign fuel while at the same time lowering the costs involved in producing biodiesel. Ultrasonification has proven to be an efficient, low-cost, energy saving means of producing biodiesel. In situ transesterification makes solvent extraction and oil cleanup prior to biodiesel synthesis unnecessary, thereby simplifying the reaction steps. Based on the results of gas chromatography and high-performance liquid chromatography tests, both approaches are feasible for the production of biodiesel from low-cost feedstock. 15 refs., 4 figs.

  2. Microalgae as feedstock for biodiesel production under ultrasound treatment - A review.

    Science.gov (United States)

    Sivaramakrishnan, Ramachandran; Incharoensakdi, Aran

    2018-02-01

    The application of ultrasound in biodiesel production has recently emerged as a novel technology. Ultrasound treatment enhances the mass transfer characteristics leading to the increased reaction rate with short reaction time and potentially reduces the production cost. In this review, application of ultrasound-assisted biodiesel production using acid, base and enzyme catalysts is presented. A critical assessment of the current status of ultrasound in biodiesel production was discussed with the emphasis on using ultrasound for efficient microalgae biodiesel production. The ultrasound in the biodiesel production enhances the emulsification of immiscible liquid reactant by microturbulence generated by cavitation bubbles. The major benefit of the ultrasound-assisted biodiesel production is a reduction in reaction time. Several different methods have been discussed to improve the biodiesel production. Overall, this review focuses on the current understanding of the application of ultrasound in biodiesel production from microalgae and to provide insights into future developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Calophyllum inophyllum L. as a future feedstock for bio-diesel production

    Energy Technology Data Exchange (ETDEWEB)

    Atabania, A.E. [Department of Mechanical Engineering, University of Khartoum (Sudan)], email: a_atabani2@msn.com, email: ardinsu@yahoo.co.id; Silitonga, A.S.; Mahlia, T.M.I.; Masjukia, H.H.; Badruddin, I.A. [University of Malaya (Malaysia)

    2011-07-01

    Due to the energy crisis and the concerns about climate change, the possibility of using biodiesel as an alternative energy resource has been examined. It has been found that biodiesel could be a solution for the future but the first generation of biodiesel, prepared from edible vegetable oils, has raised important concerns about food and environmental problems. The aim of this study is to assess if Calophyllum inophyllum, a non-edible oil, could be used for biodiesel production. Density, kinematic viscosity, cetane number, flashpoint and iodine value were determined on Calophyllum inophyllum trees from Cilacap, Indonesia and compared in light of ASTM D6751 biodiesel standards. It was found that Calophyllum inophyllum would be a satisfactory feedstock to produce biodiesel in the future. This study demonstrated that Calophyllum inophyllum has the potential to be a biodiesel feedstock and further research should be carried out on engine performance, combustion and emission performance of biodiesel produced from Calophyllum inophyllum.

  4. Biodiesel: parâmetros de qualidade e métodos analíticos Biodiesel: quality parameters and analytical methods

    Directory of Open Access Journals (Sweden)

    Ivon Pinheiro Lôbo

    2009-01-01

    Full Text Available The establishment of quality standards for biodiesel was a key step to win the confidence of the market and the automotive industry, thus ensuring the success of the new fuel. In this review are presented standard methods and other analytical methods suggested for analysis of biodiesel. The methods of analysis were divided into groups according to information that may be provided on the contaminants from the raw material of the production process, the molecular structures of biodiesel and its degradation during storage.

  5. An optimal U.S. biodiesel fuel subsidy

    International Nuclear Information System (INIS)

    Wu Huiting; Colson, Gregory; Escalante, Cesar; Wetzstein, Michael

    2012-01-01

    Enhanced environmental quality, fuel security, and economic development, along with reduced prices of blended diesel, are often used as justifications for a U.S. federal excise tax exemption on biodiesel fuels. However, the possible effect of increased overall consumption of fuel in response to lower total prices, mitigating the environmental and fuel security benefits, are generally not considered. Taking this price response into account, the optimal U.S biodiesel subsidy is derived. Estimated values of the optimal subsidy are close to the recently expired subsidy, revealing the subsidy's environmental and security benefits. However, further positive environmental and security benefits from the biodiesel tax-exemption subsidy may be obtained if the subsidy is combined with a federal excise tax on petroleum diesel. - Highlights: ► Taking price response into account, the optimal theoretical U.S biodiesel subsidy is derived. ► Estimated values of the optimal subsidy are close to the recently expired subsidy, revealing the subsidy's environmental and security benefits. ► Further positive environmental and security benefits from the biodiesel tax-exemption subsidy may be obtained if the subsidy is combined with a federal excise tax on petroleum diesel.

  6. Biodiesel exhaust: the need for a systematic approach to health effects research.

    Science.gov (United States)

    Larcombe, Alexander N; Kicic, Anthony; Mullins, Benjamin J; Knothe, Gerhard

    2015-10-01

    Biodiesel is a generic term for fuel that can be made from virtually any plant or animal oil via transesterification of triglycerides with an alcohol (and usually a catalyst). Biodiesel has received considerable scientific attention in recent years, as it is a renewable resource that is directly able to replace mineral diesel in many engines. Additionally, some countries have mandated a minimum biodiesel content in all diesel fuel sold on environmental grounds. When combusted, biodiesel produces exhaust emissions containing particulate matter, adsorbed chemicals and a range of gases. In many cases, absolute amounts of these pollutants are lower in biodiesel exhaust compared with mineral diesel exhaust, leading to speculation that biodiesel exhaust may be less harmful to health. Additionally, engine performance studies show that the concentrations of these pollutants vary significantly depending on the renewable oil used to make the biodiesel and the ratio of biodiesel to mineral diesel in the fuel mix. Given the strategic and legislative push towards the use of biodiesel in many countries, a concerning possibility is that certain biodiesels may produce exhaust emissions that are more harmful to health than others. This variation suggests that a comprehensive, systematic and comparative approach to assessing the potential for a range of different biodiesel exhausts to affect health is urgently required. Such an assessment could inform biodiesel production priorities, drive research and development into new exhaust treatment technologies, and ultimately minimize the health impacts of biodiesel exhaust exposure. © 2015 Asian Pacific Society of Respirology.

  7. Alternative Fuels Data Center: Biodiesel Fueling Stations

    Science.gov (United States)

    Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a location or along a route. Infrastructure Development Learn about biodiesel fueling infrastructure codes Case Studies California Ramps Up Biofuels Infrastructure Green Fueling Station Powers Fleets in Upstate

  8. Biodiesel Fuel Quality and the ASTM Standard

    Science.gov (United States)

    Biodiesel is usually produced from vegetable oils, animal fats and used cooking oils with alternative feedstocks such as algae receiving increasing interest. The transesterification reaction which produces biodiesel also produces glycerol and proceeds stepwise via mono- and diacylglycerol intermedia...

  9. Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels

    Directory of Open Access Journals (Sweden)

    Cherng-Yuan Lin

    2013-09-01

    Full Text Available Biodiesel produced from vegetable oils, animal fats and algae oil is a renewable, environmentally friendly and clean alternative fuel that reduces pollutants and greenhouse gas emissions in marine applications. This study investigates the influence of biodiesel blend on the characteristics of residual and distillate marine fuels. Adequate correlation equations are applied to calculate the fuel properties of the blended marine fuels with biodiesel. Residual marine fuel RMA has inferior fuel characteristics compared with distillate marine fuel DMA and biodiesel. The flash point of marine fuel RMA could be increased by 20% if blended with 20 vol% biodiesel. The sulfur content of residual marine fuel could meet the requirement of the 2008 MARPOL Annex VI Amendment by blending it with 23.0 vol% biodiesel. In addition, the kinematic viscosity of residual marine fuel could be reduced by 12.9% and the carbon residue by 23.6% if 20 vol% and 25 vol% biodiesel are used, respectively. Residual marine fuel blended with 20 vol% biodiesel decreases its lower heating value by 1.9%. Moreover, the fuel properties of residual marine fuel are found to improve more significantly with biodiesel blending than those of distillate marine fuel.

  10. Biodiesel Production from Waste Cooking Oil Using Hydrodinamic Cavitation

    Directory of Open Access Journals (Sweden)

    Muhammad Supardan

    2013-04-01

    Full Text Available The aim of this research was to study biodiesel production from low cost feedstock of waste cooking oil (WCO using hydrodynamic cavitation apparatus. A two-step processes esterification process and transesterification process using hydrodynamic cavitation for the production of biodiesel from WCO is presented. The first step is acid-catalyzed esteri-fication process for reducing free fatty acid (FFA content of WCO and followed by base-catalyzed transesterification process for converting WCO to biodiesel as the second step. The result of esterification process with methanol to oil molar ratio of 5 and temperature of 60 oC showed that the initial acid value of WCO of 3.9 mg KOH/g can be decreased to 1.81 mg KOH/g in 120 minutes. The highest yield of biodiesel in transesterification process of 89.4% obtained at reaction time of 150 minutes with methanol to oil molar ratio of 6. The biodiesel produced in the experiment was analyzed by gas chromatography-mass spectrometry (GC-MS, which showed that it mainly contained five fatty acid methyl esters. In addition, the properties of biodiesel showed that all of the fuel properties met the Indonesian National Standard (INS No. 04-7182-2006 for biodiesel

  11. Thermally assisted sensor for conformity assessment of biodiesel production

    Science.gov (United States)

    Kawano, M. S.; Kamikawachi, R. C.; Fabris, J. L.; Muller, M.

    2015-02-01

    Although biodiesel can be intentionally tampered with, impairing its quality, ineffective production processes may also result in a nonconforming final fuel. For an incomplete transesterification reaction, traces of alcohol (ethanol or methanol) or remaining raw material (vegetable oil or animal fats) may be harmful to consumers, the environment or to engines. Traditional methods for biodiesel assessment are complex, time consuming and expensive, leading to the need for the development of new and more versatile processes for quality control. This work describes a refractometric fibre optic based sensor that is thermally assisted, developed to quantify the remaining methanol or vegetable oil in biodiesel blends. The sensing relies on a long period grating to configure an in-fibre interferometer. A complete analytical routine is demonstrated for the sensor allowing the evaluation of the biodiesel blends without segregation of the components. The results show the sensor can determine the presence of oil or methanol in biodiesel with a concentration ranging from 0% to 10% v/v. The sensor presented a resolution and standard combined uncertainty of 0.013% v/v and 0.62% v/v for biodiesel-oil samples, and 0.007% v/v and 0.22% v/v for biodiesel-methanol samples, respectively.

  12. Salmonella in beef and produce from honduras.

    Science.gov (United States)

    Maradiaga, Martha; Miller, Mark F; Thompson, Leslie; Pond, Ansen; Gragg, Sara E; Echeverry, Alejandro; Garcia, Lyda G; Loneragan, Guy H; Brashears, Mindy M

    2015-03-01

    Salmonella continues to cause a considerable number of foodborne illnesses worldwide. The sources of outbreaks include contaminated meat and produce. The purpose of this study was to establish an initial investigation of the burden of Salmonella in produce and beef from Honduras by sampling retail markets and abattoirs. Retail produce samples (cantaloupes, cilantro, cucumbers, leafy greens, peppers, and tomatoes; n = 573) were purchased in three major cities of Honduras, and retail whole-muscle beef (n = 555) samples were also purchased in four major cities. Additionally, both hide and beef carcass (n = 141) samples were collected from two Honduran abattoirs. Whole-muscle beef samples were obtained using a sponge hydrated with buffered peptone water, and 10 ml of the buffered peptone water rinsate of each produce sample was collected with a dry sponge and placed in a bag to be transported back to the United States. Salmonella was detected using a commercially available, closeplatform PCR system, and positive samples were subjected to culture on selective media to obtain isolates. Overall, the prevalence of Salmonella-positive samples, based on PCR detection in Honduras (n = 555) retail beef was 10.1% (95% confidence interval = 7.8, 12.9), whereas 7.8% (n = 141) of beef carcass and hides samples were positive in both beef plants. The overall Salmonella prevalence for all produce samples (n = 573) collected was 2.1% (95% confidence interval = 1.2, 3.6). The most common serotypes identified in Honduras were Salmonella Typhimurium followed by Derby. These results provide an indication of Salmonella contamination of beef and produce in Honduras. Developing a Salmonella baseline for Latin America through an initial investigation like the one presented here contributes to a broader global understanding of the potential exposure through food, thus providing insight into the needs for control strategies.

  13. Characteristics of paddy operations with biodiesel fuelled tractor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.; Park, S.H.; Kim, C.K.; Im, D.H.; Kim, H.J.; Chung, S.C. [National Academy of Agricultural Science, Seodundong, Suwon (Korea, Democratic People' s Republic of); Kim, S.S. [Daedong Industrial Co., Chang Nyong-Kun, Kyungnam (Korea, Democratic People' s Republic of)

    2010-07-01

    This paper reported on a study in which biofuels were tested for their power and competitiveness in various paddy operations, such as plowing and rotary tilling of paddy fields. The study considered the use of diesel fuel as well as 20 per cent biodiesel (BD20) and 100 per cent biodiesel (BD100) as an alternative fuel for tractors. Ignition problems or abrupt stopping were not monitored during operations of plowing, rotary tilling and travelling on the road. According to tractor power take-off (PTO) test codes, there was no considerable power difference between the 3 fuels. However, fuel consumption rates were quite different between the biodiesels and diesel fuel in the paddy works. Fuel consumption increased when biodiesel content increased. Approximately 35 to 40 per cent more fuel was needed for rotary tilling operations than plowing operations. Within the operations, the maximum difference occurred during the rotary tilling of wet paddy fields. This difference was as high as 20 per cent , between BD100 and diesel fuel. In terms of exhaust gases, more carbon dioxide was discharged from diesel fuel than biodiesels, but more nitrous oxide was discharged with biodiesels. It was difficult to differentiate quantities of carbon monoxide between the 3 different fuels.

  14. Production possibility frontier analysis of biodiesel from waste cooking oil

    International Nuclear Information System (INIS)

    Kagawa, Shigemi; Takezono, Kanako; Suh, Sangwon; Kudoh, Yuki

    2013-01-01

    This paper presents an assessment of the productive efficiency of an advanced biodiesel plant in Japan using Data Envelopment Analysis (DEA). The empirical analysis uses monthly input data (waste cooking oil, methanol, potassium hydroxide, power consumption, and the truck diesel fuel used for the procurement of waste cooking oil) and output data (biodiesel) of a biodiesel fuel plant for August 2008–July 2010. The results of this study show that the production activity with the lowest cost on the biodiesel production possibility frontier occurred in March 2010 (production activity used 1.41 kL of waste cooking oil, 0.18 kL of MeOH, 16.33 kg of KOH, and 5.45 kW h of power), and the unit production cost in that month was 18,517 yen/kL. Comparing this efficient production cost to the mean unit production cost on the production possibility frontier at 19,712 yen/kL, revealed that the cost of producing 1 kL of biodiesel could be reduced by as much as 1195 yen. We also find that the efficiency improvement will contribute to decreasing the cost ratio (cost per sale) of the biodiesel production by approximately 1% during the study period (24 months) between August 2008 and July 2010. - Highlights: ► This paper analyzes the productive efficiency of an advanced biodiesel plant using DEA. ► We examine the optimal production activities of biodiesel from waste cooking oil. ► Considering the production frontier, the unit cost of biodiesel could be reduced by 1195 yen. ► The efficiency improvement contributes to decreasing the cost ratio of the biodiesel by 1%

  15. Biodiesel production from waste frying oils and its quality control.

    Science.gov (United States)

    Sabudak, T; Yildiz, M

    2010-05-01

    The use of biodiesel as fuel from alternative sources has increased considerably over recent years, affording numerous environmental benefits. Biodiesel an alternative fuel for diesel engines is produced from renewable sources such as vegetable oils or animal fats. However, the high costs implicated in marketing biodiesel constitute a major obstacle. To this regard therefore, the use of waste frying oils (WFO) should produce a marked reduction in the cost of biodiesel due to the ready availability of WFO at a relatively low price. In the present study waste frying oils collected from several McDonald's restaurants in Istanbul, were used to produce biodiesel. Biodiesel from WFO was prepared by means of three different transesterification processes: a one-step base-catalyzed, a two-step base-catalyzed and a two-step acid-catalyzed transesterification followed by base transesterification. No detailed previous studies providing information for a two-step acid-catalyzed transesterification followed by a base (CH(3)ONa) transesterification are present in literature. Each reaction was allowed to take place with and without tetrahydrofuran added as a co-solvent. Following production, three different procedures; washing with distilled water, dry wash with magnesol and using ion-exchange resin were applied to purify biodiesel and the best outcome determined. The biodiesel obtained to verify compliance with the European Standard 14214 (EN 14214), which also corresponds to Turkish Biodiesel Standards. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Thermal degradation of ethanolic biodiesel: Physicochemical and thermal properties evaluation

    International Nuclear Information System (INIS)

    Silva, Wellington Costa; Castro, Maria Priscila Pessanha; Perez, Victor Haber; Machado, Francisco A.; Mota, Leonardo; Sthel, Marcelo Silva

    2016-01-01

    The aim of this paper was to study the thermal degradation of soybean biodiesel attained by ethanolic route. The soybean biodiesel samples were subjected to heating treatment at 150 °C for 24 h in a closed oven under controlled atmosphere. During the experiments, samples were withdrawn at intervals of 3, 6, 9, 12, 15 and 24 h for physicochemical and thermophysical properties analysis. The biodiesel degradation was validated by Thermogravimetric analysis since their profiles for control and treated biodiesel were different. Also, "1H NMR confirmed this result due to a significant reduction at the signals related to the "1H located near to the double bonds in the unsaturated ethyl esters in agreement with an iodine index reduction and viscosity increase observed during degradation. Nevertheless, degraded biodiesel, under study conditions, preserved its thermophysical properties. These results may be relevant to qualify the produced biodiesel quality and collect physicochemical and thermophysical data important for applications in combustion studies including project of fuel injection systems. - Highlights: • Soybean biodiesel from ethanolic route was subjected to thermal degradation to verify its stability. • Thermal degradation of biodiesel was correlated with physicochemical properties. • Thermal effusivity, diffusivity and conductivity were estimate by photothermal techniques.

  17. An Investigation of Biodiesel Production from Wastes of Seafood Restaurants

    Directory of Open Access Journals (Sweden)

    Nour Sh. El-Gendy

    2014-01-01

    Full Text Available This work illustrates a comparative study on the applicability of the basic heterogeneous calcium oxide catalyst prepared from waste mollusks and crabs shells (MS and CS, resp. in the transesterification of waste cooking oil collected from seafood restaurants with methanol for production of biodiesel. Response surface methodology RSM based on D-optimal deign of experiments was employed to study the significance and interactive effect of methanol to oil M : O molar ratio, catalyst concentration, reaction time, and mixing rate on biodiesel yield. Second-order quadratic model equations were obtained describing the interrelationships between dependent and independent variables to maximize the response variable (biodiesel yield and the validity of the predicted models were confirmed. The activity of the produced green catalysts was better than that of chemical CaO and immobilized enzyme Novozym 435. Fuel properties of the produced biodiesel were measured and compared with those of Egyptian petro-diesel and international biodiesel standards. The biodiesel produced using MS-CaO recorded higher quality than that produced using CS-CaO. The overall biodiesel characteristics were acceptable, encouraging application of CaO prepared from waste MS and CS for production of biodiesel as an efficient, environmentally friendly, sustainable, and low cost heterogeneous catalyst.

  18. The effect of economic variables over a biodiesel production plant

    International Nuclear Information System (INIS)

    Marchetti, J.M.

    2011-01-01

    Highlights: → Influence of the mayor economic parameters for biodiesel production. → Variations of profitability of a biodiesel plant due to changes in the market scenarios. → Comparison of economic indicators of a biodiesel production facility when market variables are modified. - Abstract: Biodiesel appears as one of the possible alternative renewable fuels to substitute diesel fuel derived from petroleum. Several researches have been done on the technical aspects of biodiesel production in an attempt to develop a better and cleaner alternative to the conventional process. Economic studies have been carried out to have a better understanding of the high costs and benefits of different technologies in the biodiesel industry. In this work it is studied the effect of the most important economic variables of a biodiesel production process over the general economy of a conventional plant which employs sodium methoxide as catalyst. It has been analyzed the effect of the oil price, the amount of free fatty acid, the biodiesel price, the cost of the glycerin, the effect due to the modification on the methanol price, the washing water price, and several others. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases.

  19. The effect of economic variables over a biodiesel production plant

    Energy Technology Data Exchange (ETDEWEB)

    Marchetti, J.M., E-mail: jmarchetti@plapiqui.edu.ar [Planta Piloto de Ingenieria Quimica (UNS-CONICET), Camino La Carrindanga km 7, 8000 Bahia Blanca (Argentina)

    2011-09-15

    Highlights: {yields} Influence of the mayor economic parameters for biodiesel production. {yields} Variations of profitability of a biodiesel plant due to changes in the market scenarios. {yields} Comparison of economic indicators of a biodiesel production facility when market variables are modified. - Abstract: Biodiesel appears as one of the possible alternative renewable fuels to substitute diesel fuel derived from petroleum. Several researches have been done on the technical aspects of biodiesel production in an attempt to develop a better and cleaner alternative to the conventional process. Economic studies have been carried out to have a better understanding of the high costs and benefits of different technologies in the biodiesel industry. In this work it is studied the effect of the most important economic variables of a biodiesel production process over the general economy of a conventional plant which employs sodium methoxide as catalyst. It has been analyzed the effect of the oil price, the amount of free fatty acid, the biodiesel price, the cost of the glycerin, the effect due to the modification on the methanol price, the washing water price, and several others. Small variations on some of the major market variables would produce significant effects over the global economy of the plant, making it non profitable in some cases.

  20. Study of the drivers of competitiveness of the Brazilian biodiesel; Estudo dos direcionadores de competitividade do biodiesel brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, Aldara da Silva; Batalha, Mario Otavio [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Engenharia de Producao; Monteiro, Marcos Roberto [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Centro de Caracterizacao e Desenvolvimento de Materiais

    2008-07-01

    In the increasingly important role that the biofuel market takes in the new dynamic global competition, biodiesel emerges as a real alternative of implantation. In Brazil, this interest is not different. However, despite of biodiesel's enormous potential, there is a number of uncertainties that need to be investigated in order to produce a biodiesel which has its unique specifications and international quality recognized. The aim of this article is twofold: first, the information systematization of the Brazilian biodiesel production chain; and second, the analysis of drivers of competitiveness that affect that same production chain. Through the theory of systemic approach, each driver of competitiveness is described and its competitive environment is analyzed. The range of different raw materials and possible technological routes present numerous challenges for the agents of this chain. What increases the relevance of studies such as this is the notion that investigating the drives of competitiveness is the first step in overcoming these challenges. (author)

  1. Study of the drivers of competitiveness of the Brazilian biodiesel; Estudo dos direcionadores de competitividade do biodiesel brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Cesar, Aldara da Silva; Batalha, Mario Otavio [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Dept. de Engenharia de Producao; Monteiro, Marcos Roberto [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Centro de Caracterizacao e Desenvolvimento de Materiais

    2008-07-01

    In the increasingly important role that the biofuel market takes in the new dynamic global competition, biodiesel emerges as a real alternative of implantation. In Brazil, this interest is not different. However, despite of biodiesel's enormous potential, there is a number of uncertainties that need to be investigated in order to produce a biodiesel which has its unique specifications and international quality recognized. The aim of this article is twofold: first, the information systematization of the Brazilian biodiesel production chain; and second, the analysis of drivers of competitiveness that affect that same production chain. Through the theory of systemic approach, each driver of competitiveness is described and its competitive environment is analyzed. The range of different raw materials and possible technological routes present numerous challenges for the agents of this chain. What increases the relevance of studies such as this is the notion that investigating the drives of competitiveness is the first step in overcoming these challenges. (author)

  2. Study of oxidation stability of Jatropha curcas biodiesel/ diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Biofuel Research Laboratory, Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand- 247667 (India)

    2011-07-01

    Biodiesel production is undergoing rapid technological reforms in industries and academia. This has become more obvious and relevant since the recent increase in the petroleum prices and the growing awareness relating to the environmental consequences of the fuel overdependency. However, the possibilities of production of biodiesel from edible oil resources in India is almost impossible, as primary need is to first meet the demand of edible oil that is already imported therefore it is essential to explore non-edible seed oils, like Jatropha curcas and Pongamia as biodiesel raw materials. The oxidation stability of biodiesel from Jatropha curcas oil is very poor. Therefore the aim of the present paper is to study the oxidation stability of Jatropha curcas biodiesel/ diesel blend. Also the effectiveness of various antioxidants is checked with respect to various blends of biodiesel with diesel.

  3. Oxidation stability of biodiesel fuel as prepared by supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Jiayu Xin; Hiroaki Imahara; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science, Graduate School of Energy Science

    2008-08-15

    A non-catalytic supercritical methanol method is an attractive process to convert various oils/fats efficiently into biodiesel. To evaluate oxidation stability of biodiesel, biodiesel produced by alkali-catalyzed method was exposed to supercritical methanol at several temperatures for 30 min. As a result, it was found that the tocopherol in biodiesel is not stable at a temperature higher than 300{sup o}C. After the supercritical methanol treatment, hydroperoxides were greatly reduced for biodiesel with initially high in peroxide value, while the tocopherol slightly decreased in its content. As a result, the biodiesel prepared by the supercritical methanol method was enhanced for oxidation stability when compared with that prepared by alkali-catalyzed method from waste oil. Therefore, supercritical methanol method is useful especially for oils/fats having higher peroxide values. 32 refs., 8 figs., 3 tabs.

  4. Biodiesel in Brazil and the millennium development goals; Biodiesel no Brasil e objetivos de desenvolvimento do milenio

    Energy Technology Data Exchange (ETDEWEB)

    Neves Neto, Lincoln Camargo; Jannuzzi, Gilberto de M. [Universidade Estadual de Campinas (FEM/UNICAMP), SP (Brazil). Fac. de Engenharia Mecanica

    2006-07-01

    Biodiesel production in the world is getting higher every year since its begging in industrial scale in 1996. The implementation of the Brazilian national program started in 2005 and the expectation is to substitute 2% of diesel total consumption for biodiesel until 2008. On the other side, the Millennium Development Goals (MDG), established in 2000 by UN, as a key to global development and poverty reduction. The recommendation pointed eighth main targets to be achieved until 2015 related to improve human conditions and ways to sustainable development of poor and developing countries. The aim of this paper is to show that it is possible to have a relationship between the UN program and Brazilian national policies, so that general recommendations and basic guidelines of the MDGs serve as basic plan and guidance to the program to include biodiesel in the country, and also that the initiatives and achievements obtained in national level, related to biodiesel, can be used as examples of public policies related to development and social inclusion within this examples of goals set by the UN program. (author)

  5. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects.

    Science.gov (United States)

    Wang, Jinghan; Yang, Haizhen; Wang, Feng

    2014-04-01

    Biodiesel from microalgae provides a promising alternative for biofuel production. Microalgae can be produced under three major cultivation modes, namely photoautotrophic cultivation, heterotrophic cultivation, and mixotrophic cultivation. Potentials and practices of biodiesel production from microalgae have been demonstrated mostly focusing on photoautotrophic cultivation; mixotrophic cultivation of microalgae for biodiesel production has rarely been reviewed. This paper summarizes the mechanisms and virtues of mixotrophic microalgae cultivation through comparison with other major cultivation modes. Influencing factors of microalgal biodiesel production under mixotrophic cultivation are presented, development of combining microalgal biodiesel production with wastewater treatment is especially reviewed, and bottlenecks and strategies for future commercial production are also identified.

  6. Enhancing Biodiesel from Kemiri Sunan Oil Manufacturing using Ultrasonics

    Science.gov (United States)

    Supriyadi, Slamet; Purwanto; Anggoro, Didi Dwi; Hermawan

    2018-02-01

    Kemiri Sunan (Reutalis trisperma (Blanco) Airy Shaw) is a potential plant to be developed as biodiesel feedstock. The advantage of Kemiri Sunan seeds when compared to other biodiesel raw materials is their high oil content. This plant is also very good for land conservation. Due the increasingly demand for biodiesel, research and new methods to increase its biodiesel production continue to be undertaken. The weakness of conventional biodiesel manufacturing process is in the mixing process in which mechanical stirring and heating in the trans-esterification process require more energy and a longer time. A higher and stronger mixing process is required to increase the contact area between the two phases of the mixed substance to produce the emulsion. Ultrasonic is a tool that can be useful for a liquid mixing process that tends to be separated. Ultrasonic waves can cause mixing intensity at the micro level and increase mass transfer, so the reaction can be performed at a much faster rate. This study is to figure out the effect of ultrasonic irradiation on the transesterification process of biodiesel from Kemiri Sunan Oil.

  7. Economic evaluation of algae biodiesel based on meta-analyses

    Science.gov (United States)

    Zhang, Yongli; Liu, Xiaowei; White, Mark A.; Colosi, Lisa M.

    2017-08-01

    The objective of this study is to elucidate the economic viability of algae-to-energy systems at a large scale, by developing a meta-analysis of five previously published economic evaluations of systems producing algae biodiesel. Data from original studies were harmonised into a standardised framework using financial and technical assumptions. Results suggest that the selling price of algae biodiesel under the base case would be 5.00-10.31/gal, higher than the selected benchmarks: 3.77/gal for petroleum diesel, and 4.21/gal for commercial biodiesel (B100) from conventional vegetable oil or animal fat. However, the projected selling price of algal biodiesel (2.76-4.92/gal), following anticipated improvements, would be competitive. A scenario-based sensitivity analysis reveals that the price of algae biodiesel is most sensitive to algae biomass productivity, algae oil content, and algae cultivation cost. This indicates that the improvements in the yield, quality, and cost of algae feedstock could be the key factors to make algae-derived biodiesel economically viable.

  8. A review on biodiesel production using catalyzed transesterification

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Dennis Y.C.; Wu, Xuan; Leung, M.K.H. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2010-04-15

    Biodiesel is a low-emissions diesel substitute fuel made from renewable resources and waste lipid. The most common way to produce biodiesel is through transesterification, especially alkali-catalyzed transesterification. When the raw materials (oils or fats) have a high percentage of free fatty acids or water, the alkali catalyst will react with the free fatty acids to form soaps. The water can hydrolyze the triglycerides into diglycerides and form more free fatty acids. Both of the above reactions are undesirable and reduce the yield of the biodiesel product. In this situation, the acidic materials should be pre-treated to inhibit the saponification reaction. This paper reviews the different approaches of reducing free fatty acids in the raw oil and refinement of crude biodiesel that are adopted in the industry. The main factors affecting the yield of biodiesel, i.e. alcohol quantity, reaction time, reaction temperature and catalyst concentration, are discussed. This paper also described other new processes of biodiesel production. For instance, the Biox co-solvent process converts triglycerides to esters through the selection of inert co-solvents that generates a one-phase oil-rich system. The non-catalytic supercritical methanol process is advantageous in terms of shorter reaction time and lesser purification steps but requires high temperature and pressure. For the in situ biodiesel process, the oilseeds are treated directly with methanol in which the catalyst has been preciously dissolved at ambient temperatures and pressure to perform the transesterification of oils in the oilseeds. This process, however, cannot handle waste cooking oils and animal fats. (author)

  9. Comparative toxicity and mutagenicity of biodiesel exhaust

    Science.gov (United States)

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  10. Antimicrobial resistance issues in beef production

    Science.gov (United States)

    Antimicrobial resistance threats to human health as identified have been recognized as a critical global public health concern. Linkage of some threats to beef production is discussed. The relevance to beef production of recent government actions will be examined. Prominent antimicrobial resistance ...

  11. Properties and quality verification of biodiesel produced from tobacco seed oil

    Energy Technology Data Exchange (ETDEWEB)

    Usta, N., E-mail: n_usta@pau.edu.t [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Aydogan, B. [Pamukkale University, Mechanical Engineering Department, 20070 Denizli (Turkey); Con, A.H. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey); Uguzdogan, E. [Pamukkale University, Chemical Engineering Department, 20070 Denizli (Turkey); Ozkal, S.G. [Pamukkale University, Food Engineering Department, 20070 Denizli (Turkey)

    2011-05-15

    Research highlights: {yields} High quality biodiesel fuel can be produced from tobacco seed oil. {yields} Pyrogallol was found to be effective antioxidant improving the oxidation stability. {yields} The iodine number was reduced with a biodiesel including more saturated fatty acids. {yields} Octadecene-1-maleic anhydride copolymer was an effective cold flow improver. {yields} The appropriate amounts of the additives do not affect the properties negatively. -- Abstract: Tobacco seed oil has been evaluated as a feedstock for biodiesel production. In this study, all properties of the biodiesel that was produced from tobacco seed oil were examined and some solutions were derived to bring all properties of the biodiesel within European Biodiesel Standard EN14214 to verify biodiesel quality. Among the properties, only oxidation stability and iodine number of the biodiesel, which mainly depend on fatty acid composition of the oil, were not within the limits of the standard. Six different antioxidants that are tert-butylhydroquinone, butylated hydroxytoluene, propyl gallate, pyrogallol, {alpha}-tocopherol and butylated hydroxyanisole were used to improve the oxidation stability. Among them, pyrogallol was found to be the most effective antioxidant. The iodine number was improved with blending the biodiesel produced from tobacco seed oil with a biodiesel that contains more saturated fatty acids. However, the blending caused increasing the cold filter plugging point. Therefore, four different cold flow improvers, which are ethylene-vinyl acetate copolymer, octadecene-1-maleic anhydride copolymer and two commercial cold flow improvers, were used to decrease cold filter plugging point of the biodiesel and the blends. Among the improvers, the best improver is said to be octadecene-1-maleic anhydride copolymer. In addition, effects of temperature on the density and the viscosity of the biodiesel were investigated.

  12. Heat shock and thermotolerance of Escherichia coli O157:H7 in a model beef gravy system and ground beef.

    Science.gov (United States)

    Juneja, V K; Klein, P G; Marmer, B S

    1998-04-01

    Duplicate beef gravy or ground beef samples inoculated with a suspension of a four-strain cocktail of Escherichia coli O157:H7 were subjected to sublethal heating at 46 degrees C for 15-30 min, and then heated to a final internal temperature of 60 degrees C. Survivor curves were fitted using a linear model that incorporated a lag period (TL), and D-values and 'time to a 4D inactivation' (T4D) were calculated. Heat-shocking allowed the organism to survive longer than non-heat-shocked cells; the T4D values at 60 degrees C increased 1.56- and 1.50-fold in beef gravy and ground beef, respectively. In ground beef stored at 4 degrees C, thermotolerance was lost after storage for 14 h. However, heat-shocked cells appeared to maintain their thermotolerance for at least 24 h in ground beef held to 15 or 28 degrees C. A 25 min heat shock at 46 degrees C in beef gravy resulted in an increase in the levels of two proteins with apparent molecular masses of 60 and 69 kDa. These two proteins were shown to be immunologically related to GroEL and DnaK, respectively. Increased heat resistance due to heat shock must be considered while designing thermal processes to assure the microbiological safety of thermally processed foods.

  13. Biodiesel fuels

    Science.gov (United States)

    The mono-alkyl esters, most commonly the methyl esters, of vegetable oils, animal fats or other materials consisting mainly of triacylglycerols, often referred to as biodiesel, are an alternative to conventional petrodiesel for use in compression-ignition engines. The fatty acid esters that thus com...

  14. NREL's Earl Christensen Honored with Two Awards from National Biodiesel

    Science.gov (United States)

    Board | News | NREL NREL's Earl Christensen Honored with Two Awards from National Biodiesel Board NREL's Earl Christensen Honored with Two Awards from National Biodiesel Board February 16, 2018 Fuel stability research advances innovation and bolsters industry confidence in biodiesel. Scott

  15. Production of Mahua Oil Ethyl Ester (MOEE) and its Performance test on four stroke single cylinder VCR engine

    Science.gov (United States)

    Soudagar, Manzoor Elahi M.; Kittur, Prasanna; Parmar, Fulchand; Batakatti, Sachin; Kulkarni, Prasad; Kallannavar, Vinayak

    2017-08-01

    Biodiesel is a substitute for gasoline that is produced from vegetable oils and animal fats. It has gained popularity due to depleting fossil fuel resources, its renewable character and comparable combustion properties to diesel fuel. Biodiesel is formed from non-edible oils, edible oils, tallow, animal fats and waste cooked oils. Biodiesels are monoalkyl esters of elongated chain fatty acids. Biodiesel can be a viable choice for satisfying long term energy requirements if they are managed proficiently. The method of the transesterification shows how the reaction occurs and advances. In this study, biodiesel is produced from Madhuca indica seeds commonly known as Mahua by using transesterification process using a low capacity pressure reactor and by-product of transesterification is glycerol, which is used in preparation of soaps. Mahua Oil Ethyl Ester (MOEE) was produced from the Mahua oil and is mixed with diesel to get different ratios of blends. MOEE was tested in a 4-stroke single cylinder VCR diesel engine. The study was extended to understand the effect of biodiesel blend magnitude on the performance of engine parameters like, brake thermal efficiency, brake power and fuel properties like flash point, cloud point, kinematic viscosity, calorific value, cetane number and density were studied.

  16. Beef traders' and consumers' perceptions on the development of a ...

    African Journals Online (AJOL)

    Beef traders' and consumers' perceptions on the development of a natural pasture-fed beef (NPB) brand by smallholder cattle producers were investigated. In total, 18 meat traders (five abattoirs and 13 beef retailers) and 155 beef consumers were interviewed using structured questionnaires. All meat traders had the ...

  17. Analysis of national Jatropha biodiesel programme in Senegal

    DEFF Research Database (Denmark)

    Dafrallah, Touria; Ackom, Emmanuel

    2016-01-01

    and other biodiesel crop options, based on findings from an agro-environmental mapping exercise have been shown. Findings show that prior policies in agricultural and energy sectors had been instrumental in developing the NJP. It highlights significant challenges in the value chain, the implementation...... of NJP and on the importance of using empirical assessment of evidence to inform on the biodiesel crop type compared to a focus on only one crop, Jatropha. Agro-environmental mapping was identified as useful technique prior to biodiesel cultivation. The work reported here indicates Jatropha having...... on the suitability of areas for Jatropha cultivation and on environmentally, socially and culturally sensitive areas. Policy options have been suggested for environmentally benigned sustained biodiesel activities in Senegal....

  18. Innovative Canadian Process Technology For Biodiesel Production

    Energy Technology Data Exchange (ETDEWEB)

    Johar, Sangat; Norton, Kevin

    2010-09-15

    The need for increasing renewable and alternative energy in the global energy mix has been well recognized by Governments and major scientific forums to reduce climate change impact for this living planet. Biodiesel has very high potential for GHG emission reduction. An innovative process developed in Canada provides solution to mitigate the feedstock, yield and quality issues impacting the industry. The Biox process uses a continuous process which reduces reaction times, provides > 99% yield of high quality biodiesel product. The process is feedstock flexible and can use cheaper higher FFA feedstock providing a sustainable approach for biodiesel production.

  19. Improvements in Iron Status and Cognitive Function in Young Women Consuming Beef or Non-Beef Lunches

    Directory of Open Access Journals (Sweden)

    Cynthia Blanton

    2013-12-01

    Full Text Available Iron status is associated with cognitive performance and intervention trials show that iron supplementation improves mental function in iron-deficient adults. However, no studies have tested the efficacy of naturally iron-rich food in this context. This investigation measured the hematologic and cognitive responses to moderate beef consumption in young women. Participants (n = 43; age 21.1 ± 0.4 years were randomly assigned to a beef or non-beef protein lunch group [3-oz (85 g, 3 times weekly] for 16 weeks. Blood was sampled at baseline, and weeks 8 and 16, and cognitive performance was measured at baseline and week 16. Body iron increased in both lunch groups (p < 0.0001, with greater improvement demonstrated in women with lower baseline body iron (p < 0.0001. Body iron had significant beneficial effects on spatial working memory and planning speed (p < 0.05, and ferritin responders (n = 17 vs. non-responders (n = 26 showed significantly greater improvements in planning speed, spatial working memory strategy, and attention (p < 0.05. Lunch group had neither significant interactions with iron status nor consistent main effects on test performance. These findings support a relationship between iron status and cognition, but do not show a particular benefit of beef over non-beef protein consumption on either measure in young women.

  20. Production and characterization of biodiesel from Camelus dromedarius (Hachi) fat

    International Nuclear Information System (INIS)

    Sbihi, Hassen Mohamed; Nehdi, Imededdine Arbi; Tan, Chin Ping; Al-Resayes, Saud Ibrahim

    2014-01-01

    Highlights: • Transesterification reaction with methanol in the presence of NaOH as a catalyst. • Optimization of key reaction parameters were performed. • Some fuel properties of biodiesel were measured and compared with biodiesel standards. • Ten of the properties that were evaluated for the diesel conform to the ASTM and EN standards values. - Abstract: Recently, biodiesel has been gaining market share against fossil-origin diesel due to its ecological benefits and because it can be directly substituted for traditional diesel oils. However, the high cost of the raw materials required to produce biodiesel make it more expensive than fossil diesel. Therefore, low-priced raw materials, such as waste cooking oil and animal fats, are of interest because they can be used to drive down the cost of biodiesel. We have produced biodiesel from camel fat using a transesterification reaction with methanol in the presence of NaOH. The experimental variables investigated in this study were the temperature (30–75 °C), reaction time (20–160 min), catalyst concentration (0.25–1.5%), and methanol/fat molar ratio (4:1–9:1). A maximum biodiesel yield of 98.6% was obtained. The fuel properties of biodiesel, such as iodine value, saponification value, density, kinematic viscosity, cetane number, flash point, sulfur content, carbon residue, water and sediment, high heating value, refractive index, cloud point, pour point, and distillation characteristics, were measured. The properties were compared with EN 14214 and ASTM 6751 biodiesel standards, and an acceptable level of agreement was obtained

  1. Conversion of lipid from food waste to biodiesel.

    Science.gov (United States)

    Karmee, Sanjib Kumar; Linardi, Darwin; Lee, Jisoo; Lin, Carol Sze Ki

    2015-07-01

    Depletion of fossil fuels and environmental problems are encouraging research on alternative fuels of renewable sources. Biodiesel is a promising alternative fuel to be used as a substitute to the petroleum based diesel fuels. However, the cost of biodiesel production is high and is attributed mainly to the feedstock used which leads to the investigation of low cost feedstocks that are economically feasible. In this paper, we report on the utilization of lipid obtained from food waste as a low-cost feedstock for biodiesel production. Lipid from food waste was transesterified with methanol using base and lipase as catalysts. The maximum biodiesel yield was 100% for the base (KOH) catalyzed transesterification at 1:10M ratio of lipid to methanol in 2h at 60°C. Novozyme-435 yielded a 90% FAME conversion at 40°C and 1:5 lipid to methanol molar ratio in 24h. Lipid obtained from fungal hydrolysis of food waste is found to be a suitable feedstock for biodiesel production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. HEDONIC DEMAND ANALYSIS FOR BEEF IN BENIN METROPOLIS

    African Journals Online (AJOL)

    BIUAGRIC2

    2013-02-11

    Feb 11, 2013 ... implicit demand for beef within the framework of a hedonic analysis, and the implicit or shadow price of beef were examined. Primary data ... results of the Hedonic analysis showed that, with an average unit price of N836.57 for beef, a consumer is strongly willing to pay ... method and strategies. Lancaster ...

  3. Alternative Fuels Data Center: Alabama City Leads With Biodiesel and

    Science.gov (United States)

    Ethanol Alabama City Leads With Biodiesel and Ethanol to someone by E-mail Share Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Facebook Tweet about Alternative Fuels Data Center: Alabama City Leads With Biodiesel and Ethanol on Twitter Bookmark Alternative Fuels

  4. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. ... Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. C Dai, J Tao, F Xie, Y Dai, M Zhao. Abstract. This study explored a strategy to convert agricultural and forestry residues into ...

  5. Different purification methods and quality of sunflower biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Pighinelli, A.L.M.T.; Park, K.J. [Campinas State Univ., Sao Paulo (Brazil). School of Agricultural Engineering; Ferrari, R.A.; Miguel, A.M.R.O. [Food Technology Inst., Sao Paulo (Brazil)

    2010-07-01

    Biodiesel is derived from triacylglycerides and is produced primarily through transesterification, a chemical reaction of vegetable oils with alcohol, methanol or ethanol. The cost of raw material should be considered since 85 per cent of production cost is related to vegetable oil. The purpose of this study was to evaluate oil expression of sunflower seed. It also examined the sunflower crude oil as a raw material for biodiesel by transesterification in both laboratory and pilot scale studies. Three different biodiesel purification methods were examined. The best result for oil expelling (68.4 per cent) at the experimental stage was obtained for seeds with a moisture content of 6.9 per cent at 25 degrees C and at a screw speed of 114 rpm. For biodiesel production at the laboratory scale, the best result for oil expelling was 87.5 per cent. It was obtained with an ethanol:oil molar ratio of 4.7:1 and with a 4.42 per cent catalyst concentration related to the quantity of oil that had to be transesterified. The experimental condition was applied at a bigger scale with a batch stirred tank reactor. For purification with washing, the biodiesel yield was 84.2 per cent. Purification with silica resulted in a yield of 84.6 per cent. A better quality biofuel was obtained through distillation of biodiesel.

  6. [FTIR detection of unregulated emissions from a diesel engine with biodiesel fuel].

    Science.gov (United States)

    Tan, Pi-qiang; Hu, Zhi-yuan; Lou, Di-ming

    2012-02-01

    Biodiesel, as one of the most promising alternative fuels, has received more attention because of limited fossil fuels. A comparison of biodiesel and petroleum diesel fuel is discussed as regards engine unregulated exhaust emissions. A diesel fuel, a pure biodiesel fuel, and fuel with 20% V/V biodiesel blend ratio were tested without engine modification The present study examines six typical unregulated emissions by Fourier transform infrared spectroscopy (FTIR) method: formaldehyde (HCHO), acetaldehyde (C2 H4 O), acetone (C3 H6 O), toluene (C7 H8), sulfur dioxide (SO2), and carbon dioxide (CO2). The results show addition of biodiesel fuel increases the formaldehyde emission, and B20 fuel has little change, but the formaldehyde emission of pure biodiesel shows a clear trend of addition. Compared with the pure diesel fuel, the acetaldehyde of B20 fuel has a distinct decrease, and the acetaldehyde emission of pure biodiesel is lower than that of the pure diesel fuel at low and middle engine loads, but higher at high engine load. The acetone emission is very low, and increases for B20 and pure biodiesel fuels as compared to diesel fuel. Compared with the diesel fuel, the toluene and sulfur dioxide values of the engine show a distinct decrease with biodiesel blend ratio increasing. It is clear that the biodiesel could reduce aromatic compounds and emissions of diesel engines. The carbon dioxide emission of pure biodiesel has a little lower value than diesel, showing that the biodiesel benefits control of greenhouse gas.

  7. Biodiesel production with immobilized lipase: A review.

    Science.gov (United States)

    Tan, Tianwei; Lu, Jike; Nie, Kaili; Deng, Li; Wang, Fang

    2010-01-01

    Fatty acid alkyl esters, also called biodiesel, are environmentally friendly and show great potential as an alternative liquid fuel. Biodiesel is produced by transesterification of oils or fats with chemical catalysts or lipase. Immobilized lipase as the biocatalyst draws high attention because that process is "greener". This article reviews the current status of biodiesel production with immobilized lipase, including various lipases, immobilization methods, various feedstocks, lipase inactivation caused by short chain alcohols and large scale industrialization. Adsorption is still the most widely employed method for lipase immobilization. There are two kinds of lipase used most frequently especially for large scale industrialization. One is Candida antartica lipase immobilized on acrylic resin, and the other is Candida sp. 99-125 lipase immobilized on inexpensive textile membranes. However, to further reduce the cost of biodiesel production, new immobilization techniques with higher activity and stability still need to be explored. Copyright 2010 Elsevier Inc. All rights reserved.

  8. Evaluación del funcionamiento de motores de combustión interna trabajando con biodiesel. // Evaluation of engine performance working with biodiesel.

    Directory of Open Access Journals (Sweden)

    R. Piloto Rodríguez

    2008-09-01

    Full Text Available En el presente trabajo se determinó la característica exterior de velocidad para dos motores de combustión internatrabajando con combustible biodiesel procedente de varias fuentes naturales y se comparó con la característica exterior develocidad de los motores originalmente trabajando con combustible diesel. Los motores fueron evaluados con variacionesde carga y velocidad. En uno de los motores ensayados fue determinada la presión en el interior de la cámara decombustión con el objetivo de evaluar el retardo de ignición. Fue observado que los motores trabajando con combustiblebiodiesel presentaban una disminución de la potencia efectiva y un aumento del consumo especifico de combustible. Seobservó una disminución del retardo de ignición cuando fue empleado el combustible biodiesel. También fue observadoque los gases contaminantes, excepto las emisiones de NOx y CO, disminuyen o permanecen constantes con el uso delbiocombustible.Palabras claves: Motores de combustión interna, biodiesel, emisiones, característica exterior de velocidad,retardo de ignición._____________________________________________________________________________Abstract:The engine outer velocity characterization for two engines was made working with biodiesel from different natural sources,and its performance was compared with the engine parameters using reference diesel. The engines were used varying loadand velocity. The ignition delay was obtained by measurement of in-cylinder pressure. A decrease in the effective powerand increase in the effective fuel consumption were observed in the engines when biodiesel is used. Biodiesel samplesshown shorter ignition delay than diesel. The pollutants emitted for the engine using biodiesel was lower than diesel, withthe exception of NOx and CO emissions.Key words: engine, biodiesel, emissions, outer velocity characteristic, ignition delay.

  9. Study on Emission and Performance of Diesel Engine Using Castor Biodiesel

    Directory of Open Access Journals (Sweden)

    Md. Saiful Islam

    2014-01-01

    performance of diesel engine using the castor biodiesel and its blend with diesel from 0% to 40% by volume. The acid-based catalyzed transesterification system was used to produce castor biodiesel and the highest yield of 82.5% was obtained under the optimized condition. The FTIR spectrum of castor biodiesel indicates the presence of C=O and C–O functional groups, which is due to the ester compound in biodiesel. The smoke emission test revealed that B40 (biodiesel blend with 40% biodiesel and 60% diesel had the least black smoke compared to the conventional diesel. Diesel engine performance test indicated that the specific fuel consumption of biodiesel blend was increased sufficiently when the blending ratio was optimized. Thus, the reduction in exhaust emissions and reduction in brake-specific fuel consumption made the blends of caster seed oil (B20 a suitable alternative fuel for diesel and could help in controlling air pollution.

  10. Jatropha bio-diesel production and use

    International Nuclear Information System (INIS)

    Achten, W.M.J.; Aerts, R.; Muys, B.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.

    2008-01-01

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  11. Jatropha bio-diesel production and use

    Energy Technology Data Exchange (ETDEWEB)

    Achten, W.M.J.; Aerts, R.; Muys, B. [Katholieke Universiteit Leuven, Division Forest, Nature and Landscape, Celestijnenlaan 200 E Box 2411, BE-3001 Leuven (Belgium); Verchot, L. [World Agroforestry Centre (ICRAF) Head Quarters, United Nations Avenue, P.O. Box 30677, Nairobi (Kenya); Franken, Y.J. [FACT Foundation, Horsten 1, 5612 AX Eindhoven (Netherlands); Mathijs, E. [Katholieke Universiteit Leuven, Division Agricultural and Food Economics, Willem de Croylaan 42 Box 2424, BE-3001 Leuven (Belgium); Singh, V.P. [World Agroforestry Centre (ICRAF) Regional Office for South Asia, CG Block, 1st Floor, National Agricultural Science Centre, Dev Prakash Shastri Marg, Pusa, New Delhi 110 012 (India)

    2008-12-15

    The interest in using Jatropha curcas L. (JCL) as a feedstock for the production of bio-diesel is rapidly growing. The properties of the crop and its oil have persuaded investors, policy makers and clean development mechanism (CDM) project developers to consider JCL as a substitute for fossil fuels to reduce greenhouse gas emissions. However, JCL is still a wild plant of which basic agronomic properties are not thoroughly understood and the environmental effects have not been investigated yet. Gray literature reports are very optimistic on simultaneous wasteland reclamation capability and oil yields, further fueling the Jatropha bio-diesel hype. In this paper, we give an overview of the currently available information on the different process steps of the production process of bio-diesel from JCL, being cultivation and production of seeds, extraction of the oil, conversion to and the use of the bio-diesel and the by-products. Based on this collection of data and information the best available practice, the shortcomings and the potential environmental risks and benefits are discussed for each production step. The review concludes with a call for general precaution and for science to be applied. (author)

  12. Global sale of green air travel supported using biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Wardle, D.A. [Auckland (New Zealand)

    2003-02-01

    The technical feasibility of operating commercial aircraft on low concentration biodiesel in kerosene blends is reviewed. Although the analysis is preliminary, it seems plausible that a biodiesel component could be introduced without significant modification to aircraft, airport infrastructure, and flight operations. The use of a biodiesel component, even for only a subset of flight operations, would open the possibility of giving all passengers, the world over, regardless of route, the option to pay a premium to make their journey on 'green' fuel (actually biodiesel). In this way, the airline industry could recover the additional cost of biodiesel in comparison to kerosene. The costs associated with such a scheme are estimated, as is consumer demand. Although the analysis is preliminary, the scheme appears commercially viable. From a humanitarian and/or environmental perspective, marketing flight on biodiesel as 'green air travel' is problematic. On the one hand, the use of biodiesel in aviation would reduce addition of carbon dioxide to the atmosphere and foster development of sustainable technology. On the other hand, it would require that agricultural resources be dedicated to air travel, nominally a luxury, in a world where agricultural resources appear destined to come under increasing strain merely to satisfy humanity's basic food and energy needs. A preliminary discussion of these issues is presented. It is hoped that this can serve as the starting point for further discussion, at an international level, to reach consensus on whether marketing of flight on biodiesel as 'green air travel' should be allowed to proceed, or whether it should be declared unethical. (author)

  13. A skeletal mechanism for biodiesel blend surrogates combustion

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Maghbouli, A.; Li, J.; Chua, K.J.

    2014-01-01

    Highlights: • A skeletal biodiesel reaction mechanism with 112 species was constructed. • The developed mechanism contains the CO, NO x and soot formation kinetics. • It was well validated against detailed reaction mechanism and experimental results. • The mechanism is suitable to simulate biodiesel, diesel and their blend fuels. - Abstract: A tri-component skeletal reaction mechanism consisting of methyl decanoate, methyl-9-decenoate, and n-heptane was developed for biodiesel combustion in diesel engine. It comprises 112 species participating in 498 reactions with the CO, NO x and soot formation mechanisms embedded. In this study, a detailed tri-component biodiesel mechanism was used as the start of mechanism reduction and the reduced mechanism was combined with a previously developed skeletal reaction mechanism for n-heptane to integrate the soot formation kinetics. A combined mechanism reduction strategy including the directed relation graph with error propagation and sensitivity analysis (DRGEPSA), peak concentration analysis, isomer lumping, unimportant reactions elimination and reaction rate adjustment methods was employed. The reduction process for biodiesel was performed over a range of initial conditions covering the pressures from 1 to 100 atm, equivalence ratios from 0.5 to 2.0 and temperatures from 700 to 1800 K, whereas for n-heptane, ignition delay predictions were compared against 17 shock tube experimental conditions. Extensive validations were performed for the developed skeletal reaction mechanism with 0-D ignition delay testing and 3-D engine simulations. The results indicated that the developed mechanism was able to accurately predict the ignition delay timings of n-heptane and biodiesel, and it could be integrated into 3-D engine simulations to predict the combustion characteristics of biodiesel. As such, the developed 112-species skeletal mechanism can accurately mimic the significant reaction pathways of the detailed reaction

  14. Beef flavor: a review from chemistry to consumer.

    Science.gov (United States)

    Kerth, Chris R; Miller, Rhonda K

    2015-11-01

    This paper briefly reviews research that describes the sensation, generation and consumer acceptance of beef flavor. Humans sense the five basic tastes in their taste buds, and receptors in the nasal and sinus cavities sense aromas. Additionally, trigeminal senses such as metallic and astringent are sensed in the oral and nasal cavities and can have an effect on the flavor of beef. Flavors are generated from a complex interaction of tastes, tactile senses and aromas taken collectively throughout the tongue, nasal, sinus and oral cavities. Cooking beef generates compounds that contribute to these senses and result in beef flavor, and the factors that are involved in the cookery process determine the amount and type of these compounds and therefore the flavor generated. A low-heat, slow cooking method generates primarily lipid degradation products, while high-heat, fast cookery generates more Maillard reaction products. The science of consumer acceptance, cluster analyses and drawing relationships among all flavor determinants is a relatively new discipline in beef flavor. Consumers rate beef that has lipid degradation products generated from a low degree of doneness and Maillard flavor products from fast, hot cookery the highest in overall liking, and current research has shown that strong relationships exist between beef flavor and consumer acceptability, even more so than juiciness or tenderness. © 2015 Society of Chemical Industry.

  15. Properties of various plants and animals feedstocks for biodiesel production.

    Science.gov (United States)

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Assessing the greenhouse gas emissions from poultry fat biodiesel

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Bikker, Paul; Herrmann, Ivan Tengbjerg

    2012-01-01

    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing...... that under average conditions, the use of poultry fat biodiesel instead of diesel leads to a slight reduction (6%) in greenhouse gas emissions. The analysis shows that poultry fat is already used for different purposes and using poultry fat for biodiesel will therefore remove the poultry fat from its...... original use. This implies that even though the use of biodiesel is assumed to displace petrochemical diesel, the ‘original user’ of the poultry fat will have to find a substitute, whose production leads to a greenhouse gas emissions comparable to what is saved through driving on poultry fat biodiesel...

  17. Variability in sunflower oil quality for biodiesel production: A simulation study

    International Nuclear Information System (INIS)

    Pereyra-Irujo, Gustavo A.; Izquierdo, Natalia G.; Covi, Mauro; Nolasco, Susana M.; Quiroz, Facundo; Aguirrezabal, Luis A.N.

    2009-01-01

    Biodiesel is an alternative fuel made from vegetable oils or animal fats. The fatty acid composition of the feedstock, which varies among and within species, is the main determinant of biodiesel quality. In this work we analyze the variability in biodiesel quality (density, kinematic viscosity, heating value, cetane number and iodine value) obtained from sunflower oil, by means of a validated crop model that predicts the fatty acid composition of one high-oleic, and three traditional (high-linoleic) sunflower hybrids. The model was run with a 10-year average weather data from 56 weather stations in Argentina, and simulation results were compared to the biodiesel standards of Argentina, USA and Europe. We show that biodiesel produced from sunflower oil does not have one fixed quality, but different qualities depending on weather conditions and agricultural practices, and that intraspecific variation in biodiesel quality can be larger than interspecific differences. Our results suggest that (a) sunflower oil from high-oleic hybrids is suitable for biodiesel production (within limits of all analyzed standards), regardless of growing conditions and (b) sunflower oil from traditional hybrids is suitable for biodiesel production under the standards of Argentina and USA, while only certain hybrids grown in warm regions (e.g., Northern Argentina, Southern USA, China, India, Pakistan) are suitable for biodiesel production according to the European standard

  18. Determinação dos valores energéticos de alguns óleos e gorduras para pintos de corte machos e fêmeas aos 21 dias de idade Determination of energy values of some oils and fats for broilers chickens males and females in the 21 day old

    Directory of Open Access Journals (Sweden)

    Carla Cristina Cardoso Nascif

    2004-04-01

    Full Text Available Foi realizado um ensaio biológico com pintos de corte no período de 21 a 32 dias de idade, com o objetivo de determinar os valores de energia metabolizável aparente (EMA e energia metabolizável aparente corrigida pela retenção de nitrogênio (EMAn do óleo de soja degomado, óleo de milho, óleo de canola, gordura de aves, gordura de coco, gordura suína, sebo bovino e de duas misturas, sendo a primeira composta de óleo de soja degomado + gordura de coco e a segunda de óleo de soja degomado + sebo bovino, ambas na proporção de 1:1. Foi realizado o método de coleta total de excretas no experimento. O período de duração do experimento foi de dez dias, sendo os cinco primeiros de adaptação e os cinco restantes de coleta de excretas. Foi observada diferença entre os tratamentos e entre os sexos, sendo os valores de EMAn obtidos para fêmeas, em média, 98% dos valores de EMAn obtido para machos. Porém, não foi observada diferença entre a interação alimento x sexo. Os valores médios de EMAn encontrados para pintos de corte foram, respectivamente, para óleo de soja degomado, óleo de milho, óleo de canola, gordura de aves, gordura de coco, gordura suína, sebo bovino, para a mistura de óleo de soja degomado + gordura de coco e para a mistura de óleo de soja degomado + sebo bovino: 8.273, 8.582, 8.681, 8.511, 7.487, 7.536, 7.227, 8.029 e 8.171 kcal/kg matéria naturalOne bioassay was carried out using 21-to32-day old broilers chicks to determine the values of apparent metabolizable energy (AME and nitrogen-corrected apparent metabolizable energy (AMEn of crude soybean oil, corn oil, canola oil, avian fat, coconut fat, swine lard, beef tallow, crude soybean oil + coconut fat and crude soybean oil + beef tallow, both latter in 1:1 proportion. The method of total excreta collection was used for the trials, which lasted 10 days each: the first five days for adaptation and the five remaining days for excreta collection. In the

  19. Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility

    International Nuclear Information System (INIS)

    Harun, Razif; Davidson, Michael; Doyle, Mark; Gopiraj, Rajprathab; Danquah, Michael; Forde, Gareth

    2011-01-01

    As fossil fuel prices increase and environmental concerns gain prominence, the development of alternative fuels from biomass has become more important. Biodiesel produced from microalgae is becoming an attractive alternative to share the role of petroleum. Currently it appears that the production of microalgal biodiesel is not economically viable in current environment because it costs more than conventional fuels. Therefore, a new concept is introduced in this article as an option to reduce the total production cost of microalgal biodiesel. The integration of biodiesel production system with methane production via anaerobic digestion is proved in improving the economics and sustainability of overall biodiesel stages. Anaerobic digestion of microalgae produces methane and further be converted to generate electricity. The generated electricity can surrogate the consumption of energy that require in microalgal cultivation, dewatering, extraction and transesterification process. From theoretical calculations, the electricity generated from methane is able to power all of the biodiesel production stages and will substantially reduce the cost of biodiesel production (33% reduction). The carbon emissions of biodiesel production systems are also reduced by approximately 75% when utilizing biogas electricity compared to when the electricity is otherwise purchased from the Victorian grid. The overall findings from this study indicate that the approach of digesting microalgal waste to produce biogas will make the production of biodiesel from algae more viable by reducing the overall cost of production per unit of biodiesel and hence enable biodiesel to be more competitive with existing fuels. (author)

  20. Assessment of Physicochemical Properties of Biodiesel from African ...

    African Journals Online (AJOL)

    according to standard method for oil and fuel analysis to evaluate its suitability as oil crop for biodiesel production in Nigeria. ... Keywords: African Grape, Lannea microcarpa, Seeds, Oil, Biodiesel .... characterization (Dalai, 2004). The oil was.

  1. Effect of first and second generation biodiesel blends on engine performance and emission

    Energy Technology Data Exchange (ETDEWEB)

    Azad, A. K., E-mail: azad.cqu@gmail.com, E-mail: a.k.azad@cqu.edu.au; Rasul, M. G., E-mail: m.rasul@cqu.edu.au; Bhuiya, M. M. K., E-mail: m.bhuiya@cqu.edu.au [School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4702 (Australia); Islam, Rubayat, E-mail: rubayat12@yahoo.com [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh)

    2016-07-12

    The biodiesel is a potential source of alternative fuel which can be used at different proportions with diesel fuel. This study experimentally investigated the effect of blend percentage on diesel engine performance and emission using first generation (soybean) and second generation (waste cooking) biodiesel. The characterization of the biodiesel was done according to ASTM and EN standards and compared with ultralow sulfur diesel (ULSD) fuel. A multi-cylinder test bed engine coupled with electromagnetic dynamometer and 5 gas analyzer were used for engine performance and emission test. The investigation was made using B5, B10 and B15 blends for both biodiesels. The study found that brake power (BP) and brake torque (BT) slightly decreases and brake specific fuel consumption (BSFC) slightly increases with an increase in biodiesel blends ratio. Besides, a significant reduction in exhaust emissions (except NO{sub x} emission) was found for both biodiesels compared to ULSD. Soybean biodiesel showed better engine performance and emissions reduction compared with waste cooking biodiesel. However, NO{sub x} emission for B5 waste cooking biodiesel was lower than soybean biodiesel.

  2. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    International Nuclear Information System (INIS)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de

    2013-01-01

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO 3 + SrO + Sr (OH) 2 ) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  3. Biodiesel production using oil from fish canning industry wastes

    International Nuclear Information System (INIS)

    Costa, J.F.; Almeida, M.F.; Alvim-Ferraz, M.C.M.; Dias, J.M.

    2013-01-01

    Highlights: • A process was established to produce biodiesel from fish canning industry wastes. • Biodiesel production was enabled by an acid esterification pre-treatment. • Optimization studies showed that the best catalyst concentration was 1 wt.% H 2 SO 4 . • There was no advantage when a two-step alkali transesterification was employed. • Waste oil from olive oil bagasse could be used to improve fuel quality. - Abstract: The present study evaluated biodiesel production using oil extracted from fish canning industry wastes, focusing on pre-treatment and reaction conditions. Experimental planning was conducted to evaluate the influence of acid catalyst concentration (1–3 wt.% H 2 SO 4 ) in the esterification pre-treatment and the amount of methanolic solution (60–90 vol.%) used at the beginning of the further two-step alkali transesterification reaction. The use of a raw-material mixture, including waste oil obtained from olive oil bagasse, was also studied. The results from experimental planning showed that catalyst concentration mostly influenced product yield and quality, the best conditions being 1 wt.% catalyst and 60 vol.% of methanolic solution, to obtain a product yield of 73.9 wt.% and a product purity of 75.5 wt.%. Results from a one-step reaction under the selected conditions showed no advantage of performing a two-step alkali process. Although under the best conditions several of the biodiesel quality parameters were in agreement with standard specifications, a great variation was found in the biodiesel acid value, and oxidation stability and methyl ester content did not comply with biodiesel quality standards. Aiming to improve fuel quality, a mixture containing 80% waste olive oil and 20% of waste fish oil was evaluated. Using such mixture, biodiesel purity increased around 15%, being close to the standard requirements (96.5 wt.%), and the oxidation stability was in agreement with the biodiesel quality standard values (⩾6 h), which

  4. Combustion of biodiesel in a large-scale laboratory furnace

    International Nuclear Information System (INIS)

    Pereira, Caio; Wang, Gongliang; Costa, Mário

    2014-01-01

    Combustion tests in a large-scale laboratory furnace were carried out to assess the feasibility of using biodiesel as a fuel in industrial furnaces. For comparison purposes, petroleum-based diesel was also used as a fuel. Initially, the performance of the commercial air-assisted atomizer used in the combustion tests was scrutinized under non-reacting conditions. Subsequently, flue gas data, including PM (particulate matter), were obtained for various flame conditions to quantify the effects of the atomization quality and excess air on combustion performance. The combustion data was complemented with in-flame temperature measurements for two representative furnace operating conditions. The results reveal that (i) CO emissions from biodiesel and diesel combustion are rather similar and not affected by the atomization quality; (ii) NO x emissions increase slightly as spray quality improves for both liquid fuels, but NO x emissions from biodiesel combustion are always lower than those from diesel combustion; (iii) CO emissions decrease rapidly for both liquid fuels as the excess air level increases up to an O 2 concentration in the flue gas of 2%, beyond which they remain unchanged; (iv) NO x emissions increase with an increase in the excess air level for both liquid fuels; (v) the quality of the atomization has a significant impact on PM emissions, with the diesel combustion yielding significantly higher PM emissions than biodiesel combustion; and (vi) diesel combustion originates PM with elements such as Cr, Na, Ni and Pb, while biodiesel combustion produces PM with elements such as Ca, Mg and Fe. - Highlights: • CO emissions from biodiesel and diesel tested are similar. • NO x emissions from biodiesel tested are lower than those from diesel tested. • Diesel tested yields significantly higher PM (particulate matter) emissions than biodiesel tested. • Diesel tested originates PM with Cr, Na, Ni and Pb, while biodiesel tested produces PM with Ca, Mg and Fe

  5. Physical-chemistry characterization of oil and biodiesel from Crambe abyssinica Hochst; Caracterizacao fisico-quimica do oleo e do biodiesel de DE Crambe abyssinica Hochst

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, Samir Paulo; Biaggioni, Marco Antonio Martin; Silva, Paulo Roberto Arbex; Seki, Andre Satoshi; Saath, Reni [Universidade Estadual Paulista (FCA/UNESP), Botucatu, SP (Brazil). Fac. de Ciencias Agronomicas], E-mail: jasper@fca.unesp.br

    2010-07-01

    Currently, the production of biodiesel in the world is growing so rapidly, this interest and demand for biodiesel promote an increase in demand for raw materials, or lipids. Biodiesel is a substitute for diesel oil obtained by transesterification, acid or base, of the lipids present in oils and fats. The Crambe abyssinica Hochst is species plant that has attracted interest of Brazilian producers due to oil content, rusticity and mechanized cultivation, mainly as a crop of winter it becomes an option for most farmers in this period. This study aimed to characterize physical-chemical oil and biodiesel from Crambe abyssinica Hochst, in accordance with Resolution n. 42 of the ANP. The analysis of fatty acids of oil crambe showed high concentration of unsaturated fatty acids, which may not be suitable for the use of biodiesel in very cold regions, where it is used pure or in mixtures with diesel in large proportions. The biodiesel produced from Crambe abyssinica Hochst be revealed within the standards established by the National Agency of Petroleum, Natural Gas and Biofuels. (author)

  6. ROMANIAN BEEF AND VEAL MEAT MARKET ANALYSIS

    Directory of Open Access Journals (Sweden)

    ilvius T. STANCIU

    2014-06-01

    Full Text Available Current nutritional trends, oriented towards a healthy nutrition, lead to the re-evaluation of the share held by beef in the diet of the population. The demand for beef and veal at European and global market level can represent a significant opportunity to increase domestic producers’ business. Though cattle breeding is a traditional activity for the indigenous population from rural areas, livestock for slaughter have decreased steadily in the last years, thus the domestic market being dependent on imports. Romanian natural potential allows the achievement of sufficient production to meet domestic and export demand for beef, which brings high income for producers. The article proposes a review of the domestic production of beef and veal, their consumption and the origin of products on the domestic market in the European and international context.

  7. Optimal Design of Biodiesel Production Process from Waste Cooking Palm Oil

    DEFF Research Database (Denmark)

    Simasatitkul, Lida; Gani, Rafiqul; Arpornwichanop, Amornchai

    2012-01-01

    A design methodology for biodiesel production from waste cooking palm oil is proposed. The proposed method is flexible to the biodiesel process using various catalyst types: alkali and acid catalyst in homogenous and heterogeneous forms, and different process: enzyme process and supercritical......, oleic acid, linoleic and linolenic acid). A driving force approach and thermodynamic insight are employed to design separation units (e.g., flash separator and distillation) minimizing the energy consumption. Steady-state simulations of the developed biodiesel processes are performed and economic...... analysis is used to find a suitable biodiesel process. The results show that based on a net present value, the heterogeneous acid catalyzed process is the best process for biodiesel production. With the design methodology, the proposed biodiesel process can save the energy requirement of 41.5%, compared...

  8. Prediction of cold flow properties of Biodiesel

    Directory of Open Access Journals (Sweden)

    Parag Saxena

    2016-08-01

    Full Text Available Biodiesel being environmentally friendly is fast gaining acceptance in the market as an alternate diesel fuel. But compared to petroleum diesel it has certain limitations and thus it requires further development on economic viability and improvement in its properties to use it as a commercial fuel. The cold flow properties play a major role in the usage of biodiesel commercially as it freezes at cold climatic conditions. In the present study, cold flow properties of various types of biodiesel were estimated by using correlations available in literature. The correlations were evaluated based on the deviation between the predicted value and experimental values of cold flow properties.

  9. LIFE CYCLE COSTING DAN EKSTERNALITAS BIODIESEL DARI MINYAK SAWIT DAN MINYAK ALGA DI INDONESIA (Life Cycle Costing and Externities of Palm and Algal Biodiesel in Indonesia

    Directory of Open Access Journals (Sweden)

    Arif Dwi Santoso

    2014-10-01

    Full Text Available ABSTRAK Biaya produksi biodiesel menjadi salah satu hambatan program konversi bahan bakar minyak ke biodiesel negara-negara termasuk Indonesia dalam upaya mengantipasi terjadinya krisis energi. Salah satu penyebab biaya produksi yang tinggi adalah karena variabel biaya produksi yang diperbandingkan selama ini belum sepenuhnya mencerminkan keseluruhan potensi yang terkandung dalam biodiesel. Potensi biodiesel yang tergolong ke dalam komoditas lingkungan seperti sifat terbarukan, rendah dalam penggunaan lahan, dan ramah lingkungan perlu dimasukkan dalam perhitungan agar mendapatkan perbandingan perhitungan yang obyektif. Penelitian ini bertujuan untuk mengevaluasi pengaruh penambahan komoditas lingkungan pada stuktur biaya produksi biodiesel dari minyak sawit dan minyak alga. Nilai komoditas lingkungan diperkirakan dengan metode metode benefit transfer dan untuk memperlihatkan nilai keuntungan digunakan pendekatan willing to pay (WTP. Nilai-nilai komoditas lingkungan diacu dari hasil perhitungan perangkat lunak Environmental Priority Strategy (EPS versi 2000. Untuk kasus Indonesia, nilai komoditas lingkungan EPS diinferensi dengan elastisitas berdasarkan dari perbandingan nilai pendapatan per kapita negara Swedia dan Indonesia. Hasil penelitian menyatakan bahwa analisis life cycle costing (LCC yang diaplikasikan dengan menambahkan variabel eksternalitas dapat memberikan informasi yang detil tentang komposisi biaya produksi biodiesel dan dapat digunakan sebagai metode untuk mendapatkan gambaran total biaya produksi yang paling kompetitif dari beberapa sumber.  Analisis juga menyimpulkan bahwa variabel eksternalitas turut mempengaruhi kenaikan total biaya produksi biodiesel hingga 14%. Hasil analisis profitabilitas menyatakan bahwa pasokan biomasa alga untuk produksi biodiesel lebih terjamin dan berkelanjutan dibandingkan biomasa sawit karena kendala teknis dan non teknis pada produksi biomasa alga lebih mudah diatasi selain itu juga keunggulan

  10. Superstructure optimization of biodiesel production from microalgal biomass

    DEFF Research Database (Denmark)

    Rizwan, Muhammad; Lee, Jay H.; Gani, Rafiqul

    2013-01-01

    In this study, we propose a mixed integer nonlinear programming (MINLP) model for superstructure based optimization of biodiesel production from microalgal biomass. The proposed superstructure includes a number of major processing steps for the production of biodiesel from microalgal biomass...... for the production of biodiesel from microalgae. The proposed methodology is tested by implementing on a specific case study. The MINLP model is implemented and solved in GAMS using a database built in Excel. The results from the optimization are analyzed and their significances are discussed....

  11. Energy aspects of microalgal biodiesel production

    Directory of Open Access Journals (Sweden)

    Edith Martinez-Guerra

    2016-03-01

    Full Text Available Algal biodiesel production will play a significant role in sustaining future transportation fuel supplies. A large number of researchers around the world are investigating into making this process sustainable by increasing the energy gains and by optimizing resource-utilization efficiencies. Although, research is being pursued aggressively in all aspects of algal biodiesel production from microalgal cell cultivation, cell harvesting, and extraction and transesterification steps to the final product separation and purification, there is a large disparity in the data presented in recent reports making it difficult to assess the real potential of microalgae as a future energy source. This article discusses some of the key issues in energy consumption in the process of algal biodiesel production and identifies the areas for improvement to make this process energy-positive and sustainable.

  12. Effects of NOx-inhibitor agent on fuel properties of three-phase biodiesel emulsions

    International Nuclear Information System (INIS)

    Lin, Cherng-Yuan; Lin, Hsiu-An

    2008-01-01

    Biodiesel is one of the more promising alternative clean fuels to fossil fuel, which can reduce the emissions of fossil fuel burning, and possibly resolve the energy crisis caused by the exhaustion of petroleum resources in the near future. The burning of biodiesel emits much less gaseous emissions and particulate matter primarily because of its dominant combustion efficiency. However, the high oxygen content in biodiesel not only promotes the burning process but also enhances NO x formation when biodiesel is used as fuel. Biodiesel emulsion and the additive of NO x -inhibitor agent are considered to reduce levels of NO x emissions in this experimental study. The biodiesel was produced by transesterification reaction accompanied with peroxidation process. A three-phase biodiesel emulsion of oil-in water drops-in oil (O/W/O) and an O/W/O biodiesel emulsion containing aqueous ammonia were prepared afterwards. The effect of the existence of NO x -inhibitor agent on the fuel properties and the emulsion characteristics of the O/W/O biodiesel emulsions were investigated. The experimental results show that the burning of the O/W/O biodiesel emulsion and the O/W/O biodiesel emulsion containing aqueous ammonia had larger fraction of fuel burnt and thus larger heat release than the neat biodiesel if water content is not considered for the calculation of heating value. The addition of aqueous ammonia within the dispersed phase of the O/W/O biodiesel emulsion appeared to deteriorate the emulsification characteristics. A smaller quantity of emulsion and greater kinematic viscosity were formed while a larger carbon residue and actual reaction-heat release also appeared for this O/W/O biodiesel emulsion. Aqueous ammonia in the O/W/O biodiesel emulsion produces a higher pH value as well. In addition, the number as well as the volumetric fraction of the dispersed water droplets is reduced for the O/W/O biodiesel emulsion that contains aqueous ammonia. (author)

  13. Preparation of Biodiesel of Undi seed with In-situ Transesterification

    Directory of Open Access Journals (Sweden)

    Sanjaykumar DALVI

    2012-08-01

    Full Text Available The biodiesel fraction from oil content of Undi (Calophyllum innophyllum L. is found 60-70%. The extraction of oil is a primary step in any biodiesel production system. To escape this step in-situ transesterification method is used in which the Undi seed crush is directly converted into biodiesel with in-situ transesterification which is fatty acid methyl and ethyl ester composition. The single step reaction is eco-friendly as hexane like solvents not have been used for oil extraction. These components of biodiesel were analysed by GC-MS technique.

  14. Biodiesel production from various feedstocks and their effects on the fuel properties.

    Science.gov (United States)

    Canakci, M; Sanli, H

    2008-05-01

    Biodiesel, which is a new, renewable and biological origin alternative diesel fuel, has been receiving more attention all over the world due to the energy needs and environmental consciousness. Biodiesel is usually produced from food-grade vegetable oils using transesterification process. Using food-grade vegetable oils is not economically feasible since they are more expensive than diesel fuel. Therefore, it is said that the main obstacle for commercialization of biodiesel is its high cost. Waste cooking oils, restaurant greases, soapstocks and animal fats are potential feedstocks for biodiesel production to lower the cost of biodiesel. However, to produce fuel-grade biodiesel, the characteristics of feedstock are very important during the initial research and production stage since the fuel properties mainly depend on the feedstock properties. This review paper presents both biodiesel productions from various feedstocks and their effects on the fuel properties.

  15. Catalyst-Free Biodiesel Production Methods: A Comparative Technical and Environmental Evaluation

    Directory of Open Access Journals (Sweden)

    Oseweuba Valentine Okoro

    2018-01-01

    Full Text Available In response to existing global focus on improved biodiesel production methods via highly efficient catalyst-free high temperature and high pressure technologies, this study considered the comparative study of catalyst-free technologies for biodiesel production as an important research area. In this study, therefore, catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification and catalyst-free one step supercritical transesterification processes for biodiesel production have been evaluated via undertaking straight forward comparative energetic and environmental assessments. Energetic comparisons were undertaken after heat integration was performed since energy reduction has favourable effects on the environmental performance of chemical processes. The study confirmed that both processes are capable of producing biodiesel of high purity with catalyst-free integrated subcritical lipid hydrolysis and supercritical esterification characterised by a greater energy cost than catalyst-free one step supercritical transesterification processes for an equivalent biodiesel productivity potential. It was demonstrated that a one-step supercritical transesterification for biodiesel production presents an energetically more favourable catalyst-free biodiesel production pathway compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. The one-step supercritical transesterification for biodiesel production was also shown to present an improved environmental performance compared to the integrated subcritical lipid hydrolysis and supercritical esterification biodiesel production process. This is because of the higher potential environment impact calculated for the integrated subcritical lipid hydrolysis and supercritical esterification compared to the potential environment impact calculated for the supercritical transesterification process, when all material and energy flows are

  16. Glycerol extracting dealcoholization for the biodiesel separation process.

    Science.gov (United States)

    Ye, Jianchu; Sha, Yong; Zhang, Yun; Yuan, Yunlong; Wu, Housheng

    2011-04-01

    By means of utilizing sunflower oil and Jatropha oil as raw oil respectively, the biodiesel transesterification production and the multi-stage extracting separation were carried out experimentally. Results indicate that dealcoholized crude glycerol can be utilized as the extracting agent to achieve effective separation of methanol from the methyl ester phase, and the glycerol content in the dealcoholized methyl esters is as low as 0.02 wt.%. For the biodiesel separation process utilizing glycerol extracting dealcoholization, its technical and equipment information were acquired through the rigorous process simulation in contrast to the traditional biodiesel distillation separation process, and results show that its energy consumption decrease about 35% in contrast to that of the distillation separation process. The glycerol extracting dealcoholization has sufficient feasibility and superiority for the biodiesel separation process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Penggunaan Katalis NaOH dalam Proses Transesterifikasi Minyak Kemiri menjadi Biodiesel

    Directory of Open Access Journals (Sweden)

    Farid Mulana

    2011-12-01

    Full Text Available Research on biodiesel production from hazelnut oil by transesterification process using NaOH catalyst was one of the efforts for renewable energy research. The purpose of this study was to determine the effect of NaOH catalyst and the ratio of hazelnut oil to methanol on the production of biodiesel via transesterification process. The transesterification process was carried out in a stirred reactor equipped by a condenser with speed of 200 rpm, temperature of 60°C and the operating time of 90 minutes. The results indicated that biodiesel could be produced from hazelnut oil through transesterification process with the highest yield of 81.7% that was obtained on the use of 2% wt. of NaOH catalyst and the mole ratio of oil to methanol of 1:9. Viscosity, density, and acid number of biodiesel obtained in this study met the Indonesia National Standard for biodiesel as SNI 04-7182-2006, therefore hazelnut oil produced biodiesel could potentially be an alternative diesel fuel. Keywords: hazelnut oil, biodiesel, transesterification, NaOH catalyst

  18. Effects of blending on the properties of diesel and palm biodiesel

    Science.gov (United States)

    Bukkarapu, Kiran Raj; Srinivas Rahul, T.; Kundla, Sivaji; Vishnu Vardhan, G.

    2018-03-01

    Palm biodiesel is blended to diesel in different volume percentages to improve certain properties. This would help in having a good understanding of the dependence of the diesel properties on the biodiesel proportion. The properties of interest in the present work are density, kinematic viscosity, flash point and fire point of the blends which are determined and compared to petrodiesel. It is observed that the kinematic viscosity and density of the diesel increase with the palm biodiesel proportion and it is not preferable. Blends with higher palm content possess higher flash point and fire point. Apparently, blending worsens the conditions and hence might be of no use when compared to diesel, but when compared to neat palm biodiesel, blending helped in pulling down the density, viscosity, fire point and flash point of the latter. Using regression analysis and the properties data of respective blends, correlations are developed to predict the properties of diesel and biodiesel blends known the percentage of biodiesel added to diesel, which are validated using biodiesel and diesel blends which are not used as an input to develop them.

  19. Biodiesel Production from Wet Spirulina sp. by One-Step Extraction-Transesterification

    Directory of Open Access Journals (Sweden)

    Surya Pradana Yano

    2018-01-01

    Full Text Available Microalgae has gained immense interests as the raw material for biofuel production. The lipid content in microalgae can be converted into biodiesel through conventional method which involves separated process of extraction and transesterification. In this study, the production of biodiesel from Spirulina sp. was performed through one-step extraction-transesterification using KOH as base catalyst to simplify the production of biodiesel. The mixture of methanol-hexane was employed as both solvent and reactant in the process. The resulting biodiesel was found to be mainly composed of methyl oleate and methyl palmitate. On the other hand, increasing the reaction temperature and reducing the quantity of methanol in solvent mixture would also increase the yield of biodiesel. The optimum methanol-hexane volumetric ratio and temperature which gave the highest biodiesel yield were 3:7 and 50°C, respectively.

  20. Influence of oxygen enrichment on compression ignition engines using biodiesel blends

    Directory of Open Access Journals (Sweden)

    Vaiyapuri Senthil Murugan

    2017-01-01

    Full Text Available The influence of oxygen enrichment on performance and emission characteristics of a single cylinder diesel engine operated with biodiesel blends have been investigated in this work. The methyl ester of jatropha biodiesel was selected as bio-diesel and four blends (B10, B20, B30, and B40 were selected for experimental investigations. The performance and emission characteristics were obtained for the these blends along with three oxygen enrichment flow rates (1, 3, and 5 L per minute using an oxygen cylinder at the air intake in the diesel engine. The performance and emission characteristics were studied and compared with the diesel and biodiesel. It was observed that, oxygen enrichment enhances the brake thermal efficiency, HC, CO, and smoke. B10 biodiesel with 5 L per minute oxygen enrichment was found to be the best fuel for biodiesel operation.

  1. Studies of Terminalia catappa L. oil: characterization and biodiesel production.

    Science.gov (United States)

    Dos Santos, I C F; de Carvalho, S H V; Solleti, J I; Ferreira de La Salles, W; Teixeira da Silva de La Salles, K; Meneghetti, S M P

    2008-09-01

    Since the biodiesel program has been started in Brazil, the investigation of alternative sources of triacylglycerides from species adapted at semi-arid lands became a very important task for Brazilian researchers. Thus we initiated studies with the fruits of the Terminalia catappa L (TC), popularly known in Brazil as "castanhola", evaluating selected properties and chemical composition of the oil, as well any potential application in biodiesel production. The oil was obtained from the kernels of the fruit, with yields around 49% (% mass). Also, its fatty acid composition was quite similar to that of conventional oils. The crude oil of the TC was transesterified, using a conventional catalyst and methanol to form biodiesel. The studied physicochemical properties of the TC biodiesel are in acceptable range for use as biodiesel in diesel engines.

  2. Heterogeneous catalysis afford biodiesel of babassu, castor oil and blends

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Lee M.G. de; Abreu, Wiury C. de; Silva, Maria das Gracas de O. e; Matos, Jose Milton E. de; Moura, Carla V.R. de; Moura, Edmilson M. de, E-mail: mmoura@ufpi.edu.br [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil). Departamento de Quimica; Lima, Jose Renato de O.; Oliveira, Jose Eduardo de [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/IQ/CEMPEQC), Araraquara, SP (Brazil). Instituto de Quimica. Centro de Monitoramento e Pesquisa da Qualidade de Combustiveis, Biocombustiveis, Petroleo e Derivados

    2013-04-15

    This work describes the preparation of babassu, castor oil biodiesel and mixtures in various proportions of these oils, using alkaline compounds of strontium (SrCO{sub 3} + SrO + Sr (OH){sub 2}) as heterogeneous catalysts. The mixture of oils of these oleaginous sources was used in the production of biodiesel with quality parameters that meet current legislation. The catalyst was characterized by X-ray diffractometry (XDR), physisorption of gas (BET method), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). The viscometric technique was used to monitor the optimization.The transesterification reactions performed using strontium compounds reached conversion rates of 97.2% babassu biodiesel (BB), 96.4% castor oil biodiesel (COB) and 95.3% Babassu/Castor Oil Biodiesel 4:1 (BBCO41). (author)

  3. Current situation and future prospects for the Australian beef industry.

    Science.gov (United States)

    Greenwood, Paul Leo; Ferguson, Drewe M

    2018-04-12

    Beef production extends over almost half of Australia, with about 47,000 cattle producers that contribute about 20% ($A12.7 billion GVP) of the total value of farm production in Australia. Australia is one of the world's most efficient producers of cattle and was the world's third largest beef exporter in 2016. The Australian beef industry had 25 million head of cattle in 2016-17, with a national beef breeding herd of 11.5 million head. Australian beef production includes pasture based cow-calf systems, a backgrounding or grow-out period on pasture, and feedlot or pasture finishing. Feedlot finishing has assumed more importance in recent years to assure the eating quality of beef entering the relatively small Australian domestic market, and to enhance the supply of higher value beef for export markets. Maintenance of Australia's preferred status as a quality assured supplier of high value beef produced under environmentally sustainable systems from 'disease-free' cattle is of highest importance. Stringent livestock and meat quality regulations and quality assurance systems, and productivity growth and efficiency across the supply chain to ensure price competiveness, are crucial for continued export market growth in the face of increasing competition. Major industry issues, that also represent research, development and adoption priorities and opportunities for the Australian beef industry have been captured within exhaustive strategic planning processes by the red meat and beef industries. At the broadest level, these issues include consumer and industry support, market growth and diversification, supply chain efficiency, productivity and profitability, environmental sustainability, and animal health and welfare. This review provides an overview of the Australian beef industry including current market trends and future prospects, and major issues and opportunities for the continued growth, development and profitability of the industry.

  4. Cost analysis of simulated base-catalyzed biodiesel production processes

    International Nuclear Information System (INIS)

    Tasić, Marija B.; Stamenković, Olivera S.; Veljković, Vlada B.

    2014-01-01

    Highlights: • Two semi-continuous biodiesel production processes from sunflower oil are simulated. • Simulations were based on the kinetics of base-catalyzed methanolysis reactions. • The total energy consumption was influenced by the kinetic model. • Heterogeneous base-catalyzed process is a preferable industrial technology. - Abstract: The simulation and economic feasibility evaluation of semi-continuous biodiesel production from sunflower oil were based on the kinetics of homogeneously (Process I) and heterogeneously (Process II) base-catalyzed methanolysis reactions. The annual plant’s capacity was determined to be 8356 tonnes of biodiesel. The total energy consumption was influenced by the unit model describing the methanolysis reaction kinetics. The energy consumption of the Process II was more than 2.5 times lower than that of the Process I. Also, the simulation showed the Process I had more and larger process equipment units, compared with the Process II. Based on lower total capital investment costs and biodiesel selling price, the Process II was economically more feasible than the Process I. Sensitivity analysis was conducted using variable sunflower oil and biodiesel prices. Using a biodiesel selling price of 0.990 $/kg, Processes I and II were shown to be economically profitable if the sunflower oil price was 0.525 $/kg and 0.696 $/kg, respectively

  5. Biodiesel emissions profile in modern diesel vehicles. Part 2: Effect of biodiesel origin on carbonyl, PAH, nitro-PAH and oxy-PAH emissions.

    Science.gov (United States)

    Karavalakis, Georgios; Boutsika, Vasiliki; Stournas, Stamoulis; Bakeas, Evangelos

    2011-01-15

    In the present study, the effects of different biodiesel blends on the unregulated emissions of a Euro 4 compliant passenger car were examined. Two fresh and two oxidized biodiesel fuels of different source materials were blended with an ultra low sulphur automotive diesel fuel at proportions of 10, 20, and 30% v/v. Emission measurements were conducted on a chassis dynamometer with a constant volume sampling (CVS) technique, over the New European Driving Cycle (NEDC) and the Artemis driving cycles. The experimental results revealed that the addition of biodiesel led to important increases in most carbonyl compounds. Sharp increases were observed with the use of the oxidized biodiesel blends, especially those prepared from used frying oil methyl esters. Similar to carbonyl emissions, most PAH compounds increased with the addition of the oxidized biodiesel blends. It can be assumed that the presence of polymerization products and cyclic acids, along with the degree of unsaturation were the main factors that influenced carbonyl and PAH emissions profile. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Incorporating reproductive management of beef heifers into a veterinary practice.

    Science.gov (United States)

    Poock, Scott E; Payne, Craig A

    2013-11-01

    Veterinarians play an important role in reproductive management of dairy herds across the United States; however, in many cases, their involvement in reproductive management of beef herds has been limited. The reasons for this vary; however, there are ways for veterinarians to become more actively involved in reproductive management of US beef herds. Veterinarians can have an impact on producers' profits by implementing their skills and knowledge to beef heifer development programs. This article provides an overview of the services veterinarians can provide to beef cattle producers that pertain to reproductive management of replacement beef heifers. Published by Elsevier Inc.

  7. Production of Biodiesel from Mixed Waste Cooking and Castor Oil

    Directory of Open Access Journals (Sweden)

    Hadiyanto Hadiyanto

    2018-01-01

    Full Text Available Due to increasing population growth, the consumption and needs of energy increase significantly. This leads Indonesia government to search alternative energy to cover the lacks of fossil energy reserves. Biodiesel is one of the prospective alternative energy which are renewable and environmental friendly. A common problem in large-scale biodiesel production is the sustainability of feedstock and the biodiesel stability. Therefore, the purpose of this study was to evaluate the production of biodiesel from two oil sources i.e. waste cooking oil and castor oil. This study examined the effect of mixed oil ratio on yield, biodiesel characteristics and stability. The physical properties included kinematic viscosity, acid number, saponification number, iodine number and cetane number have been evaluated as function of oil ratio. Yield of biodiesel was obtained at 35.07%, 99.2% and 83.69% for jatropha:castor oil ratio of 1: 0, 1: 2 and 2: 1, respectively. Most of these characteristics showed an increase by increasing the oil ratio. The result concluded that at the ratio of 1:1(v/v was the best characteristic and stability.

  8. Castor oil biodiesel as an alternative fuel for diesel engines

    International Nuclear Information System (INIS)

    Benavides, Alirio; Benjumea, Pedro; Pashova, Veselina

    2007-01-01

    In this paper, a study related to the production and use of castor oil biodiesel is presented. The maximum methyl esters yield of the castor oil transesterification reaction is obtained under the following conditions: ambient temperature, a molar ratio of methanol to vegetable oil equal to 9 and a catalyst percentage equal to 0.8%. The castor oil biodiesel can be blended with petroleum diesel as far as 15% in such way that the resulting blend complies with national and international technical standards for diesel fuels. Its high viscosity becomes the main difficulty for using castor oil biodiesel in engines. However this biofuel exhibits excellent cold flow properties (low values of cloud and pour points). The motor tests using castor oil biodiesel petroleum diesel blends, for the biodiesel proportion tested; show that a biodiesel percentage increase leads to an increase in the specific fuel consumption, a decrease in the fuel air ratio, a slight decrease in smoke opacity, while the fuel conversion efficiency and the CO and CO 2 emissions practically remain constants

  9. Optimization of emergy sustainability index for biodiesel supply network design

    International Nuclear Information System (INIS)

    Ren, Jingzheng; Tan, Shiyu; Yang, Le; Goodsite, Michael Evan; Pang, Chengfang; Dong, Lichun

    2015-01-01

    Highlights: • A MINLP model for designing sustainable biodiesel supply network is developed. • Emergy sustainability index is used as the objective to be maximized. • Multiple alternatives in each stage of biodiesel supply network are considered. • Life cycle perspective is incorporated in the design of biodiesel supply network. - Abstract: Sustainability is an important and difficult consideration for the stakeholders/decision-makers when planning a biofuel supply network. In this paper, a Mixed-Integer Non-linear Programming (MINLP) model was developed with the aim to help the stakeholders/decision-maker to select the most sustainable design. In the proposed model, the emergy sustainability index of the whole biodiesel supply networks in a life cycle perspective is employed as the measure of the sustainability, and multiple feedstocks, multiple transport modes, multiple regions for biodiesel production and multiple distribution centers can be considered. After describing the process and mathematic framework of the model, an illustrative case was studied and demonstrated that the proposed methodology is feasible for finding the most sustainable design and planning of biodiesel supply chains

  10. Biodiesel from “Morelos” Rice: Synthesis, Oxidative Stability, and Corrosivity

    Directory of Open Access Journals (Sweden)

    J. Zuñiga-Díaz

    2018-01-01

    Full Text Available Rice bran is a by-product of great production worldwide and its use for the synthesis of biodiesel does not affect the food chain and therefore it is an excellent alternative for the production of biofuels with low carbon footprint. In this work, the synthesis of biodiesel was carried out from the raw rice bran oil of a kernel variety called “Morelos rice.” The stability and corrosivity characteristics of biodiesel were determined. Biodiesel stability was determined both under storage conditions and under accelerated oxidation conditions, and its corrosivity was evaluated by electrochemical impedance spectroscopy at 110°C under aerated conditions. The results showed that, due to the high instability of the rice bran, its raw oil had a high content of free fatty acids. The synthesized biodiesel showed excellent stability under storage conditions of up to five months, and its oxidative stability was much higher than that established in international standards. On the other hand, biodiesel showed low corrosivity and this was only significant once oxidative degradation began.

  11. Constitutional issues of Brazilian tax system in the biodiesel industry; Aspectos constitucionais do regime tributario aplicado a industria brasileira do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Monica Medeiros; Xavier, Yanko Marcius de Alencar [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent insertion of biodiesel derived from oily vegetables in the Brazilian genetic matrix calls for the analysis of some aspects that belong to it. This study begins with an introduction to 'sustainable development' definition, it goes through the concept of biodiesel and a brief historical, the paper analyzes it's advantages - social, economic and environmental - related to the fossil fuels predominantly used. With the purpose to look into the 'Programa Nacional de Producao e Uso de Biodiesel - PNPB' created by the Federal Government in 2004, this study searches about the Brazilian regulating legislation on this subject, fundamental for the comprehension of the plans and objectives sought by the Brazilian Government with the encouragement to the production of the biodiesel. This study also investigates the role of the 'Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis - ANP' in the regulation of the activities involving this biofuel. In this manner, from the analysis of the related legislation of this new energy source, the present article aims to delineate a view of the the tax system for this new market according to Constitution and pointing out the economic impacts of the biodiesel insertion in the Brazilian national energetic matrix. (author)

  12. Cow biological type affects ground beef colour stability.

    Science.gov (United States)

    Raines, Christopher R; Hunt, Melvin C; Unruh, John A

    2009-12-01

    To determine the effects of cow biological type on colour stability of ground beef, M. semimembranosus from beef-type (BSM) and dairy-type (DSM) cows was obtained 5d postmortem. Three blends (100% BSM, 50% BSM+50% DSM, 100% DSM) were adjusted to 90% and 80% lean points using either young beef trim (YBT) or beef cow trim (BCT), then packaged in high oxygen (High-O(2); 80% O(2)) modified atmosphere (MAP). The BSM+YBT patties had the brightest colour initially, but discoloured rapidly. Although DSM+BCT patties had the darkest colour initially, they discoloured least during display. Metmyoglobin reducing ability of ground DSM was up to fivefold greater than ground BSM, and TBARS values of BSM was twofold greater than DSM by the end of display (4d). Though initially darker than beef cow lean, dairy cow lean has a longer display colour life and may be advantageous to retailers using High-O(2) MAP.

  13. Microbial degradation of palm (Elaeis guineensis biodiesel

    Directory of Open Access Journals (Sweden)

    Giselle Lutz

    2006-03-01

    Full Text Available The kinetics of biodegradation of palm-derived fatty methyl and ethyl esters (Elaeis guineensis biodiesel by a wild-type aerobic bacterial population was measured at 20 °C, as the rate of oxygen uptake by a manometric technique. The methyl and ethyl biodiesels were obtained by potassium-hydroxide catalysed transesterification of palm oil, respectively. The bacterial flora included the genera Bacillus, Proteus, Pseudomonas, Citrobacter and Enterobacter. The rate of oxygen uptake for palm biodiesel is similar to the quantity observed in the biodegradation of 1.0 mM solutions of simple substrates such as carbohydrates or amino acids.Palm methyl or ethyl biodiesel is subjected to facile aerobic biodegradation by wild-type bacteria commonly present in natural open environments. This result should lessen any environmental concern for its use as alternative fuel, solvent or lubricant. Rev. Biol. Trop. 54(1: 59-63.Epub 2006 Mar 31.La cinética de la biodegradación de los ésteres metílicos y etílicos derivados de palma (biodiesel por una población silvestre de bacterias aeróbicas fue medida a 20 °C, como medición manométrica del consumo de oxígeno. Los ésteres metílicos y etílicos se obtuvieron por transesterificación del aceite de palma con metanol y etanol,respectivamente. La flora bacteriana incluyó a los géneros Bacillus, Proteus, Pseudomonas, Citrobacter y Enterobacter. Las velocidades de consumo de oxígeno para las muestras de biodiesel fueron similares a lo observado en la biodegradación de disoluciones 1.0 mM de sustratos sencillos solubles en agua, tales como carbohidratos, aminoácidos y albúmina de huevo.

  14. Optimal Replacement and Management Policies for Beef Cows

    OpenAIRE

    W. Marshall Frasier; George H. Pfeiffer

    1994-01-01

    Beef cow replacement studies have not reflected the interaction between herd management and the culling decision. We demonstrate techniques for modeling optimal beef cow replacement intervals and discrete management policies by incorporating the dynamic effects of management on future productivity when biological response is uncertain. Markovian decision analysis is used to identify optimal beef cow management on a ranch typical of the Sandhills region of Nebraska. Issues of breeding season l...

  15. A Comprehensive Review of Effect of Biodiesel Additives on Properties, Performance, and Emission

    Science.gov (United States)

    Madiwale, S.; Karthikeyan, A.; Bhojwani, V.

    2017-05-01

    Objectives:- To presents the literature review on effect of biodiesel additives on properties, performance and on emission. Method:-In the current paper reviews are taken from previous years paper which necessitates the need of addition of additives in the blends of biodiesel and studied the its effect on properties, performance and emissions. Emissions from the diesel powered vehicles mostly damaged the earth’s environment and also increased the overall earth’s temperature. This attracts the need of alternative fuels in the field of transportation sector. Past inventions and research showed that Biodiesel can be used as an alternative fuel for the diesel engine. Biodiesel have good combustion characteristics because of their long chain hydrocarbon structure. However biodiesel possesses few disadvantages such as lower heating value, higher flow ability, much high density and not able to flow at low temperature. Higher rate of fuel consumption is identified and higher level of NOx emissions when biodiesel used in an engine as an alternative fuels. Findings:-Different additives such as antioxidants, improvers for cetane number, cold flow properties improver, etc were investigated by the many researcher and scientists and added in the different feedstock of biodiesel or blends of biodiesel with diesel in different proportions. Directly or indirectly fuel additives can improve the reduction in the emissions, improve the fuel economy, and reduce the dependency of the one’s nation on other. Performances of biodiesel vehicles were drastically improved because of additioninthe blends of biodiesel with diesel fuel in specific percentages to meet the international emission standards. Addition of additives in the biodiesel or in the blends of biodiesel basically changes the high temperature and low temperature flow properties of blends of biodiesel. Current paper finds and compares properties of different additives and its effect on blends of biodiesel properties

  16. Pricing model for biodiesel feedstock. A case study of Chhattisgarh in India

    International Nuclear Information System (INIS)

    Pohit, Sanjib; Biswas, Pradip Kumar; Kumar, Rajesh; Goswami, Anandajit

    2010-01-01

    Following the global trend, India declared its biofuel policy in which biodiesel, primarily from jatropha, would meet 20% of the diesel demand beginning with 2011-2012. To promote biofuel, Indian government has announced biodiesel purchase price as well as compulsory blending ratio. But, these measures have not worked to create large scale biodiesel production in India. With this backdrop, this paper highlights about the importance of a sound pricing policy focusing on the entire value chain of biodiesel production. The analysis is based on field level data from Chhattisgarh, the leading state in the production of jatropha. Such a sound pricing policy has to deal with the prices of feedstock, by-products and final product like biodiesel. It would also have to reflect on the business model of production of biodiesel. The simulation exercises in our model shows that the business returns from the production of biodiesel and the minimum support price (MSP) of the feedstock for biodiesel (i.e. jatropha seeds in this case) are sensitive to various parameters like seed yields, technological efficiency, by product and petro-diesel prices. An effective price policy framework has to consider all these factors to create a platform for sustainable biodiesel production in India. (author)

  17. Aspen Simulation of Diesel-Biodiesel Blends Combustion

    Directory of Open Access Journals (Sweden)

    Pérez-Sánchez Armando

    2015-01-01

    Full Text Available Biodiesel is a fuel produced by transesterification of vegetable oils or animal fats, which currently is gaining attention as a diesel substitute. It represents an opportunity to reduce CO2, SO2, CO, HC, PAH and PM emissions and contributes to the diversification of fuels in Mexico's energetic matrix. The results of the simulation of the combustion process are presented in this paper with reference to an engine specification KUBOTA D600-B, operated with diesel-biodiesel blends. The physicochemical properties of the compounds and the operating conditions of equipment were developed using the simulator Aspen® and supplementary information. The main aspects of the engine working conditions were considered such as diesel-biodiesel ratio, air/fuel mixture, temperature of the combustion gases and heat load. Diesel physicochemical specifications were taken from reports of PEMEX and SENER. Methyl esters corresponding to the transesterification of fatty acids that comprise castor oil were regarded as representative molecules of biodiesel obtained from chromatographic analysis. The results include CO2, water vapor, combustion efficiency, power and lower calorific value of fuels.

  18. Biodiesel production over copper vanadium phosphate

    International Nuclear Information System (INIS)

    Chen, Lei; Yin, Ping; Liu, Xiguang; Yang, Lixia; Yu, Zhongxi; Guo, Xin; Xin, Xinquan

    2011-01-01

    In the present study, copper vanadium phosphate (CuVOP) with three-dimensional network structure was synthesized by hydrothermal method, and was characterized by Infrared spectrum (IR), elemental analysis (EA), EDXRF (energy dispersive X ray fluorescence) etc. Moreover, soybean oil was used as feedstock for producing biodiesel, and biodiesel was produced by CuVOP-catalyzed transesterification process. Response surface methodology was employed to statistically evaluate and optimize the conditions for the maximum conversion to biodiesel, and the effects of amount of catalyst, ratio of methanol to oil, reaction time and reaction temperature were investigated by the 2 4 full-factorial central composite design. The maximum conversion is obtained at amount of catalyst of 1.5%, methanol/oil molar ratio of 6.75, reaction temperature of 65 o C and reaction time of 5 h. Copper vanadium phosphate CuVOP resulted very active in the transesterification reaction for biodiesel production. -- Research highlights: → Copper vanadium phosphate CuVOP with three-dimensional network structure was prepared successfully. Moreover, for the transesterification reaction of soybean oil with methanol under atmospheric pressure, CuVOP had higher catalytic activity and the effects of production conditions such as amount of catalysts etc. were analyzed by response surface methodology.

  19. Catalyst systems in the production of biodiesel from residual oil; Sistemas cataliticos na producao de biodiesel por meio de oleo residual

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Carlos Alexandre de [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2006-07-01

    The vegetable oils and fat animals appear like an alternative for substitution the diesel oil in ignition engines for compression. Submitting the oil on transesterification reaction, we obtain a fuel with same characteristics as diesel, called biodiesel. Generally, 85 per cent of biodiesel cost is from the oil production. Through transesterification vegetable oil can be transformed in a mixture of esters of fatty acids. The residual oil from frying has been used as a possibility of raw materials of biodiesel, due to its easy acquisition and the viability of not being discarded as waste. (author)

  20. Legume finishing provides beef with positive human dietary fatty acid ratios and consumer preference comparable with grain-finished beef.

    Science.gov (United States)

    Chail, A; Legako, J F; Pitcher, L R; Griggs, T C; Ward, R E; Martini, S; MacAdam, J W

    2016-05-01

    Consumer liking, proximate composition, pH, Warner-Bratzler shear force, fatty acid composition, and volatile compounds were determined from the LM (longissimus thoracis) of cattle ( = 6 per diet) finished on conventional feedlot (USUGrain), legume, and grass forage diets. Forage diets included a condensed tannin-containing perennial legume, birdsfoot trefoil (; USUBFT), and a grass, meadow brome ( Rehmann; USUGrass). Moreover, representative retail forage (USDA Certified Organic Grass-fed [OrgGrass]) and conventional beef (USDA Choice, Grain-fed; ChGrain) were investigated ( = 6 per retail type). The ChGrain had the greatest ( 0.05) to that of both USUGrain and USUGrass. Both grain-finished beef treatments were rated greater ( Consumer liking of USUBFT beef tenderness, fattiness, and overall liking were comparable ( > 0.05) with that of USUGrain and ChGrain. Flavor liking was rated greatest ( 0.05) to those of ChGrain, USUGrass, and OrgGrass. Cumulative SFA and MUFA concentrations were greatest ( 0.05) to those of USUGrain and USUGrass. Each forage-finished beef treatment, USUGrass, OrgGrass, and USUBFT, had lower ( < 0.001) ratios of -6:-3 fatty acids. Hexanal was the most numerically abundant volatile compound. The concentration of hexanal increased with increasing concentrations of total PUFA. Among all the lipid degradation products (aldehydes, alcohols, furans, carboxylic acids, and ketones) measured in this study, there was an overall trend toward greater quantities in grain-finished products, lower quantities in USUGrass and OrgGrass, and intermediate quantities in USUBFT. This trend was in agreement with IMF content, fatty acid concentrations, and sensory attributes. These results suggest an opportunity for a birdsfoot trefoil finishing program, which results in beef comparable in sensory quality with grain-finished beef but with reduced -6 and SFA, similar to grass-finished beef.

  1. 77 FR 12752 - Beef Promotion and Research; Amendment to the Order

    Science.gov (United States)

    2012-03-02

    ... possessing the requisite experience, skills and information related to the marketing of beef and beef..., skills and information related to the marketing of beef and beef products, as is intended under the Act... DEPARTMENT OF AGRICULTURE Agricultural Marketing Service 7 CFR Part 1260 [Doc. No. AMS-LS-11-0086...

  2. Interdependencies between fossil fuel and renewable energy markets. The German biodiesel market

    Energy Technology Data Exchange (ETDEWEB)

    Busse, Stefan; Bruemmer, Bernard; Ihle, Rico

    2010-12-15

    With this paper, we provide the first quantitative investigation of vertical price transmission in the biodiesel supply chain in Germany with the focus on the developments during the food crisis and the impact of subsidized US biodiesel exports. With the strong promotion of the production and use of biodiesel during the first half of the past decade, the German biodiesel market became the largest national biodiesel market worldwide. This analysis utilizes prices of rapeseed oil, soya oil, biodiesel and crude oil over a sample period covering the rapid growth of the German demand in 2002 until its decline in 2009. The effects of both the market development and different policies on price transmission are analyzed in detail. Due to the numerous changes in the market, a regime-dependent Markov-switching vector error correction model is applied. The results indicate that regimes with differing error-correction behavior govern the transmission process among the various prices. Evidence was found for a strong impact of crude oil price on biodiesel prices, and of biodiesel prices on rapeseed oil prices. However, in both cases, the price adjustment behavior is found to be regime dependent, and the regime occurrence in both market segments shows similar patterns. In relation to crude oil a weak adjustment of biodiesel prices is found to be dominating in the phase of market expansion. This changed from 2007 on when stronger error-correction is found, reflected by a stronger role of the crude oil price developments. In the relationship of biodiesel to the vegetable oils, most of the growth period was dominated by a regime characterized by weak price adjustments. From 2007 on, past own price changes and past changes in soya oil prices had a strong impact particularly on rapeseed oil prices. The biodiesel price development was less important. Reasons for this are substantial changes in the market structure. The biodiesel market developed as an insulated market; biodiesel was

  3. Comparison of chromatographic methods for the determination of bound glycerol in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Foglia, T.A.; Jones, K.C.; Nunez, A.; Phillips, J.G. [U.S. Dept. of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA (United States); Mittelbach, M. [Inst. for Chemistry, Univ. of Graz, Graz (Austria)

    2004-09-01

    An important fuel criterion for biodiesel is bound glycerol, which is a function of the residual amount of triglycerides and partial glycerides in the biodiesel. Either high-temperature gas chromatography or high performance liquid chromatography can be used for determining these minor but important components in biodiesel. In this paper we have conducted a statistical study on the accuracy of the two methods for ascertaining the bound glycerol in biodiesel fuels obtained from different feedstocks. Analysis of variance showed that with one exception, namely diacylglycerols in some soy oil based biodiesel, there was no statistical difference in bound glycerol for the biodiesel samples analyzed or a difference between methods. Operationally, the high performance liquid chromatographic method is superior to the high temperature gas chromatographic method in that it requires no sample derivatization, has shorter analysis times, and is directly applicable to most biodiesel fuels. (orig.)

  4. Valorization of crude glycerol from biodiesel production

    Directory of Open Access Journals (Sweden)

    Konstantinović Sandra S.

    2016-01-01

    Full Text Available The increased production of biodiesel as an alternative fuel involves the simultaneous growth in production of crude glycerol as its main by-product. Therefore, the feasibility and sustainability of biodiesel production requires the effective utilization of crude glycerol. This review describes various uses of crude glycerol as a potential green solvent for chemical reactions, a starting raw material for chemical and biochemical conversions into value-added chemicals, a substrate or co-substrate in microbial fermentations for synthesis of valuable chemicals and production of biogas and biohydrogen as well as a feedstuff for animal feed. A special attention is paid to various uses of crude glycerol in biodiesel production. [Projekat Ministarstva nauke Republike Srbije, br. III 45001

  5. Effect of the Programmed Nutrition Beef Program on moisture retention of cooked ground beef patties and enhanced strip loins.

    Science.gov (United States)

    2015-02-01

    This study evaluated the influence of the Programmed Nutrition Beef Program and exogenous growth promotants (ExGP) on water holding capacity characteristics of enhanced beef strip loins. Sixty, frozen strip loins, arranged in a 2 × 2 factorial treatment arrangement with dietary program serving as the first factor and use of ExGP as the second factor, were thawed, injected with an enhancement solution, and stored for 7 days. Loins from ExGP cattle possessed the ability to bind more (P water before pumping and bind less (P water after pumping and storage. Loin pH across treatments was similar (P > 0.10) before injection, but increased post-injection and after storage (P 0.10). The Programmed Nutrition Beef Program and use of ExGPs minimally impacted water holding capacity of enhanced frozen/thawed beef strip loins.

  6. Experimental assessment of toxic phorbol ester in oil, biodiesel and seed cake of Jatropha curcas and use of biodiesel in diesel engine

    International Nuclear Information System (INIS)

    Prasad, Lalit; Pradhan, Subhalaxmi; Das, L.M.; Naik, S.N.

    2012-01-01

    Highlights: ► In the present study toxic phorbol esters were detected in oil and seed cake of Jatropha curcas but not detected in biodiesel using high performance liquid chromatography (HPLC). ► The quantity of phorbol esters in Jatropha curcas oil and cake were amounted to be 2.12 ± 0.02 mg/g and 0.6 ± 0.01 mg/g respectively. ► As jatropha oil is a potential source for biodiesel preparation, huge amount of oil and cake will be generated and hence need to be handled carefully. ► Upon engine study exhaust pollutant such as hydrocarbon, smoke opacity and carbon monoxide reduced substantially. - Abstract: The present study deals with estimation of toxic phorbol esters in Jatropha curcas oil, cake and biodiesel and performance emission of different blends of biodiesel in diesel engine. The jatropha seed was collected from Chattishgarh, India and oil content of the seed kernel was 56.5%, determined by soxhlet apparatus. The oil was subjected to biodiesel preparation by twin step method of acid esterification followed by alkali transesterification. The total conversion of jatropha oil methyl ester (JOME) after reaction was 96.05% from proton nuclear magnetic resonance ( 1 H NMR) studies. The phorbol esters content of oil, cake and biodiesel was determined by high performance liquid chromatography (HPLC, Waters). The phorbol esters content of the oil was more (2.26 ± 0.01 mg/g) than the cake (0.6 ± 0.01 mg/g) but no phorbol esters peak was detected in biodiesel. The performance and emission study of the fuel blends (JB2, JB5 and JB10) with conventional diesel were tested for their use as substitute fuel for a single cylinder direct injection diesel engine at constant speed (1500 rpm). The emissions such as CO, HC and smoke opacity decreased whereas NO x and BSCF increased with biodiesel blends.

  7. Biodiesel fuel costs and environmental issues when powering railway locomotives

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Abdul; Ziemer, Norbert; Tatara, Robert; Moraga, Reinaldo; Mirman, Clifford; Vohra, Promod

    2010-09-15

    Issues for adopting biodiesel fuel, instead of petrodiesel, to power railroad locomotives are engine performance and emissions, fuel infrastructure, and fuel cost. These are evaluated for B2 through B100 blends. Biodiesel's solvent action on fuel systems is addressed. With biodiesel, hydrocarbon, carbon monoxide, and particulate emissions are unchanged or reduced. Nitrogen oxides are elevated but it is believed that engine alterations can minimize these emissions. A Transportation Model, using data from a major railway, has demonstrated that refueling depots can be fully supplied with biodiesel at a pricing premium of 1% to 26%, depending on blend and geographical location.

  8. Corrosion of magnesium and aluminum in palm biodiesel: A comparative evaluation

    International Nuclear Information System (INIS)

    Chew, K.V.; Haseeb, A.S.M.A.; Masjuki, H.H.; Fazal, M.A.; Gupta, M.

    2013-01-01

    The present study aims to investigate the comparative corrosion of light-weight metals such as aluminum and magnesium in palm biodiesel. Immersion test at room temperature was carried out for each metal for 1440 h. Sample characterization techniques employed include weight loss measurement, SEM (scanning electron microscope), XRD (X-ray diffraction), TAN (total acid number) and FTIR (Fourier transform infrared spectroscopy). Results showed that the corrosion rate of magnesium was much higher compared to that of aluminum. The surface morphology revealed a significant difference between the biodiesel exposed aluminum and magnesium specimens. Upon exposure to biodiesel, the magnesium surface was found to be fully covered by gel-like sticky mass while the aluminum surface remained clean. - Highlights: • Biodiesel is highly corrosive for magnesium. • Biodiesel exposed magnesium surface showed yellowish gel-like sticky mass. • Biodiesel undergoes significant degradation upon exposure to metals

  9. Biodiesel: A fuel, a lubricant, and a solvent

    Science.gov (United States)

    Biodiesel is well-known as a biogenic alternative to conventional diesel fuel derived from petroleum. It is produced from feedstocks such as plant oils consisting largely of triacylglycerols through transesterification with an alcohol such as methanol. The properties of biodiesel are largely compet...

  10. Use of Reactive Distillation for Biodiesel Production: A Literature Survey

    Directory of Open Access Journals (Sweden)

    Muhammad Dani Supardan

    2006-06-01

    Full Text Available Biodiesel has been shown to be the best substitute for fossil-based fuels to its environmental advantages and renewable resource availability. There is a great demand for the commercialization of biodiesel production, which in turn calls for a technically and economically reactor technology. The production of biodiesel in existing batch and continuous-flow processes requires excess alcohol, typically 100%, over the stoichiometric molar requirement in order to drive the chemical reaction to completion. In this study, a novel reactor system using a reactive distillation (RD technique was discussed for biodiesel production. RD is a chemical unit operation in which chemical reactions and separations occur simultaneously in one unit. It is an effective alternative to the classical combination of reactor and separation units especially when involving reversible or consecutive chemical reactions such as transesterication process in biodiesel production.

  11. Enzymatic biodiesel synthesis. Key factors affecting efficiency of the process

    Energy Technology Data Exchange (ETDEWEB)

    Szczesna Antczak, Miroslawa; Kubiak, Aneta; Antczak, Tadeusz; Bielecki, Stanislaw [Institute of Technical Biochemistry, Faculty of Biotechnology and Food Sciences, Technical University of Lodz, Stefanowskiego 4/10, 90-924 Lodz (Poland)

    2009-05-15

    Chemical processes of biodiesel production are energy-consuming and generate undesirable by-products such as soaps and polymeric pigments that retard separation of pure methyl or ethyl esters of fatty acids from glycerol and di- and monoacylglycerols. Enzymatic, lipase-catalyzed biodiesel synthesis has no such drawbacks. Comprehension of the latter process and an appreciable progress in production of robust preparations of lipases may soon result in the replacement of chemical catalysts with enzymes in biodiesel synthesis. Engineering of enzymatic biodiesel synthesis processes requires optimization of such factors as: molar ratio of substrates (triacylglycerols: alcohol), temperature, type of organic solvent (if any) and water activity. All of them are correlated with properties of lipase preparation. This paper reports on the interplay between the crucial parameters of the lipase-catalyzed reactions carried out in non-aqueous systems and the yield of biodiesel synthesis. (author)

  12. Phase behaviour measurements for the system (carbon dioxide + biodiesel + ethanol) at high pressures

    International Nuclear Information System (INIS)

    Araújo, Odilon A.S.; Silva, Fabiano R.; Ramos, Luiz P.; Lenzi, Marcelo K.; Ndiaye, Papa M.; Corazza, Marcos L.

    2012-01-01

    Graphical abstract: Comparison between ethyl and methyl esters in a pressure-composition of {CO 2 (1) + biodiesel(2)} at 303.15 K (triangles), 323.15 K (squares) and 343.15 K (circles). Open symbols are ethyl biodiesel (this work) and closed symbols are methyl biodiesel data by Pinto et al. Highlights: ► We measured phase behaviour for the system involving {CO 2 + biodiesel + ethanol}. ► The saturation pressures were obtained using a variable-volume view cell. ► The experimental data were modelled using PR-vdW2 and PR-WS equations of state. - Abstract: This work reports phase equilibrium measurements for binary system {CO 2 (1) + biodiesel(2)} and ternary system {CO 2 (1) + biodiesel(2) + ethanol(3)}. The biodiesel (ethyl esters) used in this work was produced from soybean oil, purified and characterised following the standard specification for subsequent use. Nowadays, great interest in biodiesel production processes at supercritical and/or pressurised solvents is observed, such as, non-catalytic supercritical biodiesel production and enzyme-catalyzed biodiesel production, besides the supercritical CO 2 can be an interesting alternative to glycerol separation in the biodiesel purification step. Towards this, the main goal of this work is to study the phase behaviour at high pressure for the binary and ternary systems involving CO 2 , biodiesel and ethanol. Experiments were carried out in a high pressure variable-volume view cell with operating temperatures ranging from (303.15 to 343.15) K and pressures up to 25 MPa. The CO 2 molar fraction ranged from 0.4213 to 0.9855 for the system {CO 2 (1) + biodiesel(2)}, 0.4263 to 0.9781 for the system {CO 2 (1) + biodiesel(2) + ethanol(3)} with a biodiesel to ethanol molar ratio of (1:3), and 0.4317 to 0.9787 for the system {CO 2 (1) + biodiesel(2) + ethanol(3)} with a biodiesel to ethanol molar ratio of (1:8). For the systems investigated, vapour–liquid (VL), liquid–liquid (LL) and vapour–liquid–liquid (VLL

  13. Palm oil biodiesel synthesized with potassium loaded calcined hydrotalcite and effect of biodiesel blend on elastomer properties

    Energy Technology Data Exchange (ETDEWEB)

    Trakarnpruk, Wimonrat; Porntangjitlikit, Suriya [Petrochemistry and Polymer Science, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)

    2008-07-15

    Biodiesel was prepared from palm oil by transesterification with methanol in the presence of 1.5%K loaded-calcined Mg-Al hydrotalcite. Fatty acid methyl esters content of 96.9% and methyl ester yield of 86.6% were achieved using a 30:1 methanol to oil molar ratio at 100{sup o}C for 6 h and 7 wt% catalyst. The biodiesel was characterized and its impact on elastomer properties was evaluated. The compatibility of B10 diesel blend (10% biodiesel) with six types of elastomers commonly found in fuel systems (NBR, HNBR, NBR/PVC, acrylic rubber, co-polymer FKM, and terpolymer FKM) were investigated. The physical properties of elastomers after immersion in tested fuels (for 22, 670, and 1008 h at 100{sup o}C) were measured according to American Society of Testing and Materials (ASTM). These include swelling (mass change and volume change), hardness, tensile and elongation, as well as the dynamic mechanical property. The results showed that properties of NBR, NBR/PVC and acrylic rubber were affected more than other elastomers. This is due to the absorption and dissolving of biodiesel by rubber in these samples. Co-polymer FKM and terpolymer FKM which are fluoroelastomers show little property change. (author)

  14. Determination of antioxidant content in biodiesel by fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Keurison F.; Caires, Anderson R.L. [Universidade Federal da Grande Dourados, MS (Brazil). Grupo de Optica Aplicada; Oliveira, Samuel L. [Universidade Federal de Mato Grosso do Sul (UFMS), MS (Brazil). Grupo de Optica e Fotonica

    2011-07-01

    Full text. Biodiesel is an alternative fuel composed by mono-alkyl esters obtained from vegetable oils or animal fats. Due to its chemical structure, biodiesel is highly susceptible to oxidation which leads to formation of insoluble gums and sediments that can block the filter system of fuel injection. Biodiesel made from vegetable oils typically has a small amount of natural antioxidants so that it is necessary to add synthetic antioxidants to enhance its stability and retain their properties for a longer period. The main antioxidants are synthetic phenolic compounds such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) as well as natural antioxidants as tocopherols. The fluorescence spectroscopy has been applied for determination of phenolic compounds in oils. Here, a method based on fluorescence is proposed to quantify the BHA and TBHQ antioxidant concentration in biodiesel produced from sunflower and soybean oils. Soybean and sunflower biodiesel were obtained by transesterification of fatty alcohol in the presence of NaOH as catalyst. The reactions were carried out in the molar ratio of 6:1 methanol/oil. After the production and purification, biodiesel samples were stored. Biodiesel samples with BHA and TBHQ concentrations from 1000 to 8000 ppm (m/m) were pre- pared. These samples were diluted in ethanol (95%) in order to measure the fluorescence spectra. Fluorescence and excitation spectra of the solutions were recorded at room temperature using a spectrofluorimeter. The emission spectra were obtained under excitation at about 310nm and fluorescence in the 320-800nm range was evaluated. Biodiesel samples without BHA and TBHQ showed fluorescence band at about 420nm, which can be attributed to tocopherols inherent to the vegetable oils used in the biodiesel production. The addition of BHA and/or TBHQ is responsible for the appearance of a fluorescence band around 330nm. It was verified that the fluorescence

  15. Factors influencing intention to purchase beef in the Irish market.

    Science.gov (United States)

    McCarthy, M; de Boer, M; O'Reilly, S; Cotter, L

    2003-11-01

    This paper reports on the findings of a study into consumer perceptions towards beef and the influence of these perceptions on consumption. Fishbein and Ajzen's [Belief, attitude, intention and behaviour. An introduction to theory and research (1995) Reading, MA: Addison-Wesley] Theory of Reasoned Action (TRA) provided a useful framework for this analysis. The influence of attitudes and important others (subjective norm) on intention to consume beef were explored. The findings support the usefulness of this model in understanding behaviour towards beef. In this study both attitude and the subjective norm influenced intention to consume beef, but it was attitude that was of greater importance. Health, eating enjoyment and safety were most important determinants of attitude with price, environment and animal welfare less so. An evaluation of the impact of the introduction of new information which related to one belief (health) was also conducted. Those indicating that they would consider increasing their consumption of beef had a more positive attitude towards beef and had more positive health and eating enjoyment beliefs about beef than the 'no' group who had significantly higher safety concerns.

  16. Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia

    International Nuclear Information System (INIS)

    Jayed, M.H.; Masjuki, H.H.; Kalam, M.A.; Mahlia, T.M.I.; Liaquat, A.M.; Husnawan, M.

    2011-01-01

    Petro diplomacy has played its role in last few decades and that makes energy security a major concern worldwide. Rapid climate change and environmental protection is another vital issue to be addressed in recent energy policies. So an alternative carbon neutral transport fuel is a must in new sustainable energy mix. Biodiesel has immense potentiality to be a part of a sustainable energy mix. In this energy scenario, Brazil's success is a role model in utilizing its agro-industry for reducing poverty, greenhouse gas emission and petro-dependency simultaneously. Brazil commercialized bioethanol in mass scale by introducing flexible fuel vehicles in market. This dedicated engine idea moralizes a new concept of dedicated biodiesel engine vehicles for Malaysia and Indonesia. Southeast Asian countries, i.e. Malaysia and Indonesia is the largest producer as well as exporter of palm oil. Growing at highest yield rate among other biodiesel feedstock, palm based biodiesel is a top exported product for this region. This paper will quantify the prospects of a dedicated biodiesel engine vehicle for Malaysia and Indonesia that will initiate palm based biodiesel in fuel supply chain by leapfrogging the barriers of biodiesel utilization by boosting local automobile industry simultaneously. This article will also review on energy scenario of Malaysia and Indonesia and their renewable energy policies and challenges for coming decades. (author)

  17. An analytical and experimental study of performance on jatropha biodiesel engine

    Directory of Open Access Journals (Sweden)

    Ganapathy Thirunavukkarasu

    2009-01-01

    Full Text Available Biodiesel plays a major role as one of the alternative fuel options in direct injection diesel engines for more than a decade. Though many feed stocks are employed for making biodiesel worldwide, biodiesel derived from domestically available non-edible feed stocks such as Jatropha curcas L. is the most promising alternative engine fuel option especially in developing countries. Since experimental analysis of the engine is pricey as well as more time consuming and laborious, a theoretical thermodynamic model is necessary to analyze the performance characteristics of jatropha biodiesel fueled diesel engine. There were many experimental studies of jatropha biodiesel fueled diesel engine reported in the literature, yet theoretical study of this biodiesel run diesel engine is scarce. This work presents a theoretical thermodynamic study of single cylinder four stroke direct injection diesel engine fueled with biodiesel derived from jatropha oil. The two zone thermodynamic model developed in the present study computes the in-cylinder pressure and temperature histories in addition to various performance parameters. The results of the model are validated with experimental values for a reasonable agreement. The variation of cylinder pressure with crank angle for various models are also compared and presented. The effects of injection timing, relative air fuel ratio and compression ratio on the engine performance characteristics for diesel and jatropha biodiesel fuels are then investigated and presented in the paper.

  18. Computational fluid dynamics simulation of a single cylinder research engine working with biodiesel

    Directory of Open Access Journals (Sweden)

    Moldovanu Dan

    2013-01-01

    Full Text Available The main objective of the paper is to present the results of the CFD simulation of a DI single cylinder engine using diesel, biodiesel, or different mixture proportions of diesel and biodiesel and compare the results to a test bed measurement in the same functioning point. The engine used for verifying the results of the simulation is a single cylinder research engine from AVL with an open ECU, so that the injection timings and quantities can be controlled and analyzed. In Romania, until the year 2020 all the fuel stations are obliged to have mixtures of at least 10% biodiesel in diesel [14]. The main advantages using mixtures of biofuels in diesel are: the fact that biodiesel is not harmful to the environment; in order to use biodiesel in your engine no modifications are required; the price of biodiesel is smaller than diesel and also if we compare biodiesel production to the classic petroleum based diesel production, it is more energy efficient; biodiesel assures more lubrication to the engine so the life of the engine is increased; biodiesel is a sustainable fuel; using biodiesel helps maintain the environment and it keeps the people more healthy [1-3].

  19. Microwave irradiation biodiesel processing of waste cooking oil

    Science.gov (United States)

    Motasemi, Farough; Ani, Farid Nasir

    2012-06-01

    Major part of the world's total energy output is generated from fossil fuels, consequently its consumption has been continuously increased which accelerates the depletion of fossil fuel reserves and also increases the price of these valuable limited resources. Biodiesel is a renewable, non-toxic and biodegradable diesel fuel which it can be the best environmentally friendly and easily attainable alternative for fossil fuels. The costs of feedstock and production process are two important factors which are particularly against large-scale biodiesel production. This study is intended to optimize three critical reaction parameters including intensity of mixing, microwave exit power and reaction time from the transesterification of waste cooking oil by using microwave irradiation in an attempt to reduce the production cost of biodiesel. To arrest the reaction, similar quantities of methanol/oil molar ratio (6:1) and potassium hydroxide (2% wt) as the catalyst were used. The results showed that the best yield percentage (95%) was obtained using 300W microwave exit power, 300 rpm stirrer speed (intensity of mixing) and 78°C for 5 min. It was observed that increasing the intensity of mixing greatly ameliorates the yield percentage of biodiesel (up to 17%). Moreover, the results demonstrate that increasing the reaction time in the low microwave exit power (100W) improves the yield percentage of biodiesel, while it has a negative effect on the conversion yield in the higher microwave exit power (300W). From the obtained results it was clear that FAME was within the standards of biodiesel fuel.

  20. Oil extraction from plant seeds for biodiesel production

    Directory of Open Access Journals (Sweden)

    Yadessa Gonfa Keneni

    2017-04-01

    Full Text Available Energy is basic for development and its demand increases due to rapid population growth, urbanization and improved living standards. Fossil fuels will continue to dominate other sources of energy although it is non-renewable and harm global climate. Problems associated with fossil fuels have driven the search for alternative energy sources of which biodiesel is one option. Biodiesel is renewable, non-toxic, environmental-friendly and an economically feasible options to tackle the depleting fossil fuels and its negative environmental impact. It can be produced from vegetable oils, animal fats, waste oils and algae. However, nowadays, the major feedstocks of biodiesel are edible oils and this has created food vs fuel debate. Therefore, the future prospect is to use non-edible oils, animal fats, waste oils and algae as feedstock for biodiesel. Selection of non-expensive feedstock and the extraction and preparation of oil for biodiesel production is a crucial step due to its relevance on the overall technology. There are three main conventional oil extraction methods: mechanical, chemical/solvent and enzymatic extraction methods. There are also some newly developed oil extraction methods that can be used separately or in combination with the conventional ones, to overcome some disadvantages of the conventional oil extraction methods. This review paper presents, compare and discusses different potential biofuel feedstocks, various oil extraction methods, advantages and disadvantages of different oil extraction methods, and propose future prospective for the improvement of oil extraction methods and sustainability of biodiesel production and utilization.

  1. Business Management for Biodiesel Producers: August 2002--January 2004

    Energy Technology Data Exchange (ETDEWEB)

    Van Gerpen, J.

    2004-07-01

    The material in this book is intended to provide the reader with information about the biodiesel and liquid fuels industry, biodiesel start-up issues, legal and regulatory issues, and operational concerns.

  2. Production of Biodiesel from Lipid of Phytoplankton Chaetoceros calcitrans through Ultrasonic Method

    Science.gov (United States)

    Kwangdinata, Raymond; Raya, Indah; Zakir, Muhammad

    2014-01-01

    A research on production of biodiesel from lipid of phytoplankton Chaetoceros calcitrans through ultrasonic method has been done. In this research, we carried out a series of phytoplankton cultures to determine the optimum time of growth and biodiesel synthesis process from phytoplankton lipids. Process of biodiesel synthesis consists of two steps, that is, isolation of phytoplankton lipids and biodiesel synthesis from those lipids. Oil isolation process was carried out by ultrasonic extraction method using ethanol 96%, while biodiesel synthesis was carried out by transesterification reaction using methanol and KOH catalyst under sonication. Weight of biodiesel yield per biomass Chaetoceros calcitrans is 35.35%. Characterization of biodiesel was well carried out in terms of physical properties which are density and viscosity and chemical properties which are FFA content, saponification value, and iodine value. These values meet the American Society for Testing and Materials (ASTM D6751) standard levels, except for the viscosity value which was 1.14 g·cm−3. PMID:24688372

  3. COMPARISON OF BIODIESEL PRODUCTIVITIES OF DIFFERENT VEGETABLE OILS BY ACIDIC CATALYSIS

    Directory of Open Access Journals (Sweden)

    AYTEN SAGIROGLU

    2011-03-01

    Full Text Available Biodiesel has become a subject which increasingly attracts worldwide attention because of its environmental benefits, biodegradability and renewability. Biodiesel production typically involves the transesterification of a triglyceride feedstock with methanol or other short-chain alcohols. This paper presents a study of transesterification of various vegetable oils, sunflower, safflower, canola, soybean, olive, corn, hazelnut and waste sunflower oils, with the acidic catalyst. Under laboratory conditions, fatty acid methyl esters (FAME were prepared by using methanol in the presence of 1.85% hydrochloric acid at 100 °C for 1 h and 25 °C for 3 h. The analyses of biodiesel were carried out by gas chroma¬tography and thin layer chromatography. Also, biodiesel productivities (% were determined on basis of the ratio of ester to oil content (w/w. The biodiesel productivities for all oils were found to be about 80% and about 90% at 25 and 100 °C, respectively. Also, the results showed that the yield of biodiesel depended on temperature for some oils, including canola, sunflower, safflower oils, but it was not found significant differences among all of the oil types on biodiesel productivities.

  4. Enzymatically interesterified fats based on mutton tallow and walnut oil suitable for cosmetic emulsions.

    Science.gov (United States)

    Kowalska, M; Mendrycka, M; Zbikowska, A; Stawarz, S

    2015-02-01

    Formation of emulsion systems based on interesterified fats was the objective of the study. Enzymatic interesterification was carried out between enzymatic mutton tallow and walnut oil in the proportions 2 : 3 (w/w) to produce fats not available in nature. At the beginning of the interesterification process, the balance between the interesterification and fat hydrolysis was intentionally disturbed by adding more water to the catalyst (Lipozyme IR MR) of the reaction to produce more of the polar fraction monoacylglycerols [MAGs] and diacylglycerols [DAGs]. To obtain a greater quantity of MAGs and DAGs in the reaction environment via hydrolysis, water was added (11, 13, 14, 16 w-%) to the enzymatic preparation. The obtained fats were used to form emulsions. The emulsions were evaluated with respect to sensory and skin moisturizing properties by 83 respondents. Determination of emulsion stability using temperature and centrifugal tests was carried out. Morphology and the type of emulsions were determined. The respondents described the skin to which the emulsions in testing were applied as smooth, pleasant to touch and adequately moisturized. The work has demonstrated that interesterification of a mutton tallow and walnut oil blend resulted in new fats with very interesting characteristics of triacylglycerols that are not present in the environment. The results of the present work indicate the possibility of application of fats with the largest quantity of MAGs and DAGs as a fat base of emulsions in the cosmetic industries. The hypothesis assumed in this work of producing additional quantities of MAGs and DAGs (in the process of enzymatic interesterification) responsible for the stability of the system was confirmed. It should be pointed out that the emulsions based on interesterified fats exhibited a greater level of moisturization of the skin than the emulsions containing non-interesterified fat. Also, in the respondents' opinion, the emulsion containing fat, which

  5. A First Law Thermodynamic Analysis of Biodiesel Production from Soybean

    Science.gov (United States)

    Patzek, Tad W.

    2009-01-01

    A proper First Law energy balance of the soybean biodiesel cycle shows that the overall efficiency of biodiesel production is 0.18, i.e., only 1 in 5 parts of the solar energy sequestered as soya beans, plus the fossil energy inputs, becomes biodiesel. Soybean meal is produced with an overall energetic efficiency of 0.38, but it is not a fossil…

  6. 13, 2014 1 Production and characterization of biodiesel

    African Journals Online (AJOL)

    The possibility of biodiesel production from traditional tannery fleshing wastes was ... Based on worldwide standard procedures (ASTM specification), the biodiesel fuel ... affect economic and social development (Eisenberg ... Besides, the low cost of non-edible oils as raw ..... seed, leather industry fleshing wastes, corn germ.

  7. Production of Biodiesel from Locally Available Spent Vegetable Oils

    Directory of Open Access Journals (Sweden)

    Mohamed Mostafa Al Naggar

    2017-06-01

    Full Text Available The depletion of fossil fuels prompted considerable research to find alternative fuels. Due its environmental benefits and renewable nature the production of biodiesel has acquired increasing importance with a view to optimizing the production procedure and the sources of feedstock. Millions of liters of waste frying oil are produced from local restaurants and houses every year, most are discarded into sewage systems causing damage to the networks.  This study is intended to consider aspects related to the feasibility of the production of biodiesel from waste frying oils which will solve the problem of waste frying oil pollution and reduce the cost of biodiesel production.This research studies the conversion of locally available spent vegetable oils of different origins and with different chemical compositions into an environmentally friendly fuel. The biodiesel production requirements by base catalyzed trans-esterification process for the different feed stocks are determined according to the measured physical properties. The quality of the produced biodiesel is compared to petro diesel in terms of established standard specifications.

  8. Solid Catalysts and theirs Application in Biodiesel Production

    Directory of Open Access Journals (Sweden)

    Ramli Mat

    2012-12-01

    Full Text Available The reduction of oil resources and increasing petroleum price has led to the search for alternative fuel from renewable resources such as biodiesel. Currently biodiesel is produced from vegetable oil using liquid catalysts. Replacement of liquid catalysts with solid catalysts would greatly solve the problems associated with expensive separation methods and corrosion problems, yielding to a cleaner product and greatly decreasing the cost of biodiesel production. In this paper, the development of solid catalysts and its catalytic activity are reviewed. Solid catalysts are able to perform trans-esterification and esterification reactions simultaneously and able to convert low quality oils with high amount of Free Fatty Acids. The parameters that effect the production of biodiesel are discussed in this paper. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 6th April 2012, Revised: 24th October 2012, Accepted: 24th October 2012[How to Cite: R. Mat, R.A. Samsudin, M. Mohamed, A. Johari, (2012. Solid Catalysts and Their Application in Biodiesel Production. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 142-149. doi:10.9767/bcrec.7.2.3047.142-149] [How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.3047.142-149 ] | View in 

  9. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  10. Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in

    Science.gov (United States)

    North Carolina America's Largest Home Runs on Biodiesel in North Carolina to someone by E-mail Share Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in North Carolina on Facebook Tweet about Alternative Fuels Data Center: America's Largest Home Runs on Biodiesel in North

  11. Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel?

    Science.gov (United States)

    Diesel Vehicles Work Using Biodiesel? to someone by E-mail Share Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel? on Facebook Tweet about Alternative Fuels Data Center: How Do Diesel Vehicles Work Using Biodiesel? on Twitter Bookmark Alternative Fuels Data Center: How Do

  12. Pengaruh Persentase Biodiesel Minyak Nyamplung – Solar terhadap Karakteristik Pembakaran Droplet

    Directory of Open Access Journals (Sweden)

    Misbach Udin

    2017-05-01

    Full Text Available The aim of this research is to investigate the effect of biodiesel percentage on the droplet combustion characteristic of calophyllum inophyllum biodiesel-diesel fuel blended. The combustion characteristic included ignition delay time, flame visualization, burning rate, and flame temperature. Testing was conducted using fuel blended with biodiesel percentage of 0%, 10%, 30%, 50% and 100%. The fuel was dripped and shaped a droplet that placed on the tip of thermocouple junction and ignited using a heater. The result shown that the ignition delay time increase with increasing biodiesel percentage due to its high flash point temperature and low volatility. Furthermore, burning rate and flame temperature increase with the increasing biodiesel percentage in the blended. These phenomena related to more microexplosion occurrence in the droplet combustion of fuel blended with higher biodiesel content. The last result shown that combustion of diesel fuel droplet has the highest flame dimension, related to its low burning rate and faster vapor diffusion rate.

  13. Electrochemical corrosion of carbon steel exposed to biodiesel/simulated seawater mixture

    Energy Technology Data Exchange (ETDEWEB)

    Wang Wei [College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100 (China); Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Jenkins, Peter E. [Department of Mechanical Engineering, University of Colorado Denver, Denver, CO 80217 (United States); Ren Zhiyong, E-mail: zhiyong.ren@ucdenver.edu [Department of Civil Engineering, University of Colorado Denver, Denver, CO 80217 (United States)

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer Characterized the unique corrosion behaviour of carbon steel in the biodiesel/seawater environment. Black-Right-Pointing-Pointer Illustrated the in situ anode and cathode distribution using a wire beam electrode approach. Black-Right-Pointing-Pointer Elucidated the corrosion mechanisms based on ion transfer and oxygen concentration gradient. - Abstract: The electrochemical corrosion of carbon steel exposed to a mixture of biodiesel and 3.5% NaCl solution simulated seawater was characterized using wire beam electrode (WBE) technique. Both optical images and in situ potential and current measurements showed that all the anodes and most cathodes formed in the water phase, but the cathodes were mainly located along the water/biodiesel interface. Due to oxygen concentration gradient and cross-phase ion transfer, low corrosion currents were also detected in biodiesel phase. Further anode reaction was partially blocked by iron rust, but the alkali residual in biodiesel may interact with corrosion and deteriorate biodiesel quality.

  14. Qualidade de biodiesel de soja, mamona e blendas durante armazenamento

    Directory of Open Access Journals (Sweden)

    Marco Aurélio R. Melo

    2016-12-01

    Full Text Available Objetivou-se monitorar o armazenamento dos biodieseis provenientes da transesterificação homogênea alcalina do óleo de soja e mamona via rota metílica, avaliando a indução oxidativa pela norma EN14112 e pelo método PetroOxy durante o período de 120 dias, também observou-se o comportamento dos biodieseis inseridos em blendas nas proporções de 20, 30, 40 e 50% v/v de biodiesel de mamona ao biodiesel de soja denominadas de M20, M30, M40 e M50 (em recipientes de aço-carbono fechado. Conforme análises físico-químicas, as especificações para ambos biodiesel e blendas satisfizeram as exigências dos limites permitidos pelo Regulamento Técnico nº 14/2012 da Agência Nacional do Petróleo, Gás Natural e Biocombustíveis. Exceção das análises de estabilidade oxidativa (M0, M20, M30 e M40, do índice de acidez após 60 dias (M50, após 90 dias (M40 e M50, após 120 dias (M100 e da viscosidade cinemática (M40, M50 e M100 que apresentaram valores fora dos limites estabelecidos pela norma. As propriedades fluidodinâmicas apresentaram comportamentos semelhantes para os biodieseis metílicos e blendas, assim, nestas concentrações o biodiesel metílico de mamona atua como um aditivo natural ao biodiesel metílico de soja. Através do método EN 14112 verificou-se que a blenda M50 é mais resistente ao processo de oxidação durante armazenamento de 120 dias.Quality of biodiesel soy, castor beans and blends during storageAbstract: The objective of the study was to monitor the storage of biodiesels from alkaline homogeneous transesterification of soybean and castor oil via methyl route, and to evaluate the oxidative induction by the EN14112 standard and the PetroOxy method over the period of 120 days. We observed the behavior of the inserted biodiesels in blends in the ratios of 20, 30, 40 and 50% v / v biodiesel from castor beans of soybean biodiesel named M20, M30, M40 and M50 (closed carbon steel containers . As physical and chemical

  15. Biodiesel Production from Microalgae by Extraction – Transesterification Method

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Phuong Thao

    2013-11-01

    Full Text Available The environmental impact of using petroleum fuels has led to a quest to find a suitable alternative fuel source. In this study, microalgae were explored as a highly potential feedstock to produce biodiesel fuel. Firstly, algal oil is extracted from algal biomass by using organic solvents (n–hexan.  Lipid is contained in microalgae up to 60% of their weight. Then, Biodiesel is created through a chemical reaction known as transesterification between algal oil and alcohol (methanol with strong acid (such as H2SO4 as the catalyst. The extraction – transesterification method resulted in a high biodiesel yield (10 % of algal biomass and high FAMEs content (5.2 % of algal biomass. Biodiesel production from microalgae was studied through experimental investigation of transesterification conditions such as reaction time, methanol to oil ration and catalyst dosage which are deemed to have main impact on reaction conversion efficiency. All the parameters which were characterized for purified biodiesel such as free glycerin, total glycerin, flash point, sulfur content were analyzed according to ASTM standardDoi: http://dx.doi.org/10.12777/wastech.1.1.6-9Citation:  Thao, N.T.P., Tin, N.T., and Thanh, B.X. 2013. Biodiesel Production from Microalgae by Extraction – Transesterification Method. Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.6-9

  16. Novel process integration for biodiesel blend in membrane reactive divided wall (MRDW column

    Directory of Open Access Journals (Sweden)

    Sakhre Vandana

    2016-03-01

    Full Text Available The paper proposes a novel process integration for biodiesel blend in the Membrane assisted Reactive Divided Wall Distillation (MRDW column. Biodiesel is a green fuel and grade of biodiesel blend is B20 (% which consist of 20% biodiesel and rest 80% commercial diesel. Instead of commercial diesel, Tertiary Amyl Ethyl Ether (TAEE was used as an environment friendly fuel for blending biodiesel. Biodiesel and TAEE were synthesized in a pilot scale reactive distillation column. Dual reactive distillation and MRDW were simulated using aspen plus. B20 (% limit calculation was performed using feed flow rates of both TAEE and biodiesel. MRDW was compared with dual reactive distillation column and it was observed that MRDW is comparatively cost effective and suitable in terms of improved heat integration and flow pattern.

  17. Classification and characterization of Japanese consumers' beef preferences by external preference mapping.

    Science.gov (United States)

    Sasaki, Keisuke; Ooi, Motoki; Nagura, Naoto; Motoyama, Michiyo; Narita, Takumi; Oe, Mika; Nakajima, Ikuyo; Hagi, Tatsuro; Ojima, Koichi; Kobayashi, Miho; Nomura, Masaru; Muroya, Susumu; Hayashi, Takeshi; Akama, Kyoko; Fujikawa, Akira; Hokiyama, Hironao; Kobayashi, Kuniyuki; Nishimura, Takanori

    2017-08-01

    Over the past few decades, beef producers in Japan have improved marbling in their beef products. It was recently reported that marbling is not well correlated with palatability as rated by Japanese consumers. This study sought to identify the consumer segments in Japan that prefer sensory characteristics of beef other than high marbling. Three Wagyu beef, one Holstein beef and two lean imported beef longissimus samples were subjected to a descriptive sensory test, physicochemical analysis and a consumer (n = 307) preference test. According to consumer classification and external preference mapping, four consumer segments were identified as 'gradual high-fat likers', 'moderate-fat and distinctive taste likers', 'Wagyu likers' and 'distinctive texture likers'. Although the major trend of Japanese consumers' beef preference was 'marbling liking', 16.9% of the consumers preferred beef samples that had moderate marbling and distinctive taste. The consumers' attitudes expressed in a questionnaire survey were in good agreement with the preference for marbling among the 'moderate-fat and distinctive taste likers'. These results indicate that moderately marbled beef is a potent category in the Japanese beef market. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Modelling of beef sensory quality for a better prediction of palatability.

    Science.gov (United States)

    Hocquette, Jean-François; Van Wezemael, Lynn; Chriki, Sghaier; Legrand, Isabelle; Verbeke, Wim; Farmer, Linda; Scollan, Nigel D; Polkinghorne, Rod; Rødbotten, Rune; Allen, Paul; Pethick, David W

    2014-07-01

    Despite efforts by the industry to control the eating quality of beef, there remains a high level of variability in palatability, which is one reason for consumer dissatisfaction. In Europe, there is still no reliable on-line tool to predict beef quality and deliver consistent quality beef to consumers. Beef quality traits depend in part on the physical and chemical properties of the muscles. The determination of these properties (known as muscle profiling) will allow for more informed decisions to be made in the selection of individual muscles for the production of value-added products. Therefore, scientists and professional partners of the ProSafeBeef project have brought together all the data they have accumulated over 20 years. The resulting BIF-Beef (Integrated and Functional Biology of Beef) data warehouse contains available data of animal growth, carcass composition, muscle tissue characteristics and beef quality traits. This database is useful to determine the most important muscle characteristics associated with a high tenderness, a high flavour or generally a high quality. Another more consumer driven modelling tool was developed in Australia: the Meat Standards Australia (MSA) grading scheme that predicts beef quality for each individual muscle×specific cooking method combination using various information on the corresponding animals and post-slaughter processing factors. This system has also the potential to detect variability in quality within muscles. The MSA system proved to be effective in predicting beef palatability not only in Australia but also in many other countries. The results of the work conducted in Europe within the ProSafeBeef project indicate that it would be possible to manage a grading system in Europe similar to the MSA system. The combination of the different modelling approaches (namely muscle biochemistry and a MSA-like meat grading system adapted to the European market) is a promising area of research to improve the prediction

  19. The effect of technology information on consumer expectations and liking of beef

    DEFF Research Database (Denmark)

    van Wezemael, Lynn; Ueland, Øydis; Rødbotten, Rune

    2012-01-01

    European consumers increasingly attach value to process characteristics of food. Although beef technologies are hardly communicated to consumers, providing consumer-oriented information about technology application might increase perceived transparency and consumer acceptance. This study...... investigates how information about beef technologies influences consumer expectations and liking of beef. Beef consumers in Belgium (n=108) and Norway (n=110) participated in an information experiment combined with sensory testing in which each consumer tasted three beef muscles treated with different...... technologies: unprocessed tenderloin M. Psoas major, muscle profiled M. Infraspinatus, and marinated (by injection) M. Semitendinosus. The findings indicate that detailed information about beef technologies can enhance consumers' expectations and liking of beef. However, this effect differs between countries...

  20. Production of Biodiesel from Waste Vegetable Oil via KM Micromixer

    Directory of Open Access Journals (Sweden)

    M. F. Elkady

    2015-01-01

    Full Text Available The production of biodiesel from waste vegetable oils through its pretreatment followed by transesterification process in presence of methanol was investigated using a KM micromixer reactor. The parameters affecting biodiesel production process such as alcohol to oil molar ratio, catalyst concentration, the presence of tetrahydrofuran (THF as a cosolvent, and the volumetric flow rates of inlet fluids were optimized. The properties of the produced biodiesel were compared with its parent waste oil through different characterization techniques. The presence of methyl ester groups at the produced biodiesel was confirmed using both the gas chromatography-mass spectrometry (GC-MS and the infrared spectroscopy (FT-IR. Moreover, the thermal analysis of the produced biodiesel and the comparable waste oil indicated that the product after the transesterification process began to vaporize at 120°C which makes it lighter than its parent oil which started to vaporize at around 300°C. The maximum biodiesel production yield of 97% was recorded using 12 : 1 methanol to oil molar ratio in presence of both 1% NaOH and THF/methanol volume ratio 0.3 at 60 mL/h flow rate.

  1. Oxidative stability of biodiesel blends derived from waste frying oils

    Directory of Open Access Journals (Sweden)

    Michael Feroldi

    2017-07-01

    Full Text Available The high cost of biodiesel production is mainly linked to the price of raw material.This factor has favored the use of alternative fats and oils such as those used in frying. Since biodiesel can be obtained from several vegetable and animal raw materials, the physicochemical characteristics of the fuel may vary considerably. One of these characteristics is the fatty acid composition. It directly affects the oxidative stability of biodiesel, which can be impaired when the fuel undergoes exposure to sunlight, metals, oxygen and high temperatures. In order to improve the oxidative stability of biodiesels produced from waste frying oil some studies involving blends of different raw materials have been carried out. In this sense, this work aimed to assess the characteristics resulting from the blending of soybean waste frying oil with other waste biodiesels in what concerns to oxidation. The blends of fatty materials were obtained by means of a 2² factorial design. The induction periods of biodiesel blends were enough to meet the ASTM D6751 standard. Swine fat was responsible for the increase in the induction period values.

  2. PREFERENCES AND BUYING BEHAVIOUR OF BEEF CONSUMERS IN TUSCANY

    Directory of Open Access Journals (Sweden)

    Marija RADMAN

    2005-07-01

    Full Text Available Tuscany, probably the most famous Italian region, is known because of many typical food specialities. One of them is the “fi orentina” - a thick, fi rst quality beef, called after the name of the city of Florence. However, recent trends in consumers’ behaviour and the BSE crisis have affected the attitude of consumers toward such products. In this study are presented the results of a mail survey about beef consumption and preferences that was conducted in Tuscany in May 2002. The survey showed that, despite recent food scares and new consumption behaviour, Tuscany consumers still like and prefer beef that has guarantees of quality. Therefore, there are good market opportunities for the Italian and foreign beef producers in Tuscany if they will provide consumers with not only good quality beef, but also more information about the meat.

  3. Impacts of production and use of biodiesel of the Sergipe state, Brazil; Impactos da producao e uso de biodiesel no estado de Sergipe

    Energy Technology Data Exchange (ETDEWEB)

    Vital Brazil, Osiris Ashton; Silva, Maria Susana; Souza, Angela Maria de [Sergipe Parque Tecnologico (SergipeTec), Aracaju, SE (Brazil); Vaz, Vitor Hugo Silva [Faculdade Sao Luis de Franca, Aracaju, SE (Brazil)

    2008-07-01

    The law 11.097/05, establishes that from January 2008 is binding the mixture of 2% biodiesel in diesel (B2) and the same law provides that in 2013 makes it mandatory to blend diesel with 5% biodiesel (B5). This article is motivated by actions that have been developed in the state of Sergipe for the production and use of biodiesel as established by law. The objective of the article is to discuss the impacts of the production and use of biodiesel in Sergipe, specifically seeks to examine the economic impacts in agricultural production and energy matrix state. The discussion of the impacts of biodiesel in the state of Sergipe, is dealt with in this Arctic addresses the demand for oil for the state to become high enough to B2 and B5 in the coming years, the impact of this oil in the energy matrix of the state. This initial discussion projected targets of protection both for agriculture and for the Industrialization of the state. (author)

  4. Oxidative stability of biodiesel from soybean oil fatty acid ethyl esters Estabilidade oxidativa de biodiesel de ésteres etílicos de ácidos graxos de soja

    Directory of Open Access Journals (Sweden)

    Roseli Ap. Ferrari

    2005-06-01

    Full Text Available Biodiesel consists of long-chain fatty acid esters, derived from renewable sources such as vegetable oils, and its utilization is associated to the substitution of the diesel oil in engines. Depending on the raw material, biodiesel can contain more or less unsaturated fatty acids in its composition, which are susceptible to oxidation reactions accelerated by exposition to oxygen and high temperatures, being able to change into polymerized compounds. The objective of this work was to determine the oxidative stability of biodiesel produced by ethanolysis of neutralized, refined, soybean frying oil waste, and partially hydrogenated soybean frying oil waste. The evaluation was conducted by means of the Rancimat® equipment, at temperatures of 100 and 105ºC, with an air flow of 20 L h-1. The fatty acid composition was determined by GC and the iodine value was calculated. It was observed that even though the neutralized, refined and waste frying soybean oils presented close comparable iodine values, biodiesel presented different oxidative stabilities. The biodiesel from neutralized soybean oil presented greater stability, followed by the refined and the frying waste. Due to the natural antioxidants in its composition, the neutralized soybean oil promoted a larger oxidative stability of the produced biodiesel. During the deodorization process, the vegetable oils lose part of these antioxidants, therefore the biodiesel from refined soybean oil presented a reduced stability. The thermal process degrades the antioxidants, thus the biodiesel from frying waste oil resulted in lower stability, the same occuring with the biodiesel from partially hydrogenated waste oil, even though having lower iodine values than the other.Biodiesel consiste em ésteres de ácidos graxos de cadeia longa, proveniente de fontes renováveis como óleos vegetais, e sua utilização está associada à substituição do diesel em motores. Dependendo da matéria-prima, o biodiesel

  5. Potential utilization of biodiesel as alternative fuel for compression ignition engine in Malaysia

    Science.gov (United States)

    Wahab, M. A.; Ma'arof, M. I. N.; Ahmad, I. N.; Husain, H.

    2017-10-01

    Biodiesel is a type of fuel which is derived from various sources of vegetable plants and waste fuels. Today, numerous biodiesels have been engineered to be at par or even better in term of performance in comparison to pure diesel. Therefore, biodiesel has shown a promising sign as one of the best candidate in overcoming total dependency on pure diesel. This paper gives review on various tests and experiments conducted on biodiesel in order to highlight the potentials given by this particular fuel. In addition, providing the supporting evidences to further endorse for a mass usage of biodiesel in Malaysia - simultaneously, driving the country to become a potential global biodiesel producer in the near future. The reviewed studies were obtained mainly via indexed journals and online libraries. Conclusively, every test and study for every blend of biodiesel had shown consistent positive results in regards to performance and in overcoming emission related issues. Thus, providing the evidence that biodiesel is highly reliable. Malaysia as a semi-agricultural nation could take the advantage in becoming one of the leading global biodiesel producers. Nevertheless, this will requires total cooperation of every concerned government bodies and authorities.

  6. Governmental tax breaks to biofuels production; Incentivos governamentais na producao do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Munch, Marcelo Guimaraes; Costa, Fabio Carbalho [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    Given the introduction of biodiesel as an energy source ecologically correct, it will seek to do an analysis on the taxation of biodiesel in Brazil. It should also be assessed to tax biodiesel from the viewpoint of the Principle of Neutrality and the character stimulating function of taxation. Although there is no legal incidence of the CIDE (Contribution in Economic Policy) on biodiesel, the laws relating to taxation of biodiesel refers to the IPI (Tax on Industrialized Products) and social contributions for PIS (Social Integration Program) and Cofins (Contribution to Social Security Financing), while taxes of competence of the Union. When we talk about state taxation, some states have maintained the policy of tax incentives biodiesel but we do not have a policy of tax incentives across the country. (author)

  7. Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and

    Science.gov (United States)

    Natural Gas Vehicles St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: St. Louis Airport Relies on Biodiesel and

  8. Aerobic Biodegradation Kinetics And Mineralization Of Six Petrodiesel/Soybean-Biodiesel Blends

    Science.gov (United States)

    The aerobic biodegradation kinetics and mineralization of six petrodiesel/soybean-biodiesel blends (B0, B20, B40, B60, B80, and B100), where B100 is 100% biodiesel, were investigated by acclimated cultures. The fatty acid methyl esters (FAMEs) of biodiesel were found to undergo ...

  9. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions.

    Science.gov (United States)

    Sugimori, Daisuke; Watanabe, Mika; Utsue, Tomohiro

    2013-01-01

    The lipids (fats and oils) degradation capabilities of soil microorganisms were investigated for possible application in treatment of lipids-contaminated wastewater. We isolated a strain of the bacterium Raoultella planticola strain 232-2 that is capable of efficiently catabolizing lipids under acidic conditions such as in grease traps in restaurants and food processing plants. The strain 232-2 efficiently catabolized a mixture (mixed lipids) of commercial vegetable oil, lard, and beef tallow (1:1:1, w/w/w) at 20-35 °C, pH 3-9, and 1,000-5,000 ppm lipid content. Highly effective degradation rate was observed at 35 °C and pH 4.0, and the 24-h degradation rate was 62.5 ± 10.5 % for 3,000 ppm mixed lipids. The 24-h degradation rate for 3,000 ppm commercial vegetable oil, lard, beef tallow, mixed lipids, and oleic acid was 71.8 %, 58.7 %, 56.1 %, 55.3 ± 8.5 %, and 91.9 % at pH 4 and 30 °C, respectively. R. planticola NBRC14939 (type strain) was also able to efficiently catabolize the lipids after repeated subculturing. The composition of the culture medium strongly influenced the degradation efficiency, with yeast extract supporting more complete dissimilation than BactoPeptone or beef extract. The acid tolerance of strain 232-2 is proposed to result from neutralization of the culture medium by urease-mediated decomposition of urea to NH(3). The rate of lipids degradation increased with the rates of neutralization and cell growth. Efficient lipids degradation using strain 232-2 has been achieved in the batch treatment of a restaurant wastewater.

  10. Constitutional issues of Brazilian tax system in the biodiesel industry; Aspectos constitucionais do regime tributario aplicado a industria brasileira do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ana Monica Medeiros; Xavier, Yanko Marcius de Alencar [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The recent insertion of biodiesel derived from oily vegetables in the Brazilian genetic matrix calls for the analysis of some aspects that belong to it. This study begins with an introduction to 'sustainable development' definition, it goes through the concept of biodiesel and a brief historical, the paper analyzes it's advantages - social, economic and environmental - related to the fossil fuels predominantly used. With the purpose to look into the 'Programa Nacional de Producao e Uso de Biodiesel - PNPB' created by the Federal Government in 2004, this study searches about the Brazilian regulating legislation on this subject, fundamental for the comprehension of the plans and objectives sought by the Brazilian Government with the encouragement to the production of the biodiesel. This study also investigates the role of the 'Agencia Nacional do Petroleo, Gas Natural e Biocombustiveis - ANP' in the regulation of the activities involving this biofuel. In this manner, from the analysis of the related legislation of this new energy source, the present article aims to delineate a view of the the tax system for this new market according to Constitution and pointing out the economic impacts of the biodiesel insertion in the Brazilian national energetic matrix. (author)

  11. AN EXPERIMENTAL INVESTIGATION ON OXIDATIVE STABILITY OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    Mustafa ÇANAKÇI

    2004-02-01

    Full Text Available Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feed stocks such as vegetable oil and animal fats. These feed stocks are reacted with an alcohol to produce alkyl monoesters. The obtained ester can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This paper reports the results of accelerated oxidation tests on biodiesel. These tests show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are also explored. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq O2/kg, the acid value and viscosity increase monotonically as oxidation proceeds.

  12. Long storage stability of biodiesel from vegetable and used frying oils

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahim Bouaid; Mercedes Martinez; Jose Aracil [Complutense University, Madrid (Spain). Department of Chemical Engineering

    2007-11-15

    Biodiesel is defined as the mono-alkyl esters of vegetable oils. Production of biodiesel has grown tremendously in European Union in the last years. Though the commercial prospects for biodiesel have also grown, there remains some concern with respect to its resistance to oxidative degradation during storage. Due to the chemical structure of biodiesel the presence of the double bond in the molecule produce a high level of reactivity with the oxygen, especially when it placed in contact with air. Consequently, storage of biodiesel over extended periods may lead to degradation of fuel properties that can compromise fuel quality. This study used samples of biodiesel prepared by the process of transesterification from different vegetable oils: high oleic sunflower oil (HOSO), high and low erucic Brassica carinata oil (HEBO and LEBO) respectively and used frying oil (UFO). These biodiesels, produced from different sources, were used to determine the effects of long storage under different conditions on oxidation stability. Samples were stored in white (exposed) and amber (not exposed) glass containers at room temperature. The study was conducted for a period of 30-months. At regular intervals, samples were taken to measure the following physicochemical quality parameters: acid value (AV), peroxide value (PV), viscosity {nu}, iodine value (IV) and insoluble impurities (II). Results showed that AV, PV, {nu} and II increased, while IV decreased with increasing storage time of biodiesel samples. However, slight differences were found between biodiesel samples exposed and not exposed to daylight before a storage time of 12 months. But after this period the differences were significant. 22 refs., 5 figs., 3 tabs.

  13. Low temperature storage test phase 2 : identification of problem species

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    The use of renewable fuels such as biodiesel, in motor vehicle fuels is expected to grow rapidly in North America as a result of governmental mandates. Biodiesel is a fuel component made from plant and animal feedstocks via a transesterification process. The fatty acid methyl esters (FAME) of biodiesel have cloud points that range from 5 degrees C to -15 degrees C. The poor low temperature performance of blends containing FAME must be understood in order to avoid operability issues. This paper presented the results of several testing programs conducted by researchers to investigate filter plugging in biodiesel fuels caused by high levels of saturated monoglycerides. The low temperature storage stability of 57 biodiesel fuels comprised of B5 and B20 made with canola methyl ester (CME), soybean methyl ester (SME), tallow methyl ester (TME) and palm methyl ester (PME) was investigated. Filter blocking tests were conducted to assess storage stability. Deposits from the blends were analyzed using gas chromatography and mass spectrometry (GC-MS) in order to identify the problem species. Results of the study confirmed the deleterious impact of saturated mono-glycerides in FAME on the low temperature operability of filters in fuel handling systems. 11 refs., 7 tabs., 5 figs. 9 appendices.

  14. Sustainable and Intensified Design of a Biodiesel Production Process

    DEFF Research Database (Denmark)

    Mansouri, Seyed Soheil; Ismail, Muhammad I.; Babi, Deenesh Kavi

    impact and maximum profitability is needed. In this work a computer-aided framework for process synthesis and process intensification is applied for sustainable production of biodiesel from pure/waste palm oil as the feedstock. This approach examines several biodiesel processing routes that were...... collected through available data and current technologies reported in the literature. Using this information, a generic superstructure of processing routes was created that described a network of configurations representing multiple designs for the production of biodiesel. Therefore, based on the currently...... of economic and environmental sustainability was identified. For the case of biodiesel production, the intensified process alternative turned out to be the most economical and more sustainable than other alternatives. The computer-aided methods and tools used in this work are: SustainPro (method and tool...

  15. Effect of temperature on tribological properties of palm biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Haseeb, A.S.M.A.; Sia, S.Y.; Fazal, M.A.; Masjuki, H.H. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-03-15

    Biodiesel, as an alternative fuel is steadily gaining attention to replace petroleum diesel partially or completely. The tribological performance of biodiesel is crucial for its application in automobiles. In the present study, effect of temperature on the tribological performance of palm biodiesel was investigated by using four ball wear machine. Tests were conducted at temperatures 30, 45, 60 and 75 C, under a normal load of 40 kg for 1 h at speed 1200 rpm. For each temperature, the tribological properties of petroleum diesel (B0) and three biodiesel blends like B10, B20, B50 were investigated and compared. During the wear test, frictional torque was recorded on line. Wear scars in tested ball were investigated by optical microscopy. Results show that friction and wear increase with increasing temperature. (author)

  16. Technological research on alternative energy sources in Brazil: the case of biodiesel; Pesquisas tecnologicas sobre fontes alternativas de energia no Brasil: o caso do biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Marcia Franca; Souza, Cristina Gomes de; Peixoto, Jose Antonio Assuncao [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2008-07-01

    This article aims to map the main characteristics of research projects promoted in Brazil on biodiesel, as part of the National Program for Production and Use of Biodiesel (PNPB), aiming to identify issues, such as: what are the types of plants studied, which is being searched and what the different partners involved. The survey was made on the basis of data available on the web site of the government www.biodiesel.gov.br, and showed the existence of 118 searches registered on the subject. The contents of the study addresses initially some relevant information on biodiesel and its peculiarities in Brazil. In the following sections are identified actions taken by the Brazilian government to create an environment to encourage technological development related to biodiesel, with emphasis on the PNPB and its lines of research. Finally, the results obtained from the database found are presented and discussed. Among other information, the study reveals that: the plants most studied are castor bean, soybeans and cotton, and the research on the biodiesel has focused on improvements in its characterization and quality control as well as in the production of the fuel itself. (author)

  17. Particulate filter behaviour of a Diesel engine fueled with biodiesel

    International Nuclear Information System (INIS)

    Buono, D.; Senatore, A.; Prati, M.V.

    2012-01-01

    Biodiesel is an alternative and renewable fuel made from plant and animal fat or cooked oil through a transesterification process to produce a short chain ester (generally methyl ester). Biodiesel fuels have been worldwide studied in Diesel engines and they were found to be compatible in blends with Diesel fuel to well operate in modern Common Rail engines. Also throughout the world the diffusion of biofuels is being promoted in order to reduce greenhouse gas emissions and the environmental impact of transport, and to increase security of supply. To meet the current exhaust emission regulations, after-treatment devices are necessary; in particular Diesel Particulate Filters (DPFs) are essential to reduce particulate emissions of Diesel engines. A critical requirement for the implementation of DPF on a modern Biodiesel powered engine is the determination of Break-even Temperature (BET) which is defined as the temperature at which particulate deposition on the filter is balanced by particulate oxidation on the filter. To fit within the exhaust temperature range of the exhaust line and to require a minimum of active regeneration during the engine running, the BET needs to occur at sufficiently low temperatures. In this paper, the results of an experimental campaign on a modern, electronic controlled fuel injection Diesel engine are shown. The engine was fuelled either with petroleum ultralow sulphur fuel or with Biodiesel: BET was evaluated for both fuels. Results show that on average, the BET is lower for biodiesel than for diesel fuel. The final goal was to characterize the regeneration process of the DPF device depending on the adopted fuel, taking into account the different combustion process and the different nature of the particulate matter. Overall the results suggest significant benefits for the use of biodiesel in engines equipped with DPFs. - Highlights: ► We compare Diesel Particulate Trap (DPF) performance with Biodiesel and Diesel fuel. ► The Break

  18. Biodiesel's Characteristics Preparation from Palm Oil

    Directory of Open Access Journals (Sweden)

    Tilani Hamid

    2010-10-01

    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separated from glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels' properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  19. Improvement of beef cattle genetics provided increasing sustainability of beef cattle production and protein consumption in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Boonyanuwat, K. [Beef Cattle Research and Development Group, Division of Animal Husbandry, Department of Livestock Development, Bangkok (Thailand)], E-mail: kalayabo@yahoo.com; Sirisom, P [Tak Livestock Breeding and Research Center, Meung (Thailand); Putharatanung, A [Nongkwang Livestock Research and Breeding Center, Photharam (Thailand)

    2009-07-01

    The rural innovation research and development (R and D) in beef cattle genetics, biotechnology, climate science and production systems, supported profitable and sustainable beef cattle production in Thailand. Department of Livestock Development (DLD) undertakes R and D to achieve continuous improvement in genetics, production technologies to improve productivity, profitability and sustainability of beef cattle production and quality of products. Efficiencies were achieved through improvements in genetics, nutrition and grazing management, use of information, meat science, and reduction in ruminant methane production. This function was essential to maintain long-term production competitiveness and achieve sustained economic growth in rural Thailand, where the beef cattle production was the important livestock production, accounting for 36.99% of the value of livestock production in Thailand. Molecular, quantitative genetics, and biotechnology tool were being combined in the development of genetic improvement. In 2006, beef meat was imported 1,842.53 thousand tons (0.41% of all consumption, 120.84 baht/kg). For the big size cattle, such as Tak cattle, Kabinburi cattle (Thai synthetic breeds by DLD, Tak = 62.5 Charoles-Brahman, Kabinburi = 50 Simental- Brahman), and cross breed cattle, they were in fattening period for 6-12 month. Fattening group, they were raised for restaurant, hotel, super market, and steak house. Data were collected from 2 parts: 1) 354 cattle of experimental trial in DLD part, and 2) 492 fattening cattle of small holders in Tak province and Nakorn Pathom province during October 2004-September 2007. Data collecting was separated into 2 parts (performance data and reference). Data were adjusted by group location month and year to analyze for growth, carcass performance and economic performances). There were 5 breeds of fattening beef cattle: 1) Thai Native, 2) Thai Brahman, 3) Kabinburi, 4) Tak, and 5) Tajima-Native. The first group was around 41

  20. A Decision Support System (DSS for Project Management in the Bio-diesel Industry

    Directory of Open Access Journals (Sweden)

    Alin Paul OLTEANU

    2011-01-01

    Full Text Available The European biodiesel industry is currently facing several challenges affecting the profitability of investment projects in the industry. Among these challenges are higher prices for oilseeds, which are the main input for biodiesel production, lower fiscal support by national governments for biodiesel producers and high price volatility of oil markets. Thus identifying all opportunities for optimizing the value chain and lower the production cost of biodiesel is a main requirement for an efficient project management in the biodiesel industry. The paper addresses this topic by developing a decision support system tailored to the needs of Romanian investors in biodiesel production. The system optimizes the main activities of the biodiesel value chain and supports the decision making process at management level. In addition the DSS enables the user to perform sensitivity analysis based on varying various input parameter.

  1. Annex 34 : task 1 : analysis of biodiesel options : biomass-derived diesel fuels : final report

    Energy Technology Data Exchange (ETDEWEB)

    McGill, R [Oak Ridge National Laboratory, TN (United States); Aakko-Saksa, P; Nylund, N O [TransEnergy Consulting Ltd., Helsinki (Finland)

    2009-06-15

    Biofuels are derived from woody biomass, non-woody biomass, and organic wastes. The properties of vegetable oil feedstocks can have profound effects on the properties of the finished biodiesel product. However, all biodiesel fuels have beneficial effects on engine emissions. This report discussed the use of biodiesel fuels as replacements for part of the diesel fuel consumed throughout the world. Biodiesel fuels currently being produced from fatty acid esters today were reviewed, as well as some of the more advanced diesel replacement fuels. The report was produced as part of the International Energy Agency (IEA) Advanced Motor Fuels (AMF) Implementing Agreement Annex 34, and was divided into 14 sections: (1) an introduction, (2) biodiesel and biomass, (3) an explanation of biodiesel, (4) properties of finished biodiesel fuels, (5) exhaust emissions of finished biodiesel fuels and blends, (6) life-cycle emissions and energy, (7) international biodiesel (FAME) technical standards and specifications, (8) growth in production and use of biodiesel fuels, (9) biofuel refineries, (10) process technology, (11) development and status of biorefineries, (12) comparison of options to produce biobased diesel fuels, (13) barriers and gaps in knowledge, and (14) references. 113 refs., 37 tabs., 74 figs.

  2. Transesterification catalyzed by Lipozyme TLIM for biodiesel production from low cost feedstock

    Science.gov (United States)

    Halim, Siti Fatimah Abdul; Hassan, Hamizura; Amri, Nurulhuda; Bashah, Nur Alwani Ali

    2015-05-01

    The development of new strategies to efficiently synthesize biodiesel is of extreme important. This is because biodiesel has been accepted worldwide as an alternative fuel for diesel engines. Biodiesel as alkyl ester derived from vegetable oil has considerable advantages in terms of environmental protection. The diminishing petroleum reserves are the major driving force for researchers to look for better strategies in producing biodiesel. The main hurdle to commercialization of biodiesel is the cost of the raw material. Biodiesel is usually produced from food-grade vegetable oil that is more expensive than diesel fuel. Therefore, biodiesel produced from food-grade vegetable oil is currently not economically feasible. Use of an inexpensive raw material such as waste cooking palm oil and non edible oil sea mango are an attractive option to lower the cost of biodiesel. This study addresses an alternative method for biodiesel production which is to use an enzymatic approach in producing biodiesel fuel from low cost feedstock waste cooking palm oil and unrefined sea mango oil using immobilized lipase Lipozyme TL IM. tert-butanol was used as the reaction medium, which eliminated both negative effects caused by excessive methanol and glycerol as the byproduct. Two variables which is methanol to oil molar ratio and enzyme loading were examine in a batch system. Transesterification of waste cooking palm oil reach 65% FAME yield (methanol to oil molar ratio 6:1 and 10% Novozyme 435 based on oil weight), while transesterification of sea mango oil can reach 90% FAME yield (methanol to oil molar ratio 6:1 and 10% Lipozyme TLIM based on oil weight).

  3. Environmentally Optimal, Nutritionally Aware Beef Replacement Plant-Based Diets.

    Science.gov (United States)

    Eshel, Gidon; Shepon, Alon; Noor, Elad; Milo, Ron

    2016-08-02

    Livestock farming incurs large and varied environmental burdens, dominated by beef. Replacing beef with resource efficient alternatives is thus potentially beneficial, but may conflict with nutritional considerations. Here we show that protein-equivalent plant based alternatives to the beef portion of the mean American diet are readily devisible, and offer mostly improved nutritional profile considering the full lipid profile, key vitamins, minerals, and micronutrients. We then show that replacement diets require on average only 10% of land, 4% of greenhouse gas (GHG) emissions, and 6% of reactive nitrogen (Nr) compared to what the replaced beef diet requires. Applied to 320 million Americans, the beef-to-plant shift can save 91 million cropland acres (and 770 million rangeland acres), 278 million metric ton CO2e, and 3.7 million metric ton Nr annually. These nationwide savings are 27%, 4%, and 32% of the respective national environmental burdens.

  4. Analysis of biodiesel

    Science.gov (United States)

    Biodiesel is a biogenic alternative to diesel fuel derived from petroleum. It is produced by a transesterification reaction from materials consisting largely of triacylglycerols such as vegetable and other plant oils, animal fats, used cooking oils, and “alternative” feedstocks such as algal oils. T...

  5. Thermal stability of biodiesel in supercritical methanol

    Energy Technology Data Exchange (ETDEWEB)

    Hiroaki Imahara; Eiji Minami; Shusaku Hari; Shiro Saka [Kyoto University, Kyoto (Japan). Department of Socio-Environmental Energy Science

    2008-01-15

    Non-catalytic biodiesel production technologies from oils/fats in plants and animals have been developed in our laboratory employing supercritical methanol. Due to conditions in high temperature and high pressure of the supercritical fluid, thermal stability of fatty acid methyl esters and actual biodiesel prepared from various plant oils was studied in supercritical methanol over a range of its condition between 270{sup o}C/17 MPa and 380{sup o}C/56 MPa. In addition, the effect of thermal degradation on cold flow properties was studied. As a result, it was found that all fatty acid methyl esters including poly-unsaturated ones were stable at 270{sup o}C/17 MPa, but at 350{sup o}C/43 MPa, they were partly decomposed to reduce the yield with isomerization from cis-type to trans-type. These behaviors were also observed for actual biodiesel prepared from linseed oil, safflower oil, which are high in poly-unsaturated fatty acids. Cold flow properties of actual biodiesel, however, remained almost unchanged after supercritical methanol exposure at 270{sup o}C/17 MPa and 350{sup o}C/43 MPa. For the latter condition, however, poly-unsaturated fatty acids were sacrificed to be decomposed and reduced in yield. From these results, it was clarified that reaction temperature in supercritical methanol process should be lower than 300{sup o}C, preferably 270{sup o}C with a supercritical pressure higher than 8.09 MPa, in terms of thermal stabilization for high-quality biodiesel production. 9 refs., 3 figs., 4 tabs.

  6. Nozzle flow and atomization characteristics of ethanol blended biodiesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Park, Su Han; Suh, Hyun Kyu; Lee, Chang Sik [Department of Mechanical Engineering, Graduate School of Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul, 133-791 (Korea)

    2010-01-15

    This study was conducted to investigate the injection and atomization characteristics of biodiesel-ethanol blended fuel. The injection performance of biodiesel-ethanol blended fuel was analyzed from the injection rate characteristics using the injection rate measuring system, and the effective injection velocity and effective spray diameter using the nozzle flow model. Moreover, the atomization characteristics, such as local and overall SMD distributions, overall axial velocity and droplet arrival time were analyzed and compared with these from diesel and biodiesel fuels to obtain the atomization characteristics of biodiesel-ethanol blended fuel. It was revealed that ethanol fuel affects the decrease of the peak injection rate and the shortening of the injection delay due to the decrease of fuel properties, such as fuel density and dynamic viscosity. In addition, the ethanol addition improved the atomization performance of biodiesel fuel, because the ethanol blended fuel has a low kinematic viscosity and surface tension, then that has more active interaction with the ambient gas, compared to BD100. (author)

  7. Advanced technologies in biodiesel new advances in designed and optimized catalysts

    CERN Document Server

    Islam, Aminul

    2015-01-01

    The inadequacy of fossil fuel is the main driving force of the future sustainable energy around the world. Since heterogeneous catalysis is used in chemical industry for biodiesel production, achieving optimal catalytic performance is a significant issue for chemical engineers and chemists. Enormous attention has been placed in recent years on the selection of heterogeneous catalyst in biodiesel industry, where the catalyst could be facilitated highly selective toward desired products, easily handled, separated from the reaction medium, and subsequently reused. This book stresses an overview on the contributions of tailored solid acid and base catalysts to catalytic biodiesel synthesis, and the in uences of heterogeneous catalyst properties on biodiesel yield in order to develop a better understanding of catalyst design for the green production process as well as practical applications in the biodiesel industry.

  8. Effect of poultry fat oil biodiesel on tractor engine performance

    Directory of Open Access Journals (Sweden)

    M Bavafa

    2016-04-01

    Full Text Available Introduction: Depletion of fossil fuels and environmental degradation are two major problems faced by the world. Today fossil fuels take up to 80% of the primary energy consumed in the world, of which 58% is consumed by the transport sector alone (Mard et al., 2012. The combustion products cause global warming, which is caused of emissions like carbon monoxide (CO, sulfur dioxide (SO2 and nitrogen oxides (NOX. Thus it is essential that low emission alternative fuels to be developed for useing in diesel engines. Many researchers have concluded that biodiesel holds promise as an alternative fuel for diesel engines. Biodiesel is oxygenated, biodegradable, non-toxic, and environmentally friendly (Qi et al., 2010. Materials and Methods: In this study transesterification method was used to produce biodiesel, because of its simplicity in biodiesel production process and holding the highest conversion efficiency. Transesterification of poultry fat oil and the properties of the fuels: Fatty acid methyl ester of poultry fat oil was prepared by transesterification of oil with methanol in the presence of KOH as catalyst. The fuel properties of poultry fat oil methyl ester and diesel fuel were determined. These properties are presented in Table 1. Tests of engine performance and emissions: After securing the qualitative characteristics of produced biodiesel, different biodiesel fuels of 5%, 10%, 15%, and 20% blended with diesel fuel were prepared. A schematic diagram of the engine setup is shown in Fig.1. The MF-399 tractor engine was used in the tests. The basic specifications of the engine are shown in Table 3. The engine was loaded with an electromagnetic dynamometer. The Σ5 model dynamometer manufactured by NJ-FROMENT was used to measure the power and the torque of the tractor engine. The speed range and capacity of this device are shown in Table 2. A FTO Flow Meter, manufactured by American FLOWTECH Company, was used to measure the fuel consumption

  9. PRODUCT SAFETY AND COLOR CHARACTERISTICS OF GROUND BEEF PROCESSED FROM BEEF TRIMMINGS TREATED WITH PEROXYACETIC ACID ALONE OR FOLLOWED BY NOVEL ORGANIC ACIDS

    Directory of Open Access Journals (Sweden)

    Fred Pohlman

    2014-10-01

    Full Text Available The objective of this study was to evaluate the effectiveness of antimicrobial interventions using peroxyacetic acetic acid (PAA followed by novel organic acids on beef trimmings prior to grinding with conventional spray (CS or electrostatic spray (ES on ground beef microbial populations and color. Beef trimmings (80/20; 25kg were inoculated with E. coli O157:H7, non- O157:H7 shiga toxin producing (STEC E. coli (EC and Salmonella spp. (SA at 105 CFU/g. Inoculated trimmings (1.5 kg /treatment/replicate, 2 replicates were treated with CS application of 0.02% PAA alone or followed by CS or ES application of 3% octanoic acid (PO, 3% pyruvic acid (PP, 3% malic acid (PM, saturated solution of fumaric acid (PF or deionized water (W. Findings from this study suggest that PA as a single or multiple chemical hurdle approach with malic, pyruvic, octanoic and fumaric acid on beef trimmings may be effective in reducing E. coli O157:H7 as well as non-STEC serotypes and Salmonella in ground beef up to day 2 of simulated retail display. Results of this study showed that instrumental color properties of ground beef treated with peroxyacetic acid followed by organic acids had little or no difference (P > 0.05 compared to the untreated un-inoculated control ground beef samples. The results also indicate that ES application of some organic acids may have similar or greater efficiency in controlling ground beef microbial populations compared to the CS application of the same acid providing a more economical and waste manageable decontamination approach.

  10. The effect of technology information on consumer expectations and liking of beef.

    Science.gov (United States)

    Van Wezemael, Lynn; Ueland, Øydis; Rødbotten, Rune; De Smet, Stefaan; Scholderer, Joachim; Verbeke, Wim

    2012-02-01

    European consumers increasingly attach value to process characteristics of food. Although beef technologies are hardly communicated to consumers, providing consumer-oriented information about technology application might increase perceived transparency and consumer acceptance. This study investigates how information about beef technologies influences consumer expectations and liking of beef. Beef consumers in Belgium (n = 108) and Norway (n = 110) participated in an information experiment combined with sensory testing in which each consumer tasted three beef muscles treated with different technologies: unprocessed tenderloin M. Psoas major, muscle profiled M. Infraspinatus, and marinated (by injection) M. Semitendinosus. The findings indicate that detailed information about beef technologies can enhance consumers' expectations and liking of beef. However, this effect differs between countries and beef technologies. Information becomes either less relevant when the product is actually tasted, as indicated by the findings in Norway, or more relevant when information is confirmed by own experience during tasting, as indicated by the findings in Belgium. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Prospects of biodiesel from Jatropha in India: A review

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Siddharth; Sharma, M.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand (India)

    2010-02-15

    The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country. Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R and D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems. The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented. (author)

  12. Biodiesel production from algae grown on food industry wastewater.

    Science.gov (United States)

    Mureed, Khadija; Kanwal, Shamsa; Hussain, Azhar; Noureen, Shamaila; Hussain, Sabir; Ahmad, Shakeel; Ahmad, Maqshoof; Waqas, Rashid

    2018-04-10

    Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater. This study was conducted to optimize the growth of microalgal strains and to assess biodiesel production potential of algae using untreated food industry wastewater as a source of nutrients. The food industry wastewater was collected and analyzed for its physicochemical characteristics. Different dilutions (10, 20, 40, 80, and 100%) of this wastewater were made with distilled water, and growth of two microalgal strains (Cladophora sp. and Spyrogyra sp.) was recorded. Each type of wastewater was inoculated with microalgae, and biomass was harvested after 7 days. The growth of both strains was also evaluated at varying temperatures, pH and light periods to optimize the algal growth for enhanced biodiesel production. After optimization, biodiesel production by Spyrogyra sp. was recorded in real food industry wastewater. The algal biomass increased with increasing level of food industry wastewater and was at maximum with 100% wastewater. Moreover, statistically similar results were found with algal growth on 100% wastewater and also on Bristol's media. The Cladophora sp. produced higher biomass than Spyrogyra sp. while growing on food industry wastewater. The optimal growth of both microalgal strains was observed at temperature 30 °C, pH: 8, light 24 h. Cladophora sp. was further evaluated for biodiesel production while growing on 100% wastewater and found that this strain produced high level of oil and biodiesel. Algae have an ample potential to produce biodiesel from spent wash of food industry. In addition, it is cheaper and presents an environment friendly way to handle food industry wastewater.

  13. Prospects of biodiesel from Jatropha in India: A review

    International Nuclear Information System (INIS)

    Jain, Siddharth; Sharma, M.P.

    2010-01-01

    The increasing industrialization and modernization of the world has to a steep rise for the demand of petroleum products. Economic development in developing countries has led to huge increase in the energy demand. In India, the energy demand is increasing at a rate of 6.5% per annum. The crude oil demand of the country is met by import of about 80%. Thus the energy security has become a key issue for the nation as a whole. Petroleum-based fuels are limited. The finite reserves are highly concentrated in certain regions of the world. Therefore, those countries not having these reserves are facing foreign exchange crises, mainly due to the import of crude oil. Hence it is necessary to look forward for alternative fuels, which can be produced from feedstocks available within the country. Biodiesel, an ecofriendly and renewable fuel substitute for diesel has been getting the attention of researchers/scientists of all over the world. The R and D has indicated that up to B20, there is no need of modification and little work is available related to suitability and sustainability of biodiesel production from Jatropha as non-edible oil sources. In addition, the use of vegetable oil as fuel is less polluting than petroleum fuels. The basic problem with biodiesel is that it is more prone to oxidation resulting in the increase in viscosity of biodiesel with respect to time which in turn leads to piston sticking, gum formation and fuel atomization problems. The report is an attempt to present the prevailing fossil fuel scenario with respect to petroleum diesel, fuel properties of biodiesel resources for biodiesel production, processes for its production, purification, etc. Lastly, an introduction of stability of biodiesel will also be presented. (author)

  14. Potential use of eucalyptus biodiesel in compressed ignition engine

    Directory of Open Access Journals (Sweden)

    Puneet Verma

    2016-03-01

    Full Text Available The increased population has resulted in extra use of conventional sources of fuels due to which there is risk of extinction of fossil fuels’ resources especially petroleum diesel. Biodiesel is emerging as an excellent alternative choice across the world as a direct replacement for diesel fuel in vehicle engines. Biodiesel offers a great choice. It is mainly derived from vegetable oils, animal fats and algae. Hence in this paper effort has been made to find out feasibility of biodiesel obtained from eucalyptus oil and its impact on diesel engine. Higher viscosity is a major issue while using vegetable oil directly in engine which can be removed by converting it into biodiesel by the process of transesterification. Various fuel properties like calorific value, flash point and cetane value of biodiesel and biodiesel–diesel blends of different proportions were evaluated and found to be comparable with petroleum diesel. The result of investigation shows that Brake Specific Fuel Consumption (BSFC for two different samples of B10 blend of eucalyptus biodiesel is 2.34% and 2.93% lower than that for diesel. Brake Thermal Efficiency (BTE for B10 blends was found to be 0.52% and 0.94% lower than that for diesel. Emission characteristics show that Smoke Opacity improves for both samples, smoke is found to be 64.5% and 62.5% cleaner than that of diesel. Out of all blends B10 was found to be a suitable alternative to conventional diesel fuel to control air pollution without much significant effect on engine performance. On comparing both samples, biodiesel prepared from sample A of eucalyptus oil was found to be superior in all aspects of performance and emission.

  15. Design and optimisation of purification procedure for biodiesel washing

    Directory of Open Access Journals (Sweden)

    S.B. Glišić

    2009-09-01

    Full Text Available Almost complete methanolysis of triglycerides is usually not enough to fulfil the strict standards of biodiesel quality. A key step in this process is neutralization of alkali (catalyst followed by the washing procedure necessary for removing different impurities such as traces of catalyst and methanol and removal of soaps and glycerol from esters phase. The washing with hot water is still widely used in many industrial units for the biodiesel production. In this study, different procedures of biodiesel washing using hot water were investigated. The orto-phosphoric acid was suggested as the best compound for alkali catalyst (sodium hydroxide neutralization. The main goal of the performed analysis was to minimize the water usage in the washing-neutralization step during the biodiesel production. Such solution would make the process of biodiesel synthesis more economical taking into account the decrease of energy consumed for evaporation of water during the final product purification, as well as more acceptable procedure related to the impact on environment (minimal waste water release. Results of the performed simulation of the washing process supported by original experimental data suggested that neutralization after the optimized washing process of the methyl ester layer could be the best solution. The proposed washing procedure significantly decreases the amount of waste water giving at the same time the desired purity of final products (biodiesel and glycerol. The simulation of the process was performed using ASPEN plus software supported by ELCANTREL and UNIQUAC procedure of required properties calculation

  16. Low-Cost feedstock conversion to biodiesel via ultrasound technology

    CSIR Research Space (South Africa)

    Babajide, O

    2010-10-01

    Full Text Available shown that biodiesel is a better fuel than the fossil-derived diesel in terms of engine performance, emissions reduction, lubricity and environmental benefits. The increasing popularity of biodiesel has generated great demand for its commercial...

  17. Production and analysis of biodiesel from Jatropha curcas seed ...

    African Journals Online (AJOL)

    ADOWIE PERE

    production of biodiesel via transesterification of resultant oil. The effects of methanol-to-oil .... mass and energy balance, cost analysis involved in producing biodiesel from ..... Chen, Q; Song, B.A;Yang, S (2011) Production and selected fuel ...

  18. Prevalence and distribution of Arcobacter spp. in raw milk and retail raw beef.

    Science.gov (United States)

    Shah, A H; Saleha, A A; Murugaiyah, M; Zunita, Z; Memon, A A

    2012-08-01

    A total of 106 beef samples which consisted of local (n = 59) and imported (n = 47) beef and 180 milk samples from cows (n = 86) and goats (n = 94) were collected from Selangor, Malaysia. Overall, 30.2% (32 of 106) of beef samples were found positive for Arcobacter species. Imported beef was significantly more contaminated (46.80%) than local beef (16.9%). Arcobacter butzleri was the species isolated most frequently from imported (81.8%) and local (60%) beef, followed by Arcobacter cryaerophilus in local (33.3%) and imported (18.2%) beef samples. Only one local beef sample (10%) yielded Arcobacter skirrowii. Arcobacter species were detected from cow's milk (5.8%), with A. butzleri as the dominant species (60%), followed by A. cryaerophilus (40%), whereas none of the goat's milk samples were found positive for Arcobacter. This is the first report of the detection of Arcobacter in milk and beef in Malaysia.

  19. Biodiesel from waste cooking oils via direct sonication

    International Nuclear Information System (INIS)

    Gude, Veera Gnaneswar; Grant, Georgene Elizabeth

    2013-01-01

    Highlights: • Thermal effects of direct sonication on transesterification reaction were studied. • Ultrasonics may effectively transesterify waste oils without external heating. • Intense mixing with temperature rise completes transesterification instantly. • Plug flow process reactor design with ultrasound may prove energy efficient. • Process optimization and biodiesel conversion analysis was presented. - Abstract: This study investigates the effect of direct sonication in conversion of waste cooking oil into biodiesel. Waste cooking oils may cause environmental hazards if not disposed properly. However, waste cooking oils can serve as low-cost feedstock for biodiesel production. Ultrasonics, a non-conventional process technique, was applied to directly convert waste cooking oil into biodiesel in a single step. Ultrasonics transesterify waste cooking oils very efficiently due to increased mass/heat transfer phenomena and specific thermal/athermal effects at molecular levels. Thus, energy and chemical consumption in the overall process is greatly reduced compared to conventional biodiesel processes. Specific to this research, thermal effects of ultrasonics in transesterification reaction without external conventional heating along with effects of different ultrasonic, energy intensities and energy density are reported. Optimization of process parameters such as methanol to oil ratio, catalyst concentration and reaction time are also presented. It was observed that small reactor design such as plug-flow or contact-type reactor design may improve overall ultrasonic utilization in the transesterification reaction due to increased energy density and ultrasonic intensity

  20. Life cycle assessment of palm-derived biodiesel in Taiwan

    KAUST Repository

    Maharjan, Sumit

    2016-10-01

    In Taiwan, due to the limited capacity of waste cooking oil, palm oil has been viewed as the potential low-cost imported feedstock for producing biodiesel, in the way of obtaining oil feedstock in Malaysia and producing biodiesel in Taiwan. This study aims to evaluate the cradle-to-grave life cycle environmental performance of palm biodiesel within two different Asian countries, Malaysia and Taiwan. The phases of the life cycle such as direct land-use-change impact, plantation and milling are investigated based on the Malaysia case and those of refining, and fuel production as well as engine combustion is based on Taiwan case. The greenhouse gas (GHG) emission and energy consumption for the whole life cycle were calculated as −28.29 kg CO2-equiv. and +23.71 MJ/kg of palm-derived biodiesel. We also analyze the impacts of global warming potential (GWP) and the payback time for recovering the GHG emissions when producing and using biodiesel. Various scenarios include (1) clearing rainforest or peat-forest; (2) treating or discharging palm-oil-milling effluent (POME) are further developed to examine the effectiveness of improving the environmental impacts © 2016 Springer-Verlag Berlin Heidelberg

  1. Performance and emissions characteristics of biodiesel from soybean oil

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli University, Izmit (Turkey). Faculty of Technical Education

    2005-07-15

    Biodiesel is an alternative diesel fuel that can be produced from renewable feedstocks such as vegetable oils, waste frying oils, and animal fats. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel. Many engine manufacturers have included this fuel in their warranties since it can be used in diesel engines without significant modification. However, the fuel properties such as cetane number, heat of combustion, specific gravity, and kinematic viscosity affect the combustion, engine performance and emission characteristics. In this study, the engine performance and emissions characteristics of two different petroleum diesel fuels (No. 1 and No. 2 diesel fuels) and biodiesel from soybean oil and its 20 per cent blends with No. 2 diesel fuel were compared. The results showed that the engine performance of the neat biodiesel and its blend was similar to that of No. 2 diesel fuel with nearly the same brake fuel conversion efficiency, and slightly higher fuel consumption. CO{sub 2} emission for the biodiesel was slightly higher than for the No. 2 diesel fuel. Compared with diesel fuels, biodiesel produced lower exhaust emissions, except NO{sub x}. (author)

  2. Thermoeconomic Analysis of Biodiesel Production from Used Cooking Oils

    Directory of Open Access Journals (Sweden)

    Emilio Font de Mora

    2015-05-01

    Full Text Available Biodiesel from used cooking oil (UCO is one of the most sustainable solutions to replace conventional fossil fuels in the transport sector. It can achieve greenhouse gas savings up to 88% and at the same time reducing the disposal of a polluting waste. In addition, it does not provoke potential negative impacts that conventional biofuels may eventually cause linked to the use of arable land. For this reason, most policy frameworks favor its consumption. This is the case of the EU policy that double-counters the use of residue and waste use to achieve the renewable energy target in the transport sector. According to different sources, biodiesel produced from UCO could replace around 1.5%–1.8% of the EU-27 diesel consumption. This paper presents an in-depth thermoeconomic analysis of the UCO biodiesel life cycle to understand its cost formation process. It calculates the ExROI value (exergy return on investment and renewability factor, and it demonstrates that thermoeconomics is a useful tool to assess life cycles of renewable energy systems. It also shows that UCO life cycle biodiesel production is more sustainable than biodiesel produced from vegetable oils.

  3. Engine emissions and combustion analysis of biodiesel from East African countries

    Directory of Open Access Journals (Sweden)

    Paul Maina

    2014-03-01

    Full Text Available Environmental, availability and financial problems associated with fossil fuels encourage the manufacture and use of biodiesel. In this study, vegetable oil was extracted from Jatropha curcas seeds sourced from Kenya and Tanzania. A two-step acid base catalytic transesterification process was used to produce biodiesel because of the amount of free fatty acids present in the oil. The test rig used in the experiments was an Audi, 1.9-litre, turbocharged direct injection, compression ignition engine. Emissions were measured using an Horiba emission analyser system while combustion data was collected by a data acquisition system, from which cylinder pressure and rate of heat release of the test engine in every crank angle were calculated. The two biodiesels showed better emission characteristics than the fossil diesel included in the tests for comparison purposes. Cylinder pressure and heat release of the biodiesel were also within acceptable ranges. However, the emission and combustion characteristics differed between the two biodiesels a result likely related to their different origins. These findings prove that the source of biodiesel is an important factor to consider.

  4. Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia

    Energy Technology Data Exchange (ETDEWEB)

    Jayed, M.H.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jahirul, M.I. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2009-12-15

    Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NO{sub x} where it lags from conventional petro diesel. (author)

  5. Environmental aspects and challenges of oilseed produced biodiesel in Southeast Asia

    International Nuclear Information System (INIS)

    Jayed, M.H.; Masjuki, H.H.; Saidur, R.; Kalam, M.A.; Jahirul, M.I.

    2009-01-01

    Research on alternative fuel for the vehemently growing number of automotivesis intensified due to environmental reasons rather than turmoil in energy price and supply. From the policy and steps to emphasis the use of biofuel by governments all around the world, this can be comprehended that biofuel have placed itself as a number one substitute for fossil fuels. These phenomena made Southeast Asia a prominent exporter of biodiesel. But thrust in biodiesel production from oilseeds of palm and Jatropha curcas in Malaysia, Indonesia and Thailand is seriously threatening environmental harmony. This paper focuses on this critical issue of biodiesels environmental impacts, policy, standardization of this region as well as on the emission of biodiesel in automotive uses. To draw a bottom line on feasibilities of different feedstock of biodiesel, a critical analysis on oilseed yield rate, land use, engine emissions and oxidation stability is reviewed. Palm oil based biodiesel is clearly ahead in all these aspects of feasibility, except in the case of NO x where it lags from conventional petro diesel. (author)

  6. Comparison of Algal Biodiesel Production Pathways Using Life Cycle Assessment Tool

    DEFF Research Database (Denmark)

    Singh, Anoop; Olsen, Stig Irving

    2013-01-01

    The consideration of algal biomass in biodiesel production increased very rapidly in the last decade. A life cycle assessment (LCA) study is presented to compare six different biodiesel production pathways (three different harvesting techniques, i.e., aluminum as flocculent, lime flocculent, and ......, ecosystem quality, and resources were higher than the conventional diesel. This study recommends more practical data at pilot-scale production plant with maximum utilization of by-products generated during the production to produce a sustainable algal biodiesel......., and centrifugation, and two different oil extraction methods, i.e., supercritical CO2 (sCO2) and press and co-solvent extraction). The cultivation of Nannochloropsis sp. considered in a flat-panel photobioreactor (FPPBR). These algal biodiesel production systems were compared with the conventional diesel in a EURO 5...... passenger car used for transport purpose (functional unit 1 person km (pkm). The algal biodiesel production systems provide lesser impact (22–105 %) in comparison with conventional diesel. Impacts of algal biodiesel on climate change were far better than conventional diesel, but impacts on human health...

  7. Optimization of biodiesel production from castor oil using response surface methodology.

    Science.gov (United States)

    Jeong, Gwi-Taek; Park, Don-Hee

    2009-05-01

    The short supply of edible vegetable oils is the limiting factor in the progression of biodiesel technology; thus, in this study, we applied response surface methodology in order to optimize the reaction factors for biodiesel synthesis from inedible castor oil. Specifically, we evaluated the effects of multiple parameters and their reciprocal interactions using a five-level three-factor design. In a total of 20 individual experiments, we optimized the reaction temperature, oil-to-methanol molar ratio, and quantity of catalyst. Our model equation predicted that the following conditions would generate the maximum quantity of castor biodiesel (92 wt.%): a 40-min reaction at 35.5 degrees C, with an oil-to-methanol molar ratio of 1:8.24, and a catalyst concentration of 1.45% of KOH by weight of castor oil. Subsequent empirical analyses of the biodiesel generated under the predicted conditions showed that the model equation accurately predicted castor biodiesel yields within the tested ranges. The biodiesel produced from castor oil satisfied the relevant quality standards without regard to viscosity and cold filter plugging point.

  8. Rheological behavior of oil and biodiesel from Moringa oleifera

    International Nuclear Information System (INIS)

    Díaz Domínguez, Yosvany; Tabio García, Danger; Rondón Macías, Maylin; Fernández Santana, Elina; Rodríguez Muñoz, Susana; Piloto‐Rodríguez, Ramón

    2017-01-01

    The seeds of Moringa oleifera contain between 30 and 45% of oil, which has motivated the development of investigations with a view to their possible use. The present work aims to determine the rheological behavior of Moringa oleifera oil and biodiesel. The synthesis of biodiesel from crude Moringa oleifera oil was made using methanol with presence of sodium hydroxide. The average yield of this stage was 93%. The results of the rheological study shown that the viscosity at 40°C of Moringa oleifera oil is independent of the shear rate, which corresponds to the behavior of a Newtonian fluid. However, for biodiesel it was demonstrated that there is a dependence of the viscosity with the shear rate (non-Newtonian fluid). This result is corroborated by the fluidity curve, assuring that Moringa oleifera biodiesel behaves as a dilating fluid. (author)

  9. Temperature influence on biodiesel production by non-catalytic transesterification; Influencia da temperatura na producao de biodiesel por transesterificacao nao catalitica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Humberto N.M.; Oliveira, Thomas R; Sousa, Elisa M.B.D. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    The main objective of this paper is to produce biodiesel using supercritical fluids through of the transesterification process without use of catalysts. It become easier the separation of the reaction products when compared with conventional method. In this work the influence of the temperature in the production of biodiesel from mamona oil was studied. Tree temperatures were studied (473.15 K, 523.15 K and 573.15 K) and the pressure (300 bar) and molar ratio (1:40) was keep constant during the process. Excess of Alcohol was used for this synthesis. The influence of temperature on the conversion and the reaction time was evaluated. The castor bean oil and biodiesel obtained were characterized in relation to their properties more significant. For results, higher conversions were found at higher temperatures (573.15 K), however can see a trend to the stability of reaction. The quality of the product was suitable for most properties evaluated. The equipment designed and built for this purpose was feasible but require some modifications to its optimization. The reaction of biodiesel production was confirmed, even without the addition of catalyst. It was the need to use a large excess of alcohol in relation to oil on this route without catalytic converters. In the case of the route of biodiesel production without the addition of catalysts, was felt the need to use excess alcohol in relation to the castor bean oil. (author)

  10. Simulation, optimization and analysis of cost of biodiesel plant pot route enzymatic; Simulacao, otimizacao e analise de custo de planta de biodiesel via rota enzimatica

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Jocelia S.; Ferreira, Andrea L.O. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Silva, Giovanilton F. [Tecnologia Bioenergetica - Tecbio, Fortaleza, CE (Brazil)

    2008-07-01

    The aim of this work ware simulation, optimization and to find the biodiesel production cost produced by enzymatic route. Consequently, it was carried out a methodology of economic calculations and sensitivity analyses for this process. It was used a computational software from balance equations for obtaining the biodiesel cost. The economical analysis was obtained by capital cost of biofuel. The whole process was developed according analysis of fixed capital cost, total manufacturing cost, raw material cost, and chemical cost. The results of economic calculations to biodiesel production showed efficient. The model was meant for use in assessing the effects on estimated biodiesel production cost of changes in different types of oils. (author)

  11. The influence of temperature on the rheology of biodiesel and on the biodiesel-glycerin-ethanol blend - doi: 10.4025/actascitechnol.v34i1.8067

    Directory of Open Access Journals (Sweden)

    Andrés José Cocato Steluti

    2011-11-01

    Full Text Available After transesterification reaction, biodiesel and glycerin (the resulting co-product, coupled to reaction excesses and impurities, make up two distinct phases that must be separated. The use of ethanol as a transesterificating agent impairs the above-mentioned separation due to the greater affinity of ethyl esters (biodiesel from ethanol to glycerin. Current research provides an analysis of the influence of temperature on the rheology of biodiesel and the bio-diesel-glycerin-ethanol blend. Rheology behavior is highly important not merely in issues involving, for instance, discharging and pumping, but also as a factor that should be evaluated within the process of separation of the biodiesel-glycerin phases by decantation and centrifugation.

  12. Consumer perceptions of beef healthiness: results from a qualitative study in four European countries.

    Science.gov (United States)

    Van Wezemael, Lynn; Verbeke, Wim; de Barcellos, Marcia D; Scholderer, Joachim; Perez-Cueto, Federico

    2010-06-15

    Consumer perception of the healthiness of beef is an important determinant of beef consumption. However, little is known about how consumers perceive the healthiness of beef. The aim of this study is to shed light on the associations between beef and health. Eight focus group discussions were conducted in four European countries (France, UK, Germany, Spain), each consisting of seven to nine participants. A content analysis was performed on the transcripts of these discussions. Although beef was generally perceived as healthful, focus group participants expected positive as well as negative effects of beef consumption on their health. Labelled, branded, fresh and lean beef were perceived as signalling healthful beef, in contrast with further processed and packaged beef. Consumers felt that their individual choices could make a difference with respect to the healthiness of beef consumed. Focus group participants were not in favour of improving beef healthiness during processing, but rather focussed on appropriate consumption behaviour and preparation methods. The individual responsibility for health implies that consumers should be able to make correct judgements about how healthful their food is. However, the results of this study indicate that an accurate assessment of beef healthiness is not always straightforward. The presented results on consumer perceptions of beef healthiness provide insights into consumer decision making processes, which are important for the innovation and product differentiation in the European beef sector, as well as for public health policy decisions related to meat consumption in general and beef consumption in particular.

  13. Performance characteristics of mix oil biodiesel blends with smoke emissions

    Directory of Open Access Journals (Sweden)

    Sanjay Mohite

    2016-08-01

    Full Text Available Fossil fuel resources are being depleted day by day and its use affects the environment adversely. Renewable energy is one of the alternate for sustainable development and biodiesel is one of the suitable alternate which can replace the diesel. The major hurdles in the successful commercialization of biodiesel are high feedstock cost and conversion technology to reduce viscosity. The choice of raw material and biodiesel production method must depend upon techno-economical view. There are some specific regions for different types of oil availability. It is therefore required to produce biodiesel from the mixture of oils to fulfill the requirements of energy demand in a particular country according to its suitability and availability of feedstock. Karanja and Linseed crops  are abundantly available in India. Biodiesel was produced from a mixture of Karanja and Linseed oils by alkaline transesterification. In this experimental study, biodiesel blends of 10%, 20% and 30% were used with diesel in a diesel engine at a constant speed of 1500 rpm with varying brake powers (loads from 0.5 kW to 3.5kW to evaluate brake thermal efficiency, brake specific fuel consumption,  brake specific energy consumption, exhaust gas temperature, mechanical efficiency, volumetric efficiency, air fuel ratio and smoke opacity. They were compared with diesel and found satisfactory. BTE was found to be  28.76% for B10 at 3.5kW load.  Smoke opacity was also found to be reduced with all blends. Smoke opacity was found to be reduced up to 10.23% for B10 biodiesel blend as compared to that of diesel at 3.5kW. Experimental investigation  has revealed that  biodiesel produced from a mixture of Karanja and Linseed oils can be successfully used in diesel engines without any engine modification  and B10 was found to be an optimum biodiesel blend in terms of brake thermal efficiency. Article History: Received April 14th 2016; Received in revised form June 25th 2016; Accepted

  14. Dynamics of Peroxy and Alkenyl Radicals Undergoing Competing Rearrangements in Biodiesel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Dibble, Theodore S. [State Univ. of New York (SUNY), Syracuse, NY (United States)

    2016-03-24

    Biodiesel fuel is increasingly being used worldwide. Although we have a fair understanding of the molecular details of the chemistry of peroxy radicals derived from alkanes, biodiesel fuels contain ester and olefin groups which significantly impact the thermodynamics and kinetics of biodiesel ignition. The broader goal of this research is to carry out systematic computational studies of the elementary kinetics of the chemistry of ROO•, QOOH and •OOQOOH compounds that are models for biodiesel ignition.

  15. Studies on crude oil removal from pebbles by the application of biodiesel.

    Science.gov (United States)

    Xia, Wen-xiang; Xia, Yan; Li, Jin-cheng; Zhang, Dan-feng; Zhou, Qing; Wang, Xin-ping

    2015-02-15

    Oil residues along shorelines are hard to remove after an oil spill. The effect of biodiesel to eliminate crude oil from pebbles alone and in combination with petroleum degrading bacteria was investigated in simulated systems. Adding biodiesel made oil detach from pebbles and formed oil-biodiesel mixtures, most of which remained on top of seawater. The total petroleum hydrocarbon (TPH) removal efficiency increased with biodiesel quantities but the magnitude of augment decreased gradually. When used with petroleum degrading bacteria, the addition of biodiesel (BD), nutrients (NUT) and BD+NUT increased the dehydrogenase activity and decreased the biodegradation half lives. When BD and NUT were replenished at the same time, the TPH removal efficiency was 7.4% higher compared to the total improvement of efficiency when BD and NUT was added separately, indicating an additive effect of biodiesel and nutrients on oil biodegradation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Plant latex lipase as biocatalysts for biodiesel production | Mazou ...

    African Journals Online (AJOL)

    Plant latex lipase as biocatalysts for biodiesel production. ... This paper provides an overview regarding the main aspects of latex, such as the reactions catalyzed, physiological functions, specificities, sources and their industrial applications. Keywords: Plant latex, lipase, Transesterification, purification, biodiesel ...

  17. Enhancement of biodiesel production from different species of algae

    Directory of Open Access Journals (Sweden)

    El-Moneim M. R. Afify, Abd

    2010-12-01

    Full Text Available Eight algal species (4 Rhodo, 1 chloro and 1 phaeophycean macroalgae, 1 cyanobacterium and 1 green microalga were used for the production of biodiesel using two extraction solvent systems (Hexane/ether (1:1, v/v and (Chloroform/ methanol (2:1, v/v. Biochemical evaluations of algal species were carried out by estimating biomass, lipid, biodiesel and sediment (glycerin and pigments percentages. Hexane/ ether (1:1, v/v extraction solvent system resulted in low lipid recoveries (2.3-3.5% dry weight while; chloroform/methanol (2: 1, v/v extraction solvent system was proved to be more efficient for lipid and biodiesel extraction (2.5 – 12.5% dry weight depending on algal species. The green microalga Dictyochloropsis splendida extract produced the highest lipid and biodiesel yield (12.5 and 8.75% respectively followed by the cyanobacterium Spirulina platensis (9.2 and 7.5 % respectively. On the other hand, the macroalgae (red, brown and green produced the lowest biodiesel yield. The fatty acids of Dictyochloropsis splendida Geitler biodiesel were determined using gas liquid chromatography. Lipids, biodiesel and glycerol production of Dictyochloropsis splendida Geitler (the promising alga were markedly enhanced by either increasing salt concentration or by nitrogen deficiency with maximum production of (26.8, 18.9 and 7.9 % respectively at nitrogen starvation condition.

    Ocho especies de algas (4 Rhodo, 1 cloro y 1 macroalgas phaeophycean, 1 cianobacteria y 1 microalga verde fueron utilizados para la producción de biodiesel utilizando dos sistemas de extracción con disolventes (hexano/éter (1:1, v/v y (Cloroformo / metanol (2:1, v/v. La evaluación bioquímica de las especies de algas se llevó a cabo mediante la estimación de los porcentajes de biomasa, de lípidos, de biodiesel y de sedimento (glicerina y pigmentos. El sistema extracción con el disolvente hexano/éter (1:1, v

  18. Biodiesel as an alternative motor fuel: Production and policies in the European Union

    International Nuclear Information System (INIS)

    Bozbas, Kahraman

    2008-01-01

    The purpose of this work is to investigate fuel characteristics of biodiesel and its production in European Union. Biodiesel fuel can be made from new or used vegetable oils and animal fats, which are non-toxic, biodegradable, renewable resources. The vegetable oil fuels were not acceptable because they were more expensive than petroleum fuels. Biodiesel has become more attractive recently because of its environmental benefits. With recent increases in petroleum prices and uncertainties concerning petroleum availability, there is renewed interest in vegetable oil fuels for diesel engines. In Europe the most important biofuel is biodiesel. In the European Union biodiesel is the by far biggest biofuel and represents 82% of the biofuel production. Biodiesel production for 2003 in EU-25 was 1,504,000 tons. (author)

  19. Social and techno-economical analysis of biodiesel production in Peru

    International Nuclear Information System (INIS)

    Andres Quintero, Julian; Ruth Felix, Erika; Eduardo Rincón, Luis; Crisspín, Marianella; Fernandez Baca, Jaime; Khwaja, Yasmeen; Cardona, Carlos Ariel

    2012-01-01

    Peru has introduced a law to promote the use of biofuels with the objective to increase employment, strengthening agriculture development, providing an economic alternative to illegal drug production. In this work, the costs of biodiesel production from oil palm and Jatropha were analyzed under different scenarios. They include the participation of associations of smallholders and commercial producers as raw material provides in biodiesel business in Peru. The scenarios considered have a strong social dimension in which they explicitly consider how productions' costs change when smallholders supply a proportion of the feedstock to the industry. Production cost profiles were generated using the chemical process simulation and economical evaluation software packages provided by Aspen Technology. Total production cost found for oil palm biodiesel production ranged between 0.23 and 0.31 USD/L and Jatropha biodiesel production costs were between 0.84 and 0.87 USD/L. These production costs were analyzed and compared to biodiesel ex-factory prices and diesel fuel production cost factors. The results suggest that including smallholders in the supply chain can be under some conditions competitive with liquid biofuel production systems that are purely large scale. - Highlights: ► We design and simulate biodiesel production schemes based on oil palm and Jatropha. ► Scenarios consider smallholders and commercial producers combinations. ► Inclusion of by-product selling allows a reduction of 30% in total biodiesel production cost. ► Major inclusion of smallholders requires a strong government policy to improve their technical production conditions.

  20. Eco-compatibility in the Brazilian energy matrix: biodiesel fuel can be considered environmentally friendly?; Eco-compatibilidade na matriz energetica brasileira: o biodiesel pode ser considerado como combustivel ambientalmente correto?

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Iracema Andrade; Santos, Jarsia Melo dos; Cruz, Andrea Cristina da; Leite, Maria Bernadete Neiva Lemos [Faculdade de Tecnologia e Ciencias, Salvador, BA (Brazil)], e-mail: iracema@ftc.br; Pereira, Solange Andrade; Nascimento, Mauricio Andrade [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Inst. de Biologia

    2008-07-01

    Based on the law 11.097/05, Brazil begins the compulsory use of biodiesel from 2008, persuading the compliance of economical, technological, social and environmental objectives. The country uses 40 billions litters of diesel per year, 15% to 17% imported, which represented in 2007, a cost superior to two billion dollars. The addition of biodiesel to diesel from 2%, 5% to 20% (limit proved as technically secure), besides providing economical and social benefits, represents environmental gains, due to emissions reduction in relation to diesel fossil. However, besides the acrolein, which can result from the burnt of possible remaining glycerin in biodiesel, the soluble fractions of this biofuel and the effluents generated during its productive processes may cause possible pollution in soil and water bodies. Eco toxicological information of co-products is incomplete, and due to technical and economical restraints for the use of ethanol, methanol is mostly used for the transesterification process of biodiesel production, even though its toxicological properties are already biodiesel/year. However, the estimated production capacity is supposed to reach 3,8 billions L by 2009, what may represent environmental constraints. The present work does not discuss all the ecological risks associated to the biodiesel productive chain. It aims to determine the toxicity of the soluble water fraction (FSA) of three different types of biodiesel: castor base oil (methylic route and homogeneous basic catalysis - NaOH), 'dende' base oil (methylic route and acid catalysis) and residual cooking oil OGR-biodiesel (methylic route and acid and basic catalysis), using as organism-test (Echinometra lucunter) and, as biochemical biomarker, the activity of acid phosphatase, measured in hepatocytes of exposed fishes (Oreochromis niloticus). The results showed that the FSA of mamona (castor oil) biodiesel was the most toxic (5,0 mU/mg), followed by OGR (3,9 mU/mg) and dende biodiesel (2